diff options
| author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-10 08:15:31 +0100 | 
|---|---|---|
| committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-10 08:15:31 +0100 | 
| commit | 5963d605d3646b787e5557904b1330b3eda66c17 (patch) | |
| tree | e9704db46c2cfb07cc43ab18229eabcdbab423c7 | |
| parent | a58f53debfe39ac7a098defef95e170cbcd360c0 (diff) | |
| download | PRR_3_023064-5963d605d3646b787e5557904b1330b3eda66c17.tar.gz PRR_3_023064-5963d605d3646b787e5557904b1330b3eda66c17.tar.bz2 PRR_3_023064-5963d605d3646b787e5557904b1330b3eda66c17.zip | |
Added more explanation of replica calculation.
| -rw-r--r-- | bezout.tex | 33 | 
1 files changed, 23 insertions, 10 deletions
| @@ -195,7 +195,6 @@ and their conjugates. The result is, to leading order in $N$,  \end{equation}  where  \begin{widetext} -  \textcolor{red}{\textbf{[appendix?? I'm putting too much right now so as to trim later...]}}    \begin{equation}      f=2+\frac12\log\det\frac12\begin{bmatrix}        1 & a & d & b \\ @@ -232,9 +231,6 @@ shift, or $\rho(\lambda)=\rho_0(\lambda+p\epsilon)$. The Hessian of    \partial_i\partial_jH_0    =\frac{p(p-1)}{p!}\sum_{k_1\cdots k_{p-2}}^NJ_{ijk_1\cdots k_{p-2}}z_{k_1}\cdots z_{k_{p-2}},  \end{equation} - -{\color{red} \bf here I would explain the question of the det and also of the appearance of the gap, would draw a picture of ellipse etc, and would send the reader to an appendix for most of this part of the calculation} -  which makes its ensemble that of Gaussian complex symmetric matrices. Given its variances  $\overline{|\partial_i\partial_j H_0|^2}=p(p-1)a^{p-2}/2N$ and  $\overline{(\partial_i\partial_j H_0)^2}=p(p-1)\kappa/2N$, $\rho_0(\lambda)$ is constant inside the ellipse @@ -276,14 +272,31 @@ elements of $J$ are standard complex normal, this corresponds to a complex  Wishart distribution. For $\kappa\neq0$ the problem changes, and to our  knowledge a closed form is not known.  We have worked out an implicit form for  this spectrum using the saddle point of a replica symmetric calculation for the -Green function. {\color{red} the calculation is standard, we outline it in appendix xx} The result is +Green function. Introducing replicas to bring the partition function to +the numerator gives  \begin{widetext}    \begin{equation} -    G(\sigma)=\lim_{n\to0}\int d\alpha\,d\chi\,d\chi^*\frac\alpha2 -    \exp nN\left\{ -      1+\frac{p(p-1)}{16}a^{p-2}\alpha^2-\frac{\alpha\sigma}2+\frac12\log(\alpha^2-|\chi|^2) -      +\frac p4\mathop{\mathrm{Re}}\left(\frac{(p-1)}8\kappa^*\chi^2-\epsilon^*\chi\right) -      \right\} +    G(\sigma)=\frac1N\lim_{n\to0}\int d\zeta\,d\zeta^*\,(\zeta_i^{(0)})^*\zeta_i^{(0)} +      \exp\left\{ +      \frac12\sum_\alpha^n\left[(\zeta_i^{(\alpha)})^*\zeta_i^{(\alpha)}\sigma +        -\Re\left(\zeta_i^{(\alpha)}\zeta_j^{(\alpha)}\partial_i\partial_jH\right) +      \right] +    \right\} +  \end{equation} +  with sums taken over repeated latin indices. +  The average can then be made over $J$ and Hubbard--Stratonovich used to change +  variables to replica matrices +  $N\alpha_{\alpha\beta}=(\zeta^{(\alpha)})^*\cdot\zeta^{(\beta)}$ and +  $N\chi_{\alpha\beta}=\zeta^{(\alpha)}\cdot\zeta^{(\beta)}$ and a series of replica +  vectors. Taking the replica-symmetric ansatz leaves all off-diagonal elements +  and vectors zero, and $\alpha_{\alpha\beta}=\alpha_0\delta_{\alpha\beta}$, +  $\chi_{\alpha\beta}=\chi_0\delta_{\alpha\beta}$. The result is +  \begin{equation} +    \overline G(\sigma)=\lim_{n\to0}\int d\alpha_0\,d\chi_0\,d\chi_0^*\,\alpha_0 +    \exp\left\{nN\left[ +      1+\frac{p(p-1)}{16}a^{p-2}\alpha_0^2-\frac{\alpha_0\sigma}2+\frac12\log(\alpha_0^2-|\chi_0|^2) +      +\frac p4\mathop{\mathrm{Re}}\left(\frac{(p-1)}8\kappa^*\chi_0^2-\epsilon^*\chi_0\right) +    \right]\right\}    \end{equation}  \end{widetext}  The argument of the exponential has several saddles, but the one with the smallest value of $\mathop{\mathrm{Re}}\alpha$ gives the correct solution \textcolor{red}{\textbf{we have checked this, but a detailed analysis of the saddle-point integration is still needed to justify it.}}. | 
