diff options
author | kurchan.jorge <kurchan.jorge@gmail.com> | 2020-12-07 14:54:57 +0000 |
---|---|---|
committer | overleaf <overleaf@localhost> | 2020-12-07 14:55:24 +0000 |
commit | b2cd0da3f154935bf8ebe9a13ffe68bb97b4df41 (patch) | |
tree | 28e12ede628127c63c03dc7184ba88cabc8b16d7 | |
parent | 0d7940769f72b56ad01f2ac8d950b238074a322e (diff) | |
download | PRR_3_023064-b2cd0da3f154935bf8ebe9a13ffe68bb97b4df41.tar.gz PRR_3_023064-b2cd0da3f154935bf8ebe9a13ffe68bb97b4df41.tar.bz2 PRR_3_023064-b2cd0da3f154935bf8ebe9a13ffe68bb97b4df41.zip |
Update on Overleaf.
-rw-r--r-- | bezout.tex | 5 |
1 files changed, 4 insertions, 1 deletions
@@ -43,7 +43,10 @@ The most tractable family of these are the mean-field spherical p-spin models d \begin{equation} \label{eq:bare.hamiltonian} E = \sum_p \frac{c_p}{p!}\sum_{i_1\cdots i_p}^NJ_{i_1\cdots i_p}z_{i_1}\cdots z_{i_p}, \end{equation} -where the $J_{i_1\cdots i_p}$ are +where the $J_{i_1\cdots i_p}$ are real Gaussian variables and the $z_i$ are real and constrained +to a sphere $\sum_i z_i^2=N$. + +In th where $z\in\mathbb C^N$ is constrained by $z^2=N$ and $J$ is a symmetric tensor whose elements are complex normal with $\langle|J|^2\rangle=p!/2N^{p-1}$ and $\langle J^2\rangle=\kappa\langle|J|^2\rangle$ for complex parameter |