summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-07 16:56:48 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-12-07 16:56:48 +0100
commitca43a6bd0baff60acf0e2e3dba1d7f6170aed00c (patch)
treec091e5d234d7cf24d4ed7c6ce0449b837e10d251
parent95d9d315c2c0f930b557ba5950828f2395652410 (diff)
downloadPRR_3_023064-ca43a6bd0baff60acf0e2e3dba1d7f6170aed00c.tar.gz
PRR_3_023064-ca43a6bd0baff60acf0e2e3dba1d7f6170aed00c.tar.bz2
PRR_3_023064-ca43a6bd0baff60acf0e2e3dba1d7f6170aed00c.zip
Added silly citation.
-rw-r--r--bezout.bib14
-rw-r--r--bezout.tex7
2 files changed, 20 insertions, 1 deletions
diff --git a/bezout.bib b/bezout.bib
index 7f52032..e598045 100644
--- a/bezout.bib
+++ b/bezout.bib
@@ -21,4 +21,18 @@
doi = {10.1093/imrn/rnu174}
}
+@article{Weyl_1912_Das,
+ author = {Weyl, Hermann},
+ title = {Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)},
+ journal = {Mathematische Annalen},
+ publisher = {Springer Science and Business Media LLC},
+ year = {1912},
+ month = {12},
+ number = {4},
+ volume = {71},
+ pages = {441--479},
+ url = {https://doi.org/10.1007%2Fbf01456804},
+ doi = {10.1007/bf01456804}
+}
+
diff --git a/bezout.tex b/bezout.tex
index 87b0a9f..42d4b14 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -144,7 +144,12 @@ problem and to our knowledge a closed form for arbitrary $\kappa$ is not known.
We have worked out an implicit form for this spectrum using the saddle point of
a replica calculation for the Green function. blah blah blah\dots
-The transition from a one-cut to two-cut singular value spectrum naturally corresponds to the origin leaving the support of the eigenvalue spectrum. Weyl's theorem requires that the product over the norm of all eigenvalues must not be greater than the product over all singular values. Therefore, the absence of zero eigenvalues implies the absence of zero singular values.
+The transition from a one-cut to two-cut singular value spectrum naturally
+corresponds to the origin leaving the support of the eigenvalue spectrum.
+Weyl's theorem requires that the product over the norm of all eigenvalues must
+not be greater than the product over all singular values \cite{Weyl_1912_Das}.
+Therefore, the absence of zero eigenvalues implies the absence of zero singular
+values.
\bibliographystyle{apsrev4-2}
\bibliography{bezout}