diff options
| -rw-r--r-- | bezout.tex | 8 | 
1 files changed, 3 insertions, 5 deletions
| @@ -289,14 +289,13 @@ Introducing replicas to bring the partition function to  the numerator of the Green function \cite{Livan_2018_Introduction} gives  \begin{widetext}    \begin{equation} \label{eq:green.replicas} -    G(\sigma)=\frac1N\lim_{n\to0}\int d\zeta\,d\zeta^*\,(\zeta_i^{(0)})^*\zeta_i^{(0)} +    G(\sigma)=\lim_{n\to0}\int d\zeta\,d\zeta^*\,(\zeta_i^{(0)})^*\zeta_i^{(0)}        \exp\left\{        \frac12\sum_\alpha^n\left[(\zeta_i^{(\alpha)})^*\zeta_i^{(\alpha)}\sigma          -\Re\left(\zeta_i^{(\alpha)}\zeta_j^{(\alpha)}\partial_i\partial_jH\right)        \right]      \right\}    \end{equation} -  \textcolor{red}{\textbf{Not sure if the $N$ belongs here...}}    with sums taken over repeated latin indices.    The average can then be made over $J$ and Hubbard--Stratonovich used to change    variables to replica matrices @@ -306,7 +305,7 @@ the numerator of the Green function \cite{Livan_2018_Introduction} gives    and vectors zero, and $\alpha_{\alpha\beta}=\alpha_0\delta_{\alpha\beta}$,    $\chi_{\alpha\beta}=\chi_0\delta_{\alpha\beta}$. The result is    \begin{equation}\label{eq:green.saddle} -    \overline G(\sigma)=\lim_{n\to0}\int d\alpha_0\,d\chi_0\,d\chi_0^*\,\alpha_0 +    \overline G(\sigma)=N\lim_{n\to0}\int d\alpha_0\,d\chi_0\,d\chi_0^*\,\alpha_0      \exp\left\{nN\left[        1+\frac{p(p-1)}{16}a^{p-2}\alpha_0^2-\frac{\alpha_0\sigma}2+\frac12\log(\alpha_0^2-|\chi_0|^2)        +\frac p4\mathop{\mathrm{Re}}\left(\frac{(p-1)}8\kappa^*\chi_0^2-\epsilon^*\chi_0\right) @@ -320,12 +319,11 @@ solution. A detailed analysis of the saddle point integration is needed to  understand why this is so. Given such $\alpha_0$, the density of singular  values follows from the jump across the cut, or  \begin{equation} \label{eq:spectral.density} -  \rho(\sigma)=\frac1{i\pi}\left( +  \rho(\sigma)=\frac1{i\pi N}\left(      \lim_{\mathop{\mathrm{Im}}\sigma\to0^+}\overline G(\sigma)      -\lim_{\mathop{\mathrm{Im}}\sigma\to0^-}\overline G(\sigma)    \right)  \end{equation} -\textcolor{red}{\textbf{Missing a factor of two? Please check...}}  The transition from a one-cut to two-cut singular value spectrum naturally  corresponds to the origin leaving the support of the eigenvalue spectrum. | 
