diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-09 16:00:21 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-09 16:00:21 +0100 |
commit | 5f508355ac2e66ec0d2188d515d08e3bc99669e6 (patch) | |
tree | a7ead0ef5de6d41f4343df4ca743faf637eade00 | |
parent | e7017f320a9055d94ad06302443486eded5b8f77 (diff) | |
download | PRR_3_023064-5f508355ac2e66ec0d2188d515d08e3bc99669e6.tar.gz PRR_3_023064-5f508355ac2e66ec0d2188d515d08e3bc99669e6.tar.bz2 PRR_3_023064-5f508355ac2e66ec0d2188d515d08e3bc99669e6.zip |
Using less stupid language.
-rw-r--r-- | bezout.tex | 2 |
1 files changed, 1 insertions, 1 deletions
@@ -303,7 +303,7 @@ $\kappa$ and $a$, which yields the $a$-dependent complexity =\log(p-1)-\frac12\log\left(\frac{1-|\kappa|^2a^{-2(p-1)}}{1-a^{-2}}\right). \end{equation} Notice that the limit of this expression as $a\to\infty$ corresponds with -\eqref{eq:bezout}, as expected. The complexity at zero energy can be seen +\eqref{eq:bezout}, as expected. Equation \eqref{eq:complexity.zero.energy} is plotted as a function of $a$ for several values of $\kappa$ in Fig.~\ref{fig:complexity}. For any $|\kappa|<1$, the complexity goes to negative infinity as $a\to1$, i.e., as the spins are restricted to the reals. |