diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-10 11:50:38 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-10 11:50:38 +0100 |
commit | b8cf57637e7d11e7c1cb27b04f88ed2d5a04ee87 (patch) | |
tree | b0841ba1c43ea15298b3f30273158802ada11d25 | |
parent | a1fb7e418d070fa4a3341cb0dc37e69c24f09b2b (diff) | |
download | PRR_3_023064-b8cf57637e7d11e7c1cb27b04f88ed2d5a04ee87.tar.gz PRR_3_023064-b8cf57637e7d11e7c1cb27b04f88ed2d5a04ee87.tar.bz2 PRR_3_023064-b8cf57637e7d11e7c1cb27b04f88ed2d5a04ee87.zip |
Added correct average to Green function.
-rw-r--r-- | bezout.tex | 2 |
1 files changed, 1 insertions, 1 deletions
@@ -309,7 +309,7 @@ solution. A detailed analysis of the saddle point integration is needed to understand why this is so. Given such $\alpha_0$, the density of singular values follows from the jump across the cut, or \begin{equation} - \rho(\sigma)=\frac1{i\pi}\left(\lim_{\mathop{\mathrm{Im}}\sigma\to0^+}G(\sigma)-\lim_{\mathop{\mathrm{Im}}\sigma\to0^-}G(\sigma)\right) + \rho(\sigma)=\frac1{i\pi}\left(\lim_{\mathop{\mathrm{Im}}\sigma\to0^+}\overline G(\sigma)-\lim_{\mathop{\mathrm{Im}}\sigma\to0^-}\overline G(\sigma)\right) \end{equation} The transition from a one-cut to two-cut singular value spectrum naturally |