summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-13 20:57:33 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-13 20:57:33 +0100
commit574c5495fbc22ea52927b77b1a1b2b60f2189f85 (patch)
treed2f3c4b219400ff196ec96619419f957b1e40773
parent4ad9a04821a4f1d3e8a52d41e0eafc1b38eba7ea (diff)
downloadPRR_3_023064-574c5495fbc22ea52927b77b1a1b2b60f2189f85.tar.gz
PRR_3_023064-574c5495fbc22ea52927b77b1a1b2b60f2189f85.tar.bz2
PRR_3_023064-574c5495fbc22ea52927b77b1a1b2b60f2189f85.zip
English.
-rw-r--r--bezout.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/bezout.tex b/bezout.tex
index 4ec1f46..fd48abb 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -118,7 +118,7 @@ We see from (\ref{cosa}) that at any critical point, $\epsilon=H/N$, the average
Since $H$ is holomorphic, any critical point of $\operatorname{Re}H$ is also a
critical point of $\operatorname{Im}H$. The number of critical points of $H$ is
therefore the same as that of $\operatorname{Re}H$. From each saddle
-emerge a gradient lines of $\operatorname{Re}H$, which is also one of constant
+emerge gradient lines of $\operatorname{Re}H$, which are also ones of constant
$\operatorname{Im}H$ and therefore constant phase.
Writing $z=x+iy$, $\operatorname{Re}H$ can be considered a real-valued function