diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-21 14:35:08 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-12-21 14:35:08 +0100 |
commit | 05377f7c3d39c956013facca1c4d91e8f55759ba (patch) | |
tree | 4ef61d4c2614cae205c47c4af3c38aabec3734b7 | |
parent | 9f777f7a2fdedd356fc60afa01e61082f4b7fc58 (diff) | |
download | mma-05377f7c3d39c956013facca1c4d91e8f55759ba.tar.gz mma-05377f7c3d39c956013facca1c4d91e8f55759ba.tar.bz2 mma-05377f7c3d39c956013facca1c4d91e8f55759ba.zip |
Work.
-rw-r--r-- | new_schofield.nb | 4668 |
1 files changed, 4027 insertions, 641 deletions
diff --git a/new_schofield.nb b/new_schofield.nb index 0854822..84ee0f3 100644 --- a/new_schofield.nb +++ b/new_schofield.nb @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 408096, 8223] -NotebookOptionsPosition[ 397188, 8036] -NotebookOutlinePosition[ 397582, 8052] -CellTagsIndexPosition[ 397539, 8049] +NotebookDataLength[ 590390, 11609] +NotebookOptionsPosition[ 576572, 11379] +NotebookOutlinePosition[ 576986, 11396] +CellTagsIndexPosition[ 576943, 11393] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -25,47 +25,27 @@ Cell["Definitions", "Section", 3.817119834596055*^9}},ExpressionUUID->"bb531fce-8a9d-4a5f-8d6a-\ ec66b9fbf698"], -Cell[BoxData[{ +Cell[BoxData[ RowBox[{ RowBox[{"\[Beta]", "=", RowBox[{"1", "/", "8"}]}], ";", RowBox[{"\[Delta]", "=", "15"}], ";", - RowBox[{"\[Alpha]", "=", "0"}], ";"}], "\[IndentingNewLine]", - RowBox[{ + RowBox[{"\[Alpha]", "=", "0"}], ";", RowBox[{"\[CapitalDelta]", "=", - RowBox[{"\[Beta]", " ", "\[Delta]"}]}], ";"}], "\[IndentingNewLine]", - RowBox[{"\[ScriptCapitalM]0Square", ":=", - SuperscriptBox[ - RowBox[{"(", - RowBox[{ - SuperscriptBox["2", - RowBox[{"5", "/", "2"}]], - RowBox[{"ArcSinh", "[", "1", "]"}]}], ")"}], - "\[Beta]"]}], "\[IndentingNewLine]", - RowBox[{"TcSquare", ":=", - RowBox[{"2", "/", - RowBox[{"Log", "[", - RowBox[{"1", "+", - RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}], "\[IndentingNewLine]", - RowBox[{"ASquare", ":=", - RowBox[{ - SuperscriptBox["TcSquare", "2"], - RowBox[{"\[ScriptCapitalM]0Square", "/", - RowBox[{"(", - RowBox[{"16", " ", "\[Pi]"}], ")"}]}]}]}], "\[IndentingNewLine]", - RowBox[{"Ch", ":=", "0.838677624411"}]}], "Input", + RowBox[{"\[Beta]", " ", "\[Delta]"}]}], ";"}]], "Input", CellChangeTimes->{{3.8171203487765493`*^9, 3.817120359509359*^9}, { 3.8171253080634003`*^9, 3.817125374665786*^9}, {3.81712545121809*^9, - 3.8171254551141233`*^9}, {3.817209512993226*^9, 3.81720951605719*^9}}, + 3.8171254551141233`*^9}, {3.817209512993226*^9, 3.81720951605719*^9}, { + 3.817216134198064*^9, 3.817216147934895*^9}}, CellLabel-> - "In[469]:=",ExpressionUUID->"fafcf491-a81f-4f91-b9fe-4d27770e7577"], + "(WOPR) In[1]:=",ExpressionUUID->"fafcf491-a81f-4f91-b9fe-4d27770e7577"], Cell[BoxData[ RowBox[{ RowBox[{"$Assumptions", "=", RowBox[{"{", RowBox[{ - RowBox[{"\[Theta]c", ">", "1"}], ",", + RowBox[{"\[Theta]c", ">", "0"}], ",", RowBox[{"t\[Infinity]", ">", "0"}], ",", RowBox[{ RowBox[{"gC", "[", "\[Infinity]", "]"}], ">", "0"}], ",", @@ -75,38 +55,39 @@ Cell[BoxData[ RowBox[{"A", ">", "0"}], ",", RowBox[{"\[ScriptCapitalF]1", ">", "0"}], ",", RowBox[{"\[ScriptCapitalF]0", "\[Element]", "Reals"}], ",", - RowBox[{"\[Gamma]", ">", "0"}]}], "}"}]}], ";"}]], "Input", + RowBox[{"\[Gamma]", ">", "0"}], ",", + RowBox[{"\[Theta]i", ">", "0"}], ",", + RowBox[{"\[Theta]i", "<", "\[Theta]c"}]}], "}"}]}], ";"}]], "Input", CellChangeTimes->{{3.817121509075202*^9, 3.81712159405204*^9}, { 3.817122146902429*^9, 3.8171221498463*^9}, {3.817123222631443*^9, 3.8171232401305323`*^9}, {3.81712327174748*^9, 3.817123302075263*^9}, { 3.817123345236269*^9, 3.8171233467245693`*^9}, {3.817123565480311*^9, 3.817123582960553*^9}, {3.8171246080192423`*^9, 3.817124610971168*^9}, { 3.8172096124512787`*^9, 3.817209616026865*^9}, {3.81721066071721*^9, - 3.817210665188924*^9}, {3.817211071596877*^9, 3.817211091620666*^9}}, + 3.817210665188924*^9}, {3.817211071596877*^9, 3.817211091620666*^9}, { + 3.817271204530282*^9, 3.817271209927745*^9}, {3.817275283336474*^9, + 3.8172752836605864`*^9}}, CellLabel-> - "In[558]:=",ExpressionUUID->"395191f4-75f5-4aa3-87f6-ccf9cbedf73f"], + "(WOPR) In[446]:=",ExpressionUUID->"395191f4-75f5-4aa3-87f6-ccf9cbedf73f"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"f", "[", "n_", "]"}], "[", "\[Theta]_", "]"}], ":=", - FractionBox[ - RowBox[{ - SuperscriptBox["\[Theta]", "2"], "-", "1"}], - RowBox[{"1", "+", - RowBox[{ - SuperscriptBox["\[Theta]", "2"], - RowBox[{ - RowBox[{"RealAbs", "[", "\[Theta]", "]"}], "/", - "t\[Infinity]"}]}]}]]}]], "Input", + RowBox[{ + SuperscriptBox[ + RowBox[{"(", + RowBox[{"\[Theta]", "/", "\[Theta]i"}], ")"}], "2"], "-", + "1"}]}]], "Input", CellChangeTimes->{{3.8171202124436197`*^9, 3.817120269635832*^9}, { 3.817120312676557*^9, 3.8171203389089193`*^9}, {3.8171204067661743`*^9, 3.8171204839196587`*^9}, {3.8171205561371202`*^9, 3.8171205568649817`*^9}, { 3.817204484948892*^9, 3.817204488556822*^9}, {3.817204991326084*^9, 3.81720499357379*^9}, {3.817209015952724*^9, 3.8172090687475147`*^9}, { - 3.8172134845351257`*^9, 3.817213486502965*^9}}, + 3.8172134845351257`*^9, 3.817213486502965*^9}, {3.817269303799518*^9, + 3.817269304543895*^9}, {3.81727116429113*^9, 3.8172712020249577`*^9}}, CellLabel-> - "In[744]:=",ExpressionUUID->"3e69b8b0-cd07-4524-a460-17b8352b5902"], + "(WOPR) In[266]:=",ExpressionUUID->"3e69b8b0-cd07-4524-a460-17b8352b5902"], Cell[BoxData[ RowBox[{ @@ -118,20 +99,6 @@ Cell[BoxData[ SuperscriptBox[ RowBox[{"(", FractionBox["\[Theta]", "\[Theta]c"], ")"}], "2"]}], ")"}], - SuperscriptBox[ - RowBox[{"(", - RowBox[{"1", "+", - RowBox[{ - FractionBox[ - RowBox[{"gC", "[", "n", "]"}], - RowBox[{"gC", "[", "\[Infinity]", "]"}]], - RowBox[{"RealAbs", "[", "\[Theta]", "]"}], - RowBox[{ - SuperscriptBox["\[Theta]", - RowBox[{ - RowBox[{"2", "n"}], "+", "2"}]], "/", - SuperscriptBox["\[Theta]c", "2"]}]}]}], ")"}], - RowBox[{"-", "1"}]], RowBox[{"Sum", "[", RowBox[{ RowBox[{ @@ -142,61 +109,60 @@ Cell[BoxData[ RowBox[{"{", RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.817119845565673*^9, 3.817119882052971*^9}, { - 3.817119939573969*^9, 3.817120069536271*^9}, {3.817209086426073*^9, - 3.8172090977061653`*^9}}, + 3.817119939573969*^9, 3.817120069536271*^9}, {3.817209086426073*^9, + 3.8172090977061653`*^9}, 3.8172693107527933`*^9}, CellLabel-> - "In[745]:=",ExpressionUUID->"daded195-b1a7-448b-87f6-d258f2dcf5e8"], + "(WOPR) In[137]:=",ExpressionUUID->"daded195-b1a7-448b-87f6-d258f2dcf5e8"], Cell[BoxData[ RowBox[{ - RowBox[{"\[ScriptCapitalF]f", "[", "y_", "]"}], ":=", + RowBox[{"\[ScriptCapitalM]f", "[", "y_", "]"}], ":=", RowBox[{ - FractionBox["1", "\[Pi]"], - FractionBox[ + RowBox[{"-", + FractionBox["1", "\[Pi]"]}], + FractionBox["1", "y"], + SuperscriptBox["\[ExponentialE]", + FractionBox["1", "y"]], " ", + RowBox[{"(", RowBox[{ - RowBox[{ - SuperscriptBox["\[ExponentialE]", - FractionBox["1", "y"]], " ", "y", " ", "\[Gamma]", " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", - FractionBox["1", "y"]}], "]"}]}], "-", - RowBox[{ - SuperscriptBox["\[ExponentialE]", "\[Gamma]"], " ", - RowBox[{"ExpIntegralEi", "[", - RowBox[{"-", "\[Gamma]"}], "]"}]}]}], - RowBox[{"\[Gamma]", "-", - RowBox[{"y", " ", - SuperscriptBox["\[Gamma]", "2"]}]}]]}]}]], "Input", + RowBox[{"-", "1"}], "+", "y"}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", "y"]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.81712187820217*^9, 3.817121900537793*^9}, 3.817122299113345*^9, {3.817198483403965*^9, 3.817198509154025*^9}, { 3.817199440148189*^9, 3.817199440731868*^9}, {3.817199845562872*^9, 3.817199848402961*^9}, 3.8172001271039267`*^9, {3.8172001950013113`*^9, 3.8172001956329947`*^9}, {3.817209116226256*^9, 3.817209123026651*^9}, { 3.817209186739526*^9, 3.817209188013309*^9}, {3.817210278358514*^9, - 3.817210288080538*^9}}, + 3.817210288080538*^9}, {3.817269682319373*^9, 3.817269725334901*^9}, { + 3.817269813956863*^9, 3.817269814867185*^9}, {3.8172765008393383`*^9, + 3.817276503991358*^9}, {3.8172765584000072`*^9, 3.8172765730241413`*^9}, { + 3.817279978610174*^9, 3.8172799852438726`*^9}}, CellLabel-> - "In[746]:=",ExpressionUUID->"f27ba651-c22d-460a-a64d-186282c0ce66"], + "(WOPR) In[580]:=",ExpressionUUID->"f27ba651-c22d-460a-a64d-186282c0ce66"], Cell[BoxData[{ RowBox[{ - RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]_", "]"}], ":=", - RowBox[{"\[ScriptCapitalF]0", "+", - RowBox[{"\[ScriptCapitalF]1", + RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]_", "]"}], ":=", + RowBox[{ + RowBox[{"\[ScriptCapitalM]0", RowBox[{"(", RowBox[{ - RowBox[{"\[ScriptCapitalF]f", "[", + RowBox[{"\[ScriptCapitalM]f", "[", RowBox[{"B", RowBox[{"(", - RowBox[{"\[Theta]c", "-", "\[Theta]"}], ")"}]}], "]"}], "+", - RowBox[{"\[ScriptCapitalF]f", "[", + RowBox[{"\[Theta]c", "-", "\[Theta]"}], ")"}]}], "]"}], "-", + RowBox[{"\[ScriptCapitalM]f", "[", RowBox[{"B", RowBox[{"(", - RowBox[{"\[Theta]c", "+", "\[Theta]"}], ")"}]}], "]"}]}], - ")"}]}]}]}], "\[IndentingNewLine]", + RowBox[{"\[Theta]c", "+", "\[Theta]"}], ")"}]}], "]"}]}], ")"}]}], + "+", + RowBox[{"\[ScriptCapitalM]1", " ", "\[Theta]"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"I\[ScriptCapitalF]", "[", "\[Theta]_", "]"}], ":=", RowBox[{"\[ScriptCapitalF]1", - RowBox[{"(", " ", + RowBox[{"(", RowBox[{ RowBox[{"HeavisideTheta", "[", RowBox[{"\[Theta]", "-", "\[Theta]c"}], "]"}], "+", @@ -231,15 +197,17 @@ Cell[BoxData[{ 3.81720944395175*^9, 3.817209446047728*^9}, {3.817209930464348*^9, 3.8172099380644417`*^9}, {3.817210264070428*^9, 3.817210267542055*^9}, { 3.817210329919582*^9, 3.817210334487361*^9}, {3.817210372639934*^9, - 3.817210377592119*^9}, 3.817212316154291*^9, 3.817212645208345*^9}, + 3.817210377592119*^9}, 3.817212316154291*^9, 3.817212645208345*^9, { + 3.817216916290226*^9, 3.8172169167762327`*^9}, {3.817219212992364*^9, + 3.8172192132224283`*^9}, {3.817266621409737*^9, 3.8172666282959213`*^9}, { + 3.8172683850976753`*^9, 3.817268385343678*^9}, 3.817269739852894*^9, { + 3.81726981683014*^9, 3.817269821291363*^9}, {3.817271032349269*^9, + 3.8172710326758747`*^9}, {3.817271110024907*^9, 3.8172711106148663`*^9}, { + 3.8172719744968967`*^9, 3.817271998377635*^9}, {3.817272634473014*^9, + 3.81727265440335*^9}, {3.817276578733289*^9, 3.81727661335675*^9}, { + 3.817280005679316*^9, 3.817280009539542*^9}}, CellLabel-> - "In[747]:=",ExpressionUUID->"e32b7309-d4a7-469a-ab41-1800db7276a7"], - -Cell[BoxData[ - RowBox[{"Plot", "[", "I\[ScriptCapitalF]"}]], "Input", - CellChangeTimes->{{3.817214696421403*^9, - 3.817214699557768*^9}},ExpressionUUID->"a67825a5-1532-4e67-9c19-\ -5eea914713e3"], + "(WOPR) In[581]:=",ExpressionUUID->"e32b7309-d4a7-469a-ab41-1800db7276a7"], Cell[BoxData[{ RowBox[{ @@ -248,13 +216,13 @@ Cell[BoxData[{ RowBox[{"SeriesCoefficient", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ - RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "-", + RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}], "+", RowBox[{ SuperscriptBox[ RowBox[{ - RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}], - RowBox[{"2", "-", "\[Alpha]"}]], - RowBox[{"Gl", "[", + RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}], "\[Beta]"], + RowBox[{ + RowBox[{"Gl", "'"}], "[", RowBox[{ RowBox[{ RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}], @@ -271,7 +239,7 @@ Cell[BoxData[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", "<", "\[Theta]c"}], ",", - RowBox[{"\[Theta]", ">", "1"}]}], "}"}]}], "]"}]}]}], + RowBox[{"\[Theta]", ">", "\[Theta]i"}]}], "}"}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ @@ -279,15 +247,16 @@ Cell[BoxData[{ RowBox[{"SeriesCoefficient", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ - RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "-", + RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}], "+", RowBox[{ SuperscriptBox[ RowBox[{"(", RowBox[{"-", RowBox[{ RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}]}], ")"}], - RowBox[{"2", "-", "\[Alpha]"}]], - RowBox[{"Gh", "[", + "\[Beta]"], + RowBox[{ + RowBox[{"Gh", "'"}], "[", RowBox[{ RowBox[{ RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}], @@ -306,7 +275,7 @@ Cell[BoxData[{ RowBox[{"{", RowBox[{ RowBox[{"\[Theta]", ">", "0"}], ",", - RowBox[{"\[Theta]", "<", "1"}]}], "}"}]}], "]"}]}]}], + RowBox[{"\[Theta]", "<", "\[Theta]i"}]}], "}"}]}], "]"}]}]}], "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ @@ -314,37 +283,35 @@ Cell[BoxData[{ RowBox[{"SeriesCoefficient", "[", "\[IndentingNewLine]", RowBox[{ RowBox[{ - RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "-", - RowBox[{"(", - RowBox[{ + RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}], "-", + RowBox[{ + FractionBox[ + SuperscriptBox[ + RowBox[{ + RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}], + RowBox[{"1", "/", "\[Delta]"}]], "\[CapitalDelta]"], + RowBox[{"(", RowBox[{ RowBox[{ - SuperscriptBox[ - RowBox[{ - RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}], + RowBox[{"\[Eta]", " ", RowBox[{ - RowBox[{"(", - RowBox[{"2", "-", "\[Alpha]"}], ")"}], "/", "\[CapitalDelta]"}]], - - RowBox[{"\[CapitalPhi]", "[", "\[Eta]", "]"}]}], "+", - RowBox[{ - FractionBox[ - SuperscriptBox["\[Eta]", "2"], - RowBox[{"8", "\[Pi]"}]], - RowBox[{"Log", "[", - SuperscriptBox["\[Eta]", "2"], "]"}]}]}], "/.", - RowBox[{"\[Eta]", "\[Rule]", - RowBox[{ + RowBox[{"\[CapitalPhi]", "'"}], "[", "\[Eta]", "]"}]}], "-", + RowBox[{ + RowBox[{"(", + RowBox[{"2", "-", "\[Alpha]"}], ")"}], + RowBox[{"\[CapitalPhi]", "[", "\[Eta]", "]"}]}]}], "/.", + RowBox[{"\[Eta]", "\[Rule]", RowBox[{ - RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}], " ", - SuperscriptBox[ - RowBox[{ - RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}], RowBox[{ - RowBox[{"-", "1"}], "/", "\[CapitalDelta]"}]]}]}]}], ")"}]}], + RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}], " ", + SuperscriptBox[ + RowBox[{ + RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}], + RowBox[{ + RowBox[{"-", "1"}], "/", "\[CapitalDelta]"}]]}]}]}], ")"}]}]}], "\[IndentingNewLine]", ",", RowBox[{"{", - RowBox[{"\[Theta]", ",", "1", ",", "m"}], "}"}], ",", + RowBox[{"\[Theta]", ",", "\[Theta]i", ",", "m"}], "}"}], ",", RowBox[{"Assumptions", "\[Rule]", RowBox[{"Join", "[", RowBox[{"$Assumptions", ",", @@ -398,18 +365,30 @@ Cell[BoxData[{ "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"eqB", "[", "n_", "]"}], ":=", - RowBox[{"B", "\[Rule]", - RowBox[{"A", " ", - FractionBox[ - RowBox[{"-", " ", + RowBox[{ + FractionBox["\[Pi]", + RowBox[{"2", " ", "1.3578383417066"}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"\[CapitalDelta]", " ", RowBox[{ + RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]c", "]"}], + SuperscriptBox[ RowBox[{ - RowBox[{"g", "[", "n", "]"}], "'"}], "[", "\[Theta]c", "]"}]}], - SuperscriptBox[ - RowBox[{"(", + RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]c", "]"}], + RowBox[{ + RowBox[{"-", "\[CapitalDelta]"}], "-", "1"}]], + RowBox[{ + RowBox[{ + RowBox[{"f", "[", "n", "]"}], "'"}], "[", "\[Theta]c", "]"}]}], "-", + RowBox[{ + RowBox[{ RowBox[{ - SuperscriptBox["\[Theta]c", "2"], "-", "1"}], ")"}], - RowBox[{"\[Beta]", " ", "\[Delta]"}]]]}]}]}]}], "Input", + RowBox[{"g", "[", "n", "]"}], "'"}], "[", "\[Theta]c", "]"}], + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]c", "]"}], + RowBox[{"-", "\[CapitalDelta]"}]]}]}], ")"}]}]}]}], "Input", CellChangeTimes->{{3.817122561958515*^9, 3.817122595430499*^9}, { 3.8171226412071457`*^9, 3.817122654383555*^9}, {3.817122684808043*^9, 3.817122893980072*^9}, {3.8171229823734827`*^9, 3.817123013558132*^9}, { @@ -432,9 +411,17 @@ Cell[BoxData[{ 3.81721240169213*^9}, {3.8172126942254143`*^9, 3.817212733676169*^9}, { 3.8172128432044477`*^9, 3.817212850900301*^9}, {3.817213122273017*^9, 3.817213125505207*^9}, {3.817213504392342*^9, 3.817213522176297*^9}, - 3.817214109954194*^9, {3.817214983818109*^9, 3.817214986450067*^9}}, + 3.817214109954194*^9, {3.817214983818109*^9, 3.817214986450067*^9}, { + 3.8172173960165873`*^9, 3.817217426058158*^9}, {3.817218919892474*^9, + 3.817218934448584*^9}, {3.817218984339595*^9, 3.817218988675902*^9}, { + 3.817219056474732*^9, 3.817219056918*^9}, {3.817270667311324*^9, + 3.817270696028246*^9}, {3.817271226342354*^9, 3.817271252979103*^9}, { + 3.8172769069026337`*^9, 3.817276953348996*^9}, {3.8172775487711554`*^9, + 3.817277647805482*^9}, 3.8172803779817553`*^9, {3.817280418228038*^9, + 3.8172804267347317`*^9}, {3.817282016179366*^9, 3.817282092169364*^9}, + 3.817282209641667*^9, 3.817283240977447*^9, 3.817283291741331*^9}, CellLabel-> - "In[790]:=",ExpressionUUID->"77a88da0-5b31-458a-9ed8-0b34545e511d"], + "(WOPR) In[798]:=",ExpressionUUID->"77a88da0-5b31-458a-9ed8-0b34545e511d"], Cell[BoxData[{ RowBox[{ @@ -450,13 +437,13 @@ Cell[BoxData[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], "]"}], "[", "\[CapitalPhi]", "]"}], "[", "0", "]"}], "\[Rule]", - RowBox[{ + RowBox[{"#1", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"#2", "[", - RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}], - "#1"}]}], "&"}], ",", + RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}]}]}], + "&"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1.197733383797993"}], ",", @@ -491,13 +478,13 @@ Cell[BoxData[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], "]"}], "[", "Gl", "]"}], "[", "0", "]"}], "\[Rule]", - RowBox[{ + RowBox[{"#1", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"#2", "[", - RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}], - "#1"}]}], "&"}], ",", + RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}]}]}], + "&"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "1.3578383417066"}], ",", @@ -519,13 +506,13 @@ Cell[BoxData[{ RowBox[{"#2", "[", RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], "]"}], "[", "Gh", "]"}], "[", "0", "]"}], "\[Rule]", - RowBox[{ + RowBox[{"#1", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"#2", "[", - RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}], - "#1"}]}], "&"}], ",", + RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}]}]}], + "&"}], ",", RowBox[{"{", RowBox[{"0", ",", "0", ",", RowBox[{"-", "1.8452280782328"}], ",", "0", ",", "8.333711750", ",", @@ -557,10 +544,7 @@ Cell[BoxData[{ "[", "0", "]"}]}], ",", RowBox[{"2", "/", "15"}]}], "]"}]}], "&"}], "/@", RowBox[{"Range", "[", - RowBox[{"0", ",", "5"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"ARule", "=", - RowBox[{"A", "\[Rule]", "ASquare"}]}], ";"}]}], "Input", + RowBox[{"0", ",", "5"}], "]"}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.8171238506222553`*^9, 3.817123981055841*^9}, { 3.817124021016416*^9, 3.8171240795775967`*^9}, {3.8171241841479683`*^9, 3.817124191819606*^9}, {3.81712424202855*^9, 3.8171243317581472`*^9}, { @@ -571,96 +555,2072 @@ Cell[BoxData[{ 3.81712575752703*^9, 3.817125884277041*^9}, {3.817126017709049*^9, 3.8171260243875713`*^9}, {3.817127284274146*^9, 3.817127295450204*^9}, 3.8172038927147207`*^9, 3.8172039519957237`*^9, 3.817211900243198*^9, { - 3.8172119490120792`*^9, 3.817211969444298*^9}}, + 3.8172119490120792`*^9, 3.817211969444298*^9}, {3.817216957447488*^9, + 3.817216958531187*^9}, {3.817268003369576*^9, 3.817268019019158*^9}, { + 3.817283853841984*^9, 3.81728388518631*^9}}, CellLabel-> - "In[658]:=",ExpressionUUID->"1f309ab1-20a0-46cc-93fe-35aed54ccb3d"], + "(WOPR) In[843]:=",ExpressionUUID->"1f309ab1-20a0-46cc-93fe-35aed54ccb3d"], -Cell[CellGroupData[{ +Cell[BoxData[ + RowBox[{ + RowBox[{"\[Theta]i", "=", "1"}], ";"}]], "Input", + CellChangeTimes->{{3.817283930216783*^9, 3.8172839337126226`*^9}}, + CellLabel-> + "(WOPR) In[853]:=",ExpressionUUID->"e7fef682-ee6e-4d26-962a-6946f28d5999"], Cell[BoxData[{ RowBox[{ - RowBox[{"testN", "=", "0"}], ";"}], "\[IndentingNewLine]", - RowBox[{"testEq1", "=", - RowBox[{"{", + RowBox[{"n1", "=", "2"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"eq1", "=", RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"eqLow", "[", "n1", "]"}], "[", "0", "]"}], ",", + RowBox[{ + RowBox[{"eqMid", "[", "n1", "]"}], "[", "0", "]"}], ",", + RowBox[{ + RowBox[{"eqHigh", "[", "n1", "]"}], "[", "1", "]"}], ",", + RowBox[{ + RowBox[{"eqLow", "[", "n1", "]"}], "[", "1", "]"}], ",", + RowBox[{ + RowBox[{"eqHigh", "[", "n1", "]"}], "[", "2", "]"}]}], "}"}], "//.", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"\[ScriptCapitalF]sol", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", "\[CapitalPhi]Rules", ",", + "GlRules", ",", "GhRules", ",", "DmetaRules", ",", + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}], ",", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n1", "]"}]}]}], "}"}]}], "]"}]}]}], + ";"}]}], "Input", + CellChangeTimes->CompressedData[" +1:eJwd031Qy3EcB/D1cPI8zjydrNYlqTxexilJaXasjoVITxuVp8plx0yb8hCV +h5gUoq7Hs26tG7pWSuhyVi3GVSaFapFdZWU5l/i9v3987vXH5/O5z+ePz4cl +TOBHW9NotB1UwKhTsUG3j5s2+2XFEZ3MLsFwPC2LeCzUPRxO2POIvL55Qihe +OzMW6p87iaBRTpdAmuBoFtz2k5cNmcWCdjjVMNoBs9qMrGzKuqgYD3hqo/4E +1NqlnYbptxgykhdnElcJE29DZYuGqMhblAsl78qJ6rI3BXBNE6sQfu1IN0F5 +T/MQ9JuTUauhNA0m1EHhbO8z1ZRFu24SOaXB5+FW5VnikVFJPpziX1sAuQyz +Gh7rHCFeaDuvhfs8VzfDaGnVEHQaZg/D8ZCkUcjn9lqgY8t06xrKwcp3dtCu +WCaAZeqzQniyKkf1lPJ3UmsF1A4oNFAkbq+G6/fLnGux/8U3xDAHEx8+C9AH +w2buNilMfaUgNlqUmbAnwPsGHOXTS2C9WlQK37deLYOJlYeV0IphP/KM0lDj +MQbH99ja1FPO8E8hTm55Qodhu9kMGGjo2AIH51/lwpPJ8mrIXtJKnF3p9eA5 +pe0Vt3x4RvytBdKlm3Rwc5Ux8AXmaO7tgLTyjEi40neIyH97IB4uWPeLyIni +nX6JPvomGUzqtUqHLMPBDNiltE1twH2E64jiGe4P4YRGq4DO7dbdHyl3DjgT +AzYc4nRSul0XboXM7KUNML8kmWiZeWfnJ8oSjoJIE6h2Q5PvU6Ln75wwWK9K +iYD385hHIUtlIDIcuOMw06PpLyxq22PThftw0RPti/9Ng5eNe6fDkE8h+2CT +VyTxQ9G/KBjWIxDAS2tFFbD5T6gaRi+UaOCfa0E10JwaZOnGP1Q9HIMqSQHr +M2XEcr4TrJBbM79Qfg7XOsL9EZnO8L1VDpEd+9gN6h7IV0CfQe8AWDaJx4GN +cWa/r5QNJqk/3H5xWSh0NdcStyvnSmHrhbsy+CLyxxUo+zvrOqnrU8mhpTH+ +FvT4tSgXDjzqJ+ZLmJE9lNWv84g8eko81CUeToDDgYUiOODZT/RRBl2GX/Ts +NOio+94JY7z4XTA5554Rnot26IeT1+S69CLvs9gduhp9V8LydfHE/3wzwOY= + + "], + CellLabel-> + "(WOPR) In[862]:=",ExpressionUUID->"2f5b927d-f164-4051-b8ca-bad9a5ba3b97"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"s1", "=", + RowBox[{"FindRoot", "[", + RowBox[{"eq1", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"{", + RowBox[{"\[Theta]c", ",", + RowBox[{"1", "+", + RowBox[{"RandomReal", "[", "]"}]}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[ScriptCapitalM]0", ",", + RowBox[{"RandomReal", "[", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[ScriptCapitalM]1", ",", + RowBox[{"RandomReal", "[", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"gC", "[", "1", "]"}], ",", + RowBox[{"RandomReal", "[", "]"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"gC", "[", "2", "]"}], ",", + RowBox[{"RandomReal", "[", "]"}]}], "}"}]}], "}"}], ",", + RowBox[{"MaxIterations", "\[Rule]", "1000"}]}], "]"}]}]], "Input", + CellChangeTimes->{{3.817127065230098*^9, 3.8171271351270227`*^9}, { + 3.817127221800994*^9, 3.8171272630331593`*^9}, 3.81712740736408*^9, { + 3.817127491557787*^9, 3.8171275000934143`*^9}, 3.8171275721198053`*^9, { + 3.8171278100273*^9, 3.817127849603622*^9}, {3.81712788866899*^9, + 3.817127911532996*^9}, {3.81719706565886*^9, 3.817197105498705*^9}, { + 3.817197893385504*^9, 3.81719790689716*^9}, {3.81719860001385*^9, + 3.8171986053976393`*^9}, {3.817198639295259*^9, 3.817198662766809*^9}, { + 3.817198876170909*^9, 3.817198908051071*^9}, {3.817198993133552*^9, + 3.8171991533442287`*^9}, {3.817199209928318*^9, 3.817199241960556*^9}, { + 3.817199495862*^9, 3.8171994994689503`*^9}, {3.8171995495740423`*^9, + 3.817199605718575*^9}, {3.817199652392643*^9, 3.817199715256566*^9}, { + 3.817199865131709*^9, 3.817199880715331*^9}, {3.817199936333564*^9, + 3.817199987661281*^9}, {3.817200026262958*^9, 3.8172000468302813`*^9}, { + 3.8172001570412397`*^9, 3.8172001598323307`*^9}, {3.817200236641964*^9, + 3.8172002385137587`*^9}, {3.8172002992189293`*^9, + 3.8172003208190928`*^9}, {3.817200415813776*^9, 3.817200416404771*^9}, { + 3.817204016980706*^9, 3.817204076853834*^9}, {3.8172041381029387`*^9, + 3.817204203727563*^9}, {3.817204234304641*^9, 3.817204255961961*^9}, { + 3.817204390931651*^9, 3.8172044426360817`*^9}, {3.817205022823312*^9, + 3.8172050577028513`*^9}, {3.817205106256721*^9, 3.817205106559868*^9}, { + 3.817209919633216*^9, 3.817209920608328*^9}, {3.817210044562058*^9, + 3.817210053786522*^9}, {3.817210136268099*^9, 3.8172101405721073`*^9}, { + 3.817210451098201*^9, 3.81721045318543*^9}, {3.817211412418923*^9, + 3.8172114542674837`*^9}, 3.817211713768137*^9, {3.817211774217906*^9, + 3.817211820329513*^9}, {3.817212210577387*^9, 3.817212210720683*^9}, + 3.817212495142112*^9, {3.817213148937108*^9, 3.817213155649081*^9}, { + 3.8172131921538963`*^9, 3.817213198714007*^9}, {3.8172140038972063`*^9, + 3.8172140040882683`*^9}, {3.817214050225759*^9, 3.817214064234343*^9}, + 3.81721453132269*^9, {3.8172191352175198`*^9, 3.81721914521805*^9}, { + 3.8172192016924553`*^9, 3.817219202057729*^9}, {3.81721981372462*^9, + 3.817219818492318*^9}, {3.8172203944673862`*^9, 3.817220425613224*^9}, { + 3.817220485354929*^9, 3.817220583732532*^9}, 3.81722086630956*^9, { + 3.817267355013483*^9, 3.817267405354693*^9}, {3.817269076393395*^9, + 3.817269087009036*^9}, {3.817269120326481*^9, 3.817269121269062*^9}, { + 3.817269939213081*^9, 3.8172699495241137`*^9}, {3.8172700164421453`*^9, + 3.817270029113059*^9}, {3.817271285570938*^9, 3.817271292845436*^9}, { + 3.817271338825984*^9, 3.817271347239892*^9}, {3.817271687882124*^9, + 3.817271688161475*^9}, {3.817272026928958*^9, 3.817272038746695*^9}, { + 3.817272732073227*^9, 3.817272740779784*^9}, {3.8172727722855988`*^9, + 3.817272774613453*^9}, {3.817275330702072*^9, 3.81727534054673*^9}, { + 3.817275373172369*^9, 3.81727537934888*^9}, {3.817275674947576*^9, + 3.8172756762795753`*^9}, {3.8172777393447733`*^9, 3.817277749634144*^9}, { + 3.8172778167894783`*^9, 3.817277820829632*^9}, {3.817278006315517*^9, + 3.8172780223674107`*^9}, {3.817280034270249*^9, 3.817280072111932*^9}, { + 3.8172802071691732`*^9, 3.817280223767226*^9}, {3.817280503291031*^9, + 3.817280510489274*^9}, {3.8172805452815933`*^9, 3.817280546902663*^9}, { + 3.817280635015347*^9, 3.817280643275325*^9}, {3.817280679286304*^9, + 3.817280679669477*^9}, {3.817280748769155*^9, 3.817280752344582*^9}, { + 3.8172821291550713`*^9, 3.8172821298656*^9}, {3.8172824240538273`*^9, + 3.8172824749055367`*^9}, {3.817282636494815*^9, 3.8172826427854652`*^9}, { + 3.817283320587726*^9, 3.817283328321372*^9}, {3.817283389745932*^9, + 3.817283391669229*^9}, {3.8172839405657682`*^9, 3.817283941194763*^9}}, + CellLabel-> + "(WOPR) In[864]:=",ExpressionUUID->"630fc9c9-229c-4372-8a16-eac1f2d98690"], + +Cell[BoxData[ + TemplateBox[{ + "FindRoot", "lstol", + "\"The line search decreased the step size to within tolerance specified \ +by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \ +decrease in the merit function. You may need more than \ +\\!\\(\\*RowBox[{\\\"MachinePrecision\\\"}]\\) digits of working precision to \ +meet these tolerances.\"", 2, 864, 557, 31479193581598412653, "WOPR"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.8172839055832853`*^9, 3.817283971485866*^9}}, + CellLabel-> + "During evaluation of (WOPR) \ +In[864]:=",ExpressionUUID->"20e41565-1936-405a-9504-d530fdcc8152"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"\[Theta]c", "\[Rule]", + RowBox[{"0.35782801821894805`", "\[VeryThinSpace]", "-", + RowBox[{"9.694348542908053`*^-16", " ", "\[ImaginaryI]"}]}]}], ",", + RowBox[{"\[ScriptCapitalM]0", "\[Rule]", + RowBox[{"0.047012285433126993`", "\[VeryThinSpace]", "-", + RowBox[{"1.1840438922058634`*^-15", " ", "\[ImaginaryI]"}]}]}], ",", + RowBox[{"\[ScriptCapitalM]1", "\[Rule]", + RowBox[{"0.8534070714613905`", "\[VeryThinSpace]", "-", + RowBox[{"1.3933688967862164`*^-15", " ", "\[ImaginaryI]"}]}]}], ",", + RowBox[{ + RowBox[{"gC", "[", "1", "]"}], "\[Rule]", RowBox[{ - RowBox[{"eqLow", "[", "testN", "]"}], "[", "1", "]"}], ",", - RowBox[{ - RowBox[{"eqHigh", "[", "testN", "]"}], "[", "1", "]"}], ",", + RowBox[{"-", "7.301447130143889`"}], "+", + RowBox[{"1.0883136380300957`*^-14", " ", "\[ImaginaryI]"}]}]}], ",", + RowBox[{ + RowBox[{"gC", "[", "2", "]"}], "\[Rule]", + RowBox[{"40.82128454804195`", "\[VeryThinSpace]", "+", + RowBox[{"1.5964707349774136`*^-16", " ", "\[ImaginaryI]"}]}]}]}], + "}"}]], "Output", + CellChangeTimes->{{3.817280643827911*^9, 3.817280758907701*^9}, { + 3.817282118654529*^9, 3.817282122045233*^9}, 3.817282223769466*^9, + 3.817282305603149*^9, {3.817282434403528*^9, 3.817282479844577*^9}, { + 3.817282643441534*^9, 3.817282683973117*^9}, {3.817282855874453*^9, + 3.817282863884409*^9}, {3.817283328636736*^9, 3.817283360690146*^9}, + 3.817283392486912*^9, {3.817283901559588*^9, 3.817283971572627*^9}}, + CellLabel-> + "(WOPR) Out[864]=",ExpressionUUID->"319eb113-9321-48fc-ad65-5700453ef613"] +}, Open ]], + +Cell[BoxData[ + RowBox[{ + RowBox[{"s11", "=", + RowBox[{ RowBox[{ - RowBox[{"eqMid", "[", "testN", "]"}], "[", "1", "]"}]}], - "}"}]}]}], "Input", + RowBox[{ + RowBox[{"#", "[", + RowBox[{"[", "1", "]"}], "]"}], "\[Rule]", + RowBox[{"Re", "[", + RowBox[{"#", "[", + RowBox[{"[", "2", "]"}], "]"}], "]"}]}], "&"}], "/@", "s1"}]}], + ";"}]], "Input", + CellChangeTimes->{{3.817282132727553*^9, 3.817282168778081*^9}}, + CellLabel-> + "(WOPR) In[758]:=",ExpressionUUID->"ea36fa2d-8c46-4383-be61-eff682dedb14"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"B", "//.", + RowBox[{"{", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n1", "]"}]}], "}"}]}], "/.", "s1"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}]], "Input", + CellChangeTimes->{{3.817282197466474*^9, 3.817282201883644*^9}, { + 3.817283506545725*^9, 3.817283511684161*^9}}, + CellLabel-> + "(WOPR) In[826]:=",ExpressionUUID->"5823df11-0739-494d-bf1b-44bf2a14cb2b"], + +Cell[BoxData["1.8046902735396873`"], "Output", + CellChangeTimes->{{3.817282202366857*^9, 3.8172822271920424`*^9}, + 3.8172824865696583`*^9, {3.817283507032922*^9, 3.817283512110911*^9}}, + CellLabel-> + "(WOPR) Out[826]=",ExpressionUUID->"cf69a3b6-a533-4dea-b33c-8d65e371fe08"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"GraphicsRow", "[", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}], "//.", + RowBox[{"{", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n1", "]"}]}], "}"}]}], "/.", "s1"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", + RowBox[{"-", "1.5"}], ",", "1.5"}], "}"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"g", "[", "n1", "]"}], "[", "\[Theta]", "]"}], "/.", + RowBox[{"{", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n1", "]"}]}], "}"}]}], "/.", "s1"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", + RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}]}], + "\[IndentingNewLine]", "}"}], "]"}]], "Input", CellChangeTimes->CompressedData[" -1:eJwdzltIk3EABfAvE1ZRDWlkkFQb6YMKqegMMvKSNWSKfMuiUnSfqFRewobO -6WZhBWqCtaaCUeIlYWMWg8Y2nZceEubmbIaO0VPaEBmb6VIfhvg//4fD7+E8 -nCPkGtiqKIZhEklgRXNNUd/TQE6uro4q2k6QwUinjlr7IKkMHsRJqdK/Zzmo -zDhdAz1zIgX0a/kqyMif6GDBP2k/vDAmX4UnfGEv1K34hf3E6YrqZNh83fMM -OnidLbDrvUBDe2UvNYVr7INGl5Wq/3T+A1QtT1BNhqVhmLYgHIF/vF0BqF1z -hmDumW67lRgINkxDLiar1UYcvfOOemtc1gFvG9upj8OqIXg8zz4MJYJtE6z9 -vUN9udLhgPfTU52wSm0JQdGWeAtG7rWFIStZ34WXXCejJolB8zIP8sY0cmgw -tXOwyTLwZYq43+b+Ch2beitUKFdt8OpDzWU7/r9aopZeDLBwJt8jg05JgRq+ -ntdTf+wae+FaftZbGGb5n+GsSTEOf7l7DLDR/MgIjwjidmaIvsnkPRi5G310 -lngq7wX1mOsbH5aWiAWw0Oe9CYOxPRLY9Fxrg+J4NzXGfO3jHDH6TeIQbFVu -uCBffWMR5lj8hd+xYx0shsxEdzm8kh2isj8r6+G5zP/UQ8dub5s= +1:eJxTTMoPSmViYGAQAWIQLfCjU+JgwRvHF+X/5UD0lte/lUB0toyUMog2vn9g +xhEg7XLs0nwQ3VEUFncUSJ96KRkPokNq3LLuAOkratPzQfRGE9daEH0rLwNM +619cNBFEF3Q+AdNfrhim3gXSq/5agWm5o/NyQLSP1AowLdQ0txxE68jvqQLR +M34ufwSiJZYWPwbRRUs1he8B6UO2a8D0ki8xRiCal+cfmF4VyboPRJ/a9OEw +iG53LjJ6CKT/GtSYgOgVzL7WIDpg23YwbdBywgtEfzt2yhtE9ynoxD4C0g0L +RJNB9Kx9Pf6PgXRZ3CkwfWPf6pcgWsNT8Q2IBgBMg7MM "], CellLabel-> - "In[788]:=",ExpressionUUID->"2f5b927d-f164-4051-b8ca-bad9a5ba3b97"], + "(WOPR) In[821]:=",ExpressionUUID->"2a7b9f00-b942-4f1e-89df-1d3081b1fc6a"], -Cell[BoxData["$Aborted"], "Output", - CellChangeTimes->{3.817214601000946*^9, 3.817214720325386*^9, - 3.817214981972458*^9}, +Cell[BoxData[ + GraphicsBox[{{}, {InsetBox[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwBsQFO/iFib1JlAgAAABoAAAACAAAAY6+Q7///978vtjyhSXr0vxT7GiY7 +/Pe/mB28sDp59L/ERqVcdvj3v2ihTAUpePS/Jt65yezw97/8+WOo/HX0v+oM +46PZ4fe/2eOiMHpx9L+bWG3aFN73v9R9sb9PcPS/TKT3EFDa979ySPMCIW/0 +v607DH7G0ve/IXkF97Vs9L9wajVYs8P3v+j47zWlZ/S/Iba/ju6/978tN6T8 +U2b0v9IBSsUpvPe/B752Tv1k9L80mV4yoLT3v0sS8Cs/YvS/98eHDI2l97+T +ONGWfVz0v34l2sBmh/e/t3LOQ91P9L8vcWT3oYP3v6x7rasuTvS/4LzuLd1/ +97+kdO9Wekz0v0JUA5tTePe/+l90yQBJ9L8Fgyx1QGn3v9X7SdHMQfS/jOB+ +KRpL979ws7OUezL0v5qbI5LNDve/mMZDvQYR9L+qMJmhtwr3v19ArsWmDvS/ +usUOsaEG978KhKvDQwz0v9rv+c91/va/n/U14XQH9L8aRNANHu72vz75XEG1 +/fO/m+x8iW7N9r9/7MbDuenzvyifvmXxr/a/5G7HJLl29b/5zf6G + "]], + LineBox[CompressedData[" +1:eJwBsQNO/CFib1JlAgAAADoAAAACAAAAhu1/MRuo9r+L6/cINNLzv5/fiG9R +Cfa/mvh+xp9n878W0FNPKRX1v62o6u6btfK/yFBTRMsl9L/8Sc0GVPzxv0gp +JXQjIvO/3eAmQTYr8b86rlymzy/yv9mAtlx+YvC/+opmEzIp8b9IBYHywwjv +v/X3pJVeJ/C/FSSbBFxN7b/EIpI0vm3uv9K3JteFquu/OwV/sytk7L/+22g5 +rd/pv5RANzdBfeq/yclLYqgv6L9jnFjl6p/ov5rZaq8/hea/z6ceCQGa5r8x +QOgV2bPkvx4MsDG/tuS/qOhk0GT/4r8KIObP6ariv73Z9BdCJOG/bFSFmKio +4L8z+SH/HqDev2DD38sekt2/xSD1sC40278iPf5RxYHZv5bs6qOze9e/qWiz +4bu21b8lxhcsxQDUv2rzsVyLmtG/lgJMl6450L8ufgVZBiPLvxplhLWsBcm/ +E3nUC5abw7/SxrytuxXCv9dkbCqv47a/HywUQqsdtb93eiqOyZWev0jo4uPJ +N5y/qo84QKQwnT/Thcu1Su6aP45pgdZggrc/UOAWIwmwtT8N9Ew7rFHDP9sL +UeGZ0cE/4HTGNHaEyz9kTB4OaV/JP+65TcJ3yNE/ipKeSOxj0D+mh6FgZInV +P90MgSUh19M/JfarE3ib2T8mHeSuQZPXP96yH707aN0/JU4/G+EN2z9Vl+CI +65DgPxAX9FPSdN4/nqWMvUyW4j9iXNauhRHhPwRbbe0FeeQ/3DrzCoPH4j/O +YKmnUoTmPwX2VjZPoOQ/tQ0aXfds6D89y04+lVfmPyaaIegHTOo/MzNKXM8D +6D/6doT9q1PsPyB4U5YX0ek/6/obDqg47j/tv2I6B3zrP6Bnh9QbI/A/opEZ +4PpF7T+QQcyMGSXxP8gzWQDGAe8/Dm+rQsMV8j9fZeoqqEzwP75EuL22GvM/ +oEcmMyIl8T/9bV82Vg70P1MUrgy+6fE/AQfSmSv99D9q3MricaPyPzZIcsJK +APY/7GSWm05h8z+JMgvvEQT2P0ZLuD/0Y/M/3BykG9kH9j/nb8vQmGbzP4Lx +1XRnD/Y/mp6dr95r8z/OmjknhB72P8pNjRZddvM/Z+0AjL089j/ESR4ZIovz +P5iSj1UwefY/mtr1rbaz8z/rfCiC93z2P8zLkRg0tvM/PmfBrr6A9j9M5Q0F +sLjzP+Q78wdNiPY/2rKAUaO98z8w5Va6aZf2P8fhpzN3x/M/Oc7ZA7Kq9j9y +Bcts29PzP7Wm8Fo= + "]], LineBox[CompressedData[" +1:eJwBAQL+/SFib1JlAgAAAB8AAAACAAAA238YOIiy9j9LJRfu19jzP/rcrOgV +8vY/DdZOOxcA9D9EbMiQTfb2P1aMELucAvQ/jfvjOIX69j+OrklNHwX0PyAa +G4n0Avc/x7cFbBsK9D9HV4kp0xP3P9Xd/73tE/Q/lNFlapA19z+4Gqa16Cb0 +P95ggRLIOfc//WYWNTYp9D8n8Jy6/z33P9Gu71B/K/Q/ug7UCm9G9z9WyuXF +AzD0P+FLQqtNV/c/o/EUG9E49D8uxh7sCnn3P051cEBWSfQ/eFU6lEJ99z8P +RvKNSUv0P8HkVTx6gfc/Vu0r2DVN9D9UA42M6Yn3P6zIzO74UPQ/e0D7LMia +9z8c3f3XJlj0P8TPFtX/nvc/JCM2p99Z9D8OXzJ9N6P3P/Hq4viQW/Q/on1p +zaar9z93r08+3V70P8i6122FvPc/FhqUGR5l9D8SSvMVvcD3P2+DXaGcZvQ/ +XNkOvvTE9z+FAHVbFGj0P+/3RQ5kzfc/QAPwEfBq9D8WNbSuQt73P7ZDaAVe +cPQ/YMTPVnri9z/4PKN+q3H0P6lT6/6x5vc/lC7B2fNy9D88ciJPIe/3PzIS +rkJ2dfQ/hgE+91jz9z8Kxe7bsHb0P9CQWZ+Q9/c/3B+Abed39D8aIHVHyPv3 +P9qlAUEaefQ/Y6+Q7///9z8wtjyhSXr0P0YaBhk= + "]]}, + Annotation[#, "Charting`Private`Tag$906403#1"]& ], {}}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->{{3.4698486328124716`, 0.6280517578123863}, {0.5, 0.5}}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{-1.5, 1.5}, {-1.3414851605111204`, 1.2798553751303068`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}], {160.85922755461604, -97.08986231664207}, + ImageScaled[{0.5, 0.5}], {301.7078610521121, 184.93307107931824}], + InsetBox[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwVl3c8Vf8fx5uKQmlIkZUImaVovEuJEkWFiKSshsjKCEmSndGg7FV22euN +kD2uI5t7rXzteV2X8ru/f855PB/n/fmcc16v1/tzPoff6Kmm8YZ169Z5MA7/ +P3slFG7vfb2KRVdlaEIac3Cl8nfNpyeraCyvcXD65SzwlD7dfYJ7FauSPRva +WaagnuO4jQLnKirxrcf0sklwNKa3nuFYRbk3j2U4HCbhN8vr4ItbV1HgjJe/ +9X8TEHgrjENzYQX9PvxuCWoeh43jFTue1K9g1KByXHjuf/D9jLel5a8VdCi+ +oF5m9x8YBl5rti5fwbWOcT9juf+g6HhXgGPeCurrVk4czh0FO7dpNq+4FRT6 +YX/YoeQP/LdnP2us8wo6ThxtKh4cho9m/Y8T7Bn1/7VR7L8Nw6XCuPqvz1ZQ +7GaZVrzVMMQYSvpmmK2glxTnD+31w3An+eK2kpsr+DHjisWWw0PQdO4pc6f4 +Cq6aP53992oAsh9VbGbvpWN3lTZf7IF+OMlnIZ3QTsfJT790lwv7oIDg1D9D +ouNP1bM8kvp9UHrmUdajX3Sc04oVl43phVp2jvvVmXQ8bCj23FquB8g/7pa+ +9KTjXZNZH2/PTjAyY57Y95KOM+kjKsLHOmGY+wdnhhMdO7k8+HwHOmDsNdPT +Pks6jptwuSWd74BF7VSeU3p0dNFav34zczuwrNIdFyTp+Gcyx2l/IQF+GXEJ +PqJ0bP/jHxFsQ8AOY3WSgBAdP0jd5UEJAvY0Rh/R2E/HfVkSNOH4VuCLUulI +3UTHUdEfq9xhJDh+8f1x085l5BV6cO55bDMY+krPdLovI4vD2fkarVpwzAry +bHixjElX3g4o0GogtGeeu+z5MmbvNBOIDKuBWvGcy0kWyxjFunhLYaAaZBsU +Yu10l1Giy/vWW+dfwMR2UWuXzDIWmg3xrnVXAJ9c/ATT0WXMfftTu9mnAk4Z +ML2iCy/jV++OweenK8AyrTqdwrOM7M8lL16O+gmd6mrMGczLGG5nkJxnVQ4p +AVpFVyk05HI+vd1YoRSqcnM1z/XQ8PkG2u2GSQRK/77/ZNtpyMZl6KpqhrBX +qnvPgQYanovbuivlXgm4Nt99+l8eDXcKmHolGReB5k5zAc9AGk4Ks09PpOfB +Y/naPAcfBteLMclCHry5J3btiScNBUvHzlQ05UJR5qTTTWcatg8Nxxct5ICQ +5rM2ATMaZlX+u5yjlg20ICcvBBq6c2iXGcp/hz/cZWOXFGg42rl74BKRCb8T +mNQaj9Gw2WuVycUyE34UvNvZe4SG0sxJW0gpGWAxkBhG30XDtD8JSubmaTAo +TaQcH11CpUzOT4f+JgGpkIu9eGAJk2rFUzbrJkGp0l2ri71LuH3stLdAfiJE +3B47foO0hL6DF82WXiSAzst1aFm0hKeFKWvG/HHQ2Czekhy4hOrsaxpPQyKh +SPeZrKzPEla+fRsoEBgByUO5oQWvl7ArdktTcMAX8KIp6tY4LqHnvYh7Hp/C +4QLf7cGRB0tYd5By06LjA8h8i1CyuLuEaaSHfpSZ98B3bChx8fYSphyqKiza +/h7+KT99vOka43qU37mX6iGQ9/T1Ir/8El4VvR4usBwIicu12l9ll/AdLTk/ +SywQ3r/aUSAlsYQu06elCsr9wfpDuAsILqGeK4n2LtkHJDBziz7rEsa01WUv +/XwNsWx9XB8pVDQNhCP9f20hSA+2yPdQcb/xOOf1N9bgnhS10PmbijtmspyN +9luBkeL9pgP1VEz4MapSm28GAnajHpE5VHzALBS+1eUKcPy8/OxcJhUvrBus ++XFEBjbsSL5LSaZibU6Q3iZeKRz4+kRBMJqKo+SOB31VNzGmd246wYeKbTej +7kwYPMQg0Zu9yp5UZKr8dMVazgLd7bNrR92ouI3WkaC3ZolGO5/Hi9pRUarI +LFQ20wb5lf7qphlSUS3krbRViRNGpWypyj5OxceFJBbpqx4YuGz2Q0uKinUO +oxe7t71Gt0u1UUuiVNx+suLAp+rXaEj2dZLno2LEbn7O1/JvkHc3h3QxCxUP +quwa9qe/xQgn7s8V/YsYYH/5afimAPSvfvHWuGsR/7WfivIPD0CXPf12TG2L +eGqv9IjkvkA0SI/WUKldxJhF57jhr4HIM3h4S33WIvaniiy9LnuHn69IP2t9 +u4iXi8xU31QF46FtV2qbPRZROV6F7LkWjMl1RgKNrouYMT3PNnIiBAuuhpCq +bRdxevTzRiIhBDvVl2RK7i3i1rzuGcqLUNx7o3g+SX4Rt/lu1lPe/QED9C7b +uvy3gOOfZFeDVz/hXm6jBqehBbyTf51325EwjOhxFHLoX8DlgShrnVthmKaf +0mbdtoCdnc1W7qlhWH+XXc68bAHnDVgtHt0Jx60P2qg3Pi3gzPYuc7ncz+j+ ++N7zI5cX8Dl/pYCBTST2+Rt8LriwgCZeQr9Y4iNRIVOvVPXsAkqPlWlOtUXi +3OKtrRayCxhSFzwjwx2F91yvfPzOs4DsFWfey7pF4bkg2bxTc/O4cN512eda +NH7Okuqpn5jHTUr5ceceRiPt99F1Bn/msepoqdLh19GYcUBExa1nHve175d9 +WxiNvPHcHRVV8+hs7azdKBqD/3I309TC53GjqQSo7Y5F3a4N3P2h8zif+9/T +jzKxmLO6BpaB8/i5gWdYSCMWLc7T3wS9nsdyhxbjbQGx2Fs7xdn+dB7djY3M +9rPFYVFv+wnDi/NIsxnUY94fj04bv9k/m5zD42XJ5tYWiWjxyYDJcHQOsc9V +4L/gRDSS3BWqNjiH/rulx1PyE/GKnvN3kc45PHq/T4OPKQn3/VCf7KuYw0SN +XTZlMUmYZTRvpPp5Dk8sWUmfGf+KU2Wn1Q+pMuobXJ0EClNwQHu2Z+elOayr +GdtDH0vBtsn4R2vn5tD9wYKHyIFULOJif9slN4fvmeNMvZ1T0ceK8jNQYA6r +urReGF9IQxF+T/m/y7PIL/zvpi8lHe+5NR36nTSLnLTQjv/SM1GrM/Jsb+ws +hrpppRbVZ+IVGUudoYhZLJEPd8v/LxOPDe3wnQuZxQNKFXNSh77jVhXNebaX +s2hkY+azJ/w7prG3lSnfnkWFDYWXEwN/4EpEl0E+8yzeOWmlcissG0OLhz9+ +fjiDPezFE1S+AjR4HuZywngGPQ0Tvvy8UoAistcekO7O4LsJZY48mwIsSMqT +3HprBidE/wBnTQH2BftUWcMMsuaO6iRaF6LwQ+mFK7tn8KAsf0dLUxE+O0qP +mHOaxkpFmSXVGMSCfpHtKQJTuDQa37ihqRwFd5xTvBkxjnNbnJYj8qvxu6jX +w4HBUawRuzY1+q8ReVsM88U6R7G/PfyA6N4m9LWX32rbOIpOsrkGd442oXHF +WPyW/FHcGrdiHKzXhPsM1Cji/qNoue/DqUu5TfjiHYeO/clR/LstILf2eDOq +0D4rbff7gxcGd/tcHmzG7AjbkFvuf5CZWBhpmGxGASX1wQj7P0hV7BpRpjXj +yrs1N2mjP2iZNuvAzdqCaWJGRVon/qAqW+0rJbkW3H1XWDaaMoKWz9J3e3i2 +YH9lJp+c3AhGKIo6HDxIQucbyxdPio/gH2v9xneHSbiPcs5cQWAEF+t825cl +SHh9tSnzLNsIDu0qqEwEEpbKTCkqjwzjE+rvGw6GJIyKFDXWeT+MWztSXg5H +kvD00WdvdX2H8cCUTtbnRBJ2FOSn3nEfRq9v09HK6STc8VuFamgxjIncE1bP +S0j4crvpG/NLwzg0bKB0sYeERg6xXx2pQ/j5w3Wq/Z5W/Mc03uA8wWB/Jup9 +7lYMC5GZcxkYwv1Fs9WKgq1ISi9TeNU4hBmXFjM6pFrxwkh/nU/CEIoFRDE/ +UG3FQze4pz5rDWGOVvT+yRetWEq+zxF5dQjDLbYurr1qxTsWyXLRikPYr3Ov +YZN3K4a8VXCNlxhCNsXjSkOhrbipVGdHGtMQ3r5WPkdLacVh8VAZzBnEC4tj +gRYdrSjqEj81mjyIhxNdJln6WtGiKfsbR/QgGj/UGQsdbEWa1W8BE59BZH4T +5G0/1YosuZy7WA0HsWWXXKvpRgKvbRVpkrs1iOljqpH2WwkMuX3Sx/DKINp7 +TH6yZSWQZ1VnY9axQRxt2Dl0ipNAqfNh87rMgygVTNKcOUKgbdC3dI9/A1gj +b81lKUFgwWDBo7T5AdxjvjmuV4bAC57dg+v7BvBeYFvLy1MEatVxE0nfB/C2 +9wOpSVUCnW5FZlH1BlB77ayekjmBpQnplnwaAyhvkB4R/pjATTQUv3JpAA+s +yxrpe0qgfxg57ovUAL44naojbkdgVD9/6MXNA5gYqP6R8pLAYSkZDQs6Bd1q +XFsjPAgUdVdk/ThNwd7n2SUqbwj8cej+6/FOCirX8r0w8iWwyjzONiiNgi7q +sl4poQRuK8ySLoql4MbaWanGDwRe3145OfyRgquRyad7PhHYmTZsLP+KguGl +9TrFXwg8uI7Kf/85Bb806WsHRhJopMHU5/uEwujLM6HXogmcmD+sRdamoKiv +X0pQHEM/pRMcLGoUzNx5wHZvAkO/98qNsooUfCUpq+eZyNDvj7a3/gkK8lzK +1BpIIvDfSbNLb8QpyHc74K7oN4ae3s83ZPJTMGrPyBODZAK9ur1KuvZS8FDH +hINLCoE7Xb7KSaynYJnVy8fuaQR65ohU71giY02EWI52OoH0qcTb8xNk5OdJ +tj+QQaCFsPB42wAZMwUPJzcweOBugnNeBxk/qHZdschk+PVRiC28kYyhwdwa +fxlc2xwX+aKCjCr3b+c5fifwLPMhacMCMmr773YaYfD387HlihlktNP+L/jc +DwIPOwrcFEogo5a1918vBod9jx7e8pmM97aVf0cGs43z2Y+9I6NtqVXaEIPd +BaO2Nrwho35q0PgSg6l6vGHpL8ioYX7ceJnBD0MixIKsySjH4r73Pwb31fMU +25iTseNwHr2KwZqbv6hr3yXjQocEazCDq85wk+VvkVESb15WY7CCXbgVtyoZ +p/6lf1tkPG9a2v6Na+fIuOlSn7gvgwX+fAqhyJHxZn1I3Q4Gv+flOlwhTsZL +t6LcXzHen0XnY26CABkPSQ+rDTH0cgnkvPx2Hxl1z949Isvg+er3XY/YGHqN +8e+0ZOhtun7vY/VNZKyT1VkfzvAjx1p05d5CP3J8vUj9kUpgxJDIQWFyP7o9 +Oj9RwPDP85bw+Ym6fiyUKO1PZ/hrUSX0IDO3H0PkrzQEMfzXOnHojV1sPz43 +ccu8/5VAYS7+hnVOjHrrsetNjDzt8OadqTTpR8nJts0P4wmk0Xl2+Wj2I6Wg +J24ulsDqnv2394j246WBtNCGKAIz1Licu/b0Y77NFIWXkd+PJZyRkev7cX+9 +NKshI99mUbuHj3T24aJXOvUrI//Xd+7aOl3Rh075+zN+MPrjpPtOsayMPrx0 +YfxsMqN/mB+wWZ316sMAQX7i/jsCvwlv/at5og/Z91bH0xn9F/SRiW+fYB9O +7I8mPXtNoCPz5gu9bH1oycFa1eFO4JXx9W9NR3qRM2qe/uQFgeNpK7udQ3vR +Rs3esdiKQIKXfuL8y14cvI15sRYEFgXSdJme9GKPfVKW/SMCfZ8tRgVe7MXH +STEDow8IFJebFo+f78FnMieYZ7QINJFwdc3v7cG1k1aVC5oERh5mJzX86sGP +pXmsQ+oEcnBK2lPDe/BnDSq6XyJwacmiTPliD1IbycrFxxj9O/Nv1x2JHvR6 +1/F4rxQjj6P+Jpb7evDuMeTXFSOwpyNt26eJbtTW/AbR/ASW50/dGgvpRmWK +mJUEYz1dzXRJ+ufSjUaBU/I9Wwg8/o1thcO8G7+9c42w2UBgUphE1Kkz3Xgt +UOeC8VIr+jlZjPkOd2Gm+ejpS+RW1Dkz5SIp14UGR/jvMqe1YtBxl5YLfF3o +e38fr1FiK9YdZTukw9KF9Uk63+KjWvHsQYkat75OvELtlpkMakXBtSe7SJ6d +eLOr8ZWLXStOlU4m2rR34JlvY5fT5Fvx1cXJ5vzn7di7y6XVPIOE5SoT147d +b8c3843PNBjf03Vq441pau3Yz7NFSyiC8f2+9V99rEA7Nog0bw7yIaGdyXC1 +X/1vvKgpS3Y1JqGZV2/pPb7fOEj96ZG1h4RX6xsymKsJLPExkETTFvRurpf0 +YPTZV9ekWLjTgtVEXdq/zwRKZq93Tr3egkq9NSnzDN8tzItfaci34NmpyqTe +AwRm1g7xFTG3oNSOkqjMp614tSDeUiixGffcTAu8zUlC88tirSe/NuH3wz4F +ShtJaHtZZPBjQBNeXzYdkp5uQTywINtt24TeEfwnWX614Nbr4rNMik34bzSk +v8CuBZUPCWr+7WjEkRdOEty/m7GbmO1zWN+IFtfefSw+0oQkrPbTPVOP36mV +7NWHarFDnj3PxKQa/b/FlJ9drsHh+rNsRheq8ZGBq212Qw1u/FEmpMhXjYeq +TnbH2NVgKLldOrPzF74PTU54UV2Niju6FtVVf6HjsXdnZB//wvWCnHeTj1Sh +4rM7jyJ+VOBO1kjNdcRPjO8e9vvPowT5br0r9W8uRn0N7qzu+3GYVrtqe10r +DvNZnNrKbWPhiPwG11XzWDg+sP7gSx0EblLMlERoCUgUaM9KfUVwdPkmutBf +AoeDUivIywiFRVuMw0URtkWnHI9SK4WuiofZ/oiwel2nZ22qFOafvn2+zqYU +ejPSj6B0ObBKHvz98FMZRFoaVJzJrQArutE9sfafIDhTuKxQXgONpoeG6Hur +wbnhgsfCZA0k3r3VqaJQDb+/1bGlcdWCeNZNfSf9avA27hbkt6qFIW8je7/Y +apjpoqtt4asDowXXn/ckaqCkUj6m9UU9eLuY5X09Wwu64blXHss3gYJY/+Fc +lXrIeg5tQsZNMHzZYu81s3pg0/p1tz+wCa4q17H+elMPZTvabTRHm4CuzOqv +VVUPuy84Xfus2gwDvnB85nwDOOWFObjTm4HG/j1nVqYRLsd2NqjrkODajHnF +jZUmmHmdZlL5hARBrk5tnNua4aPZq7VTr0hQTCi8sdnXDKNHj0ofSSPBl02L +s8syzeCV5xaycVMrFISJOcuaNkN1g7BeXnordEYXPNWqbwZlmu0o/5Y20FbY +fIj5bQtMdV15+ZG7DQI8jhudCGmB98W8+9ll2sDTB8Y1I1tgxL1GdfVOG9Rk +jmdrZLeAJytP+u/vbZA863vgCbkFqgQqbH0MfkOwP+sEhywJlNQ4Ni5mt8P+ +I0qH+mpI4H+PeXa5ph2KWoybWEkk6LBd1/+vtx0OaA5cFu8iwcOIqYKtTB3w +6+vpD8fHGPXTtc+4tTqg3eLQOgfmVuh492rgArUDcrKaskoutgJ/gmOzCksn +zOhvo3aotsLDAqsStYOdkIJa+RTNVlgduBumfakTlFNTsksMGfXHTms+et8J +z7un9yY4Mep/L5QFyXVBhwFNXTitFX6Mjad/uNIFLccMZ4SzGOP/DXz5bNAF +j+83de8taAV/4RaHBM8uSPLKfo2VjPrnqdIFv7sgK2Jd76keRv1+k2iKXTfk +PL34uW8zAUqS+gEj3gx+8Q3LWQjwv3DzxXhEN9x/9osllJ0A/seKtxeruqHE +I5hjExcBl4oP7mTm7AG96stV28QICLjb7iaV2wMjBl8XS1UJ8Jw4DSP1PVBV +Ykdpv0aAi0PM3/CBHrDLNinvvEGARfATxy1svTBLFN6P0CNA/ddGm74HveB9 +7q6Y2EPG/DfNZUIce4Hnll/VpycEnKU0zlwO7AWD1IO685YESKx8epJd2AuP +VG5bmNoTwCYpZerL0QenuF2f3HhFAFNRqJCiSB+crT07yeVJwD+VlcGlM33w +6KSpZZ0XAVNGVYb3zftAYn+l17QfASPTYrxcrn3APSMtYBRIQJ/zu97GkD4o +vGb3C4MIaHx/R1ehtA9YfqvC6Q8EVAmW75tp64PXwmycep8IKMkQbo8f74MG +PZbNxuEEpNXO3djJ2Q/JDg8lFSIJSNDW4fgl3g95/stWm6MJiBgqbnZW7Ie4 +/n3thTEMvf95qY0+6QdP+5y9Y/EM/XymtkW86gcOVl3avUSGfvtu1t741A92 +zh0slUkE2MXnezGn90NXOIfmrm8MPWV4lbGiH5692Uq6mkyACXpstu3qh7PR +nf5WKQQYXB37KTrTDzmBFb4vUwlInhA+P7OBDEcVhZud0wgQ/qHLV8dKhj0j +Lvr30wmIdfBbi99HBs4ZU/njGQTwnivtcxMkw8qeCLM5BoczzRfrSZDhgfrq +dFgmAZwNQl/k5Mmg3eRMSHwnIDhYx3nnRTJEb5c/kMZgdl0fvQl1MmzPMa/Z +94MAH74ShV+3yXA722TIgsFb/sxwxTwgA694olUGg1+lCi47PyWDnVWZXS+D +16y1OrQdyWDG/mh5kcFOCm9zZV6T4XLp8zXG/haW1hW9Zw0kQ9WjPn/G/has +f03ZjoaRYUQwPbWCwdN+/Ld+xpOBsYE38mHwo5s3j0VkkIG13OH7GQb/2f9m +l0MhGYJeHo/vZjzvfUr+3I0qMqgv958zZnB/4kSLRAsZPLqEfbsY76tnwZvJ +3EOGgLEuv1MMbj+mGTg0Qgbff8NXvRj63FjxeIqzZKij3mwuZejZVJarHrZK +hgMFmrzDDL1VvcaO2m6hwJjUkfOLDD9+qfOwXuegAPe582dmGX7tlqDsfcZN +gfcSPXcmGH4assbzhRymwNVtTfQ2ht/0OvFjHQoU+MO6u86GkYdLyTNn6Bcp +4PvxKosoIy/B3lnK3NcooEr6Smlg5En88mk9w/sUsKmJsqYw8vZcZJ2x+xMK +JCj0nNJg5LFyS4VFnD0F+vJcc9MZeTWoUnUf9aHAFb4Lwyc/ExB4Qe+rZRYF +Hgh+H3YOIaBHgPdHUAkFZlfddt1n9MeRDYNFWdUUOOrxRfIko3/KSx8203oo +EOEwrpHuQ8DiGcclt80DcNOT+yDpJQGKPGfXx7IPwLPVpc9Sroz8r67fVsk1 +ADs5W664OBMgUvj2ILPEADi4vr31x44A3ZOflN5pDYC+xbP9s4z1IYFT/9oP +wwF4ZLG8sdaUgHkq3+22hwMQIjBuFPSAAN/spMdcrgPguJcaP6tPAMrkBUcn +DoBH8ZzyOGM9OnS0nZJJG4Bc/Z+urVIEWG4PH2/dMAg3GhvOJ4kTUDxusLi4 +fRBM23ZzPhEhQOvbyFYF/kEQMe8S+sVLgJcwVbL88iA4bo7dUMJKwCT/HhdS +2CBcL2e3KR1phZNO0VZlcYOwWcgyMZvSCu7EUeOMtEFwO4Tynxnr7943l676 +lw+CgIZG0hlSK5ydsN9/ZWwQKI/TJ0lFrRCQ05VTJj8EE5L5dzQCWkFaNWo6 +o2MIWh6t65w/0grOceKDkQND8HG+9oS4YCtU/c377T8xBK6ez15pc7eCbkZL +8eN1w3DRaZnzDRvj/ns2+oqIDMPLUPk81TkStPYbi0TZD4PeRWMB+1wS2NqI +3QvYOwJZZt+Ci06SYC/LdJEW/wh8/zvTnidJgrzI7/sOio/Aa82LA4mHSbBa +K9+ccn4EgreWfjLYTQJ3fhWofTwCtm0hDVLTLeDf+IBn888R4DFl1XOMaYEE +kYhOx6d/QEOnoF1uXQu09+zQNKkehf3inketFZrA0OH0ny1Xx6F8UmEm3LkG +foqd8P65eQpgrkbk1M6fYCB5M3aWfQqS77gFUpbLgSZjVcS7fwo2rQWYBQ6U +g7hC8pSTxBRsaA1g3ppVDiEqvDeOaU9ByqqS6X3tcjAx3sIdnzQFd+//GpuI +LIOtke2pnqrTMJXN/kNLvhQOMxeNxqnMAMtFyzvZooUw90viYYzaDBxUMxi7 +vLEQSjyjxyM1Z6BSf95jrbsAtDa9mQq7MwNOhZtyGv0K4PWaxkKg5QxoPTrw +a8N8Pgwt/llz/jgDUhYsLFM/8yBmYBfnrdEZSBKhWXG9zAGLaM+PmpOM+QeE +Wo4a5ICC4TLX9bkZEFRYmTc7lQOk3j5u1dUZUIoW3XuTmg3rO78KnN8xC0Ld +YvHrLbLBsAkkjp6chQ3ncmJ+P8gCnqJHSpu9ZuHxJptTYlbfYTcXnW7hNwue +fo9EG65/h+12XhkdQbNgIpr4IUrqO6xKxh9I+TILyqbX5XpmMqErtm9W88cs +yCndvZJknQnvfTQiovpmwWsg0yTCPQP8R/tvsAzNwnCnd7CBcQa8VrJgtvlv +FkRT2oeuq2SAzZq3jfLCLDhUPqHWsWWApnXFlSnmOVjyZTp94nQ6sOmdWDp1 +fA4upcm/lPNNBaa8ypR4hTnIDdzxk6qdCn933zRiPzcHm+5fOLv/UCpMNFo2 +DFyZg7OXhy54F6dAreK32LeGc8ClaJLKvJgMb0R5rrf7zMH+oIKDWnbfYB19 +w9dnA3Pw1cblK0dpIhgOds67/mHc/7LfuGlYIpTWZ5z1m5gDMeX3mSy2ieAW +aUAkUudgl8km7hNiibB2sWCth2Uezis8EeANT4B/AVZayrLzYOBn6VfmFQ8G +DirRN0/OA+mvzodc03goMeKduHdmHh6Iu6nNX4oHl+MNL52V5+HhkyoLeaZ4 ++NslkpqpNw/RT8fLpt/EwaoQeSO3xzz8IcozbT8wftnYc9WPvJ0HwaeuwU6O +sVBE8/sk5z8Phz8SiUX6seBcd0pS4+M8lF7SNZs8FAsrlh90PVMY84UPJ85n +xwC9UD1zhpiH+WcLL3oo0bCkUWxQKbQAKr+3/63TjQL3zvTes2IL0KgNpuHn +o4DtXsydPKkFmOqTV/UTiYLDlm90k08tAM8FV7P4yUi46a+h9U5jASy+3h2w +ORIJGbXDavovFsDNbzxL8esXML/AdmaRWIAJlydZHZlhsFC7rsiiawHU5/6Y +/nwZBm6a8wqj/QtQ9Fe++ZVGGHy813Gye2wBcgY5xW1nPkGVa8yxsnWLMBh3 +MTVW7BMIFMmJ+4kvwge167U6wR8g7cKRZCaZRVBm2jbz3uADyNcdEHU7sQg3 +6Jqv7h/5ANe71olYKy7Cw6d970OK34MLrVbwts4irHW/ManvD4XuY3cPCHks +gvkmvcwDW0LAZPk4++u3i9D8aDBrS20wzBRv3zjsvwh3yjgD5HyDYZNywVjc +p0UQsHWNVWYLBonbewoOpS/CR5kdNVFbg8DtRZ3Ooa5FWFfy5F9STACwKMZc +9ehfhBMdKRy52wIglMnh3NDQIiRYJrB/eOYP3wIOi8RNL8IlyT3en+X9oDX6 +5ZLgZioc4SJemyR7w+GqE+8FpajAeS4+boLjNWR4s3m/Ok6FxsGtPWdveIDC +teEXgwpU0P22N/d94Cu41hFkHKtEhaqHiZV8G9zh+djkMUE9Kpw3PbV2zOUF +bEivEHllSIW/Xqw+R+udwM86nHvQmAp3+gd/aOxyhJhVlU2xllQQJG1j/+pr +B3Vsca0CnlR4fNy3seC6BWi1Ov5y96HCUe3CiJXnD4H8QaNwIJAKG8i3dPPf +mcAC31pMTDgV1DLpto+F9eGgrO4zgUwqeHrtzCg3k0ZL7R07BXqooO+c8aHX +2RqNkiTDhChUiBrTWfhXbYu3ltUFj4xQYR9+eBvJ8xwVwv2OS81QwfL2ytsG +sjNu7mfRPbtpCZwjvznSzF5hmMnmWF3xJWjYldirdNoffXMPiRtIL0GNY/G/ +DakB6Lr1YvY9uSWg/Vw5YfMuEB98c/9ldm4JupbNmo6xB6Hk1Nq43c0lMH5t +v7AiGooVtvRjwc5LcH8wxjdkLBxzqrhK3r9cguuiS4MjTZ/xK6e8cpjnEhic +FQ5Ry/uC/vn2t6MDl+CGaXq+Q1Ak3v678CI9bgmKxP8uf8mJximP6aq6+iXg +8Rq6vWkgHiltbNebWpZA+dLtO9pPE5A4LNFJ+r0E/AVOg47/EjC/+vF4J3kJ +rIGgKQkkocf2MfbRhSXIkXDe8NTtG3KFDOls4qHB1Iv+2JPh6XjyFe9eGwEa +bKvUf3lSLAO1num2DgrT4KSnwOld3hkYdL1Z7acMDZ7sk5F+p5qJ21mLFN1V +aLCdw1qOpe87/nsdLL7OhgZHNcU+d17IQW7bxv+eOtDg2nS3z1hODp56wJzY +70KDMeXUrKdiufhc0ZUf39Lg3+cvdUP78nD238O9LpE02CzbRundXIBD9orr +VmtpcP6Pw7FTYiW4wfRF8aNmGnxZv2p8PrcE+bTyHLvbaCA0Wh1AvYiof0xi +sYDMGH+ZK6xEphR/z3CNOVBpoPPng1GWfhnWmM+2LvEvQ15Y0yuu/p84qiP+ +zlR4GZzfvtv1UrYCmVRM1dvFl4Gn0UqM7FWBiod7q3NOLMMjvzBtP7lKLBqo +LrZVWwada6mrfV+qME0vKnH++TIc2caafyGiBo+1C9KZXJbBbWG6yny1Bgs1 +E6/uf7UMC5d4f7/Wq8Xqy2mz5/yWYURht1Eidx0Onig65R+9DBw/WIIrvtXj +vt0dTSK1y6DtnD69k9aEEQF6AqeblsGyS/rDGdlmFNrWb3ONWAaV03YBqw+b +UWbDCJdd3zL8qfd6y9PTjGoz8/d/zi3DRuPO3i2VLehez07TP0CHwFa/yvvf +W3GrSvAVKz46vOhpV8mba8WAn3u/eAjR4cbWp8mJsgR+LuBRTJakw9TGSl29 +XAJzk8R8aRfocPSGafGxqjac8FDmC35Mh3HtUO+EDR2ofcZVpbqYDinWqxtf +/uvBnsUR9vJyOtwZE7qWotmLRmnq7YW/6JCj/7EhILEXH/MeNElvoYPVaxZW +jxt96L6++NX7YTpI1VxyUMzqx7RKeskD1hV4nRwuuFONgsdcjDwNOFbgeHJo +iOQLCubL1arpcK5AvuPBgh+pFKxI/NSjyr8ClFDOqGn2Aex8e5Iuc3wFarMm +zZQ7B3CTut3x9for0K8+GLPZbQi9mfpW6fdWgO3WsEldzhCyo1LFgskKyN3k +5F8/NYT7pfbcGLVcgT3bJ3hRfxglObIsmzxW4HJ17qaPiiOo+3s2+UsKY7z9 +6odbAqOYafBEQGF1BXJLRZhGzk6gUfYMT9T6VRAYOpi34j2Bu7fbcDFtWQW1 +9Tnd6e0TaJfvuIO0cxUCP3pdX3o2iQq7vf6ZC6/CMTkfzoOZU1heE9P1SZMx +vraq+0bCDFrzHf69pr0KXvw7t/i1zOAh+68txvqrUHyrT4fn7wx6HsqoljZb +BTTveqF0axZVXYtzal6sglm8+tVy5jncMTY+f8JrFZbrDTfvNZ7D/wHlPNQj + + "]]}, + Annotation[#, "Charting`Private`Tag$906445#1"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->{{0.4999999999999716, 0.5}, {0.5, 0.5}}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{-2, 2}, {-1.1496792039950476`, 1.1448116011786587`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}], {481.0287324685357, -97.08986231664207}, + ImageScaled[{0.5, 0.5}], {298.6099606614872, 184.93307107931824}]}, {}}, + + ImageSize->{ + UpTo[600], + UpTo[223]}, + PlotRange->{{0, 640.3390098278393}, {-194.17972463328414`, 0}}, + PlotRangePadding->{6, 5}]], "Output", + CellChangeTimes->{ + 3.8172702319184723`*^9, {3.817271056741686*^9, 3.817271069000525*^9}, + 3.817271313118545*^9, {3.817271408985536*^9, 3.817271454589876*^9}, { + 3.817271694266157*^9, 3.8172717054033327`*^9}, {3.817272810682543*^9, + 3.817272864936503*^9}, 3.817275682687436*^9, {3.817277848688168*^9, + 3.8172778625827103`*^9}, 3.817277919175124*^9, {3.8172780270049467`*^9, + 3.8172780475022287`*^9}, {3.817280236948023*^9, 3.817280282125651*^9}, { + 3.817280450116068*^9, 3.817280466295412*^9}, 3.817280587317416*^9, + 3.817280647024148*^9, 3.817280761888534*^9, 3.8172821757749*^9, + 3.817282229805689*^9, 3.817282311242402*^9, 3.8172824892587852`*^9, { + 3.817283399411484*^9, 3.817283426493174*^9}}, CellLabel-> - "Out[789]=",ExpressionUUID->"b3ae6262-2369-4579-8f11-16e2dd721349"] + "(WOPR) Out[821]=",ExpressionUUID->"155c39dd-ec1d-4900-9cbf-4fc4b876ac75"] }, Open ]], +Cell[CellGroupData[{ + Cell[BoxData[ RowBox[{ - RowBox[{"testEq2", "=", - RowBox[{"Simplify", "[", - RowBox[{"testEq1", "//.", - RowBox[{"Join", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"g", "[", "n1", "]"}], "[", "\[Theta]", "]"}], + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "[", "n1", "]"}], "[", "\[Theta]", "]"}], + RowBox[{"-", "\[CapitalDelta]"}]]}], ",", + RowBox[{ + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "[", "n1", "]"}], "[", "\[Theta]", "]"}], + RowBox[{"-", "\[Beta]"}]], + RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}]}]}], "}"}], "/.", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n1", "]"}]}]}], "/.", "s1"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.", + RowBox[{"\[Theta]", "\[Rule]", "1.04"}]}]], "Input", + CellChangeTimes->{{3.817283576740225*^9, 3.817283588198867*^9}}, + CellLabel-> + "(WOPR) In[830]:=",ExpressionUUID->"da645597-b6a8-4dfc-83c5-3cec31d750f9"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"1.7736514921292306`", "\[VeryThinSpace]", "+", + RowBox[{"0.7346705029632056`", " ", "\[ImaginaryI]"}]}], ",", + RowBox[{"1.0629888287473626`", "\[VeryThinSpace]", "-", + RowBox[{"0.44030438951824896`", " ", "\[ImaginaryI]"}]}]}], + "}"}]], "Output", + CellChangeTimes->{{3.817283566616807*^9, 3.8172835890690536`*^9}}, + CellLabel-> + "(WOPR) Out[830]=",ExpressionUUID->"f27b02e6-f3db-42e2-b534-43e5409fe36c"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{"Show", "[", + RowBox[{ + RowBox[{"ListPlot", "[", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"g", "[", "n1", "]"}], "[", "\[Theta]", "]"}], + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "[", "n1", "]"}], "[", "\[Theta]", "]"}], + RowBox[{"-", "\[CapitalDelta]"}]]}], ",", + RowBox[{ + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "[", "n1", "]"}], "[", "\[Theta]", "]"}], + RowBox[{"-", "\[Beta]"}]], + RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}]}]}], "}"}], + "/.", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n1", "]"}]}]}], "/.", "s1"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "1.3", ",", "1.4175", ",", "0.0001"}], + "}"}]}], "]"}], "]"}], ",", "\[IndentingNewLine]", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"1.3578383417066", "+", + RowBox[{"0.048953289720", + RowBox[{"x", "/", "2"}]}]}], ",", + RowBox[{"{", + RowBox[{"x", ",", "0", ",", "5"}], "}"}]}], "]"}]}], + "\[IndentingNewLine]", "]"}], "\[IndentingNewLine]"}]], "Input", + CellChangeTimes->{{3.817280804305807*^9, 3.8172808637975616`*^9}, { + 3.817280897254437*^9, 3.817280903087328*^9}, {3.817280943100966*^9, + 3.817280948025497*^9}, {3.817283466925474*^9, 3.817283468322001*^9}, { + 3.8172835171353197`*^9, 3.817283535406034*^9}, {3.817283616348012*^9, + 3.8172837913669252`*^9}}, + CellLabel-> + "(WOPR) In[842]:=",ExpressionUUID->"b03f723e-24d4-4097-8ca2-9b1145403bfb"], + +Cell[BoxData[ + TemplateBox[{ + "General", "munfl", + "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \ +\\\"714.9997764249956`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \ +normalized machine number; precision may be lost.\"", 2, 842, 544, + 31479193581598412653, "WOPR"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.817283761224256*^9, 3.817283792191354*^9}}, + CellLabel-> + "During evaluation of (WOPR) \ +In[842]:=",ExpressionUUID->"1ff6b3ff-f0d9-48ea-95df-10584520bc02"], + +Cell[BoxData[ + TemplateBox[{ + "General", "munfl", + "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \ +\\\"818.9883777407213`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \ +normalized machine number; precision may be lost.\"", 2, 842, 545, + 31479193581598412653, "WOPR"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.817283761224256*^9, 3.817283792266705*^9}}, + CellLabel-> + "During evaluation of (WOPR) \ +In[842]:=",ExpressionUUID->"82682d18-f80c-4d23-8675-d31ca1576f0e"], + +Cell[BoxData[ + TemplateBox[{ + "General", "munfl", + "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \ +\\\"958.6767276347036`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \ +normalized machine number; precision may be lost.\"", 2, 842, 546, + 31479193581598412653, "WOPR"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.817283761224256*^9, 3.8172837925686893`*^9}}, + CellLabel-> + "During evaluation of (WOPR) \ +In[842]:=",ExpressionUUID->"164319c1-a2e0-427a-9f70-94e763f48d8e"], + +Cell[BoxData[ + TemplateBox[{ + "General", "stop", + "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"General\\\", \ +\\\"::\\\", \\\"munfl\\\"}], \\\"MessageName\\\"]\\) will be suppressed \ +during this calculation.\"", 2, 842, 547, 31479193581598412653, "WOPR"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{{3.817283761224256*^9, 3.817283792766893*^9}}, + CellLabel-> + "During evaluation of (WOPR) \ +In[842]:=",ExpressionUUID->"5d8fc41c-1820-4591-bdb1-29d65ed68611"], + +Cell[BoxData[ + GraphicsBox[{{{}, + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.004583333333333334], + AbsoluteThickness[1.6], PointBox[CompressedData[" +1:eJwc23c8V98bAHDZComiVIqWkJGR/VApeySZoZItFCqyI7NI9sjI3nvvvTdl +RCL0Tcge6ff4/eX1fp1zn/Occe89934u5oeWdx4TEhAQhBETEOz/9aSlCnt5 +aRiIXpx3PUK6DrrXV1nbTw7DrdOMmjMk6zBC0RN6jmYYlNPyb5Wi7d4fmXAj +HoZ4ylkZf3S9JtfW3OYQuF1Le/gAbcmWOKm2MAT/nVsJ4Ed70K++a/02BL49 +xQMU+7aOP3BzaAjqJX9f+Uq8DittItyNbUOQ4OoXlYeWnVWmV6gegrGPXmff +oHfLnmeN5g9Bc+7nUm00g4HcilXKEGj1PTXmRvNeMJ+gjB6CCywKHCToaF1n +i+zAIZBvvk8yQrQOwt5cYRqeQ+C1ELGShY7n5tAidxiC003b6+5otYXLWVWW +QzD45tlhTbS23tRbB4MhILLcEeVEU7Ie3RDXHIKnlV7ORGjqGbdv5IpDYFN2 +ZPgz4TpwsW1If7k+BE15fjey0MqvxFlzrg1BzOZigzs6WY7d3p8D/Z1HWxO9 +vvBByJp5CD73SJNyoV3C1R9o0w9BBQt7EzHaTO/uL7lDQ8Ak2R0xcmAd7ly0 +HrxOMARXw9lf56CjP4UxSKwNgnu0gJsn+p12WeaNn4Ow0vjjgw56ILDtvcLE +IOS8u1pxFZ2nUFd7f2AQRBxpNsnRb5Q/8tu0DoI6/XPpCYJ1IDxiMB9QNQi0 +czqZhWjqIobP+fmDUPS65KIfWvZI0+5YyiC0ursUPER7RDjfoYwZBAq39HtC +6AkTzQHJoEGwYOamokEz8Vo4OnoNAh0Fyecf/9bAW+KLdLXjIMjPnC2uRDtY +1PCQPRsEPyP7tA/oFGZZXjXjQbC+RZ5nhv4tFy+deh/zF6vtvI62v79lTqQ6 +COepo/6eQIfefB35SBrzc3wnuby3Bv+MXnW3ig2Ckfr78Bb027gzxAK8gyBr +FkkSiw4UyuFLYR2EV2/jPJ6jt7/Z6JxlGgTmyMgTSmiP3BK7GLpB0Ldyqb24 +b6Z2JxaKQXj855bj3t81cNv+Z5mxNwB3D/6QH0JTWWRLia4OgELSXe4sdPki +/07v/ADol3pf8kTTSK/6WkwMwHuRV1d10a9fK61QDw5A3+VzKgJoyvUcjqK2 +Adj1sHWnRs9xePI+qhmAjnumrT92sf9/JIjoiwZgJnmTpRr96bZ6aFf6ANR6 +MwSEovW0b/znFzcAVUeqaKzQhj7u28qhA0Cq9f2TNHpBI6KG0X8AYlyd5JnR +vE+ohX66DYBKhifZ9s4asAaY6lW/GIBqwpXBPnRUjBhXxJMBkM4rK05Hm79j +/GRvMABHFwYyXqOdTMJK9bUGgOKnYOF9tLvEHTN55QFonx7vEUD7cc8WiN0a +gPzT5f8Oo8c0twP5RAdg6Euz5Pz2Gpwfu7rHfXUAVh/uhNSh3fpE1q6yDoAL +mcK/SLSqUsNTYaYBCGEssLdFy6s7P719FOuvXKJQQo+Pn1vSPDgAxEsf01jR +6TXms9YE2L4lnR4hmqL++N136/0w9/nlxbGtNdD1+cmT96sfQoLbCIrQruEp +r0am+iHx6N+Fd+gs+dPc5F/6wa6V/LcJWm+QXlqkux922GcIbu5bwKjmWWM/ +pJV4X2RCX4LpD7nl/eC5tKC7ubkGz7yMaldz++GYJkVaHzrYsktSLKUf7r/q +J8tEb9FuH/GN6YeJuRsv3qCjFLqvfP3QD+E8d3YeoCFfIFDAF9tbWAsQRUf4 +nRL84NoPi6UXhRjQ5/qtmDae90MD/9jK8gb278olCb0n/QCk1LUdaP15gfAO +g37wGMiPTUb37kZcAO1+YFdsfO+Gfr2r8q1IpR9OXRAOvY+mPqnbwivdD6mH +D2YJop3ONw4ViveDcwvHMB1awz6AXIy/H2KoI2gX17E+TadmK3s/6CXK6Leh +aw19m7RY+sH8Lm9NIrrOe0J2+Xg/VMwqXnVFUx36NuV3uB8CuT4U6aA399J8 +rpD2wwuCHXlBdPamtnj/bh+I8Dqs0e2Xk9JvO670wdInypzFtTUoyd4rvfKz +D6YEkl+1o4d+idtPTfZBVNd17WS0LivRtajhPhhXG5ZzR/8n6PBLq6sPYsp0 +FPXQVLojIUyNfUC82PZQBP1SVP3qbHkfGM6f8GZAZ42wlxfk9cH1T5K1K6tr +YBMdfOVNah9IMQkf6kGz3hz00I3tAyGtHcMM9PI0Z41waB8c1nMc8EK3zc9/ +Pvm2D4avlag+RkdTqnQc8OiDopWEaUl0v2peyC+HPviTKPiGCU1yWI9v7Gkf +fH/8RGRnZQ0M+tPjekywv4piBz6jz79YGmnV74MQl+jPBWh3Oq+xZvU+0GR6 +UxuIPrLRE9+m2AfNSn/Kn6DFMjjY+qT6wEFiuFkOfXr535Ovon1AdpZzhhX9 +tSDPYpG3D8hZFulI0f8dzWEhYe+DY060d7//WYN1DUOfMyx9UG0ZkFiDZl+6 +FSd+og98BB6Qx6A/WjQ9ekjTB+vHHF85oEk8dLp8yPrAWm3sgCY6mOz1ePFe +L2hJPA8TQH+eLPOfX+uF1Qu3JI6i/9K6jZ5Z6AVbTcmt5eU1MC24X6813QvL +PA/qu9Ge/w1IRoz2gsHBmJhMtNMva9Wvfb2QKLnk44s2X6tdvdjWC5bCyl4m +6E45NRab2l5Q0S4KuY1+I1j9ubGkFwqpTxZdQGeRhBw9ldMLw3V2P4jQedtP +++ySe6F5vvbS1NIa5Gv+oR6K6QXDrdWXNWgznfwmoRDM34x8PAadzq2xHuff +CycqV5Ud0TtrHhHUHr0wbpk3qI3uKZ3Odn7VC0nkwmbC6Fu2Z3jXnvUCJ83r +IyfQThTTZy3NemGT1rtlY3ENVkW/2y487IVrcZIBQ2iPkh5OK61emFJMMi5E +nyZ+JL2h0gtR+dkqH9C6r1Wr3WR6od70ntwzNMFz3QBayV7QpQtSu4OOWbpe +kiTYC2zKulY86HNf6niBuxc8mnMiadBs8/H/Ri/1gts59+HF37j+k9OOO57p +hc4jXee60SoGnxxYGHqh5oaPSxZaSvj+hQ7qXpB7krPgj04kS6S1J+0FMlkh +Mwu0tIWiBMdeD5wOOr0lj55u50yfWusBVYp7oRzo9xJMytELPUBhNSpFie6M +32DXmekB9rdJxL8W1mDCJUzkzHgPCHHm9LejvU9/c/gx0AMSTMt56ei7FgXz +uR09MMb1MN4XHUW36era0ANsgrtxZuhGvQ+SahU9MHS4JFcO3S9rc+FKQQ+Q +Br3tZUd72niwUWT0gHnciwOUaNezJQrzCT3AyWQp+esXXp94//l2RvbA6qJp +YAf6zlXlqcKgHhgneLycgW4USVCI9+0BV/F7D/zRfhQrbe/de2Au/No3C/TD +/0TV3zj0wHsyQmtFtHujy6Lzsx4wcs6i4UJ7UdUGvDLrgfpd/prD6I1mQkHH +Rz3wyCnQeek/bN9DYcpVuweek5Yp9qLfP0j381HtgbcRKVfy0EJ/WflC5Xog +7Ma9U0HoO86Dg8k3euAnVQWjzX79gLonFSI9cJWin1UNfUaTeHeAtwecpD/c +EkDfd8q1X2bvAf6pzWcMaP6z32ePnO8B6qWtnM2fa5A6VCAhcKoHTr4L+PsF +fTv7ppvu0R6onSjULEcPs+Wn+lD2QCbJo8YodJvwuYIy4h74eilQwgl9ztFG +bHyrGyKthNr10ClEEp3yP7vhOZXaY0l0+NO/RxpGuuE21zj1ObTVAVLSG+3d +wHqwvZkY7ZlTnNBa3g2WgwwBP+bX4LKU7Yx6RjdUtFcYtaDNbyQ1LkR1wwRb +vmIaOvlnkbivfzcs8K7e9ENLcR+X43bqBnb2l7JP0H1lMDP2pBvoNUT0lNGj +48lkgXrdoEfC534VXfWhO0NeuRvmXXSKjqIfOAl3H5bshpqTWZvrc2tg8tnK +ZISnG1jYWGS/oPvt/9lmsHTDM6K8tHI0X//zRQ+6bgBCdcYYdN6EZY8hcTcI +vz4Y7oJeYXejU1rrApGfjRcfoRvaFPLFf3QBf5hbvRR6+45dGv9wF4itCVmy +og1HElZ4W7rA02zm8iE097Kbt1BpF2gZO60szGJ+MQ2Gt9K64IzOXnsPelyT +yVMrsgvkynTz89EuFLJTtn5dYLQVlhqCPrxLYhfm2AX0QUlZL9H900dF6550 +wQFi1zoddOawGNeKXhdMtTPPAHrkhrwsu0oX7qvd6M+hZZcPe5le74LIJ1H3 +SNGG2zrfc3i74KiGSeL8Dxyf1kPqe+e7oKxwirATTUG3NX6HvguM6Qktc9AS +/STPssi6YPVQ7XwQuv02w5EjW50gyH7i2XO07QJ9vv3PTvh3iPiQNvq7/R/V +/0Y74aSMQ644+uVY5O+HnZ0g7fLCkAUtzkPh9K2qEyTurF0mRR9v5PtrmNMJ +GQ//25mfWQMB6tNGK3GdwKpxd6wTrZbSUOQZ1AliY5fbc9Fjyldnz3p0wsPI +xy3B6AdTViu1dp2wdfPAwEv0GZV3QybGnSDnu75wH02QHOt7XKsTvM8B/XW0 +0r9yqi65TqhvHJC/iB5w21X3EeuEDY7cwIPoewaujxW40PRd07+n8f4xasHD +wNwJDjcv3OpHU52bL5ql7QS6lzmFxWj2p0zLVcSdcMXBhDcKvbstOhq13gGH +jspWu6BvzTy3cp3rgObD8pqP0dpypBnmIx2gKGZyQBZ9WuCct25HBzx+ElnM +iU4KoyJSr+qA4OdjDnRoCQXyY/dyOuA690XFze9rcPWIVpl2PJY/fco5jv7r +ovDb6EMHuJ4sP1WH7j7Kk2Hv2QH1B7ePJ6NzTqkvBr3ogK8sl8/5oWsrjuXn +m3bACZnrItZo1/mmP190OuDVY3hwDy1i0JJKqtQBfQ8Zg0XQbMUO/UKSHRDL +2Tl0Fn336i2zZ7wdcKVU5SIpmmo2wDz/QgfYrMW5/ze1BuqJLX1bDB3A+aX4 +dw9aZeN++K2D2H8df6MitD9TY3n4bjs8cjj1OxKdddiOf+V3O/Rf1XNzRT+1 +/HVA9Vs7fHRXOm+ELnubfKq0vx12rWb75dHORmyuF5raoYWAOfAq2itshy2s +pB2fr9a1j6OJHyUeO5LeDm85HvDtfcP+JBWKBkS3Q8Q3bcZp9L/RyshjAe0g +aDZJ1YZePqbKGefWDv5jc9Q56LAtqqWrtu3wUM7ydAh6ocJnrM2oHU73WAi9 +QqucM1k01mqHRo+vDx+iJ1/Kn6dSaIcd7/JwaXR20KhdMbTD9u7eOCf6RXPN +lNHVdgg7kMB1DH3yv9RHTBfaQawy7u3OJO7fVaTXRhjaYUF9bfsbOqxROSj6 +IOa3G2rTgub2dhAy/NsGUsPuO1noQaXX3/mW2qD2eP67YPRTUTZ/iu9tsPLn +DM8rNN1XrqvTg23wKaJh4iH6BId2V0NLG1y5HRkpg37kbns/vbwNzK/GGHCj +FRLkRkOz2qAprFmYAb2dmnnDJ64NLpQeYdqbWIOQI5bv3T60wfqAHfUMOjbD +sN7lDZZzLx/qQFskPOl7bd8GZ4840Oejn1sZlL+1aIP+GmrOCLT+OKt9jH4b +xPsk3XFFixDEHixQbQPLCtHXxuisa7nG3bfaIDCpvU4Jzc96O2BJqA1GIhWo +r6GDSpUcGa60gd9yhSETOpu2gv3m2TbQ/UfXQYKWDXUJtaNrg5dnFMQXvq4B +08yHiizSNrDNelg5gB7tXgn5tdUKmoeUZCrQXHqRLNwLrRAWSjmVgL7f7qf9 +crIVKIuD3/iiv7/sEGvpbwWCnmmhZ2i5nQeNp5pb4ZTc6qYWWolM47ddWSvY +BFU1XEdr2VcUDGW2ghO9eDQb+qRq7FHRuFagv2nhRovWy2I4mPyhFSzf3rLZ +Hl8D+kahQAavVjhv2vB0Cn1x/mySv0MrsCp+c2xDJ7n9vElh2Qpd+aHBeegA +ymITn4etUEE/VRqBjqFNozlyrxU2Vst+uqGrrvzkj5ZphcGuU6xmaOEDcYOc +Yq1AdonwqSr6s+DOf43creDt9rhFBJ3wmtX24flWyDWWZD+PvhyqbUF8vBWY +HwVEUKI5Wdp60g+1QvNfefq1MZyvgYxIjX8t8K3JOmYcra8GbQdXWmBDcetq +E5pMqkaj7kcLjLF+7c9CpwhY33AeaYG0eUbXUPSt7BBPya4WqGZNE3ZBD7O8 +YKKoa4F6Z08CEzT/sh7ZUGELRPik9amgDxlEiqWktoDVLE2uMFom3b7SOboF +sgQKIs+hF0eU3XUCW2Cb8d17SvSHuWe+4h4tICIUFbw2ugZGKaJ9F162wDvB +oU9f0eZtpHdpLVrgTt21mma002duKuIHLUDrVj6bg267emp7+24LhF/QORmB +pqa+wrAh3QLTOke13dF0Vm36m6ItcH7ka5I5moFTt3+PuwXKVYr21Pbjzd81 +O3ihBUTtgx8CWpmK6cLJEy1gQvm8jxUNHex/ualagKdeTZEWfef0yqLcgRbI +1eYY2hlZg9bS/7bM1pqBLXjNZAadxRjAEDjfDFQ8GRTd6BHb+1Ll482w+Ee2 +sAR9oqLf+WdvM/jGdpjHo/OCbeuZmpqh5gAHtx9a/0ELpUZZM7ybfPTPFs3H +fVcjJKsZTlNYjuih9RoS4r/EN0OmjHStDPrw25tzzKHN8PHpz3ze/fLUpguW +vs3w9J5y3mm0wmiFeq1zM1S32lSQ7Tugwv64TTOIJNzpW/6yBmuf7/vaGDdD +dvn0yii6y0jEc1CnGf4tXGBuQsu8+2MkotIMFxiOaOWgt8XPXUmSagZ2+riY +CPS9A1Z9x4SbgbOj5/dr9Mstx7s+nM2gfypS1hL9ZHI1m+hcMxD+2s7VRPMR +OX9zZWgGXZb/zt9EX5FonSGmbIauFMMETjQbiXupH0EzVJgaXzmBvi2vq3li +rQk+qP1XR4ROjDhclzbfBJ0aPx/9/oz9+auwJPG1CX4+1qf5gpYl658c7WsC +cyvplnq0ebdWgENzE3y1iPbNQpsuJOycqWiCdjUtrXB0/QvLM605TVDLbM/3 +Gs1N4rppl9gEMp0bJyzRl+Ni3C9HNMGqWtdBLXROf0Dl5NsmkC7fJJVCk0ew +JES5Y7w9a2pu9IABM8/9F02wfY6f+SR6j/6+AYtFEyhziwEpOpwwRejXgyYQ +YvcwXh5eA9LZocyye01whok8egw99rum0l+uCTSO1o41o7MywfCxRBMInEy/ +lI8ePM31SZK/CXYkax1j0NdjLGxY2JpgMHzvqzfabmm0n+xME0zz68rZok8I +3K9epmsCEfbROn200OIQ7yR5EwwEWEnJo+k2uTn7/zZCkPOJ/mtoH0+19LY/ +jaBI22t2Dh3MypPSNNsIpY/fHz6M/lObx9w81ggOYRpV20P4vOHTfrSjtxGO +tTO9+LHvg5ZOg02NsHFmUrQPbcQYpP29vBEsy0Mpq9BXv3GlruU0Qla9xGwq +erIbDCiTGqFRf6gjGK0bV+19KbIRUipUK13RVepZ9LcDGoGFqKDEAp0vTEVu +5tEIUw/+VGmivw5MaAXZY3zygz1SaOc/7JQ1lo3Awbr+Hw+6KGbr+LJBIyit +5tIyofVZVJ0uajXCcpzgzYNoyQNSQvpKjbBi5OGyPrgG0Zvjt2JuNsIJ56Dm +KfTBv5yfJoUaYZFZ90Q3+rmgnOIlrkYY85u0LUezk0tff3q+Eej2jo0no7e2 +RR1rTzRCSOGW4gc0d/eN3aOHG0F8zbPdBV1g9aLCnLgRkghK71ig2TY2y1q2 +GkD8tO+0Jjo9YWaVdbEBhN5vutxCe03oG/lPN0BUyu4lXnS80LvD618a4Er6 ++y9n0BKPQ38+7G6AVz8KgynR9tfi1/obGmAy5YHO1gCul8SRKzJlDWBzPfDK +DzRng0VAXXYD0JFIUPSjl+t8GCUSG0D3psliNZp34WFrbUQD5KuRT2agS5Mu +R9wOaAD+gOOj4WgL06M+vR4NUCMfPOmJFmnRCtFzaIDlmZdLz9CmjwQqlq0a +4HRJ7cEH6Malqc03hg2gxmzMpYgu4IuRYdFpAENXY10R9JMDKek1Kg0wIFQV +yoo24b9+6tHtBhjMNBg9hmYqzQmjEGsAvevql4nQZY5CTAVXG+CIbqDrUv8a +HHA4n/aQtQFum1BPj6NzMsuFjjE1AGlXq3I72ueYXFs7XQMc3qxqLkFv55/V +9KRogLa789JJ6Elvv+83/9WDourNgSD05ZBJQ7K1enhs0G7iii7rt5rs/FkP +rtsvKSzRpwSDFMIm66HGWy5fB+2e+zHdcKge5t+IGMmi6S4sbQh21IOFudQF +QbS4xSTX4bp6eJRjsHABfUyjS3m+uB78uj5U06FjE09oNGfWg9SN3sgD6A2S +8zdSE+ohyu+Y22If9odB5fC78Hq4xnb/6TjayJC07MU7zC86wbwd3WKcLmHo +UQ/UJtNWpegFp9RYdYd6qD5y0jkZvblkNixvXQ/xp2+EBqMZFvSmpIzqwemo +Rqk7ettjter6/XoodFabsUY75kaY3lCth5s/BU7qo91uNU7dlqmH2skNLcV9 +78ydV4Z6uL8c9El0P5/Hrzh1+OthIp10kw0tvraxa8ZeD7Fxcmon0LPrg/7O +zPUQ8li3ggxt/e791xCGerjuJ3xlvRefZ8rTf+VS1UNd+mjyNPqpYlxhD1E9 +VGiLcfSjCRdXBVa26sCMX7usFm3JwPbkxFIdRPVz38lB89I1adz4UQef+kpX +YtCP/yqtWo3VgUnPcow/+kW1snh8Xx08MB9QfYW2P6zKN9xSB+6379OaoV2e +fO8/XF0H6sReI5pooUsBjPKFdbB4SzlDGi0jP0/il14HEwW5b66hF4pcgrrj +6uDmWrL5RfQtkp819GF10JTDqX0M/S+szPfB2zrwDJRUJUaHBXsvZ7+uA74b +Y3dXevB57+vi4gGHOth6uq03hX543Ou1unUdvOkOtelFb8X9zsgxqgNyipz3 +NWjJsFpDKt064OoVL8tG/+uNzba4WwfMo/BfDJp74opHryy2N5p14S2amYxy +RlCyDjy83pg4ou/fnuxIuFYHFeGNReboHRUVYVrOOpBsMaDS2S/3I2N/fR7H +r0vfQg59hyozaouxDpaNC4eE0apRC35Pj9RB/F1dGTb0k2y7rd9kdZCurN54 +As1nujHxZK8Wnp+OkqVAM0WdFf+zWguTr1i/bHZj/tWfjrz8rxa4r25azaG3 +169pEE3VwhVCMtrPaG7qgMOBn2thL0+5ohnNY2fAz9JdC7cpey2L0U+knjQX +NdbC4WF3jmS0E79xvWJFLfSPG/wJQWfEU1/6mVcLdr8saz3RAd5nlrxSa0G6 +JzbcDv3YU+sUe2wtEGms2BuiXftdUntCaqFN9dHje+jc22rBL/1r4ULwL41b +6PNqUeMXXtcCxaKPmgB6i+yUy6B9LbTzC2tfRFORRNl7WWN9WDehR2t5zbSJ +G9eC8FSZKym6+1H9k03dWvDdcI9f78L75d8DBoVqtbCrodDxA22tbJliK18L +Pd9o/w2hqWdHhIRu1ELOkx7hZjTD12P0BMK1ED7u6lyMZvr2R7iNuxZWqM51 +JqMjLt9KCr1UCzaT2efC0BOOM2rGTLUgdu28uxfakSvltuixWihfc/jvBZqX +0eglHWUt1BLk65igH8Xvzi0Q1oK1eOOQJnoz/+aH9q0aUAzJ0pRFG9Seepmx +VAOsy6Yzwmj/2kfBAbM1cEVo/SU7WoNr+8fzrzXwRVOe4RSakLzO7OFgDRBL +mFRSopdbY5iVO2qg94u0+d/ONbjxzJZUsr4Giuhnz/1G77lwHOcvqwGnWZj+ +ir67kH6XI7cGJMWVMrvRFZzjpRdTasCI+ohzDTpKIF3q/McaSJB31cxF/7Ik +XD8fUgNbvyNF49EHqnpaWP1roPiXDmsQusSBpILrdQ3Yideceo2ueRnYKeRQ +A8e/1p6wRdv8Ndy59bQG2prunzFEL1S/vKFuUgOEa++uqKM//KpKMNWvAXvD +uzel0aRnrzC6qtcAH2PyIyF0k2HFpwhFLKd57cuGlhQ1lCyWqoE+2dnyk2hz +7wu/h0Rr4HBHxyolOithPWWLtwYgjFtgrwP353LDlmfYa6C0gNplEa2R3iQh +zVIDlKyP+ibRFHha2ZzA47cvX+lD58gMbsbT1EAPr15APfr0zNboAFkNfJzY +2ylAE3yzdKPbqwYKChKrJHQMJ7uC+69qGKyw+BWKPtvDd3RrpBpIKPitvdHe +STH9Nq3V8GX33p492u2u45v14mpoTOkOMkfTis6xOyVVgy1TJI/uvl9tVRwK +roYeq8JhJbT/706Bj+7VsJLP6CmJPnPRI1jwaTVw/G0S5UWHmkkODutXA8Gj +op3z6N7yS39eKe2XT9fRozsa9eYuiVfDh2nF9+Toolm6gs8c1aDLu2Sy3b4G +8pzWKu9OVkMfcaPML7SmcnKF3MFqsLRt5fmKfp01t0y1VQXf47eYe9AHlU0X +BmergCxDhbEOTfPtUXrCUBXM5HQyFqA5cg6zPm+sgqw+k3NJaK+MND3lgipo +5GXhC0MbPrJR5EqogoKNP/I+aNa9rCW691XAfuOzxSu0scTH63suVUAh2hXy +BC3r4Sfx27IK7lD0NuujlapqfnzXrQKe/jECVXS9pRfPhEIVrNUtSEqhT+Rc +PT0pWgUMRAS+19A7548k/WCvAs7qw2OX0eYHXrT8YayCrXMn+E+hV4iqXIgP +VoGW3vEQavQhG9H2k1uVoBhL8Y8AffOs0ifBuUrYpp+3XGnD/a7OXXLt4Ur4 +uJo3N4P+9C9jxa2pEuLMHpl8Rjs9qHiYU1gJL7PXl9vQ3RpzKt8/VULLqrFb +JfqJUHjlyQ+VIGVdxJiD7ukVitd0r4R67dGyeHSsybXdqKeVcPVX/8NgtFn1 +gZaZB5UQph1F64V+TXqIkE+lEhimudvs0UQzzUlvJCphtsbf2wL94Gl23iRX +JahzZivro7P4RFjgTCX0mASeUUWznJldjqeuhPZc7nUp9NY7HibKvQoYlfIe +ENw/XjEywX6hAmIMQ8vY0b1eyU6/xyqgR009hQk93zeabtRRAQL3GqOPoL3O +1Vz6UV4BaenjEcToH31ff5ukV8CJyKiPG604XmENf/9EVICt6V76T7SlN4GK +q08FdOr/qx5HN9OfnzlqXwE8TZGjPehPB+uLMk0qoOl79149WuHNszo5zQoo +IQq7XIw+TtJFvChdAdetl7TTWvff71nYhwpWQOKLweBotJbn7zNSrBjP6MZw +AJqeYXl5g6EChHwFzr5Gy1XTL2STVQATX7rVc3SLFxG1xUY5SOZFt5ii95rv +q3DNlgOV+kFWXbQ5Y1f++lA5rNgsvFVBNxn846lvKgcjvRt/b6JzemJaPhSV +w6Qp+TNBdGq7to1ZUjmM/BJcYkcnEs/x3A4ph26RXpsz6GumG38veZaDRHYn +AR3a+7LEIJVdOaR9ZPtAitZMty/YfFwOvobTnNsteP4HPQibUysHHd2NngX0 +38pcx3Gpcoie0rP/hn4pzvZgmL8c6pQY2QfRuzp+MHShHESJzn1vQYsHRx4b +OVYOjtp28RXo4Q+nJ6dIymGxmMYkB/1FcCRyaa0MVl/8FviEHveLlCL6UQZz +/w5RhqFTW66MMA6VAXP24zlfdL+i3r1rTWUwM7/R7ozeSSMo1igqw/1tddGz +/ePfTW86JZUB04fiFCP0xODE8bSQMljrGo/TRjO/bKUb8cR4HJzxSmiCMPsf +1M/LoJwuMfUGWt+6y1/aqAwaf4uXXEPXP4wnfaNeBiKXNjvZ9+P9GFRou10G +hKydP8+gp4Jk9WkFy2BTp4z6KNrhxLSwHmsZTF2tECJHz4DXSM7xMnBg6Dbb +bV6D1WkmUTKKMnj8cvHTEtp+N1Dn4VYp8LacmJlGR/p1CtbNl4KBjSzHFzRB +ZnXnxZFS0F10tO9Ev/bQOB7QVgov0nO6a9EM8j7H9spK4dfJCfYitM4NmTqr +9FKYKyB5l4ZuL/E9ORdZCs/+O7sVg3YjkmUy8CsFT/4rpkHo625OzdOvSuEf +xaWpN+hzEReOmlqUwsfJgw9eoUsKxA6s3i8FqquDP6zQTeLNvm6KpTD83O3Z +Y7RSUkPOMSgFU47DZFroh5rCFplcpXCi/XmcIlq2gbNK5iy6p+T6DfScUlrs +T5pScCrp+nkNXa1ffCTgQCmIERaFc+wff/chtfCfEuDgMFNiRn93KQ2amyqB +v4U/D9GjS692xkT2l4DUWZ7ug+gL6dkcqg0lYPVLOPxf0xpIn7EVPlxYAh1R +xKaraKEi3sbuxBJwLvCRnEdveBK1fQgpAd/i1jNf0RWhe1K6b0qgi62KuB9t +NCYhwPGiBHaDDJaa0fJ8c6F7xiWQ+LJ0qgJtanLUeFAT83tUOpqLduacTciR +LYHBz/qjSejx06+lA0RKIOtRxrdIdEYxjaoNRwkk+If9DkA76BfU6JwugWff +mAk90Qf0w97KUGP9nzdPOey3NzFbKvyvGCr490St0IGz3cC9VIzXGVmDx+hQ +fefTbN+K4UDzhfda+/09fEmZta8YTrH5Nynt9/fD1gBbPdYndzwghRY1ZU/l +KSiGuJXl68JN+79H/mkVTSyGToc5Hy60C5cXn3xIMVjz3v9yHr0qe+GH3pti +sMqU52REt1CSjj1/UQxOjvneh9Gxp43pPpgUA4Pg2/+I0WMbPt4FWsXg/vSL +6nYjXr9mskW+yBVDf11g3SJ6/ADjJUKxYpitzr82gz57lVqGi7MYHh0QzR9B +C7H1x+ifKYbsM5f4e9B/jXIvhNAUA1mBdWUj2ujqykj3gWLQ1TguX44uD5su +p1opAvtkhm856Aqr/kal6SL4Kmr+Kgl9U+3wevBgEQwU0DJFockS52Umm4rA +LIOsKRBt6FpYxVlSBM9qb9u8Qed2NKu4phbBq/fdrI5o7svPCT5HFMF4VeT3 +p2jVjZMtV/2KIOVHyidj9M+7NEmBjkWQl7Zipou+eDIndPVJEbzNeCF0d7/+ +V40IbX30Wz4qWbTsfybpTSpFULtybhbQ9bdutvDfKIIN5xvN/Oj/0mV/p/AV +Qf7wu0x2NIfvN8azF4tANJYkghndQ24pF8lQBIHOcX4M6NAdLUdGiiIwPaXv +QbXfn/+os6K3C0GQSfw1EZqLZn3k/K9CYL0i6L3VsAYhyo4HcsYL4eQf2Q+L +aEsJujPQXQhp9M8SZ9BTZ1h5+moK4ZJUZsUoOvHLFX6TvEIIYV3/0osWJwxj +Jf5UCHnmsn+b0TRDo+QJwYUwX5l0sQp9QMiqX+pNIei2kt0rQIsWdHr8elEI +30VNfdPQkbZPToeaFgJxc1tTLJpPsStUSqcQVukvkoeiVXNN/2woFMLHsRdK +/mievDq2LCiEyJbqKHd0ObG6uDFPIfD6bSy+RMttp7JdPFcIml9OyVihLVxh +YfZoIeQ/5EgxRL8/H+2eSVoIgaMsVPfRI+Sy/9ltFsDKxu5zVbTxry7mmz8L +4JV58ZwM+uTFovPHxgrg9W9FPQn09QTf5fnOAiDhqxkVQDPPjnnUVRdA2gqZ +7hV0NIXQRExuAVRMs/w4hy4o5N5xSigAwWoqG0Z0E+u94YfBBVAu0kh2ZD8+ +j5i17JsC8KS7FUeGLuNwaOJ/WQA+BP4Se/VrIEGePHDerADuVobMrKLzxTTD +Ge4X4D5DP+A/dEg/Oy21UgHkBM1ITKGPa5eJkksWQPCF8xuf0fGLcfSkvAUw +/fx4fvd+PH7XaLILBXBfutqmCT2ivtlFyVAAemrHRCvR1yhSU45RFMDP+wwU +BegdFwFWlp18iGSuG01DN9hLyV1dyIcCfdqCOPQe36vDtyby4eAY8fswNJeV +29P7vflwRi3E9l39/vdnB56+qM8Hwrf1up5oht8Jh0IL88FQxlvBEd3CTS9W +mpwPobLTkjZo3z8kxBPh+eCo1itihr5gzqJL7pcPYZwKIg/RWSqnZPid8oE4 +8q6EJvpKb2LdY6t8sNSfllVGJwY+bQl/mI/rdUvrNnoi95pG7918oKQJsBJH +P2hOt6S8nQ+BXom+/Oir456UckL50GQnkMGB/vnUjcOfPR/kEqDvHDrdQbOz +73Q+qA9X/mVEV+i0/DpJkw95Y5mctGjqBT8vY8J8KHKkfEyBvv3MMKZkNQ9U +PIZiCdAvEo9xUM7mAUk1+dRG3RqkJetwPfqSB2PrH1kX0aUH/yVWtueB/VaY +zQ90enut/8mqPDj4YalxHA13zKZf5eSB/IeEU4NoWqv65G/xefCmJetFB1pH +L2hQJjgPQv9Rj9Sj2esSzQrf5MEEea1EOfpiXJPRefs8UCyozchDh5nWN4eY +54FeHxVTGlph2dSbUi8PGPniP8ShY8z80zxUsP10B5pw9Junu6yEN/NAjiI0 +MAB9l8CX0E0A82VeZvBCj1pS8ZNczoOaJs8EZ/Q1B80q35N50N5xl+85mlrk +VtQx6jzoJtNoe4IuvJDREU+QB17y/o8N0TJUjxV4V3KB12qZRBc9eEb+VPNM +LgRJu6aroe/PiF3T/ZwLv9OF7imgbeB41GZbLtBYM5BKoRmNy6RDKnNBzJKh +XBQdvkQsci0nF6SdBGz50B41X6xG43PhpZ01Hwf6xLFTc27BufCRu3HzHLrB +OSfmilcukHhy1p1Ev5559X7UPhdsldMC6Or23y8b1/pZYH6m/AaH0LK92pcl +9XOBKqtDlAidUCrRsnknF4Q3zBl3anF+9Qij8qVywYWZ7u8fdLOwf7y1YC4c +pqiY/ok2oOn+cpU9F+J8DHqn0BvLeK0/nQs67hT1I+hLYvx9VTS5MN+TXNqH +VowQeedNlAuPVEQL29AHdyps1NdzQO97fWEdOiMi04V1PgfmHouUl6Gndwhz +d0dzwLXkY2MeWmQun2igKweYyxcG0tD9liV2WbU5eJ1lmY9HS85SkPsV5EDY +HWHCSHTxbHyheXIOJKRePRuEfq7g7KgckQOM/OQ3fNGnr0Xdv+afA/zDxabu +6HjiTVVmlxyIfioe6rDf/3vvdamf5YDFz7CWZ2hSKnOHvcc5cIWlYc8M7Xzr +TcqyRg58/lshZIB21Jv9PiuXA0MPXF7qoK8vB7B/E8+BrauHqu6i/+vxdhzn +yQHve1pkCugC6i/DY+dzgCvPVE0KfXTNU3CCIQeoOIRSxNA6ZNHR0wdzIDat +7h8/ep5Q/uDITjZMHiXW4UQTZGmPLH3LBpY72xUX0aGP3JOpWrLhimw8yxl0 +1tSEBXdWNrDObPoxoG/eDbis+SEbUg/t7BxGn5EpGnpjnw3JSYmW5OiBYlvr +Cv1scP+4NkuAfr+zurZ+KxuIJ2cNtmrw/O3T0b92JRvu3Hn5YxnNofU5w5Eu +G/5OJpn/RNsfCR5u3cqCNTuLjSm0XX/d2MnJLHj7r9VzFD09FFTyrCkLXAxL +GQfQUxmiRr0ZWTATKpjfgS4UX53mC8oCbpebyo1o646VKzEvswAoR5Yr0QU/ +7cSp9LPg9uX10CL0L9dyWrdbWfC1Ifh6Njqq/UDyLkcWbHQULiejxVX8Nl7R +ZcEcl2piLNrp50cCou1M0BozvR+OLip3r3o7mQkatVsn3qO1+FyvnG3OhNtd +uyM+6JeU0zLFmZkw+8cq1h39/Ob24bsfMkHpjKrpK3QT89FX6/aZsHwjVtAW +/Y3ztU/Mg0wIV1E79ARtJfjxmrx0JhgIWU4Z7ucnX+H8jzMTun79rNRDx5fw +6ZUcy4Sk+43RGuj3ZAZ9drsZQO2046qCTiFIGRT+ngFOEj6msmiCJP3HxG0Z +0BL6RP0G+vLVJcf+nAwge54oLYqOZig/mRKaAbm97OL8aIa9SyJuThngE7l3 +jRNNXffx84PHGZDWwihwCc341H/plnwG2Co4Cp5FGyrqOvPwZkAS0zk4gf7d +6OrKzJgBYjwUsrTocVuTFfoDGRBiz6F5qGb/e3fv3iNz6aCw5G1OvF+/595x +2u50uOvF9Ppv9Rqs+cs2MBSlw7zg7Md1tNKnr70s0enwdnOyehH91PmdGO/r +dGCsIp+eQ1tnjxLJmKVDios25RTaaPYGs8GddIi5NiQ4iibdlX3/WigdUkds +TQbQw99sVdPOpkPjg2sxnehHGXIPBsnSgbORYbgJbeerVkKymAYmf+mO1qDP +tTOpiQylgQTRZbVSdF8PH59dZRq0dKtG5KEnGS/dKfqUBio6gd/T0RHib9J3 +fNPgZfxX7kR08I850VvP0oAhStAtBu3Z+40wRCsNlG5EDYf+Px7F9k/JNHB+ +T8oTiO5o2maSupwGMq9t3vqgHRKVn3yiSYO3dN8X3dFj5qnT5JupYC2ipOaI +pmZLdHo6kQp3Ngqr7NBMazOC35pSoef6UQ6r/fwWD9OoZaVC4wmjaBO0zM1W +gq7gVFB4kU77CJ13roxM3jEVyrW++urst9fgx9xtkAofK3fJ76F1HizIqsun +Qn00kY8S+vE1H5dp3lTg2VyklkETedBV251MhbNtVaHX0YpeIkTURKlw8IjF +eVF0hWORTNrPFPjYtlHAj86PEX4n15cCNavaMlxovrMuPculKeDrH/KNFU3P +I3kwOi4FlII+ObLsj9eWkJCCdwqEELufPrU//2GsWoTWKXB0krP2GHqKpdOk +QiMFys4nGh9Gh8TPGzhIpEBK7xQdBfrV0evSwJoCPD+m6wjRl42iaMhpUmDg +QYrtbhVe717WlA1uJIPsTTaOdXQ444sbKRPJ8Mzf6MciupPkXbJzczIYiN3/ +NI9+/b3vu3Z2MmjdJTf8jqa6TbcmGpoMTX2P2cfREZnMn1mck+Fm6dPVIbTJ +q15vKqNkiCTnqO1Bt/3bIP2rmAyVtW8D29BVJubyywLJ0DoT+rgBHdZDpv6T +KRkO2N0Uq0JXXEk8N0eaDOPPAo+XoPu0mbN//k6CP5MOG7noN/Ta68tDSfCv +imAkHX1i8+r636okWDp8uiYR/fiFbzp1chJ0D3amfkRf/yVNd/5dEvTR0oSG +o/+6qbCJP08CpdbJN0FooVv+Czp6SdCwI/rKH93K8EPT5XYSdGYw27xBL+Tc +Nk/hSgKeCV9LV3R17EfmQYYk6Ap+8cQBrSw3bkdKkARZ/dNWtlX7z+fLxqJz +ibAc2Wlnif7j1LNq15MIE8tcLib7+f1nwVBUkgjDn8n9H6Hnhmo6t2ITQf+u +WvR9tHVp7dHr3olw1Jg2Vx196LPp/FvrRMhhEGtRQafcKJGe1EyEg0Z9U3Lo +teFkLoHriUCv1U1wq2r/fa5QZABbIoyucrNI7Pd3wMJrkTYR3EVWbwnvz+dX +6dU7O59A5iq9JR/6iFL3aNn3T+A9HhTBiTafJhO91PEJ0iVNW1nRXGd2joQV +fIKrj0J2WNCXr+drUUV/gspbx3hOo0uUReneeHyC9aXvJgzoSKpPgiRPPsEn +w3+JR9AHt7ea39z7BMEZBjOH0GOqSlXUgMc307CSoouPFR+PuPQJqCoJnhCg +x1ekBi7TfILQQJ7i7co1CNCh/V25mQDPZGOJ1tAcdnyP7n1LgJ5fMqqL6KNM +TdwrrQkw7cieNI/ump1S/ZCXAH8Jr+9+R8ucTGkVikwAU1cfta9o1gK+d9/d +EyBo70DeZ7SofmpcoHkCfHNOPNJfuf/7OeveDTWMf/CpTSd6l2koblssASY/ +GYw0o2P3hr0LLyZArKr9jTr0W2+1fJvDCRB3Kie7At04/Pyk4GY8uJEQnSlG +U2WaVP+bjIfvdFaBuWjG5+pR7a3x8FRhlTQD/U3eMjsyLx5Giv2ck/bzW5hc +s4yMhx4NgZ1YtE7luLn063igEPj9MhJt3xp25IJFPEiq5e4Eo2trbn0juRcP +AhWvXALQ2eunv/wUj4dYKwVyX3S6/r31/kvxcPPF2SAPtEvwZYFamngY+/zn +rAt6rr0vOG8rDi6E1eba74/3l7e0KVNxMF7uLWWLzuOJSo1rj4MyGekxS/TE +tLDGx4I4sL69bWuKTojJOBkXHQeFZVG0jyv3r998y0meccCdypGnt1//M8NQ +jmUc+BxPvqu1P545Uc1VGnGgT02xfRe9JnqovkcyDhQDlOKV0LdYMht/sGH7 +Cc8VZPfnO7Kzg+BoHEQqOu3cRHPblQ4y/Y2Fv8H6GYAOP1o9LvEjFl45n9QX +RpuZcE4ZdsfCC5oMen605abGZEBJLCgrHu7hQtMOBg5WxcWCvPh1P7b99RJ3 +pXrJJxYyZyTlLqBp3rpFXLSJhXiZQ1Rn0Tz35gz078eCtGVkLyM6WLLkZMyt +WMjTXgw7hr7LolAxwRUL43TEj2jQDapENy+ciIWCqCGuQ2ifUsGcJ4SxQLnz +6B8JmsIxfPf58EfI4k3tJUAXJUuoM6Z9BGm5hKSdCryfTLCbNbz6CM9uKTmt +o2uOn+O1U/oIBZfTNJbRTkrLqVwsH8F2K4f/F1rGzaBtaTUGDpXpH5tF/85T +eFfaHAP5lkUb39CdUy4r3hEx4MOUPTaGVjgyuPzAIgYi2m43DKMnhM57SErE +QOtzx6w+9M07cimsdDEwf1khshNdcpvtHsOPaEiezvdpQR/8l+BNVRoNEelZ +r+rRQwoxYof8ooHXTdi6Ci3374AFjV40NJrdNS5FS3WU0Z6+Gg2vzbYeFKBl +dYov85BEg/Pri7rZaOob8xnyn6MgqfSzThqadu9mqGV6FFRTUekmoq+t1H4P +d4oCO/eaB7Fonida/u0qUSBzeskoEi3y8dA74gtREDweZhWC5gsb/H5zMxL8 +m4odAtHn5Ms9/dojQXRExtsPHelb93Q0JhI8GOXD36DHiFbjeZ5GwkXv8nQ3 +9Fkxbdp3UpGQdCm4xhEtHUpasXI8Ep5sDA6/QL+XIYvU+xUBBVv2y8/Q5XrW +aX3VEeDK5UpluT8fJdoz8kERkBE+w26KPkU0eavLMAL3d4nyj9FXqhjb7glH +QDZVpaU+mk6A3fQHVQTIHWcL1kY7uPKyOH4Lh0GN+Yp76GoXjQXGwnDg7d74 +oYI2HqttqvYKh1MOd+gU0LkHIlLNdMKBVGddUhptxUIdyMQdDhLWk09v7K8H +HsUXn4nCYaiUKkkcrTrtpxU+HAbJfA6jQmjS9H9XH6SHgerkBTr+/fEp+LrL +5RwGN8oPKnCjNX8a5JOohkFi/UVvdnTeQrfK1MUwMNmwa76InmXQ72/cDgWZ +u5tkLGh3Ow3enK5QqB1Olj2NJm7fM4+LDwUSZ7d3x9GfvSIdwu1CgeG2xxAd +Oqf3pVaYbCjkcWSeOYymej5LHMMUCiocG6YH0RfW+OzS/oQAx3X9EpL9/j4r +TK1sCgER0xmyA2jCuqqI4YgQ4Ix119wtx/lST725+SQEnk9cy9xA8yr1xJ+5 +gfXP/SNcQX82DsxRYAgBHcMhrd/oRWIFE7f/gsE6oaxgHl10zrClsjoY2gZS +aGbQjw2ut/4LwvLV6CeTaIsDskbSxsFwZjekaxQd2TMbHSoaDDdnAriH0SIS +3sYLNMFAmOr1oQ9Nci+mTmbmA/BIOGx3oo9khidnlH6AuwmPH7ai6WyWaOnf +foCEtpsdDehVM0YCz4cfgCTrmGDNfvyZQNNdgQ9AJTWYWI4er+lXeHnoA+x4 +uhwrRr811UvcnQiCKtOjb/LQyiNF5p4FQTD/w387E+0eqPuR3jsIGpfnLVPR +p8PHBTPvB4Gg64XZT+h510o+2atBMOojph+LztD1ebtAGgQTRFyjkWjZ5j7J +0NH3wP5tXT0UvdN3SfZ2znuQZHg/9B4tzng64e/r9yAf8ffe2/L997XS0mWa +74FOV+CLNzqJ4wa/I+d7IL0ndN8DbRaS/PgW0XvgsSX67oJusaEbPPY5EG5k +BZq+Qsc2XHT+LyMQPFYmV56jUzfd9ZpdA2FS4LfTM/TTjW7r1HuBMGZSdMgS +TcaYlxvIHggfHAUiTNFH2QcYXQgCofmhGZsh2uDRVIrNYAA0UtypeIDONPVV +t0wLAMeHs0r30ZqqLixWzgFgqcM6o4H+L9KG5PndACj4ceTVXbQtG9Ou++UA +WF+MPaqM1o8wJeb8+w7sDfuy5NAMT+Yv6ie/A2rBBNnb++uNkFc9RuUdHL9D +M3cd/Ve2yW9u5y34xtG/EUfn7F2sFk96C79o8y8Jo598GJ+JVX4L0u+nWvnR +xmLPN6l3/OH6oXgLHnTbtMdvr0R/2DP+TXtlPz57bDW1sj/whjSUsqJ1Hj14 +FLvtB6cdmR+eR8sHmPSKJfqBGxkh5Vl0mv79A7NKfpDJ9Kj4JPrklR8/I7d9 +wSZd0oAB/Ww110Mn0RfYQiJo6fbjaT5rZVX2hbQm0zpq9G70t0yCHR9QOZ/9 +7OD+eMWXsE0n+uD91+AiKTp+suRav7IPUBF6jRzYX/+myR2dO96grUgf8LcM +75fTCt/6k7zhpj7l7S20g6e9xYyKN3w8ZfRvFb17jMCE8K8XlBmdK11Cb3wv +bGdL8QKDC+I2v9CErc/9dVW9YEKwgHsOffX8xaTovTfw67Xb7+9onqFEqrnU +N1D6X2LmBDoCJsvF1LBc8eSTUfQn8fqUGII3kPxugmsYrXFZsuNghidYv138 +04eW71JmclP3BEV26eIutLHlQggxkSekS/141YbOrabnfJ/lAUYVTTea0L8n +ekbZtDyg0+LHoTr0is75sC4SDwi9dn2wEr3AzqTtmPsafqwPfSwt2//epvvU +tfuvQcYrzqwQPeyjOLhD/hoKm2MEc9GH1wpetRe4g0dAO2kmOkCf+VCSvjs4 +Vp4fStkfn9iiF76U7tDImpz0CX16KrLSocQNZtOVXsSiBT7t9toZuEHnmZNy +Uej6MvKsVzRu0KpDeiYMbXlrVca/whXchalXg8r2/798IzrF2BUOBnC1vdsf +z0ql+K6jrlDNaxTni/bVEVP6V+MC5ju5L9+gPw+SRAtbuABrBaWqO3oo7Y+7 +ywkXMJW1ueKMFhVN2IzzdQYC+xlyB3T4vfld9WknOMR0f8YOPUNnQHJOzAkI +KT7XPUULyrUQEoU4Qg6latwT9Cmx/pmN36+Ae7vNxRT9wkf24wHpV7AUJ/rA +EL3Ms3vmbJwDZPR/uv5wf/14VWmobtvDQ12CC7roQD4r4UhVe3CikSfXQhux +bhZuZLyEt8Wvf6mhe2OkKoxJX4LT2eReFbQVjbL4b70X4MKQU6yAfiLMcMWr +9DkcMY6KkUFXEye8FKB7Dj/GjD2l0DIfiI5tmdsBqQStpSR6jE9lqbvJFnK0 +gjXE0BlaGbtlZ23BbO33dSG0faQYe5m9DSwPn+TkR5Nl8Ft0DjwDqdbjjDxo +ibud+aucz6Do3RTplf35fia1xOX9FEKWbFdZ0XsrP+icv1tDYU731Hl0Xgsh +zZSYNawG/eo9i86fWR7UCLMC6/uttafQb5zZsppmLMG6+2HecfQ9z3QKosgn +4JJemHB0//z5KB1nqGwBz/KqgmnQ3MYr6ssk5rCTYO9FiX6kmkmTUG4K5vDD +gXx/PYa9yXKwNoHB63uWxOg1zoSjDpeModWs2oAAXdbMfTFu3BCa7C5q7Zau +gWGRVdNC0GMIO8OtvIle3Mr7rC9rAILMX26tonuZ1SW2CR5BKD+T+BL6mkzH +ZGnxA9g8tsv/C91zODD64xN9CLG35JxDc7IaFdyT0wWKk7aXptEiRfGrpaXa +kJFJwTyJ/pnFWW/Mqgkqc5dPjqH1U9xnH4beg/+c+459RssPCF5OIb0LXy8R +HBlAT5ESKwvaqcDe2L0/as4b8I/y2e2LHQrgX1PsZIseIQv7bJUhDSd9xmiC +0X1M4d+V/G/Aw6H6lAL0ocLUZY9xUXhz3fzWAPqIbYdKUNz/ZmSvnXPl5Wcg +f/XXiUJ9ZxXs4z7+miTc8N0eAFD1ui4= + "]]}, {{}, {}}}, {{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwV0X00lFkcB3AasY1hjSelyIyObTKIjtpdbfndqMhb5WWrkcqIQUrjmHOs +selNUoemzcaMtVaiVRlpp9pRWTUWeZm29KJFzZLtpOmsluc+RmLv/nHPPZ9z +7/f7u+dcV3F6ZOIsMzOzcLL+38sPii2X75H7izoW/KLR0tDSww/byt8Ou8a1 +tv3EM61NR/n8FEhwEaWyGmkoby7kzeZ/A2kZKtdI4rQ1sn0MrwAOLnRS/EPc +8yG5eJSnhPOpzvuEt2mw6hsUvOPVwhs2T/BTEw2VHRXStzwtZIW6lZ3S0aCu +L+hLW9YBL5VVCZ/raZDAQ6UxoweiT65d6dlLw/5h9yGN+jkgjwOzRv+ige16 +TPDySwPIlNTVfCMNRXadwsrdQ6CtfZKUimkQ90X/xur6G9bnc6b55hikvx8T +pwtGYKPDY0W1NYaGA5wox43vIHZ9o6fMAUOlfO+Iz9ZRuB7gUOvIx3CkYmrL +uPE98AaLllkJMZj1GNDt7DGYWa6s1/liWJKZlBUtpGHpJkdutD+GV3TJ19Z3 +MOy2vSH3DsYQMpz67XfSCTCo2ltfRGKIeKXwcHGZhGfP9trsiMMwohMfaq/7 +AAM3vOLcJBiWcZ8uCtz1ETwT9hQ2SzGwgY7vH5uGggZt60U5hqB3ImZxjBny +7j5qEB/H0Htvj7nI0xyFKV/QbxUYrp9o2cmnzVGW1ba5zSoMSbNlBr1+FjIG +bKCSqzEkZMivc1QslM6Pcoqtx+At8dCHxVugFPWoi7MWwwN7T2uZ32x0ZQ6L +1aDDcEt9pMyTZYk+Wq4YVXRjkJsLN3cNWKKSh8/vrOsl7+vPDt6vsUI/h9nl +tw5iGK5xLa7I+QS1pSRuP2vEULx0gYU2Zg7yifbmrGAwKFRJbfF8NqoxzG/n +mTMgKo7Tc16zUfGiM7nP2QxMrKs2VTRZo05B7nyJAwNDwwFZ9/I5yO7xqV+B +x8D5NcuduuNt0I/hNquM7gzU5cm4Ei9b9FVKXcuQLwP5MQmhLNoWRax8EVK7 +hoGV/ZW1+d2fosv6ow0BwQyUupfVdYfaoXnsYFdBJAO5zYWloVo7dN/+sPTl +DgbCnWKqO9y4aLwz5E6ihIG1+9tiuQVc5CXwtf9CykCFs9iti+ai+k2KoH45 +A266i+ciYu0RLOQc78pjQOF1T/ioyR4Ffe/YfPI0A0ljFg/vCylUMqD801nF +gLjhX37BaQrhNr9pUxUDaUeipkLOUEghyZ6z5AIDsijNM85ZCrlb3ZobSXyC +lhUpzlEobsNqj0vEaj/Th5JyCula/LeJqhkw3Z15WnOZ5O8GXmusIfMfcQpb +2igkvBWeJK9lQFW1L/n4fQq1iIqkF4mrMvWBwZ2kb1Kf00N8Y55islNP8n6b +z3pcYqBfRCX3PKEQczOyuY9YMLQgcHCI5DVbF66+woCPJtvlwjDJR5d+lky8 +Kq/PlPia3B/r9SkmDhOUX30zQub7ioKMxBl7+S7v31PoTMOOzB/qGMhZfdh0 +bYycbynPbSfOsxl8nEmT/tGBk+PEpfVVpyYmSJ/3rsowNfnvQxaSxkmSf1Bx +JYv48pbEgJwpkk833LxArFncush/muRtXXV/EDeNLTHNzFBopzpeP0X8H0l/ +WUA= + "]]}, + Annotation[#, "Charting`Private`Tag$907698#1"]& ]}, {}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 1.3563204624785772`}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + Method->{ + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{{0, 0.3617843613504096}, {1.3563204624785772`, + 1.3857285757189266`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.817283762942142*^9, 3.817283793407621*^9}}, + CellLabel-> + "(WOPR) Out[842]=",ExpressionUUID->"0f099d03-656a-4602-85f6-26b4b2405b3b"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"n2", "=", "4"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"eq2", "=", + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{"eqLow", "[", "n2", "]"}], "[", "0", "]"}], ",", + RowBox[{ + RowBox[{"eqMid", "[", "n2", "]"}], "[", "0", "]"}], ",", + RowBox[{ + RowBox[{"eqHigh", "[", "n2", "]"}], "[", "1", "]"}], ",", + RowBox[{ + RowBox[{"eqLow", "[", "n2", "]"}], "[", "1", "]"}], ",", + RowBox[{ + RowBox[{"eqMid", "[", "n2", "]"}], "[", "1", "]"}], ",", + RowBox[{ + RowBox[{"eqLow", "[", "n2", "]"}], "[", "2", "]"}], ",", + RowBox[{ + RowBox[{"eqHigh", "[", "n2", "]"}], "[", "2", "]"}]}], "}"}], "//.", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"\[ScriptCapitalF]sol", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", "\[CapitalPhi]Rules", ",", + "GlRules", ",", "GhRules", ",", "DmetaRules", ",", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Theta]i", "\[Rule]", "1"}], ",", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}], ",", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n2", "]"}]}]}], "}"}]}], "]"}]}]}], + ";"}]}], "Input", + CellChangeTimes->{{3.8172700941895447`*^9, 3.8172701434323797`*^9}, { + 3.8172703209660187`*^9, 3.817270321333618*^9}, {3.817271463286846*^9, + 3.817271467845633*^9}, {3.817271562977268*^9, 3.8172716016608887`*^9}, { + 3.8172717298008966`*^9, 3.817271734832752*^9}, {3.8172728813729362`*^9, + 3.817272883219574*^9}, {3.8172756877299633`*^9, 3.817275699753543*^9}, { + 3.817276014465931*^9, 3.817276016863351*^9}, {3.8172809741886683`*^9, + 3.817281030128274*^9}, {3.817281198191544*^9, 3.817281205016101*^9}}, + CellLabel-> + "(WOPR) In[716]:=",ExpressionUUID->"868d07c1-b3cf-44ff-a070-78c2a21c388b"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"s2", "=", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"#", "[", + RowBox[{"[", "1", "]"}], "]"}], "\[Rule]", + RowBox[{"Re", "[", + RowBox[{"#", "[", + RowBox[{"[", "2", "]"}], "]"}], "]"}]}], "&"}], "/@", + RowBox[{"FindRoot", "[", + RowBox[{"eq2", ",", + RowBox[{"{", RowBox[{ - "\[CapitalPhi]Rules", ",", "GlRules", ",", "GhRules", ",", "DmetaRules", - ",", RowBox[{"{", - RowBox[{"ARule", ",", - RowBox[{"h0", "\[Rule]", "1"}], ",", + RowBox[{"\[Theta]c", ",", + RowBox[{"\[Theta]c", "/.", "s1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[ScriptCapitalM]0", ",", + RowBox[{"\[ScriptCapitalM]0", "/.", "s1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{"\[ScriptCapitalM]1", ",", + RowBox[{"\[ScriptCapitalM]1", "/.", "s1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"gC", "[", "1", "]"}], ",", RowBox[{ - RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}], ",", - RowBox[{"eqB", "[", "testN", "]"}]}], "}"}]}], "]"}]}], "]"}]}], - ";"}]], "Input", - CellChangeTimes->{{3.817214603618495*^9, - 3.817214613562722*^9}},ExpressionUUID->"527153da-c467-45ab-a51a-\ -b1545d520630"], + RowBox[{"gC", "[", "1", "]"}], "/.", "s1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"gC", "[", "2", "]"}], ",", + RowBox[{ + RowBox[{"gC", "[", "2", "]"}], "/.", "s1"}]}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"gC", "[", "3", "]"}], ",", "0"}], "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"gC", "[", "4", "]"}], ",", + RowBox[{"RandomReal", "[", "]"}]}], "}"}]}], "}"}], ",", + RowBox[{"MaxIterations", "\[Rule]", "10000"}]}], "]"}]}]}]], "Input", + CellChangeTimes->{{3.817127065230098*^9, 3.8171271351270227`*^9}, { + 3.817127221800994*^9, 3.8171272630331593`*^9}, 3.81712740736408*^9, { + 3.817127491557787*^9, 3.8171275000934143`*^9}, 3.8171275721198053`*^9, { + 3.8171278100273*^9, 3.817127849603622*^9}, {3.81712788866899*^9, + 3.817127911532996*^9}, {3.81719706565886*^9, 3.817197105498705*^9}, { + 3.817197893385504*^9, 3.81719790689716*^9}, {3.81719860001385*^9, + 3.8171986053976393`*^9}, {3.817198639295259*^9, 3.817198662766809*^9}, { + 3.817198876170909*^9, 3.817198908051071*^9}, {3.817198993133552*^9, + 3.8171991533442287`*^9}, {3.817199209928318*^9, 3.817199241960556*^9}, { + 3.817199495862*^9, 3.8171994994689503`*^9}, {3.8171995495740423`*^9, + 3.817199605718575*^9}, {3.817199652392643*^9, 3.817199715256566*^9}, { + 3.817199865131709*^9, 3.817199880715331*^9}, {3.817199936333564*^9, + 3.817199987661281*^9}, {3.817200026262958*^9, 3.8172000468302813`*^9}, { + 3.8172001570412397`*^9, 3.8172001598323307`*^9}, {3.817200236641964*^9, + 3.8172002385137587`*^9}, {3.8172002992189293`*^9, + 3.8172003208190928`*^9}, {3.817200415813776*^9, 3.817200416404771*^9}, { + 3.817204016980706*^9, 3.817204076853834*^9}, {3.8172041381029387`*^9, + 3.817204203727563*^9}, {3.817204234304641*^9, 3.817204255961961*^9}, { + 3.817204390931651*^9, 3.8172044426360817`*^9}, {3.817205022823312*^9, + 3.8172050577028513`*^9}, {3.817205106256721*^9, 3.817205106559868*^9}, { + 3.817209919633216*^9, 3.817209920608328*^9}, {3.817210044562058*^9, + 3.817210053786522*^9}, {3.817210136268099*^9, 3.8172101405721073`*^9}, { + 3.817210451098201*^9, 3.81721045318543*^9}, {3.817211412418923*^9, + 3.8172114542674837`*^9}, 3.817211713768137*^9, {3.817211774217906*^9, + 3.817211820329513*^9}, {3.817212210577387*^9, 3.817212210720683*^9}, + 3.817212495142112*^9, {3.817213148937108*^9, 3.817213155649081*^9}, { + 3.8172131921538963`*^9, 3.817213198714007*^9}, {3.8172140038972063`*^9, + 3.8172140040882683`*^9}, {3.817214050225759*^9, 3.817214064234343*^9}, + 3.81721453132269*^9, {3.8172191352175198`*^9, 3.81721914521805*^9}, { + 3.8172192016924553`*^9, 3.817219202057729*^9}, {3.81721981372462*^9, + 3.817219818492318*^9}, {3.8172203944673862`*^9, 3.817220425613224*^9}, { + 3.817220485354929*^9, 3.817220583732532*^9}, 3.81722086630956*^9, { + 3.817267355013483*^9, 3.817267405354693*^9}, {3.817269076393395*^9, + 3.817269087009036*^9}, {3.817269120326481*^9, 3.817269121269062*^9}, { + 3.817269939213081*^9, 3.8172699495241137`*^9}, {3.8172700164421453`*^9, + 3.817270029113059*^9}, {3.81727016313024*^9, 3.817270185946486*^9}, { + 3.817271080438819*^9, 3.817271082380143*^9}, {3.817271475068852*^9, + 3.817271483911096*^9}, {3.817271617556754*^9, 3.817271633205493*^9}, { + 3.817271726594358*^9, 3.817271760456759*^9}, {3.817272895451928*^9, + 3.817272906053697*^9}, {3.817275703982615*^9, 3.81727574191495*^9}, { + 3.8172758130790777`*^9, 3.817275845654808*^9}, {3.817276032115261*^9, + 3.817276037209382*^9}, {3.817281045413492*^9, 3.817281106435656*^9}, { + 3.817281187208206*^9, 3.817281238944985*^9}, {3.817281276487254*^9, + 3.81728128676392*^9}}, + CellLabel-> + "(WOPR) In[723]:=",ExpressionUUID->"7c02fde8-7f1a-472a-9e7d-0e95772516eb"], + +Cell[BoxData[ + RowBox[{"{", + RowBox[{ + RowBox[{"\[Theta]c", "\[Rule]", "1.2324003216794353`"}], ",", + RowBox[{"\[ScriptCapitalM]0", "\[Rule]", + RowBox[{"-", "0.032245651188134536`"}]}], ",", + RowBox[{"\[ScriptCapitalM]1", "\[Rule]", "0.933438837044559`"}], ",", + RowBox[{ + RowBox[{"gC", "[", "1", "]"}], "\[Rule]", + RowBox[{"-", "2.7666956506400777`"}]}], ",", + RowBox[{ + RowBox[{"gC", "[", "2", "]"}], "\[Rule]", "3.0942385597019992`"}], ",", + RowBox[{ + RowBox[{"gC", "[", "3", "]"}], "\[Rule]", + RowBox[{"-", "1.6831403018575868`"}]}], ",", + RowBox[{ + RowBox[{"gC", "[", "4", "]"}], "\[Rule]", "0.35760302968040714`"}]}], + "}"}]], "Output", + CellChangeTimes->{ + 3.817281106988557*^9, 3.817281187737056*^9, {3.8172812309684668`*^9, + 3.817281294710451*^9}}, + CellLabel-> + "(WOPR) Out[723]=",ExpressionUUID->"6b22737f-c85f-4c36-9b44-d9e694bee115"] +}, Open ]], Cell[CellGroupData[{ Cell[BoxData[ - RowBox[{"ss1", "=", - RowBox[{"FindRoot", "[", - RowBox[{"testSol", ",", + RowBox[{"GraphicsRow", "[", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}], "//.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Theta]i", "\[Rule]", "1"}], ",", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n2", "]"}]}]}], "}"}]}], "/.", "s2"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", + RowBox[{"-", "1.3"}], ",", "1.3"}], "}"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"g", "[", "n2", "]"}], "[", "\[Theta]", "]"}], "/.", + RowBox[{"{", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n2", "]"}]}], "}"}]}], "/.", "s2"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.", + RowBox[{"t\[Infinity]", "\[Rule]", "100"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", + RowBox[{"-", "1.3"}], ",", "1.3"}], "}"}]}], "]"}]}], + "\[IndentingNewLine]", "}"}], "]"}]], "Input", + CellChangeTimes->{{3.817270250152678*^9, 3.817270266945251*^9}, { + 3.8172714956480207`*^9, 3.817271502761599*^9}, {3.8172716647273273`*^9, + 3.817271668552335*^9}, {3.817271770580183*^9, 3.817271775109421*^9}, { + 3.8172729204002857`*^9, 3.8172729476159267`*^9}, {3.8172757499631653`*^9, + 3.8172758078877163`*^9}, {3.8172758601082687`*^9, 3.817275866449978*^9}, { + 3.817281121853549*^9, 3.817281145460658*^9}, {3.8172813100145817`*^9, + 3.8172813131216908`*^9}}, + CellLabel-> + "(WOPR) In[725]:=",ExpressionUUID->"0e89b49c-ebf1-4e9a-800f-62ec63f935a1"], + +Cell[BoxData[ + GraphicsBox[{{}, {InsetBox[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], + LineBox[{{-1.2999999469387755`, -1.2110078507365805`}, \ +{-1.299202533406545, -1.210265967439999}, {-1.2984051198743145`, \ +-1.2095240898427762`}, {-1.2968102928098535`, -1.2080403518124079`}, \ +{-1.2936206386809312`, -1.2050729448741262`}, {-1.287241330423087, \ +-1.1991384112800034`}, {-1.2744827139073984`, -1.1872704966221705`}, \ +{-1.248965480876021, -1.1635395471734082`}, {-1.2365508835190653`, \ +-1.1519965232134384`}}], + LineBox[{{-1.2348927202537592`, -1.1402144322706482`}, \ +{-1.2332294033120883`, -1.1386522868190403`}}], LineBox[CompressedData[" +1:eJwB8QIO/SFib1JlAgAAAC4AAAACAAAAHB9rC4S0879SiryAijHyvzl5jJAW +dvG/fSov0i9G8L+pAe2oDZXwv5Z9bbpu6+6/sdjTlxKG77+hM77BMGftv9zf +01Tfvu2/dBP7sGzD67+heqZH+f/rv4/TGWjuJ+q/5tmxTxxf6r+7yWnZJKjo +v/dqw84Um+i/V1k81IcH57+JwA1jFvXmv/ageyHYgeW/tKkqLWVX5b+VkFSo +7wLkv6vETW6JluO/8z5opGdi4r8jpKnEtvPhv29V+Oi93OC/Z7ULkrkt4L+/ +BfzOp2rev4i0gCoT4Ny/oJzORWkp279Ch1tbxaDZv5YvVtfRHti/lL1CeiIb +1r80Y2wP8dDUv+d8m8OR0dK/ZmgUlUu60b+lPwH2V4POv656YGshwcy/4tMV +PMGEx781R//kSCvGvyB6DddO/sC/0yiz/nQFwL8dzzucZNazv/C6fruItLK/ +8DeL0NCBmr8a0jKp5P6Yv2JZhhVKTJk/tKp9IgXblz9MbLSG7V+0P84/ikUz +NrM/H48g7z++wD/aDdGiLJK/P+cgzj4z2cc/ZYU3C9J6xj9JZDG38dLOP5c/ +p2UKDM0/1cpY7UWq0j8RuNByWpXRP+5/DBFoMdY/kHrsINrl1D8GrE4KeHzZ +P53yZSHK/Nc/67Drl+223D8aiqHt5wLbPxwpvhvcG+A/n4QSTkpJ3j9CtU1W +OL7hP7OZ7qfnquA/nA/XGb+D4z+0/xJ58VDiP3WlJ8g8K+U/XbkGOgLa4z+1 +p6VAbcrmP+c1sJFmWuU/KXgdQsiM6D/mrpH1VvrmPxyEXC4aMeo/H52u4MR9 +6D9DXpWjlvjrP0TL2wwiIeo/0aT74sW37T+WzZtf4rzrP94mKQ3sWO8/O8Zd +JYM97T+QOyhgno7wP2EP4QqG3+4/cYEfL8Jh8T/VgTlgVjPwP4V9LWO/MPI/ +sBL3V17z8D+zYLjbURHzP4CPgfPvw/E/9P+6vZ2z8z/2H+s0sjDyP7hyl0M= + + "]], LineBox[CompressedData[" +1:eJwBgQF+/iFib1JlAgAAABcAAAACAAAAPO+Kc2i68z93MiwqEzfyP/J/en2H +5vM/q+p9Th2K8j9CHk4xL+rzP0mhRlWDjfI/5Fr1mH7x8z8woutpT5TyPyjU +Q2gdAPQ/++BGr+eh8j+wxuAGWx30P05SZKgYvfI/wKsaRNZX9D/Lx+pFfPPy +PxFK7vd9W/Q/kc4ikuL28j9i6MGrJV/0P7nWeOBI+vI/BCVpE3Vm9D8/jHeD +FQHzP0iet+ITdfQ/AYCM4q4O8z/PkFSBUZL0PzIthAPiKfM/IC8oNfmV9D8O +QcRwSC3zP3DN++igmfQ/mvQF4K4w8z8SCqNQ8KD0P9pzh8R7N/M/VoPxH4+v +9D9S3lOlFUXzP6chxdM2s/Q/LutxInxI8z/4v5iH3rb0P85ChKHiS/M/mvw/ +7y2+9D+ZUH+lr1LzP+uaE6PVwfQ/GctkKhZW8z88OedWfcX0PwEZOLF8WfM/ +jde6CiXJ9D+fofc541zzP951jr7MzPQ/Sc6hxElg8z97bMNo + "]]}, + Annotation[#, "Charting`Private`Tag$891482#1"]& ], {}}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->{{0.5, 0.5}, {0.5, 0.4999999999999858}}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{-1.3, 1.3}, {-1.2110078507365805`, 1.2110078507365805`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}], {159.94490842698494, -97.50736892665735}, + ImageScaled[{0.5, 0.5}], {299.89670330059676, 185.72832176506162}], + InsetBox[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwtmnk01N//x22JUJIkhTZLClGRFq9SUvYUpZRUtpLsu0nITmhB9MmWrUJI +sr3s64ydsZOl7GbGKFv6ze+c7z/zPo9zX3Pv6z7v877e957z3nvviZ4pCxMT +Uxfj5/+fg45hpUQiHfneBgQanXbHgDrP6IB6Ok495mLbL+SOR3c9trtQQ0f9 +jZM+5YtuGFCmIV6MdPR20OPNT3FD+W2nmFyK6SihPvF0v4cb9ptK9R79Tsdn +ui+LonTcUI6LM+xjDh2DS1Layimu2H97ydw8i45R4+ULoaWu6Jf969z+T3Sc +ZV6xCg1yxV79msW3H+jYvTHc6YqwK/rG+9wOiqYja4DZ1DZZF5RZsFO8+JqO +ocnGlQnzztijem8rSyQdC8XYPn/NdEaZ6bPVrsF0FDL7m/hG0hnJx9cPWxLo +mNcW3nqR2wmlGl3W1B7Q8aVp8Wb1WHvsELboYjWh45edcimBl+zxqc31bLxN +R52q5hsDdDvs2K7wQPE6HcMmGxKH1e3Q8+5Co7g6HRMSNWakZ22wZfFx7IYj +dMxsf+sXus8KHffcP1m5uoChLn6OG7nuovfTs3hiaQEvGhgLBFvewfBB4QuZ +9AVM5Z2bcys2wk9x3VoxswuYlV0/K2RiiGOC2iZPhhaQxflhOmeaHl7bqhSw +q3IBt16Wj6WyHMdjLFu67IMW8Pn36Ub9zmugYjJzc9JvAZt0Wj+mWRqAbln9 +0B2fBXToX/3Fv3YdrAi+k5c9FlCq0PgA865bkLyyvCZqvYDfesz5ye/vwraF +sf3EKwvYTPfrzw0xA9pooe2BnQuo3zz6ezbbBgLzKji6ti/gjdQUm1+rNrDn +ecN7f74F1At+uE/2oi1oi/eSprgWkCZTkJXUbQsZFssHv6zT8PbUk6E1uh2Y +zCqOnBmj4UDRlznTTY6wVAKu88M0DN8RrZl12RHCwtR4EwZoSCuqjT4W4AjF +steV2cg07CkafjLP4gSCdk5vG+pp+NxVqHjzvBO0/M7Tu55Fw9i6mSatBBcw +ry2e5PhEwx+vpFiX211gParKqzCN0Z+BQmvHBlc4rNSRKZxIwyCynuxuc1cI +cF/YNPaKhpb1F8v7Rd1AVHM14XUEDZUs/j76p+EG+btZldTCaHgg22WXjrMb +jJXwmWf405DJxlzQodENzjLJV9q40ZDHn+9xo6U7kFuUbu5zpqGvlSWT1gt3 +sE44R223p+FjFVmJ5Vx3iFO5Iqr4mIZ2HxzPt6y4w5KvjftfYxp++aoh4EDw +gBf6LnxZRjTUsK8PuPDOA8TFvdLvGtJwvGVlu3KRB1yrfUGu1KMhpspu+ET3 +gCzOrKNBqjTklHnsZ3PbE6yf7jPVVKHhd6W1fbyOnnB48fWbzUDDdF6TyOFg +T0gb9liOPEHDM9WapG3fPMHMgCKlf5yGvE7p4U6NnnCAeN9ohzwNX3JbCmwa +8oT4b+oYe4iR354F20pWAtyRLqXclqTh2Py7K5P8BNidJLdvjxgNQ3h1Np4V +I0BMmODzZBEatm85Lup1ngA32ELyzXbR0HqTd6zlFQIIuP37JSlIQ7bqyb2+ +dwgQafpT/fNWGorCs9eaTgTQ7TP0eLKZhnsnz39c8SLA5iukz3JcNBxKOLy7 +N4gAxJqzQwsbaagaHM80/ZIAQafzePPZaBgsHWknHUeASzkSKi7MjPmUO4Qm +JBGAXTLW/uQ6FUeyZa3VMghQ9W7zh7UVKhYq8R0VzSaAzzbvrtI/VHQ8XLsq ++ZUAKoGLG5/RqWg5eWnywXcCMP2zUDpPpeKsdadwezEBSh36H26Yo2Jl0kix +PRLAY0onrnaKitJ5fNMXywlw8m4lKfAXFb8nSTZpVhBgqVPhn8YYFZH5b8hz +BudrZBzZ/IOKMmV2OlRGvEO58L2WASp+kLNSDi8jgLxixMvIXirGHS3zuVdK +AMontuprZCrKOcmqWxQRIHOfy2+BDiomTRiWJHwjgFX0tERPCxX9ruRxbskl +gNRmY8NYEhXzWQlG2Z8JMOHTFnS7gYrDpfmjz1MJkLKsWixaS8Xcj/xNL+IJ +YPrk++yPSiqeD15Rb4omwIHxw6LJZVS8Pf046Fw4AUZuxuualVDxdTJPyaQf +AeJbtnlLFlIx5B4Hf60Hww8X/XOn8qnYoL2tvMeW4YfilbFPuYz5UO/+3mtG +gF45a4En2VR8vCP653tDAhgI67supFPxwh3rqjPKBOB/WZfxNYUxv71Xdt6R +JUAbx+l+5yQqrri9/JMnSgAd+j5Yi6OimJDwvo3rnrD54Rub0hgqZt6mkllm +PIE4xJno9YaKWlyyU8d7POFSI4VtQzgjP+blJZUvnsB+7oFCbQgV79kZ3hWO +84SqfLJ5YCAVrT2Ll2X9POFsYmkDjw8VF1/0Rq9f9wQl15BwAScq0h613lej +ecDN1VmrSDsqzjGrXQzr8AAPT53Lm59Q8blGN8fMVw8oe8bHwm5BxdXNQqdn +HT1ALSjaftGQim57WDJ4pt3BgntFx9aAikTBrwN8Ne4QFHbr8KweFf8a9rLK +xbtDU6TI+JgGFTuaxCS/X3EH/dhkg44zVFRz7M77l+4GTsLsR3VPUnH/asr9 +dk83iH5vvoWoQMVnTKd+l+u6QX+SVF2lLBXLso/mUBZc4f6nbKXcvVSkNpHr +3sq6gm1J8e7IDVSsflCUquvhDJEgsszDQkU4W3hv5pwz5JU/7Qxcp2CGEUkt +hd0ZlqpVwp79oSBudVd2DHWCp011/2wmKRgJFvd8wx0hdKhjRIdEwdqnpGp/ +K3vINFHAxnoK6iaM7hU8YA8to1GxajUUJNzfRa7rtQP+iZvXACnoN5P8KVjV +DmIpw9UyXyi4nhZ7PYbXFtKZZ9N4XlMQMu9kVy9bwbVFl6jqCAo+KLdojLph +BesTbH6eYRTk8F3rGv/6CK617L4/609Br97vpMVHD+Hff5rCJDcKhn+r3T9e +bQ76pz9FhNyloPTEBlw+cg+YnR+5cR2mYCV7c+GxUDX49PCPRaUkBbWdxo3n +VS+AwR2f6+5iFGS763c1eOksfFKNPTYtQsGOv64GNW+OwXX+xrmGrRTc6jI9 +cb1KCG/e16/hn5/H2XBp+litDn7pbo/i85vHqkX5gYir5tjUXduwSJhHZaLH +eLmVBU51F/3tdp7Hfu1ot0Z/SzzQk3T/veU8dihfyH5c+Qjf9NjLHtaax5dJ +T0ufStqgR++2WlX+eSSaOCrTRxzwYv/V3y6Jc7j9m6R+B89TvN+vdtAodg4t +StnjMwqeolf/KSN4NYdl5YL2p+W98Hv//ooNfnPY4jfm/nTICw8PLIRGWs7h +k7wDkoPgjVsHX4p9OjKH6g1zXIcEn2P/UPu1odJZJH/MK7WTDEY1qffFo99m +sfC8ws6J4GDMcXh4YCJ7Fn1OOqr2zQdjACcznZI4izc4RnpPfQ/BY0dlXrL4 +z2J/E+/D6SthGOoX0CqmM4t8pX9jokjhqCx9RttqaAYj+LepaKq9wnRnjnyb +7hmUcOeb4Xv2Cvkr2oUdW2ewH1ZtdhW9wimDh7OelTM4NqV8lyb7GqO8okJe +pM5gw7NbQoW73yClndqQ82QGezaqOFewRGOCW4ra8r9pDH3XNXWcOQ5F0mra +HZen0eZh3K0J5TiM6/xpTKNN46mf9f86PeLwzREJl+nxaWwbjeG6vxyHQT9T +0wYap1E99up51cV3aKeXzlkRNY0cnvLjckvv8YLUp8Yg2Wl0qRy4/Hh7Iv7s ++aKz23gKi9aNhycTUlBqT6Yc940pdOsVXnNqTEFrs4xta7pTqPH7+Kr4Ygr+ +oSWS+1SmcEHJyG/+UipycL8yjhWfQu3cGvpeWipKKTs9EZqbRIXiGmM2jXS0 +Tjz5QtBzEldiGiRtBT7hn4eVTfyxEzgk1VlyguMLBpbx3BdY/InMWpOnb538 +hnnpUtKm18dxW+qD+jPDJfixSss68M0ojvbmWPtmVOD+5PSq/IUf2M77+VQ/ +Ww1aHB5q/m/mB15RzMgr4avBzDz+Pr/xHzjm6tgftacGT1Q/pRqQf6A7KP44 +froGNX/qi/wp/IF6pppGAvY16CDJ4qLo/QOThKpW9YdqsPrTzUMFvD8w9tOH +CYUvtbjpeLhCPOcPTJ56P8VaWou6JdXnAlh+YERT03BNQy32ko7cuEEfxhqr +Fj2ZsVqcm2N/vkQeRsUN52a9BOpQQC538MT7YZS8zbpxn2sdmn/livwuPYyk +hhXhkuP1uOIv2FYhPoznmH5kTJ6tx7CbYnxE0WHk4PJe4NSsx6//lCMHtw7j +b4OLFmL36nHDq7EDG2eGMGN7aW51aD2eLvkiFusxhPlRW0LejtTjxy2aEpXv +BtGFf2CU27sB2/JMUztfDOL8BntKUHADLhk+lZh4NoifHFQ0V1414MXkHAke +s0Fc9c1N+ZTagCMndkpelxlEFh7/gdvEBhS691NyunQAd3Kwy43wNWJAnpfU +tuF+FLVM3UF/2YjtohcWtrf345VmnfA/bxtRJHhjsWBNP9ad49edSWjEPJMw +LZFP/Wj8s/dxelYjDm2Oszno0o/j7VZJNg2NqGD5LR94+3H42qKExN9GfNbh +9lSFlRGfZ/HtBCsRiaB8SfV3H7qYq387yUnEewLVPer9fbhmYt+xZTsRwyrb +1vTT+nDciXv330NEHBeeU7E624cHO+Qauw2IeCTwC9eTo31oxyFiOX2LiG50 +hw5b8T78WyCVOXuXiLyNq6bO3H14Rv/i37KHRDztwhno3d2LDplSdxM8ieg/ +SrzyvLEXL1fc+CXrTcQ27XChgNJerJu2yv/sR0QLsR2fQpN7kbOt/q/TCyK+ +ajvQHG3Ti0X31OaV44k4dGYiKvZ+L85zSNtfTCaiVPrHu/8Z9GK8ccTo6TQi +lj2VpyWd7sVmG63bv7OIOH347PYsjl4kD9/weltKRIVo1sEvqz14jCn4qGAF +Eb1Ya1Py5nqwqZ7k7ltNRIFerROFHT343ZEtQZJIRBX/W7eq43uwx0lP8L9u +Iu46QG7OjOzBIVsexaY+ItLL9C5E+/ZgkY6V4+QgEVNXLks/suhBHZY3wj/G +GP1HVSdcu9mDAhr9j0t+EfHmsXMCypo96BhZkuE7RURu6xP/eI/0oJmwTkH7 +PEPvTXn2K3t78GrmSZtbNCKWpspOjG7rQSauE6MkOhFtf4i35v/pxs3Hp+rt +lomoTkhUjZ/sxse678Q+rBLxwC6RwsC+bqxlM+au+EvErmvbk4ywG6/6CWkW +MZMwixq+4+KXbsz82h0axUrCgDDuENmkblS1kzl8ZwMJT9WxOrL4dyP18Jkr +GRwk5Dd9Ojnt0o3p8T7lsptIjHPO6u3Oh90YXuRh8p6LhPGnaBfTtLtRIOs7 +25nNJHTrflwUcbYbv6wa0B5uIeFVx0lZd/lubGK7OebNS8LDfKbJDw50o9iK +bIvvVhKyZw0Lagt048014482fCQc0jAKVeToRsmjwY8ubiNhwQSZee8KGTVH +rdjZ+UkY+fyq06YZMl7z7bXNYvCjfc1TCwNkVOiqTFLZTsILqG480ExG4m/5 +SGSwiFFNe005GTmdNY+KC5Dwz9K5S9m5ZDxqo+PpxOCW1yXFMR/I+D36tVk2 +gzPkleR8osi40fDleDuDfZrzPlgFkvHAMJkyzGAjqyNCBu5k3HmC5ymZwQqc +n8LgMWP8m0t+3xi8JUWC9aAxGSXOu/7zYvCESpIz3xUyzrAHDx1lcMWQyMyq +Chn9xs6LtDDyi/V4e3f8GBljDTtz9BnssFOgs0mcjB3HQ15VMeannR9xuUCQ +jDsyWwp3M1jiKk9pwiYyvnkiLnyHoQ8TJUA+eK0Lc3IO5wYw9OsJYUt1mOvC +DK3/HOIY+uYc9Np1Z7gLpWqvGMYw9A+pWX2h1taF7yyUDJ8y1sf0vjObXFUX +3tG9b6XNWD9lpgUXofwuLPZZDmLnIaHgO+tZ1rQuLGRS+ZzKWO+GLtOuruAu +PL89bDCZ4Y8k+x/qZZ5d+GJfxiDTRhJ68N7G9CddaOKfXqXK8JOs+rU0j6td +yH+0UCyI4T+OX827zVS7UMCiJjLwHxFHfDQidBS7sIv6sd6W4ddXJSpu+3Z1 +YVO6vNvaEhEj9lgorvF0oceflqXa34z65BNK72TqQuM+WcmnjP0QeLnbOvBn +J+6PJvpmM/YPofPxfcqXTmS2jv0oMk5EjxMv9zQkd+IOGRRTGyGia2zBQFJU +Jza37pS6NUREBxPWG9c9O9Frsg1Ve4hoORutWXqJ0W5ASjvA2P9muqWc0ac6 +sUvI729aHREf5I7W2Mp04hthlyJBRr244ypzToy/E5eb5B8UlhDx2oaq4yFD +HXiUIMLOnklEZeF5kZtOHfhHnx2Lgoh4you//6hlB3IeV9y5+JyIJ0aVYniM +OjCi5OXHnc+IeDTdd1v5uQ58P/TxyQFnIkoeF+KQ5OnAvX/MTp69R0Q+LVXq +YlI7mqoaaL84RsQt2Q8zm9+0ozfPwCV3GUY92Rb+KD2wHd83upnoSRJxY0/v +uNGTdvSsSpos30XEtQc2vZUn21GryPR8CjMRf3nEVka0tuHFMXOyT30j2m11 +PaxX2Ybny3kivcsbcf2DwWu+r234pra0yuJ7Iwo0bzV/Gd2GluUhr6fTGvHC +3oBNr43b8NAoE2ujXyMmVjtciZ5txSuZ/pa0M40oc1Ov8MZQK7rX8WlYHmvE +wjnZ/TtbW1FCOqasVqoRW3dM02PyWvFN7yb7UzsakemhSXSseyv2VZM01+ca +8PZm7aH/OFvx5x7XZXpMA04kHrpkvNqCzEMjX3+GNaCDIucX0dkW/MwzplLm +04Ahd6u841tasFRZY0TqcQMW5pwUT4xqwToxsdpB5QYUvC7x+INYC558/3lH +zUA9fgDm39d9mrBImkYt46zH3xE7Y2+bN+GvwgTVldU6hi5yZ+9rNGEqbcdu +4bk6nAi4F2S9rQmFBeXtRdvq8HBbpcjzJEZduR5UsiOmDvMe+KnlVBKRbfNc +6eC+OqwK5IrhZmvEaypx17jFa3Gkffvpct9aNFKu6bObrUL3nGd2qQ9rkck2 +gpzeV4X8EbNpobq16HvGvbe5vgovaldvv7m7FrkPUSQmP1RhRp3DPC23Bj0f +Rqnq3a5Cu5L2xAOj1agwR5rlrK9E5tQIzoBzVWg+upX2+FUF7nHjIWuvl+Eo +iVDgtoYo3Hwq7kFXLo6Nq5eRrXORohjc0vLsLfqdzsg9Z/cW7xn6bVfXjIG6 +JwHKlcoxoGmV5zdrnAdnF+Lf18/nguiLPfNQWgYX+X02a0QimKkaF3/sLYMg ++itP93LGNW31XeCOP2Wg7rHJP4RxbTttsevAvGw55OYwD0hIlMGNcwKG/yWU +w9unPBQp3zKIWOCqXPOtAFfpq8PCp8qB9cafN981qkAwNvWfWFwFqG9WeCBm +UQVJGgLi779UQGSVg1yEbxWkFUVzstdWwB45WqNFSRWMup4ojqNWwOlNs0yC +stXAGilcNa1aCY7FIw+d+GrAfNszfabpSvi1p0n5aE8t9PdypwWIVwP9c9YJ +ocVaiHexHz6jVA0spyLkmbfWQc70hMWQRjWI6F8Tb75UBxHmR2V/2VTDtcBe +nkcFdeBXZr+6sbAayqg/+xOj6kEpxPaU96UaiK7458Zn0AgDh50OrenXQorO +D4dl20YY0wge32NWC7n9FdbDoY0Qk1CjecSpFpp+P7+XWd0I10ZfLG5+Uwts +h7jV1Y8TQfpmqVtDRy3YvBTc6c1Pgls6z1nltOvg8gO5b9S2Jri/lmnvfKQe +Npui6NJME8yZVyz/OV0PHaZaAevszXCT2D7x4HI93DW3NOQ61Qyvbm+YZL1X +D04PE1YPJDUDm+3OOv3IerhSwLHnk1ILvOw4vX5+vh7yCnSuZV1sgf31/wwC +VupB4PubgJyrLbBt6DQWbGiA/u8HqAWPW0DjYHfGwK4GMC86W1Gd0AJpw+ZW +imoN4Fnq8mCIsxXqnTpbxd82wHApRo8ItAL6s26WSm4AFWQnje9vBbWUAoGd +mQ3AUfbq+MyZVth2bLtXYXkDvCzPZl+2bYXeG7tvbJpogPSqiTS+3lZoeb3/ +Vd+RRuCulh3Y/qsV4qdLZN4qNYJ1tdPWnfRWaNRNsLyg0gjHatjcRDe3wYdC +nYJbVxsBa/doHFZpA17JWL/XDo3Q2XBjVjWjDaqslmKP5TZCRswvx3sFbVBs +f5VFq6gRCBZO64SaNuBStjXUqmwEcfZXWwpG2uDzQxHyhvZGcDnXLCe1qx0U +yxVZDaiNsLtA1WlzSDtsFnm72/4gESh+HetSbxlMjHfbdIQI1fr3/dXS2iF8 +Rp4YqEAE6wWvaK+qdlD6PK199jwRUKa4kLbWDk1qW9dCbhHh3gf5f12PO2DI +88aHFH8iKDiU+y+4d8DdCi3e0hAicJ3X5eUN6oDDBUHhJRFEyBt+vPdySgd8 +2eQ24BBLhA27088XDXaAwkFxjurPROidUiSSZzog75m7u3AOETK/11yjr3RA +K7vlnjv5RDC4PmYqvaMTnA3ttkSXEiEtUjTgvU4nKFx6szpHIoKHSSZv8e1O +CJWTdwhsJcKVI2diuh91grnaaRXuTiKskG5mbA3ohEbDYlpDHxGa4iblZd50 +woGdoUPsQ0RIfORSpJ7cCcFPnikcGiGCBucbok9ZJwwfbD4hPUGEPd0H9OOb +OmFV6cn8pmki0FNyB4r7Gf3tLhNvnSVC3IXWucWlTqhjuyC7Y4EIc0+5t1rI +dcF545FrQWtE+C+AqvtKuQu+6QaJBK4TQSeiK7xMowt+Ckm+tWciQXZiPO9O +sy6wOBZcwsVGgrsfn+uq2jPi19Ntvm8gAW/ew3Bbry6442U7o7eRBLbVx3gb +3nZB8P04/cubSLCvaafu79QuGE9j10nhIkFb1/qLfV+7oP+axMF5bhJ4D402 +a1d0weF0xan9m0kgP1G3xb25C95d94u+sIUEI5TPOqn9XXDD0fnkFV4SvFyO +fNE+2QXHrH27Lm8lwQUWl+Z/v7tg7M8pexk+EtA33d5ymI0MLBtUdvxjcPI2 +FZ0bW8mw+k2nvmgbCfR3S7zwFSHDiP7R8AeMusAuxt2cfYgMgkotdssMzpem +bh44QQZqpYiL23YSmCl0aXNeZLRfPZz6i8ECUBR2/CoZ5mV3bTwnQIIatfgm +k7tkaPbe996Pwc66zzeHPSYDv2qYUwGDJQ0fahe6kUH6KL7qYnC3iU7YT38y +WJVKMf9gcMDDY018r8kwvH6zknEehhP2OzdDIiO/5LmRQgZPuK9rPcoiQ+ZU +tHkQg2N8R0OjislAer7X8CKD1UPrSJX1ZLgd/QDnGPmtvP7MQ+kiw8VEvUQf +Bmf8F6m1e4wMenYUzg0MvpXqHHqJSgaRHdfX7Rjz5c42Ijmsk+FPc64/iaFP +ccE5ngSubnjzVy2Tn8FW5eJaJMFuqOOzdLvE0HN3A1foslg3TPl60S0Y+nv2 +dXLrne2GeLY4fhvGesmMFWoStLqB6tHVaMBYz8GZ9yEZN7uhd6PDVSkeEiiv +W3KzOnbD9Ssif6IY/phj19GU9e6Ghe3/DshzkuD9lmMht150Q0L31MXvDD8x +7V3nykvvBqkyk+Awhv+yD45qDOd3g4eHUVk/CwlM5OuCuau6wfjCuc2CzCSo +OB/JZTrYDetJ7kIGf4lgp+msETHdDZOavdM3VomwT98ouGSpG6yZj69dWiaC +j5k4l8C2HtA9U85EpRPh2BMuDZU9PXBI6iVHOo0IY86UIGvpHjBpSHDSphDh +QmDhplq1HvBz8/lswthv7J+0N7l49ED6xvrEjGEiCO15PmwS2AOWxk/CBgYY +76FXRfkab3pAtePdxHovEa55SN4Xze6BFooDLw9j/ydqshTXjPbAyMXuSzfq +iJBfdiIym9ID3v4Clf+qiFB/7InF2789MLRf6+/rckZ93N3Pb72jFzaqRvSF +FRIBZr8+3q7RC3zjTha5H4mgZzJz/t/1Xkg+zMHVlkoEs859QpMPesG/iaty +KIkIYSUvaooJvVCqp/e+jlHv+kMtRR/k9MIASxS0BhHBRUa4NWdnHygnV7HX +mRIhJPFqapx4H3iu6qoO3CXCe4EgT7+jfcDi2KIzwqi3Neu/D97U6oMrx7SX +iq4QYXtzizfzsz5YMJj8lXmaCDlPfI/pTvTB5/oS+rstRJjOno6aze+HFZfp +/cvpjWCzYFlBqeqHl1+rdgYlNsLv4xMzC2398Dd/az9nbCMwFY2dW5nrByUx +Ta6u4Ebgrx6YZpcYgLqrmWuJVo2g3NMMe6IGIO2FaKLIoUaIZM77pec8CLsX +LUt3xTXAjgvyfAbPB2Fv6mlqWmQDxPllnzZ8OQgikuKKEoENkMr1OcI4axD8 +jWMv/XFsgOLtKaesfg3C+gbF2F/aDTB+MPrF8+tDEHj25+zO9XrYfbB0V/+u +YXh0ZvmXtl49aJqnhZjuG4brMhYHx9TqwfND5N85yWGQiOsOtz5TD4N7zYeY +FYZhPfn7tvuS9ZAgxJskoTsMKUGvC4h/60Cc+56Uve8wZJglc3xJqQPZ+Q1K +m2aHwVnbleUotRZUvmoZnCj9Ab0b2hRarWogbgt5J/qMQroDc5h8WwU4fpCo +O31oHD5PtWntji2Fr6kfzj5u+AnnQ90OmY99g4Muwip1IROQn3W4uezkF7jh +0BRo+HICAn6Pevvs/wIBNk9bp2ImwPtBguNV7i8wYfHjLk/qBAwdY7uwazAb +0gw/PNUrn4AwP8FsDe9sED8lXdK/OAHcm7fb2L7Ngn3rp09Q70yCBMF7iaPv +E+z2NZIRkpsCGdHbO9lzU8HXXG7PiRNTcFXBTMssIBVm1dn5DGAK6K5pDZO3 +U6F0a/ZihNYUDKbvr7jJmQom71lLOB9OgcLaI89xkxRIKczQWE6cgttz0vSk +nR/gCHXJopt/GoJEFMPHkhIhuoN08/euaSCRw5MKPBOBuSBRk3//NPjxrnll +X0+ENoLmEV25aWhJd4rm4k4ER+74P7Va00C77bP3iVMCFEqo+X3zmwbDZ+/4 +pq7Ew/k7r5PeLE1D4sTXORm1OLjzJ/Luy3/TwCon7bTMFgcu4eHC4ewzwCnj +ysdRGQufKoKjAvlnIMg04ioVYoFfwjvY48gMaM51PaKdfgs/563t71nMgI+B +wsuE89EQ9OzSeZnuGTjYObKm5PMKkoUuMh0amgF15q1PzC+/gtLc8yUSP2fg +mh9/SdeWV7Awrqy4lz4Da8+GX7u9ewlG6scP8fPOgpi4X2tHUSTIbNu3bUVt +Fur6fsQjWwS0Jq+OVH+bhYs7dulHhgZD781kd/XSWVDRcOHOPxIMI7xa/M1V +syDkw3ZarSMIaB7/qXa3zsJ+p093v+wOAj79c2lT07Pw7u/ey/E5AXBtg//j +LXvmYLnBpbmK9hy6TfmWbgTMwbERWjFXpRcM7yoKHwibg+Yq7bgX9l4w0Xr/ +4L3Xc/BQqOun+wEvWD7z9eajxDmwZp05L7TlKQgJ3CjxLJ6DIbHOhV0fPOBW +zTvvRMocMG76ii1/nGFQ/CDPzI15CHJrS9hgZQ2iVYs6f43nIa3la3OZ+mO4 +a1IRudl8Hl4gWVrvkBWMxN4SlHOchxWJuU2LVEv4yRu23yliHrZqHUiRem0K +8ys0JaaGeUhOjmHJNL0JR6LRY2vrPBgPKvvfvX0D7I6H4L7uefi+2abh8w0D +oD8RU1X9OQ+PTGRK+W/qgQftkKQqMwXaRq28F7eogpf5naNBwhQQPZYjYVAh +h3vyqzr49lJgNH9x3GP9BJazHXKKPUAB8+rjegoCZ5El8U/Bp0MUaLfpS+uW +UUPf/nDlZiUKxCzPPfN9rocBVyov8xtQYJ1d1f3fN2MMPyV5978wCnD/65i8 +XPwI0wQfzE9FUGCL64hyg7EV4uJ7guJrCjw6InargvkxzmXteNcSS2G8P7+Q +dp6zRs0DG3tZ0ilgmnnoSI6BDXLw/LxqXkkBwSO2nw/9Z4d7pvaO5tZQ4Luy +gVLKqB0q1t62Y2qggFm4xeItSXs0e9YZHtNCgReeAZ9csuyxarGK1DhAgbOX +9JIc8hzQazBJ7cgSBVLd3vYbxzhhdNFQl8cqBZLUp5qftTlhVvQus/p1Cmjy +5J8a2OSMg3ovfe9toMLoyatz4OqMp2u9y1/xUeHIXlJGtqYLXksu1f2xnQqd +r02vvn3qgo+erQxJ76SCVyLpXPEXF3x7ym69RpQKOT7OamnbXHEpy+TU8mEq +VIy9PbK7yRV5Q981qB6hwq9z79UqV1xR4mGPYeRRKtxtJZxNEHdDgwNXXA6d +pMLaL7ogs4cb5kWf/XpbjQpb05c2aQi7I9HR40KGOhVIybl9SefdcVSvoP23 +FqM9wI1Z3tId+XiO0F5co4KKRIX77Bd3tH0mKlthQgU3QqNxn5IH3vs+v3/9 +ARW+QTTHSUMP1KOi4EkLKpCt3HU7nD1Q3uQuS441Fe63z84W5njgvpgjf2Zt +qRCvsaOPvdkDt7UyzRx0pIJ1Z9Sb0CkPpJ9N6Exwp8LUl+wP6qKeOOZi2zBA +oEK3mdMLrxOe2JF9Dnd6U+Hlwoo9RdcTv+4ZSYsIYIzX+uqG51NPdGLa7/Hs +NRV6I3lLVds90ezEgk1JNBUsll58Uv3piQY2labLsQx9lPJmPJc8UXH4vo5t +IhU27GB68UaIgJKCxy58/sD4v/vhACcpAgrqsilNplFBUHIHc5gSAZcweZ9J +FhUuqywl3tMn4MQfhx3vcqhwPnmfqeg9AvbIqnL3fKWC927fHj5rAjaYb2fe +/p0Kb43TSKddCVj4fnxRt5jKOB8Gb3nnQ8AM8tepEKSCUGHi46OhBHy7xW+o +roIKHcnj+f9eEzBIzaCDrYYK4sfIhcz/EdD9qXj92XoqPNr54rLSBwJafftd +4kGkwieJyqMpHwloNF+TU9BMhaypFvVLXwioKRGVSm+jwsnrtXdF8wl42tg8 +7kgXFfLf2Vw6VEjAw1GKEVY9VIiTNOp8VEJA4eaNfmn9VJgrmegbRgJu3tjt +NjZEhWd52nJB5QRcV057smeUCskWGR/NKwg45+TywOgnFR5+Z9/nyuDBzEuG +0ZNU+A/NrUoZ8U0/BbU7Zhj6xHXeVywjIIpMqvBSqEB3Nx8ZZYyXbfBdUXOB +Cj8StSsrGfnEhwUeDvjN8FPVj5EuRr7hNYZ7q5apEHkvTUQ4h4Be6wcFmP5S +YdrYTP/NJwLaKKxsOs1EA+1CCXOVFALetW7458xKg1f3NI/vfU9A3ZS39Fx2 +Gny8/CpRPoqA5wYfTs5z0uCU36GXTmEElBc4NXiIhwZ/M/JnZnwJuE+bq92c +lwYAxm9euxGQpfRj8ZAADWpzXxI87xOQtuj+ZZcQDe5sILwsNiDgqLRmynVh +GkxVGH2QvkzAqnczL5r30yBXifz0wyEC5nUW+3JJ0GDYjEn60y4CJvOEuqpJ +0YD1wrX4sU0EfO4pfR+P0GDuzpaCKYY/+dK3fD53jAYUdrcbPG2e+F8H9Xel +Ig2UXKKEzxR7YsGh/KA6ZRpwqmQKVoV64oXr0R3qKjQ4IcB2Y5ejJ7Z6u4mQ +VGkgwbzQ9PSWJ071KOe0atLgzdDtWBsxT3TesHftqi4NdvHFbf/L4YlscqwX +u67SYMVDYmvUtAcKB9T29N6kARtL5frCZw/UVdBlHrOgATW97Ku+hAcOmMhr +mFkxxotV2afH6oEPQ/lfTzyhgSgX093bg+7oM9YtOetEgy4LVfWECHfMjzTR +/e1Lg3fvJ6t+zrjh7nm79xwJNLh5oyy6wMkV04X0J4OSaXCGfZmj4bwrKlxU +PMqTRoNHm/a/oWxxRZ13qzVbs2jgfHKP+dMPLuit4TsnVMKIL9yx/LXaGSdS +X5+R7mHE99b1yPQ5omO7s39WPw3kAmO6fsU4Iss/w1a5YRpI87vlVFx3xF0G +IqYKv2jwhzlUa6TFAbXZUkNgkQZB/frzEwX2mHu3oO/K1gWo0u/KlzOxxXwh +m23R/AsAv5bzRnfYYmGHhMbgjgVIvOzX8ZNkgxWXogofiiyAQtXKwriiDbYc +cYrxObQAO04cYB3eaI1zTMeuf1VdgKaMeguJVQuUSshqE3RbAG6jpdJYXiOU +uWW+ydhzAc7e0681T7iJ8ttFVT54LYBl4tk0+yOGqBQY9kXOfwG0eGyMnC4b +4CXbx+HqrxZgX9nerfctdNHs3CFtj8wFMKJwUj5HyGHCj5T6oZEF0NCNj1+9 +fA1oT908/X8uQJaaUddRdgNQEdGWk51agPNJ/jaGFddh7OZiNIG6ADUGe2tZ +T94CyY7zFsJMdPgdfyx/dqsJZNcMs98SpoNy7TVVwTFzYDbNK2TZS4cWRZHO +P4UWoMcaYJ1xgA7STE1eQ+GWQAfZruVDdEgtXDPyVnoEJ757fog+yWD9gykH +PKyh7KPQha7rdFg1/3Pv8C072Ko+98fzFh24cn5V+Rfawb2J8o9ixnQIyO+w +JgraA5uY5TZHMzp41x99ON5qD5f++zayzZEO61wWR3ccd4SY08FvilzocLGh +QuZpkCNM9d5Rv+9BhydGV97ZDzpCyA72nBwfOlw2keJteeYEzeHXnl2JpIOn +okU8Jc8Z9shKHl9+TYeZ3zF1Bn+dwYa0OhEfQ4dfIh0sP867AN+mJF1KPB3O +L7wlH2x0gftpTmzRyYx8rg5tJHK5Qt5F9QJIo4NlSIiDoborGPhQRV9k0eGU +dRhtpcwVUvdWtyvk0mHgc99vypIrLGG0/2A+HeQXH+1+I+MGb9dgXrqUDtnp +prezIt1g+u22pM5yOriURX1jLXeD00q/DDyr6VDdSciqnXGDUHLhJrF6OtjF +fCNPbXeH/31PDf/7nhr+D0USEhU= + "]]}, + Annotation[#, "Charting`Private`Tag$891524#1"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->{{0.4999999999999716, 0.5}, {0.5, 0.4999999999999858}}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{-1.3, 1.3}, {-0.22726070175099367`, 0.2272607093523108}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}], {479.8347252809548, -97.50736892665735}, + ImageScaled[{0.5, 0.5}], {299.89670330059676, 185.72832176506162}]}, {}}, + ImageSize->{ + UpTo[600], + UpTo[223]}, + PlotRange->{{0, 639.7796337079398}, {-195.0147378533147, 0}}, + PlotRangePadding->{6, 5}]], "Output", + CellChangeTimes->{{3.817270261356271*^9, 3.817270268199273*^9}, + 3.817271504527851*^9, {3.817271573161305*^9, 3.817271593697728*^9}, { + 3.817271656884376*^9, 3.817271669919692*^9}, {3.817271767551162*^9, + 3.8172717765611887`*^9}, {3.8172729282761497`*^9, + 3.8172729490402613`*^9}, {3.8172757458366337`*^9, + 3.8172757952482033`*^9}, {3.817275849713189*^9, 3.817275867735188*^9}, { + 3.817281126303303*^9, 3.81728114683925*^9}, 3.8172811899898577`*^9, { + 3.817281290630205*^9, 3.817281314398292*^9}}, + CellLabel-> + "(WOPR) Out[725]=",ExpressionUUID->"7cf0a89e-6d18-442b-b56d-94b97702709f"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"ListPlot", "[", + RowBox[{"Table", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"{", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"g", "[", "n2", "]"}], "[", "\[Theta]", "]"}], + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "[", "n2", "]"}], "[", "\[Theta]", "]"}], + RowBox[{"-", "\[CapitalDelta]"}]]}], ",", + RowBox[{ + SuperscriptBox[ + RowBox[{ + RowBox[{"f", "[", "n2", "]"}], "[", "\[Theta]", "]"}], + RowBox[{"-", "\[Beta]"}]], + RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}]}]}], "}"}], "//.", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Theta]i", "\[Rule]", "1"}], ",", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n2", "]"}]}]}], "}"}]}], "/.", "s2"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "1", ",", "1.078", ",", "0.001"}], "}"}]}], + "]"}], "]"}]], "Input", + CellChangeTimes->{{3.817280804305807*^9, 3.8172808637975616`*^9}, { + 3.817280897254437*^9, 3.817280903087328*^9}, {3.817280943100966*^9, + 3.817280948025497*^9}, {3.817281378848133*^9, 3.8172813936536837`*^9}}, + CellLabel-> + "(WOPR) In[727]:=",ExpressionUUID->"6c30dc25-997d-4790-bfcd-6e15ebcf7cbc"], + +Cell[BoxData[ + TemplateBox[{ + "Power", "infy", + "\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \ +SuperscriptBox[\\\"0.`\\\", RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]]\\) \ +encountered.\"", 2, 727, 461, 31479193581598412653, "WOPR"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{ + 3.817280903495492*^9, 3.817280948486462*^9, {3.8172813874112787`*^9, + 3.817281393884687*^9}}, + CellLabel-> + "During evaluation of (WOPR) \ +In[727]:=",ExpressionUUID->"56028de4-0ddc-4ea7-bf21-a25534c5c68d"], + +Cell[BoxData[ + TemplateBox[{ + "Power", "infy", + "\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \ +SuperscriptBox[\\\"0.`\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"8\\\"}]]]\\) \ +encountered.\"", 2, 727, 462, 31479193581598412653, "WOPR"}, + "MessageTemplate"]], "Message", "MSG", + CellChangeTimes->{ + 3.817280903495492*^9, 3.817280948486462*^9, {3.8172813874112787`*^9, + 3.8172813939726467`*^9}}, + CellLabel-> + "During evaluation of (WOPR) \ +In[727]:=",ExpressionUUID->"3d57804e-381a-4ba2-8dce-4428206df060"], + +Cell[BoxData[ + GraphicsBox[{{}, + {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.011000000000000001`], + AbsoluteThickness[1.6], PointBox[CompressedData[" +1:eJwVkHs01HkYhycSMna7INpykOsmYuy0Sb1T0xJra4itmFpjl9pya2UpubQT +lRJ2rRJ7KkqORSmELm825G4Mk8vIJffblPr+fjNo29Ufn/P895znfAx9g939 +lBgMxu6FfWItPkxVO7eHk7u1K9l0K4PTkqsW/M2oBUdjUrDBreVfCImk3IN8 +lnH0tDY4DvM/gIS4QIgOgZsxTXfGfechcka0vK2tFFSM/pDzc+dgwKiNwfri +FZYHDxtXas3BV6e/53dZj+KICs/BJ2MWnl/kK5cJJ/FECS1rtpsFh91D4Wkp +08i/5mvh3aOABIPQ4lK+DOmInt9fXVbA+LZnEfbBMvzumGm+vosCKpqXdKfo +yHBntutoLFMBSwX8s70x07jyxzFZU7scnFItD7JrpjDXBM1XZcnBsVA8x5qb +xHNnXnveDJWDsSB9qYXpJGq2MKdf7pLDnazHmy/wJlCNm31vm6EcbqQdY3lF +jaN8UYJK2AcaYgRnBFp3x9DYqczQrJsGm840b+vRUUwxT4z+vIKGC/dr+JGm +o/hLgZPV+wwa3gpzrb0DR7A7idF+PYaGD3V1GyceDWN3E7V84icairgH4rRX +DKOBmdee/G9pOBqlpMgPHkJxchNWs2h4IunfE9Q+iMc8n2TqrV3wMy5RTM4g +Dk6YxF1WpcEqyk5v0/3XaLbKcl7zPQXrS9Ak/cvXyFtmMivso+DCgyn1/twB +PKFjk97bSMG1RGFxheUAGkUVNmg+osA6yUFZWtKPfaVZesp5FDS4ufBobj/u +L+0MKUqnQH5V+dTFgj6k42VyZgIFukbP/2L29KJV6fjY0kgKHlvek86s6MX6 +INvjNwMoMAwOzKxye4WP+ZppLw5RcHiGm6F9tQddIzrXhLlRwNbbknx6WIrm +V4//mrWTAhxLaL2yWYoyrnPBrq8pOKG1f0YjtRu3e1R4CiwpYK7S9RaSLpTm +82JHDCg4MND3rsCrC3MqHhaItSko9tcq49R0YitTu8pAg4KheL8Ait2JbtOZ +Ko0MCpxXXoGE/A7cWsxWE9EEnvp4xFaaduC8hmah+TSB4z2r3QW3X+La8kl9 +8SCBJQWmR1jmL1E8w/untpvAzw/Y1YvvSnBaY429upjAKembmNubJagSUHMw +uY6AyabrF8detKMtV4ftXUng/ZxOXPaBdpQOOcz6lxPIURMIC2VtaOrroVpU +RGBdttLUYHwbepbYjLLzCCirJ7kYGLWhqtlvXDqLwMkU5/U7nolxvmr92FQG +gZjQDIWFQIznq8ZR908CuZ3G0vLFYlySoC8Ov7zQP2WXKclrxafNEo7aeQK1 +feEJvntbMUXlnWPtGQICnUIfp48i1Lsbyy6NJMAT7rAK+FuE7xpswkVhBOw1 +r22v8BLhLvU3Z7VDCChSFSvXMEXIuJUkEx5d+Cu6NHAuugX93HM8VvsRCE7y +iEsdb8boZv8jHT8Q2KK0O3FgXzMGSm9MlHsR+Og5F/q0rgk1u5vznnkSMNat +lKpDE3basuMneAQSR7iLbj1sRAc13cNsVwLqGbzsIFYjUg1vudlOBDzPRUy5 +3m/ARWHV+hu5BJ7vtzy0zq4BnVlRi3u2EaC14ElHWT02pTsyc+wJLFcu+Y/H +qcdWnuq+RDYByaXqLeH1dbgzQvJZii0B+d7ZK6x9dVhHnfS/Z0Xgf/vZntk= + + "]]}, {{}, {}}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 1.2326611203921132`}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + Method->{ + "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + Identity[ + Part[#, 1]], + Identity[ + Part[#, 2]]}& )}}, + PlotRange->{{-0.9510776861588656, 0.5156707189238211}, {1.2326611203921132`, + 1.7786750794389343`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{ + 3.8172808645119963`*^9, 3.817280904138884*^9, 3.8172809490422153`*^9, { + 3.817281388171639*^9, 3.81728139444154*^9}}, + CellLabel-> + "(WOPR) Out[727]=",ExpressionUUID->"56916602-5965-4962-8188-b6662a5aa173"] +}, Open ]], + +Cell[BoxData[{ + RowBox[{ + RowBox[{"n3", "=", "1"}], ";"}], "\[IndentingNewLine]", + RowBox[{ + RowBox[{"eq3", "=", + RowBox[{ RowBox[{"{", RowBox[{ + RowBox[{ + RowBox[{"eqLow", "[", "n3", "]"}], "[", "1", "]"}], ",", + RowBox[{ + RowBox[{"eqMid", "[", "n3", "]"}], "[", "0", "]"}], ",", + RowBox[{ + RowBox[{"eqHigh", "[", "n3", "]"}], "[", "2", "]"}], ",", + RowBox[{ + RowBox[{"eqMid", "[", "n3", "]"}], "[", "1", "]"}], ",", + RowBox[{ + RowBox[{"eqLow", "[", "n3", "]"}], "[", "2", "]"}]}], "}"}], "//.", + RowBox[{"Join", "[", + RowBox[{ + RowBox[{"\[ScriptCapitalF]sol", "[", + RowBox[{"[", "1", "]"}], "]"}], ",", "\[CapitalPhi]Rules", ",", + "GlRules", ",", "GhRules", ",", "DmetaRules", ",", RowBox[{"{", RowBox[{ - RowBox[{"gC", "[", "\[Infinity]", "]"}], ",", - RowBox[{"1", - RowBox[{"RandomReal", "[", "]"}]}]}], "}"}], ",", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}], ",", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n3", "]"}]}]}], "}"}]}], "]"}]}]}], + ";"}]}], "Input", + CellChangeTimes->{{3.8172700941895447`*^9, 3.8172701434323797`*^9}, { + 3.817270286114553*^9, 3.817270318899034*^9}, {3.817270357375535*^9, + 3.817270357541957*^9}, {3.81727041769875*^9, 3.817270431586034*^9}, { + 3.817270463371037*^9, 3.817270467092168*^9}, {3.817270570223769*^9, + 3.817270572329393*^9}, {3.8172707344012623`*^9, 3.817270737650587*^9}, { + 3.817270775215129*^9, 3.817270781533001*^9}, {3.8172717945510798`*^9, + 3.817271814605665*^9}, {3.817272979628352*^9, 3.817273005497312*^9}, { + 3.817273039233885*^9, 3.8172730416036663`*^9}, {3.817275902266474*^9, + 3.817275915955117*^9}}, + CellLabel-> + "(WOPR) In[494]:=",ExpressionUUID->"b31259b6-cc89-48a8-920d-e9dbcee664fb"], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"s3", "=", + RowBox[{"FindRoot", "[", + RowBox[{"eq3", ",", + RowBox[{"{", + RowBox[{ RowBox[{"{", RowBox[{"\[Theta]c", ",", - RowBox[{"1", "+", - RowBox[{"RandomReal", "[", "]"}]}]}], "}"}], ",", + RowBox[{"\[Theta]c", "/.", "s2"}]}], "}"}], ",", RowBox[{"{", - RowBox[{"\[ScriptCapitalF]0", ",", "0"}], "}"}], ",", + RowBox[{"\[Theta]i", ",", + RowBox[{"\[Theta]i", "/.", "s2"}]}], "}"}], ",", RowBox[{"{", - RowBox[{"\[ScriptCapitalF]1", ",", - RowBox[{"RandomReal", "[", "]"}]}], "}"}], ",", + RowBox[{"\[Delta]\[Theta]", ",", + RowBox[{"\[Delta]\[Theta]", "/.", "s2"}]}], "}"}], ",", RowBox[{"{", - RowBox[{"\[Gamma]", ",", - RowBox[{"RandomReal", "[", "]"}]}], "}"}], ",", + RowBox[{"\[ScriptCapitalF]1", ",", + RowBox[{"\[ScriptCapitalF]1", "/.", "s2"}]}], "}"}], ",", RowBox[{"{", - RowBox[{"t\[Infinity]", ",", - RowBox[{"RandomReal", "[", "]"}]}], "}"}]}], "}"}], ",", + RowBox[{ + RowBox[{"gC", "[", "1", "]"}], ",", + RowBox[{"0.1", + RowBox[{"RandomReal", "[", "]"}]}]}], "}"}]}], "}"}], ",", RowBox[{"MaxIterations", "\[Rule]", "4000"}]}], "]"}]}]], "Input", CellChangeTimes->{{3.817127065230098*^9, 3.8171271351270227`*^9}, { 3.817127221800994*^9, 3.8171272630331593`*^9}, 3.81712740736408*^9, { @@ -690,206 +2650,55 @@ Cell[BoxData[ 3.817212495142112*^9, {3.817213148937108*^9, 3.817213155649081*^9}, { 3.8172131921538963`*^9, 3.817213198714007*^9}, {3.8172140038972063`*^9, 3.8172140040882683`*^9}, {3.817214050225759*^9, 3.817214064234343*^9}, - 3.81721453132269*^9}, + 3.81721453132269*^9, {3.8172191352175198`*^9, 3.81721914521805*^9}, { + 3.8172192016924553`*^9, 3.817219202057729*^9}, {3.81721981372462*^9, + 3.817219818492318*^9}, {3.8172203944673862`*^9, 3.817220425613224*^9}, { + 3.817220485354929*^9, 3.817220583732532*^9}, 3.81722086630956*^9, { + 3.817267355013483*^9, 3.817267405354693*^9}, {3.817269076393395*^9, + 3.817269087009036*^9}, {3.817269120326481*^9, 3.817269121269062*^9}, { + 3.817269939213081*^9, 3.8172699495241137`*^9}, {3.8172700164421453`*^9, + 3.817270029113059*^9}, {3.81727016313024*^9, 3.817270185946486*^9}, { + 3.817270335143284*^9, 3.817270367462471*^9}, {3.817270440307015*^9, + 3.817270442465829*^9}, {3.817270579806553*^9, 3.817270600570369*^9}, { + 3.8172718236141233`*^9, 3.817271852429574*^9}, {3.817271884330206*^9, + 3.8172718930060387`*^9}, {3.8172730122522783`*^9, + 3.8172730205535307`*^9}, {3.817275923134584*^9, 3.817275950260332*^9}}, CellLabel-> - "In[783]:=",ExpressionUUID->"630fc9c9-229c-4372-8a16-eac1f2d98690"], + "(WOPR) In[497]:=",ExpressionUUID->"30d0f855-c86b-4121-855c-813e9ee04f96"], Cell[BoxData[ TemplateBox[{ - "FindRoot", "nlnum", - "\"The function value \\!\\(\\*RowBox[{\\\"{\\\", RowBox[{RowBox[{RowBox[{\ -\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"0.00001617606332891344`\\\"}], \ -\\\"+\\\", RowBox[{\\\"6.5540032390619315`*^-6\\\", \\\" \\\", \\\"\ -\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\"-\\\", RowBox[{RowBox[{\\\"(\\\", \ -RowBox[{RowBox[{\\\"0.017359918373734545`\\\", \\\"\[VeryThinSpace]\\\"}], \\\ -\"-\\\", RowBox[{\\\"0.00003480505173500426`\\\", \\\" \\\", \ -\\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \ -RowBox[{RowBox[{\\\"-\\\", \ -FractionBox[RowBox[{\\\"5.767651811132557`15.954589770191005*^1080\\\", \\\"-\ -\\\", RowBox[{\\\"3.220369289817145`15.954589770191005*^1084\\\", \\\" \\\", \ -\\\"\[ImaginaryI]\\\"}]}], RowBox[{\\\"1\\\", \\\"+\\\", \ -RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ -\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], \\\"+\\\", \ -FractionBox[RowBox[{RowBox[{RowBox[{\\\"(\\\", \ -RowBox[{RowBox[{\\\"0.7186357434986`\\\", \\\"\[VeryThinSpace]\\\"}], \\\"+\\\ -\", RowBox[{\\\"0.00012870700156761243`\\\", \\\" \\\", \ -\\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Power\\\", \ -\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ -\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\ -\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \ -\\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\ -\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \ -RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"1794.794305478754`\\\", \\\"\ -\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"0.3214460115274505`\\\", \\\" \ -\\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \ -RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ -\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Power\\\", \\\ -\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ -\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \ -\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ -\"}], \\\"]\\\"}]}]}], \\\"\[Pi]\\\"]}], \\\")\\\"}]}]}], \\\",\\\", \ -FractionBox[RowBox[{RowBox[{\\\"(\\\", \ -RowBox[{RowBox[{\\\"0.05026264396575045`\\\", \\\"\[VeryThinSpace]\\\"}], \ -\\\"+\\\", RowBox[{\\\"0.000010175200587390827`\\\", \\\" \\\", \\\"\ -\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", SuperscriptBox[\\\"\ -\[ExponentialE]\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ -\[RightSkeleton]\\\"}]], \\\" \\\", RowBox[{\\\"(\\\", \ -RowBox[{RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ -\\\"0.007826236712454249`\\\"}], \\\"-\\\", \ -RowBox[{\\\"0.0000347962809085611`\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \ -\\\")\\\"}], \\\" \\\", SuperscriptBox[\\\"\[ExponentialE]\\\", \ -RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ -\\\"5.500526500917296`\\\"}], \\\"+\\\", RowBox[{\\\"0.0005127723107315132`\\\ -\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \ -RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\ -\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ -\\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\"-\\\", RowBox[{RowBox[{\\\"(\\\", \ -RowBox[{RowBox[{\\\"0.43457570892128017`\\\", \\\"\[VeryThinSpace]\\\"}], \ -\\\"-\\\", RowBox[{\\\"0.0009219407003604992`\\\", \\\" \\\", \\\"\ -\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \ -\\\"[\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ -\\\"5.500526500917295`\\\"}], \\\"+\\\", RowBox[{\\\"0.0005127723107315117`\\\ -\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \ -RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\ -\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ -\\\"]\\\"}]}], \\\")\\\"}]}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"\ -\[LeftSkeleton]\\\", \\\"16\\\", \\\"\[RightSkeleton]\\\"}], \\\"+\\\", \ -FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{RowBox[{\\\"\ -\[LeftSkeleton]\\\", \\\"18\\\", \\\"\[RightSkeleton]\\\"}], \\\"\ -\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \ -\\\"18\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \ -\\\")\\\"}], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ -\[RightSkeleton]\\\"}]}], RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{RowBox[{\\\"(\ -\\\", RowBox[{RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"18\\\", \\\"\ -\[RightSkeleton]\\\"}], \\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"\ -\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \\\")\\\"}], \\\ -\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ -\\\"\[RightSkeleton]\\\"}]}]}]], \\\"-\\\", FractionBox[RowBox[{RowBox[{\\\"(\ -\\\", RowBox[{RowBox[{\\\"241.70973389640085`\\\", \ -\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"0.4936259809340333`\\\", \ -\\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", SuperscriptBox[\ -\\\"\[ExponentialE]\\\", RowBox[{RowBox[{\\\"(\\\", \ -RowBox[{RowBox[{\\\"-\\\", \\\"4.88288886140384`\\\"}], \\\"+\\\", \ -RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"22\\\", \ -\\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \ -\\\")\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\ -\\\"}], RowBox[{\\\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ -\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ -\[RightSkeleton]\\\"}]}]}]], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \ -\\\"[\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ -\\\"0.6176376395134557`\\\"}], \\\"+\\\", RowBox[{\\\"0.00010466255616021392`\ -\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \ -RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\ -\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \ -\\\"]\\\"}]}], \\\")\\\"}]}], \\\"]\\\"}]}], RowBox[{\\\"1\\\", \\\"+\\\", \ -RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"91449.27870869786`\\\", \\\"\ -\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"703.2306648650895`\\\", \\\" \ -\\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \ -RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \ -\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\")\\\"}]}], \ -RowBox[{SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ -\\\"1\\\"}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"454.04782894674713`\\\ -\", \\\"\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"0.04232743072733425`\\\ -\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], RowBox[{\\\"1\\\", \\\"+\\\", \ -RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ -\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], \\\")\\\"}], \\\"2\\\"], \\\" \ -\\\", SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ -\\\"1\\\"}], \\\"+\\\", \ -FractionBox[RowBox[{RowBox[{\\\"4043.636439904255`\\\", \ -\\\"\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"0.6852194537822353`\\\", \ -\\\" \\\", \\\"\[ImaginaryI]\\\"}]}], RowBox[{\\\"1\\\", \\\"+\\\", \ -RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ -\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], \\\")\\\"}], \\\"2\\\"]}]], \ -\\\",\\\", RowBox[{RowBox[{\\\"(\\\", \ -RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"24\\\", \ -\\\"\[RightSkeleton]\\\"}], \\\"-\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\ -\\\", \\\"\[RightSkeleton]\\\"}]}], \\\")\\\"}], \\\"+\\\", RowBox[{\\\"\ -\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \\\",\\\", \ -RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\",\ -\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"3.3571126141215287`*^-6\\\", \ -\\\"+\\\", RowBox[{\\\"2.7194249958945334`*^-8\\\", \\\" \\\", \\\"\ -\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\"-\\\", RowBox[{RowBox[{\\\"(\\\", \ -RowBox[{RowBox[{\\\"0.017359918373734545`\\\", \\\"\[VeryThinSpace]\\\"}], \\\ -\"-\\\", RowBox[{\\\"0.00003480505173500426`\\\", \\\" \\\", \ -\\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \ -RowBox[{FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ -\\\"2.916026207996856`15.954589770191005*^1072\\\"}], \\\"-\\\", \ -RowBox[{\\\"1.407818716820538`15.954589770191005*^1085\\\", \\\" \\\", \\\"\ -\[ImaginaryI]\\\"}]}], \\\")\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \ -\\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{RowBox[{\\\"(\\\", \ -RowBox[{RowBox[{\\\"454.04782894674673`\\\", \\\"\[VeryThinSpace]\\\"}], \ -\\\"+\\\", RowBox[{\\\"0.042327430727334116`\\\", \\\" \\\", \ -\\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Power\\\", \ -\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ -\"}], \\\"]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ -\[RightSkeleton]\\\"}], RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"13\\\", \ -\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ -\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\ -\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Power\\\", \ -\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\ -\"}], \\\"]\\\"}]}]}], RowBox[{\\\"\[Pi]\\\", \\\" \\\", RowBox[{\\\"(\\\", \ -RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"2497.5021375098786`\\\", \\\"\ -\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"2.0713080264925728`*^-13\\\", \ -\\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\"+\\\", \ -RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \ -\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]], \\\"+\\\", \ -FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \ -\\\"2.916026207996856`15.954589770191005*^1072\\\"}], \\\"-\\\", RowBox[{\\\"\ -\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \\\")\\\"}], \\\ -\"+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \ -\\\"\[RightSkeleton]\\\"}]}], RowBox[{\\\"\[Pi]\\\", \\\" \\\", RowBox[{\\\"(\ -\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"2497.5021375098786`\\\", \ -\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", \ -RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"24\\\", \ -\\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \ -\\\")\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\ -\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\ -\")\\\"}]}]]}], \\\")\\\"}]}]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", \ -\\\"8.222320853181985`*^-6\\\"}], \\\"+\\\", \ -RowBox[{\\\"3.507187889934633`*^-9\\\", \\\" \\\", \ -\\\"\[ImaginaryI]\\\"}]}]}], \\\"}\\\"}]\\) is not a list of numbers with \ -dimensions \\!\\(\\*RowBox[{\\\"{\\\", \\\"6\\\", \\\"}\\\"}]\\) at \ -\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"gC\\\", \\\"[\\\", \\\"\ -\[Infinity]\\\", \\\"]\\\"}], \\\",\\\", \\\"\[Theta]c\\\", \\\",\\\", \\\"\ -\[ScriptCapitalF]0\\\", \\\",\\\", \\\"\[ScriptCapitalF]1\\\", \\\",\\\", \ -\\\"\[Gamma]\\\", \\\",\\\", \\\"t\[Infinity]\\\"}], \\\"}\\\"}]\\) = \ -\\!\\(\\*RowBox[{\\\"{\\\", \ -RowBox[{RowBox[{RowBox[{\\\"0.000010934376781525021`\\\", \ -\\\"\[VeryThinSpace]\\\"}], \\\"+\\\", \ -RowBox[{\\\"8.408364901871981`*^-8\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \ -\\\",\\\", RowBox[{RowBox[{\\\"1.2529804226463594`\\\", \ -\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"0.000021725117473261573`\\\ -\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\",\\\", \ -RowBox[{\\\"1.5914055013013795`*^-17\\\", \\\"-\\\", \ -RowBox[{\\\"4.0053973446175033`*^-19\\\", \\\" \\\", \ -\\\"\[ImaginaryI]\\\"}]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", \ -\\\"0.017359918373734545`\\\"}], \\\"+\\\", \ -RowBox[{\\\"0.00003480505173500426`\\\", \\\" \\\", \ -\\\"\[ImaginaryI]\\\"}]}], \\\",\\\", RowBox[{RowBox[{\\\"2497.5021375098786`\ -\\\", \\\"\[VeryThinSpace]\\\"}], \\\"-\\\", \ -RowBox[{\\\"2.0713080264925728`*^-13\\\", \\\" \\\", \ -\\\"\[ImaginaryI]\\\"}]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", \ -\\\"0.2592669230870071`\\\"}], \\\"-\\\", RowBox[{\\\"0.00007929733852228741`\ -\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}]}], \\\"}\\\"}]\\).\"", 2, 783, 551, - 31478759869561735920, "Local"}, + "FindRoot", "jsing", + "\"Encountered a singular Jacobian at the point \ +\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{\\\"\[Theta]c\\\", \\\",\\\", \ +\\\"\[Theta]i\\\", \\\",\\\", \\\"\[Delta]\[Theta]\\\", \\\",\\\", \\\"\ +\[ScriptCapitalF]1\\\", \\\",\\\", RowBox[{\\\"gC\\\", \\\"[\\\", \\\"1\\\", \ +\\\"]\\\"}]}], \\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \ +RowBox[{\\\"0.10883474635158481`\\\", \\\",\\\", \\\"0.1087637311720366`\\\", \ +\\\",\\\", RowBox[{\\\"-\\\", \\\"0.03027802286883688`\\\"}], \\\",\\\", \ +RowBox[{\\\"-\\\", \\\"2.395987125603358`*^-7\\\"}], \\\",\\\", \ +\\\"0.010188811377372375`\\\"}], \\\"}\\\"}]\\). Try perturbing the initial \ +point(s).\"", 2, 497, 355, 31479193581598412653, "WOPR"}, "MessageTemplate"]], "Message", "MSG", - CellChangeTimes->{{3.817214526308713*^9, 3.817214540913575*^9}}, + CellChangeTimes->{{3.817271845315606*^9, 3.817271910309051*^9}, + 3.817273022397489*^9, 3.817273086526833*^9, {3.8172759390488853`*^9, + 3.817275950677195*^9}}, CellLabel-> - "During evaluation of \ -In[783]:=",ExpressionUUID->"ef961c10-8104-4e4d-b207-a87b03b3d39a"], + "During evaluation of (WOPR) \ +In[497]:=",ExpressionUUID->"f1cd282b-fb73-4166-8899-1f1b71289512"], Cell[BoxData[ RowBox[{"{", RowBox[{ + RowBox[{"\[Theta]c", "\[Rule]", "0.10883474635158481`"}], ",", + RowBox[{"\[Theta]i", "\[Rule]", "0.1087637311720366`"}], ",", + RowBox[{"\[Delta]\[Theta]", "\[Rule]", + RowBox[{"-", "0.03027802286883688`"}]}], ",", + RowBox[{"\[ScriptCapitalF]1", "\[Rule]", + RowBox[{"-", "2.395987125603358`*^-7"}]}], ",", RowBox[{ - RowBox[{"gC", "[", "\[Infinity]", "]"}], "\[Rule]", - "0.0008459722902801232`"}], ",", - RowBox[{"\[Theta]c", "\[Rule]", "1.242412046533791`"}], ",", - RowBox[{"\[ScriptCapitalF]0", "\[Rule]", "0.000014607404035551358`"}], ",", - RowBox[{"\[ScriptCapitalF]1", "\[Rule]", "0.05434978123417711`"}], ",", - RowBox[{"\[Gamma]", "\[Rule]", "2497.502137509859`"}], ",", - RowBox[{"t\[Infinity]", "\[Rule]", - RowBox[{"-", "0.27244656539953316`"}]}]}], "}"}]], "Output", + RowBox[{"gC", "[", "1", "]"}], "\[Rule]", "0.010188811377372375`"}]}], + "}"}]], "Output", CellChangeTimes->{{3.8171270996292067`*^9, 3.817127105556841*^9}, { 3.817127204285718*^9, 3.817127264091604*^9}, 3.817127314951366*^9, 3.8171274144813757`*^9, {3.817127496044944*^9, 3.817127500612631*^9}, @@ -918,164 +2727,1698 @@ Cell[BoxData[ 3.8172122275095043`*^9}, {3.8172122698902597`*^9, 3.817212283156934*^9}, 3.8172123869969254`*^9, {3.817212477265932*^9, 3.817212505367959*^9}, { 3.817213142038204*^9, 3.817213156396003*^9}, {3.81721399823987*^9, - 3.81721406485555*^9}, {3.817214510874466*^9, 3.817214540922349*^9}}, + 3.81721406485555*^9}, {3.817214510874466*^9, 3.817214540922349*^9}, { + 3.817219147826261*^9, 3.81721916839528*^9}, {3.817219202321391*^9, + 3.81721926178716*^9}, 3.817219819433941*^9, {3.8172203499673634`*^9, + 3.817220388880389*^9}, {3.817220428714097*^9, 3.8172204420687723`*^9}, { + 3.817220475912451*^9, 3.817220600722657*^9}, {3.8172207994737062`*^9, + 3.817220837753346*^9}, 3.817220869735447*^9, 3.817221490855907*^9, { + 3.8172673879327583`*^9, 3.8172674061020613`*^9}, {3.8172677896248503`*^9, + 3.8172678294150743`*^9}, {3.81726803150861*^9, 3.817268040027916*^9}, + 3.817268349512271*^9, {3.817268405281534*^9, 3.817268494757325*^9}, { + 3.817269089883569*^9, 3.817269131142281*^9}, {3.817269950143134*^9, + 3.8172699532985477`*^9}, {3.8172700248676157`*^9, 3.8172700504906073`*^9}, + 3.817270188031938*^9, 3.817270369694803*^9, 3.817270443551853*^9, + 3.8172704748305483`*^9, {3.817270580860221*^9, 3.8172706056496277`*^9}, + 3.817270683974093*^9, 3.817270741457181*^9, 3.8172707866388893`*^9, { + 3.8172718454749317`*^9, 3.8172719104007607`*^9}, 3.8172730225617037`*^9, + 3.8172730866934967`*^9, {3.817275939131167*^9, 3.81727595078214*^9}}, CellLabel-> - "Out[783]=",ExpressionUUID->"15e91b3c-4864-4488-8f91-7c413ccb268c"] + "(WOPR) Out[497]=",ExpressionUUID->"3b7bac7f-12db-4bb2-8d83-0f02d8f19997"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ - RowBox[{"Plot", "[", - RowBox[{ + RowBox[{"GraphicsRow", "[", + RowBox[{"{", "\[IndentingNewLine]", RowBox[{ - RowBox[{ + RowBox[{"Plot", "[", RowBox[{ - RowBox[{ + RowBox[{"Evaluate", "[", RowBox[{ - RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "/.", - RowBox[{"eqB", "[", "testN", "]"}]}], "/.", "ARule"}], "/.", "ss1"}], - "/.", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "/.", + RowBox[{"\[ScriptCapitalF]sol", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "/.", + RowBox[{"{", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n3", "]"}]}], "}"}]}], "/.", "s3"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", + RowBox[{"-", "1.4"}], ",", "1.4"}], "}"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"Plot", "[", RowBox[{ - RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.", - RowBox[{"h0", "\[Rule]", "1"}]}], ",", - RowBox[{"{", - RowBox[{"\[Theta]", ",", - RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}]], "Input", - CellChangeTimes->{{3.817212100311531*^9, 3.817212151983387*^9}, { - 3.8172121838725224`*^9, 3.817212184815969*^9}}, + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"g", "[", "n3", "]"}], "[", "\[Theta]", "]"}], "/.", + RowBox[{"{", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n3", "]"}]}], "}"}]}], "/.", "s3"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", + RowBox[{"-", "1.4"}], ",", "1.4"}], "}"}]}], "]"}]}], + "\[IndentingNewLine]", "}"}], "]"}]], "Input", + CellChangeTimes->{{3.817270250152678*^9, 3.817270266945251*^9}, { + 3.817270389641168*^9, 3.817270412114234*^9}}, CellLabel-> - "In[687]:=",ExpressionUUID->"2a7b9f00-b942-4f1e-89df-1d3081b1fc6a"], + "(WOPR) In[241]:=",ExpressionUUID->"e1346f99-b8a8-49f2-9bab-d7d94b52e5d3"], Cell[BoxData[ - GraphicsBox[{{{}, {}, - TagBox[ - {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ - 1.], LineBox[CompressedData[" -1:eJw12Hk4VN8fB3CtlpB8S78iWSKm7KJIp0WSspZIsrRQlhZZUrIliYqkkq00 -QtKMfYkcy8jYsoyQJVt8FQYRM1OZ3/14fr8/5pnn9dx55n7Ovfec83lf6TOX -Lc4v5eHhWbqE+BDfykjsB5fLxQ8kd0we4WWjy2zZMDaHi8U1hOKPEs7KVZOf -+cXFXxxqDYwJqysYnxkZ4+J8fmaiCWHtNSFdDR1cnJQ4amROeO/QdN1zKheb -aJBfnCBscbfxrYY9F+/WUdN0JOzTFOLuXLaAafdq+b0Jt7Wt+lHh+BdnWlGL -kglvKr+8VlviD07d9DCTTjjflbZidS8Hl4x1y00QdrivNvUlmI0nNVxW/cPH -Rqzom2EYsfCZBBlnTcJk4a8bYgfm8FxjhfUJwglGah6Me78w38Vtv7wIB7s5 -Xlc8PIuLe4/lPCJ8c1mGj8fET8wWYvS9I+wY2LSlPX0aG1qtcfpI+MmH4dgE -lylcsPncxx7C7/sUBDNlmDh+n4TaDGFZkb37jyeNYbqP/emV/GyUQwpzGRwa -xd7LP6MNhPuqs6W0tEawwr35r4qEh7c/UccFQzjudeobbcJr/N9oKS8ZwCUO -EpX6hEMLFOgi8/049IHlJJjDTDs5M96Pr5RekzhIeNA+1a+osx+LSNt7g3P2 -kSv3Z/Xj23w/FQwIW6xINLGy78cTznz3DhHeukG6kedmH74gy9I0Irxda3L7 -65keXEr6rmtK2Ek5IKC4twcr5Dw/D34hv7q1saYHsyJJkWDR9So+c/E9eKfp -xAB4fv5SxSH9HuzTN3fHjHBlMdPyR0w39nXYSDcnbK3H9FfR6sJSmWTN44Sj -d/i3HJDqwgxtextwvZLwFmuBLuy56XcAeI+kcm3g1y94bI5RB5bluv/TGvoF -xw/z21sSZpZPpHl2dGLe2tCgE4Rv6080F1/vwFmnqinWcH7DcVPNsx2YrDLZ -BOYxHvtEMe7AkyGcKbCf5fcGskwHHs/NVz9J2NtpmP6goR1PyZXlgS+E9ZY7 -SrXjWPf1uTaEjzY0ZvHT23CBzHisLeHw5gaVkJw2rHLUoABMb6unLCS04Sx2 -EAN8sLc2c+ZqGxYbSBQ6DeNhVqf3irfhtCHnQLCqSNnL7MsM/Juu72BHeN1x -StTJ9a34yHMZfge4f/IR7w8ua8U6r+alwGZs529qky3YUi5nJzg8SXqnQE0L -NozrcAYvjMb0vfduwVl7v9HAI7duKku0N+OnEctvOBK+ZPoo9oNiE5bxcWw+ -Qzh91mj8yZImPNQ3/A08+Hz53ktfPmEfmikbfOKbz7+S9z5hoyVt0mcJI187 -rcDRRjxmlHQVLELe1rY/rQHfUNARPAf1zlWvpm+pw3ttI5XOE36Y8apyD7sW -27I194Jd7QK88htrcYxbiQV4y8ed3a+8a3HkZxcf8NMnb1Nv0el4de4xDL6h -+UhPw60GK6cZH3aCekbdp97srcGctzw2YI0EI7LUuhqcfjfGBTy+bDm/cNlH -/KXKLgJsx/BuG139Ebea3aoH7/ewdU3KpeGmj4MHnQlLyu+SXBdGw8sQ+Tj4 -95d1LRG2NEx/qH8WnLevSct3BQ1r5CsGguXX7F963KoKv5D0LwILZG19zv+7 -Atu4mcpeIPy6e/jB95AyLKURMwDu8hN7kahRhv0OFo2BhSUPZZkPfsDhKhW/ -wN4O6a3F6ANuDQ/iv0jYYNhlfTinBBfZlaqAR5mTL0lXivH3wI0+YIkoqZyv -ksV47Zr7AWAzNfOq6MYibOQ7eBdcdC1nmEMqwswWvVjwPZYnqX64AMelUArB -pKWcXNdTeTiDcX0abEcmVW8WyMP1I9oscLT+qXZGUS4+0Nq9AOaElrJ0xXLx -fvXWVS4wP1cF6Am2ZONxMd8tYJ53VJPygGwsP2FHAmua9Nt7Kmfjz/GKquCE -qH3BPRFZOC7YXRfcSeJ7ePIBBSt5U83Ae90vZlX8eIedREotwenUulZFw3dY -6fY7G7Cv5oP1nKWZ+NrPPefAG/eIJsddf4OVWOLe4ODAa1VL29Mxycr0Bnis -sm3YRSMdNzx09geXHnpG0mWmYr4wg1DwaXOJvO6zKTjlVVkMeHzm1y4vGhmP -qPDFgv2eNmFhOTLWTNGOX6y/O7h+30gy5uwzTAZv97c17zZIxt6uiingEimt -Ds+0l3i531QqOK++tdq0JQk7WqhmgttEQluCoxOx+n/eUMAzlrt6848lYPFq -3mywev+LWfH25xi1eeeDzeWO8Zg+i8V+WncLwVdcVgoGWz/D7QG3isHUWTfZ -0a4YPF4j/gH8aZeUinjCY5z+saoMzPRn6JicjsahmeblYCFaqEGQ5CMc5ltd -AbYW9Uy5gCMxRWlzFbhdfh9DkxaOXY6EVIOP6QovXVJ7B+MVQTXgeLoZVn/t -gw3N9tWBA9sU2sSrjPFZIYd68M3HBnWumlfQRr3exeNVUvfuJooEowt9RXSw -gWCpdcuqu+i2uMDi/9HnmYoreO8jndmfNHC4e5joi5CHyFS3fLGe1OmoWxJB -USj84rVKsLMzyalgIRq53YzAYEMZH5vbejFojf3U4vgVeqtMzPyeoC+KuqXg -HxantX+wn6E6z+AicJ1QxrbCnc/Rz1n/AvBb+tzmEJ84pGXrmAd22xPFJ/kr -Aa3t76CCjdk9f35oJKGMP67vwMp5itOFHi+QNc9IBpgVMzCuwHqJ5ksjXoOL -BW5+rvQiI9FVSc/BL5XWMagyKeh4z4an4FAzanNCUwoqnfOOBh9/OlTvrZiK -WCs/h4OnpI9WknrTUWuM1OLz26E/gteHv0FLqKle4DLnwA/LtTPQflHhq+CI -d3lFX6PeotHcQGew/K5N1Gh9CnI5+8sCLGhbmBkwTUGV1XeMF583f/MMtyQq -Er46fwjsMFhpIeuXhXxe+e9eHJ/CvPHfz9lI7IrE4nyuzbXXz76Xh8pynkzA -/N9dvb1qa38ecn2lMwLOamfvS9LKR7Su8q/gp+zHKGIoH7nJXW0Cn0N0nfN6 -hWhO2pEK5tapqm2YLka/c/wvgj16/lIjD71HI6SdDuCRiTrllUnvkcxY6wlw -g8j57TNGJchDP/MAOO7E862NKaWo5CRTHLxjcIlkkDVGjXxZH2H9VH5vNa36 -BiOG+55SsHz0O1o/GyNL0Zxs8KrkzB0vjctR3obDCeA/ZtY9XGY5UpLWugLu -zaIqYrVKtFFI8J/F9TrB5p/1NpWoxom5EtwetuLvpeBKFMLN58B6/8nhVLMk -oxIJMWcHwGUivD7+nlXoQZkaFfziih1Nr5CG/OXT9MEJtvyUJ300dNe9Vwsc -a5j3bIK3GsnMsBTAUVICronW1Wi8uE8QHNicv+Yvuxr1a7oxYL9yVBWyL91d -g9I7A0+BZadK2DqVtUjmWawV7I9+jQdCZidq0d6GFQfB7Rn1wpQNdehw9DF1 -cPj5blnpq3VoqDlKEDzVxTHmlapHNLFoDPt1WfWuV4xbDUi1mLoZbBNfaOS2 -qwnRZ07QYf/Pu44+y51vQm2k9myw8Ika+76oJsSa2hEPrhDp8LQYbUL6pGfu -4LUHbpomHGlG2037RcA3i+J8gznN6OOxB+bQfxwmf2k0sW5F6U3mJfZQzx2K -U7V7K3oVZ5cMjr1wm6t7uxV9Wmd8FzyqpKSmSGlFHhJNFuCwosCYZcsZaOGC -8yj0S/TGraeKqAwkNjkqBD7E8hqV5v2M2CSV/Yv9l7Hosl/5HciTU2UK/d5D -R/5pdm0HOp7prwru9OLpW+jtQH84kmvALknM93wrO5HlJZFWK/j9ZJ2HxIlO -RHpbYAHufHR78MBcJ8pwEzGFftOlfbYiWqsLeYayNKA/jbTvCFQt7EEJCU8p -0A+Hju9GIw09qIx5+w7Y3/fV3/jBHnRB3cIWfOmx+w1e4V707cEjfrBJzTLP -r+d6kX50/BkTuN4qqs73Rb+i0YIeYWOoZyHMeNS9D11OFDWDfr3GZJOQmegA -El5u4AV5YEJ6nX9r3BCKK9fS2UnYy3ObY6TYCHrISntGgvWlR8TCiT6KyrLx -DOQPB9/d//IeHUORSw5l88H6vU07vGoFE2l1RojNEvlFnr90NMVwCpUGTYr0 -Ed5U6npwRdg0UnEwotMJ83CWvvEY/IkEvSpLKITnzT/YVcvNojmD9LQYwt2a -9uJyIb9QAPu9tzfhK1Yia2R65tDLIfVeyF8bYr5ZL9/EQg2ZLcnahCmnXqbN -XGejQs3VImsJW+kFGNI/cNB7w8jkKSLfZdu5y+j8+Y1EP7GdGwizBA4sK7b8 -i3aHnVcjQ55s0dXaFLuAYs9fm7xBWEB3VUVp4gLyGC7RBlekdB2xJS+gqriB -AF/Cqtd9HeMpC8iBTFt9nbDw5sL7G6oXUJr4dyUvwrVu6kPrfi6gaam3Zy9D -fuVTjBI+ykWWuqvzz8L5r7I2Usy5aHL3X9YZwtTumtfGVlx0w4G+GyxJdSq5 -f4aLfgjMVTkQ/mOZMiLgy0Ut3ZTm04QLyZv1eFO5SH/wyZAV4UtCkzWpb7no -WJGlHFjep8zCIJuLbFJ/OkFejjE6feFOKRc11lR9P07YYzru8TIGFyULV01A -viadcpEkd3JRc7SrMniAtuvN/q9cNKY4fcmMsFlsZ1nQdy468/DxJORzvqXp -h6UnucjXJksFjF192spnuWhWK+My5Hnvzwb2DhwuUpMNokLe/9/7APT/9wH/ -BVMTF5k= - "]]}, - Annotation[#, "Charting`Private`Tag$2426398#1"]& ]}, {}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0, 1.5642814010661}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0.5, 0.4]], - ImagePadding->All, - Method->{ - "DefaultBoundaryStyle" -> Automatic, - "DefaultGraphicsInteraction" -> { - "Version" -> 1.2, "TrackMousePosition" -> {True, False}, - "Effects" -> { - "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, - "Droplines" -> { - "freeformCursorMode" -> True, - "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> - AbsolutePointSize[6], "ScalingFunctions" -> None, - "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ - (Identity[#]& )[ - Part[#, 1]], - (Identity[#]& )[ - Part[#, 2]]}& ), "CopiedValueFunction" -> ({ - (Identity[#]& )[ - Part[#, 1]], - (Identity[#]& )[ - Part[#, 2]]}& )}}, - PlotRange->{{-2, 2}, {1.5642814010661, 1.5647991127342145`}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, { - Scaled[0.05], - Scaled[0.05]}}, - Ticks->{Automatic, Automatic}]], "Output", - CellChangeTimes->{3.817212152439725*^9, 3.817212185115758*^9, - 3.8172122205512037`*^9}, + GraphicsBox[{{}, {InsetBox[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwV03k4lP0eBvA5QpbpULydiqRIIiNLOFRfsmSJapIUSdKkeCNFUjQhUikS +ydJgsr/IMssjPA1SUVRG1hSdyBKRrW063/6Ya67Pdd/375l5npnVXv70o2IU +CiUVX3/eM2/J7WMwZknz+mVXV7XVky2Hd7zr95olKQLK0Vep9eSPjbHHDh6a +JZk2E9cKvepJl1axEGdXzNvsv7+eqiMXUWdTttlj7n1BXKRYR4Ze7u1WoeF5 +6panmjwfkc4hBR4dMzMk07KzwV2niozYPjhIn5ohKfnPrV81EmTpUjX/lnH0 +otTzKZ4EKcNJv/h4CPtcq+RVSXxSMHkzs6ILXXQyRlGMR9J8gwdu1qDHlf5d +NVpBLvSwZNhexv3fGlKyoiJyaaffxpBL6F6R+ROjIlKDnvw9Lww96524O6CQ +tLIZvrEwGP3Ozvr1x3ySSbvJa2Sg59/siO/OIedF3VLWtug1ntpNb1jkJ1Zg +kYUs2tvI15IXQc4tTw86tRAdZbl8UJxJSt5+DFkL0Hzuq99FoaT6lWVCys9p +kvKSmmIpEUB6BtT+JMfQmSt0l7zaA53mMk5bW9Dxdx4InkXD0/6sL6YJ6Nm9 +PdKu92D60Effoji0eI5PkDcLVvdpDildRbNfJmcYZ0Jod+nbnxHoMjPnT5AF +2m01TbVn0LSBUaYNG240dN3f5or+312qoXYeVG1bqVrhjA68rD3FzoOhR55p +arvR1sUebUr5YF4zlCBuj45JdfwpVQBTnJnwRjP01QTp9s5C2Ju3eL/9KrRL +U4iYUwlErN0rrFJCr9RnZPBLoISdslN7Gdq1t2PnmlKQzFxlQ12M3kqsnZ8q +BX6KjkGLGLpae2FmwwNQvmq3iD74laT4VfPOWZWDrVTclboBdLnvJnpgOQRF +v1xg8O4ryeRl8EtZ5dASse+7QidaRfXb3Hw5XDx/dKj9GfYtVc0f5FTAgN8l +wf5i9MbEGPpQJdRprFXpLcC+hmBPFJUD7PdPQz1y0aKFDiZ6HPB2ljc8wsL+ +GcV/1M9xYNCMleuXgHm1SRhlARcaZ7YtmIjDXHr1pKE6F/JKBw+duooOWOww +ZMUFHzXa8uBI9NTOgPooLozI1Fy7GIROv+tmJ+JCU4Pnp38F4nmnGYPuSjwo +Che3jjqJNjmfP2zMA78pB9GVY2jFI65+/jwY7+oOuLUf91TDbPFOHrQkhr9Q +dPnTt9d9+YUHpY5rtO7QMW9Va5aT5kOA4PiHNAd0T0HgJ2M+TObP783Zgv3g +xK7RG3x47ZVevs4U82c+VlZsPpQrm8sVGmHerScly+NDYHzM0xJd9OKW+Pe9 +fKDba6/V24DOWt70eZwPBuKtlyo00QM61gwKAdNnl5rxV6MDHZuTVhMg1Ku6 +Y6qCNjhr6KBHAGf04HT1CvTBmDQfcwKCD+UUCxTw+l1Zog53AlyW28lYyaND +wsw1TxBg3DbGaKSi1UjZt8EEzNsYqjZL4L6Ylhtwg4BOSucFRzF0XFmm410C +iKrzXa2iKZK5aeX5a2wCUs+sMqL/QHeYbltfTEAorf6WcG4K74fq77VcAg58 +Yky4TKM1V/KYtQSYZcvs6PqC/eJ7viaNBCi7l+S7fUYbq6zY8YKAn3/RJfqG +sZ8iWV3VRkBv68xhz0H0dJpNZBcBNbF3awcG0J4Dhff7CLhnuUXp6Dvcp0e2 +r/xAQPiv92eHejCXqCz5PEiABy9KeLwTfXHpCoURAuCUpt6YEH2fNXt9jABV +7edxJ1/9+fxnVQ6ME0D56D/y5QXaq5dxboKAOjtK7Lom9LJf1FF0VEn8Oo9G +NLFDKw5to7C68XYdnvdbsMED91IhZd7NtehUQag7nt/Ua7FA7CH2GwcDo4cJ +uG7xOsuEh/mbZ77dHwlwyvUy96/4c72GCpd+AuRkv/bllKKtK+K/9RDw0j8y +rLcI/YsDgnYCbgkVlBXycR87Ol3UQoDzf+9X2d1HR2/o4eH9XHrPcD8zE/un +6hQ+1ODzE3s8x01HDytxtSvxeR3bm/w5Bd0Q1nqzgAAVveC2Awm45xYdy04g +4H2SZGBCHNrWtHlHFAHZ35Pln8Zi3451UgZ/HxoNPMdNEZg/EtVwXQj4pGk7 +5huO9t85kWlNQGFc59XsUPRauxNJBgTo7Pv2RO407vcZchKpBIw/jGXY+KP1 +j2WkzPHhgeoKiTBftPkjUUY/HwxHTLeNHMH9+o5KVjkfNoddqG5wRvdLzOrZ +8kHUT3X7sQutovufcS0+PLLJ+KbniJ6kziVS+WAlX2vEssbz2raviX/OA8kg +p/Z2C8zbnF68K+TB066+09StmB8On5a9wgMH9u8H54zQKo6+o1t5QJWK3/lA +H/skQb+zDP//fqrjgzT0w/gP8pNcoBtZaDuvw76s4Kv7PS4ceBaRQ1uGebYV +vX+YA8o0Baujimg3/eZIggN9t9gDafLoYCPnlzEc8HJvWCUtjfvCoH66KgeO +T0ikfvg2SVJyfU96mVeClnOyyYrZSZJ5/azEQ/FKGONrdOyaQoevl735pAIC +IrYr1o6gazax42wrIOSv2BspPbgfEzdZYlwO+8IN+uQ60RTZXLevZWA09FYn +Roj9H5tZSiVlMMPXfxH0Ak3UXHunUgaB7r2ye0jsz+6Tke4qhd2Po92aHqLX +TK9RMy6FjTS9Igs++n20aXJCCUz8vmy/sQwdrqClZVYMfmzd2EVs9D83/6Z5 +FIIDtbszioVuyhVuTi8AraAozZ9paK9oN0F7PgzbdD0ZuY2eYVonmeYBYyRC +8mk0OjWyJrWRDdZ7dFwgEj0gr3+3JxvUqztyuBfRIqfAyJEs+BC3wTonBF3b +vH1imAWeem8iI06g1b14w953AFKZbd8YaGGr66/lSaCyQFvt1BG0spauXPUt +eCu8WHfIHc0/kpx26RpUb9Fa0uGK1tQ3HNwaDem5wsNOe9G2PvlXHjNBc5dV +R5vTn+9fUm2xxwf+D/QiEqQ= + "]], LineBox[CompressedData[" +1:eJwV2Hc81A8YB/ArhSjJKKOMhpESRUV0R1IhpZQtoUEqeyRbsrKSvVeUlWTF +PWe7+yK7FEVD9uhHoeL39E+93q/PM77zukvU/O6Fa2tJJJIU/vHv75JVJXO/ +U3NA8taK+el8G94KdpMFKGiK0qelvIegC/c9f8midX8uV35JgkMS4u13pNGP +NQtaXNKAK7Jzx8hedDLr44c2GdBpLlbTswstFiH8cWcOFBMdG7VE0B/DC4u+ +PYUIOXfj+u3oxf9OGcfngTZzx+8XvOgQAenyvnyQvntPU5ILLS+/nt28EDa9 +252YxoGW6/l7f7gIWvPcFMNZ5sD7c/tA1ZUXcObsLjebpVnwDot98ZupFNiu +VrHFLaBHh/eEFJUCw1EnqX5uFkgVMfnpl1+BVpIXCIyjr994ph5XBtoTH9bT +32O9btmGsukK2LxqHzvfh3ll1OiYeyV0cLFJinRj7uBZzsJcBTqKR7VcCLS/ +1xP3La9BNyg6ak81mirkfoi1BniSpXbrVKBXf4aVedVAb3Hdq/ulOM9LsmNi +vgYuv5t9152PeZPhlvJ3VDAQPyvsmzwLtH2Smp0naGDauD7/oyfmddH+ts21 +INyfpMzmjjn3u2cn52thaPLQG3mXWaB8i1I2EamDqzzmP0LvYh4RNGnpXAeW +FtSjx8zQ69fvVReoh90ulxjXjbH+8gotVaUevgVPGkXpo73mzxnerIfrJQJe +Y+fx+AIFt62+rAerNS6NsSrYn8GXbajWAHt5OfTqldENwQc4bzTAuET26LQC +1suaxisHNYDN+W529YN4vK7Xuja0NsCd1AMX5ndivW0tJVezERyVRz+eX4f5 +cvdlQq4JxkI/6YSRMO+5ZO13rgleVxQExS7NAKXKmfWtVROE/Qy+9Gh8BmiZ +OW2Xk5tAzv7klGvrDHhrUL5+Wm0CoS1y3f81oMWSlhO3NQNL8c7KOzXYj20r +0s3wfmrV37JwBkjc19mrjZvB26pq+/kI9IzKHoXSZrBmzVtLBGK/LBOHBr0Z +Lj6NHT3pg/3P7oWzfWwGsW+Opcfssd7yuGsKcwu0mh3QEtfF+nQl9/26LbBN +P8t9ZRse35uPF14NtwDpV9RVN06s137dJfOjBcaf+JyaZ8WcWUPOei0dqrtN +uceXpoFUrZbGv5MO5uf4n/d+QHecuOdlSgetaZbI8z3TQMl95LViQwf5Rz+d +iVZ0+g1+FXc6sBLdqrU100AjnJ9xx9KhUD3sfX4q9t8PYCa10iHu232aeBzW +6xsGFbyjg4//rZyMCHTQaMKub3TQrTttH+czDd5HRspv/aXDsjITm78Fzkvt +uOcuxQB1eVcFI3Gc1/lWY7MnA6wHEnz0RP7N52D5FsCAML8a+kV+nBce9yIy +nAFvO9caarFjv2agpl0aA27eeXRPeWYKaFZnsi7SGBDKW1ynMDoF3oNeU+PN +DCiu7mI7PIx56oZlozcMWGLjS5TuRocrlLQOMiD4acZr4fIpIKXXVswtMqBQ +u5Fpe/EUUDrmlc1WGdC18F2TLw/rVU9ufb6eAEG1/QOciWjKy4W+LQTkD5X/ +WeOF/bVBL8MlCOh4+F5txQX383JsH9tPwLz039BlW8zvZEuJHiJA2UN1x3/m +OD+EyVBamYB2/jblr+qYt6l6NJwj4Adt5sEQGfOu0QIBXQK23uRqHziK5n2Y +raNPwJUyPdPevbifN2XC3IwAf5N7OZ27MP90oVLZkoDcdcnTbdvROR5ayzcI +mL3w2bOJA+ud1ar47xLAs7yuuY4Fc6KJw8OegKPp4puBhMc7ErG93okAnxmb +1PIfk0DR6Dm/6E4AV+gvyO2bxPeZ5LjpIQGHDwmwZr9B/+CfCQ0iwPC90vn0 +FqwvyJ2aDSEgU8J3KL4KcwmDczciCGh5kyUR8xI9oiB0L4qASedm26h8tOeW +0/bRBMg1blwTkoKOv+zJHUeAvs2BMw9jcd7ZSz+q4wm4z30h0i8CzWQXoZVI +QFqVY79X0CSQTh0KqUsioOFqrOh9X8xP5fEIpxAwylpl5eo+Cd6J10zNUwnY +WDzwwtER56/6xIemESCjt7pkexvrWdJ/JqcTcGlFVPX2daxvnMmOySBA6fcO +ji5TnO/hlxmYScDuRf73h/Ww/gKN0zSLAPYF3pzEc5gf0ZLclo33a26LPek0 +uvWQRCm6f3rT8WsUdOHkKfkcAmgTG9gYR9EFenUJ6Kej6/ukZXHfQl3HV3TY +tzUZjyVxvvLkc+6nBDh9/nt7URTru9aGiqONPy0pmAhgXpyXK4I+MbCwvo4L +z8dn6egq9u/tn+sUY8f6BF+HevSWvqnkECacP6oddhu92DVmNft7Arw/fqH+ +xeP79Oab/KX5CSBpqSk6optah9dUTaKVfsh14vkV0AfbhL5NAKV89jMPOrqp +P95vEPvDGl3IeD3c63uvjfZi/TZ3MR28Xua0Ttmz7egP6aIaeD3P1LT9fdGE +Vr+QuPff9a6i07fCBNA0pBt/4P1ZeVl7dagIc8lnU4p4/74V1+w/mYv5gObZ +1wkEtBZULuWl4f7/hIV34/1PePoi0iES92fF9BU9weczq8DkXRDWqzXydz8m +4GZ6nqSyL9YfUgn+FEnAkcT0WmYHrLfPzyt9RIBQXPKjW7fQfZ9KPPD5ZH4S +b9BhgfsNJpJl8PntCYuci9fFnFpL1/UnwNbXR3T/YbREkVyiGwF6Xh5TkdI4 +XySXvcKZgOP33Sp/iqFXpAVpDvh8Odvp0Lbh8TRbBEbdxvfP6qrPxaVxoF3L +ZDmJ72f4dZOzFXPjQDGu20IzJsDZwoB/xzg6JTVa3IAANROdFyPv0QtOKdU6 +BAydVxl2qx4Hkrv2yFpVAviPiqqkeY2D9/vNViLCBCgq69wNcMX6jd9vNgjg +86Hqk2xjh/WRUsYGW/H90BpeOmqB9W3aIZc3ESBxNb2kUx0dq7Q+fZkBh4NF +dzNxYP85pqhHXQzQHRBluZ40BjQTfiYnVwY4D+vIaz0ZA4p1zTUrewbEjfhY +HAzDPOpjn44NAz7MDsOK1xh+v9ivvHqFAebrM1xjLbDeXNCzXZ0BdtI7x1v2 +otmzPHS48PPbe2ebVOUoePuO/HJJpwPfXy6qfAk60ohxLIEOGW5MReTno0D5 +4/PoZxQdyuy/RlxMHgVS1cm9Ov50+GiZo+vug/X13TFJ1+mw/8zeAcYZdMnD +0gRJOrRuOThh9f470Ga9FjPyWoA9U2VD7u8RfP9WknifNIPS4bJjJ/m+AU0s +a1PyYgMIv9v3W/HSFyA5rDllZlAHZeOLxTo2w+Dtcd1Ud5QKzwob95fwfQLv +Ui/LXr1K0MxO5raP/wDeT6r/KNwqhUseIiMO7W+BNJud/ZZUBHX2T7vE1HqA +tHXj9mcdOSCkuDGnXQ49Jan8oCgH3NbYuTnvQbuWkJ3CckAmQlGkiRkdmcoV +rZUDyQVtt6/Ru4F0tpWznZ4NrqP/sWZpo53ELyi1ZMF+UwpZ1KALSAHwXr03 +A+LO9D8XvNMBpIN5y4csU6BhlbqO/Qp6Zar9x/4UmHmVZbJ8Dn1HU+vjr2RQ +32m7uV8WzSXqeSw0GcYXNo3sm3gDJBlZE87yJMjUt3LcudwOpD876DK8ibBV +SCRyE18bzls7VfhfLNwOnlCdXGrF7w+MVKH6WGj4WTbP+IDm1K2qjooFhzdn +9QNT0VRFQ/+DsdDh7S7MJI6m0J+pOsZA0Je+gkV5AkhHUwICSE/gT+4jxpeL +dDyexpdeSlFw/LDk+pYjaM6g5CKeKLzPDeR8QTS1/fCGqUhY//F3qeMX/J7T +dz9RISUSOLitU9c7oK0Vd0esjQQRD3VH8ahmIBn/CTqSEw4ndVZ33OpoBJK+ +x5Y34iEQ+DFB/1wpWmZv6uvPwcC4dfjxoTh0qVzi3+Rg0A64zfrnClopUsCX +Nxj0X3/4ETrTgL9HlvrCWIPAek9FcyEH2pGxrmElAMKWbO1+aNUBqUW4dUXK +DwYG7V67SqMrXuzpmPQFyTr79aub0dtT/mMp9IWGYMd49u5aIL17LfVc1heW +BV1rdxugJc7U1ir7wI3jXlv0rtGAlKvyyK3LE0p3ehsNqqOPdostmXnCWhaf +bAsJdMuOoFOzHqCIZz/UB/j7RZpPZ4sHPK3dWM/1hYrzVK8LmLiDN7Oghcvv +atz3/ViyoCsIvtn+y4+KPm28bWu5C5TFCoVE+KBJWRZXLrrApMTOl3ks6DSJ +FxZhzmCgKck0wP0a91k3ynM4wcGII5mUfZVAutmvwSNvD1/5db9sMHmFz79m +dw7FGi7t/hkouhst0pH9/pUVNEnHSStMlAJpqPGh5z4ryDsx4HbTDU0Jnd4q +dBPu3LbkbH7yEu/3g2uPuK7DEs1R2b/9Be4PGcqlmIM1sfVL4hO09/Cz8dar +MNBbEfjSGF2sdDDF8CpQx/90fx4vxnqbd4b3zMCP54G1CguadlDCMMYEBDv2 +HvjrlY+eToy01IOVr3fu7ePI/1cvbP78MgwtlTQaJT3H45l/y7dwCXJ2HTOu +qniG9SI+CpG6IOOiGeQyl4vX5yhNc1IHv/+E9+R4odOe/tHR0IGFtG7hvk1o +M5YI8vPzUMUwKpPb+xTrn/hkTGjDSSGbL3Pm2TjfIy7LSAMkDhVLi85loWtC +96ufAbbT827nvdC0+F0PD5+GDrv7nEWJmWih7QUS6mDYGKps05OO5pdgXFAF +pfcdgYnmaNJTyY+3VEB4hqeHMZuG88ChIZgCX/mSrSU3oUlXFLeUKsPgO8MD +bSFJaJ0To/ePQM7M3I6s/MR//QpXuA+DLXPQRve2BLy+m603vJKDtXLlYxKb +4zFfF7nIfxAIDe13qwfiMB/adHxQBqKvfmvqOx+L+buMu3oHQCycO8s/6gk6 +nRLVsxdmsp9FGb2MRgO5rlQCKqpVfA72PEbzJxs/FwON8bumQ7xR6OwtXR92 +AvcalrPlhyPRwlMFvKIwsC3lWJheBLrKdIIQgo/BcbKuBx+hd3tGP+YD24om +DjHHEPR5g6IqXlg7Mj/R/SoIneKbxcEN0dy76D6/Hv6zn2M4J4ir6OQcUAhA +51aS722EyjtefoP3/NHR7NoHWEEzqcAspNoXPdvPc3wdDNI/KCuseP97H2ai +c0jwaZr7cLuXJ5rCntK5TF2nYTsryeSONnvwcMMCVSK79dmDABe093T72AxV +iyR5bXiDIzqt1UP8O9XW6IGw8iNbNO2NYtwnquTt+peyotZoEWfTom6q/a77 +EmPiFv/y4U6JRqrzSytFFRP9f/N0bXe8oHJSyk6Z9aqhST27WYKocomJT1jI ++8hoSj9Jj9rLrLrB/p7OPwcnJKdT1RI6hJluX/nnBxS3amp/zAFBRtF1NC0u +v6CNGjHknMOVd/tfrq5m0k/dzfspbr+OPXroF6H/hUqq8v3Y2eb0r/7sd6sJ +6gdTsd3OGm7/ctUl2x/UMiaGlUDzffTRAaehX9QzPWV6n0S90XxGN5lWqOU5 +gfdkh3zQA7XfbdbCHjfDZL8UPzTn7x5ZZojS3EfrNX6A3rfN/TwbkIRWPosL +PkSLqPa3cMBAXbpEa2zwv+PbZGLBAxpPHDSFLoei1c13iG2Dihsn79jyhKGj +q8t5BUAjYN4guCUCrbGpWlkEfO6a3Hr5NBJ927p9URQq9JvuDwREoZ96azF2 +wR6puFTpk9HoUybBxeJgzLPmhd7uJ+huwzONkhD116rOmykG3eJlPyuFv4uP +feuqjSWTvI9SSSdlYMDx016X44nob05rr8lDZfaO2nCZJKzv2Fnz/TDE9Bnp +5e5MRldz5rgchXNH3/n1M6di/UnZNXAMhj1uTiffSCeTKInFo04qcD7mocKz +ITRtm//SLVWgFub4lxlkYP+vjtSbJyDh01eBN5qZmDt9e+50EnRVrp4iyWRj +/xOW1x/PQJ2Bd9TGPDTtBNhu0AQZ+9RBvp056JSvlYpasClz0EGW5ynOe6y7 +/oU2NK0zTDNfzCWTRHSOKf3UAYWWC0sNtHys/7By4o0e5A7ZqXUqFOD8t6Hi +8fqwdSkifLAELXJX+sJ1A/gh+WbPz6xCPJ+x7+5sRtDXuCfvsVox5vVPBe+Z +Qrh4Rm+DRAnOayuQ/m0OTS9lf2tcQ3snV2nds4AVcq1IZzrabCZ+428LsNEf +ujUo8BL3nda1W3MNTgcJrf25sZRMiog9TojegLUTCdLic6/w+BvbMotvgYV8 +sGqGZBmZNHte7iHZBhq83C7vMEd7D6b3vLGBAB59T+5udLE3X8H8bWA7ztu+ +WlpOJnUcCswVtwWuyPDb71wryaRRswe7s+xB9Ih/fhCpBvdZTjLtdgVfHwfa +OgV0sVD5go8rfCbMe7zs0O9yLiYMuUKWmcofp89omZsvfqe6gUTwiqZ5AxX7 +K2u3i7tD3J1qpx1qNDw/YVrjZU9Iqz3M+5OljkyKcwgLSfaFxs308EgxtKvZ +dc8BXxg3MWLbfxKtpJ/wTtAP5Je9Vi180awdvXWJfsA4SB/r/IM21uuwSfOH +/zKNqAVz9WRSaKQwa00AqAd437j2oRHnx7gOqYbArR6uz6RlNKuUSXJYCETs +zDZO4mvC8203g/ch8IFK1+m+hO5pczroGAq2v7iUVDrQoa8yu54/goSb2Zw7 +GpvJJO2bQfNbI2BKg1HZU0gnk/ioK7eoUWD/2lByuBVtY2lVORYFP6Um4qbG +0Y5plMO8+Dm/aaMrsziDTLJ/x0K1eQxcb84ePpqKDlyoWicUDUcvdpYkhhN4 +v0rDLYOegL/Ru+fmtm1k0nXLQn6/OOA4/J/2YlwHmbQ9ic9/NQU+mFys+52D +Dk0Njz+YCrkPXsqvlqLT8m16r6WCSq/DduZOtOE1cVprKjg6zo9xb+gkk0zX +iMpop8GHkgX/A27/fOD3FdF0yD2wWHXdoItMmmYsdeD35xOSf8V6+XvIpJD/ +fjs45cDmY8ZctiNvyaTPH/veHisC1wPlXwzsP5BJn+QsJA+XQufdPl3zyY9k +krljddK2SjC7kW3DYzBMJpXSIjULqSAeOCiaKviFTDFxzt+9tg4UjtKGWNd9 +I3sr0HhkPjRAQn8al0DrCNlbu8D09+VmqPj6NHpr9wiZ9GCj316zZuidKdzK +/X6ETGv5Yqlr1QyczDUCG0exXverTJx7Mzw42L9zhek7mdS2N+ZjajPYhmw5 +9PkY2tih1uh7M6gr+1589vw7mXJry6MauxawPB3Um1OCvnl1WOpeC/hcjNDL +rPxO9uYpu/DYtwWqrVKMkpq/k2kcTy+efdwCsjFVFmFfMC8YU7IpbYHtMz8c +7AVHyZSo1IHTCy3wX5pFtGLIKD5P+vZcdnTQvhwZ1R41SqbVqeVIuNEhlx0i +zBOwfmifq5wPHUydBR4F52HufSR1XyQdWjQ7H7xvxnzZ+HFSMR2Sfh53ubdu +jExjvXjtxhQdfj63ceLYOEb2/i6wrm2eDjpXExwyuDHvO9cr9ocOzK0Ldxk7 +MZftLSxjY4Btev5NARXMT/BHq4kz4KSWgGGVxxiZom+vwWTKgLQ1p/W1H4yR +SQGPHdIsGbBc5nT5cyjmEZzHZG4xoFi08wJbEs7znlEQx9+7Ar8eahpWYX79 +1srdSAZMpy8oLf/E/BnbUd1aBpzW23UsbAUd9us8RzMDMjfqKOxkHieTJOvV +KlsZoO+SL6/BO072du9RG37LgDotC+mEQ+NkypizjvMUA2J/dQgr2mI9d+aB +eF4CyrIYr7VcMGeu1lyLv9/7dBr0rnhi/3kfT2MhArbml4f7h2JeQ6r6IkZA +jFnKansu2lHAXfEI9m+KSxwuwnlvFSmSx7C/KvLIfBn2j8QrspIJ4OV9cJe/ +cZxMEzMzjFEnIJp+65PFMObSfayzugSUOl9zdx5Fn5JVMtEnoGfXlW1BMzhv +IuFVpREB3J4XzhX+xX1ST1fI5gREHVSARf4JMu14hKvnHQJKPh00YhedIFOy +J2zM7QjoCt33a4fEBNnbb0eenCMBW74LHzhxGOtf7XbKdCMgIpE59dEFrGcd +eZHjR0DxadKxNAP03JDS0gMCOhaW+krM0DZMaxQCCdh8forj3Z0JMqlwX65X +KAHSf0eejTvh/MCDagFhBGg/G1L/ex/n6xiHuEUQELaux3NnCOYbPwbtiSag +8EWbgHwUWq/v1+ATAtpNm8tOxaPNZD19YwngqKyatnmK/SoTyuEJOP96abBX +Ie43vi31KxHncxeKRb3C/SUx8RrJBDy6nW5aXo++FG38MpWAfIHEZToD5xlP +m7ekEdDaHB0z0In944taLekETDqGHZx5h/VsyT9KMgjYuDOwfc0QOtta6t// +J+5742PN8x1tENt+KosArfvuzOLT6HN/S+bQNpJOGQoLaFaBogfZBIT23Tmu +9Qf37dsUz5SD+/1uvjdlmiSTNGPVb6FbZcyd7dgmyZREvkfV6MlBIy7/LZhX +hqv8QrOHXCqM4ZvE6xV3VPApAXuPntPIE54ke/dbqUugNb6dHnkthj7Qd1wI +bR2l6tu+H005vfAH+4PJSkLDcjg/tU6pAf09xvhwiBLO2/ZB0AatNn1fW14N +97U8YF7E400/mXz9kybWr31bewO9klTjGXQR699ocL3G8zOaH4w5ZITzc+te +z+H1qNBcKRw0x3yHnw87mjdTqPmhNc5zlRVjxetnv3z8k6w9zjvdees7Xu83 +Old+fXDD/Ectdx7ej315XpsDfLBfqPqjVgoBQaQ0cZkgtMSb0K4kAkb0aOT3 +EbjPw3RQAe/viaIhPf849IhQuG88AWnMa2yl03B+F7dZPj4fhq9U0nyL0MKi +uhmPCSjfaF6xrxznzRbN3I4kgMfSt6OPivuVDRP5w/H54qonSbVjfrKenTOY +ACnrL3y9vTifeVHV8CEBgbVMsl6DOO/9/rt+/gSo2qpd7Z7EnKfL186TgNRm +SzePeexf1O6Tdyfgj9CDSPE/OP/b559vXfB9b2usdWefItOSd9wptSVAUurU +zt170SL/PWs0IyDA94Ziu+wU2bte8MtdYwI+9z+84KowRSat9bqzoEdAUmCL +b+tpdMxmmUhtAjhHznxxvIH9xK6/axQJuK1s/VvoLvpYjqOHHAGM6GBuujPW +n08I6JQmwP8EcWJHANqphnXtLgIW07SyGrOmyBQ18333NhBwadGm+m4++lnO +nuK1+Plw7lEPfykeT85o+evfDLBZaVt3px5ztgyOC/h5OGR07trWz7hv7AOb +bTsDlF/e9aCN4Xz5NUanmhiQwBbxxHoO+y9LTs/WMEC3sqORSpomU6JvbK3M +Z0DL1gtiN4SnyaRnTRmcgQyo+fnCfUpsmuy9wChJ8GRASd+WTgdpdLA234Ij +A5JiOt29lbHfqmwN/1UG3N2q0xlvNE2m/dlVvfkIAyx/FouJWOC8ufY5jn34 +ed7HeT/HGk1+FPRehAGqMR1iL93Q479oPRsYsHXr+futsdhvp7hevZ8O7D+L +Oi+k4j6HHxzxrXQg9W0W78/BfT/q1pcCHcaevOn89gr7DXV0ydl0qOY9J77a +jc7jEki4TQcLXu0uWc4ZMs1mxaL1RwvoLxSIV2ybIXvz52ed/9wCWr2bPI4L +o5u3/BfZ2QKHn7SJa0qjH5pFnC5qATbesx6WWtgfptR/50YLrM7nd41fRLc4 +5TfotsB8z0YJOyOsv9TW06HSAoPRrV0e1jNk0t8NLqyCLVDMoyURG4iOcDj4 +nt4M2fPPPXZEYP++jSvNpc2Q0MPenRk7Q6Z0zlEs8fuHfzThUZyDTrboy3Ro +Bj0ezW56A/afyA0S5muG1Q17yJ6kWbL3Npbm+XNNMLBQVUFaN0umUTY0sB5p +gqrh8wf9WDA/fGVtw44mcKy8vyeQA3OfcQmp8UYYvdnDHrV9lkwJfJYS49kI +Hc1+77KPzpJJGvRtcdENUPCS/4KEEubkmkhHpwYITi0inpFxntRy/KdLDaDm +8oFapI71hESEAW8DVIgdyq7UxXp1ef3MsHpIe/DZrs0WzZPpHHCzDjzsXCfO +OaJL/kqTVerA0ITjWpcL+nEy6xX+OuCRV9R/64lO+rqmubkWAr9GHh8ORXPz +LfRsr4VrHeIVFhG4f3rgiuUsDVSra2RHHuP+nXVcyvU0+PN4bPdEAuYpQWcr +rtPA7oQK+0IumuP567jTANoH3vq75KNfrcwqfqHCPsHbK0tFaB2O34L3qTDy +I25upQznqci6XM+tAcOM2besjZjvT/cJHHsNR8ICdEJa0JeFEyIcXwPPve3E +plas//VnvdHfKmjXOU3l6kZLtZNHWKpAdU1a1vZhrJ+6tHB5pRyOq54ZGP+K +uaVNropVOSj4/eCuHMVc2OlGYkcZyKw/6XdpFnOLnkOTj1/BPvXpql3z6Mg7 +m31nSkHiYeyPuV9YL5j2ul69FIQ3jF8NW0XncSdf+l4CAhqP442Z5vDfo57t +O2RKYGuIUudeljmyt3NMhYfDC+DYFE5p5sDc09hfr7MI/nDKCZOE0Je+Xri/ +Ng8WdQYvt4uihSye8Ik/hf+iAsKS9qBvTIZUKGTDOE//36P70V82eR7Zkw4j +l3zlWWTRPLUXRZaT4XOM1O1eObSa2Dk/v3jo5/McsFNC+5pfN1KLgB4DcR4K +BR2d0fj23EPoSOjQ5FBDi1CmDHd7gGDEV5a9p9Bp9FoWYVv4H1lvI4c= + "]], + LineBox[CompressedData[" +1:eJwV0nk0lAsYx/FBXYXSokhJC5IkVLaWx21RtiZFZU2D0WKZyhJZhsiSaKyp +LMkdlDAYMy/yMupWt0JRxhqSpbRYQ4v7+MNxPuf7e+aM97WW5nnERZRCoaTi +z+xvVtfnAP9Dw0C5EXJycMAFHtu/HLlERVenFTrXuAGZ7q124Cj6dLfkY8nL +ULbmWeoHG/S8t33TFlFQfOr8a44D+lf37YHWWHiYJT+fSUMLY7I1ZOMhW8n9 +0qqzaOeChPT1KZCguuS4lR/a35MxrpIJsWcqYtcHouWurunVuQvR953/HWai +/YrNtCELQtV522Mj0WoVRScNsoGhaSfzNAWduPud5YcccDs/1yzpNlr/4Uxv +VS64FhdcccpAb38ZI5KUBw7bREZn2GgrBi1F6wGY67Ff65WhhzPjkzQL4KAf +db54Odp1f5/oxwLYVz5p+PYRWsamWSWpEHbuNC06/2QYmEltx5heRaBm+D32 +fhPaqc1JWMSBeYHBy/SEuL87J5w+wYE+YuGdJ23YXawtXA2K4d7WzXldPeg4 +iuj7R8WwasPZ2uXD6BrrJ6dLSmDaaco4ewz9uJJz+EsJCDMjG7Qm8fMkXQ27 +lEshST6nw2wGPT8PpBJKYeHC3h+hC0aAwnyrvcGBC0MmF4MWLUbXJ63uuM6F +/yJE56bLjADzQKo0rZILESJrlxArsfdHPx1cVgaUcXv1bxvRYz+mHSrKoFPr +S3HAZtzbr/T/1V0GlR4B+hJaaFVPrwhxHvgN3DJS1kMf+S5zkcqDkbZmR1sj +tKaQM/mGBw1yrv0Dxvh55VN0m2EeFFhNuPuYoz9JddQs5MO5epnLLEvcT5ST ++UZ8MJHKFlE8gb1Vz277KT6oGm+NzLdFh+TI1/nzoVdgkfSUhntfO47+Az4I +ZrpWWtGxR9JhsYAPmTsZWT1nsKd+shUV8sG+LLbwNwN7nISsgQgBO0cVdK55 +oZ97iYTLECCv+bBS7hLuX7xYMqJCwLu8F8+3BmNfN00aGBNQ2mdzuCYUzVpu +Km9NQPz6T+8OXZ19fvbt608TwHD0s2+PQj91sbD2IYCaNq/3zHX0weHAyisE +aLSmnP1xA++nddWpNwiQkt0wHJaIXr5VYekdAp7d2P8n4zbu62+mb+cQwH7V +FLY5Azt9c3hKOQFhEs6SFVnY/5jYatUSQDswyjrInv17snlzXhDwd1io3Ls8 +tLzWxqVvCFhTszjD6SFa4KTrICTgz+9M5eEivK87RevvIKDdQDM/qBT7HZ31 +RT0ElPuS2lJ89IO5Q0QfAb2XvjZHVOC+qcbxxyABC/0VAsVI9Gnb6eAhAvQu +m60LFuD+lKGY1VcCnAIuP51+gl1Judr3GwGxgffdfJ5jt1VjDKL5QS2LR16i +3UTMH6B7gufx3BvQb6WvVeG9VIiu3WDj7PNiWSt9IUAnlC7i0jz7/vg9HZ8I +cLySxO5qxX1RvelQPwHRYY9N7Tpn/9+OcQ/34vsJH/3e3I3+pbhDqouAzqvr +ko9+RAsYY4ptBMyLtNhRP4D3+1aMxbwlQDuK2WUyhJ3HOmhZT4B9dGH4v9/Q +ijK/fJ4REHmtU23PKO4LuTIT1QQUxyxoeDSB3SM48Q0fn9/1nd760+if4X4L +igj4K+6cPPc37mspVTlsAjRv3CI1RUaBedTxRBa+XxvWc+f8OaNA0XLe8YdF +QEHChsJ7ktiNTyZ2+BMgTDxmqSiNbpfvpHkQIJocPnVrCTpKTc78FAHHb37Y +G78C79XH3h/dTwAlLUPI3IAOqcnY8xcBaul1gb/UcP9Qz0V8nA+WGb/XXdLA +LrGkQfcDH/Lu2rp7bsfu95Pf+YgPR9iyog570fY6ujZufAjIMcppMUKnKd9m +HeMDO9fbzMoE7xPi2QaGfJi+35hsZoF2awrvXcyHe4Vxm3acxL0O6979Ah7U +FVU1lNHQmkOs0EQeTHK+eGvTcR99hfXajwdmpabVG93RW/oPN+/hwRhf3Eru +Mrrjm35CXRkYCYKDxpPxXt1r0OIVF+LkBN2Vt9BKt5u/53BB6DFnf1g67mWM +86ZCuHBmZZTkUjb2iMu5ptu4EOMVf1OTiz1fP0AsvhTeqPxTfK4Rza0yp2qX +wMrA/mVbm3HP8VRtESsB58aNftOt2DMWvXrXVAzjwQUQ1YOdxiza4l0Mci28 +l+xh9J0bW1wLOeBw7b++bukxoDyO4NAkiiCnW8okbyl6vrHJG3YhfNelPmTI +ojlZls26hRDS23hxZjVaaH3z1bECyN7VQVHQQF8QqwyLzIdP377JnzBD04L6 +eitywddyGbUuEm10r1T/dCZksXeJWMWgfeSbO55lQN2kS0lbHLpBUeM+mQ5K +aWWyg8nooDNr3HPvwJuPx7vE/kEr0agV9Jug4XvrvH4NOlHS951GHPSmKiZm +T6E1taoWBJ0hFw0dMNr0e/b7vdq6L/s8uWM3Y5JDGQeKo0ffpTgfMr6n2o4U +RzcoKXTsYJKwiabcugxtp+6ediCavFWZXSatjW4yyKrzTiEPv9/Y4n8WrbLn +QUIym1TwWRtx1gOtINe662QO+UlqxXabC2ibbTNPVHPJcIN5LH1/9OcubY+q +PLI8qe/gZBQ6c+/dRWP5pJLZPb533jgwVxwXrHjMISf5q24yBrDb1oy65PLJ +J1QZI8ch7FdsF6nKE2R8n+QY9TuacUDqSAxBbpb5Sd0yiVbxaG4/X07SPFvE +v4pPAGWoas+zvyvJl8rJvuc2TABzv0PZizGSTK28rmy7aQIMp6St/XWqSfrR +8EaTLdgV0vbWXKgmRUK8tqjpotV2i/V9riZ12o/0DxhNQPUyidLIrhpS7KJJ +ktAE7xcQChqrBWTD/D17nx1CK/AM59oJyHO6Whk5x/BeLsL2oFBA6tWpmqfY +YA9do1q6vJb8y2XNz6sO2Okpxy2sasnGn7J5PjTsp7OaFBNrycx46eN0OrpW +LlqxsZb8H4bHvAw= + "]]}, + Annotation[#, "Charting`Private`Tag$738014#1"]& ], {}}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->{{0.5, 0.5}, {0.5, 0.5}}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{-1.4, 1.4}, {-0.21603873670728646`, 0.10131711070161664`}}, + + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}], {159.9449084269849, -97.50736892665735}, + ImageScaled[{0.5, 0.5}], {299.8967033005967, 185.72832176506162}], + InsetBox[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwVl3c81W8bx0UaFJIkoaGsQlOZVylpS1nR+IVSUhkNMpJNhQoNJEKShOzi +ss7iHHvveY51jmMmief7/OX1fn3d97nG5xr3Fst756/z8vDw+PHx8Pz/rzFt +qWWy/iQOCWvq9duMwHjSrHGC9iTaetT86X44DLWWURnyGpPoZrbPekB+GDKk +Dgknq03i2E15TdeWIXAM9aemqk6ixpltm8x0hmDqkbhm7pZJfHtA2LVYaBBm +j+3bXME/iZGGlwuTaQPAM3BvmMuYQKOfysmFcT1QcoInUL58AmtMfAYPX+0B +n9RQ+SvkCQxtjpk3kuqBFc7p1hWFE2hze/Nu+bfdICw42ZnwfQLdLY3fUnZ2 +gczuh3XmLydwQZb6bcnFNugOX+b48sUEkoKn9A/0tULcXIQINXACD/YX5Dvc +bQW5spwz+70m0O91RSbHvwWUTf9QhJ0mMPhKsUI7uQm03N1+lRlNYGyjn942 +p3pY6Fll8ffcBPo0WhgMraqHomPRf3afmUDrw1IK7z/XwVGRQrUYvQmMLHY9 +lNdVC6c+Laa5qE3gaNk93VLzGjCneSWoSEygdIOIs+s0HZzXBQa/bRtHuXs+ +Z/PSSsDUY2+ncPM4shwvFH+RLQE1Voeyf/04Xrq2K4X5phimc/cwHjDG0Vd/ +h722TxE4XmoXvIDjSPH/WaDf/AvsPqkGrv40jsEZoqUCnEw4taq12SdmHI8X +b8/1//sDlB74KMxHjmP54RMsC8EfMHSshTIcNo5Wuwe2z+1OhxvDXsuofuP4 +dHfF30P7v8J/uxu9vWzHsWMPs6DJLBLgvWfdnxvjqEFyvWoi/RZk+HbIOliN +45HTR0W0h8Ogo/5JydVL45huxhchrPECzJ0Vl2ifHcfrLWfC6+WtwAjdPH7v +HkfXrB/xe4PDcK+CfOVdlXFcn0trnj7xBkVf1kgzlcbxxyPtpL0L77DGUq6g +XnYctbT4C83OxeDZZdV/09eNo+5t+bZrlfF44oysi90fLj4zPZPXZZ+KAtfy +Bd5Oc/HCa68umdTvWH7fMKp0nIvr+M2Mcp3S8HTUE5Qc5mLKsKyy2ud0PDvS +xk9r5WLkaMt3w98/0Cgw7NX2X1yUuRy62wlyUSx6xzbDXC5+MrMR9izKxYa0 +kiy3TC5+4Scdq4c8NGnmNtelcJE24BV8TT0fL8qf2eQVzcWh5K3/Hkj8wisk +/pRODy7ue1GT/yUQcVNLlLaAKxcLGgd/dXARu0f3Vu1/xMVc/mbeEzuK8JqY +5cTze1x8LHDKvSy4CK2tCg9q/sfFhO+T8svPFOO2R8blNy5xMbCv4kjN42Ic +CBq1eGXGxUcHpOoHPxfjjQzJJ0PnuHj3VhZjGU8J3lryiPTmMBe/RfLy7Ugq +QaV1Qqal2lx0OWea/qK6BIcVEgY56lwM6q8JPjlbgnbn6gSP7eHi7fOMFS16 +pXg3RvX81FYuHuxpqHdqKcX72oOd55Zy0XT9inPcvjIcet5lGMzDReuVpkwp +XhL+zP0W+ObPGJqYXg0q2kTC4Jkg4xfDY7jv5NrzjhdJuM9Rj+1MH8NUCzIj +nkxCmTX76ibLxpASl8lI7Sbh8rSteXcLxjBHMd9IY46ErexFH+vUMXx1z0a4 +bQcZPW/lS50LHcP4I053bwSS0XbFF96KgDFU3Dc9EhNDxguf3wzqPR1D3fU7 +2dZZZJQbuJ+p6TiG6vZlRhFdZKT/p3pa3mgMX4R/1ctVoWD2ovSeuNNjuEhT +cb13mIIxH1ZJSOuNofyd2pyfFyjo2D7UJ6o2hgnes/3rH1FwvVm868L6Mbx8 +e+rfQi4FeX6/uuYiMoZ9i+9velApOBz+VH9qxRjeOSw5GNlEwV91V9YO/+Fg +vtyZoKwpCloabPja0MbB3sTx3KdKVDzNWf7yXD0HlSuM94kcoOL+FzMPK+gc +JKct/0/vCBVXVNTpFhdwUDWia+qzORVTjwW3psRw0FOrd8TWl4pvB9yK5N9y +8NsSK8apECo+9bmdGBfKwR8FZc/a3lLRqOS449unHFyTqRsu+JWKOtcOmK19 +zMGtXK2mbz+oKM8jpxPsSHy/29TH+4uKc9p8Aj5WHHR2v3WQVkHF/vbxsQUL +Dt4oW2KrVUdFhmt3g4sRB71nPdRvtFLxY15B7D09Dr7wdHDqYVExyCzFf1ib +g+FHPfL3cajo9Pv9netqHFQSjjPTnaLisf3O6hbyHDwXmHI4dJGKtu3vn5pu +5uADuSezLktpGOxdQLuwgYO1lRE7lVbSsKmG1/y0IAcLfBvHutfQcN55e9zx +pRx8m5bAHlxHw82bjw8f/cfGLZcEjuVvoOHNuy8ea4+xUaGzr/HnZho+X5dW +oj7Ixl07Xt1ny9Iw7VetgFoPG+VlTh0YkaNhvdX0+T2tbPy5pqQyS5GGfwQk +IlXq2Kh3wGvozE4aymRo9CnR2UQ+xvZlqtBQ9+LlHfIkNtokH788tIuGN3g8 +nWQL2WjolLias4eGQZ/jfm7KYWN9+MJYyT4app4l8UmlsdF8TPbbTTUa1k6z +Tkl8YaMWhTLadYCGM1ECYWJxbHw08NhYUZ2GG48qt4tEsjEsKfW5ngYND40Y +bFsdxsYZyWy1/Zo0tH7laLfyBRuzl1NmZgkOUA/P5PdjI1Xo792XWjRM6c6Z +X/KEjQm55w4tElzt33p04REbLQJTBI5o03BK5d/zOXs2Dou22l0mWKJxU8PM +LTbqLn+x1IBgbXdd6UlLNoaesLwrQbDltuvXxyzYOLLQrZdP3OdX4f9txIj4 +/sF1+36Ckx2Tp1ln2Gi95GViIGFP5QaGdv8xNvI53LmWS9g/UTTm2w1slM0+ +xS4m/BO/KVrZfpCNT+RMuhMP0lBDeL94y242Smd8rrIh4nE12/RKgxIbB8dO +G/AT8fK5/DixRpaNAkp6E0+IeCYtjeYwpNh46Jb3yWYi3tzzvR5kITYuitlc +3qZKQ7G5pZSS5Wz8nFKotkGZhgdj5YWRh40tGSW8HCUaPh2zi8mZGMVhh654 +dSL/iREhrB8jo3i41uFlOqGPcu0M1bT+UQxeSIgW3EJD0ee/MalxFKm3Ue3m +Rhqq7ZVckVA1ih15y2pvS9DQvFXrXCx1FC/PZn25QOjxk4JX97v8USz+vm5z +rRAN95FWLXn2YRRdwlbdfctDQzM71RP+b0ZxRoB0kD5PRbe15196hxLn/QZP +DM5Ssezamy1uXqN4w+H37jYuFY0XtujeuTGKN6dMfPO6qKj1V1qo9sooPvTa +Jd9G1N+22Q2taqajuNfO4cZAAxUnxtc48hwfxRhfrzXZRP0GDyyJe604igZn +f242y6Yimd6zJH90BJmpxQc2BlDxQGRs8TKnEbx4/miY9hYqyryNfnH79gj2 +7QV9N0kqLgt/d7HaagQNpD73/VhLxfrgl+PvjEaw22DutfAyKtp7Pd2irDaC +YpPhP3yGKZh069rTC3+GUb+l7npxBgU3HNxy+OOTYeTPaFpQOEJBDW3De37O +wxj/SlH/lxYFL+k+jbZzGMa3FaLfL6hR8OPpnj8HrYbxrkB+W4giBRWuxWbU +HBvGA125jkdFKKgWtGUbn9Aw2ovxRNZ2ktEsxPD80LJh3Fo2t6OsmYyPw556 +Vi0O4a9+C++CWjIWfuhpjxwfwlJPcVMqmYx6P2LD9zUMYXQ8Q/HodzIatW9Z +fiNqCPdlzYktPiXjwx7D/afDie+Dtvo+bmR8y3xqtSd4CAubNmuJPSJjG7cH +F54MoWLyoXXGdmS05I9zfmM1hOv8bvFeNSWjg8rWYarSEK78K5+RpUrGV3vP +S3yXHUISuS3sjxIZMw96HQuXGsJDl2TfnpQj46xub9w1oSE0W/HDW0yamG+m +cRZz44N4Yc+tG6cEyRjsuZWxI28Qf4+bn7g6TEKJf6KF+zMGsXRQtCCCScI4 +F77v8HUQr3q8CmzvJWG2Y3/ohehBVGpTDHjdRsJO60Qj16eDyDwj5JnOIOHN +ngg938eD+Gwkc8uVchJOXPZXC3EaRN9iB/IGCgmXmd6U+HR9EO+Tn18vLCKh +8gml9vITg7h6IeJ3YSZxP0mSUa87iPyrH2QMpJPwkK5gYafmIH5Lcv+38TsJ +jTRHYyaUB7F3bJ9XzhcSuimnWkmKDuKnELmerzHE/ckfjLYJDqJqmvHPc9Ek +DJUL0VNZOoipe9oi+CNJGL/JXl53hoUuGh5eMREkpK/ZM3KrlYWXhvfeCg8m +oUnw1nanOhaeObk2+OdzEnYLrGW401lo398oMBFEwim+qdSXhSw8sC9dNdSf +hB6e/TGROSyMp8UM/vYl4Yp/9aEJaSysiZDdaO9DQqmZLMe8OBbu2mAi8Oop +CRMdE61KI1kYq0+q1/Qk4a6xCCNGGAvzWk/tm/EgYf5tf72mFywMSm5SKXYn +4dHBR2o9fix882OGFuVGwkrrm/IjT1h4LaNJINCVhGY9ZhLTzizMKTw54/uY +hHat6nMrbrPQnWLYme5MwhkTpRFRaxZ6KGX0dj8ioWedZLvUZRY6RerEbiZY +4JwgQ86EhVv4fks5PCRhGP1vwS4DFoaDp1ntA2J/OjGaqnGched+bTM5SnAS +qT3m6GEWdq9sWE+5T8I9uozQsxos1HqgEGNO8K/Cgqdme1n4+sNl9oITCY9p +pjpa7mRhsrAFXybB1TkfrOy2s7Cu5nuPC8Hm+0KMHsqw0JcvLOAcwf1pT/Q8 +17PwxJ2h3wcIvqtsrxYkwsL34lqquwie/fKffNhKFnJaSpTVCfaSM5T4wMvC +qNmrE+cJFvx0eGXSXyaqp8a6uhNs9kDQQ3KKiWZ8s28KCY7Xb5h4PspEqeC/ +dmsJe8c3xNgs9jMxaV3gb1eCdUZvtjt0MFFea9W+WYKfFe4x7G9gIv9FT5kA +wv/m0HmSSSUTHc47ZOwg4rXdiqxBIzNx78P54V6CHfeHftdEJpINa0q+EfHF +5ebbUnOYSAncs+85kY9VrbLvNqcxMTVt5qCHC2FfCnv16yQmdkkFlnsT+Uvw +yPHij2XiWMFwTxSR34lzT38/esdEq/GMRzQi/zqyp+yGXzIxyETEZyWhl2ZK +p3GVFxPv3NPpKiX0tP19UvlhVyb+E7sppeNF2GPnCJlOTFxwbE2p8Cbis2aZ +4jtrJl5xnIjZTOjXrK8qWvAyYU9bBZsVQMQn652ohzET+5RMr5cQetcxV563 +PMZE966sT2lEfTzb+du+QYeJbr/Sz5eFEr+/UDSgf4CJccsy/g6/IqHDJ6Oq +nQpMlKMvLHd4Q9w36ho3s5KJXie0n12JJeJdqLf+Fi8Tl+ffCl4RT9z/Uvh5 +29wA1olTJEmJJGza/+lB0cgAinvxhT5IIfT5pPx4EGMAty6V3ZyRS0JTw7CC +edIAutT1xXF+EvfLXtlzr3AAs1p4FbSRhNrU8Y1G3wcwVR/HhIn9337NhjHp +lwPI98T4v6B6Ehb09VqFBg7gR427fUbNxP3ZKc28XgOY4v2WsaudhJ/MD5Ww +HAfQqCjPW6qfhI2fbMLTjQbw8ZuVm4qnSKillq2pJzGA6eo5Vjs2kLFMJFNU +fc0Amvh/fZdK9NdTI+lDOwUGUEdEPA+2ktH847c3YvP96LnO1fIZ8b5wFkiY +7OvqJ+ahjgRZh4xZna+/en3uR343ula2DRlV/B02Fqn141iQSG9PCRmzr92b ++KHaj0qbHp7/TSWjttYd2meFfsQu8/L1VWQ8PX7zUYhkPwZJq9u6tBHvFYv/ +6q4s9KFS88aIX1NkTFQ1ePaP1IfRx7mvdxDzblPzzr8axn04UryknP2WQrxv +lpq8OdOHvz6uTad/pBDzoy1tUq8PUzX++WYmUfD4u8AbKWp9uF358fUPxHvE +0ZxZIy3Rh6zmkaHGZgqWtcck8bT14oqVBxTziXlu2yNqQv6vF4t8p1u0P1Ex +e3g2zdCuB8t/FgZ+LiT251ehlTXWPbj2hvl/NynEPqqhMGp4uQdva1raKFTT +0DPQVP782R4UW+FyL6GHhicVsqPP7+rBh1X1eiFLy7HzulPQhaluXJ+6THDJ +yXJc1sO2MnbrRjfYc82kthxzA3yfNtzvRhFJP4fM1nK8vUs6xvhON37eZcK/ +uq8cq5+cbjW+0o2ua8O2fZssx/cyX8+ZHOpGycNdhxLEKlDl0k1t06XduGzF +7k3GxhWYnEpSzpDowpbjC3651RXoI3RZOUugC83sZeJimyrw6t2pnbnznXj/ +4voNXp0VKKYiu7OwuxPVr2t+VRitQI9vnkrlSZ24rarbbOVyOp5P0ZTvPdiJ +4f/42nk06bhzVZ3cgFInMpatrDp/mI7L7WzlBqU60d1a8tZ7fTr+2vFuO4en +E/3Ws+QFjOgo93VGdo7agY3uNiM37eg49yV9s+jFDmzXHkheFUnH+pUnNq87 +1YF8vgVFKR/p+P1W9yYJ7Q4M2fu841AiHa0VhTfJbOnA+qPSlKPpdKxMspNW +GmrHXWe/ReWS6Rj3WV5S16Uda2SjsjTG6Oi2HDfo3W7H0i3Ob4Wn6GhqY7Lh ++OV27Cvw/tM4S8dV8r4SZw+34zC/ZZMWLwMfJvaKm69sx9bn9+wtxRh4KiF6 +reO7NvyX2NnFo8bAlDSW5LEgguV3e+lrMHDVr91bJV3b8FsfBrvpMJBeS9pV +cqkN6ZuPPkw/xsDTPJwzopvbcO6q1oMjJsR5wYPGTJE2VNXPvzJ3kTi/3utS +/pI2JDlVNHy4zECGsvhty75WvPRSZ0maNQPPWugEZCS2oobqyRtcBwam3ggI +8XvTim0/VetFHjBQyLE2wjygFaX4RuelnRlYGXAjgde2FfXDgyUW3BmoEpaW +0mjeiqGY2lztycDgmLkfyada0e37Bk6INwMNsoNLziu3YnKjYFZtAAPTiptp +cjKtKPhww36TZwwUYWytmRNqxSNTHp9JLxhY3ZfdFcdtQYOBnbw3XzHw3Jqu ++YkfLVi8wYKb8544L6W4lBLfgtmbjlu9jSLOKzgJRoa34IJ9hID1B+K8znLJ +I49aMEnp2ftfsQzcddJwy/qbLegok2t84hMDQ40jFUbMWjD+x4XhongGGtqp +Hnit0YLwqfSY/WcGZjxy0bHZ0YKP17n1fk5ioKh3qZ6mVAuWh91epH1hoGPw +6jPCq1uQaj7h35jMwNp3pkZ9/5pxmhV1g/GVgXsSYi1yOM14afM2v9QUBr5K +G7F81tWMVJs7NS7fGDjxc7/t1epmjC8I2quaysDzlCcOe4ub8VZz/ptKgjNq +ac7LM5ox49CtIdPvxO93rvVsi2vG7tsqYhUEOw5d9v/+uhkfNlbxKaQxsG7q +c7C3TzOypA/F3yV4H89EuOmDZlSUjOn5QHCYoFb0jhvNWDmjnpRL8JS4X/yi +STNWnXrW/5Ngo63VX+v0m7F2v6Z3EsGZypI/Ph9sRu27mxw8CBZTt853VWzG +HEvNSG2C7x9NLTaQbEan00WcAcKeeoNZqqxgM/47tvriI4L3WehW//7bhCk3 +vlPGCX/CbjxvqhhtwoLKawrGBE85NHbGdDQhL2X1rVgiHsbum5lOlU2oVVP+ +qJGIl9K72vSTRU3IFngutJRgniwf9y0ZTZgx7X1emohvY7XaidlPTegmFrp/ +KxH/lNFBsarwJqRopn8RJfLjtSKyO8G/CW/GCMZyiHyabjuT4ubShHu7mauz +ExnIeyn9iNLlJuRjj61ZTuS/+ZGV8BKDJjzy6kpwaByh/9fr2poONeHL7qqT +/IR+Lla4OPpuI+zVKzNIiyb0ztqhc0m8CbOiEjyYkQxcyte5cu+KJtx58Fj+ +8v/rU0M3tnukEQ/0C8oJRjDQz2TKLqejEc+uT9Vmv2bgJcfEg8FVjVgyuHJ3 +/ksGLk8WqNb80YiUzPuuYoT+20m/IkUTGvHHqi0/Y4MIPfTctRmKaETrmuLP +G4j6ubKhbiHicSPaSH8xp3kR8d7vW37HrhGfOqcKLCHqT8DwQMTRK43Y9me7 +pixRn1kBkcoThxvxlY3zhNwjoh/MWl06s7IR5Sz/hivZMrB3rbjCtr8NKHmu +XzbrBgNzVamTc6MNaHNiVbeiFQOtbHY+S6puQKmTWb9qLBiY3ziVx/e2AS15 +03klTxP1NJHo2xpInOdvnp/SZ+B1oYuG6a4N+OamSnveEaI+jxUMXrnagG/j +3yss0WSgTZbv+ny5Bqxyaljrq8Ag8n6gL1SiAds5rYapsoTe2UOpNgIN+GBB +ZX+xDAMLt509to5Tj30awZWfiH4pFib+wD6rHt9sKve3WKRjiePnWrmj9bhb +xNw2pJqOMhqrEiv31eOvnD/yNBodXZY4uDzcXo/bl1nuGiyh465Qjc3kZfW4 +Ql9nRWMmHaO/Me5cp9URfX2biv0bOjoPTq6IP1uH8kKfaO9M6Vj33az9FNTh +5EmexO0GdFR5VPB9UrUOF2/99Yg4RscBfn+TI2vq0OXPHkn5/cT8kpWM762r +Rfe6V0l8a+iofOUQbLlYi1e07CyTSiswYHuCKO1ELZpJvvrtlVeB/aMrmfYa +tej0quOO7vcKfO9a97xoYy1qPxv+d+99Ba54d6P1amcN5l34ne17rwJ7654/ ++GBVg6Ex0YFRxDx+e6Ll68a71eg1erkskJj3ZYuFSwWvVuNp1Tn7I9rlOJYV +f3nOoBq5512M+lTL8dhWe+GW3dX4J+5eU4NYOQ5Pr2buHKlCEXGVx34dNPxk +duv+1rlKlO47tVPKlobiMptfrpZg4IK/tsh5eyreCRrRHf1DxEFvbnvPVSqW +zWRPlbcRfps2eJoaUNGp6oxZQAwdAyc4e+aUqVjt6bqJT56OfJaiDIlhCgb2 +NX6b3V+BsWZXfEiXKTif9KK87wINHy+rzNXYS0YdNUV+6gEaVlW+aNmwhXiP +l5ZBykYaKoc3cPuFyMjf+Tfzfh8VmzKqDwDxHhdaaxvD70TFIq2XMfwfSbjZ +/dh9+VcUNFTlnR5YTkI9w0Xp29Uk/G6dcceCVorBf+wdJk6XIO/xD4c/ixdj +e4fDT2eVElTMOsYrtlCEiiWO/IvCJWhz9rHI3YEiLAu6/06wrhhnnjS5DP8o +wrmNzsXbLhZjre09veXnitBG58ka0+tFaOihEFG5EtFz2UarR39/4eJMX9ZM +6U/s32DUt/JyFsoO2UlodmViR7O5KuNZFFoLBBl2O0dh+/0upUc6kTBiv3Qd +n0ok8I68V5EfzwJs/rl35GYWWO0P0o1TzAZ+v93a+tFZUPbExUTaMhvuk+47 +BNdkgZ+YmcfaumzQvU0K71DPBgGddZWLmTlw92quk8vKHBB9GXKn2TkP3Da6 +S7rH58KWAz4pgTwFcFvX6bIN9Sd8LFZbN7O8BFwayEYjnUVAEqaFvJQrAb2g +da7pv4tg+LKFgLJeCZiPTVZYixTD/rkni1ZeJZDxxSzg1eFiKN9DG6qZL4Fn +BoHfl38qhslPFoXfxkshrkHt0BHLEjjm52lzvY0EnUqvQsxrSuF2vWgvzxwJ +HA9k+r9hlULo1oRLURJk0No7XVz4rxTaCmmGdcZksPdeTKpQLAP736Jah6vJ +kGIftNDuWQbvbyaISJMokPmgQ5muRAL2yfK8+lQazJ41KzC9QwbHn+aKPXQa +PJXb2XHJkwwzO0besodp0CJ3hnbyNRl4Vq9yXiZfDtFvS2nduWQQrTqjdjCm +HNgiUhWTvBQ4eKEmIzKkAgIaZk9/eUUBH4vmr5b2DJg6pn9rJoYKK+k3N94L +ZsC6R7/ezH2nQrDWnyDXFAbkPmbPDiAV3khL2oYNMkDzgNAOxy4qJHdZKJD/ +q4TYRlOtq9I0qLbqilc0rILg0Q3CPmE0EFKbPDv7thpkl97cWXyvHNouXyj5 +m1gNKqYfcwpdyyHJ98f+xcxqiFh5tiPBvxwONzhJLauphvXMisFdhN33708N +rV1ZAwvmq6LVGcT5jGkfVZcacL2qVC26vQKSWo1n9/jXgOcC80mSagXc582+ +rRZeA34bX0XJa1SA0PmH57XTa6BzO69479kK0B2f2XRqqAZOB8736D8izqvO +5t+4WAshm5LXNZZWwANTMxVbm1q4ekFlLS+D+P8nubF3HtSC7bNQx/WNFdBe +6Rxw/2UttGhwzBZYFSB894+xF60WVppmtPwSoMPDlDlutHodxEzHV/w7RYcj +9ebWsfp1QF7z8nbRBTqIzOc3xRvXQbjLIV87Czp8OeVa+NWhDiT6M3Y9taVD ++/DfZ3lfiP+X3vYzyp84r/hPrmFDPcz0K6XEFNAhKCH51XLFeniwRmfQu4wO +tVvMFtQP1kP107XsMxV0+E/yR8MHk3qQ41Oyfd1MBzfBWz43X9dD4Bkc7R+n +Q6m/OPd9XD2UXNJXmP1NB4GlZRaM9HrgPdVgNf6PDu/mZfbuqa4HtNSfC1/J +gGx2fc/fVQ3wli4ZlLSJAf9ueZ1RkWoAU4U1yaPbGHCUqZr3344GcDELWb1e +iQF1nUGhpBMNcP2Nb5nMPgZwqw5BiF8DMD/l8f49xoADpznJxeENQDKdPeN4 +igEe1EjxqfgGSF503lltwIBVxTNss9IGcIv/WQlmDFDMSInaytMIGtkn+8Zs +GGCvYr7CWLgRLp09zht9m9Bl8vL7/jKN0Bt5V2T3PQYc+2R5alSrEaz8SnYI +PWTAi00iOTKnCU5TPW/qwoD6yIKthhaNEBd29L2/GwMswyTmslwaYWHqd2m0 +FwO+iJCvDwY0wpGdZkXevoT9z51qJN82goxb31rDAAY88a1MepLdCFu3i8zG +vmBA1EMf0xOTjeA0YnhU5g0D+iZ2l7ryNkHFnpMBh94xQOlel0rqmiZIWfLg +zclIBuTZaCxbu6sJQp+NG4nHMICnn+WgB00g2vh0a/NHBhz/L7zj0dkmeJhY +/OdpHAMazbiZ7XZNwJvVyB+cwADphujNwm5N8D76ugU3kQHWhqeeH37WBLe0 +189rJDHgK2P2t9P7JrA0Lpy984UBEycSrRK/NMHetEuWgckMUCdfqGrObYJD +wrInX3xlgKfuEk1BahNsWO9Q7ELUObUwNVG7qQlyNBtazn5jgLDmJVF7ZhOo +pqxKWJXKgO7E2LyYqSawiN3SkkRwhijrvyreZij+6tOx6zsDfDx2rlgUaYZb +sWuK4wk2GXb4rrKpGU5FUF4tTWOAgkmOyRXlZsiiU6+dI/hP8fy/F5rNYJNg +rh1AcLmybkLBiWZ4GDKwL4XgqHf+p9mmzTDwe8r0F8F3+RmTUjeaYZX6gWxi +34dDDqKRp+83Q2Kg+9VYgkU7THXdvJohZ+Sn1UOC+45HD30NbYatG1fWHSA4 +M7M3tO1DMyy6figg9nvw26xwUPBbM3xf0bzXk2Cz53e6NH42QyHsO7acYKXZ +DD9bWjNcW2PE70r4O281q/y+qRnq6XNP24j4MKq0G2gDhP2rhRgKBH/Q9Hb7 +M9kMOp/Df1sS8bT/TJVV5G0BzuufokFEvHXXClWYibRAcmeF6gciH2JPLjgG +yLTApdB9/8UQ+cox6SxiabQAi2x/+NZnBgSUyN5cf6IFrN7T1u0h8m2ucktY +37QFzh73PToYz4AF/qnLiU4t0F0f+0eK0Eu1gzp/49MWmE0Ni48k9BTb4ZHC +H9oCLipCk8sJvR3NWvnXOqUFYi/Kk74QehTfYhAXlt8CERzLu12EXlnPw06U +UVvAnXFpGd9bBgRZb3orO9ACOa+UDcTCGFCzdv/+XulWWHO6xeraMwbEPXnc +vmZnKyyzzo5dEciA+yPofVijFVzPDNh+8GOAROnJ2o8mrXDryeBY+FMGXHH8 +797VkFbIjjrLk0PU567OBPGQ6FZ4PR1XV+/EgCUnRwoKv7ZC2p2+xh5iLsVv +ebhKhtoK1o70YpotA0aqn31p52mDT1+9PesuM8BZNafvomMbKAhcLeo5xIDH +Ka78up5tsEFA3k9EmwGuiofklYLbYG/OzINd6kS/kaXZzn1pgyv+fkpHdzPA +e33b+PueNqAxtM4UbGZA8OLCYtu5djDfkLmwkuiHoW6lW8qutEOK1nOa8Swd +Xv7xP5Ji1w6lvoztYZN0CJsU8XcLIPi/4bHBIaJ/srYKSRe1Q8zgm8vTDXSI +rzomdUW1A0y8rvunfqVD4mlBnWPaHaDwovK5SiIdPtOqrqqc6oDaMIX4uI90 +SC41+7RwowMailfZ2YTT4XuOrVLMhw44Fb1O+oYHHfJjgg92r+6EXd1tu86e +pUPNvUYjy9FOqH3u2e7BrIDThwfvuvzthGuSz6/KdFUAVXQuIFSgCwRme9J+ +NFVAUZZ0QaFCF/gu+e9kEbUCUv9ab994vQuYR/13X0+ugOf+k9N1HV1wncvf +N3+7AuINAiribLrhlxSt8L+hcvjPJsFO7GIPtP1jeEg20KBP//Ebmf96QJbX +zLif2EtuKBiUKNj0QNeGDf99K6OB3dDseu0HPXD7ztUQ7UwauNw+XXr9ZQ90 +JOwpvviaBq/uTW7IofUAJUGiMcqQBmWPDlMuavSCd8T2bwpVVNA3E5+wOtwL +qd6OsesoVCg/OCJ193gv/HOeTOMn9pHqP2GOXia9sGbuXPRYKhU6XAelvzr2 +wlNDtiAnmAozT0Luzyf3wufP09vTDKggH9CxJWZjH+zfUi4r00CBQdEW6iHZ +PviPRy10JYMCSdH193qV+kDr1XaJf2UUUPhRUbBdow/2nMoW/pdJAaXOvIsp +Zn3A11f81TqcAjv3RbzMC+8DQ63JLxOmFBgtfHnQIroPSh4fE3I4R4GUEy+6 +5uP7oPueS8Of4xRQvuqjfCizD0QGhzbs0KCASpAjjVzbBzpBY+dEpClEXs8u +qRfuB/mKt1/4BsjAtT2Z9GB9P/SXiHse7CRD2rSewfpN/fDrSXiHSxMZdgtq +R5ur9IMmoyNtazkZ9qjtUO853Q/qBvZ6Imlk2Pd8uQMnsB82DRpyHnqQYUqc +TyL0ZT/cGhfe5+1MhszYhcLd7/ph2Xz572hHMuzPmV71IKkfjgTT7y3eIINa +b1/SX3I/ZCW9vvDgHBnUDxZ1r1g6AB/1vDL15MhQmO+/XVFwAKp3qthHbiHD +UW0D2xOiA+B/av+FRSkynNPtnAzcPACs47f6xteS4cbp+WWC2gPQ7hl9x4eX +DKOVpad2HB2ApXa5iWcWSOBg+Cz01KkBCN3Gl7yd2KPdTCQln18cAPL215d4 +J0jw6r+DyqsfDsDIiRPe9r0kkOhbdFB2HwDZN4JbMjpJEH2dkn3GZwA2zIrK +8BF7eZKtyaHgVwOwt3SHW10dCQrv378g/H0AruSxE1XJJDj6W/OtavYA/GC0 +yXBKSEBz4eswKCDuk7ng9gtJUO/x6kZoxQD8rrwkF5hHguGANJc1gwNwsm1n +Z983EtgLOhfuHhuAxeq7O2S/kmD6BfCdnxmAjU2v6x2TSMDzuvL5q6VM8Nnx +y/7IJxL4rYuoyRBkgnaUskfZRxIIvr0sXifKhCbNy1ImH0ggHj0as3YLE6YO +VWt9fUeCqE2Z/XsVmBC/9mzT3Tck2BLnqmikyoT/SP/2HAknwc7PAj/CtJnA +z3fKQuYlCXTTFcjrzJnw07w5KiaQBNS9XAG1a0zgndpgP+xPgjPZOQYmN5mw +ZDrJ9JgfCcx+HmuJeMiE1Sph/ru9iXeMtpBMjjsTOFyZnqKnJLAqarBs8mGC +39/zDtc8SXCXZD26/jUTDNKTjBrdSTClv3P3wfdMEFB3yU52I4FL+eQDs1gm +rA0wsAt1JcHC6Z/5zklM2K2b7eb/mAQ+VV6Lb78zgbJ0gB3iQgKB8yeP5mUz +QZ2KpC/OJAipXxPYUsAEycONKxsekUDMtIXxp4wJYYescA3B71s+ikrSmRAj +dnrk6kMS5PZ/DhOvY8JGC/KzkgckaBhLFV/byoRbnDv/9hM8MZf1VriHCclz +o0fy75NAZFmB5KpBJvy6HGVpQLDymrKoFWNM2CPmfWnaiQQnpSpk+GeYQE4w +3pdC8E352o9L/jHB++WDUSeCffe0bF3gY8GRPK7faYLjtLvj5wRYsIThya9G +cNFxltzvNSxwzwq6tYvgjgucpEkJFgQuSGdqEjx3ZVqJu4kFgoenBkwJlrCd +TxmVY8HB5/aLPgTvf8CnOqTMguzKDzylBJ/3FEgf2McCXtg7tIaw1/7Zmr29 +mizIKA3MdSA4OEIiq1OXBZPmCXd6Cf4au+lA2wkW9DxVXW5N+E9NkctrOseC +vZGPvGcIZuYoa9absuC1sWP3OyJ+fKX7CqqvEPatydt4lojv5kpNYFxnQeOx +wD1riXxY9J84QnYi/K0cHagi8uU8do5U8pgFtUJKrhQinxFzpvr4lAUX7hzp +qCLyXS1y41RuCAv6FM9Oi3qQgLPxDiMzggVQM/7xzBNC7/L3DdKjWaDOrl/6 +jtDTMW2vC8lfWbCa/Kr9GqE/6+OBDYkZLNh4S+xIlw8Jnl4INf2UxwLG6q36 +dwi9/rr1wSKKwiL2vsEVPwl9t9xP6HhbyYKXPxWyHz8jEf0+5Wp4AwvetfF2 +n3xBgt0R+VbBfSwQ09vtI0XUx9nY4oGgYRY0vGgZln5NArsUqo3/OAsUrUsS +VYl6SixpvO25yIJvh59MeBP1JzU24eS4cRDS4gJCOHEk0Jj7M3136yCEf5gw +c0gggSn/EufbioMQf3fNuqVEvb/aKOxmfWAQyvvFdl4k+sOK4zt8TC4MgrqT +5Y6iXBJMfrQK03g2CK93/frqWEvYY/LyVeWrQbjT8madeiPRrwQx1PL9IJyZ +1JgRaSXBlYeSL4K+DMLxN/rfpnqIfJ6q8W2lDML1tw8oAUQ/jJrRefR46RC4 +zJRJUcXJMPPV7oHQqiHwkvn37s1GMhhee+8Ut3YI/JQ2+j7cTIZl9Ol75VuH +QPGuoYClEhnsY1NuSh4egsyDTXYjOmTQOy1pnu8+BAqeD5fG2ZLh45LjZmd9 +h0C5aTbbyJ4Mc9kPTHqfD8ElH2lxsYfEPNpSc14gagj0hKWFc5+SQfK3/ynz +/CEYvTq5K+QdGTix01pzM0NwPWQw/UQFGd78rt6kYT8MAkZ2T2A/BbLjy3+e +fjQMZk7jbR81KdBoWGZ61WMYDmh8Nl+mSwHxlJwQn+fDYFlWg+1nKRDx34fF +yqRheJGssTLtJgXCaLe7rHqGwbu4en9WFAVCI5fFvDg/Ahun3J8dWEqFtOM8 +mh8vjoCnwG/aawFiX5j+05jx3wjcDsglD4tQQfgcW6j57gjMOwy+85emQvDS +eo+tz0bA2Fy/2lGNCi/uxF7JKR2B5Sr/+ApvUCFFMnKOVj4CAxJzyyLtqECn +hEW014xAfPbbHjtHKqzaGlC5pHsEHqdV+bLdqfC88a7O6fkR0E9r2WUaRoUg +0JLp2TcKEypN5+4WUoEVcUntmdYoVD6Iqq0upcJRjtvZ/UdH4ZaU1gEZGhUW +ogo8Ai8Q340jTB7VUcFxTqdrt+ModPr3W4qyqFBlePV3m8sosaeiy88RKuz8 +8kTY7+komFKUU05yqcA0LYLW0FHoFcliSvyhgnnW4Y9e30dh8l7anOVKGuSs +sszdmTMKER01sGM1DcSsvaobC0dBu5HmVS9Cg0rRUp4dlaMgv2fFRcp6Guyw +7ZNoaBiF1EaVMOGNNAgo5tv9pGMU7l0bklKToYGu/dFrdaOjYBKqabpxGw1i +KNYu7lOj4DpxNqFZjgbzMr4v5ecJ//2HXRwUaXDxYcKXGj42aAmnbRrYQYNs +BqnYVZANmkjv2qNCg7XbmS3b17IhPuX3EvNdNLB3WzZRJcmGv8r29It7aECv +kxN4vJUNdTrz3rv30UBxh/7WbUps2NLLvN29nwZ+XjYalbvZYOu9QLp+gAa9 +Lf7nndXZsMn0dW3RQRrA7iTbrYfZ0Jf3oJqrToOoAKoX/Tgb+EOm5qc0aPCn +a/D9w3NsyI5ue03XpIHJgZU/Npux4TXboeqhFg1+BCtWlF9lw78tzoMTBIsw +T/Tdt2FDRr2c+CFtGtzRtv0rc48NS8Z2Bl8muDwsaC3tIRsSeFN9ThIsP5q8 +w8mDDdMfD+1cRrDPkYoj0n5siEgfzQoh7ut5P2JBecEGUaqiIZP4fZ0JwfsO +4Ww44dyxYyXBkSd2Pt8YzYbVyRcdfxP2z348HU+KZ8PQiLlBGuGf8azdr3sp +bHhYtmx0D+F/hsGL+g2ZbNjKN3zPg4iP8Odvo6U/Cf+Ff/O82kvs6wuMpXdL +2VCg7lNqt5sGNGOOlEQFG24uPdm6WpUGct+E9pfUEucfXLtxfycNui0Mrov3 +siHkS7F5MJFf7R/33IuG2NASJ/wPZGnwXiA03HacDd8gO+DHJhr8vpb2TewP +G57bvBEfJPRjlFdNKuThgLfGSEE7oa90kfGOmys4UGuiExa6lgZCN9fMiIpw +IEva/huvMA2o4uflbDZxYOC155g0Pw0KZtJd2XIcOHPuGLVzkQoZjWtqnFQ4 +8F7yvy+X5qgQFVHj6qnNgUP1Bweecajw8uHummV6HGh5csZOc5AKfiYv5V6c +5oC/6xWj+B4q3BM3rHlnwYF9PLbBH4h6s55Jk9tsxQGRuapFZToVzBpF3BJt +OSA9yL/GqYwKuhHVcj9cOCD1MB8kM6kgLn7Ojf6GAyvCk78Wh1BBcOZ7zfkY +DqipWy3t86UCT6OwfEsiB86FPNiR4UqFofCqmoEsDhjnCbUbE/3l1zoD+cU6 +DlgnP94RcYAK6dOpbr5tHCgW2GuzcgcVEhuEagX7OOCpHrZ3qwwVQsMr3SQm +OPDb9oPOIT4qWK07W7tbZAz+Xg77J0yjgNn0N/nc9WOgc8o9+WUeBU43rHbX +2TQGZjfpGmlfKKAWzpA/pTIG3LTNLzCAAgLrzrhbnx6DdQs9+suJ/rs4lVI7 +fGEMrmSV3j6nSoGp+lUKDhZjEH675ryyFAU6wui17rZjkL7eKSd6ipgHYqcV +3gSMwRKO+4sDH8mQMPXVXTp0DM7dNw76F0iG9/WCdZ/ejMEbn4wfZ5zI4BNW +4Z6WOAZpTzHK/ygZTMVO1dHKxkC9fr5Gh5h3iyu3gwcPF4J75nKjeEnQPp2f +y7OUC/om5ynOzDLI7zm3x3s5FzoPNti308rgfp7b9gAhLlC5ISpqIWUweLNe +8JUUFw7Mb1IVEysDkpGtr9hmLkBr8d/VU6UQd4hnMUKWC+8rau/41ZXCJYmd +E5FKXDhpzfjCCS2Faop3c8JBLtyeD/nnyl8K335sOK+gxYUlS5e5n+wpgaCY +7xXJwAWxgir94F8lcPRRW+H3Y1xQmx6ftHcogVy5vQl5RlwQfVfy07O+GD76 +9jow7Lmw+YGqcZZHEbg7OI8Y3OfCtHKFoZ5hEZhfFrpe+4gLyaKUb2qyRSC2 +X8OsyYMLJKe5KPsghID+lzo9z7kg2Hv/5za+QnA4clhwOokLX3ikKMOZ+XBW +tcnnUQoX9parrvp9NB92bryz8Oc7wdfe1b+vywPmxNvxhWwuFHcWJESP5oJ5 +HLdpBYkLbnsK3Q6tzgHdJR/jpXq4QP+0M9d+2Q/Q0T3RPtzPhbKJzULrnDJA +3Xtibd4gF2KOBOi0dqTDLn49b2MuF7z234jO+ZYGm1YOXwte5EJurOOdj3Yp +MC+ybxOPzDh0mhdasCtjYdaww6RyyzismVd9Hn7zI0y+8guO2j4Oxzc8hvm/ +0TAs1vLvoPI4aD+XO95x4C20SHi0O2iNw7of+e+dXwRA9mbquz7zcZi2dgoO +iwrCjGsONelXxiFZ4fiW5V9D8Vuc5EpPy3HwT89JtFgThvHb7jhL2Y7DPYkl +LLG/7/G1gqipscs4qK8Lb74RF4/2uy6JUd6MQ2jhi233uemodIgbnFw/Dpbf +zySYRhfjCvcn6w42jwP/lkQuS7EEmXlCUaQ2wj4q/2VqTgl+2qv8pbt3HFJG +Xx71aipFKXnbUvHxcVjReD5gvTwZhYT6f3utngDSj9NpeSsqcPSkk4fImgko +zzVTM/5ageX+vPwfxCbAKXXws7UBHf2XbBHN2zgBDQqibwYjGcgzfXnnmOIE +8GfUSFrJVuNEW9N/Fscm4M7Q1uSZiVqslrBhDZ6YAL3igHyHc3WYajxz5+GZ +CfC2mGLlpdbh7Sox15dGExB7Zt3L7Dv12F9iGE6xnIAh/dWKPtMN2Pilgrb3 +yQSoi+nue6HcgvmPcM+q3An4bLKfX3dbN/Y7c5r8f05AoVZwZufVbhR6LO3O +hxPwxeO13kRkN1q5uVLmSBNg5G6R7bmuB1c9PXBpqG4CWNqKUWeEevFy0Hdf +8tgEdF3fNQPr+5EnOqbZU34S5O1qX999NohKHyrd55Um4fDNaiedpkE0ivm3 +1VllEqL/+FZFyg7hl1iLO/f2T0INj8b8ksIhPJ+4nvfKkUlA5gbLl3+GUeAi +V7VEfxKurnrkc+PaCP4PfV1dRg== + "]]}, + Annotation[#, "Charting`Private`Tag$738056#1"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->{{0.5000000000000284, 0.5}, {0.5, 0.5}}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{-1.4, 1.4}, {-0.855639704437987, 0.8564320900118193}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}], {479.8347252809547, -97.50736892665735}, + ImageScaled[{0.5, 0.5}], {299.89670330059676, 185.72832176506162}]}, {}}, + ImageSize->{ + UpTo[600], + UpTo[223]}, + PlotRange->{{0, 639.7796337079396}, {-195.0147378533147, 0}}, + PlotRangePadding->{6, 5}]], "Output", + CellChangeTimes->{{3.817270261356271*^9, 3.817270268199273*^9}, { + 3.817270386217204*^9, 3.817270413445382*^9}, {3.817270447239348*^9, + 3.817270477074524*^9}, {3.817270593198266*^9, 3.817270607955358*^9}, + 3.817270744280167*^9, 3.8172707889603767`*^9}, + CellLabel-> + "(WOPR) Out[241]=",ImageCache->GraphicsData["CompressedBitmap", "\<\ +eJztnQm8VVd1/2/zHoNo1Go0TjWp89xWrW3/1VqtY/3b2lqnqsUhRtSYuTFR +o8UMJDGEkFklk5kkJGSEJIYEEiAECDNhJkCAAA/C/ID3GE7Xb5/13Xff8849 +9wVT/eu/7/N5DOeeu89aa6+95rXOJ7968qBvfPerJ3/r61898qMnfvX4Qd/6 ++klHfuS4E+1S2x/Vam1H1mq1fUfW9O/M/ul/FH5eqz96XP7/9ur08FdbdvTR +R/NJfueQkg+m/obfqX/yP7H6s/qdcP13AVGvaPTF8FffbE3Hjmz8jFXZ7Q8t +zcY+8kQ2Z2lHtqd737dLvvmt8Ge/7ID9teKprdmDj9W/Nm/5xmzvvv05gIeX +fPkSv/bwrNXZnROXZavWbau9MwflC/7R409syn78i0nZfwweU2sPf7ZlR519 +b3bVXfOyji2dtUEly37Tr3Xv3Z/9euqK7KTh42t9/LvfPu/+7C57VITrJRVw +nXXNFH0tmzDzSeD6nH+0/8CB7KZfLwirHuLQnXDhg9m5103NfnLlI9lXfjL2 +EH/k1868J7vj4aXZvv0HakeXPI1rC1c+nf3nxeOTJduyUy6ZkJ3zy0dFAvtf +fu30n03MNm3dVd/7F1egcOqlDwUUZi5aDwqf9V0+YChcPnpW+Fi/598wLdu4 +ZVdbguH0Beuy7136UATnrKunZFt37Al3HFXy1KMSbhAXDPSlv37WPdnoCUuy +Hbu6am3+eO2OyMLjjx/2gB7fEqNvnffrcP/S1ZsbMWq3DVkYl7v30Sf6JYiK +Hwf+ZGz4SPv01MYdZQh83b9i7JFddmsjbbbt7MpX7BMOyKBzczi0RZ27u/Ot +eFHJmhc7dFqT9QxRh/0z/umMRevrsE95YoA/6Ym1W7PvDh0XLh9z/v3Z2o07 +ciDDM76W0HLojdPiAndPWqY9eI4vsv7pznBo9NFFN8/QRzm4f1wBrliM9Wx9 +B/ff/NOdu7qz7/z0/vDpz26b/Tx/0tPbdmcnDn8wXBbYT23aWftayUO+6vfb +mciG3TQ9PujR+U/VnuePmG/iI7neAuC2bPmaLeFe25jauxqh/eXY+eEjQby7 +a9+h/vQt23dz4gL7bd6+2yFrfMJX/H6x9S/umBOhsj2rPd8fcf29j0esd3ft +DV98YQW0jy3M91vHy6H9tC9lvCn5ET62217gT99oG3LcBQ+Eyz/6+aSsq3tf +7QPOADt27MiuuOKK7Lvf/W52wgknZCNHjsz2799/CMBdf312/vnnBwi6u7v7 +CKLac7JBgwZl6c+jjz6aff/738++/e1vZ2eeeWa2fPlye24zerQ3HN9Jc9a8 +wC8LfXjj1vGL66QIq0AAaQrdcfa1jxYJcOktM8NHEqQHIGN+6o4ekrPx5XY4 +xcZ/r88OyYYPHy6m3Lkz27BhQ/bDH/4wu/3223Ps+2UzZszIJkyYENG89dZb +s+9973vZU089ZZLN6FEbkO3duzd+vmzZskCC2bNn69Ps3nvvzY4//ngRub2E +GgMdanZUv3dNWvbHfnn8jCfDpaOH3BdOjX5eUMEYtz20JNxvRIAu/+pLrX96 +ZxSpi1Y+/SK/PGvxhnjZRMdf+UJdXV3ZunXr9Gv/0599so6OjvC0TZs2hYev +Xr26dojfP2nSpOykk05yjsqvjR07NpBq/fr1tXYn59VXX51ddtllkVwSr7pn +/PjxtTL6/Idv37pNOwMRBOZlvn0QSXLgxAtzuSECtCLSNWPmhXvt1DUSqS2e +9cFXTq4d5svfNiGnqU6V6Y33+K1LliwJp8V+7X/6s082ePDg8Chtvs6HYRcp +9OSTTwZotmzZUuvn1wzr7OSTT87WrFlTQ3WeccYZ2ZgxY8L/+O6ll16aXXfd +df6/nph92akkUf79yx8O4P7QNH3X3n21FzsaD/iRkSKQNtHP8yuoNHzkY6gD +qPQvvpRJwbgZUx9/6jB/uvZS9gZqUortfb7alClTArVSrDZu3BieLO7q79ce +fvjh7MQTTxSvxfskVR588MGG71511VXZz3/+8zpFglj6ogPINkpvdWzuZCdN +6GXfcs07Zd7aliRw21HiqUiCh8zqDBL7/HHiv5f45e2dXeGSn0Gwb8UPua7t +GzDSXvPjvMCWt2KDLzkUc83kRpg8MnftS/3WG+4NJqfMzFpL3FEWZkM34t6W +nXn1I+Gjm8ctqh3uj5zXqG/f67ciKgzZiLi2GFEB4joIp556akRcYsKw5Sut +pAT7HsjvBo8ZFgAn2a9LA3PjKXzn0JJlLvL7Zb2iQ02fOvqf8k83JraNffoy +v3zdPbkOl4lpZu57HTNTLtmwYcOy7du3S2cEZjb10tc/vvbaa7MFCxZk27Zt +y1auXJn9+Mc/zkaMGIH2QZtIC+3evTu7++670SaVhEAJyjDZtWfvy/xWaX5d +Nt1ba0kF2ergaVq5gQptwSZ2MVN7uX9D5wuTaPjIGZCgiX0BCW677bYgOL/z +ne9kp5xySrA3du1yV6JPsCt+8IMfBDKcddZZTe2Kf3cg5HYA9sIVm17ut5pu +C5dMPLZCvS04o7navbf27ka8/2vE5FxJT1xWe4U/0tRpatb9e8nKX/Bbd+7u +jgLCpBQryPRlBSlq/TyvAsCZprWDAXjJBAD8Z19Kdmmy1Cv98tV3z4scYbsZ +4AlrA9lVd81Nb3ilPwkZePfk5bWWYGGWDTGzrAGsthAS0EfmU9Ze5Y/sFDH8 +uJoy/kLJyp/3Wxev2hyxMpPlVX6rmUrhkvmWraEbPT5X5FeMnl2EDmX3q/sX +1v7EHznt8ZyR5PmZJ/X5kpU/57fKAkHvmo/ECqs3bI+WgzZeP8+NhAesK+/M +CT/Snu1g/VOyLorWBHG+bu5KXOCOjxx6k1cxtlAGnu1dtCK37NgDeFoGMa9T +E8FrQj/5sbr311NXFAFd8uTmqHDNuHi1X5aoxHGeMPPJMhhxv3UCvuFuprnf +R/iteEzX3D2v1hLAH14xMdxsO9cIYN0wPu/6qbUj/ZHwg3tdn62AzlgGh0ub +AnSmXHHjW0OHV6PYQwE6c2PiIQO6PSZMj/XdGfXAojLocP/l53M4TBGzQioJ +9G/9DChZZrjf3xBj2LrLYfxk8qlCMfrUvOU/9csTZ+eGkD6yLwWQwvK4z+Iy +hX5009Abp7/GATj5ovHYj7WWkKUq1+AoQGYEzZnvrHu1OUAmowGFd9ktsz5T +sj4wPrZwXTyoazfuAMZf3J4zn6n2VjC2xSNg9nXtL1MApSuXR2/1tf7IVGcY +Av9WsjIerSiPWr12zPzX+q2YoIZja+gQZlLXBegU1NFHtzy4uPY6fyTXBpu2 +sw38dAV0dljDrd885z7ZX+Anhw3paRZI+M5zKgBUrDVnkWlFAKWR9JHCkABo +Vn2IjQYTd97aMgBxfOU3Y/WPmbycFcSXhAMVKG4FIPHBq+6aB4D/15faurNu +KZnV9Hq/bMokalTzxP61AkZMc4W/zIl7vd9q0qpR+VYBiM0n464BQPM/lmwA +ktob/JHaFESSfSVAEhbGxZEd8tUzxnJK3+BrKSijS5eMmtkapjOuyl2Fh2ev +LsI02t1qY7XaG/2R+KhSBKao/qVkZaAz+zLc6mEeoCOOorB9HbqwBDDBTvJs +CjChVO804w6YpINPuywPhI+4Y04ZTHgGi1bVz/Sy1VtYIQ2GchT6lyxzod/f +4H5s2lmAEY09Z2lH7U3+jXnLNkYHZ9W6bZ8qWRzzUFIRm86kIiuE0+CHRGi0 +gjE1WE1TOYyf8E+37eyqa54de97sC8HOOuNVMMo3133iPvPX+PoQ15KyP1oA +2BaVgiFVe08jdMSGxf2G95v98sp12yLQZm7+c8niqV2GRL7hvgVv8Vvtn+GS +GS2tAZwyP0fyB1c83AhgWxSp5/zy0dpb/ZGcbjnfBvQ/VUBH0FASeceuLqBD +U0d9UQXdGDcZh900vQjdCDfJFD4DOkl7WNYYM0ASFkZHKzLFwbv9oaV8D5pL +dYvt9dOvAiycbHOdAAtHRY69HboQ2X67XxvszppycG/zR2JuKz5mh+GTJU8D +6HvcZ8wj/3sBWrjUPaxOHiZczHgIQbcFFThc+Kvc1zCroIiDdkwfmUEX4RVR +8AGMqbmsA4gCNOn8jnC5RSy/T0MsXz+TJ0+u5QH9/iEEoZ877rgjxGLkcCs4 +qajT2rVry3xuFGAatDdHG4r858UTouLm2vc8p6j0x3iHSoGPs88+OzzxtNNO +UzDZ41sDstNPPz278847I8QXXXRRiB5x70033aTQfRl0EFw7jalZILj5zxGa +lLJsr3mob/fLHG6l7Oz8h8uVuYP+PXIHthEhJzBnzhwBGtIHaZ5hzZo1inyE +pa688spAfVu6NNID6XFspBaMMSHzMGcyhSm4RtLRrPfag/5YBZVETpFYMf/H +H388BGIWLFjgAbsBIYWh6/wogKfYrUBdsWJFiMoMGzasagt4tHyfwhYg1cfP +WOVb0BYl9LFDx9Xe4YgqtkcCx87z6/zW3yRRgaSZP38+UMdr2isdolmzZpXS +/xMNYN3nKDz5Dr8V2+9nt82OjKXwGIxlTDa2FxjY+QzhcIMmYiDO0BHX/7C9 +li9fHqDr7OwshXaYgyDzI3EJC1txuSetTUDHrcAuly76M18F000C3XgOh+TZ +yIiUbYWOjHjSjk3lVmChSzPbCWUr8JPMUoxboaQ2BpPdOrYpBu0RA0nSCy64 +gLj7/fffH457uguLFy/OvvnNb+pQVe7CKtd6kt9GkMIu3OiCRiEPdoGExtV2 +jV3QXqoiJQjdR594q9/aKtNSRuk2p7fYcN68eUEAiaUuvvjiIGQjQkFXfMwB +2Lx9d4wImDXzZxDRHWFzriL8WMZyjsf7NYW+L7/88gZAxe+SelnQC1lQaYsW +LcqWLl0agJo7d272ox/9SN/rE+EZ6l8m8qus+F810pQImInFCNNPr58G7Wp/ +7igR1XaNj+l0MNxLqYoEu7hXgX8pM6U2TDCVSct/dCiu8VitmYZ6JBsuUcPh +NbuODTe1Fg1JaOvM2kDblGOh7Y033hikoeLuSjaZ8sr27NlTBtwwvwaJZMQX +qDx57prwkQqOoPJJHucxFzRS2Syk6MaYrIHKrZJFzancFqgs6mZB8faE/uP+ +6A2bO6NTO2vxBiCSkZXoKEiL8DNWiaQVi+p8pSJ5xIgRUSRDO5FW5lYziKDn +tWPmR5O2QE+FJXDbMT4VDBpYdw7/wi+X2vwtsk/tgZLTpk0LRorBhsyCmKpu +yGsc2rJ9+/ZF0MtyjxCYojD3y//CbyVtokAA1B05blF0l8b7DmOPjB49Ovxb +phL2CHUFouwvf/nLBvCkrqvAg9rEsM20b6R2Xjmjj+TH2Kl7C5eTQJYRH4Kn +LqAhAsErc13tgdjnnntu+LhAcEErQ/yQ8GdbkL1VGCGFlWSggGPBik3v9FuJ +WCuqB8HNGInXJjizrlq1KhsyZEiwp8Udsr05aCJ0Eaz77ruvV4TGsn5s4foi +oVMjZOuOPRz/WZ7TUujmXX7rIx4JUF7Bbv1YUzrUUzjnXTfVv16PMakcBiIQ +hBg3fWVtYcl6F/ijFSjBwXpy/fYCDhIYVMWZ4wcOqbUEDvJrCSCZzxzgDY/8 +qN+Qhu/t3wCfSlOAJ8lkqq4S+M1J6N/0mANP1gy+lUwGckrQzD327EQ9LC4y +mMH60ZIHcu2nfq4UzXu3X0sNARBICzCbI1A3GEwR1/66EXqSCXLqgf7CxN0B +em0R8X+zm8qg/4jfSnZR58jOEytsSTLgxrQEilL/f+PWXVVoTJqT76GJvyIa +BHTMgYto4Kka23tosj3UTxMM69jc+ZGSp304wfhsLzs2W54VUk5etX4baHRs +6YxomGCrQoNzdNkts4po4BbLMgUNNKkxQERDsBEN/vntc6rQwPuTIF63aScF +V6ckEoWQICwmNllUgQCSb9QDi4oIjElMQ0iTSqjNuEntUR9LFZi2+HDJAz+U +oIvOG3HHHMrqsDkVwgQH7DdVJlThQNmN+L6AA3lIiQpwMJkV+cY4AAgo0JJI +rEKACoMQg926i6+rdF6Xb/r1gogA4UqTATkCYUXAJsGvcHsBbFNXuZt/wQNx +MZ578kXj/fZ6gs9F8YfiM/4h4XCSv2ZH/bWvpbYAXbp41Iy4Pk6i5FwZtYf6 +kqpxS5z1BsgbjQKT72/yhRD/qn/4G7829MY8p2Aiyonb+EBwgA3kUZlrDg5o +gcEmQcAB3X7r+MWVOOBnakkjUQEHBe2SWAA4jPTIhayyv/FbqYdxDfUPJc/8 +oN8qbUeMz5gEKiz0dGe61bCiNHFzNBoPSL6e12i0xciLAqYgQOm9qPN//Br5 +TBnyVdAjr5WAMncL/OU1oB/M8ONJafSwCgFKnaUcCwhAKgk1lkXBmU3vCOQl +bLF6d9XTHyx52gf8VnkIZkNh6bFCg9basouHEVITBatw+Lnnws3WLeLAPt4/ +bWXEAQCUpfpbhwDXQGrA5OMHKnAgESh3Zufu7r/1W4kxGwVifq6BjXfsqcIh +TQcUcEBB3GwKgpUlw9GbZhWAhvKi5DpmL+kIIIfn/b3foDgfUs+2nlrI0125 +T5m/Nj4i9Tns5JQBf34CDdaT2SsF+A3u8InijSyexgt27up+r18uJED+vuSZ +YELYxMMhYEKaVE7UG/0autH8+triCjRSoOIJi2gYC4VPVKIKGg1SLMtAI02A +GEnL0Hi/36o6M5KbJqKpyq3rsoURjdRgq0IDi1HLGlAFNMhCq9iNlY1VomL7 +O1/Fm8CIWL6/AodRvsEqrLYTDg4Up9vZik+iKG74yBkVOLTFmIGdR5czEQHa +Yez8xWWJo+p2EChEv8sQ4FYVSeAxPTx79d8VgJDK5ElEOxUSqUKASKkZWI0I +FB2gfZQHIIllEUDZNIPStXff35U8EBwATI1xdly5NVZjJtuNxpFHEnAIKwI5 +7pJygAXIFVhIAjxAzqNViwTkadpt7CNPlEH+Pr9V2VHiXuY8slG4nuk+IyUn +zl5dSf0TvOVCIt5xeLV/dGxSPA4CRvJwTbUVyBcsR4WxzeZ+X6QTYCOWVbFg +xwzEC9UHPCKtWS+D/KcJ3fj6pq27CsCnVf+sjOdiZyACL4UKDUaPX/K+kgci +q1Ltbd4NK2irgcNMDOqGCuXnVZiwf9LiRp8CJoRETCBETE6O8diOqG0f9pOt +VexE55z4rOSS9VPSGFYWX35vAWiFUDBz0HtyKKHSlsYQR3Mq1SsfJNT/tpFE +qaiBRJhEZvVGEmmrsNVuuHdBINGzmP2t6BorzSRhi6jgASKYzIZehJsUJqKW +LD3qSyqIhU6S/V8g1l0T64qFbSgkNTGkycVIQ9sRoyf32c7Wkrh6pm1lGMUy +qkhAG1a4Bli0D0xfFemX6vQbk68rViDpamf8kNCE3haOu4q+TPHEwFcZqYkG +yI4qkBo7RB49pNZTILWZAB9MgEBmmW0HqZ/tbOxv0p8GuekSkn4zIkHuGAqb +sCSSG0tQBdvX+C7L2lBwSGpDxpt2ThWTxmR23uxuE1o6vIqSSv8qbKWo8o5d +Xa8vgYptQFsZdMVtwKqV28oSnDmFNT9URMx+DbFX+K0Hn4t9Jl1vf5UwAgFP +c9cINqQ1U+CAu6BD/otwLW/fU9BIlNeOGGVrzwlUbQvqSD6x2eB+rT0EXBQs +UAzOvvunJRQ+zyGzDYicu3XHngYiN5YKm+6jsoOmdjOOG8JqHM6hN06Dzr9t +fiYuQGTCCxWhOFamSmSheJqPuRyK21+qRBg3fWWoZ1WtYj5ron9QecJUCko7 +IvdBu6PSSlNG9NPK2ZcmlHRXn7t6GlT7o4AoIy9kpNhjw8iLI5ruUp3ZlaR/ +b+MWpVLeHscWmSMdLp159SMxepvGimxF+q8OPrnbj25AAG4p3YkbppEQU2uE +O2lFksvB9hBzeeCxVbVvJMwmxBUKNJKTgVUnj9SbGqbsjLS74NERUcRXAXF9 +LA/kAEMH2OudIbKhFJTdXmMoh7wBEV9Nza8qwYcNoo9AKS7fIPYT91ZhHHYn +VddkOjCof5i3DeW7c3B54mfenci+UEIgHjdqsi+kmxTnY19OTsoHmPsg61+R +Vh0ZfW6nz0nZL6QeJP5lRcpl1glV9E6kPdK/L1tOQkuV7EpTD4xb0ScIcMlQ +1W/NXdYRVDhSRhuvDjeFYtk6KV6pGK3/ihKU2TpiX2ryKmxdmtNj6/Bs1WzA +1gltym3MomXrnlnGuY/ToLddlegWSXDSOvc9uoL0DWEQiYy0sSJJNw30WyW8 +tGOi9qFObTGAmF+KWnmunbu6ay9zCFUkoiyguFiGknox2131SGOrOUeF4gYZ +qkeRIjH4wGQIjrxZQak7wtIBP7YFQ1kxucK2pKkatiVNoJO9lWSN4YPufSRK +yohIjlXhHpNNbGyq/0y00UFTCN992ReWUJONLjrmSD4vCDldk9wRncUqat8V +5yt5Is2gkTrywU+5ZEJfF1n6mi6JxIph6HY7HIfCWbbnIp14XjMTdC6MtO2+ +eQrmaPNUJS2LV0cAF0oNW7LQvhKBzKsLBZjueGkJlc51vCVyCYAYaQrbQvRS +QTu2haIOY8y4LTLLNepA100fl20Lab200cUoyArqG4r0393NtsSS9bODy533 +3PcLuWKscP1KsATLyD59rrO0YFLOS3kpDa7Rqcn34vkBY9myijTomAhPWW4q +kpEwUt5KpUKyzKQ/xLlmkfX1zVAQTpe1yzo1GlH1NgdNiV7CUfqVIScTWm2j +ZROs2AjSbiG4cOBAYSPSnDAbAQGUv6Y+hVC+Vtm6c8974hmE/HTyeGcD5JeS +hw1shygynelWoTqfv+SMKq5Cz2sjFc+IqrdvEEjynXQ6dFoVvrbbX+inQGJN +VBeLKxopKWKn4J3+bWWuEBMeRFBU5rCmhKv7LoqUvq+RaqnFBNUAfd6yjZFq +0lGM37rm7nnvKXkamfW062j5mi0f91spDTV3pQbxZGgSW/miM6XEDIX6SrfI +hX25c45ksI62ZLMgF+OKGY0R7Vgrhdo/NJarfU38IMTVabhszZawrlH+r30p +IST7Bc2gvwWOzkfZ4CtoSQ+mPaJIS7qeTrzwwUhLOigUu6Ekje437+78y5Kn +xZqRtDvq1ln/6LdSeiArBFreTPXa7XN89kBuWVCAoRNp4sutyb5ByqQCQiUr +JmHLhlKBO2z3yNy1jbi3h0YT2N2Afk3CNjzAWB4KpG6TcX8VBai40v7YClCA +AKiCwlAgTUMzfQHH0oflfNORV0hTcXYOtBT4whWbymZcneMryeomZmp0LOCf +hnBN04F/qjNN2lJQK5nNWmZov7vksVRrpVFdM9ZoehoWm3aeiPiz0+pcYDqA +qkMpmQsPsCUJhsoUsyvpYIviwKy3O70qQ68DeoRem7TsvNpXk4Sg+Uo7oLTe +gfLxL+86OACadOXQeaJLjYWEfaiNDT/e5OOOYT50T4O21PpwzDHHZJdcckm2 +devWdt8jHFVPvjlrHOkPS5uo4AvqNUJtZ5bRMUBSWya4sSiVd2V8cbcn1TxV +AV8gnmQRwhf4LEqMfN4x6jZJetql5qucdmVYvqu7ux7/fW4IVowaNSoSpCoe +HNR6Zez5uT1iz1XdRXCJ7B2KVfQry3BP976yOSnvagnCgB4gNOkaguM1Q02Y +qg9MVej6d8JwxR6ke+65J3C8nNXOzs7QSGBuDl4nOT3Dx5N3kT1wt8zbrNHo +n5aR0Vglo0JtiSEqMH1VQDlQ4Z1+gyw+bjDFR38uBXHSkbBfoZIg9L72DRHA +vrGwmtqhb5x+rZ6Sl4xXR7ZfV1+nPayThNDLIuj0qaS9TUckR456qRAguGKi +rPiyeSqUGLcK2Jc1J9GUo5Jjb+vz0E+/ICXGjRsXUVViQN8zSRajcFTvKqVV +2Fi8APVzsLHUFJuBE7s6wVJ237adXWDTE8P2WEp0aj72gy2Wke0WQq1M83Tu +7qZ7WKQmCt8e/uwbToFiCfjTV908rr7jrQOSr2m6dHtYOgmGNp811thVlTvQ +fcLgMMSnnCd1CpaNNIFmvZtr1tgYVcYBVPZLNui7S5cu9R3vnx177LHZ1KlT +I1ekM3HMOy0wAWOOVJ8IoWIJ3ZWTG6aZYNWZDC9jAir9qVLUr/2bhmGMfJWU +wQT4hp6O/ZyTlZEJ0sFz5s7zHGm+TKswPzW1rVIJffwQVbVwvcbhUdURSkoR +JUWeyoaHvPMZPbtppxaNYWU7vnnz5rBMfQJi/yDXH3roobjjK5N2OTPPCjvO +cVawnR2PfTs3TItd8XgL+jV5T2NKii/dQGIOnK/Lb51Frz2msdLIPAl3VFnB +zzlmcvM5RfKaPKTd2/Pd26YzqN6kwex1/rGiOES39TsmN/4CNIk+6/3zmvSM +Ve1yz3Pdr8e5Tp3m9zduMcnQwQnh0fAKPzA3ghIT6S4TE39escUNI7G272aL +KbaXvuBJOM2KurPFWIMaOyqB1LDF1QkLEsKtEiJEY9POtjf548Wg6fRtBYrs +GWWTE4rKutXj0rY1vttMWaujkB+deZR15GrP6yroXdjSWA88dFwkNENwrhkz +L25pOhbMTnXZlv5Zya1mA6CB0y4UnoTvrsKxzzpC2kacpGtvGZfmO2rsa1XC +422+N5WplNa9dRxbmYyElt3W0Lb3LSHAu3r35FZtc29xPpBhIDNMSlvnW45Z +f3+EzG6dezP5wmPkmJ133nlYZ8d61asGPjRseD6wKfifg0PxAiF7PDDV3TJG +h7MpGWq+fdjfgDE7zTmXKW/bBq+sTRv4soxH0NU+evySuNkKiKOoJz8yJc2Q +1Bh8XpYiaeGfp5vc6O829vO9wR+hyDpxCeUbzN0qzcK08MrTHS4+Nu3XS3dY +ywg7mWXpDuN6Sy7I9ZYY27ZtG8PA2Ub9mslb2OR0glzHlk52gOCJxlh9KrkV +HXvF6NlojxRrJj+kmtssPlZonE+6j4el711gaB6xLxVPft+JoDglPpmSRHq9 +QFnS8my/RtbYlIuXANZ4JMXeJtTitTQ4xMwq4hZ+7ztKnsa0kXzmW26f2hlh +hbSIf/P23TyMqfmqYGEoYLpTazp2/MDRFgwUuIn+JjVrZSUOoG1mVTSoC2jT +36RCSa6dnsxaYbiZqehwTeFMJqc0QZvKCffNGJnGPhkekdcUUiRr89SmnYz3 +Q2bKVjjdcVZxBHWyEvF6D8IhJVCclSxNQt0sggLaSB/NWeMaXe5zl3VEtFWW +AaXHPvJEGdqMo1B2glCCmRtMsyN/pWZJ0E4Lm7u696VTFuGCB6av+lG43C/E +vYhmKnIlSuhHsmGIf3WZ13qLyHaOCtjekGSiuUY5plILjAFkVpIwNp56Wwm2 +b/XtEKxkV5VTVB4KlOF5xc6wFchDKToDd3NN4Uw7uT8Ol/NMEGWaMu00ZdFA +4LU1OO7Kf3ygEU9Kkc83lwFaC1AKcY1nPu3wpxPh9OKMAxG3MnzbY3eeJL0R +m1GPJAP02gpQRS9pRhccTS2AIBvsIMio5/vy4Or7WR/yrKrCApJUZRr0EUnl +eGAoY1kYSlVuROsfnr064BLQoy9e7E0Ew4QD0CJq1bwEVrRYDh/5WC1lWDhz +4uzVP3HE5DshwUVLjXLlWKasv2FzZwNuaSn0fVr8CL+czmY09Qr/MHtANoYx +DT5Xun1vTtiV2JJ4S/O9wJZiZaUFwDat1AdbiqJ8EvAZvrRS3Uqh67EitqYj +nOnL4HZorMcHG1FNNV/n7m5QVYaJM2FAf8YfIlUCuyp8JnYd4OflGYb5m8Tl +Cds/g8lhdKmSDxVhlq/ZgsKm0EI2G3TlVS+i9RvyZWzF4/XHYY30KbTuH+EL +sAl6xwujkXUNLWLWWKDLMwxsNwlFH+xgLyYySiegPkypMTsZ7lI+FMqkc4/L +1EzZhM6yeM8Af7SuocjN6SqbXlL29d4+5pmB82w/o2+4Rt5Gv4ogHVAg/XcJ +1rNHIkq8FJFGe6mmQTqiLJzf22flRQHRh0ZTz1q8IWbkCZWaYPfMV5/YoSbX +XJUoXV1dep/LMyr9J7hZlSFAyrQa3PZGX1FCgtJ/DVpSxQyHjGY7xQc4ZIOS +Cstn65BFX2lz5x/WIcuvicTSglSAyZI5kE/5LN2a3+fTRpmTavvCyM5n97Sl +PdZH+DViz6qX5bTJNkV0ywVdvHixXX1m3R9sTc+obVsatY33tZrPRyMvUXnp +21Xrt1EyQSxVPZlH+K3pAA7zA/EOaORSeLaMkO9teq09XvPAGjwpS0NE001l +VVZlSyJqKIpRAcw/NO4X7y1QmSL7RR5Kgwh564amN2Gq3PfoCiK4rTIukLln ++mRAQ/qkIhtUn+dH4a7sR7xQc255HYe5k7nteN3UuD+82cJ7stkf8qVqNRni +pEoIF35UTwvxVW4gG1h3/iBCUY9bGEQFuhL21ygF6BoD9NdPjXVIMJXwWbdp +J7r94Fn/OQ0JiyY5l9Lg3eudEIoqwDHy3fRKT2icpihBi65ivVwCL1vSk0iG +Kd6y17HSnimvE8tWjzW3w2lcn/GhKsQPNRKYI6bGMyC5O/pvM2Kpm7AxaGHo +4MSDfe9yDQOqcgiRykbdspNOTxyupc6Quei8eofeITm6YJHOFoCeJoai+7G7 +a28ZPSnXUmqI/nUFns3/rZ3my0iAEAQ0j6ZA0oUr6n01AEOYStWDvLRJwRoK +/EdPWJLzbMs3SDUJyUP3g5nlh0BQKTksdM+UJ77ot6ZjCcEnHauDNOCVSwrF +nVPymHanrGI5hNsUw7JTXzvV72BKuvx0c98bKNvYEWlyhK496uwlhngnGspH +zvHiVZtJZrZ4N1VlNPzg5va91rHW+11wy1X6rAMEhRm/oIYwKJyGHaEwgXVV +n5VRGONENbw0x0t8qK7jFCdM2j5qTuWHGykszk560aEwVfhK23zJH6KF8NH1 +MPM/YklcCtRrkvvx8xVR3LR1l6/Vlpa3RgIQ11JxOTFW7Q/RyHnLN5bRoK8/ +Ti0JVHzoHMtv+U9fBr9FmBpPOQ0AnndLzl3aERtDSW1qmgFvX1QBHSEtRXWk +ZF5TAhG0Jfah39lLNnzZL6fDDYz8PJF6bgWDQT++2C4XX2Xo8x5jeYOS06xs +xoZ24CT/Cvbl5bfO8oajHmWuaoYGGOoEpcz/w4HRMUZamPgKWAZYCMtInCDf +Ro5bxPdUCpVEs5iDUZjrQyqANIwipOfGR5C9UjCTg6Jf9aAYDU/wNeMAt8Eh +oFtANI44un9hRBTkNfhhoK+CKMn3raOs8ZVWM7EE7KNDLp0P3mmyzPa8+NIw +Hw4N3pwUvXXh3JIn8iZFnQiKsPUb3rq9c89xvrrUNv6BLfnRRgrQ06FaGijA +sVOYemBydLH1JJnreZlGoI7w+/VUIv6SP3pX8lf8/pjD2bgjjp/Bs6mbPvWh +lcoslRGAJhvZPXCZxJD89WMde95Pp8/jQMuI/cPJmAiwJ5mgyn/e5CwmgypK +/ChzeERT7OtTfoTpopVP85LotGUTxHUqg/i4flo85GlloRGuDHfeoK1oJhJI +T1MQ/hhfJm0fNCv6Y424U48hGwXcqYYw+6Wh9xJLR28tE0O/ugQiGoehqX7N +Tv9aYWkjR8Sd8g9NkoTrqd+UqXFeyWNoVRONeImafsWc5kN+K+E/aqBku3Xv +3V9rIEDjK8ZsgwEq3aSv+WpKjeCzSREqoP4nJcBxotO077Vj5n/db0UZKdXF +1+Mc00nLIg2oHpR/XEaD5zsNpKpJawTWHD5eMnlQ5MKFkS9Wrtv28Ub0G7Kp +G3cAD2jGN8fX6jPy9GtuVrg1QPQqp4/q9ajQ1KkXj4A0skehah5C+FoSBqRR +MNKvZUi/0JFWWzzv09SvIncmWGnhxjXUr9n/eT9IbBaqz8HtiFMRRQi+YTxx +lF9mE/RrPF3Wpf1KR1+Jd0CSYWWKrHaU388MT7XR8EQJU8oFl63ZAgWopVFX +WBkF6G7TQIC0bF82pXHo3/hN0geaRaIeELXLKs8pZJTXVcebCmbVV6jYnMS/ +lJtKI6TNVeEu5n65Y4Z0cts6fFYgKfXZilOBYBrMsYN6lK8mvLEjZcBoiuIr +SxB9hd8vRNkxBZ/t/95cVW/W1ShJHpv2b5oGpIQiTZ4ZNGWkzfvR+gUIZaSx +OwP9wEvg0x6o8IWyzOppV0OUmNlOzQv0BftYUW8xgeJBIq36ae0rL/Jvq8mJ +8gj9ygQxDvxEI1F5H4ByPq/yb6ZoeAglf63A0aG7RtVr+lHvkVBTHJA0XROf +5+1O57K+JHJfyXJh+ZkzZ4ZXFisWctxxx2XnnHOOwoAv9qUkkkiRSpSoPqWs +Sx4G05ZRFCQto4kVL3GoK3OPA2iuYslmkBG573WfVv8yesR22rsnL4fdyC4q +4mSMw3viGPsnDfbTEtQPc15Tcjtt0pXiUdxFquptTh7NMdQYIvm3MkDUXZ03 +AB8azCoNdVCmWhVv13hbps65/ta0CmnFc6+bGu7TGCj6wOX2iG9lLat3NnRz +HzhA5b8MVTXGmgcSI3dSNITyC9yaDlTOifPCOEBVv/618LdCx8Ta1N6j//O5 +CizVE9XR0RE2uUlaNifO86paporL5aspttcnrKaNV52cIoNLliypwb6qtsIx +kumkuXLMM0n3kJEF2h8Mw9BKu36bd7r3rc4StxcbwKqgo2io+TyxQ3vdT3bJ +r3LsNHkJnZa+RgVlRF2W9rSMi1/qXKxWW2qh9CtjVKyj5BpFj2InmZtS1RKN +GmTAEBUl2ZSUk8ksQ155y9iDllfWq1xJQlmHQDbd0UPu7eNnQEaHNKz0mqJ9 +GuAhXpYek2iR8apjKh6XpNVICRhatVY6W3rQJxsZGoIoz0JntLjKB5lls+Yv +ywaePjI76r9GSSLFqI8IjewlsN8q04k9/vTTTxcGpbWHg6Ifbwnj62lxOZmk +Cy+8MIh1/Q9uVsAJIzgIYzMseDF8upeH+/2iGNwsyipodLijX5WILYMBsdvz +9U7PadrhNuTiG8Kz9U5ueJMJOHr5DLyJ1BQPl/Hm4WyHnWZpaRWCs+vqQ1aY +0hgr+uySPuqQkbWjUQGmwmvMvJBDKSkqR9KlpK+f9zjrmuakSpIqqWyS9VB/ +lFhbLG9CwqvbY5y1MFLiZU6esWPH0uCVHXvc8dk3Bn0nO3rQMarKqeSxVkkO +eEyRyuLbrqTs9ONNKjwm7U8hHK/CoJtvvjn87zCnnYI22LjiMY21hv495UWf +UERGEFQ8puAW97dKP5bB0ZzPyvpu2gNePx5yMRYtbCYBoktKXsNmVFeqtj2w +WcAIdSDJJLNaajVnrvZAANWZyPS2vXiFP1OWm2SbTEKzCmAt1foonivBpfBn +fWJRv3B01ccgC1KKXBVycqHrk4/6BLtDvq1ez6mpR3oP5r808lnn7gaLuPia +IVVtpDndIl+1SkrGl5S0aGljfJSGQYrfpBJVISXrTkpq5cqVkUGEOT6FfhXR +eGmk/kv8LmVOCLPJcJKoQrT1TJG2pSnSXkFDpXYZW/XEtj1ge/oZQwM8ts2w +VfrGMdyR1Esx/VQmwNgn8ZgEmAbztTmPSSDJhVOgZA9+RV7cIlkkTSeGUMIc +RhuYh7hCCkqei3QznQGSffJJxCnyKsSEeR1hnMiVvsEFyNIByFUc1EoywUGt +WuTyZ+SejL4rU1AqSWMITFy8zD+WpZFGg91oLRvdggATQYj56ISt3rA9mny9 +q4doChUtDs9ENp3500sDKJeMmll/eY+/VHXxhh6NBf5G4zImIhglLSVm0dQd +E1A5U/SL5r8kjMwmKUDx24GIV/981qAJL5lQmtUmZSx3WMxk5nEfZ0l1luqy +hJBx9zmN7BNHBM1dG9knrXquYp9WeeW3Ok2r2u/IUbNJZl1Hn1q0ob5Sv3Jd +TaMxUTUlJ0aVLFHyY1Jkaqd4pYNR1SJXBgbtds2MpDKULr3qFjeIpsd3U6Wx +PBMCeKL4ZSp+Z4Z3z5xFHq6RflJcwly+/r6tcoBkwyiiYRj3R5oY8grqKYak +b4kA5zduOS0keq0oW84weVUgULEgyTtx4sTgrLD1JHaaJMEZcVXVmFckteo0 +yIRr6gT4IzUkA2X7sa06cEbGsiFFxOCUESCUpd/zzMk2EQpfNUnR9+0lYPQR +FKYw9nfWaIb7PZMWxv2GNTY1RrlhDZJLynyVscZrncziOuWn5NLJRjrb7RC5 +cP1dksiI1YtRFIiQj6Z75bPJHrmwkTHSEUowRjr3F8YQ3cQAOudFxuhFMKvY +xFeke5q91zJg/Qp/hEYOoxNkZenMG5OUDS8iLC0DLh0apijMvv0HmKzepKyg +t4DBEIXZjrlB3L8M57T2DEqnb1/CyOUFZGrpKmMEyvYlYtRZITVh6uCQkB/J +c5eqyZAbYBS6rHG7edWDWa/1F7PGd1U8VjveqaNUTDopS9Ft0zsvKIEnzX0o +WobYky8x7fF1x/tXmCyqXopXFqG5ekrUo1omjq5ct62MAlMbcUpfe8LK5Aqu +GD27doKfHOlOeX+01Cg8JFZX1UeIboSnEOfQecH11q8KrTZs7jzBHyAFrct6 +lQgPTV+mCTrp1CMDoCU6PbJgxGrTVxIzrlf+CC9AQvtpfkh94GFZfjafRoi8 +wemVJaEs0Yn+vfR1wSCIm6/6F+QWkRnliYe2xq6gGMGuPjNkYe1kv6b9UtDL +oKuPErVdUGpEe1ZWk8Y11VHK6JZ3xnfl2elk6A5qLnixjQIMYEkuTEUuYEnX +msrvKrB8g390SvJWKlBkVJtiJKf4NUWcpbTSGZ2K16lgX7U4ZdMEkFDyDTQO +QyOU01G4Og66g8KaQtz35X5ZKpZWfeN1EKWoRuVMvUBUvXe6XQ1BIMowSb1Y +5VS/JiAUDtde4jcxvFzh+e2dXWWFWmgfxY3UXCabQIpd0+bBWY64Yp5i+u85 +cpKLOuY64kanlyeXIcWOXV3gzDgqbXgvcKa0TScRnBVEUW2NPcG7m9uCAyeA +ZVIzUlzWm/CWP61HyC5TwZbs92OHjuuTREJlBSt6HZY7ROjBoOk4BeTM/sYX +TAY0AhYO/GE5Lkd7txavP0mZw4RNBfZlaUEaJhCGUpNlcmeAbyPXhLUccU2I +LGPx38cmhNxpel44V+Izhdel8ZXs1X2SZDL/pfPE8VIMJm/7liz1+9RfwjW2 +USpImv/oJr0X6XfFMnpZWtkzGEhO9YkCLheU3NeSO+td+PrMeLw5heoMSu2A +amP+UBj0DxkW9ogAZG+5T4ZMFffRUa++74PkPgyekHHasL033EcDiKT//3Lf +//uwxDC02xG95T6VUVZxH0ax6k0ruI+XxlG1oVFyeSClMIx4664ybmresHVw +12I89ar6u5IBR043BZBmemOA0QOq0qFeIBpn2UxaFldOX29jhtdZJatwjUot +DWfg62nB9+6uGJShYH/+8o29AYz6PvWssnL63lpDvwowxompl43USfr2I2y9 +9L3I5iX0AjAcbbW9sXL6MrKzdS2sACzpS9n4Bl1oZ5vHASyF9xv3ApZFXuaq +UhZW5t1N0vJnV1CIlh29apPv1qejzI3uWvq64mGtQOrxQtTDC6uc/rOJlVDR +ZHPBTdMjVDCZnCCgujN5GUwvoApvm/WYl3njQEWXq3qoqqCii0zD/ICK2j35 +pUBFm6QCjxVQ8VZhjrWygICUzn+sAmlG8uKAwx1LefnJqyaAKn0B87DInQVY +RjjoN963IMJCpbdKmKtgIb6hiTbAQt2/9LVJTmCh2HrBik29oRAFEjIagIpZ +B6MeWNTjsNV7SHxqGm/mgP/UQVd29k2g9wIcLOiTho+P4NAjZJxbQaRGh3nX +nr0ARjREHaAAltLObJ6WgNW7TAfmvieLpyOtqmBLVVvHlk6+TimnKM0Gpi+s +uLA1YAVfmpXTmeJlgHGNM6sMON8lqKuUG1DFRgPjkwqoeFU71oVKtFk2nbNe +BVL68oSXOJbSxViaK+u6mFfVaQJkL6Aitzt6wpK4ctpVYzxaBRjSRFN3+Dod +hYEvuqMu5o3X5kT3BjAiwJJJrFwY3FUFGF0AehovaOElFnrZBdF6Mgwqps9b +UfuoXCHMUGcS/6RJk2p0hvuYfZ7XbGp/WRNzAUHaMiUdgHBVvYopb/4OK4AT +6TFVc/ENgv8SVhxlKR44Y8VTW/MYXr+Q2BKoAl+VGioWVWnvggULYnFycUZ8 +k4nzLdHrIYspGCDUJGlW1ioMrlgKii+AKxFYBZljKXoi4Xbu6iZeqdpkVTnv +378/prk1NUhpLv2vbK562dyFAlI6GeQ0TeiDVByue+XkSqTiTOXrp0WkVOKG +uASpZfVXh2szQUp5uQsuyE00kFJyXEUSKVLpqPAKpBjYhd8hdwaMMIlM0VRi +RNmByUf/bi7YSRGY+C3adEognebXrr322lDFm2KkrdNwpyyj+bbpVOzwcfC7 +pzSiRLpcUXBQomFfxn0VSulYXVCCmT0LVCwHUEkvKLXapBYjoCtOFsihvU3E +ReTSt6o1R66eztKvqUnKMqbMq8siJGM6gw3ktDfKEKfHasSIEfFYlU1ALpvK +U8AIu1JCAYwoGpdPWRSFPd5dAx5kwzXRGjzQO3IXczzqonD06NHh36r/RhT2 +TXComvVblu9owKs95OkS8wsoOXCq7CzbrHgteYk23yVhc9fEencbloV0GKNZ +V61aFWZOSy+p0EM6DM++1YzbXmAm44P+tCVPbga6QYnpVIUZ9owKsPgu/Yyy +ccAM+0jrDW8OVax5c2vkwcdWeQNSj5dr5618v8OpfZCAVssU1rSNe9PWXaiD +tPnL9F0vCEG3k16gwuJxtOHg0BMfCPG7HdMHKZgurbgJ0OLeuQqEFHhaobM7 +y3pBCvqVpZupP4plGybiB/m13+b8NBAfmcxQBzaKd1TVxTGIRtNF42sXtUK5 +bj4oPWyMy+vRsFLUmw3Wv+05VmCOJaTCKjDHvE0rxpnvoHqXXmCevvfyqY07 +wDz1d8H8tzoeiqCFumNwZEGbIhW5UKDNEAGNkqhAmwnB8SV389bWwFk17rp2 +w30LnoXdPvjRTYxIprfPT+4L/bIsaoxFs7IgALxgJ6Q3BGDshJCFAOnLZ4uH +/H9wqhL4pgHtbTu7wDclg0nhfy0Aq57fgG8aLgNLDo0OA1hiSygimLfq/y6m +HYF0mNrnVovpbMr7CF9L8jCLAp6VEdRyhxtfpGqG6wuSB8Z027ptUOC3P5KI +uTHYYnKmQP/qRBuDfhr56QX6qWAzHQj6aQezWQllw2u4hhmssQgAxiSBuugp +GBs79lTARqMQHqxWocAwLXGpj5gBFipwNBAdVFT/mxSWFcfz+Es6ewEOgq++ +eF31aSJb2fAPAOOEqXIWwEDFOa+ok5XyuLg1VAzxkKMMVDEbYlK+Cir6nxW3 +4ru4nvVJbI0vxm0JUv1dH/o1f4pXWeI7q86tOVSNo7JNivN1qsdkzAFY+p7j +XgCm48mopvnLN7JyjMGalqsCLI0/GPscyqr2F5mAOUs7gC0NqlXARvsSkXfF +Sw9N4E3ibWWwcY1qT+V4+XrqJe7c1Q1gqAS9kbsXgN2dMAQrF7Ki9YMIOERJ +VUfBSyo5K3odF3P2Uw+zJSz1I6O6VNsNcum8GUpNcmUzI4AKL/7SW2ZGqMhy +qWgPqOARe1xvoJKpwTaZiQxUnCT1w1ZBRfm3YiRART5uirHkp5PHQPSNW3Zd +HInu4NDDRIBDWXBgIYMsZmwOSz4GDKloz3tuyX5v3r4biNIRf3Z3BamAjV51 +mefAlhqZVbClFp2pZOoJEYApW6XvDL2kFVT5+xSwnUwhDkgemOjGMti4hq2t +2TEAhvdZf9dAWyhR1jXFKnsBWPqyk7lLOwBseeKH2S1VgKG0lK7n6+mg0pmL +NwBb+mK+Cth4zRfiXOgNKCyhuv16Hy6wYK1p5iSwUGygjTVdASypA9sSlvbQ +Sul+rMQx5jMpP6WBy/ruzvOvpymF7r37+TraRczKSyWIh2q4Yi8AC/XGg+OL +fliZkJTec1sF2P4kGrZw5dN8HYUlCQ5gqn7G0K8AjFcrkkaXMqYiLW0wMM+i +DDCuoUPSr6cvNTLJAGCIeGmmXgBG8lPtqkR4sT9UtVHWKAFUd3nOSpXv/QvX +5CLwBguYX/K9JUj521SQA6vWbyPayQHQ5J/mUNU9s4G5LZ0WxOqywse8+aQh +db25swI2+hHZdp3vvr6K5BbO0rxlGwNsYREgkgDAYjF/om8RUMPVcAaoVPib +dGwJVHuM+nuVfR+/TLZdl5u0vHBN7a66VYEV4uYUdUg+sZNprdKlEc8COKIH +r2syCUUwgQy1+fil1f3n+9fjYEojS+fubl50nr7CYdbiDUCUlhRc2pxUvLqc +CJIkgsHZlrKc03zRyqfzGYktgst9egSXJ0+enFeP2mlggJJ+SqYmlUVYIICk +kAbWBaNi8nIIQOORTE/jKAjAEFAVg/WCAJ3Jy5Zve2gJBMAsU0+ESfRAgMqg +cv8eQeXmM3j6Vb7DvSy8ONTBooTHRx7TDr4uyX4Z8/OqCgaiq9SgghTv9t0l +QuvSPtxjzEf/jxqq+OYxvlqr4DLCJm1b5iWvVW8vb06DASFFxnHSvBX9qPoI +FtEL+2yt4ktxZCe0JEJbYDYv+6y1O+ZhYK/f/l2/r1XIsTnmrUcYlMVhKGDk +RcM5ZPmfckfUbak7QBvpoiGJFWj/pX+UvDQsNnyJ93Vddxzr97WKLleh3Wr2 +R7gvyIuhzpGjkmG1GJxzl3UwGT99nWMFjvmrG/rEWWUKW4nX9bIuukB/29uZ +Fwrlwl0cqqogs3+YUc/EQFkIFZiN8o9ahX9bHcNmAxHKjmH4sywH6jDd4ntX +Gazt0bDOpJWqZv3fBJrKwGmPbmlmo5d1iJdpqlZQTD/Y79Q/qZcK/KZr/gF9 +J2v8ee3/Xk2v1v7ovwEsLc+u\ +\>", "ImageResolution" -> \ +96.],ExpressionUUID->"24eee5ea-c8f9-4063-9d36-9e38f4d71b1d"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"GraphicsRow", "[", + RowBox[{"{", "\[IndentingNewLine]", + RowBox[{ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "/.", + RowBox[{"\[ScriptCapitalF]sol", "[", + RowBox[{"[", "1", "]"}], "]"}]}], "/.", + RowBox[{"{", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n2", "]"}]}], "}"}]}], "/.", "s2"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.", + RowBox[{"t\[Infinity]", "\[Rule]", "100"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", + RowBox[{"-", "1.4"}], ",", "1.4"}], "}"}]}], "]"}], ",", + "\[IndentingNewLine]", + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"g", "[", "n2", "]"}], "[", "\[Theta]", "]"}], "/.", + RowBox[{"{", + RowBox[{"B", "->", + RowBox[{"eqB", "[", "n2", "]"}]}], "}"}]}], "/.", "s2"}], "/.", + RowBox[{ + RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.", + RowBox[{"t\[Infinity]", "\[Rule]", "100"}]}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", + RowBox[{"-", "1.4"}], ",", "1.4"}], "}"}]}], "]"}]}], + "\[IndentingNewLine]", "}"}], "]"}]], "Input", + CellChangeTimes->{{3.817270250152678*^9, 3.817270266945251*^9}}, CellLabel-> - "Out[687]=",ExpressionUUID->"e1e88a87-be5f-441c-a4ca-2f1bdaae916d"] + "(WOPR) In[193]:=",ExpressionUUID->"8b99e721-7bc5-4c63-b150-8946bb7d2007"], + +Cell[BoxData[ + GraphicsBox[{{}, {InsetBox[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwV03s4lHkbB/BxCKGtfZVXSKTkzSGnVMSNZEUqs0ohREjkVGEVyaGiCO2q +dWoGgzGZeZIi4acwiVChECrlkKZIxlLK3u8fzzXX5/p+7/v3u565HjWvYLqP +KI1GS8Hn/7+MjKXOvr4zxKIjfza+jk/aD+96/dZrhtTTz+vwLvDJd70kv0Me +MyS2eBFTxJFP9neIRjodwP6b2Tjl901kiezMdSs7tEjaFy3ZJhKV2N+noovz +Tp9riHcDcYpku78UConF+H8MDPTrSdxvIyP0KSGJHVNf3/qTEJ68enD7ZzRT +vjIhmxDpOzlnm0bRbYLuye468uDLFcbtXnTIN+tbu2uJbkD40JVaIaEJf3oI +91QTSfftvraJmNsxuJyMCiLfE6gXeQ4tuXXTdoMKokHP/FYcjX7K2Wr1/Dax +tvmQKhmODlcrjZC7TWJ1r1TyfXGfq0gjP+sWmf3ZJ7XDFi3H8TwQVUbGboRx +LGXQ5d5J9ax88s/KnFOhkmhu0sVHC0wi8WcTMMXQ/mcsuS5MsvaiQhdtfprQ +TDqtVskxiGdI3TwRoH+BqbWrskmPhfRu83a0LDO21TOdNL9lTpqko2np5bIf +bGDaYziAk4L2TNlxJsAV1AY1R5WS0Qz/7J4CH4jq4w3Mx6EthiPecsJAq7O2 +pe4k+smJH46S5yC1sbfQ6gBa6oK2b9MVqLZapXrbCf3evaeenwaj9Z7Z6o7o +2fcpsux0sKgdTRe3QyuuHXQ+ehWm7ghj+KboyZa0q88yYV/xrwftVqOjJoPM +HXIhbt2+rmol9LvPtSHL84BbcH2PlgI6JsDnUW8eSDBW28j+il5sffj4RgZU +XdcxbBdFHzAZNWQzQTl55xL6yFcSa37vVW1QIdhKpVx8OIQekJ+XaSiEU+ef +ihm+Rmtf2XhIngXtcc7f5HrQvQK2eDULzp72Ge1+/JXQZpS32AmLYCjw3IOD +Zehes7OVJmx4qLFOpZ+N/fL/zXlGs6HgTXOUexHmgu00CcKGI07LjLxvYM7s ++WEGpTBieqMoMB3zEaVX2w05wBdaiU2koHcPfC8+zoFi3ohHaDL25e50/yji +wFF13ZXh8WjGePQf8jdhXLr20tlT6KgS7UtjN6Gl0XNMJAzn4+WJs2IZcGLE +dyQEodUFmjL2ZRA4Zf/zoh/2Cw9XqbLL4HNvX0jGQTT9ksqAMxfar8a0Ld+P +7n8/fDeWCzyHNRuu0dGu9n4BJVwIeeD/LtsevUlM1X2aC19KZvexzNCJla2m +MTx47pVTvt4EzxvkfarJ5UG5ssXSUmO0svtmmRoehKVdaOZuxH7aiu+SQh7Q +7bTW6Wt/JRZBHz16JSkwFO84d1sT+2srGOnLKZiOkDetUkN/pL3W0KagS7/6 +mokKzteeeCeymYI7Hw9N1yjivM/3TlNLCjJZIo7w36+k3rWN3WlHQbgHq+yB +HObSLw42/07B/pU7pa2X4b6I3C4FNwo2dwp8+bKYy2hJNHpToJCS1mC7GO01 +1t18jIJZGyPV1kVopXgNjVAKemg9ZxxE8fxrbd194RTcqz7d2/FzisSy8mqG +T1OQdXK1Mf37FKmXobg7YimI0m3I6Ppnilj0no6ai6fAZcx3Yv805tEKHxbO +U2CaL72rd3KK0NLk6pyTKFB245a4fkKb2VcuJFMwv4K+aPAD7jfnX565REF/ +h/Cw5wjuO5w8aXKZgtqkv+uGhnBfYGhqK+Z5282UfF7jfNi8TDHOx/x4EzH6 +CvvO66SeXKTAvTKhy78H+/m6SlvxfAjV1Bd0oR1DXwjiKFDVepIS9Az7RLNx +OIYC2nDw+GQb5se2+a2JouDhTlrS+ha8z55UcbWTFCRw09a78zG/SNttfpwC +Gzk1/p8P0XMi5pE+FEhF3jrSWof3ORnb8ATfd0u/pZjofdyvkfBgK/4fly2f +M7dUoi34v9TaUrBU5usgi4fzpY23fuhR8DQ4Prqfg7nt8RN31SnI6JJTlivB +ffeMXM+soEA+z+hgLAPv81KBay/gQY9o0z93c9DcvodSLTzI8tuX+ek6Oqf+ +WyuLByr64Z0u6TjPnjbf48yDN39JhKWnYG7UoCGuw4P8b5nLmpMwT+kYLqHx +QKOx0mFTHOZlx6bZTC6MadoKAmIwV7r1ei6IC6UpPcn5UehEyReqJlzQcZ57 +tPQE9teqrul9jN/X/SRfm2B0X8XfbqllQKkqLooOQNODXbP3loHRuInVuDfO +Dzwv0m6/Cduiz9Q0OqEP7dxcd5MDP9/Kun7fiybhO83cOVBvkzun74D2F3QY +LeGA9bI64xs7cJ9DxzZf71KwL1ig/jDGXEbgUjZRArJSaXsoA7TKxPiTSyXQ +Hqj6eUQX+8y6ftl1JUA3ttRyWo/OE9t6b3cxuDyOY+kqYL9iws8gmgXKunLW +PsvRn+yf8WksGMwoGMpehk5ubBY5Vwhebo2rFy9Gh9DHVkcUgP/Eoqx3c19I +bNPN4+WbmbDBKXOL4swXQjOUVDLOY4CgSuPl3il03XwIh8aAkLjflteNo92d +8j6E5kLkiqTU66/QNXmpWSPXwDnGcHBpD9paZ5NEYiYYjw7oXOhCLxjLuyj+ +BcIqg7ZTbegxNQN3zQzoUhtQ/vQY7bHBcBcjDSqSLwQe4aM1C8eMlVIhzK1f +5neCNjlwrPHyBXBsOu/ach/d7+UbqJYAerr6HMsq9PR78W05sTCxkGindwsd +yb5WdDoM2o/qZRWXoSdX5ubF+UCFtqGT+E20ashZHWc3+BcTsKOd + "]], + LineBox[CompressedData[" +1:eJwV2Hc8VW8YAPATUkbIKJGZ0JIGkXQoGlJRiZBkNERZGVnXSFZCMkIuRSoh +ZDQ8F1nXuUZGiFyJ7NHW4Pf8/qnP9/O8z3jfc+6555KzuXLMnoMgCCX85/// +d/du6C96MAuEmdslB3k7WH81RPlvCprbPe2YHg1G93XXjcWjd8X5hIVFQH1+ +8EqbWHT455dO/DGQI65yvvsm+tid0qmvcXBuLIi7PhT91JxLZEkyWG/pDA5y +QN++ULb4Xw6Qd2ltc+dmgSbBvuXg9xikOTescbHFeOjVr7q/nkBfe0DVGUuM +33+dY9abB+Ze6xZpH8E4zV3z1aZC0BxoMyo2wHh0XjPRWQjiBv70DftnQSf5 +58N9PkXwTrKNlNBBZ+rs4HxdDCfA1//nFnRHQHCpdClsU1ZquqyC+Qn5l5wL +SkE4tlVqeD3GjyqxksgyaLVRfN2+BvsZe0e5nSyHI9wtf56JYbzcbsXw+Zdw +8PAab8e5GaBJB+TZrwXgPfuCN+n7DOhorVpVmgbAdDdOrZ6dAesilbnfPAww +TA0AibEZkN3+Y1TdjwFHxt8vbuiZAQbHKZN9ZpUguOCa+K1zBtg3j4c0RFVC +izDvOtk2rG8ivN2ZUQnGOzUMPRuxPv/UKq21VXAiPD5u7Su01MecvUNVIJq2 +QcG4DPvpXX5uLVINHQVVz32LsX5Lf0S1TjWc7JrpastFl5jtvphcDaeUDssE +pWF9vzCHO3vegFXN4twP/jNAPHQdUvCsAZnuVG1eH6yXvotLPqUG2BPbmtU8 +MX9mWVZ8RQ2cFbX5EnUF4y6SDwc5a8HOtkJDyxrr7a34bh9WCwqeJsxzlrif +haSPhjm1MBQxYRFnhm5QNXxRVwvnCiUCRo2w30L+StXFdXBxkWdNoi5ad+5e ++bU6WC8mYFqtjfW2xXVxJ9bBmHLWyJQmnl+ewtWRwjpwNGrj27cV16+T4rsy +WgeX0zcf+yaPjjRbX2RcD+7aIx+MuGaAPqIve1CoAUaj+o2jCZz/6598acUG +eFn2NDxxbhqs6bQFulYDRP+IMLk5Ng06+bo8BfYNsN1Vf9KLmgbascz3IiUN +IL18e9vXN9PAUON6cKmhAZYUyJdffj0N9BOWnF69DdAzuRBilzcNRFm/ZOEi +JtAuvlhtFIP1dpz8WH2ACQ5LH3E0hmH80N78rlNMOP4wcUQ/EPu3c3TmODBB +cci9WMt1GmTzRQ39I5lAWW82VDoxDezJx33CTCasNHvgM78S+z/5Hk3TagTi +Z9xZbyGcLzArI+NAI4zdCdz/bSnOI/tWPNykEV61WYmMzU0B45RI8tPLjWBz +dNWTjvdTILuoSub0vUYwnFoSa9SOcZGFrMpHjaB284dHI4WWtZGZLW6EpY1t +eypfT4GOZx1vEbMR8vZF9+SmY1xu+dbWr42QNOTLUEqaAlrGe1bKv0YIDLmU +nRkzBQRd2EFtCQUnqg64JgVOAT3XK+zdKgp+a3PyhthOAdtx7Z5Puyj41Ds7 +PW8xBdZ7fN9u06eA5cPu8D6B6z9NcZw8TAG9/HXGFX2sPyjyU+Q0BfvUvDQt +lLD+Oc2qwGsUOPTeDTSVxfnqYof/0CiIDn7dcHwV5idMnjG+QcG7Vg5zQz6s +vyQo5tZtCi5cvnlNe3oS6Lccnc4+piBKrKBKcwRtPf2mIp+CgldvedUHJoHo +efJurpiCOV7xFJW2SWBn3DTmBQoiHma+lCmdBBrn8tOprRTkHanhXF0wCTp+ +tubTHRS8/f75kPgjXP9gYK98DwWSept6hVImwZrtO6T8kQKd8aMKy+Jx/dwH +2X9DFNjFuTry3JwEWa+/RwpHKchll/5dFID9F0yCGDMUtNzo0Zv3nATGiPli +iW8UfFP5F/XbGetrFnqY/KRA22+P1FcbjPNUirv9o8BGwd5+2gLzd6yqMiFY +ENp44+n4CTQH7yFJThY0rWJpf9qH6z9pDh9dyoIvjOnrbBL382O3I/CyYMUF +4aZeDZx3hVO58DIWnCkxtepYj+u1PSPsl7Mg5PS17NY1aJVQP3sRFuRwpU2x +VuP5KSqvMBBjwcyxj/61AjifULRQlTgLRH9z1VUtwf1u3t5nIsECjQwlQSCw +X5Da2mZJFlgeMDB9OTcBOpfKV6tIsSBw2jG99MsEyFac++kqzYLshFufi8Yn +gIixH0mTYQFTu3BzwacJYP+yls+XZcHUp3bP3L4JsG4Ne5ctxwLhqJ+Q04lx ++9ua1+VZoL5NYmlW8wTer+BtsIYF5j27jDLqJ4Cu1l7/A+0feCYprRLrb1U0 +jVBgwX3lIHbyC5wn7c6JxWtZUN/8QDmhCPODYmfOoyc86pzjcnH9nLh5IVpI +eqwsOgud+Qo+obfX8C+KvIfzrKUfXUCbOW4+eCMR8zN8dnAossBX5FhscAz2 +l0x7MIlx+gv37oBwzB8Yra5EvzmbKOcbhPOP91f6o0eWvrjo5YP5GolMBTR/ +Qe8zd/cJoMlU8xTjvKqmC3POTjhvStHjjWiTebk9TuewftLJrmjc364/UgJv +rXCeg+JhTDwPhV+retRNsd/dKs0JPC++72LZKUcxbnZH/hue55fZ5a7EAezf +dNTzI55399Sy3fY66PCtjqV4PRjjPLxMDey/fJGaG16v6KFFmbfXYb+qpYJ0 +vL5XP/5z+iWH9QXOX1++Cq9v/5zmaQn0k/lkh5UsWN8926rIh/X+iNi24/2z +vHMyLZIT82WEvIfw/vr1dvTizJ9xoPnqz3wQZEEtNbDoxcQ4MH5HMiL5WPC0 +oY8lPYTxo1meJA8L4mu7k4P7xkFWjM+wl5sFNozWLYebxoG4uJvr7SIWzBdV +nmXnj4POc0d64Q8Khgpeb9LPwXy731uLv1JAPS2fe0QfB3py0n46ft7uPnwW +6xY7DtbN6zM1xijYkZJRye2G+XO2JZd7KZBOSrt56RLm72n7Xt9FAfed5FMt +ttifdpJLED//7dGxs8knsB4rSuUMiwLnoEC5TeoYn1u6WPQ1BTkXzwYenxsD +mkOB5GwSBbfOnT5cNjsGDD4ZG4l4CjxsT62SGhsDurlY25ZbFOidNn423DMG +xDblyg3XKWAb6Q54vxoDnV9JCUedKVilIadLD8D1aXO33PdSsFPb+Eqo1xiw +69Klv2tTYLknMM3RBfu1qc+c18DnqeHAnIYt2ja0UmETBcpnMwpb92E+l3TX +PzEK1CPkFDgFsH7yszV7hxrhRK/cknOpo0CcocxfXWsEjwFjNcM76MEk/SI3 +fP4PB9pujUZf2GeU7tgI72cGYD5gFGjP9VeaWuH3zeJMr0TbUWAnlWTu120E +FxX5sfr1o8CQVJjXXtwI0TR51obyEbBu2bucK5QJ4v+EK9QKR4DIP7V0yo8J +md6c+eSTEZD1TWQ2X2VCieunmONpaP7dM9fsmfDBLvuETyA6RsLbRY8Jmw6u +72UeHAF20fT8BIHfn8u3jl/s+Qz0N4svX3dvAL77ujw5f4aBbVkyp3GwHnap +l2jpiw+BjousbmQwvu90bfyz02QQCCG3vJaaKigZ+1Vg7DgAjL0J9Q5RAI/z +ajYVivcDTfvj5YK35XAoK03ENfk9ME6+49heVwwmfrLDbk3vgMgzt9YPzocq +14dvFfXa8fq9Hkjd8BCkd/JnN21vB9rpJ3Q2z0PwXuTi7bEWLdDdrzmSDaox +O2VruXH9pU7uTVnZkPaU5WTf0IbvN4f4V8pmg9fI16UPjrQBrWP4GodEFmyy +0iHlTr0FWrEEh7f0fUg62P1E8nILEE33Zx+/uwdvFiq4+M6gX685F0a/B9PP +H5z+fRQ99fLG7Yv3YJ+8s2D3FvSSZL5tf9Ng7Puy4Y3jzUDobX6QtCYN7ptd +dJf/3YTXn32C1ycFVkjLxi7D5zrB43542DAJnCLG90zMUUCUHFgUL5kEb36U +fGO+R0u2C7iMJYJb82GzsHS0Z+SF8rBEaKH5yHAqoUOjnULqEiB8sPPpLzV8 +j3Fo1hM4cgf+5txkDh5vAEKw68iegDjYrb5ucf0OdF5yeNfJOKBVvyFzJdGv +Vmsmq8TB4g9/it0H64F4nCR+90MsCIg4pC92Q/va1N7ViQVZv33uSnF1QLQ8 +lkvH3yf6xgtSl1pqgLgse/tdeCSEfbhrdrQYrXekmrE3EpiX1G9vS0Jnmrwj +5iPgSKjT0r9n/o+//HTdLQLMXr7/EjX9BgiJzwpZNuHgsLasLk8AHUXz1DO+ +AdFzzi5fDKuAUE+WtnMOht4+l5deKuiYkcrDqsGwrsp18YIgOozwTZ8JgjcR +7sl8bZVAEDouPq5B8FvSq1LhFDrvN8dKn0A4vztguak9A4heWa42MgCK5WkW +ffvQso8nSyh/4FgSmGWrjGa0tDqa+8NO3D27E/D96933I15+8LCSv1p4sAKt +Gz/92gdo3JK2nn9eAWG9rbTM2Qskm1f/DK5Af/On1fN6QUmidGRMIHp1/fsn +WZ4woSxf9GgJ+u9E9mSfB5w6tI6zV+QlrleTsDa7CltjdtzX2ViO+/GQFr3q +Cp9WnRjkOf0c60t5J6Q6gInCjzA5BXTX+KN+QQeoVUlS0RwvBsJIQvVeyEV4 +tLfX+4L3/47I9XG9AJed7ITq7hQBUWBl9/LMOZhjuGuHND1Df6m1o9mAQ+OK +wZQ7/7u6UZDPBno7ysKKLP/346otiWehYuxv28exAiDYFoM9RdYQLHrdQXcJ +2ojVHPbvNEi2rN/8LyAXrwflJ1BiCvOfLl/bKIAWOrPH9PdJYM8V1likPsH8 +ZxExuiche42W5Yuyx7ifJM2OrhOg6nko3HM2B+sJf3u8/hi+b9xqzw5AC/lX ++IQaw3d6m0znsv+9bc3uISN4wbQo2b7+IdYb8VA1PQr60o6DszZZQOhw8BuU +GoDytgIVudkH+Ht2JR//vYPAe+Cbt1EAmt0rUxRxAFpcfIXyU+5j/1C7Z1f3 +gXlNlLZjewZe/zsC7nF7YFdPS1iKDZqd52mXowsy06LtzBk61u+P1HqjA5/E +0xzWLUPTYtt2Se6Gvi7zzazIVPT2o55NOyB7elbqQW4K3j/D9MXW6uDMHc7v +w7qL96Ponqm/24Fje+mosmAyxtsCms22QqPBka6FzUkYd0urX7kF4s8O1XYa +JaINVu18sxkUb4k8CIm7g/58+9mWDTCd9TjOoige+7kIBvKug7JXuoFb229j +nJpY+lsRDMauWLHF4tAsi71Sa0Bk0ZLDpeqxaL7HP4zkoHflPa1o0xh0RHad +ugx8iEja4rX1JlqV6BkRB+eyWgFF90i0gpYI9wrgGP423vY8HH3jdpWRCMSL +rGkI/Hnj//ybI/VCoKRrnL1ZMxRtdZCvjx/KLwcE910LQSclbg9eCodSn1pH +vgpC8/ccDuGCvob32przNHRVmymbgP4pEfWmAH90jmO2yp8KLgPnmXWcPmhZ +vcBj3yuUs6jH10M90b2HdDfOVBgS6+wHeNzR4vNNnp8rnC2uy2jfdEaXOY5y +sCvWOVUXbZFzQDvfy/7aVuG6xld5VMkWTVPd4VpT4VF0cafuaTM0Q6HJ7FmF +kE7JfusOPTQh+v10eMX2lJQ7S8iNJJp+38i0ooN7D4/rNeP/PVjck1Ghd7dF +htPpDJrxiKv3VUV3wmZJZv45tM7ze6JNFTFsj2zhR07/O5983l2hINaftMnY +Ff1LcCRlsIJ4EfShlXUVXcC/UD9e8d5KUcHDwBvtlT5b8KWihJN5UaLOF61x +8eC2XxUH20tM++VoaKrz+qX5itLssGtb2IFoq963uRyw1ts8LfheMNrxQ5s/ +N8Qd2sjosLyOXr+j5gkvENLzH5Ukb6DfSmRvE4TeqgxlKjECHeu/6rEoGNxx +OyR9MgrdEHrZYyWUnde/7CwajVY7p+ksAQah305F1MeQBC1YZaWHLAReOX2p +6GEs+mvKhh3yUGZW69sbGof2LpsTUIC1G5LSVfTj0f5xlRzKYCm66Jmpwh00 +560X0ush7t/FKhpnAtbPKrtkvBG/R7SG3lYmYrzS+ZqfKvS696/33J2Cluoz +yFeD8iypyluqqSTBGM3V37EDEjotTHPk09ArIJXSgKMaXcHd3Om4XkvLSmYX +DPhdmEo7n0ESOlrTsYW6YJRwQ/MxG80WXv7nyR6oyMsOKTmVif1jXgvl7oW7 +/Z8kmg/dR4c26TD04YTu2f2EahbWX6/wVMMAqk7R4vgfoYmAObfzh0DVNb1P +XD6bJGT32wylGsKy+31uW0Qf4vrujlrJo1DLZU63+ZVDEgU98hXbj4Fm/bG5 +N4xcXG+zTl3eDHLYLnqtmk9xPjPV3ikzWDEXc6uvEB2j/6u94hR8Wde89seD +PJJQ3SpQccECOmvWPrqtV0ASRq//XfhkBbeUMjveKBeSBF3Y5pq2LdQWbflj +YI9myMeZVtjCPFkp25qBzrnn26tjB45m7Et9EkUkUfaJp8/AHg6ES3P84C8m +CTOL/Oeu54Fj/K6K0uxzknB+qvJouSPYqkXsyVxXQhJLT10IzXSENwHeJ6Vs +0Mpy7LfbnSBU1MxfpA09YiJWfvoy8O4Wa1ooLiWJCefHFtbOIBx7y6nLq5wk +vNqWFwy5gtyOkNxw4jXurz1B29sLggLdGFya6LI7HIFdXvCx0aY9wAXN3zTr +reEND6x1/179iLZctSzqtzcoR8wfsnlTgedfK7j5hg8kXX51VUqPgedhFWFV +5Q/0SnWxH0uqSKLQtmi4PwhqBBtuxSqibQ6pMmSCYey0Be8mfbTzmnwO62BQ ++x2wYBuEPnLXvWogGJhbG0Zb/6LDyHMbxkLg632Liqez1SQhoVMTL3AD9oXS +ztu/ryGJKqknR7Ii4VK78EfiN5r+XE/5SyTEyGdZporXkkTEn/ILZBS8r2gw +bjNBj+wZl3ofBc4/hXfptqDjthiaroyGuxeyhKRq6kiif+fZa8YxMGnALG/P +ayCJo37Sazlvg+tL83UDFPrOaUuJzbfhx4bxpMmx/+POY6QFPueX8XtxKzFJ +ovRXo2TxbRBuPqyukY7+suAqdiEeNI63FqbcaiSJ3MJ47u47EGLR9cTGmUUS +Yhv33vqQBALqX4/8SmohiVBaT+DVdHh/+njVn2z0jfJ4x0fpkHO9SG2hGP3T +P8m/Lx10O9xWc7ei85IV+dfQwd3926gITytJpApHx0TR4X3h95DN3uhQzne7 +bTMgZ/OvF+dOvSVpPk+9F8vch73r/il2rGonCTKXUduUDYJalsLOw+9IQkRi +uSvkg9fm0sFTru9JmnzRlumYYmi90nnCZuIDSSi8aKiLKQfr81mOoqcGSFqZ +l2OkEYBSWJ9cuuQgSTTlTylcqgJNDQZ7KdcQSauuXHbXrgbudtOFJahhUtby +bH4ydz2UfXoYv6JtmGSbb+V2EaqHjum8FSI9wyTDdrZkr0Q9CHG/luAfGSaJ +p9xzPZvq4frWbvl5zs8kfedSRvOJenCOXL7to9ZnUrZWdVN9Rj3s0w46/vgJ +usdkIR3fo+0OhHdkF34m2fzS8Y06DRB4PMb0fvlnkiEi/nfmYAO8unjPIrXu +M6kj4yW0zrIBtiS8sI0e/EzSKtrfGtIaYPX0FzdXyRGSvruNcbKuAb7SbeN3 +Ro6QhDGPtZARE46cjI1rihsh2QadDwROMSGHD2Js7qK1ToZw2jDBykPiZsQj +XP83parFjQn1h1qv99ShD19d+JHAhNQfuz2vcY2SsjxVStbvmaBvKGH+wm+U +ZGeNufFZNgJ90QGzI9dHSR2JPvsi20b4XXL15MeoUZKedXLd0UuNUCDXeow3 +FeNRmZVn8feqxM8bh8xfYH7Udc+ZxEaYyvi+6/cPtEaMfVpLIyT+bJHZibeq +7KLqOY8dFJQ8YL409BwjaRmKXQT+fu40fmN6xn+MpOflrfLbQ8GK3NJbIVFj +pDVrzVnDwxQkWN9baMpBb762fa8NBfENl/ptB9BuT0evhVNQ7GHv4zEyRrKD +5qukoyloX3NmZfg0+uy4SVEcBSL+x47m/UN32+zIS6Egbqsm/Fo1TuqMJLz5 +nEtBTAp3+s1j46R1yWVVI4qCggOEFv3UOElf2DE520xBy/e5zkLrcZKx2OV6 +UBsFgkaTAl2Xx0nZa1H1V3ooiOZq95ePxPXE8DLPzxTkPWNJqMWNk4S4+eqo +MQqarOpK9idjfrMVcWuSAoHyF1OOD8dJ2oha5emvFNx0yrAqrcZ6ypFnJOcp +yJVI+d3AHCfZsSyTFIIFVF18Qm8rzquTybuUkwX88mFNi9iYPyQs83AJCzY2 +BzqIfkbzeal187DA0NeHW2kK+80veP7kY0FU5+Xdhn9xf3+ejv8UZEFu8IUe +K84J0tpasbV7OdZXtfFw4Z0gacftDj0UYQFfpElegvgEyRA+Ysv1/9+TNI4a +PJKZIInx54W38XepwdCB4ZeKEyT92KnfyyRYEEHukh7YPkGyn4i9rVrNgs8J +luqRuzBf85/1CmkW6E35HlHTmyB1Og/7GMmwIEM/7Vz/IYxrG084y7JgPvW1 +f/hx9PpWf085Flh860vYZoH1o8X+2cqzoOzQfF6fDeYzPqqqr2GB2H3puhsO +OH+W5+Ak2vX37v4trjhfc2Tf/39fbDY+8/O9N8ZvHf7MvxbP51GAYGggerF1 +vRs6nKArqYbjvHLd+wE9bMoge2IwnkZunEbvzWebhiRhvbEwLU5FFtC5Fzmr +0HH9ipVafzD+77RcWNdDdG7JdCfa/LkuPSgf8/1TpRLQpfw2ZRtL0ZdswzTQ +onZBLZ0VWE+a9+trnM/lZeYIrRbPu3xGRhHdJFxNbGjC/ft2tjjjfjY4DIp3 +dOB683e1abj/sErOLQF9eB5BF6ty8XyGxBUOrhvC/iPmwWl4fnuc9c62TUyQ +sk+b6q/g+abX2Xn7fcP+YTuN1+D5/5W+Hqv0F+PSdj2leH1OeWQ9auWcJK0P +W8ltkmRBCaum0odvkmScC/0YtIoFImuHu9eKTJI0y8DuMrz+zr7cX5olJkn2 +gEZlkxgL1m3YL6+wHvPdmAbJeP+EBp3f2bRlkqQPFlsdxvvrY/eNY16aWM/b +Yz+bnwWpYfVB1IFJUrZikVsG3q9z/SN3PYywXneoXDMXC07u4CmSNZskCc3j +vj2LWCA0fHDQ/Tz2t1q6OPwPBU7aDn+kr2A/9njihl8UMOMjRBo8cH0jV8bj +bxSE7G3cKxWK8cX/Onbh5+sX3fBBzQPMDxp8l9NLgckvx1dXctFN/psVuygo +PHqzfVUx5s8M2fnh59lxnsV1uRrnlfvDU9ZAAdviqP2Kjxg/cf/8iWIKtIuu ++DFG0U4i/Ql5FNzljbnjMIv70X5xqiCHghPlLTUVxBRJdN3vOJdKQf2KY4rn +ZaZInbKHy94FUvD6xzOfScUpknbwiuLINezfubzVTWWKpG9Mf97kRkFqQqsP +TRvzr3dkSNhTcGWFcWuyBcYvRBhn6lNg96NAUdZ2ipR10q89js9Ls04h32wH +rGdnYvtuOwV7EloUi7wxv0znxPE1+PxcYeRLJWJ/ibWXls83At+P/NZj6bh+ +VWLo/m+NQHQKKnVnY5yrarXhWCOM3mluHXqO8ZjcqoqORngldlRpoQ3jqf0t +Wo8bwVbsyNstQtMkUXfGXepgI5h9f6pUthKtW3X6r1YjGHYs89stM03SGtQ4 +MlQaQf0OS+mQyjTJXv96XkOkEXjFDvvZGeL6avW62G4mLHzLfTt2HNeH19+N +YjLhWzu/sosFxnMiR/e/ZEJfPPXWzwG9S2vNvxQmFIgaKieGTZP0tVHBh82Z +kPXtiZ9UzDTJyBCs3HGQCXfb+druJ6IrP/v07mBCSHyjX0E21o9vWXdMlAmm +oofaGt7gPO067Z0NDbDAs5b0J2ZIYskTIx/FBuj9/qKM4EJf/VMpJdwALwaM +tgYvmSF1/CaaPf7Vg3u579owgRl8PvNsP9hWDyMX2vniVs/g+0z9fhOfemip +C+7K0pgh6VSc+sZXdfC0aNUx5V1Yr95a8k1mHUSk5zc+Jmfw/WKxCkd4Heh5 +vq/I3zdDWsuUzV06UQdlituyyk9gvfcSrm+Ha4F+/aMLyxnrOf4UK/5VA34u +XuNH3XEekcPV/N01YH5awP6tJ87TVBb6rawGRNV2mr3zx7iMob6DZw2EfYrd +PRCF/Ru+vn0x9QZc9uryfc/B9daZPko11XBk87sQz1zsv1VwX0haNWyUdJqf +y8f5RG/8PXy1Goa/JM3Ol+A8Wg9cpdZUg3nmzLulNVhPQvK7pWcV7FlEf7B6 +YIZkywveT1hgwO49B3vHPmH9lkeC/A0M0Az+IlI+gm67L3knlgGqi/WDTWZw +vUVpf6MMA2R4xs5GL2C9F4Muh6wrQMLgdrIl5yypM3z9z9rB17Aiclfr+iWz +JO1A8Zk3tq9BYNktnToB9Orf2cJWr+Cv0HYZQnqWJKLJzXpqL+CXcd/JJjmM +a8WN3HpQDl/jQqNT16JbjdbLLC+HMdHufxqbsP7A7VkYKIVucf9el12zJCPB +5AvHmedQIlufPGiO9c7nP6l1z4fCsy6tz6wwP5gvlJh4Ck8zJXhoNui4QV/S +MhceKDh5rXZAv9dnZik/gtvKwqYm3ug/m0/O+2dC9MWX0Wv80EtbP6hRdIh4 +bFc7S8P6XixmxNZ7ELSxVC067P9+3YM7ryWCv5O1k2UUmpMznb09HrzzeLLW +x6BDNbSUeWLBWdVStC4RbR5VemFXKDi6LDa8k4L+5NdT0UqD84V5wbbp6KVX +lOtcPEEsjGv3g2w0PWL28y0T+A/H9QoF + "]], LineBox[CompressedData[" +1:eJwV0nk8lHkcB/Ch1hFKyhFJaSUkxcqI+koluUZF2hzJ1UZKCQk5doQi98hs +uQ0zYR4qpONxF1uOyNmBhEpumrTYb3/M63m9X5/P7/Mcr9nkdOGoKz+FQonB +36/rzS6R+zOFk0CZ2Dc/3uUG5lRWK7UUHWnOU5YIAmN/mrBgBdpAoF3NOQwO +VPAM3jxFO4yf8NhwHfT1TYmLdeg4A7ozxICqwcQtTjv6QBPr4dZkEAoKlqR2 +oX1KKseSGDD0aOWdul509tKL+e8pkK2lzu4bQFPMO2qymbBe2b1GahL9TqHV +PzUd5p1/HM6ZQdf86fztdAZ0ZUS27ORNQkhNgULYdAYky+a9M1vC/D2nTEs0 +C1auHPweJjYFFKVx+oxkDoyaeF8TXz0FId8Il1txOdAYwf9b2lq0lL+4slAu +RPBtkngkh322hkv8WC5QZu23jatgzul0aErNg/c7v5UEqqOdk4+OLOTBk/OB +uit2oj/6trqfygf/EaaREhVN+L1ql2XDVG+no60R7nH18o5f5kCLzJnhkcOY +77q71FrLgSLrOU9fc3RtitqyNffAo3ltQLwVupPJzsu/ByaiOXwKJ/B8veQ9 +1Yl7sPWwVmSBLTrE41OYdgEMVh9Jfu6Efd+WxuZHBVC91Cdn7YaGD7TXvALI +0PfKGjiL/U/F9XXahWBfeou74IVO/yKZyi6EDva/DVrB2BcbNGX6F8GDoZOW +VWHovZrNTflFkLD5S4fFdeyL0oQ3dxQB7a7Q4NkY9JcmDVDjwvaeFPfvcWiH +SvHVx7ggKq08SU/C82dkkqT8ufAi7uBi+j9o23rZZpILrFftdPV07Fvf33yz +jwv0FS4ij7PQDL230UtccDo0HW/MmoLKKXfDcysJ2EcPk+lgowujFXXXE7Cx +anW6cyHubTOT0lAhYHEhQ2mS+PW9u9ZZahNQ4UdqipajB12F5UwJGLwy1hnx +GPdr+RdTrQhYeVU+aBmJuY5N0DF7AqgBZorB1bh/beGPw64EOAcGPJ+vw3yq +tiHwHAG3gjjnfBswN/7eOX6JgPJr3aunXmK+wJzOvkLAQLBQmWcLWvp+PjOI +ANFQHbvPbdi3CAx4E0rArjA3PtfOKTBozBuxDifA8e9kVl8P9qMTXeUjCbhB +rzW1e4/P9yDEUf0GAQ/Cpyc6+7Gf+Nwg4iYB768rMo59wnxA+My2aAKEIo/o +NY/g/rST+ga0ZlRIn8koWp0xbI99+xvc8Ppx7JN6H0ejCIi8+V7VcBr3Sr6e +eRlBQEm0WMvTOby/95myBToBb2P0fXTnsd9SJRaGzysQ6yH7cAH34sMzT+L7 +7Ihjkjv4psGguCc7Et/3ZHyDS8HyaQg5yDEQ8yaAnsAT3io0DZVqVWmf8XsV +JSpzs0XQ9MkPG9wI6Eo6bqWwCvvLtDYVORDAzwj/wZSYBopm9dXbxwnYlvIg +TUoK91P3Uj6YE2Bz++P+hHXoheeVYQcICEuV+Cwmj+ejZJ/TdxNQwNx3K2oj +nt/KWTekQQDlbnpXiDL2Y+n5jTIEqKY1Bf2niv3TOu9oogRYpS8oXtmOVrBM +81rkAjvT1vOCNtrA3MmzngvtWTckvlLR4h5zd/K5sJj9qMxNH/fjHDyZUVw4 +ypLmd9iPuXzABgFjLgTmGeV1G6HtqW/8lPD/nO9jZm2CfQL+esbHhXlOG8Ps +COaq3DctpUWQzY1V0zuFeZmmHXVNETQRz1pKndBuIcS14ULgFX/z0XTDfo9l +AauiEMwemFaqeGJOG03OtC+EmXJBa5kAdAZ9yoNRAEbVwddmGWjtTLmodg7E +ylT3P2Gi79i6/JnAga7zyw/S03AvrsNhyoIDZ+WiRNawfjmNSa9lQ/TlhNs7 +HmI/5pWbVWY+vN6SW+LRhrnHgOpHRRbIBQ1LanWiL4ltGXuVCy5tKv7zPdiv +t/To8suF2eAiiBrAvEZ5gPYiB2S6y16yJtFNoWLfbLPB4WbjUP+qGaBIaQ2P +WGRAXr+oCXsN2jFRZbIlHSZ0aIVe0ujJXtMZvnQIHWzzXtqAFjhkUWR/F3L2 +vKPIb0czgvpV/0uFL+PjsifM0AWGQ5TOBPCzkqQ1RaIJgX99I/6CLNYePuto +NKWBO1bsCE081/u9seiQgKTItCPw+91S6c8MtMHEbvAxI19/sulblovOSAzV +bPAmt/sxL+pWoWc+JPI9ukEOpiok5fxAr5A6OGSXToqPHjJSW0BvaaPNHsgg +9fZ68Yops0BRLFSlvs0gEwYq7UhBdO1jvkXRLBLUnJR6JNEBJySD/HJI5pOc +0lWa6B8nng5cYJOWH1S6r7rPQsgYKzB7tpiU990U4X4ebbicmXm8hPwiuk77 +5CX0XO2eVeUlZPhuoXjdq2iHYRFq4H2yInnImBeF1tkVUS78kPzdLLvch437 +MS5l+rrlJK98/W2vEXRWQ2veyDOyjrbWyHEU+8bmsfI2JJkwJDJDm8D8gpXF +zzqSVF/7k6bBQzd1LPgerSSdLnQLjgnOQSXjosobrSrypRLDz0N5Dii+E0Iq +lBoy9UmMkq0a5ja9rSm7a0i3Y+FtJhpzYNAr/puuTw3JF3pZQ1UHPelvIvG1 +htz19ujwiNEchJD3KuS7a8ll3ibJXSa4V0fdKy9ZR7YIG+5/YYE+vcfL4kgd +6aGzMz3vOPpUAv1gYx1JbdpqnnISXUDoigjWkwKuG39ed8C98n5D/gP1ZNtP +abavEz6P3VCUamg9mZGwysbNDe/fnMX7+1k9+T8biWwf + "]]}, + Annotation[#, "Charting`Private`Tag$724199#1"]& ], {}}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->{{0.5000000000000284, 0.5}, {0.5000000000000284, + 0.5000000000000284}}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{-1.4, 1.4}, {-0.22772255331967983`, 0.06463974354335722}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}], {159.94490842698494, -97.50736892665738}, + ImageScaled[{0.5, 0.5}], {299.89670330059676, 185.72832176506168}], + InsetBox[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], + Opacity[1.], LineBox[CompressedData[" +1:eJwtmXc8lf/7x5UWGqjMUlZDoRQZ6bJT2ZtKisooycgqomSVUFkRGihayo4r +DUVW5jnnNs8yDjJyGnz0u7+Px++v+/F83O9xXe/36xr345Y+dcHq9GIeHp4P +i3h4/vfMSV5jf+YMF1WYD6Y4IxxoPmnSP3iKi0FKMsoqzRyY2xV79vgJLual +Qu21Yg7YtSwOsnHg4tPKTYRxKAdWreSm6R3momnDsSKnVRwIieqhSSlxUffn +ufmMPaNgE/TUuXt2FpMkTopcjRmG5c76Z4yjZnHVjdliT2sWfB3MndRM+olX +VZql97J6gX4uotbx+Qw2+G317XRsBx7WhdHJpml0NPrcdvfSJwhaH5uQRkxh +i3fEhXdyGXDIVDb43J9JrFxTeV/n51vkP1nJnzY7iVflpJznT5Zgg79l5sep +SeSZn9HxaClBk8xwlBidxO/HjpbYPS1FMw6xtJ42iR3uhZciHcvRJvZusvy7 +SVzhE2qgVFiFzp+XFvWFTeKqJz/XKPPXor/2cJ/FkkmUjKvlU1j0BUdu9lsm +8EyiSMPKp48Vv2BV+fPY1D8/UO34gZQ5xy+YwI2zvTX6A4teBoUdKP6Ce30N +x4Maf+C/NsVr4ie/4lWPyg0WiT9wR5OG/s7yehR1eBy6IPoDrxqtfsNr0ohG +qkEaR7dOYPJ4Rq36jVb07MmIsN88gVVFhtd+pLRiwrXqemvxCbR+oFKWmt+K +3d8XO5kIkPza/Pq7r63o7n0rRPvHODY+mhVz4P+OcfkPqzaVjaNlnYsdLe47 +Nos3aTONxrGnvfKcXEQbTr//ETUA45j5ixsomNiGIu7CzT3q4zhmJOAx8aAN +T5TaO3cqjOPei3ICV9+14aQVPaxu9ThOOwy/+cttQ+Gbv7CgawzD9j2vtvBo +R9sFab3zZ8ZwMDqfmqbfgfvnNq5ucx7Dhb571UzLDpT7LU5Tsx9Db1/Ru5td +OnB6SsiXx3gM74uK73C/3IEJrEUP72wfw70LnKv73nZgXePgosoxDooOf6un +be7Effdza5f5cTDH2LTEeqITpdKybnl5cXDf27/v8/524rJ76Y6trhxU0Jiz +GF3WhR0JSVPpNhwMebRJUH9TF/pERkgrqnFQao1QnJZ5FxZ4nIyw/jOKFy9/ +dDMp6kJxdWndnPBR3MjYcW7V0W7U1La8cCNoFC9ncma+unXjMb2IrHMXR3FH +78HQQO9uzDEZ/KPuOoq+HjGpzyO6cdvJ3OLvRqPoEbj4fFh+N6rFScvxrh7F +u39kPpRMdqNNj/TyM5kjuNsjHu8GU/DSoKWqyb0RVDMOtSuLoGAaO8JVJWEE +g9DqVFMsBYnJQVwIH0HLBfuh9nQKnlr6MCjVdQSHLQVXHamg4EUlmdGvCiM4 +5+/6hzlLwYSrMk07KobR/cfJ/oHTVBT7T7hGtXgY54wtVzmco+LDYN6XUDiM +01GOWR99qVjqy0y0zhrGnyc8pwLDqdjnlmcTGjGMB8zC6m3TqKh4SKGn4dAw +5ifHqI98Icd/lmjq0BtGs5WrZAuaqKijJ1DTpzWMOma+eUfbqWijNZY9rTiM +UQU3o3L6qHhZ8YWrhPAwhi8rX/LwJxUbhVQ4HrQhzI3QWBItRUO7BJkev/Yh +fMXbI5IkS8MB/rVNVxqHUPnesj+3t9HwJ+/PF0k1Q7hgka5xToWGG7glvhUP +h/CL6F6BbEManqNp/F3hNYT+dU2cSQ8acu0UOMJuQ7jkvVDiIW8aXm2X6Nlw +fAilVpzWTPWl4d3Guepd5kM4ztP9QiiUhu9qqiMc9gxhu8yuS9fiaSjwSJev +YI6N95ffCjr+jIYOAQJhEj/Z+DsywMX+BQ0fH+ycvjnGRmWBhkyDYhoeGHPv +udjLxreGQnJ/Kmjoq5r4UgvZqL81it3wlYa43EnuRRkbjf9ocU400nAlTTZ9 +8ys2UuNXnx1uoeGTsLLIpblsXHhytLO9i4aUL322LZFsHHfsXbqeSUP5jIIG +3VA2xi+p2m80RK5/zhfe+rExPMFxldcoaa/Qsu3pbmwsf73t1u1J0h4nxflT +RmwcVVC5ajBP2jsW+pDLx8bF6yLmTwoROFVjKOqxmI08n053Na8l8EDSmpvE +XxY26andVhYhsFv1UcB7DgtlP/W/aJQgkD+8wTiuiYXlN5Q3XZIl0N7ybvX8 +ZxYmXzHziJQn8LGss8qFGhaqmPS/jdxKoPbXKUmblyzc4ZNy8sQOAn2ExH9s +TGLh7VmhuFgVAqsZdNfEWBY6jwQ6qO0l1y8toiyOZOGd9G+Hu1UJfOSk82HI +l4U0ucCiWXUCJ3fy73PyYuF9kXNyfpoE7v/XXtjoykL96ZjvTC0Cux6dvffa +hoWGvb49jw8QKHtpN7+cKQsFPxF6M0DubzwXlmLIwjL9xz9UdQnkG09wD1Vj +YfTyOMU0fQLt0KF3XImFmSzdL2UGBD5MkrFy2crCqMSE8m+G5H5qpVqGYiyU +bhZ/03qQwE+Cb4U1hFiY17yMp9iYwCOc1yM7+VmYX2+iGnuIQKec56nr5pmo +Kk6cET9CID2k0HvFLBNTKVKebSR72D41nB9n4g73YtcIEwKD+J/MMPqZ+Ca6 +5mCtKYE8rIcN3RQmFt/brWFlRmA05uR++87EpT4jSlSSV2c8CMIGJi5b6brT +zpzAFP9M8zcfmfhIV1K1nmQp84wt+e+Y6PEtwUTFgsC87Wn/ZZQwMcVI81IS +yUpLUjoSXjBRak9GCZvkkr47hZH55P4zCqtVLEl/K5IiL+Uwsa3J/ZofyZ/u +3Hb0TGdi80iLWCHJJt63djknM5Fi1fOdQnKHcfxyq3jSvl98xfMkH5ON7TO8 +zkTX/I53IlYEMv67UaJxhYm/Rctnt5DsSbl+U/ESE1v6lV0USZ4ujnSVvsDE +5cFl/7aTHHLrquZ6dyZ26TR0byB5kXuYEN9JJt4JZHCWkhyjd3l43pGJ33TC +gEXuJ7gxhKxJTNR+tL6rkuS0X4EpzCNMHImRe3OD5E1tAecpBkzciPI0Y5Lz +ivwMGrWZGM69Y7aIZKXoi5Lv1Zgo+HFk7SvyPEpPXph+o8xErcxcRVuStfef +r8/fxkR6j2r2JHm+n0S8cu5Lk/593HwukmSTKffA2xJMfHKxJ5Wf5I5vZ8yu +rWWi2DhdPpa8r6N5bvKBK8nzlHohvkDer+dRl3bnBQbmVwXrfCPvf1rV+ZnV +LwYaeZ0PkSU5WPBYhNEkAw85rdzmS+ol5rO9shKdgRsP7R6bJvUlmGO7TIZg +IKXwKZ88yakh1r3rOxjIWVtcYErqMU/ZPP6/zwzcG2UXHGlE+sdvemqqhoGL +hJivE0g9lzAPa7DKGOiWzwxOIvX+Kd1oqPEpA0XqNteF6JF65T2gn3mLga/9 +C1/1aJP29mlJJN5goMmH35+z9pP5o1xj6lo4AwfHgm/YkvHH462a7XWRgcl7 +uSJPyXjdRNk5p2nLwJcCrK4BMt49VyyxSzVloNKegX1quwl8q068mjFk4MlH +/324qkygcXrsmSI1Bq6tN/CYJfOFrxP7+0YxBgbSIy4elyPwXVz1zhBB0l7B +1dnHZAhcVnU3umsFA2/c5pWw3EzgfUl97dt/6Din841PYgPpT092AQ9Bx9Jk +BZOdZH5bvSqQ93g7Hek+J1y6BAl01DZzrvhGx/LjWqyA1QROZM2v9X1HR6cb +163u8REoesIxnJFFR1yWrmb3j4aeg8J2dS50jOdoLjCGafhWaPSVjCMd1e0G +dw6xaPhPt1Yg3JKO6QMJwgN0sr48vFC7T4+OFZ7J69700LDatXHnU1k6Ospq +ePeR+V6QHcV7kz2Iuurh5mZvaVg6+vuV5blBdBGLD3sdQEP35MTm726DWLZP +ZyH6Ig0lNbeNWR4fRLeNyZK258l6Fmu/1cpsEENuZkK7Gw0PbyvNsto1iDMW ++3JPWNOw77RfnPXPAWwrC/J4p0TDZYPjrraXB/DBmsB/D8l6XB4TFdHpP4Cp +QSfVbKlU9Nq1Mdv2/ACe0dt1e4Gs363hJjRb5wFs/TtXqlZPxQypQgs7nQGU +SWy00n5DRaVj7tr2SwZQaWbWLj+Kis9efFYsFutH8d5YdwE5Kl5ffVyxhL8f +PWolVMSkqHjC++fO8vk+vLkxt2yjGBXXKcnurBnow84nLN61K6kY9vyqQkNB +H2YqP1/Im6GgVZHWVrp6H1Y3j54NrKXg36evNws79pLxH+703Z6CR55krfVN +J9AgU2mFnE83Fr0akjCKI3CrdltV+9luXPlut4xEKIF1hmv7Qk90Y2Pb510f +jpE6ynUMLzHrRhOeCVNhUjfux88UNu/sRrOjB2KK82iow809ljnUhRZC/fPT +pJ97DYLLPth3oe2VzWy/5m5UMJfK3CrbiR9889u2GHSg/rpfRCPZH6cdohZK +ereiltLhV86SLThfcKuBYV2PiWu87M7f+IoJf3wuTpt8wMBHLQoB/2qRKW7D +4DteghOdRe0aB0qwl+Kk3BSfid9u71yvGp2JPf79CoEH7kMXZNUFad6HxZwM +pa1TJaDmXPHyU0sJ5NSqrecu/wDDuqKelOpaGD/cUNHxoh4cjh/ank75CqvV +Zsx+p7XCFu23DhquLaC//b8tneIdMBY1Z10W1gZrtI4J+7C74b7sFP+KPZ0w +kJdbkf2zG0wzmo3c9ndCsfCQS8tiCsTnznysNOwEu9GLL5U2UaDC1tLfzqET +MtOjTcbtKfB112JT4yudoPC7+IZnPQXCxtQI4bpOMCjhm3MrokI/V8l8h3UX +BCmXMRx9CXh42ja0wKkbQopCl+pdJeCd37N4q1PdELpdZ6tCAgEBmol6XI9u +CJOt9/z7lABwW5qqENwN10SJqYxBAqbBLtwotRsS/i38Iyx6oO+brZ9xWzc8 +bjHa4KzcCyLsVWud9SmQZyJwwEib/K7k+/lI7TAF8utbTigd6QWt7MV+Kywp +8Oyjw6OFM71wZU10TaozBV6WeSpkP+gFtHj20i2YApXZCeoDq/rApptXquQ5 +Bb5f6LI5NdYHDX9VDcSFqGCiO+wdPNcH2VdiZe+JUuGr8N+YRP5+2LLBL3mF +FBXel2ysrtnWD7lPjFd3KVDhxZybvOTpfpj2Kl0hYECFm9Ezs+29/dB1h8+Z +6k+Fx+Yx3x6eHQDgTiiPtlDhlHqSg9KFAbi6mKCbd1Jhs3QGq+LSANjwyGcX +0aiQOV34r5X8Ykue5ZU9wqLCnXste/49GgBCBOiSf6kQSYhkHh0YAI/KlsQV +MjRwOfvk3DrHQTghIK8x5UkDxsGQVCmXQUjh3+I75E2DM9vMP2w7Owhxsdnu +nb40ODfyW1Q7YBB4I42vpoXQINjL5OPppEFY53L9b2UsDZIvzIiX1Q+C2DqG +hHceDdZbfDWobR2EwjvKiX1PaZC2K+vCt+5BkLaRvGn0nAYPpow+97MGoXZQ +hP+/NzQo9MvwWbGYDmvKrtfw1tLgU6DuF0dNOrQWbFgRQKXBQQeRaVddOrwq +On3kWA8NGtQ5G7yN6fD6ydE+zX4atP656xtpRwcT9wRWL5MGvaHDGwt96WCz +pV6s6gfp77Fq45JgOihe2Rt8bJoGzP3JfniVDr9WNqya/UmD0f+06tsT6KB+ +69Vngb804Ibf9p9/Rod3dqsFW3gJCHZxy15WTIcmnwuvty8jYF5Ho0Gwgg7/ +Yi56ha4gYPFixib5L3QIkEuWXLKKgNXX1b6ZMuig7/Bd4Nl6ArbG9EpnSzLg +oKn1NkN5AoaFqV91ZBlwJPV8t+pWAgqyOi7QFRgQ5VbSLLmdgG1vvlXLazIg +wFD9+pedBCj0VTgWOTCAITtxO2sPAaPuJTxmLgwgbjksVVcl4NnMq/wfZxnw +bfuH7C9qBOzgK5hVCWRA2LI/u+s0CNi5NyWp4h4DMoLLLHSAgLGaJPWjWQzo +z+nzvaZDQNGhW/3zjxnQotOUUqVLgOKJ64o6bxlQvP9UG78BARMj4R2DVQzQ +oqsPShsS8MI/NPTaRwaE3tk3oGhEgFKcb31dGwO2LF+ZJWdMjl/n7eNOY0Dy +gKDVmkPk+GwPUX46A3Jm7rMmSPZWOF1TOMKAGC8D64+HCVAucTltOsWAUZPc +lJtHCJiEYyt//GbAh4BDhYdNCHjVYP8mkYcJRlntN/8jedeA2aKONUww5R1+ +rGtGjvc8XBAgyoTNEw/a2kh+NWtoLrqJCXK7kqoczAnwuarLLd/CBNEam6Pt +JO8W0M5yUmJCzunw53oWZB65p24wr8oEg6a853kkF2/ey8nSZsJxfxf7fyT7 +FiongyETFr3RzTOxJEBFbYfGoAkT5iv67yWQPP1+y0CkDRNKklukP5NcfEQm +Wu4YE5Q35RlOkuzbtVGpzpUJ0+K/59dYEbDnpHjnWS8mcNc76cuR/JOz7jKf +HxMehbmsI/tfeHtJULYwhAlvU7O9FEj2X7SywSSSCbuvFBqQ/S/svbn84kQs +E47Jit1f/L/5IrxiiUnkfLtgz15yv7e5CzW705mQUnXqRRHJ/jv/nm7PYUJT +89lTPiSrls2uDChgApspGbmNZK7u1BuRV0zwVBDm6yT9LW0ccyovY0Ljo97p +AJIv2Q8vckImmCgKaQmQrEZnFMzVkf6EQO9d8jy55/rNs5qZcEVsrkOY5LJf +NO6BLiZYenRtjCLvIyiyK2uglwlnC1zfcEwJUF/VZhDJYoLx8N4kI5J/pzZx +ZMeZMCPcU3yPvN9ymfrkzz+ZQBkZXUsl9aCh/n5gxRIWVHdFRe4n9VJTGS2/ +XYAFS1M3VnqRejLQNvc8JMwCiVtqjxJJ/Vno9c3EbmZBwpXQ0CpSn12fnqg/ +28qCcMLbtZbU79GD5680KLHguJrvxDtS32dM5pcJaLPgq5Va/109Mj6aPx7Z +YcAC4bBq7YtkPFy0jE88coQFhcGDu/TJeLlsJyFx05EFu47F133RJiDZRV1x +1SUWRBjsOmytToAY499FxSssKNd3HybIeMw6/aXU9DoLjnZYLDiS8VrgaaeT +kMwCh91VkWoqpD/+/tZrXrJAPv1hjM8O0p9fWmnKpSwIfr8q/DGZD+qDeXvN +q1kwckS1tYnMFx1hyWcSv7FARFzbn0eOzAcxr4KFhlnw63DtcZYkqXeBoJrd +P1gQt/vhp4/iBMzeAl4rLgt8juh7pIoSwHOn+WbyEjYo3zc8LrWWAJGssey1 +0mxIk3of94yPgMxNb5l7trFhO1csRGU5AdIPQ7fbKLOhukwx7uUSMp/k87+5 +q82GEPdlCzH/aKD3elvdeic2nHNpai4n8+nXPZP8aifZMG9ywnlkigampWXm +du5sqCzKmVpN5mOHKiNqyiU2aIk9XacxQgPvz25jonfYMJS7cmhFLw0yqDnC +Eo3k/EtJCXc+0KCcmX9XpJ0NZkEnbeWQBp0/XoispbGBEr/L9lkVDQSXVUus +HGbD+3Gh6XtvaRClQpVZ4B2CJUOfdDhPaOATL7SHrjUE9mrZu+Jv0CAhRayk +T28ILq+24ZyPJOtP7qZ9xKEhMO8UKjAMowG7TFGrw34I2LZs8Y4AGhxlHtKv +8xuC2gPZYefcaGCkHWn9rHAIqlqMD8UADdyMYzvziofAZMOd6ApNGkRYJ9o/ +qhiC78Gtif2qNHjn8eBo5hdy/XgnLt9OGuxOqXRNYAzBl9FNz7tFabDhx7Sf +r+QwpP179Ml6nAozOa53NeOHwf/MFe/S21Qws0tKbk4ehq2aYQ+nY6hQIICJ +pzKG4aXsBTnpSCo4X5K4Ffd0GIp3+/HYkv3D1yPfo2hfhiG4f1+WqAPZH3AP +BIYsGYEjYWVxSzZSwdBEwqnyygi8M+Hf65xJgZxFxg5mUSOwxtQ0mbhDgb+l +AXb0myOgdbP01eF4CryS/m7FnzkCVevVNiyQ/ZDEr+gjTpUjYM25tLvCjgIT +ubP7/3JHIP9Ak8/lVRRI/dW6SdNnFAKV1UTFfLqh9HFDlUngKMj616QHnOmG +LstP9ifCRsHHqE+t7lg3iBSV3b5+cxT2jB8v1jnUDSkuD/41F4yCt1uecYZ0 +N9yt9+p3HRyFD5ytn3pauiDx/rLsW1YcUHzifSVKpgteGfNo5ThyoNe41whE +u6B19k9XsQsHYuVPl3IEumCNxfhqijcHfqVtCd4w2wkJSzrCZOI5cFZLZWsv +2Z/eOp/rXPaRA3YNf6a7z3ZCHOyXGtw7BoZb7j5Pz+6AoZRjavH7x+CKpMXb +uKQOMJi4bKZqMAaUMq9rXtc6YCGzOizWegzs09a6z5/pAN+/B/p3+47Biwe2 +X50UO8CpRDcn8uUYWDHONi0ta4ftOw7KyCmMg91eJ7mf1W3wVcRqy9lNEwD6 +vlI70luhmvs6dHzLBLz/J/v0QHQrFHcJffdTmoDolUE+ugGtkJnyPfSq9gQM +/ZB5tM6yFS6IWH5PPzoBE4WaklPLW0FExOJyY+oERH5mdM0zm8F1vVnbbsEf +cOcUn2VKQCP845OHMJ5JSB3fGX5K6Qv0zFaW8yyZhIPFarH9S75A5aCFyrXl +k5CRK+irTdSBf8Vl+ZjV5Puqxg/3o+tg2L1DIHnDJHz0C0oe7PsMrV+uUZ6o +T4Ku6aqQ+OhPkBNFv9jkMwljq/a1y9XWgt6inMcbBich7W1EanZ+GSjoTCY8 +65iCwNrlJ+evpWBlIKqsLJ+GCrctKWJNH9DoQ3jYbMoMSNcFsZVOtWGgzXrz +5pif8ClaNiEitBct+rdTQzxnAbTumVulMHHjJeloT+9ZkJnIPzD5momjK8VV +nXxnweLcf8/vNzExSnNFkkYIyW+KxSSXsrDyHtv4d+wsOEhKnX/nz0I5k0fl +AU9nIYjfMjbejo2/yzek+QzPwlxeofUFuWH8bL7OyGVsFqq2X//wQXcYk9kC +P80nZ+GlCd9KuRPDqLhuzlz59yzwqvppCmYM46kL1OUTy7mg62Vgc1twBBvl +UwK9tnLBYJ3vbwWeUUx/d0v+6A4uqF7478xxqVE8Yx3VfliZC/0uxb1Z+0dx +UYS/ssI+LhSMLkwYB4+iWo/V0LARF8oDuJMHZ0aR1+/wPcphLuxZkzs5KsTB +Vj49/a9mXND7a7gmcxcHvfbtzs6340Lpp9G327w5qN68zTTViQvBUrm6S25x +cNnpzXM3nLnwtabm93ghB9vnRJ9eOsWFtOObelkNHPz//4Hw//8D8f8Ad9EW +nw== + "]]}, + Annotation[#, "Charting`Private`Tag$724241#1"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->{{0.5000000000000284, 0.5}, {0.5000000000000284, + 0.5000000000000284}}, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, + "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> + None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{-1.4, 1.4}, {-0.8723048895982457, 0.8723048895982457}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}], {479.8347252809548, -97.50736892665738}, + ImageScaled[{0.5, 0.5}], {299.89670330059676, 185.72832176506168}]}, {}}, + ImageSize->{ + UpTo[600], + UpTo[223]}, + PlotRange->{{0, 639.7796337079398}, {-195.01473785331476`, 0}}, + PlotRangePadding->{6, 5}]], "Output", + CellChangeTimes->{{3.817270261356271*^9, 3.817270268199273*^9}}, + CellLabel-> + "(WOPR) Out[193]=",ExpressionUUID->"d79294e8-cb2f-4112-ad68-da965b8a242a"] }, Open ]], Cell[CellGroupData[{ @@ -8034,9 +11377,10 @@ Cell[BoxData[ }, Open ]] }, Open ]] }, -WindowSize->{1917, 1062}, +Evaluator->"WOPR", +WindowSize->{1437, 792}, WindowMargins->{{1.5, Automatic}, {1.5, Automatic}}, -FrontEndVersion->"12.1 for Linux x86 (64-bit) (June 19, 2020)", +FrontEndVersion->"12.1 for Linux ARM (32-bit) (August 18, 2020)", StyleDefinitions->"Default.nb", ExpressionUUID->"6f6c570c-dfc0-4320-bdc7-0f1de62bb24c" ] @@ -8052,177 +11396,219 @@ CellTagsIndex->{} (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ -Cell[580, 22, 156, 3, 50, "Section",ExpressionUUID->"bb531fce-8a9d-4a5f-8d6a-ec66b9fbf698"], -Cell[739, 27, 1285, 33, 104, "Input",ExpressionUUID->"fafcf491-a81f-4f91-b9fe-4d27770e7577"], -Cell[2027, 62, 1177, 24, 22, "Input",ExpressionUUID->"395191f4-75f5-4aa3-87f6-ccf9cbedf73f"], -Cell[3207, 88, 862, 20, 40, "Input",ExpressionUUID->"3e69b8b0-cd07-4524-a460-17b8352b5902"], -Cell[4072, 110, 1226, 37, 38, "Input",ExpressionUUID->"daded195-b1a7-448b-87f6-d258f2dcf5e8"], -Cell[5301, 149, 1188, 28, 54, "Input",ExpressionUUID->"f27ba651-c22d-460a-a64d-186282c0ce66"], -Cell[6492, 179, 2420, 56, 40, "Input",ExpressionUUID->"e32b7309-d4a7-469a-ab41-1800db7276a7"], -Cell[8915, 237, 195, 4, 22, "Input",ExpressionUUID->"a67825a5-1532-4e67-9c19-5eea914713e3"], -Cell[9113, 243, 7655, 193, 343, "Input",ExpressionUUID->"77a88da0-5b31-458a-9ed8-0b34545e511d"], -Cell[16771, 438, 4883, 137, 108, "Input",ExpressionUUID->"1f309ab1-20a0-46cc-93fe-35aed54ccb3d"], +Cell[580, 22, 156, 3, 68, "Section",ExpressionUUID->"bb531fce-8a9d-4a5f-8d6a-ec66b9fbf698"], +Cell[739, 27, 613, 13, 42, "Input",ExpressionUUID->"fafcf491-a81f-4f91-b9fe-4d27770e7577"], +Cell[1355, 42, 1380, 28, 42, "Input",ExpressionUUID->"395191f4-75f5-4aa3-87f6-ccf9cbedf73f"], +Cell[2738, 72, 838, 17, 45, "Input",ExpressionUUID->"3e69b8b0-cd07-4524-a460-17b8352b5902"], +Cell[3579, 91, 820, 23, 58, "Input",ExpressionUUID->"daded195-b1a7-448b-87f6-d258f2dcf5e8"], +Cell[4402, 116, 1225, 26, 62, "Input",ExpressionUUID->"f27ba651-c22d-460a-a64d-186282c0ce66"], +Cell[5630, 144, 3022, 65, 66, "Input",ExpressionUUID->"e32b7309-d4a7-469a-ab41-1800db7276a7"], +Cell[8655, 211, 8663, 212, 436, "Input",ExpressionUUID->"77a88da0-5b31-458a-9ed8-0b34545e511d"], +Cell[17321, 425, 4921, 136, 171, "Input",ExpressionUUID->"1f309ab1-20a0-46cc-93fe-35aed54ccb3d"], +Cell[22245, 563, 233, 5, 42, "Input",ExpressionUUID->"e7fef682-ee6e-4d26-962a-6946f28d5999"], +Cell[22481, 570, 2312, 53, 64, "Input",ExpressionUUID->"2f5b927d-f164-4051-b8ca-bad9a5ba3b97"], +Cell[CellGroupData[{ +Cell[24818, 627, 4764, 78, 42, "Input",ExpressionUUID->"630fc9c9-229c-4372-8a16-eac1f2d98690"], +Cell[29585, 707, 632, 12, 38, "Message",ExpressionUUID->"20e41565-1936-405a-9504-d530fdcc8152"], +Cell[30220, 721, 1499, 29, 49, "Output",ExpressionUUID->"319eb113-9321-48fc-ad65-5700453ef613"] +}, Open ]], +Cell[31734, 753, 461, 14, 42, "Input",ExpressionUUID->"ea36fa2d-8c46-4383-be61-eff682dedb14"], +Cell[CellGroupData[{ +Cell[32220, 771, 452, 12, 42, "Input",ExpressionUUID->"5823df11-0739-494d-bf1b-44bf2a14cb2b"], +Cell[32675, 785, 278, 4, 46, "Output",ExpressionUUID->"cf69a3b6-a533-4dea-b33c-8d65e371fe08"] +}, Open ]], +Cell[CellGroupData[{ +Cell[32990, 794, 1740, 46, 105, "Input",ExpressionUUID->"2a7b9f00-b942-4f1e-89df-1d3081b1fc6a"], +Cell[34733, 842, 21020, 380, 218, "Output",ExpressionUUID->"155c39dd-ec1d-4900-9cbf-4fc4b876ac75"] +}, Open ]], +Cell[CellGroupData[{ +Cell[55790, 1227, 966, 27, 45, "Input",ExpressionUUID->"da645597-b6a8-4dfc-83c5-3cec31d750f9"], +Cell[56759, 1256, 469, 10, 46, "Output",ExpressionUUID->"f27b02e6-f3db-42e2-b534-43e5409fe36c"] +}, Open ]], +Cell[CellGroupData[{ +Cell[57265, 1271, 1847, 47, 109, "Input",ExpressionUUID->"b03f723e-24d4-4097-8ca2-9b1145403bfb"], +Cell[59115, 1320, 519, 11, 22, "Message",ExpressionUUID->"1ff6b3ff-f0d9-48ea-95df-10584520bc02"], +Cell[59637, 1333, 519, 11, 22, "Message",ExpressionUUID->"82682d18-f80c-4d23-8675-d31ca1576f0e"], +Cell[60159, 1346, 521, 11, 22, "Message",ExpressionUUID->"164319c1-a2e0-427a-9f70-94e763f48d8e"], +Cell[60683, 1359, 486, 10, 22, "Message",ExpressionUUID->"5d8fc41c-1820-4591-bdb1-29d65ed68611"], +Cell[61172, 1371, 25289, 433, 243, "Output",ExpressionUUID->"0f099d03-656a-4602-85f6-26b4b2405b3b"] +}, Open ]], +Cell[86476, 1807, 1836, 43, 85, "Input",ExpressionUUID->"868d07c1-b3cf-44ff-a070-78c2a21c388b"], +Cell[CellGroupData[{ +Cell[88337, 1854, 4656, 86, 64, "Input",ExpressionUUID->"7c02fde8-7f1a-472a-9e7d-0e95772516eb"], +Cell[92996, 1942, 899, 22, 46, "Output",ExpressionUUID->"6b22737f-c85f-4c36-9b44-d9e694bee115"] +}, Open ]], +Cell[CellGroupData[{ +Cell[93932, 1969, 1989, 49, 105, "Input",ExpressionUUID->"0e89b49c-ebf1-4e9a-800f-62ec63f935a1"], +Cell[95924, 2020, 21952, 393, 218, "Output",ExpressionUUID->"7cf0a89e-6d18-442b-b56d-94b97702709f"] +}, Open ]], +Cell[CellGroupData[{ +Cell[117913, 2418, 1382, 36, 45, "Input",ExpressionUUID->"6c30dc25-997d-4790-bfcd-6e15ebcf7cbc"], +Cell[119298, 2456, 520, 12, 40, "Message",ExpressionUUID->"56028de4-0ddc-4ea7-bf21-a25534c5c68d"], +Cell[119821, 2470, 521, 12, 40, "Message",ExpressionUUID->"3d57804e-381a-4ba2-8dce-4428206df060"], +Cell[120345, 2484, 3161, 69, 259, "Output",ExpressionUUID->"56916602-5965-4962-8188-b6662a5aa173"] +}, Open ]], +Cell[123521, 2556, 1713, 40, 64, "Input",ExpressionUUID->"b31259b6-cc89-48a8-920d-e9dbcee664fb"], Cell[CellGroupData[{ -Cell[21679, 579, 1187, 27, 40, "Input",ExpressionUUID->"2f5b927d-f164-4051-b8ca-bad9a5ba3b97"], -Cell[22869, 608, 207, 4, 25, "Output",ExpressionUUID->"b3ae6262-2369-4579-8f11-16e2dd721349"] +Cell[125259, 2600, 3913, 66, 42, "Input",ExpressionUUID->"30d0f855-c86b-4121-855c-813e9ee04f96"], +Cell[129175, 2668, 1064, 19, 28, "Message",ExpressionUUID->"f1cd282b-fb73-4166-8899-1f1b71289512"], +Cell[130242, 2689, 3809, 57, 49, "Output",ExpressionUUID->"3b7bac7f-12db-4bb2-8d83-0f02d8f19997"] }, Open ]], -Cell[23091, 615, 647, 18, 24, "Input",ExpressionUUID->"527153da-c467-45ab-a51a-b1545d520630"], Cell[CellGroupData[{ -Cell[23763, 637, 3094, 57, 24, "Input",ExpressionUUID->"630fc9c9-229c-4372-8a16-eac1f2d98690"], -Cell[26860, 696, 12459, 182, 150, "Message",ExpressionUUID->"ef961c10-8104-4e4d-b207-a87b03b3d39a"], -Cell[39322, 880, 2753, 42, 25, "Output",ExpressionUUID->"15e91b3c-4864-4488-8f91-7c413ccb268c"] +Cell[134088, 2751, 1587, 43, 105, "Input",ExpressionUUID->"e1346f99-b8a8-49f2-9bab-d7d94b52e5d3"], +Cell[135678, 2796, 61160, 1040, 218, 39593, 685, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"24eee5ea-c8f9-4063-9d36-9e38f4d71b1d"] }, Open ]], Cell[CellGroupData[{ -Cell[42112, 927, 709, 20, 22, "Input",ExpressionUUID->"2a7b9f00-b942-4f1e-89df-1d3081b1fc6a"], -Cell[42824, 949, 6591, 128, 183, "Output",ExpressionUUID->"e1e88a87-be5f-441c-a4ca-2f1bdaae916d"] +Cell[196875, 3841, 1714, 46, 105, "Input",ExpressionUUID->"8b99e721-7bc5-4c63-b150-8946bb7d2007"], +Cell[198592, 3889, 30207, 531, 218, "Output",ExpressionUUID->"d79294e8-cb2f-4112-ad68-da965b8a242a"] }, Open ]], Cell[CellGroupData[{ -Cell[49452, 1082, 491, 13, 22, "Input",ExpressionUUID->"8dd8c18b-504b-469d-8072-a9fb0cc417df"], -Cell[49946, 1097, 539, 12, 19, "Message",ExpressionUUID->"a55da929-28cd-4032-aea8-5daec85d020a"], -Cell[50488, 1111, 539, 12, 19, "Message",ExpressionUUID->"d9f18df2-5058-4626-9d48-5486b1743e96"], -Cell[51030, 1125, 2243, 56, 62, "Output",ExpressionUUID->"7ce119a6-a1c0-48cc-9d86-6e7b6a1eafe3"] +Cell[228836, 4425, 491, 13, 29, "Input",ExpressionUUID->"8dd8c18b-504b-469d-8072-a9fb0cc417df"], +Cell[229330, 4440, 539, 12, 22, "Message",ExpressionUUID->"a55da929-28cd-4032-aea8-5daec85d020a"], +Cell[229872, 4454, 539, 12, 22, "Message",ExpressionUUID->"d9f18df2-5058-4626-9d48-5486b1743e96"], +Cell[230414, 4468, 2243, 56, 79, "Output",ExpressionUUID->"7ce119a6-a1c0-48cc-9d86-6e7b6a1eafe3"] }, Open ]], Cell[CellGroupData[{ -Cell[53310, 1186, 561, 16, 22, "Input",ExpressionUUID->"b0a27cf9-de55-4cf4-9b19-ff7b3add442a"], -Cell[53874, 1204, 913, 27, 63, "Output",ExpressionUUID->"d3fcf7af-82f3-49c4-81c0-3bf29938e0d1"] +Cell[232694, 4529, 561, 16, 29, "Input",ExpressionUUID->"b0a27cf9-de55-4cf4-9b19-ff7b3add442a"], +Cell[233258, 4547, 913, 27, 75, "Output",ExpressionUUID->"d3fcf7af-82f3-49c4-81c0-3bf29938e0d1"] }, Open ]], Cell[CellGroupData[{ -Cell[54824, 1236, 681, 19, 44, "Input",ExpressionUUID->"f49c10e4-6ea3-40fb-85e8-436bcc73196f"], -Cell[55508, 1257, 4071, 86, 176, "Output",ExpressionUUID->"0ede64a7-b62f-453c-b5e6-06e4c6ab27af"] +Cell[234208, 4579, 681, 19, 55, "Input",ExpressionUUID->"f49c10e4-6ea3-40fb-85e8-436bcc73196f"], +Cell[234892, 4600, 4071, 86, 235, "Output",ExpressionUUID->"0ede64a7-b62f-453c-b5e6-06e4c6ab27af"] }, Open ]], Cell[CellGroupData[{ -Cell[59616, 1348, 486, 13, 22, "Input",ExpressionUUID->"67bd5207-9130-427b-afb3-21bda9c7e82e"], -Cell[60105, 1363, 200, 4, 25, "Output",ExpressionUUID->"39e5dba9-9c25-42e4-8876-75a530e46ee5"] +Cell[239000, 4691, 486, 13, 29, "Input",ExpressionUUID->"67bd5207-9130-427b-afb3-21bda9c7e82e"], +Cell[239489, 4706, 200, 4, 33, "Output",ExpressionUUID->"39e5dba9-9c25-42e4-8876-75a530e46ee5"] }, Open ]], Cell[CellGroupData[{ -Cell[60342, 1372, 783, 22, 22, "Input",ExpressionUUID->"6db9bdd5-3bc4-4993-85d9-2bb9c2d0db38"], -Cell[61128, 1396, 3496, 77, 187, "Output",ExpressionUUID->"028520eb-aee9-483d-9152-2416a8a91977"] +Cell[239726, 4715, 783, 22, 29, "Input",ExpressionUUID->"6db9bdd5-3bc4-4993-85d9-2bb9c2d0db38"], +Cell[240512, 4739, 3496, 77, 249, "Output",ExpressionUUID->"028520eb-aee9-483d-9152-2416a8a91977"] }, Open ]], Cell[CellGroupData[{ -Cell[64661, 1478, 1223, 33, 24, "Input",ExpressionUUID->"aab225ac-8e68-4d46-a4da-600fe6364133"], -Cell[65887, 1513, 10880, 231, 176, "Output",ExpressionUUID->"6e880d59-ffe1-440b-af8b-754c17269f6e"] +Cell[244045, 4821, 1223, 33, 24, "Input",ExpressionUUID->"aab225ac-8e68-4d46-a4da-600fe6364133"], +Cell[245271, 4856, 10880, 231, 176, "Output",ExpressionUUID->"6e880d59-ffe1-440b-af8b-754c17269f6e"] }, Open ]], Cell[CellGroupData[{ -Cell[76804, 1749, 2115, 52, 66, "Input",ExpressionUUID->"f01a72f1-91c7-4454-9040-b54a61c9cd07"], -Cell[78922, 1803, 615, 13, 19, "Message",ExpressionUUID->"46cbf58a-9f1b-42bc-8a11-616c84d0e1d7"], -Cell[79540, 1818, 613, 13, 19, "Message",ExpressionUUID->"c25c6435-fc6d-4b46-b41c-a3d203aa09da"], -Cell[80156, 1833, 613, 13, 19, "Message",ExpressionUUID->"3a09025b-666f-454b-9a32-9f324e354788"], -Cell[80772, 1848, 580, 12, 19, "Message",ExpressionUUID->"5b1f7808-f0a6-4257-b7ed-4acdc8c4ac95"] +Cell[256188, 5092, 2115, 52, 66, "Input",ExpressionUUID->"f01a72f1-91c7-4454-9040-b54a61c9cd07"], +Cell[258306, 5146, 615, 13, 19, "Message",ExpressionUUID->"46cbf58a-9f1b-42bc-8a11-616c84d0e1d7"], +Cell[258924, 5161, 613, 13, 19, "Message",ExpressionUUID->"c25c6435-fc6d-4b46-b41c-a3d203aa09da"], +Cell[259540, 5176, 613, 13, 19, "Message",ExpressionUUID->"3a09025b-666f-454b-9a32-9f324e354788"], +Cell[260156, 5191, 580, 12, 19, "Message",ExpressionUUID->"5b1f7808-f0a6-4257-b7ed-4acdc8c4ac95"] }, Open ]], Cell[CellGroupData[{ -Cell[81389, 1865, 536, 10, 24, "Input",ExpressionUUID->"1dfbee5f-7e33-4446-bc10-991ba8838497"], -Cell[81928, 1877, 93071, 1628, 177, "Output",ExpressionUUID->"e57fa90a-27ff-4013-8fad-ca7e3c98d348"] +Cell[260773, 5208, 536, 10, 24, "Input",ExpressionUUID->"1dfbee5f-7e33-4446-bc10-991ba8838497"], +Cell[261312, 5220, 93071, 1628, 177, "Output",ExpressionUUID->"e57fa90a-27ff-4013-8fad-ca7e3c98d348"] }, Open ]], Cell[CellGroupData[{ -Cell[175036, 3510, 314, 8, 22, "Input",ExpressionUUID->"8499af31-a50c-4059-afac-b628095fc761"], -Cell[175353, 3520, 368, 8, 25, "Output",ExpressionUUID->"9aaf347d-0fae-4cb5-8920-f15fee437a9e"] +Cell[354420, 6853, 314, 8, 22, "Input",ExpressionUUID->"8499af31-a50c-4059-afac-b628095fc761"], +Cell[354737, 6863, 368, 8, 25, "Output",ExpressionUUID->"9aaf347d-0fae-4cb5-8920-f15fee437a9e"] }, Open ]], Cell[CellGroupData[{ -Cell[175758, 3533, 577, 17, 24, "Input",ExpressionUUID->"fecf4a67-c7e8-40b5-8e36-582a0bab9fe6"], -Cell[176338, 3552, 753, 23, 48, "Output",ExpressionUUID->"742a0341-4af8-4ba4-a799-e15a1e847a9c"] +Cell[355142, 6876, 577, 17, 24, "Input",ExpressionUUID->"fecf4a67-c7e8-40b5-8e36-582a0bab9fe6"], +Cell[355722, 6895, 753, 23, 48, "Output",ExpressionUUID->"742a0341-4af8-4ba4-a799-e15a1e847a9c"] }, Open ]], Cell[CellGroupData[{ -Cell[177128, 3580, 438, 11, 24, "Input",ExpressionUUID->"9884f3ff-ff57-4cf7-b122-2aebcb709801"], -Cell[177569, 3593, 947, 26, 45, "Output",ExpressionUUID->"5f69419d-b0c1-4cd5-9616-460f429c823a"] +Cell[356512, 6923, 438, 11, 24, "Input",ExpressionUUID->"9884f3ff-ff57-4cf7-b122-2aebcb709801"], +Cell[356953, 6936, 947, 26, 45, "Output",ExpressionUUID->"5f69419d-b0c1-4cd5-9616-460f429c823a"] }, Open ]], Cell[CellGroupData[{ -Cell[178553, 3624, 549, 13, 24, "Input",ExpressionUUID->"c18d621f-7e5f-48db-8ae7-0fda0221c79c"], -Cell[179105, 3639, 599, 17, 45, "Output",ExpressionUUID->"b45884b0-ccdc-4e99-ac15-83498ea86eff"] +Cell[357937, 6967, 549, 13, 24, "Input",ExpressionUUID->"c18d621f-7e5f-48db-8ae7-0fda0221c79c"], +Cell[358489, 6982, 599, 17, 45, "Output",ExpressionUUID->"b45884b0-ccdc-4e99-ac15-83498ea86eff"] }, Open ]], Cell[CellGroupData[{ -Cell[179741, 3661, 338, 7, 22, "Input",ExpressionUUID->"8e16b08d-33f5-4a51-9850-75f98a0e6a08"], -Cell[180082, 3670, 2269, 65, 61, "Output",ExpressionUUID->"21b799e5-0965-4692-b4ba-6083041c0cdd"] +Cell[359125, 7004, 338, 7, 22, "Input",ExpressionUUID->"8e16b08d-33f5-4a51-9850-75f98a0e6a08"], +Cell[359466, 7013, 2269, 65, 61, "Output",ExpressionUUID->"21b799e5-0965-4692-b4ba-6083041c0cdd"] }, Open ]], Cell[CellGroupData[{ -Cell[182388, 3740, 237, 5, 22, "Input",ExpressionUUID->"4c8cb259-b56a-423e-957f-9a65ba700a16"], -Cell[182628, 3747, 2063, 59, 109, "Output",ExpressionUUID->"312f09f3-55f8-4f9d-a42c-05ca1c4aea27"] +Cell[361772, 7083, 237, 5, 22, "Input",ExpressionUUID->"4c8cb259-b56a-423e-957f-9a65ba700a16"], +Cell[362012, 7090, 2063, 59, 109, "Output",ExpressionUUID->"312f09f3-55f8-4f9d-a42c-05ca1c4aea27"] }, Open ]], Cell[CellGroupData[{ -Cell[184728, 3811, 564, 14, 24, "Input",ExpressionUUID->"069edadd-116a-4ccf-831d-0fe6e07540fe"], -Cell[185295, 3827, 1113, 29, 52, "Output",ExpressionUUID->"e6426e3c-3d4d-49f1-becd-dfef45704088"] +Cell[364112, 7154, 564, 14, 24, "Input",ExpressionUUID->"069edadd-116a-4ccf-831d-0fe6e07540fe"], +Cell[364679, 7170, 1113, 29, 52, "Output",ExpressionUUID->"e6426e3c-3d4d-49f1-becd-dfef45704088"] }, Open ]], Cell[CellGroupData[{ -Cell[186445, 3861, 522, 13, 24, "Input",ExpressionUUID->"3cd180b6-0e22-4832-af2b-e9ecec7e0a49"], -Cell[186970, 3876, 5586, 138, 258, "Output",ExpressionUUID->"45f19748-f63a-49e1-8ced-a4f5c5dda272"] +Cell[365829, 7204, 522, 13, 24, "Input",ExpressionUUID->"3cd180b6-0e22-4832-af2b-e9ecec7e0a49"], +Cell[366354, 7219, 5586, 138, 258, "Output",ExpressionUUID->"45f19748-f63a-49e1-8ced-a4f5c5dda272"] }, Open ]], -Cell[192571, 4017, 366, 10, 22, "Input",ExpressionUUID->"3ffc56f5-fc40-4c69-bdce-f91a4aab1c67"], +Cell[371955, 7360, 366, 10, 22, "Input",ExpressionUUID->"3ffc56f5-fc40-4c69-bdce-f91a4aab1c67"], Cell[CellGroupData[{ -Cell[192962, 4031, 838, 23, 42, "Input",ExpressionUUID->"e131ab87-4ef6-4852-9ddd-e4499b39559a"], -Cell[193803, 4056, 597, 16, 51, "Output",ExpressionUUID->"86a22957-07a1-48ab-90d1-d142a27afe22"] +Cell[372346, 7374, 838, 23, 42, "Input",ExpressionUUID->"e131ab87-4ef6-4852-9ddd-e4499b39559a"], +Cell[373187, 7399, 597, 16, 51, "Output",ExpressionUUID->"86a22957-07a1-48ab-90d1-d142a27afe22"] }, Open ]], Cell[CellGroupData[{ -Cell[194437, 4077, 921, 23, 42, "Input",ExpressionUUID->"22a30e99-2bd5-43a5-9353-3a3be14232a6"], -Cell[195361, 4102, 2812, 74, 80, "Output",ExpressionUUID->"470e97c2-b944-4611-8c77-75e5a0915c04"] +Cell[373821, 7420, 921, 23, 42, "Input",ExpressionUUID->"22a30e99-2bd5-43a5-9353-3a3be14232a6"], +Cell[374745, 7445, 2812, 74, 80, "Output",ExpressionUUID->"470e97c2-b944-4611-8c77-75e5a0915c04"] }, Open ]], Cell[CellGroupData[{ -Cell[198210, 4181, 824, 23, 42, "Input",ExpressionUUID->"3752e4d8-bc7c-475c-b88c-a0d99559d99c"], -Cell[199037, 4206, 2580, 68, 78, "Output",ExpressionUUID->"db6b4f65-90c7-4c37-9945-5690d8472368"] +Cell[377594, 7524, 824, 23, 42, "Input",ExpressionUUID->"3752e4d8-bc7c-475c-b88c-a0d99559d99c"], +Cell[378421, 7549, 2580, 68, 78, "Output",ExpressionUUID->"db6b4f65-90c7-4c37-9945-5690d8472368"] }, Open ]], Cell[CellGroupData[{ -Cell[201654, 4279, 463, 12, 40, "Input",ExpressionUUID->"6a34969c-5bbf-4acb-a54f-a9bfbf2c9f87"], -Cell[202120, 4293, 8623, 160, 171, "Output",ExpressionUUID->"70cff46d-010d-4a9a-8cf5-3901b2a30edf"] +Cell[381038, 7622, 463, 12, 40, "Input",ExpressionUUID->"6a34969c-5bbf-4acb-a54f-a9bfbf2c9f87"], +Cell[381504, 7636, 8623, 160, 171, "Output",ExpressionUUID->"70cff46d-010d-4a9a-8cf5-3901b2a30edf"] }, Open ]], Cell[CellGroupData[{ -Cell[210780, 4458, 595, 17, 24, "Input",ExpressionUUID->"6afc45fb-65bc-47fe-b120-408f15ede40b"], -Cell[211378, 4477, 470, 13, 50, "Output",ExpressionUUID->"4cdf78f8-6821-4e67-9385-8a091cc9cf9d"] +Cell[390164, 7801, 595, 17, 24, "Input",ExpressionUUID->"6afc45fb-65bc-47fe-b120-408f15ede40b"], +Cell[390762, 7820, 470, 13, 50, "Output",ExpressionUUID->"4cdf78f8-6821-4e67-9385-8a091cc9cf9d"] }, Open ]], Cell[CellGroupData[{ -Cell[211885, 4495, 236, 6, 22, "Input",ExpressionUUID->"b66a0012-a40b-4041-8ea9-a9cad40db85f"], -Cell[212124, 4503, 301, 8, 39, "Output",ExpressionUUID->"9744135b-7d1f-4023-b02d-1bdf3b29d60f"] +Cell[391269, 7838, 236, 6, 22, "Input",ExpressionUUID->"b66a0012-a40b-4041-8ea9-a9cad40db85f"], +Cell[391508, 7846, 301, 8, 39, "Output",ExpressionUUID->"9744135b-7d1f-4023-b02d-1bdf3b29d60f"] }, Open ]], Cell[CellGroupData[{ -Cell[212462, 4516, 419, 12, 24, "Input",ExpressionUUID->"7ceb4bac-ce7b-4adc-aeb9-95a215777744"], -Cell[212884, 4530, 720, 22, 40, "Output",ExpressionUUID->"9c7df971-6bfc-41f8-a68e-fb9921c0b017"] +Cell[391846, 7859, 419, 12, 24, "Input",ExpressionUUID->"7ceb4bac-ce7b-4adc-aeb9-95a215777744"], +Cell[392268, 7873, 720, 22, 40, "Output",ExpressionUUID->"9c7df971-6bfc-41f8-a68e-fb9921c0b017"] }, Open ]], Cell[CellGroupData[{ -Cell[213641, 4557, 492, 13, 24, "Input",ExpressionUUID->"07932986-b2e1-477a-9d99-1b9701e3af0c"], -Cell[214136, 4572, 510, 11, 19, "Message",ExpressionUUID->"f0c4d2f9-9d6d-48c0-b78e-b8f84a7f6bb2"], -Cell[214649, 4585, 5864, 115, 182, "Output",ExpressionUUID->"82bf5b22-f54c-4da8-bea6-61b7c42c3450"] +Cell[393025, 7900, 492, 13, 24, "Input",ExpressionUUID->"07932986-b2e1-477a-9d99-1b9701e3af0c"], +Cell[393520, 7915, 510, 11, 19, "Message",ExpressionUUID->"f0c4d2f9-9d6d-48c0-b78e-b8f84a7f6bb2"], +Cell[394033, 7928, 5864, 115, 182, "Output",ExpressionUUID->"82bf5b22-f54c-4da8-bea6-61b7c42c3450"] }, Open ]], Cell[CellGroupData[{ -Cell[220550, 4705, 804, 22, 54, "Input",ExpressionUUID->"13e1541b-4ad9-4a40-89f2-be40a0e4d6fd"], -Cell[221357, 4729, 479, 13, 51, "Output",ExpressionUUID->"dff49a57-ddf5-4e9d-aa0a-55006221f3c2"] +Cell[399934, 8048, 804, 22, 54, "Input",ExpressionUUID->"13e1541b-4ad9-4a40-89f2-be40a0e4d6fd"], +Cell[400741, 8072, 479, 13, 51, "Output",ExpressionUUID->"dff49a57-ddf5-4e9d-aa0a-55006221f3c2"] }, Open ]], Cell[CellGroupData[{ -Cell[221873, 4747, 650, 19, 24, "Input",ExpressionUUID->"6def2df0-3761-4f37-b66f-ba9071b93625"], -Cell[222526, 4768, 534, 15, 42, "Output",ExpressionUUID->"175a2c7c-fa54-45c3-bf4f-c4ed89dad110"] +Cell[401257, 8090, 650, 19, 24, "Input",ExpressionUUID->"6def2df0-3761-4f37-b66f-ba9071b93625"], +Cell[401910, 8111, 534, 15, 42, "Output",ExpressionUUID->"175a2c7c-fa54-45c3-bf4f-c4ed89dad110"] }, Open ]], Cell[CellGroupData[{ -Cell[223097, 4788, 302, 7, 24, "Input",ExpressionUUID->"657e079b-66fb-4614-816e-af41b7fabf10"], -Cell[223402, 4797, 454, 11, 19, "Message",ExpressionUUID->"f6532f4e-d02f-402b-985e-f8964b91f90e"], -Cell[223859, 4810, 1129, 29, 32, "Output",ExpressionUUID->"5f2bc73c-3ef7-4874-86b3-dd3ac3e99858"] +Cell[402481, 8131, 302, 7, 24, "Input",ExpressionUUID->"657e079b-66fb-4614-816e-af41b7fabf10"], +Cell[402786, 8140, 454, 11, 19, "Message",ExpressionUUID->"f6532f4e-d02f-402b-985e-f8964b91f90e"], +Cell[403243, 8153, 1129, 29, 32, "Output",ExpressionUUID->"5f2bc73c-3ef7-4874-86b3-dd3ac3e99858"] }, Open ]], Cell[CellGroupData[{ -Cell[225025, 4844, 325, 7, 24, "Input",ExpressionUUID->"49f74264-7484-4d5a-b52f-d0892384e631"], -Cell[225353, 4853, 4933, 99, 175, "Output",ExpressionUUID->"26e2807e-1336-4751-8e74-d4414f081679"] +Cell[404409, 8187, 325, 7, 24, "Input",ExpressionUUID->"49f74264-7484-4d5a-b52f-d0892384e631"], +Cell[404737, 8196, 4933, 99, 175, "Output",ExpressionUUID->"26e2807e-1336-4751-8e74-d4414f081679"] }, Open ]], Cell[CellGroupData[{ -Cell[230323, 4957, 1059, 26, 48, "Input",ExpressionUUID->"3bd71288-3233-4171-a393-57251fb3dc52"], -Cell[231385, 4985, 6890, 131, 180, "Output",ExpressionUUID->"203873a1-0dd1-4567-8d12-97eeeed127f7"] +Cell[409707, 8300, 1059, 26, 48, "Input",ExpressionUUID->"3bd71288-3233-4171-a393-57251fb3dc52"], +Cell[410769, 8328, 6890, 131, 180, "Output",ExpressionUUID->"203873a1-0dd1-4567-8d12-97eeeed127f7"] }, Open ]], Cell[CellGroupData[{ -Cell[238312, 5121, 1358, 35, 48, "Input",ExpressionUUID->"39644cf7-65fa-4952-a674-714ff8619dd6"], -Cell[239673, 5158, 15118, 266, 179, "Output",ExpressionUUID->"16b2f1f1-4bda-4b9c-9a2d-c4721af32a8e"] +Cell[417696, 8464, 1358, 35, 48, "Input",ExpressionUUID->"39644cf7-65fa-4952-a674-714ff8619dd6"], +Cell[419057, 8501, 15118, 266, 179, "Output",ExpressionUUID->"16b2f1f1-4bda-4b9c-9a2d-c4721af32a8e"] }, Open ]], Cell[CellGroupData[{ -Cell[254828, 5429, 1607, 46, 65, "Input",ExpressionUUID->"72bac293-cf66-40a9-809d-4d0874dae037"], -Cell[256438, 5477, 59065, 1048, 175, "Output",ExpressionUUID->"d758ff21-6281-4951-879d-9a8a224caf38"] +Cell[434212, 8772, 1607, 46, 65, "Input",ExpressionUUID->"72bac293-cf66-40a9-809d-4d0874dae037"], +Cell[435822, 8820, 59065, 1048, 175, "Output",ExpressionUUID->"d758ff21-6281-4951-879d-9a8a224caf38"] }, Open ]], Cell[CellGroupData[{ -Cell[315540, 6530, 1002, 31, 42, "Input",ExpressionUUID->"41ea287c-9ee3-4b18-b17d-5dfc6a4e056d"], -Cell[316545, 6563, 3476, 103, 125, "Output",ExpressionUUID->"7b8e54ff-34ea-444e-8e78-ad376945c6d8"] +Cell[494924, 9873, 1002, 31, 42, "Input",ExpressionUUID->"41ea287c-9ee3-4b18-b17d-5dfc6a4e056d"], +Cell[495929, 9906, 3476, 103, 125, "Output",ExpressionUUID->"7b8e54ff-34ea-444e-8e78-ad376945c6d8"] }, Open ]], Cell[CellGroupData[{ -Cell[320058, 6671, 753, 23, 24, "Input",ExpressionUUID->"77ced036-93d3-4558-8eb2-1aeeb8345ed7"], -Cell[320814, 6696, 840, 23, 40, "Output",ExpressionUUID->"49c3b3ed-cf01-4c58-acac-6b3b7b9cb822"] +Cell[499442, 10014, 753, 23, 24, "Input",ExpressionUUID->"77ced036-93d3-4558-8eb2-1aeeb8345ed7"], +Cell[500198, 10039, 840, 23, 40, "Output",ExpressionUUID->"49c3b3ed-cf01-4c58-acac-6b3b7b9cb822"] }, Open ]], Cell[CellGroupData[{ -Cell[321691, 6724, 1262, 35, 41, "Input",ExpressionUUID->"1dc20dd2-2639-4b38-8eb3-e39481c6a15e"], -Cell[322956, 6761, 71734, 1205, 306, "Output",ExpressionUUID->"ae6c01c8-9abd-4358-a6f9-fb8f033a8ba4"] +Cell[501075, 10067, 1262, 35, 41, "Input",ExpressionUUID->"1dc20dd2-2639-4b38-8eb3-e39481c6a15e"], +Cell[502340, 10104, 71734, 1205, 306, "Output",ExpressionUUID->"ae6c01c8-9abd-4358-a6f9-fb8f033a8ba4"] }, Open ]], Cell[CellGroupData[{ -Cell[394727, 7971, 1045, 25, 40, "Input",ExpressionUUID->"25d7aa57-46b2-4829-8aad-b00b9ab2ecff"], -Cell[395775, 7998, 1385, 34, 41, "Output",ExpressionUUID->"5f0c650e-d3ec-4a10-aad2-c391b45db45f"] +Cell[574111, 11314, 1045, 25, 40, "Input",ExpressionUUID->"25d7aa57-46b2-4829-8aad-b00b9ab2ecff"], +Cell[575159, 11341, 1385, 34, 41, "Output",ExpressionUUID->"5f0c650e-d3ec-4a10-aad2-c391b45db45f"] }, Open ]] }, Open ]] } |