diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-10 12:21:16 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-10 12:21:16 +0100 |
commit | b93590a71ed9a511b1d2d311bd359865ad47d5a6 (patch) | |
tree | a2997fe506bb6d92661b5f3f5899ee683f56664b | |
parent | cd03b8d93912907348899b738511a4d0b5adf065 (diff) | |
download | PRR_3_023064-b93590a71ed9a511b1d2d311bd359865ad47d5a6.tar.gz PRR_3_023064-b93590a71ed9a511b1d2d311bd359865ad47d5a6.tar.bz2 PRR_3_023064-b93590a71ed9a511b1d2d311bd359865ad47d5a6.zip |
Added some equation labels and shorted some lines.
-rw-r--r-- | bezout.tex | 11 |
1 files changed, 7 insertions, 4 deletions
@@ -278,7 +278,7 @@ Green function. Introducing replicas to bring the partition function to the numerator of the Green function gives \begin{widetext} - \begin{equation} + \begin{equation} \label{eq:green.replicas} G(\sigma)=\frac1N\lim_{n\to0}\int d\zeta\,d\zeta^*\,(\zeta_i^{(0)})^*\zeta_i^{(0)} \exp\left\{ \frac12\sum_\alpha^n\left[(\zeta_i^{(\alpha)})^*\zeta_i^{(\alpha)}\sigma @@ -295,7 +295,7 @@ the numerator of the Green function gives vectors. Taking the replica-symmetric ansatz leaves all off-diagonal elements and vectors zero, and $\alpha_{\alpha\beta}=\alpha_0\delta_{\alpha\beta}$, $\chi_{\alpha\beta}=\chi_0\delta_{\alpha\beta}$. The result is - \begin{equation} + \begin{equation}\label{eq:green.saddle} \overline G(\sigma)=\lim_{n\to0}\int d\alpha_0\,d\chi_0\,d\chi_0^*\,\alpha_0 \exp\left\{nN\left[ 1+\frac{p(p-1)}{16}a^{p-2}\alpha_0^2-\frac{\alpha_0\sigma}2+\frac12\log(\alpha_0^2-|\chi_0|^2) @@ -309,8 +309,11 @@ smallest value of $\mathop{\mathrm{Re}}\alpha_0$ appears gives the correct solution. A detailed analysis of the saddle point integration is needed to understand why this is so. Given such $\alpha_0$, the density of singular values follows from the jump across the cut, or -\begin{equation} - \rho(\sigma)=\frac1{i\pi}\left(\lim_{\mathop{\mathrm{Im}}\sigma\to0^+}\overline G(\sigma)-\lim_{\mathop{\mathrm{Im}}\sigma\to0^-}\overline G(\sigma)\right) +\begin{equation} \label{eq:spectral.density} + \rho(\sigma)=\frac1{i\pi}\left( + \lim_{\mathop{\mathrm{Im}}\sigma\to0^+}\overline G(\sigma) + -\lim_{\mathop{\mathrm{Im}}\sigma\to0^-}\overline G(\sigma) + \right) \end{equation} \textcolor{red}{\textbf{Missing a factor of two? Please check...}} |