summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorkurchan.jorge <kurchan.jorge@gmail.com>2020-12-10 12:51:43 +0000
committeroverleaf <overleaf@localhost>2020-12-10 12:52:24 +0000
commit59ff2b9c61517ac7f89f38821a09ca4cf9ac28cd (patch)
treea29813e8a82d9a7c4259c38be2ee1b980b837ec2
parent98748ea4ba66f08512250777c919f39941adb2f7 (diff)
downloadPRR_3_023064-59ff2b9c61517ac7f89f38821a09ca4cf9ac28cd.tar.gz
PRR_3_023064-59ff2b9c61517ac7f89f38821a09ca4cf9ac28cd.tar.bz2
PRR_3_023064-59ff2b9c61517ac7f89f38821a09ca4cf9ac28cd.zip
Update on Overleaf.
-rw-r--r--bezout.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/bezout.tex b/bezout.tex
index 785e3d8..eaed1a7 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -112,8 +112,8 @@ Critical points are given by the set of equations:
\begin{equation}
\frac{c_p}{(p-1)!}\sum_{ i, i_2\cdots i_p}^NJ_{i, i_2\cdots i_p}z_{i_2}\cdots z_{i_p} = \epsilon z_i
-
-
+\end{equation}
+which for given $\epsilon$ are a set pf $N$ equations of degree $
Since $H$ is holomorphic, a point is a critical point of its real part if and
only if it is also a critical point of its imaginary part. The number of
critical points of $H$ is therefore the number of critical points of