diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-07 15:53:30 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-07 15:53:30 +0100 |
commit | cd83d96a1e8b425601c059241882b87e0d572860 (patch) | |
tree | b0ff74a5030317a94a436c84af4dd1af9f016985 | |
parent | 7b41b5b8463a5ed3f393f50aba3e8337a5d6fd15 (diff) | |
parent | 0d7940769f72b56ad01f2ac8d950b238074a322e (diff) | |
download | PRR_3_023064-cd83d96a1e8b425601c059241882b87e0d572860.tar.gz PRR_3_023064-cd83d96a1e8b425601c059241882b87e0d572860.tar.bz2 PRR_3_023064-cd83d96a1e8b425601c059241882b87e0d572860.zip |
Merge branch 'master' of https://git.overleaf.com/5fcce4736e7f601ffb7e1484
-rw-r--r-- | bezout.tex | 5 |
1 files changed, 3 insertions, 2 deletions
@@ -39,10 +39,11 @@ different topological properties. Spin-glasses have long been considered the paradigm of `complex landscapes' of many variables, a subject that includes Neural Networks and optimization problems, most notably Constraint Satisfaction ones. -The most tractable, yet very rich model +The most tractable family of these are the mean-field spherical p-spin models defined by the energy: \begin{equation} \label{eq:bare.hamiltonian} - H_0 = \frac1{p!}\sum_{i_1\cdots i_p}^NJ_{i_1\cdots i_p}z_{i_1}\cdots z_{i_p}, + E = \sum_p \frac{c_p}{p!}\sum_{i_1\cdots i_p}^NJ_{i_1\cdots i_p}z_{i_1}\cdots z_{i_p}, \end{equation} +where the $J_{i_1\cdots i_p}$ are where $z\in\mathbb C^N$ is constrained by $z^2=N$ and $J$ is a symmetric tensor whose elements are complex normal with $\langle|J|^2\rangle=p!/2N^{p-1}$ and $\langle J^2\rangle=\kappa\langle|J|^2\rangle$ for complex parameter |