summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--bezout.bib17
-rw-r--r--bezout.tex2
-rw-r--r--cover.tex1419
3 files changed, 87 insertions, 1351 deletions
diff --git a/bezout.bib b/bezout.bib
index 8688ed2..9e600f0 100644
--- a/bezout.bib
+++ b/bezout.bib
@@ -267,6 +267,16 @@
doi = {10.1007/jhep11(2012)023}
}
+@book{Mezard_2009_Information,
+ author = {Mézard, Marc and Montanari, Andrea},
+ title = {Information, physics, and computation},
+ publisher = {Oxford University Press},
+ year = {2009},
+ address = {Great Clarendon Street, Oxford},
+ isbn = {9780198570837},
+ series = {Oxford Graduate Texts}
+}
+
@article{Nguyen_2014_The,
author = {Nguyen, Hoi H. and O'Rourke, Sean},
title = {The Elliptic Law},
@@ -294,12 +304,7 @@
url = {https://doi.org/10.2307%2F2371510},
doi = {10.2307/2371510}
}
-@book{mezard2009information,
- title={Information, physics, and computation},
- author={Mezard, Marc and Montanari, Andrea},
- year={2009},
- publisher={Oxford University Press}
-}
+
@inproceedings{Scorzato_2016_The,
author = {Scorzato, Luigi},
title = {The {Lefschetz} thimble and the sign problem},
diff --git a/bezout.tex b/bezout.tex
index 96ad257..d7f4dc7 100644
--- a/bezout.tex
+++ b/bezout.tex
@@ -44,7 +44,7 @@
Spin-glasses have long been considered the paradigm of many variable `complex
landscapes,' a subject that includes neural networks and optimization problems,
-most notably constraint satisfaction \cite{mezard2009information}. The most tractable family of these
+most notably constraint satisfaction \cite{Mezard_2009_Information}. The most tractable family of these
are the mean-field spherical $p$-spin models \cite{Crisanti_1992_The} (for a
review see \cite{Castellani_2005_Spin-glass}) defined by the energy
\begin{equation} \label{eq:bare.hamiltonian}
diff --git a/cover.tex b/cover.tex
index 586fa38..2d2fc10 100644
--- a/cover.tex
+++ b/cover.tex
@@ -1,1358 +1,89 @@
-
-\documentclass[12pt,reqno,a4paper,twoside]{article}
-% \ProvidesPackage{makra}
-\usepackage{amsmath,amsthm,amstext,amscd,amssymb,euscript}
-%,showkeys}
-%,times}
-\usepackage{epsf}
-\usepackage{color}
-\usepackage{verbatim}
-\usepackage{graphicx}
-\usepackage{esint}
-\usepackage{tikz}
-\usepackage{setspace}
-\usepackage{mathrsfs}
-
-\usepackage{todonotes}
-
-%\usepackage{natbib}
-
-
-
-\usepackage{bm}
-\usepackage[normalem]{ulem}
-
-
-\textwidth 6in
-\topmargin -0.50in
-\oddsidemargin 0in
-\evensidemargin 0in
-\textheight 9.00in
-%\pagestyle{plain}
-%%%%%%%%%%%%%%%%%% Macros %%%%%%%%%%%
-\def\mybox #1{\fbox{\parbox{5.8in}{#1}}}
-\newcommand{\m}[1]{{\marginpar{\scriptsize #1}}}
-
-\def\mep{\mathbf{mep}_{n}^{\delta}}
-\def\r{{\mathbf r}}
-\def\O{{\mathcal{O}}}
-
-\def\I{{\mathcal{I}}}
-\def\fee{\mathcal{F}}
-
-\def\F{{\EuScript{F}}}
-
-\renewcommand{\phi}{\varphi}
-\newcommand{\compose}{\circ}
-\renewcommand{\subset}{\subseteq}
-\renewcommand{\emptyset}{\varnothing}
-\newcommand{\interval}{[\underline\alpha,\overline \alpha]}
-\def\liminfn{\liminf_{n\to\infty}}
-\def\limsupn{\limsup_{n\to\infty}}
-\def\limn{\lim_{n\to\infty}}
-\def\disagree{\not\longleftrightarrow}
-\newcommand{\Zd}{\mathbb Z^d}
-\newcommand{\kk}{\mathbf k}
-\renewcommand{\Pr}{\mathbb P}
-\newcommand{\dist}{\text{dist}}
-\newcommand{\Cal}{\mathcal}
-\def\1{ {\mathit{1} \!\!\>\!\! I} }
-\newcommand\s{{\mathbf s}}
-
-\newcommand{\red}[1]{{\color{red} #1}}
-\newcommand{\blue}[1]{{\color{blue} #1}}
-
-\newcommand{\eps}{\varepsilon}
-\newcommand{\C}{{\mathcal C}}
-\newcommand{\Y}{{\mathcal Y}}
-\newcommand{\NN}{{\mathcal N}}
-\newcommand{\grad}{\nabla}
-\newcommand{\WW}{\mathbb W}
-\newcommand{\D}{{\mathcal D}}
-\newcommand{\HH}{{\mathcal H}}
-\newcommand{\bol}[1]{{\boldsymbol{#1}}}
-
-
-% \smallmatrix{
-% 0& \cr
-% N&\ddots \cr
-% &\ddots&\ddots \cr
-% & & 1 & 0 \cr
-% }
-\newcommand{\ddp}[2]{\frac{\partial {#1}}{\partial {#2}}}
-
-\renewcommand{\brace}[1]{{ \bol{#1}}}
-
-\newcommand{\ket}[1]{|{#1}\rangle}
-
-\newcommand{\eq}{{\textnormal{eq}}}
-
-\renewcommand{\em}{\it}
-
-%%%%%%% FRANK'S MACROS
-
-\parskip=3pt plus 1pt minus 1pt
-
-\newcommand{\halmos}{\rule{1ex}{1.4ex}}
+\documentclass[a4paper]{letter}
\makeatletter
-\@addtoreset{equation}{section}
+\newenvironment{thebibliography}[1]
+ {\list{\@biblabel{\@arabic\c@enumiv}}%
+ {\settowidth\labelwidth{\@biblabel{#1}}%
+ \leftmargin\labelwidth
+ \advance\leftmargin\labelsep
+ \usecounter{enumiv}%
+ \let\p@enumiv\@empty
+ \renewcommand\theenumiv{\@arabic\c@enumiv}}%
+ \sloppy
+ \clubpenalty4000
+ \@clubpenalty \clubpenalty
+ \widowpenalty4000%
+ \sfcode`\.\@m}
+ {\def\@noitemerr
+ {\@latex@warning{Empty `thebibliography' environment}}%
+ \endlist}
+\newcommand\newblock{\hskip .11em\@plus.33em\@minus.07em}
\makeatother
-\renewcommand{\theequation}{\thesection.\arabic{equation}}
-
-\newtheorem{ittheorem}{Theorem}
-\newtheorem{itlemma}{Lemma}
-\newtheorem{itproposition}{Proposition}
-\newtheorem{itdefinition}{Definition}
-\newtheorem{itremark}{Remark}
-
-%\renewcommand{\theittheorem}{\thesection.\arabic{equation}}
-%\renewcommand{\theitlemma}{\thesection.\arabic{equation}}
-%\renewcommand{\theitproposition}{\thesection.\arabic{equation}}
-%\renewcommand{\theitdefinition}{\thesection.\arabic{equation}}
-%\renewcommand{\theitremark}{\thesection.\arabic{equation}}
-
-\newenvironment{theorem}{\addtocounter{equation}{1}
-\begin{ittheorem}}{\end{ittheorem}}
-
-\newenvironment{lemma}{\addtocounter{equation}{1}
-\begin{itlemma}}{\end{itlemma}}
-
-\newenvironment{proposition}{\addtocounter{equation}{1}
-\begin{itproposition}}{\end{itproposition}}
-
-\newenvironment{definition}{\addtocounter{equation}{1}
-\begin{itdefinition}}{\end{itdefinition}}
-
-\newenvironment{remark}{\addtocounter{equation}{1}
-\begin{itremark}}{\end{itremark}}
-
-%\newenvironment{proof}{\noindent {\em Proof}.\,\,\,}
-%{\hspace*{\fill}$\halmos$\medskip}
-
-\newcommand{\beq}{\begin{eqnarray}}
-\newcommand{\eeq}{\end{eqnarray}}
-
-\newcommand{\be}{\begin{equation}}
-\newcommand{\ee}{\end{equation}}
-
-\newcommand{\bl}{\begin{lemma}}
-\newcommand{\el}{\end{lemma}}
-
-\newcommand{\br}{\begin{remark}}
-\newcommand{\er}{\end{remark}}
-
-\newcommand{\bt}{\begin{theorem}}
-\newcommand{\et}{\end{theorem}}
-
-\newcommand{\bd}{\begin{definition}}
-\newcommand{\ed}{\end{definition}}
-
-\newcommand{\bp}{\begin{proposition}}
-\newcommand{\ep}{\end{proposition}}
-
-
-
-\newcommand{\bc}{\begin{corollary}}
-\newcommand{\ec}{\end{corollary}}
-
-\newcommand{\bpr}{\begin{proof}}
-\newcommand{\epr}{\end{proof}}
-
-\newcommand{\bi}{\begin{itemize}}
-\newcommand{\ei}{\end{itemize}}
-
-\newcommand{\ben}{\begin{enumerate}}
-\newcommand{\een}{\end{enumerate}}
-
-
-%%%%%%%%%%%%% SYMBOLS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\newcommand{\Z}{\mathbb Z}
-\newcommand{\R}{\mathbb R}
-\newcommand{\N}{\mathbb N}
-%\newcommand{\C}{\mathbb C}
-
-\newcommand{\Q}{\mathbb Q}
-\newcommand{\E}{\mathbb E}
-\newcommand{\T}{\mathbf T}
-\newcommand{\M}{\mathbf M}
-\newcommand{\ret}{\mathbf R}
-\newcommand{\veee}{\mathbb V}
-\newcommand{\veek}{\ensuremath{\mathcal{V}}}
-\newcommand{\gee}{\ensuremath{\mathcal{G}}}
-\newcommand{\pee}{\ensuremath{\mathbb{P}}}
-\newcommand{\re}{\ensuremath{\mathcal{R}}}
-\newcommand{\peee}{\ensuremath{\mathcal{P}}}
-\newcommand{\ce}{\ensuremath{\mathcal{C}}}
-\newcommand{\cee}{\ensuremath{{\bf \mathcal{C}_1}}}
-\newcommand{\uu}{\ensuremath{\mathcal{U}}}
-%\newcommand{\s}{\ensuremath{\mathcal{S}}}
-\newcommand{\loc}{\ensuremath{\mathcal{L}}}
-\newcommand{\iii}{\ensuremath{\mathcal{I}}}
-\newcommand{\bee}{\ensuremath{\mathcal{B}}}
-\newcommand{\weee}{\ensuremath{\mathbf W}}
-\newcommand{\fe}{\ensuremath{\mathcal{F}}}
-\newcommand{\mee}{\ensuremath{\mathcal{M}}}
-\newcommand{\U}{\ensuremath{\mathcal{U}}}
-\newcommand{\na}{\ensuremath{N^{t,x}_\varphi}}
-\newcommand{\aaa}{\ensuremath{\mathcal{A}}}
-\newcommand{\anepsi}{\ensuremath{{[A_n]^{\epsilon} }}}
-\newcommand{\vi}{\ensuremath{\varphi}}
-\newcommand{\La}{\ensuremath{\Lambda}}
-\newcommand{\la}{\ensuremath{\Lambda}}
-\newcommand{\si}{\ensuremath{\sigma}}
-\newcommand{\om}{\ensuremath{\omega}}
-\newcommand{\epsi}{\ensuremath{\epsilon}}
-\newcommand{\gap}{\ensuremath{\Delta}}
-\newcommand{\QED}{\hspace*{\fill}$\Box$\medskip}
-\newcommand{\prodpee}{\ensuremath{\mathbb{P}\times\mathbb{P}}}
-\newcommand{\prodE}{\ensuremath{\mathbb{E}\times\mathbb{E}}}
-\newcommand{\tr}{\ensuremath{\mbox{Tr}}}
-\newcommand{\caZ}{\ensuremath{\mathcal{Z}}}
-\newcommand{\Ga}{\ensuremath{\Gamma}}
-\newcommand{\ga}{\ensuremath{\gamma}}
-\newcommand{\al}{\ensuremath{\alpha}}
-\newcommand{\shit}{\ensuremath{[-\|X \|, \|X \|]}}
-\newcommand{\haa}{\ensuremath{A+tB}}
-\newcommand{\sas}{\ensuremath{\delta g}}
-\newcommand{\lap}{\pee_{V_n|X_1,\ldots,X_{n-1}} (dx)}
-\newcommand{\qak}{\mathbb{Q}}
-\newcommand{\de}{\delta}
-\newcommand{\pot}{\pee^{\scriptscriptstyle{[0,t]}}}
-\newcommand{\pott}{\peet^{\scriptscriptstyle{[0,t]}}}
-
-\newcommand{\KK}{\mathbb{S}}
-
-
-\def\vnim #1{ \begin{equation*}\boxed{\mbox{\Large #1}}\end{equation*} }
-%%%%%%%%%%%%%%%%%% Current time %%%
-\def\now{
-\ifnum\time<60
- 12:\ifnum\time<10 0\fi\number\time am
- \else
- \ifnum\time>719\chardef\a=`p\else\chardef\a=`a\fi
- \hour=\time
- \minute=\time
- \divide\hour by 60 %\hour is the result of an integer divide
- \ifnum\hour>12\advance\hour by -12\advance\minute by-720 \fi
- \number\hour:%
- \multiply\hour by 60 %Use is made of the integer divide here.
- \advance\minute by -\hour
- \ifnum\minute<10 0\fi\number\minute\a m\fi}
-\newcount\hour
-\newcount\minute
-%%%%%%%%%%%%%%%%%% Environment %%%%%%%
-\numberwithin{equation}{section} %%%% nomer uravnenia vkulchaet
- %%%% nomer razdela, ex. (1.2)
-\newtheorem{thm}{Theorem}[section]
-\newtheorem{lem}[thm]{Lemma}
-\newtheorem{defn}[thm]{Definition}
-\theoremstyle{remark}
-\newtheorem{rem}{Remark}[section]
-\newtheorem{cor}[thm]{Corollary}
-%%%%%%%%%
-
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HEADINGS
-
-\def\t{{\bf t}} %%%%%%%%%% hitting time
-\def\r{{\bf r}} %%%%%%%%%% recurrence time
-\def\w{{\bf w}} %%%%%%%%%% waiting time
-
-\newcommand{\caA}{{\mathcal A}}
-\newcommand{\caB}{{\mathcal B}}
-\newcommand{\caC}{{\mathcal C}}
-\newcommand{\caD}{{\mathcal D}}
-\newcommand{\caE}{{\mathcal E}}
-\newcommand{\caF}{{\mathcal F}}
-\newcommand{\caG}{{\mathcal G}}
-\newcommand{\caH}{{\mathcal H}}
-\newcommand{\caI}{{\mathcal I}}
-\newcommand{\caJ}{{\mathcal J}}
-\newcommand{\caK}{{\mathcal K}}
-\newcommand{\caL}{{\mathcal L}}
-\newcommand{\caM}{{\mathcal M}}
-\newcommand{\caN}{{\mathcal N}}
-\newcommand{\caO}{{\mathcal O}}
-\newcommand{\caP}{{\mathcal P}}
-\newcommand{\caQ}{{\mathcal Q}}
-\newcommand{\caR}{{\mathcal R}}
-\newcommand{\caS}{{\mathcal S}}
-\newcommand{\caT}{{\mathcal T}}
-\newcommand{\caU}{{\mathcal U}}
-\newcommand{\caV}{{\mathcal V}}
-\newcommand{\caW}{{\mathcal W}}
-\newcommand{\caX}{{\mathcal X}}
-\newcommand{\caY}{{\mathcal Y}}
-\newcommand{\un}{\underline}
-\newcommand{\Lt}{\tilde{L}}
-\newcommand{\ct}{\tilde{c}}
-\newcommand{\peet}{\tilde{\pee}}
-\newcommand{\mut}{\tilde{\mu}}
-\newcommand{\pt}{\tilde{p}}
-\newcommand{\qaz}{\mathbb{L}}
-\newcommand{\bix}{\vec{x}}
-\newcommand{\muT}{\mu_{T_L,T_R}}
-%%%%%%%%%
-
-% \usepackage{verbatim}
-% \usepackage[active,tightpage]{preview}
-% \setlength\PreviewBorder{5pt}%
-% %%%>
-%
-% \usepackage{ifthen}
-% \usepackage{amsmath}
-\usetikzlibrary{arrows,calc,intersections}
-
-
-\newcommand{\note}[1]{\todo[inline, color=white]{#1}}
-\newcommand{\col}[1]{\color{magenta} {#1}}
-\newcommand{\colo}[1]{\color{red} {#1}}
-
-
-
-
-%%%%%%%%%%%%%%%%%%%%%%5
-
-% \newcommand{\quiver}{
-% \begin{tikzpicture}
-% \foreach \a in {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} {
-% \begin{scope}[shift={(0.7*\a,0)}]
-% \draw (0.3*\a,0) circle (0.3cm);
-% \draw[black,thick] (0.3*\a+0.3,0)--(0.3*\a+0.7,0);
-% \node [below] at (0.3*\a,-0.5) {$\a$};
-% \end{scope}
-% }
-% \draw (16,0) circle (0.3cm);
-% \node [below] at (16,-0.5) {$16$};
-% \foreach \a in {10,9,8,7,6,5,4,3,2,1} {
-% \begin{scope}[shift={(17-\a,0)}]
-% \node at (0,0) {$\a$};
-% \end{scope}
-% }
-% \node at (1,0) {$4$};
-% \node at (2,0) {$8$};
-% \node at (3,0) {$9$};
-% \node at (4,0) {$10$};
-% \node at (5,0) {$10$};
-% \node at (6,0) {$10$};
-% \draw[black,thick] (2,0.3) -- (2,0.7);
-% \draw (1.7,0.7) rectangle (2.3,1.3);
-% \node at (2,1) {$3$};
-% \draw[black,thick] (4,0.3) -- (4,0.7);
-% \draw (3.7,0.7) rectangle (4.3,1.3);
-% \node at (4,1) {$1$};
-% \draw[black,thick] (7,0.3) -- (7,0.7);
-% \draw (6.7,0.7) rectangle (7.3,1.3);
-% \node at (7,1) {$1$};
-% \end{tikzpicture}
-% }
-
-% \usepackage{pgfplots}
-
-
-\newcommand{\graph}{
-\begin{tikzpicture}[scale=.7]
-% \pgfplotsset{%
-% width=.2\textwidth,
-% height=0.5\textwidth
-% }
-\draw[gray, thick] (1,-1.5)--(0,0) -- (2,3)--(4,3.4)--(5.0,2)--(4.9,1)--(3.0,-1.2)--(1,-1.5);
-\tikzstyle myBG=[line width=3.5pt,opacity=1.0]
-%
-\draw[white,myBG] (3.2,1.5) -- (5.2,3);
-\draw[gray, thick] (3.2,1.5) -- (5.2,3);
-%
-\draw[gray, thick] (0,0)--(-1.5,0);
-\draw[gray, thick] (3,-1.2)--(4,-2);
-\draw[gray, thick] (4,3.4)--(4.3,4.6);
-\draw[gray, thick] (1,-1.5)--(2,0.2)--(0,0);
-\draw[gray, thick] (2,0.2)--(4.9,1);
-\draw[gray, thick] (3,-1.2)--(2,0.2)--(3.2,1.5)--(2,3);
-\draw[gray, thick] (3.2,1.5)--(4,3.4);
-\draw[gray, thick] (3.2,1.5)--(5,2);
-\draw[gray, thick] (4,3.4)--(5.2,3)--(5.7,2.2)--(5.7,1.3)--(4.9,1);
-\draw[gray, thick] (5.7,2.2)--(5,2);
-%
-%
-%
-\filldraw[black!70] (0,0) circle (2pt);
-\filldraw[black!70] (1,-1.5) circle (2pt);
-\filldraw[black!70] (2,3) circle (2pt);
-\filldraw[black!70] (4,3.4) circle (2pt);
-\filldraw[black!70] (5,2) circle (2pt);
-\filldraw[black!70] (4.9,1) circle (2pt);
-\filldraw[black!70] (2,0.2) circle (2pt);
-\filldraw[black!70] (3.2,1.5) circle (2pt);
-% \filldraw[black!70] (5.7,1.3) circle (2pt);
-\filldraw[black!70] (5.7,2.2) circle (2pt);
-\filldraw[black!70] (5.2,3) circle (2pt);
-\filldraw[black!70] (3,-1.2) circle (2pt);
-%
-%
-\filldraw[black!70] (-1.5,0) circle (2pt) node[anchor=east] {$\Gamma_3,T_3$};
-\filldraw[white] (-1.5,0) circle (1pt);
-\filldraw[black!70] (4,-2) circle (2pt) node[anchor=west] {$\Gamma_2,T_2$};
-\filldraw[white] (4,-2) circle (1pt);
-\filldraw[black!70] (4.3,4.6) circle (2pt) node[anchor=west] {$\Gamma_1,T_1$};
-\filldraw[white] (4.3,4.6) circle (1pt) ;
-\end{tikzpicture}
+\usepackage[utf8]{inputenc} % why not type "Bézout" with unicode?
+\usepackage[T1]{fontenc} % vector fonts plz
+\usepackage{newtxtext,newtxmath} % Times for PR
+\usepackage[
+ colorlinks=true,
+ urlcolor=purple,
+ citecolor=purple,
+ filecolor=purple,
+ linkcolor=purple
+]{hyperref} % ref and cite links with pretty colors
+\usepackage{xcolor}
+
+\signature{
+ Jaron Kent-Dobias \& Jorge Kurchan
}
-%
-\newcommand{\graphh}{
-\begin{tikzpicture}[scale=.7]
-\draw[gray, thick] (1,-1.5)--(0,0) -- (2,3)--(4,3.4)--(5.0,2)--(4.9,1)--(3.0,-1.2)--(1,-1.5);
-\tikzstyle myBG=[line width=3.5pt,opacity=1.0]
-%
-\draw[white,myBG] (3.2,1.5) -- (5.2,3);
-\draw[gray, thick] (3.2,1.5) -- (5.2,3);
-%
-\draw[gray, thick] (0,0)--(-1.5,0);
-\draw[gray, thick] (3,-1.2)--(4,-2);
-\draw[gray, thick] (4,3.4)--(4.3,4.6);
-\draw[gray, thick] (1,-1.5)--(2,0.2)--(0,0);
-\draw[gray, thick] (2,0.2)--(4.9,1);
-\draw[gray, thick] (3,-1.2)--(2,0.2)--(3.2,1.5)--(2,3);
-\draw[gray, thick] (3.2,1.5)--(4,3.4);
-\draw[gray, thick] (3.2,1.5)--(5,2);
-\draw[gray, thick] (4,3.4)--(5.2,3)--(5.7,2.2)--(5.7,1.3)--(4.9,1);
-\draw[gray, thick] (5.7,2.2)--(5,2);
-%
-%
-%
-\filldraw[black!70] (0,0) circle (2pt);
-\filldraw[black!70] (1,-1.5) circle (2pt);
-\filldraw[black!70] (2,3) circle (2pt);
-\filldraw[black!70] (4,3.4) circle (2pt);
-\filldraw[black!70] (5,2) circle (2pt);
-\filldraw[black!70] (4.9,1) circle (2pt);
-\filldraw[black!70] (2,0.2) circle (2pt);
-\filldraw[black!70] (3.2,1.5) circle (2pt);
-% \filldraw[black!70] (5.7,1.3) circle (2pt);
-\filldraw[black!70] (5.7,2.2) circle (2pt);
-\filldraw[black!70] (5.2,3) circle (2pt);
-\filldraw[black!70] (3,-1.2) circle (2pt);
-%
-%
-\filldraw[black!70] (-1.5,0) circle (2pt) node[anchor=east] {$\Gamma_3,T$};
-\filldraw[white] (-1.5,0) circle (1pt);
-\filldraw[black!70] (4,-2) circle (2pt) node[anchor=west] {$\Gamma_2,T$};
-\filldraw[white] (4,-2) circle (1pt);
-\filldraw[black!70] (4.3,4.6) circle (2pt) node[anchor=west] {$\Gamma_1,T$};
-\filldraw[white] (4.3,4.6) circle (1pt) ;
-\end{tikzpicture}
+\address{
+ Laboratoire de Physique \\
+ Ecole Normale Sup\'erieure \\
+ 24, rue Lhomond \\
+ 75005 Paris
}
-\setstretch{1.24}
-
\begin{document}
-
-\title{{\bf COVER LETTER \\`Complex complex landscapes'}}
-%\footnote{{\bf Key-words}: }
-%}}
-
-\author{
-Jaron Kent-Dobias
- and
-Jorge Kurchan
+\begin{letter}{
+ Editorial Office\\
+ Physical Review Letters\\
+ 1 Research Road\\
+ Ridge, NY 11961
}
-\maketitle
-
-
-
-\vspace{1.cm}
-
-
-The subject of `Complex Landscapes', which started in the spin-glass literature, is concerned with functions (landscapes) of many variables, having a multiplicity of minimums, which are the objects of interest. Apart from its obvious interest for glassy systems, it has found a myriad applications in many domains: Computer Science, Ecology, Economics, Biology \cite{mezard2009information}.
-
-In the last few years, a renewed interest has developed for landscapes for which the variables are complex. There are a few reasons for this: {\em i)} in Computational Physics, there is the main obstacle of the `sign problem', and a strategy has emerged to attack it deforming the sampling space into complex variables. This is a most natural and promising path, and any progress made will have game-changing impact in solid state physics and lattice-QCD \cite{Cristoforetti_2012_New,Scorzato_2016_The}.
-{\em ii)} At a more basic level, following the seminal work of E. Witten \cite{Witten_2010_A,Witten_2011_Analytic}, there has been a flurry of activity concerning the very definition of quantum mechanics, which requires also that one move into the complex plane.
-
-In all these cases, just like in the real case, one needs to know the structure of the `landscape', where are the saddle points and how they are connected, typical questions of `complexity'.
-However, to the best of our knowledge, there are no studies extending the methods of the theory of
-complexity to
-complex variables.
-We believe our paper will open a field that may find
-numerous applications and will widen our theoretical view of complexity in general.
-
-
+\opening{}
+
+The subject of `Complex Landscapes,' which started in the spin-glass
+literature, is concerned with functions (landscapes) of many variables, having
+a multiplicity of minimums, which are the objects of interest. Apart from its
+obvious interest for glassy systems, it has found a myriad applications in
+many domains: Computer Science, Ecology, Economics, Biology
+\cite{Mezard_2009_Information}.
+
+In the last few years, a renewed interest has developed for landscapes for
+which the variables are complex. There are a few reasons for this: {\em i)} in
+Computational Physics, there is the main obstacle of the `sign problem', and a
+strategy has emerged to attack it deforming the sampling space into complex
+variables. This is a most natural and promising path, and any progress made
+will have game-changing impact in solid state physics and lattice-QCD
+\cite{Cristoforetti_2012_New,Scorzato_2016_The}. {\em ii)} At a more basic
+level, following the seminal work of E. Witten
+\cite{Witten_2010_A,Witten_2011_Analytic}, there has been a flurry of activity
+concerning the very definition of quantum mechanics, which requires also that
+one move into the complex plane.
+
+In all these cases, just like in the real case, one needs to know the structure
+of the `landscape', where are the saddle points and how they are connected,
+typical questions of `complexity'. However, to the best of our knowledge,
+there are no studies extending the methods of the theory of complexity to
+complex variables. We believe our paper will open a field that may find
+numerous applications and will widen our theoretical view of complexity in
+general.
+
+\closing{Sincerely,}
+\end{letter}
+
+\bibliographystyle{unsrt}
\bibliography{bezout}
-
\end{document}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-\section{The Kipnis-Marchioro-Presutti model}
-
-Consider the following process:
-\begin{itemize}
-\item
-choose a pair of neighbouring sites and completely
-exchange energy between them
-\item
-if the site is one of the borders, exchange completely energy with the bath.
-\end{itemize}
-each choice with probability $1/(N+1)$. From here onwards, we shall denote
-$\tau$ a large time, sufficient for any two-site thermalisation.
-
-The evolution operator in one step is:
-\begin{eqnarray}
-U &=& \frac{1}{N+1} \left[ e^{-\tau L_1^*} + e^{-\tau L_N^*} + \sum_{i=1}^{N-1} e^{-\tau L^*_{i,i+1}} \right]
-\nonumber \\
-&=& \frac{1}{N+1} \left[ e^{-2\tau (T_1 K^-_1 + K^o_1 + k) } + e^{-2\tau(T_L K^-_L + K^o_L +k) }
- + \sum_{i=1}^{N-1} e^{ \frac{-\tau}{k}
-(K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1}
-+ 2k^2 )} \right] \nonumber \\
-~
-\end{eqnarray}
-and the dynamics after $n$ steps is given by $U^n$.
-Because we are considering large $\tau$, the terms in the sums are in fact projectors
-onto the lowest eigenvalues of the exponents. We shall however keep the notation as it is
-in order to stress the symmetry of the bulk terms.
-
-Let us now show that - at the level of energies - this dynamics yields the KMP process
-{\em for $k=\frac{1}{2}$, that is $m=2$}.
-Consider first a general $m$, and two neighbouring sites of coordinates $x = \{x_\alpha\}_{\alpha=1,\ldots,m}$,
-$y=\{y_\alpha\}_{\alpha=1,\ldots,m}$.
-If they are completely thermalised, it means that (cfr (\ref{bb}):
-the joint probability density satisfies
-\begin{equation}
-\left(x_{\alpha}
-\frac{\partial}{\partial y_{\beta}} -
-y_{\beta}\frac{\partial}{\partial x_{\alpha}}
- \right) p(x,y)=0
-\end{equation}
-It is easy to see that this may happen if and only if
-\begin{equation}
-p(x,y)= p[ \sum_\alpha (x_\alpha^2+y_\alpha^2)]
-\end{equation}
-In particular let us consider the microcanonical measure
-\begin{equation}
-p(x,y)= \delta[ \sum_\alpha (x_\alpha^2+y_\alpha^2)-\epsilon ]
-\end{equation}
-Defining new random variables $\epsilon_1$ and $\epsilon_2$
-as the energies of the neighboring sites
-\be
-\epsilon_1 = \sum_\alpha x_\alpha^2
-\ee
-\be
-\epsilon_2 = \sum_\alpha y_\alpha^2
-\ee
-then their joint probability density will be
-\begin{equation}
-p(\epsilon_1,\epsilon_2) = \frac{S_m^2}{4} \delta(\epsilon_1+\epsilon_2-\epsilon)
-\epsilon_1^{\frac{1}{2}-1} \epsilon_2^{\frac{1}{2}-1}
-\end{equation}
-where $S_m$ denotes the surface of the unit sphere in $m$ dimension
-\be
-S_m = \frac{m \pi^{m/2}}{\Gamma(\frac{1}{2}+1)}
-\ee
-{\em This yields a flat distribution for $m=2$, i.e. the KMP model.}
-
-
-
-
-\section{Dual model}
-
-
-The expectation value of an observable at time $t$, starting from an initial
-distribution $|init\rangle$ is:
-
-
-\begin{equation}
-<O> = \langle - | O e^{-Ht} | init \rangle
-\end{equation}
-where $\langle - |$ is a constant.
-Taking the adjoint $ x_i \to x_i$, $\partial_i \to -\partial_i$:
-\begin{equation}
-<O> = \langle - | O e^{-Ht} | init \rangle= \langle init| e^{-H^\dag t} O |- \rangle
-\end{equation}
-where $H^\dag(K^\pm, K^o)=H( K^\pm, -K^o)$ (because of the change of signs of the derivatives)
-\begin{eqnarray}
--H^\dag&=& \frac{4}{1} \sum_i \left(
-K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1}
-+ \frac{m^2}{8} \right)
-\nonumber\\
-&+&2 \left(T_1 K^-_1 + K^o_1 + \frac{1}{4}\right)
-+2 \left(T_L K^-_L + K^o_L +\frac{1}{4}\right)
-\end{eqnarray}
-In particular, for the generating function we had chosen
- \begin{equation}
- O |- \rangle = \Pi_i \frac{x_i^{2 \xi_i}}{(2\xi_i -1)!!}|-\rangle=|\xi_1,...,\xi_N\rangle
-\end{equation}
-
-Considered as an operator acting on `particle number', as counted by $K^o$, $H^\dag$ does not
-conserve the probability.
-The trick we used can be expressed as follows: introduce the particle number $\xi_o$ and $\xi_{N+1}$
-and the operators $A^+_o$ and $A^+_{N+1}$, which create particles in boundary sites with unit rate.
-We consider now the {\em enlarged} process generated by
-\begin{eqnarray}
--H^{dual}&=& \frac{4}{1} \sum_i \left(
-K^+_i K^-_{i+1} + K^-_i K^+_{i+1} - 2 K^o_i K^o_{i+1}
-+ \frac{m^2}{8} \right)
-\nonumber\\
-&+&2 \left(A^+_o K^-_1 + K^o_1 - \frac{1}{4}\right)
-+2 \left( A^+_{N+1} K^-_N + K^o_N -\frac{1}{4}\right)
-\end{eqnarray}
-which conserves ({\it seems}) particle number and probability.
-We wish to prove that:
-
-\begin{eqnarray}
-<O> &=& \langle init| e^{-H^\dag t} |\xi_1,...,\xi_N \rangle \nonumber \\
-&=& \sum_{\xi_o,\xi_{N+1}}
- T_1^{\xi_o} T_{L}^{\xi_{N+1}} \langle \xi_o \xi_{N+1} | \otimes \langle
- init| e^{-H^{dual} t} |\xi_1,...,\xi_N \rangle \otimes
- |\xi_o=0,\xi_{N+1}=0 \rangle \nonumber \\
-\label{ggg}
-\end{eqnarray}
-
-
-I think the proof is obvious, because developing the exponential of $H^{dual}$ all the $A^+$ can be
-collected because they commute with everything else, and the experctation value
-\begin{equation}
-\sum_{\xi_o} T_1^{\xi_o} \langle \xi_o |[A^+_o]^r |\xi_o=0 \rangle = T_1^r
- \end{equation}
-just puts back as many $T$'s as necessary.
-
-I do not know exactly how to use (\ref{ggg}) in general, but in the large time limit the evolution
-voids the chain of particles
-
-
-\section{Dual of KMP}
-
-I think that the argument runs through without changes if we use $U$ defined for the KMP model.
-We just have to note that each term corresponds to an evolution of two sites (or a site and the bath)
-and so in the dual it corresponds to sharing the particles between those two sites, or emptying
-the sites at the borders.
-
-{\bf: NOTE by Cristian}
-
-We can check that the duality function chosen in the original paper by KMP
-do coincide with the duality function of our process for $m=2$ (and the random
-variables are the energies).
-Indeed we start from
-\be
-f(x,\xi) = \prod_i (\sum_{\alpha} x_{i,\alpha}^2)^{\xi}
-\ee
-When the bath have equal temperature (let's us choose T=1) then the stationary
-measure is
-\be
-\pi(x) = \prod_i \frac{1}{(2\pi)^{m/2}} \exp\left(-\sum_{\alpha}\frac{x_{i,\alpha}^2}{2}\right)
-\ee
-Let us focus on a fixed $i$ (that is in this short computation we write $x$ for $x_i$).
-We have
-\begin{eqnarray}
-\E(f(x,\xi))
-&=&
-\int dx_1 \cdots \int dx_m (x_1^2+\ldots + x_m^2)^{\xi} \exp-\left(\frac{x_{1}^2}{2}+\ldots+\frac{x_{1}^2}{2}\right)
-\nonumber \\
-& = &
-\int dr S_m r^{2\xi} \exp-\left(\frac{r^2}{2}\right)
-\nonumber \\
-& = &
-\frac{\frac{1}{2}\Gamma(\frac{1}{2}+\xi)}{\Gamma(\frac{m}{2}+1)} 2^\xi
-\nonumber \\
-\end{eqnarray}
-Special cases:
-\begin{itemize}
-\item $m=1$
-
-$$
-\E(f(x,\xi)) = (2\xi-1)!!
-$$
-where one uses that $\Gamma(\frac{1}{2}+\xi)= \frac{\sqrt{\pi}(2\xi-1)!!}{2^{\xi}}$ and $\Gamma(\frac{3}{2}) = \frac{\sqrt{\pi}}{2}$
-\item $m=2$
-
-$$
-\E(f(x,\xi)) = \xi! 2^\xi
-$$
-where one uses that $\Gamma(1+\xi)= \xi!$ and $\Gamma(2) = 1$.
-Thus, if one defines the energies as
-$$
-\epsilon_i = \sum_{\alpha}\frac{x_{i,\alpha}^2}{2}
-$$
-one recover the choice of KMP for the dual function
-$$
-O(\epsilon_i,\xi) = \prod_i \frac{\epsilon_i^{\xi_i}}{\xi_i!}
-$$
-\end{itemize}
-
-
-
-
-
-
-\section{ Dual of SEP: here goes an outline of how to proceed for the SSEP}
-
-
-\be
-H=-L_{SEP}^*
-\ee
-\begin{eqnarray}
-L^*_{SEP} &=& \frac{1}{j}
- \sum_i \left(J^+_i J^-_{i+1} + J^-_i J^+_{i+1} + 2 J^o_i J^o_{i+1}
- - 2 j^2 \right)\\
-&+&\alpha (J^-_1 - J^o_1-j) + \gamma (J^+_1 + J^o_1-j)
-+ \delta (J^-_L - J^o_L-j) + \beta (J^+_L + J^o_L-j)\nonumber
-\end{eqnarray}
-The factor $1/j$ is analogous to the factor $1/m$ in (\ref{bb}).
-The operators $J^+_i, J^-_i, J^o_i$ act on the Hilbert space
- corresponding to $0 \le r \le n$ particles per site $\otimes_i |r\rangle_i$
-as follows:
-\begin{eqnarray}
-J^+_i |r\rangle_i &=& (2j-r) |r+1\rangle_i \nonumber \\
- J^-_i |r\rangle_i &=& r |r-1\rangle_i \nonumber \\
-J^o_i |r\rangle_i &=& (r-j) |r\rangle_i
-\end{eqnarray}
-
-The conjugation properies are as follows. There is an operator $Q$,
-{\em diagonal in this basis } (I give the expression below), such that:
-\begin{equation}
-[J^+_i]^\dag = Q[J^-_i]Q^{-1} \qquad [J^-_i]^\dag = Q[J^+_i]Q^{-1}
-\end{equation}
-while $[J^z_i]^\dag=J^z_i= Q[J^z_i]Q^{-1}$.
-
-
-
-The expectation value of an observable at time $t$, starting from an initial
-distribution $|init\rangle$ is:
-
-
-\begin{equation}
-<O> = \langle - | O e^{-Ht} | init \rangle
-\end{equation}
-where $\langle - |$ is a constant.
-As before:
-\begin{eqnarray}
-<O> &=& \langle - | O e^{-Ht} | init \rangle=
-\langle init| e^{-H^\dag t} O |- \rangle= \nonumber \\
-& & \langle init|Q e^{-{\bar H} t} Q^{-1}O |- \rangle=
-\langle init|Q \; e^{-{\bar H} t} Q^{-1}O Q Q^{-1} |- \rangle
-\end{eqnarray}
-
-
-{\em $ {\bar H}$ is the same operator as $H$ but with
-$J^+$ substituted by $J^-$, and vice-versa.}
-Our job is now to make the rotation that will eliminate the $J^+$'s in
-the border terms of $ {\bar H}$.
-
-
-
-
-The transformation is of the form
-\begin{eqnarray}
-e^{\mu J^+} J^+ e^{-\mu J^+}&=&J^+ \nonumber \\
-e^{\mu J^+} J^o e^{-\mu J^+} &=&J^o - \mu J^+ \nonumber \\
-e^{\mu J^+} J^- e^{-\mu J^+} &=& J^- + 2 \mu J^o - \mu^2 J^+
-\end{eqnarray}
-for suitable $\mu$.
-Putting $\mu=-1$, we get that {\bf the bulk term is left invariant,
-precisely because of the SU(2) symmetry}. The boundary terms {\bf of $\bar H$}
-transform further into:
-\begin{eqnarray}
-& e^{\mu J^+_1} \left[ \alpha (J^+_1 - J^o_1-j) + \gamma (J^-_1 + J^o_1-j)
-\right] e^{-\mu J^+_1}= \nonumber \\ & \gamma(J^-_1 + 2 \mu J^o_1 - \mu^2
-J^+_1 +J^o_1 - \mu J^+_1 -j) + \alpha (J^+_1 - J^o_1 + \mu J^+_1 -j)
-= \nonumber \\
-& \alpha(- J^o_1 -j) + \gamma (J^-_1 -J^o_1 -j)
-\label{trans}
-\end{eqnarray}
-which is of the same form we have in the $SU(1,1)$ model.
-The same can be done in the other boundary term.
-
-We thus get:
-\begin{eqnarray}
-<O> &=& \langle - | O e^{-Ht} | init \rangle=
-\langle init|Q \; e^{-{\bar H} t} Q^{-1}O Q Q^{-1} |- \rangle \nonumber\\
-&= & \langle init|Q e^{ \sum_i J^+_i} e^{-{\bar H_{dual}} t}
- e^{ -\sum_i J^+_i} Q^{-1}O Q Q^{-1} |- \rangle \nonumber \\
-&= & \langle init|Q e^{ \sum_i J^+_i} e^{-{\bar H_{dual}} t}
- e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i J^+_i}
- e^{ -\sum_i J^+_i} |- \rangle \nonumber \\
- &= & \langle init|Q Q^{-1} e^{ \sum_i J^+_i} e^{-{\bar H_{dual}} t}
- e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i J^+_i} |-_{dual} \rangle
-\end{eqnarray}
-where we have defined $H_{dual}$ as the transformed Hamiltonian.
-
-We now have to study $ |-_{dual} \rangle \equiv e^{ -\sum_i J^+_i}
- Q^{-1} |- \rangle$
-Because we know that terms like those proportional to $\gamma$ and $\alpha$
-anihilate the measure to the left:
-\begin{eqnarray}
-& & \langle - | (J^-_i - J^o_i-j) =0\nonumber \\
-& & \langle - | (J^+_i + J^o_i-j) =0
-\end{eqnarray}
-this implies that in the new variables and following all the transformations
-(cfr (\ref{trans})):
-\begin{eqnarray}
-& & (J^-_i -J^o_i -j)e^{ -\sum_i J^+_i} Q^{-1} |- \rangle= 0 \nonumber \\
-& & ( -J^o_i -j)e^{ -\sum_i J^+_i} Q^{-1} |- \rangle =0
-\end{eqnarray}
-which implies that $( J^o_i +j) |-_{dual} \rangle= J^-_i |-_{dual} \rangle=0$,
-and this means that
-\begin{equation}
-J^o_i |-_{dual} \rangle =-j |-_{dual} \rangle
-\end{equation}
-is the vacuum of particles in this base!
-
-All in all we are left with:
-\begin{eqnarray}
-<O> &=& \langle init|Q \; e^{ \sum_i J^+_i}
- e^{-{\bar H_{dual}} t} e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i J^+_i}
- |-_{dual} \rangle \nonumber \\
- &=& \langle init|Q \; e^{ \sum_i J^+_i}
- e^{-{\bar H_{dual}} t} {\hat O}
- |-_{dual} \rangle
-\end{eqnarray}
-where $ {\hat O} \equiv e^{ -\sum_i J^+_i} Q^{-1}O Q e^{ \sum_i
-J^+_i}$. We have to start with the
-vacuum $ |-_{dual} \rangle$, then apply $ {\hat O} $, (which creates
-particles because it contains many $J^+$'s), and then there is the
-dual evolution. The final configuration has to be overlapped with
-$\langle f| \equiv \langle init|Q \; e^{ \sum_i J^+_i}$.
-For large times, there will be no particle left except in the two extra sites
-in the borders.
-
-\section{Constructive approach}
-
-Here I would like to say the following: if I have a modle of transport
-of which I do not know if it has a Dual one, I can proceed as follows.
-I take a small version with no baths and a few sites. I write the
-evolution operator and I diagonalise it numerically. If there is a
-non abelian group, the eigenvalues will be in degenerate
-multiplets. Hence, if I find multiplets, then very probably there is a
-dual model, if I do not, then there cannot be one. It would be nice
-to show it with the KMP model with two or three sites.
-
-Another thing is to consider higher groups. $SU(3)$ has already been studied
-for two kinds of particles. We know how to map to a dual in that
-case, if it has not been done yet.
-
-\newpage
-{\bf THIS PART HAS BEEN WRITTEN BY CRISTIAN}
-
-The aim of this file is to set notation in the two languages.
-Let us focus on duality for the case we already know:
-SU(1,1) model with $k=1/4$. To fix ideas let us consider only
-the bulk part of the system with periodic boundary conditions.
-
-\section{Probabilistic language}
-We have two stochastic Markovian process with continuous time.
-\begin{itemize}
-\item
-\underline{The first process $X(t) \in \R^N$} is given by the Fokker-Planck equation:
-\be
-\frac{dp(x,t)}{dt} = L^* p(x,t)
-\ee
-where $p(x,t)$ represents the probability density
-for the process $X(t)$, that is
-$$
-p(x,t)dx = Prob (X(t)\in (x,x+dx))
-$$
-and
-\begin{eqnarray}
-L^*p(x,t)
-& = &
-\sum_i L^*_{i,i+1} p(x,t) \noindent\\
-& = &
-\sum_i \left(x_i\frac{\partial}{\partial x_{i+1}} -x_{i+1}\frac{\partial}{\partial x_{i}}\right)^2 p(x,t)
-\end{eqnarray}
-\item
-\underline{The second process $\Xi(t) \in \N^N$} is characterized by the master equation
-\be
-\frac{dP(\xi,t)}{dt} = {\cal L^*} P(\xi,t)
-\ee
-where $P(\xi,t)$ represents the
-probability mass function for the process $\Xi(t)$, that is
-$$
-P(\xi,t) = Prob (\Xi(t) = \xi)
-$$
-and
-\begin{eqnarray}
-{\cal L}^*P(\xi,t)
-& = &
-\sum_i {\cal L}^*_{i,i+1}P(\xi,t) \nonumber \\
-& = &
-\sum_i 2\xi_i \left(1+ 2\xi_{i+1}\right) P(\xi^{i,i+1},t)
-+ \left(1+2\xi_i\right)2\xi_{i+1} P(\xi^{i+1,i},t) \nonumber\\
-& & - 2\left(2\xi_i + \frac{1}{2}\right)\left(2\xi_{i+1} + \frac{1}{2}\right) P(\xi,t)
-+ \frac{1}{2}P(\xi,t)
-\end{eqnarray}
-and $\xi^{i,j}$ denotes the configuration that is obtained by removing one particle
-at $i$ and adding one particle at $j$.
-\newpage
-\item
-\underline{In general, Duality means the following}:
-there exists functions $O(x,\xi): \R^N \times \N^N \mapsto \R$ such that
-the following equality between expectations for the two processes holds
-\begin{center}
-\fbox{\parbox{9cm}{
-\be
-\E_x( O(X(t),\xi)) =\E_\xi(O(x,\Xi(t)))
-\ee
-}}
-\end{center}
-The subscripts in the expectations denote the initial conditions of the processes:
-$X(0) =x$ on the left and $\Xi(0) = \xi$ on the right.
-More explicitly we have:
-\be
-\int dy O(y,\xi) p(y,t; x,0) = \sum_{\eta} O(x,\eta) P(\eta,t; \xi,0)
-\ee
-To prove duality it is sufficient to show that
-\be
-\label{main}
-L O(x,\xi) = {\cal L} O(x,\xi)
-\ee
-where $L$, that is working on $x$, is the adjoint of $L^*$ and ${\cal L}$, that is working on $\xi$,
-is the adjoint of ${\cal L}^*$.
-Indeed we have:
-\begin{eqnarray}
-\E_x( O(X(t),\xi))
-& = &
-\int dy O(y,\xi) p(y,t; x,0) \\
-& = &
-\sum_{\eta} \int dy O(y,\eta) p(y,t; x,0) \delta_{\eta,\xi} \\
-& = &
-\sum_{\eta} \int dy O(y,\eta) e^{tL^*} \delta(y-x) \delta_{\eta,\xi} \\
-& = &
-\sum_{\eta} \int dy e^{tL} O(y,\eta) \delta(y-x) \delta_{\eta,\xi} \\
-& = &
-\sum_{\eta} \int dy e^{t{\cal L}} O(y,\eta) \delta(y-x) \delta_{\eta,\xi} \\
-& = &
-\sum_{\eta} \int dy O(y,\eta) e^{t{\cal L}^*} \delta(y-x) \delta_{\eta,\xi} \\
-& = &
-\sum_{\eta} \int dy O(y,\eta) P(\eta,t;\xi,0) \delta(y-x) \\
-& = &
-\sum_{\eta} O(x,\eta) P(\eta,t;\xi,0) \\
-& = &
-\E_\xi(O(x,\Xi(t)))
-\end{eqnarray}
-\newpage
-\item
-\underline{For the present case, the proper function to be considered are}
-\be
-\label{Oss}
-O(x,\xi) = \prod_{i} \frac{x_i^{2\xi_i}}{(2\xi_i-1)!!}
-\ee
-Let us check Eq.(\ref{main}) on this choice. We have
-\begin{eqnarray*}
-&&
-L_{i,i+1} O(x,\xi)
-=
-\left(\prod_{k\not\in\{i,i+1\}} \frac{x_k^{2\xi_k}}{(2\xi_k -1)!!}\right)
-\times
-\\
-&&\left(2\xi_{i+1}(2\xi_{i+1}-1) \frac{x_i^{2\xi_i+2}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}-2}}{(2\xi_{i+1} -1)!!}
-- 2\xi_{i}(2\xi_{i+1}+1) \frac{x_i^{2\xi_i}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}}}{(2\xi_{i+1} -1)!!}
-\right.
-\\
-&&\left.- 2\xi_{i+1}(2\xi_{i}+1) \frac{x_i^{2\xi_i}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}}}{(2\xi_{i+1} -1)!!}
-+2\xi_{i}(2\xi_{i}-1) \frac{x_i^{2\xi_i-2}}{(2\xi_i -1)!!}\frac{x_{i+1}^{2\xi_{i+1}+2}}{(2\xi_{i+1} -1)!!}
-\right)
-\\
-\end{eqnarray*}
-which implies
-\begin{eqnarray*}
-L_{i,i+1} O(x,\xi)
-& = &
-\Big(2\xi_{i+1}(2\xi_{i}+1) [O(x,\xi^{i+1,i})-O(x,\xi)]
-\\
-&&
-\;+\;2\xi_{i}(2\xi_{i+1}+1) [O(x,\xi^{i,i+1})-O(x,\xi)]\Big)
-\\
-& = &
-{\cal L}_{i,i+1} O(x,\xi)
-\end{eqnarray*}
-
-\item \underline{How to find the proper normalization?}
-Suppose that we are in the general following situation:
-\begin{itemize}
-\item We have a generator $L$ of a Markov process $X(t)$.
-\item We know its stationary measure $\pi(x)$:
-\be
-L^* \pi(x) = 0
-\ee
-\item We have functions $f(x,\xi)$ for which the following holds:
-\be
-\label{aaa}
-L f(x,\xi) = \sum_{\eta} r(\xi,\eta) f(x,\eta)
-\ee
-with
-\be
-\label{bbb}
-r(\xi,\eta) \ge 0 \qquad \mbox{if}\quad \xi \neq \eta
-\ee
-\be
-\label{ccc}
-r(\xi,\xi) \le 0 \qquad \mbox{if}\quad \xi = \eta
-\ee
-\end{itemize}
-The matrix $r$ resembles the generator of a dual Markov process,
-but it is not because it does not satisfy the condition
-$\sum_{\eta} r(\xi,\eta) = 0$.
-In order to find the generator of the dual process we proceed as
-follows:
-\begin{enumerate}
-\item Define
-\be
-m(\xi) = \int f(x,\xi) \pi(x) dx
-\ee
-\item Define
-\be
-q(\xi,\eta)= m(\xi)^{-1} r(\xi,\eta) m(\eta)
-\ee
-\item Define
-\be
-O(x,\xi) = m(\xi)^{-1} f(x,\xi)
-\ee
-\end{enumerate}
-Then the matrix $q$ can be seen as the generator of the dual Markov process $\Xi(t)$, that is
-\be
-L O(x,\xi) = \sum_{\eta} q(\xi,\eta) O(x,\eta)
-\ee
-with
-\be
-q(\xi,\eta) \ge 0 \qquad \mbox{if}\quad \xi \neq \eta
-\ee
-\be
-q(\xi,\xi) \le 0 \qquad \mbox{if}\quad \xi = \eta
-\ee
-\be
-\sum_{\eta} q(\xi,\eta) = 0
-\ee
-Indeed we have:
-\begin{eqnarray}
-L O(x,\xi)
-&=&
-L m(\xi)^{-1} f(x,\xi) \nonumber \\
-&=&
-m(\xi)^{-1} \sum_{\eta} r(\xi,\eta) f(x,\eta) \nonumber \\
-&=&
-m(\xi)^{-1} \sum_{\eta} m(\xi)q(\xi,\eta) m(\eta)^{-1} m(\eta) O(x,\eta)\nonumber \\
-&=&
-\sum_{\eta} q(\xi,\eta) O(x,\eta)
-\end{eqnarray}
-and
-\begin{eqnarray}
-\sum_{\eta} q(\xi,\eta)
-&=&
-\sum_{\eta} m(\xi)^{-1} r(\xi,\eta) m(\eta) \nonumber \\
-&=&
-m(\xi)^{-1} \sum_{\eta} r(\xi,\eta) \int f(x,\eta) \pi(x) dx \nonumber \\
-&=&
-m(\xi)^{-1} \int L f(x,\xi) \pi(x) dx \nonumber \\
-&=&
-m(\xi)^{-1} \int f(x,\xi) L^* \pi(x) dx \nonumber \\
-&=&
-0
-\end{eqnarray}
-
-
-
-\item \underline{Our case}. Among all the invariant measure
-of the $X(t)$ process, namely the normalized function with
-spherical symmetry $p(x) = p(\sum_i x_i^2)$, a special role is
-played by the Gibbs measure
-$$
-\pi(x)
-= \left(\frac{\beta}{2\pi}\right)^{(N/2)} e^{-\beta\sum_i \frac{x_i^2}{2}}
-= \left(\frac{\beta}{2\pi}\right)^{(N/2)} \prod_i e^{-\beta\frac{x_i^2}{2}}
-$$
-which is selected as soon as the system is placed in contact with
-thermal bath working at inverse temperature $\beta$.
-Moreover: If $Z$ is a centered Gaussian, namely $Z\sim N(0,\sigma^2)$,
-then
-$$
-\E(Z^{2n}) = \sigma^{2n} (2n-1)!!
-$$
-If one start from
-$$
-f(x,\xi) = \prod_i x_i^{2\xi}
-$$
-which satisfy (\ref{aaa}),(\ref{bbb}),(\ref{ccc}) and apply
-the previous procedure, one arrives to (\ref{Oss}).
-
-{\bf Remark:} Note that, in applying the procedure, the
-dependence on $\beta$ disappear!!!!
-\end{itemize}
-
-
-\section{Quantum language}
-
-
-Here we start from a quantum spin chain
-$$
-H = - 4 \sum_i \left( K^+_iK^-_{i+1} + K^-_iK^+_{i+1} -2 K^0_iK^0_{i+1} + \frac{1}{8}\right)
-$$
-where the spin $K_i$'s satisfy the SU(1,1) algebra
-\begin{eqnarray}
-\label{commutatorsSU11}
-[K_i^{0},K_i^{\pm}] &=& \pm K_i^{\pm} \nonumber \\
-{[}K_{i}^{-},K_{i}^{+}{]} &=& 2K_i^{0}
-\end{eqnarray}
-We are going to see the Schr\"odinger equation with imaginary time
-\begin{equation}
-\label{schroedinger}
-\frac{d}{dt}|\psi(t) \rangle = -H |\psi(t)\rangle\;.
-\end{equation}
-as the evolution equation for the probability distribution of
-a Markovian stochastic process.
-\begin{itemize}
-\item
-\underline{The Hamiltonian possesses the SU(1,1) invariance}. If we define
-\be
-K^+ = \sum_{i} K_i^+
-\ee
-\be
-K^- = \sum_{i} K_i^-
-\ee
-\be
-K^0 = \sum_{i} K_i^0
-\ee
-we find that
-\be
-[H,K^+] = 0
-\ee
-\be
-[H,K^-] = 0
-\ee
-\be
-[H,K^0] = 0
-\ee
-\item
-\underline{Since $[H,K^+] = 0$} there exist a basis to study the stochastic process associated to
-$H$ where \underline{$K^+$ is diagonal}. We might consider the following representation
-\begin{eqnarray}
-\label{Koper}
-K^+_i &=& \frac{1}{2} x_{i}^2 \nonumber \\
-K^-_i &=& \frac{1}{2} \frac{\partial^2}{\partial x_{i}^2} \nonumber \\
-K^o_i &=& \frac{1}{4} \left\{\frac{\partial}{\partial x_{i}} x_{i} +
- x_{i} \frac{\partial}{\partial x_{i}} \right \}
-\end{eqnarray}
-If we use this representation then
-$$
-H = -L^*
-$$
-and the probability density function for the $X(t)$ process is encoded in
-the state $|\psi(t)\rangle$, namely
-\begin{equation}
-|\psi(t) \rangle = \int dx p(x,t) |x\rangle
-\end{equation}
-where we have introduced the notation $|x\rangle$ to denote a completely
-localized state, that is a vector which together with its transposed
-$\langle x|$ form a complete basis of a Hilbert space and its dual:
-\begin{equation}
-\langle x|x' \rangle = \delta(x-x')
-\end{equation}
-It immediately follows that
-\begin{equation}
-\langle x|\psi(t) \rangle = p(x,t)
-\end{equation}
-To compute expectation with respect to the $X(t)$ process
-we introduce the flat state
-\begin{equation}
-\langle - | = \int dx \;\langle x|
-\end{equation}
-which is such that
-\begin{equation}
-\langle - | x\rangle = 1
-\end{equation}
-Then for any observable $A = A(X(t))$ we have that its expectation value
-at time $t$ can be written as
-\begin{equation}
-\langle A(t) \rangle_x = \int dy \,A(y)\, p(y,t;x,0) = \langle -|A| \psi(t) \rangle_x = \langle -|A e ^{-tH}| x\rangle
-\end{equation}
-\item
-\underline{Since $[H,K^0] = 0$} there exist a basis to study the stochastic process associated to
-$H$ where \underline{$K^0$ is diagonal}. We might consider the following representation
-\begin{eqnarray}
-\label{Koper2}
-K^+_i|\xi\rangle &=& \left(\frac{1}{2} + \xi\right) |\xi+1\rangle\nonumber \\
-K^-_i|\xi\rangle &=& \xi |\xi-1\rangle\nonumber \\
-K^o_i|\xi\rangle &=& \left(\xi + \frac{1}{4}\right) |\xi\rangle
-\end{eqnarray}
-where $|\xi\rangle$ denotes a vector which together with its transposed
-$\langle \xi|$ form a complete basis of a Hilbert space and its dual, that is
-\begin{equation}
-\langle \xi|\eta \rangle = \delta_{\xi,\eta}
-\end{equation}
-If we use this representation then
-$$
-H = -{\cal L}^*
-$$
-and the probability mass function for the $\Xi(t)$ process is encoded in
-the state $|\phi(t)\rangle$, namely
-\begin{equation}
-|\phi(t) \rangle = \sum_{\xi} P(\xi,t) |\xi\rangle
-\end{equation}
-It immediately follows that
-\begin{equation}
-\langle \xi|\phi(t) \rangle = P(\xi,t)
-\end{equation}
-To compute expectation with respect to the $\Xi(t)$ process
-we introduce the flat state
-\begin{equation}
-\langle -_{dual} | = \sum_{\xi} \;\langle \xi|
-\end{equation}
-which is such that
-\begin{equation}
-\langle -_{dual} | \xi\rangle = 1
-\end{equation}
-Then for any observable $A=A(\Xi(t))$ we have that its expectation value
-at time $t$ can be written as
-\begin{equation}
-\langle A(t) \rangle_\xi = \sum_{\eta}\,A(\eta)\, p(\eta,t;\xi,0) = \langle -_{dual}|A| \phi(t) \rangle_{\xi} = \langle -_{dual}|A e ^{-tH}| \xi\rangle
-\end{equation}
-\item
-\underline{The claim is the following: Duality, in general, is going from the basis
-where}\\
-\underline{one generator of the group is diagonal to a basis where another generator of}\\
-\underline{ the group is diagonal.}
-
-In our case we change from a basis where $K^+$ is diagonal to the base where $K^0$ is diagonal.
-
-\begin{eqnarray}
-\langle - |\prod_i\frac{(2K_i^+)^{\xi_i}}{(2\xi_i-1)!!}|\psi(t)\rangle_x
-& = &
-\int dy \; \langle y |\prod_i\frac{(2K_i^+)^{\xi_i}}{(2\xi_i-1)!!} e^{tL^*}|x\rangle \nonumber \\
-& = &
-\sum_{\eta} \int dy \; \langle y |\prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!}e^{tL^*}|x\rangle \langle \eta|\xi\rangle\nonumber \\
-& = &
-\sum_{\eta} \int dy \; \langle y| \otimes \langle \eta| \prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!} e^{tL^*} | x\rangle \otimes|\xi\rangle\nonumber \\
-& = &
-\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{tL} \prod_i\frac{(2K_i^+)^{\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta\rangle \nonumber \\
-& = &
-\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{tL} \prod_i\frac{y^{2\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\
-& = &
-\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{t{\cal L}} \prod_i\frac{y_i^{2\eta_i}}{(2\eta_i-1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\
-& = &
-\sum_{\eta} \int dy \; \langle x| \otimes \langle \xi | e^{t{\cal L}} \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} | y\rangle \otimes|\eta \rangle \nonumber \\
-& = &
-\sum_{\eta} \int dy \; \langle y| \otimes \langle \eta |\prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} e^{t{\cal L}^*} | x\rangle \otimes|\xi \rangle\nonumber \\
-& = &
-\sum_{\eta} \int dy \; \langle \eta | \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} e^{t{\cal L}^*} |\xi \rangle \langle y | x\rangle \nonumber \\
-& = &
-\sum_{\eta} \langle \eta | \prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!} |\phi(t)\rangle_{\xi} \nonumber \\
-& = &
-\langle -_{dual} |\prod_i\frac{y_i^{K_i^0 -\frac{1}{2}\1}}{(K_i^0 -\frac{3}{2}\1)!!}|\phi(t)\rangle_{\xi}
-\end{eqnarray}
-
-
-\end{itemize}
-
-\section{General k}
-
-A convenient $(2j+1)$-dimensional representation of the SU(2) algebra is given by
-\begin{eqnarray}
-J^+_i |n_i\rangle &=& (2j-n_i) |n_i+1\rangle \nonumber \\
-J^-_i |n_i\rangle &=& n_i |n_i-1\rangle \nonumber \\
-J^0_i |n_i\rangle &=& (n_i-j) |n_i\rangle
-\end{eqnarray}
-where the quantum numbers $n_i\in\{0,1,\ldots,2j\}$.
-{\bf Note that in this representation the adjoint of $J^+_i$ is not
-$J^-_i$, UNLESS $j=1/2$}.
-
-A matrix representation is:
-$$
-J^+ = \left(
-\begin{array}{cccc}
- 0 & & & \\
- 2j & \ddots & & \\
- & \ddots & \ddots & \\
- & & 1 & 0\\
-\end{array}\right)
-\qquad
-J^- = \left(
-\begin{array}{cccc}
- 0 & 1 & & \\
- & \ddots & \ddots & \\
- & & \ddots & 2j \\
- & & & 0 \\
-\end{array}\right)
-\qquad
-J^0 = \left(
-\begin{array}{cccc}
- -j & & & \\
- & \ddots & & \\
- & & \ddots & \\
- & & & j\\
-\end{array}\right)
-$$
-
-In the SU(1,1) case one can use the infinite dimensional representation
-\begin{eqnarray}
-\label{newrepresentationsu11}
-K^+_i |n_i\rangle &=& (2k+n_i) |n_i+1\rangle \nonumber \\
-K^-_i |n_i\rangle &=& n_i |n_i-1\rangle \nonumber \\
-K^0_i |n_i\rangle &=& (n_i+k) |n_i\rangle
-\end{eqnarray}
-where the quantum numbers $n_i\in\{0,1,2,\ldots\}$.
-A matrix representation is:
-$$
-K^+ = \left(
-\begin{array}{cccc}
- 0 & & & \\
- 2k & \ddots & & \\
- & 2k+1 & \ddots & \\
- & & \ddots & \ddots\\
-\end{array}\right)
-\qquad
-K^- = \left(
-\begin{array}{cccc}
- 0 & 1 & & \\
- & \ddots & 2 & \\
- & & \ddots & \ddots \\
- & & & \ddots \\
-\end{array}\right)
-\qquad
-K^0 = \left(
-\begin{array}{cccc}
- k & & & \\
- & k+1 & & \\
- & & k+2 & \\
- & & & \ddots\\
-\end{array}\right)
-$$
-Let's check that in this representation the operator is stochastic.
-I will do it for the bulk:
-\begin{eqnarray}
-L_{i,i+1}|n_i,n_{i+1}\rangle
-&=&
-(2k+n_i) n_{i+1}|n_i +1 ,n_{i+1}-1\rangle \nonumber\\
-&+&
-n_i(2k+n_{i+1})|n_i -1 ,n_{i+1}+1\rangle \nonumber\\
-&+&
-(-2(n_i+k)(n_{i+1}+k)+2k^2)|n_i,n_{i+1}\rangle
-\end{eqnarray}
-The sum of the rates is
-$$
-(2k+n_i) n_{i+1}+
-n_i(2k+n_{i+1})
--2(n_i+k)(n_{i+1}+k)+2k^2 =0
-$$
-
-
-
-
-
-
-
-
-
-% \end{document}