summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2021-03-09 16:09:55 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2021-03-09 16:09:55 +0100
commit823e1cb5e7ab98f7ebda8b8517e427241ec427ce (patch)
tree0fe4eb6ae4fdb669d6376145fd512a45a5457583
parent55409dc28d44271a915e9197a423531a06a17d4a (diff)
downloadPRR_3_023064-823e1cb5e7ab98f7ebda8b8517e427241ec427ce.tar.gz
PRR_3_023064-823e1cb5e7ab98f7ebda8b8517e427241ec427ce.tar.bz2
PRR_3_023064-823e1cb5e7ab98f7ebda8b8517e427241ec427ce.zip
Spelling mistake.
-rw-r--r--bezout.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/bezout.tex b/bezout.tex
index 3a02f51..7cff5f1 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -103,7 +103,7 @@ a \emph{hyperbolic} constraint---by comparison with $|z|^2=N$. The reasoning
is twofold. First, at every point $z$ the energy \eqref{eq:bare.hamiltonian}
has a `radial' gradient of magnitude proportional to the energy, since
$z\cdot\partial H_0=pH_0$. This anomalous direction must be neglected if critical
-points are to exist a any nonzero energy, and the constraint surface $z^2=N$ is
+points are to exist at any nonzero energy, and the constraint surface $z^2=N$ is
the unique surface whose normal is parallel to $z$ and which contains the
configuration space of the real $p$-spin model as a subspace. Second, taking
the constraint to be the level set of a holomorphic function means the