summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--new_schofield.nb8231
1 files changed, 8231 insertions, 0 deletions
diff --git a/new_schofield.nb b/new_schofield.nb
new file mode 100644
index 0000000..0854822
--- /dev/null
+++ b/new_schofield.nb
@@ -0,0 +1,8231 @@
+(* Content-type: application/vnd.wolfram.mathematica *)
+
+(*** Wolfram Notebook File ***)
+(* http://www.wolfram.com/nb *)
+
+(* CreatedBy='Mathematica 12.1' *)
+
+(*CacheID: 234*)
+(* Internal cache information:
+NotebookFileLineBreakTest
+NotebookFileLineBreakTest
+NotebookDataPosition[ 158, 7]
+NotebookDataLength[ 408096, 8223]
+NotebookOptionsPosition[ 397188, 8036]
+NotebookOutlinePosition[ 397582, 8052]
+CellTagsIndexPosition[ 397539, 8049]
+WindowFrame->Normal*)
+
+(* Beginning of Notebook Content *)
+Notebook[{
+
+Cell[CellGroupData[{
+Cell["Definitions", "Section",
+ CellChangeTimes->{{3.817119832436002*^9,
+ 3.817119834596055*^9}},ExpressionUUID->"bb531fce-8a9d-4a5f-8d6a-\
+ec66b9fbf698"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"\[Beta]", "=",
+ RowBox[{"1", "/", "8"}]}], ";",
+ RowBox[{"\[Delta]", "=", "15"}], ";",
+ RowBox[{"\[Alpha]", "=", "0"}], ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"\[CapitalDelta]", "=",
+ RowBox[{"\[Beta]", " ", "\[Delta]"}]}], ";"}], "\[IndentingNewLine]",
+ RowBox[{"\[ScriptCapitalM]0Square", ":=",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["2",
+ RowBox[{"5", "/", "2"}]],
+ RowBox[{"ArcSinh", "[", "1", "]"}]}], ")"}],
+ "\[Beta]"]}], "\[IndentingNewLine]",
+ RowBox[{"TcSquare", ":=",
+ RowBox[{"2", "/",
+ RowBox[{"Log", "[",
+ RowBox[{"1", "+",
+ RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}], "\[IndentingNewLine]",
+ RowBox[{"ASquare", ":=",
+ RowBox[{
+ SuperscriptBox["TcSquare", "2"],
+ RowBox[{"\[ScriptCapitalM]0Square", "/",
+ RowBox[{"(",
+ RowBox[{"16", " ", "\[Pi]"}], ")"}]}]}]}], "\[IndentingNewLine]",
+ RowBox[{"Ch", ":=", "0.838677624411"}]}], "Input",
+ CellChangeTimes->{{3.8171203487765493`*^9, 3.817120359509359*^9}, {
+ 3.8171253080634003`*^9, 3.817125374665786*^9}, {3.81712545121809*^9,
+ 3.8171254551141233`*^9}, {3.817209512993226*^9, 3.81720951605719*^9}},
+ CellLabel->
+ "In[469]:=",ExpressionUUID->"fafcf491-a81f-4f91-b9fe-4d27770e7577"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"$Assumptions", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Theta]c", ">", "1"}], ",",
+ RowBox[{"t\[Infinity]", ">", "0"}], ",",
+ RowBox[{
+ RowBox[{"gC", "[", "\[Infinity]", "]"}], ">", "0"}], ",",
+ RowBox[{
+ RowBox[{"gC", "[", "_", "]"}], "\[Element]", "Reals"}], ",",
+ RowBox[{"B", ">", "0"}], ",",
+ RowBox[{"A", ">", "0"}], ",",
+ RowBox[{"\[ScriptCapitalF]1", ">", "0"}], ",",
+ RowBox[{"\[ScriptCapitalF]0", "\[Element]", "Reals"}], ",",
+ RowBox[{"\[Gamma]", ">", "0"}]}], "}"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.817121509075202*^9, 3.81712159405204*^9}, {
+ 3.817122146902429*^9, 3.8171221498463*^9}, {3.817123222631443*^9,
+ 3.8171232401305323`*^9}, {3.81712327174748*^9, 3.817123302075263*^9}, {
+ 3.817123345236269*^9, 3.8171233467245693`*^9}, {3.817123565480311*^9,
+ 3.817123582960553*^9}, {3.8171246080192423`*^9, 3.817124610971168*^9}, {
+ 3.8172096124512787`*^9, 3.817209616026865*^9}, {3.81721066071721*^9,
+ 3.817210665188924*^9}, {3.817211071596877*^9, 3.817211091620666*^9}},
+ CellLabel->
+ "In[558]:=",ExpressionUUID->"395191f4-75f5-4aa3-87f6-ccf9cbedf73f"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"f", "[", "n_", "]"}], "[", "\[Theta]_", "]"}], ":=",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[Theta]", "2"], "-", "1"}],
+ RowBox[{"1", "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]", "2"],
+ RowBox[{
+ RowBox[{"RealAbs", "[", "\[Theta]", "]"}], "/",
+ "t\[Infinity]"}]}]}]]}]], "Input",
+ CellChangeTimes->{{3.8171202124436197`*^9, 3.817120269635832*^9}, {
+ 3.817120312676557*^9, 3.8171203389089193`*^9}, {3.8171204067661743`*^9,
+ 3.8171204839196587`*^9}, {3.8171205561371202`*^9, 3.8171205568649817`*^9}, {
+ 3.817204484948892*^9, 3.817204488556822*^9}, {3.817204991326084*^9,
+ 3.81720499357379*^9}, {3.817209015952724*^9, 3.8172090687475147`*^9}, {
+ 3.8172134845351257`*^9, 3.817213486502965*^9}},
+ CellLabel->
+ "In[744]:=",ExpressionUUID->"3e69b8b0-cd07-4524-a460-17b8352b5902"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"g", "[", "n_", "]"}], "[", "\[Theta]_", "]"}], ":=",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ SuperscriptBox[
+ RowBox[{"(",
+ FractionBox["\[Theta]", "\[Theta]c"], ")"}], "2"]}], ")"}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"1", "+",
+ RowBox[{
+ FractionBox[
+ RowBox[{"gC", "[", "n", "]"}],
+ RowBox[{"gC", "[", "\[Infinity]", "]"}]],
+ RowBox[{"RealAbs", "[", "\[Theta]", "]"}],
+ RowBox[{
+ SuperscriptBox["\[Theta]",
+ RowBox[{
+ RowBox[{"2", "n"}], "+", "2"}]], "/",
+ SuperscriptBox["\[Theta]c", "2"]}]}]}], ")"}],
+ RowBox[{"-", "1"}]],
+ RowBox[{"Sum", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"gC", "[", "i", "]"}],
+ SuperscriptBox["\[Theta]",
+ RowBox[{
+ RowBox[{"2", "i"}], "+", "1"}]]}], ",",
+ RowBox[{"{",
+ RowBox[{"i", ",", "0", ",", "n"}], "}"}]}], "]"}]}]}]], "Input",
+ CellChangeTimes->{{3.817119845565673*^9, 3.817119882052971*^9}, {
+ 3.817119939573969*^9, 3.817120069536271*^9}, {3.817209086426073*^9,
+ 3.8172090977061653`*^9}},
+ CellLabel->
+ "In[745]:=",ExpressionUUID->"daded195-b1a7-448b-87f6-d258f2dcf5e8"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"\[ScriptCapitalF]f", "[", "y_", "]"}], ":=",
+ RowBox[{
+ FractionBox["1", "\[Pi]"],
+ FractionBox[
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1", "y"]], " ", "y", " ", "\[Gamma]", " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1", "y"]}], "]"}]}], "-",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]", "\[Gamma]"], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-", "\[Gamma]"}], "]"}]}]}],
+ RowBox[{"\[Gamma]", "-",
+ RowBox[{"y", " ",
+ SuperscriptBox["\[Gamma]", "2"]}]}]]}]}]], "Input",
+ CellChangeTimes->{{3.81712187820217*^9, 3.817121900537793*^9},
+ 3.817122299113345*^9, {3.817198483403965*^9, 3.817198509154025*^9}, {
+ 3.817199440148189*^9, 3.817199440731868*^9}, {3.817199845562872*^9,
+ 3.817199848402961*^9}, 3.8172001271039267`*^9, {3.8172001950013113`*^9,
+ 3.8172001956329947`*^9}, {3.817209116226256*^9, 3.817209123026651*^9}, {
+ 3.817209186739526*^9, 3.817209188013309*^9}, {3.817210278358514*^9,
+ 3.817210288080538*^9}},
+ CellLabel->
+ "In[746]:=",ExpressionUUID->"f27ba651-c22d-460a-a64d-186282c0ce66"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]_", "]"}], ":=",
+ RowBox[{"\[ScriptCapitalF]0", "+",
+ RowBox[{"\[ScriptCapitalF]1",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[ScriptCapitalF]f", "[",
+ RowBox[{"B",
+ RowBox[{"(",
+ RowBox[{"\[Theta]c", "-", "\[Theta]"}], ")"}]}], "]"}], "+",
+ RowBox[{"\[ScriptCapitalF]f", "[",
+ RowBox[{"B",
+ RowBox[{"(",
+ RowBox[{"\[Theta]c", "+", "\[Theta]"}], ")"}]}], "]"}]}],
+ ")"}]}]}]}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"I\[ScriptCapitalF]", "[", "\[Theta]_", "]"}], ":=",
+ RowBox[{"\[ScriptCapitalF]1",
+ RowBox[{"(", " ",
+ RowBox[{
+ RowBox[{"HeavisideTheta", "[",
+ RowBox[{"\[Theta]", "-", "\[Theta]c"}], "]"}], "+",
+ RowBox[{"HeavisideTheta", "[",
+ RowBox[{
+ RowBox[{"-", "\[Theta]"}], "-", "\[Theta]c"}], "]"}]}], ")"}], "B",
+ " ",
+ RowBox[{
+ RowBox[{"RealAbs", "[",
+ RowBox[{"\[Theta]", "-", "\[Theta]c"}], "]"}], "/",
+ RowBox[{"(",
+ RowBox[{"1", "+",
+ RowBox[{"\[Gamma]", " ", "B", " ",
+ RowBox[{"RealAbs", "[",
+ RowBox[{"\[Theta]", "-", "\[Theta]c"}], "]"}]}]}], ")"}]}],
+ RowBox[{"Exp", "[",
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"B", " ",
+ RowBox[{"RealAbs", "[",
+ RowBox[{"\[Theta]", "-", "\[Theta]c"}], "]"}]}], ")"}],
+ RowBox[{"-", "1"}]]}], "]"}]}]}]}], "Input",
+ CellChangeTimes->{{3.817121798544737*^9, 3.817121811575968*^9},
+ 3.817121863281023*^9, {3.817121906833729*^9, 3.81712192235432*^9}, {
+ 3.817121959355006*^9, 3.8171219616748743`*^9}, {3.8171228987400923`*^9,
+ 3.8171229707415123`*^9}, {3.817198243983283*^9, 3.817198246927249*^9}, {
+ 3.817198496051778*^9, 3.817198523876305*^9}, {3.817198579461516*^9,
+ 3.817198579533231*^9}, {3.817198943419979*^9, 3.8171989466357327`*^9}, {
+ 3.8171993746668243`*^9, 3.817199374738553*^9}, {3.817200189041057*^9,
+ 3.817200208305159*^9}, {3.817209205684279*^9, 3.817209388039248*^9}, {
+ 3.81720944395175*^9, 3.817209446047728*^9}, {3.817209930464348*^9,
+ 3.8172099380644417`*^9}, {3.817210264070428*^9, 3.817210267542055*^9}, {
+ 3.817210329919582*^9, 3.817210334487361*^9}, {3.817210372639934*^9,
+ 3.817210377592119*^9}, 3.817212316154291*^9, 3.817212645208345*^9},
+ CellLabel->
+ "In[747]:=",ExpressionUUID->"e32b7309-d4a7-469a-ab41-1800db7276a7"],
+
+Cell[BoxData[
+ RowBox[{"Plot", "[", "I\[ScriptCapitalF]"}]], "Input",
+ CellChangeTimes->{{3.817214696421403*^9,
+ 3.817214699557768*^9}},ExpressionUUID->"a67825a5-1532-4e67-9c19-\
+5eea914713e3"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqLow", "[", "n_", "]"}], "[", "m_", "]"}], ":=",
+ RowBox[{"SeriesCoefficient", "[", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "-",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{
+ RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}],
+ RowBox[{"2", "-", "\[Alpha]"}]],
+ RowBox[{"Gl", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}],
+ SuperscriptBox[
+ RowBox[{
+ RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}],
+ RowBox[{"-", "\[CapitalDelta]"}]]}], "]"}]}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "\[Theta]c", ",", "m"}], "}"}], ",",
+ RowBox[{"Assumptions", "\[Rule]",
+ RowBox[{"Join", "[",
+ RowBox[{"$Assumptions", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Theta]", "<", "\[Theta]c"}], ",",
+ RowBox[{"\[Theta]", ">", "1"}]}], "}"}]}], "]"}]}]}],
+ "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqHigh", "[", "n_", "]"}], "[", "m_", "]"}], ":=",
+ RowBox[{"SeriesCoefficient", "[", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "-",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"-",
+ RowBox[{
+ RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}]}], ")"}],
+ RowBox[{"2", "-", "\[Alpha]"}]],
+ RowBox[{"Gh", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"-",
+ RowBox[{
+ RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}]}], ")"}],
+ RowBox[{"-", "\[CapitalDelta]"}]]}], "]"}]}]}], ",",
+ "\[IndentingNewLine]",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "0", ",", "m"}], "}"}], ",",
+ RowBox[{"Assumptions", "\[Rule]",
+ RowBox[{"Join", "[",
+ RowBox[{"$Assumptions", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Theta]", ">", "0"}], ",",
+ RowBox[{"\[Theta]", "<", "1"}]}], "}"}]}], "]"}]}]}],
+ "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqMid", "[", "n_", "]"}], "[", "m_", "]"}], ":=",
+ RowBox[{"SeriesCoefficient", "[", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{
+ RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}],
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"2", "-", "\[Alpha]"}], ")"}], "/", "\[CapitalDelta]"}]],
+
+ RowBox[{"\[CapitalPhi]", "[", "\[Eta]", "]"}]}], "+",
+ RowBox[{
+ FractionBox[
+ SuperscriptBox["\[Eta]", "2"],
+ RowBox[{"8", "\[Pi]"}]],
+ RowBox[{"Log", "[",
+ SuperscriptBox["\[Eta]", "2"], "]"}]}]}], "/.",
+ RowBox[{"\[Eta]", "\[Rule]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}], " ",
+ SuperscriptBox[
+ RowBox[{
+ RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}],
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "\[CapitalDelta]"}]]}]}]}], ")"}]}],
+ "\[IndentingNewLine]", ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "1", ",", "m"}], "}"}], ",",
+ RowBox[{"Assumptions", "\[Rule]",
+ RowBox[{"Join", "[",
+ RowBox[{"$Assumptions", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Theta]", ">", "0"}], ",",
+ RowBox[{"\[Theta]", "<", "\[Theta]c"}]}], "}"}]}], "]"}]}]}],
+ "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqMeta", "[", "n_", "]"}], "[", "m_", "]"}], ":=",
+ RowBox[{"SeriesCoefficient", "[", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"I\[ScriptCapitalF]", "[",
+ RowBox[{"1", "/", "\[Theta]inv"}], "]"}], "-",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"-", " ",
+ RowBox[{
+ RowBox[{"g", "[", "n", "]"}], "[",
+ RowBox[{"1", "/", "\[Theta]inv"}], "]"}]}], ")"}],
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"2", "-", "\[Alpha]"}], ")"}], "/", "\[CapitalDelta]"}]],
+ RowBox[{"Dmeta", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"f", "[", "n", "]"}], "[",
+ RowBox[{"1", "/", "\[Theta]inv"}], "]"}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"-", " ",
+ RowBox[{
+ RowBox[{"g", "[", "n", "]"}], "[",
+ RowBox[{"1", "/", "\[Theta]inv"}], "]"}]}], ")"}],
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "\[CapitalDelta]"}]]}], "]"}]}]}],
+ "\[IndentingNewLine]", ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]inv", ",", "0", ",", "m"}], "}"}], ",",
+ RowBox[{"Assumptions", "\[Rule]",
+ RowBox[{"Join", "[",
+ RowBox[{"$Assumptions", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"\[Theta]inv", ">", "0"}], ",",
+ RowBox[{"\[Theta]inv", "<",
+ RowBox[{"1", "/", "\[Theta]c"}]}]}], "}"}]}], "]"}]}]}],
+ "\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"eqB", "[", "n_", "]"}], ":=",
+ RowBox[{"B", "\[Rule]",
+ RowBox[{"A", " ",
+ FractionBox[
+ RowBox[{"-", " ",
+ RowBox[{
+ RowBox[{
+ RowBox[{"g", "[", "n", "]"}], "'"}], "[", "\[Theta]c", "]"}]}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Theta]c", "2"], "-", "1"}], ")"}],
+ RowBox[{"\[Beta]", " ", "\[Delta]"}]]]}]}]}]}], "Input",
+ CellChangeTimes->{{3.817122561958515*^9, 3.817122595430499*^9}, {
+ 3.8171226412071457`*^9, 3.817122654383555*^9}, {3.817122684808043*^9,
+ 3.817122893980072*^9}, {3.8171229823734827`*^9, 3.817123013558132*^9}, {
+ 3.817124148403132*^9, 3.817124164362879*^9}, 3.817124570570879*^9,
+ 3.81712461824366*^9, {3.817124882096373*^9, 3.817124904954482*^9}, {
+ 3.817125021810815*^9, 3.817125026171056*^9}, {3.817125056291629*^9,
+ 3.817125062179249*^9}, {3.8171251399727*^9, 3.8171252034061813`*^9}, {
+ 3.8171272990345707`*^9, 3.817127305730093*^9}, {3.81712793122969*^9,
+ 3.817127935645309*^9}, {3.817196911039874*^9, 3.8171969748088827`*^9}, {
+ 3.817197722814756*^9, 3.8171977381903067`*^9}, {3.8171977809682837`*^9,
+ 3.817197825063862*^9}, {3.8171979540210543`*^9, 3.8171979962111807`*^9}, {
+ 3.817198723032823*^9, 3.817198738800659*^9}, {3.817198786617443*^9,
+ 3.817198842450691*^9}, {3.817200387324769*^9, 3.817200391268491*^9}, {
+ 3.817209494881345*^9, 3.817209739781746*^9}, {3.817209870543663*^9,
+ 3.817209873007422*^9}, {3.817210066331233*^9, 3.817210077563465*^9}, {
+ 3.817210203677601*^9, 3.817210214085437*^9}, {3.817210686686688*^9,
+ 3.8172109359308043`*^9}, {3.8172110570612993`*^9, 3.817211067132907*^9}, {
+ 3.8172111388865967`*^9, 3.817211161790626*^9}, {3.8172115612695913`*^9,
+ 3.8172115624854527`*^9}, 3.8172121773284616`*^9, {3.817212401044241*^9,
+ 3.81721240169213*^9}, {3.8172126942254143`*^9, 3.817212733676169*^9}, {
+ 3.8172128432044477`*^9, 3.817212850900301*^9}, {3.817213122273017*^9,
+ 3.817213125505207*^9}, {3.817213504392342*^9, 3.817213522176297*^9},
+ 3.817214109954194*^9, {3.817214983818109*^9, 3.817214986450067*^9}},
+ CellLabel->
+ "In[790]:=",ExpressionUUID->"77a88da0-5b31-458a-9ed8-0b34545e511d"],
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"\[CapitalPhi]Rules", "=",
+ RowBox[{"MapIndexed", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Derivative", "[",
+ RowBox[{
+ RowBox[{"#2", "[",
+ RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], "]"}], "[",
+ "\[CapitalPhi]", "]"}], "[", "0", "]"}], "\[Rule]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"#2", "[",
+ RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}],
+ "#1"}]}], "&"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "1.197733383797993"}], ",",
+ RowBox[{"-", "0.318810124891"}], ",", "0.110886196683", ",",
+ "0.01642689465", ",",
+ RowBox[{
+ RowBox[{"-", "2.639978"}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ RowBox[{
+ RowBox[{"-", "5.140526"}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ RowBox[{"2.08856", " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "4"}]]}], ",",
+ RowBox[{
+ RowBox[{"-", "4.4819"}], " ",
+ SuperscriptBox["10",
+ RowBox[{"-", "5"}]]}]}], "}"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"GlRules", "=",
+ RowBox[{"MapIndexed", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Derivative", "[",
+ RowBox[{
+ RowBox[{"#2", "[",
+ RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], "]"}], "[", "Gl",
+ "]"}], "[", "0", "]"}], "\[Rule]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"#2", "[",
+ RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}],
+ "#1"}]}], "&"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",",
+ RowBox[{"-", "1.3578383417066"}], ",",
+ RowBox[{"-", "0.048953289720"}], ",", "0.038863932", ",",
+ RowBox[{"-", "0.068362119"}], ",", "0.18388370", ",",
+ RowBox[{"-", "0.6591714"}], ",", "2.937665", ",",
+ RowBox[{"-", "15.61"}]}], "}"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"GhRules", "=",
+ RowBox[{"MapIndexed", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Derivative", "[",
+ RowBox[{
+ RowBox[{"#2", "[",
+ RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], "]"}], "[", "Gh",
+ "]"}], "[", "0", "]"}], "\[Rule]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"#2", "[",
+ RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}],
+ "#1"}]}], "&"}], ",",
+ RowBox[{"{",
+ RowBox[{"0", ",", "0", ",",
+ RowBox[{"-", "1.8452280782328"}], ",", "0", ",", "8.333711750", ",",
+ "0", ",",
+ RowBox[{"-", "95.16896"}], ",", "0", ",", "1457.62", ",", "0", ",",
+ RowBox[{"-", "25891"}]}], "}"}]}], "]"}]}],
+ ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"DmetaRules", "=", "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"Derivative", "[", "#", "]"}], "[", "Dmeta", "]"}], "[", "0",
+ "]"}], "\[Rule]",
+ RowBox[{"If", "[",
+ RowBox[{
+ RowBox[{"#", "\[NotEqual]", "2"}], ",",
+ RowBox[{
+ RowBox[{"Sin", "[",
+ RowBox[{"8", "\[Pi]",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"2", "-", "#"}], ")"}], "/", "15"}]}], "]"}],
+ RowBox[{
+ RowBox[{
+ RowBox[{"Derivative", "[", "#", "]"}], "[", "\[CapitalPhi]", "]"}],
+ "[", "0", "]"}]}], ",",
+ RowBox[{"2", "/", "15"}]}], "]"}]}], "&"}], "/@",
+ RowBox[{"Range", "[",
+ RowBox[{"0", ",", "5"}], "]"}]}]}], ";"}], "\[IndentingNewLine]",
+ RowBox[{
+ RowBox[{"ARule", "=",
+ RowBox[{"A", "\[Rule]", "ASquare"}]}], ";"}]}], "Input",
+ CellChangeTimes->{{3.8171238506222553`*^9, 3.817123981055841*^9}, {
+ 3.817124021016416*^9, 3.8171240795775967`*^9}, {3.8171241841479683`*^9,
+ 3.817124191819606*^9}, {3.81712424202855*^9, 3.8171243317581472`*^9}, {
+ 3.817124763670149*^9, 3.8171247637578783`*^9}, {3.817124806239091*^9,
+ 3.81712480629488*^9}, {3.817125233990562*^9, 3.817125241366708*^9}, {
+ 3.8171253924669952`*^9, 3.817125393009253*^9}, {3.817125426242784*^9,
+ 3.817125508131061*^9}, {3.817125668253682*^9, 3.817125720078556*^9}, {
+ 3.81712575752703*^9, 3.817125884277041*^9}, {3.817126017709049*^9,
+ 3.8171260243875713`*^9}, {3.817127284274146*^9, 3.817127295450204*^9},
+ 3.8172038927147207`*^9, 3.8172039519957237`*^9, 3.817211900243198*^9, {
+ 3.8172119490120792`*^9, 3.817211969444298*^9}},
+ CellLabel->
+ "In[658]:=",ExpressionUUID->"1f309ab1-20a0-46cc-93fe-35aed54ccb3d"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[{
+ RowBox[{
+ RowBox[{"testN", "=", "0"}], ";"}], "\[IndentingNewLine]",
+ RowBox[{"testEq1", "=",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqLow", "[", "testN", "]"}], "[", "1", "]"}], ",",
+ RowBox[{
+ RowBox[{"eqHigh", "[", "testN", "]"}], "[", "1", "]"}], ",",
+ RowBox[{
+ RowBox[{"eqMid", "[", "testN", "]"}], "[", "1", "]"}]}],
+ "}"}]}]}], "Input",
+ CellChangeTimes->CompressedData["
+1:eJwdzltIk3EABfAvE1ZRDWlkkFQb6YMKqegMMvKSNWSKfMuiUnSfqFRewobO
+6WZhBWqCtaaCUeIlYWMWg8Y2nZceEubmbIaO0VPaEBmb6VIfhvg//4fD7+E8
+nCPkGtiqKIZhEklgRXNNUd/TQE6uro4q2k6QwUinjlr7IKkMHsRJqdK/Zzmo
+zDhdAz1zIgX0a/kqyMif6GDBP2k/vDAmX4UnfGEv1K34hf3E6YrqZNh83fMM
+OnidLbDrvUBDe2UvNYVr7INGl5Wq/3T+A1QtT1BNhqVhmLYgHIF/vF0BqF1z
+hmDumW67lRgINkxDLiar1UYcvfOOemtc1gFvG9upj8OqIXg8zz4MJYJtE6z9
+vUN9udLhgPfTU52wSm0JQdGWeAtG7rWFIStZ34WXXCejJolB8zIP8sY0cmgw
+tXOwyTLwZYq43+b+Ch2beitUKFdt8OpDzWU7/r9aopZeDLBwJt8jg05JgRq+
+ntdTf+wae+FaftZbGGb5n+GsSTEOf7l7DLDR/MgIjwjidmaIvsnkPRi5G310
+lngq7wX1mOsbH5aWiAWw0Oe9CYOxPRLY9Fxrg+J4NzXGfO3jHDH6TeIQbFVu
+uCBffWMR5lj8hd+xYx0shsxEdzm8kh2isj8r6+G5zP/UQ8dub5s=
+ "],
+ CellLabel->
+ "In[788]:=",ExpressionUUID->"2f5b927d-f164-4051-b8ca-bad9a5ba3b97"],
+
+Cell[BoxData["$Aborted"], "Output",
+ CellChangeTimes->{3.817214601000946*^9, 3.817214720325386*^9,
+ 3.817214981972458*^9},
+ CellLabel->
+ "Out[789]=",ExpressionUUID->"b3ae6262-2369-4579-8f11-16e2dd721349"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"testEq2", "=",
+ RowBox[{"Simplify", "[",
+ RowBox[{"testEq1", "//.",
+ RowBox[{"Join", "[",
+ RowBox[{
+ "\[CapitalPhi]Rules", ",", "GlRules", ",", "GhRules", ",", "DmetaRules",
+ ",",
+ RowBox[{"{",
+ RowBox[{"ARule", ",",
+ RowBox[{"h0", "\[Rule]", "1"}], ",",
+ RowBox[{
+ RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"eqB", "[", "testN", "]"}]}], "}"}]}], "]"}]}], "]"}]}],
+ ";"}]], "Input",
+ CellChangeTimes->{{3.817214603618495*^9,
+ 3.817214613562722*^9}},ExpressionUUID->"527153da-c467-45ab-a51a-\
+b1545d520630"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ss1", "=",
+ RowBox[{"FindRoot", "[",
+ RowBox[{"testSol", ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"gC", "[", "\[Infinity]", "]"}], ",",
+ RowBox[{"1",
+ RowBox[{"RandomReal", "[", "]"}]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]c", ",",
+ RowBox[{"1", "+",
+ RowBox[{"RandomReal", "[", "]"}]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[ScriptCapitalF]0", ",", "0"}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[ScriptCapitalF]1", ",",
+ RowBox[{"RandomReal", "[", "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Gamma]", ",",
+ RowBox[{"RandomReal", "[", "]"}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"t\[Infinity]", ",",
+ RowBox[{"RandomReal", "[", "]"}]}], "}"}]}], "}"}], ",",
+ RowBox[{"MaxIterations", "\[Rule]", "4000"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.817127065230098*^9, 3.8171271351270227`*^9}, {
+ 3.817127221800994*^9, 3.8171272630331593`*^9}, 3.81712740736408*^9, {
+ 3.817127491557787*^9, 3.8171275000934143`*^9}, 3.8171275721198053`*^9, {
+ 3.8171278100273*^9, 3.817127849603622*^9}, {3.81712788866899*^9,
+ 3.817127911532996*^9}, {3.81719706565886*^9, 3.817197105498705*^9}, {
+ 3.817197893385504*^9, 3.81719790689716*^9}, {3.81719860001385*^9,
+ 3.8171986053976393`*^9}, {3.817198639295259*^9, 3.817198662766809*^9}, {
+ 3.817198876170909*^9, 3.817198908051071*^9}, {3.817198993133552*^9,
+ 3.8171991533442287`*^9}, {3.817199209928318*^9, 3.817199241960556*^9}, {
+ 3.817199495862*^9, 3.8171994994689503`*^9}, {3.8171995495740423`*^9,
+ 3.817199605718575*^9}, {3.817199652392643*^9, 3.817199715256566*^9}, {
+ 3.817199865131709*^9, 3.817199880715331*^9}, {3.817199936333564*^9,
+ 3.817199987661281*^9}, {3.817200026262958*^9, 3.8172000468302813`*^9}, {
+ 3.8172001570412397`*^9, 3.8172001598323307`*^9}, {3.817200236641964*^9,
+ 3.8172002385137587`*^9}, {3.8172002992189293`*^9,
+ 3.8172003208190928`*^9}, {3.817200415813776*^9, 3.817200416404771*^9}, {
+ 3.817204016980706*^9, 3.817204076853834*^9}, {3.8172041381029387`*^9,
+ 3.817204203727563*^9}, {3.817204234304641*^9, 3.817204255961961*^9}, {
+ 3.817204390931651*^9, 3.8172044426360817`*^9}, {3.817205022823312*^9,
+ 3.8172050577028513`*^9}, {3.817205106256721*^9, 3.817205106559868*^9}, {
+ 3.817209919633216*^9, 3.817209920608328*^9}, {3.817210044562058*^9,
+ 3.817210053786522*^9}, {3.817210136268099*^9, 3.8172101405721073`*^9}, {
+ 3.817210451098201*^9, 3.81721045318543*^9}, {3.817211412418923*^9,
+ 3.8172114542674837`*^9}, 3.817211713768137*^9, {3.817211774217906*^9,
+ 3.817211820329513*^9}, {3.817212210577387*^9, 3.817212210720683*^9},
+ 3.817212495142112*^9, {3.817213148937108*^9, 3.817213155649081*^9}, {
+ 3.8172131921538963`*^9, 3.817213198714007*^9}, {3.8172140038972063`*^9,
+ 3.8172140040882683`*^9}, {3.817214050225759*^9, 3.817214064234343*^9},
+ 3.81721453132269*^9},
+ CellLabel->
+ "In[783]:=",ExpressionUUID->"630fc9c9-229c-4372-8a16-eac1f2d98690"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "nlnum",
+ "\"The function value \\!\\(\\*RowBox[{\\\"{\\\", RowBox[{RowBox[{RowBox[{\
+\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \\\"0.00001617606332891344`\\\"}], \
+\\\"+\\\", RowBox[{\\\"6.5540032390619315`*^-6\\\", \\\" \\\", \\\"\
+\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\"-\\\", RowBox[{RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"0.017359918373734545`\\\", \\\"\[VeryThinSpace]\\\"}], \\\
+\"-\\\", RowBox[{\\\"0.00003480505173500426`\\\", \\\" \\\", \
+\\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"-\\\", \
+FractionBox[RowBox[{\\\"5.767651811132557`15.954589770191005*^1080\\\", \\\"-\
+\\\", RowBox[{\\\"3.220369289817145`15.954589770191005*^1084\\\", \\\" \\\", \
+\\\"\[ImaginaryI]\\\"}]}], RowBox[{\\\"1\\\", \\\"+\\\", \
+RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], \\\"+\\\", \
+FractionBox[RowBox[{RowBox[{RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"0.7186357434986`\\\", \\\"\[VeryThinSpace]\\\"}], \\\"+\\\
+\", RowBox[{\\\"0.00012870700156761243`\\\", \\\" \\\", \
+\\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Power\\\", \
+\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
+\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \
+\\\", RowBox[{\\\"Plus\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\
+\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\"+\\\", \
+RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"1794.794305478754`\\\", \\\"\
+\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"0.3214460115274505`\\\", \\\" \
+\\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \
+RowBox[{\\\"Power\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Power\\\", \\\
+\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Plus\\\", \
+\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
+\"}], \\\"]\\\"}]}]}], \\\"\[Pi]\\\"]}], \\\")\\\"}]}]}], \\\",\\\", \
+FractionBox[RowBox[{RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"0.05026264396575045`\\\", \\\"\[VeryThinSpace]\\\"}], \
+\\\"+\\\", RowBox[{\\\"0.000010175200587390827`\\\", \\\" \\\", \\\"\
+\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", SuperscriptBox[\\\"\
+\[ExponentialE]\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}]], \\\" \\\", RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"0.007826236712454249`\\\"}], \\\"-\\\", \
+RowBox[{\\\"0.0000347962809085611`\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \
+\\\")\\\"}], \\\" \\\", SuperscriptBox[\\\"\[ExponentialE]\\\", \
+RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"5.500526500917296`\\\"}], \\\"+\\\", RowBox[{\\\"0.0005127723107315132`\\\
+\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \
+RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\
+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \
+\\\"]\\\"}]}], \\\")\\\"}]}]]}], \\\"-\\\", RowBox[{RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"0.43457570892128017`\\\", \\\"\[VeryThinSpace]\\\"}], \
+\\\"-\\\", RowBox[{\\\"0.0009219407003604992`\\\", \\\" \\\", \\\"\
+\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \
+\\\"[\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"5.500526500917295`\\\"}], \\\"+\\\", RowBox[{\\\"0.0005127723107315117`\\\
+\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \
+RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\
+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \
+\\\"]\\\"}]}], \\\")\\\"}]}], \\\"]\\\"}]}], \\\"+\\\", RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"16\\\", \\\"\[RightSkeleton]\\\"}], \\\"+\\\", \
+FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"18\\\", \\\"\[RightSkeleton]\\\"}], \\\"\
+\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"18\\\", \\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \
+\\\")\\\"}], \\\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}]}], RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{RowBox[{\\\"(\
+\\\", RowBox[{RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"18\\\", \\\"\
+\[RightSkeleton]\\\"}], \\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \\\")\\\"}], \\\
+\" \\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
+\\\"\[RightSkeleton]\\\"}]}]}]], \\\"-\\\", FractionBox[RowBox[{RowBox[{\\\"(\
+\\\", RowBox[{RowBox[{\\\"241.70973389640085`\\\", \
+\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"0.4936259809340333`\\\", \
+\\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", SuperscriptBox[\
+\\\"\[ExponentialE]\\\", RowBox[{RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"-\\\", \\\"4.88288886140384`\\\"}], \\\"+\\\", \
+RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"22\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \
+\\\")\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\
+\\\"}], RowBox[{\\\"(\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}]}]}]], \\\" \\\", RowBox[{\\\"ExpIntegralEi\\\", \
+\\\"[\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"0.6176376395134557`\\\"}], \\\"+\\\", RowBox[{\\\"0.00010466255616021392`\
+\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \
+RowBox[{\\\"(\\\", RowBox[{\\\"1\\\", \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\
+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \
+\\\"]\\\"}]}], \\\")\\\"}]}], \\\"]\\\"}]}], RowBox[{\\\"1\\\", \\\"+\\\", \
+RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"91449.27870869786`\\\", \\\"\
+\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"703.2306648650895`\\\", \\\" \
+\\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", \
+RowBox[{\\\"RealAbs\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]}]]}], \\\")\\\"}]}], \
+RowBox[{SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"1\\\"}], \\\"+\\\", FractionBox[RowBox[{RowBox[{\\\"454.04782894674713`\\\
+\", \\\"\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"0.04232743072733425`\\\
+\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], RowBox[{\\\"1\\\", \\\"+\\\", \
+RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], \\\")\\\"}], \\\"2\\\"], \\\" \
+\\\", SuperscriptBox[RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"1\\\"}], \\\"+\\\", \
+FractionBox[RowBox[{RowBox[{\\\"4043.636439904255`\\\", \
+\\\"\[VeryThinSpace]\\\"}], \\\"+\\\", RowBox[{\\\"0.6852194537822353`\\\", \
+\\\" \\\", \\\"\[ImaginaryI]\\\"}]}], RowBox[{\\\"1\\\", \\\"+\\\", \
+RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}]]}], \\\")\\\"}], \\\"2\\\"]}]], \
+\\\",\\\", RowBox[{RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"24\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"-\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\
+\\\", \\\"\[RightSkeleton]\\\"}]}], \\\")\\\"}], \\\"+\\\", RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \\\",\\\", \
+RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}], \\\",\
+\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{\\\"3.3571126141215287`*^-6\\\", \
+\\\"+\\\", RowBox[{\\\"2.7194249958945334`*^-8\\\", \\\" \\\", \\\"\
+\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\"-\\\", RowBox[{RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"0.017359918373734545`\\\", \\\"\[VeryThinSpace]\\\"}], \\\
+\"-\\\", RowBox[{\\\"0.00003480505173500426`\\\", \\\" \\\", \
+\\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"(\\\", \
+RowBox[{FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"2.916026207996856`15.954589770191005*^1072\\\"}], \\\"-\\\", \
+RowBox[{\\\"1.407818716820538`15.954589770191005*^1085\\\", \\\" \\\", \\\"\
+\[ImaginaryI]\\\"}]}], \\\")\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \
+\\\"1\\\", \\\"\[RightSkeleton]\\\"}], RowBox[{RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"454.04782894674673`\\\", \\\"\[VeryThinSpace]\\\"}], \
+\\\"+\\\", RowBox[{\\\"0.042327430727334116`\\\", \\\" \\\", \
+\\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\" \\\", RowBox[{\\\"Power\\\", \
+\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
+\"}], \\\"]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}], RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"13\\\", \
+\\\"\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}], RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \\\"\
+\[RightSkeleton]\\\"}], \\\"]\\\"}], \\\" \\\", RowBox[{\\\"Power\\\", \
+\\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\
+\"}], \\\"]\\\"}]}]}], RowBox[{\\\"\[Pi]\\\", \\\" \\\", RowBox[{\\\"(\\\", \
+RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"2497.5021375098786`\\\", \\\"\
+\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"2.0713080264925728`*^-13\\\", \
+\\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\")\\\"}], \\\"+\\\", \
+RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"2\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\")\\\"}]}]], \\\"+\\\", \
+FractionBox[RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"2.916026207996856`15.954589770191005*^1072\\\"}], \\\"-\\\", RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"1\\\", \\\"\[RightSkeleton]\\\"}]}], \\\")\\\"}], \\\
+\"+\\\", RowBox[{\\\"\[LeftSkeleton]\\\", \\\"1\\\", \
+\\\"\[RightSkeleton]\\\"}]}], RowBox[{\\\"\[Pi]\\\", \\\" \\\", RowBox[{\\\"(\
+\\\", RowBox[{RowBox[{\\\"(\\\", RowBox[{RowBox[{\\\"2497.5021375098786`\\\", \
+\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", \
+RowBox[{RowBox[{\\\"\[LeftSkeleton]\\\", \\\"24\\\", \
+\\\"\[RightSkeleton]\\\"}], \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \
+\\\")\\\"}], \\\"+\\\", RowBox[{\\\"Times\\\", \\\"[\\\", RowBox[{\\\"\
+\[LeftSkeleton]\\\", \\\"2\\\", \\\"\[RightSkeleton]\\\"}], \\\"]\\\"}]}], \\\
+\")\\\"}]}]]}], \\\")\\\"}]}]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"8.222320853181985`*^-6\\\"}], \\\"+\\\", \
+RowBox[{\\\"3.507187889934633`*^-9\\\", \\\" \\\", \
+\\\"\[ImaginaryI]\\\"}]}]}], \\\"}\\\"}]\\) is not a list of numbers with \
+dimensions \\!\\(\\*RowBox[{\\\"{\\\", \\\"6\\\", \\\"}\\\"}]\\) at \
+\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"gC\\\", \\\"[\\\", \\\"\
+\[Infinity]\\\", \\\"]\\\"}], \\\",\\\", \\\"\[Theta]c\\\", \\\",\\\", \\\"\
+\[ScriptCapitalF]0\\\", \\\",\\\", \\\"\[ScriptCapitalF]1\\\", \\\",\\\", \
+\\\"\[Gamma]\\\", \\\",\\\", \\\"t\[Infinity]\\\"}], \\\"}\\\"}]\\) = \
+\\!\\(\\*RowBox[{\\\"{\\\", \
+RowBox[{RowBox[{RowBox[{\\\"0.000010934376781525021`\\\", \
+\\\"\[VeryThinSpace]\\\"}], \\\"+\\\", \
+RowBox[{\\\"8.408364901871981`*^-8\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \
+\\\",\\\", RowBox[{RowBox[{\\\"1.2529804226463594`\\\", \
+\\\"\[VeryThinSpace]\\\"}], \\\"-\\\", RowBox[{\\\"0.000021725117473261573`\\\
+\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}], \\\",\\\", \
+RowBox[{\\\"1.5914055013013795`*^-17\\\", \\\"-\\\", \
+RowBox[{\\\"4.0053973446175033`*^-19\\\", \\\" \\\", \
+\\\"\[ImaginaryI]\\\"}]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"0.017359918373734545`\\\"}], \\\"+\\\", \
+RowBox[{\\\"0.00003480505173500426`\\\", \\\" \\\", \
+\\\"\[ImaginaryI]\\\"}]}], \\\",\\\", RowBox[{RowBox[{\\\"2497.5021375098786`\
+\\\", \\\"\[VeryThinSpace]\\\"}], \\\"-\\\", \
+RowBox[{\\\"2.0713080264925728`*^-13\\\", \\\" \\\", \
+\\\"\[ImaginaryI]\\\"}]}], \\\",\\\", RowBox[{RowBox[{\\\"-\\\", \
+\\\"0.2592669230870071`\\\"}], \\\"-\\\", RowBox[{\\\"0.00007929733852228741`\
+\\\", \\\" \\\", \\\"\[ImaginaryI]\\\"}]}]}], \\\"}\\\"}]\\).\"", 2, 783, 551,
+ 31478759869561735920, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{{3.817214526308713*^9, 3.817214540913575*^9}},
+ CellLabel->
+ "During evaluation of \
+In[783]:=",ExpressionUUID->"ef961c10-8104-4e4d-b207-a87b03b3d39a"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"gC", "[", "\[Infinity]", "]"}], "\[Rule]",
+ "0.0008459722902801232`"}], ",",
+ RowBox[{"\[Theta]c", "\[Rule]", "1.242412046533791`"}], ",",
+ RowBox[{"\[ScriptCapitalF]0", "\[Rule]", "0.000014607404035551358`"}], ",",
+ RowBox[{"\[ScriptCapitalF]1", "\[Rule]", "0.05434978123417711`"}], ",",
+ RowBox[{"\[Gamma]", "\[Rule]", "2497.502137509859`"}], ",",
+ RowBox[{"t\[Infinity]", "\[Rule]",
+ RowBox[{"-", "0.27244656539953316`"}]}]}], "}"}]], "Output",
+ CellChangeTimes->{{3.8171270996292067`*^9, 3.817127105556841*^9}, {
+ 3.817127204285718*^9, 3.817127264091604*^9}, 3.817127314951366*^9,
+ 3.8171274144813757`*^9, {3.817127496044944*^9, 3.817127500612631*^9},
+ 3.817127572469696*^9, {3.817127822124675*^9, 3.817127849973984*^9}, {
+ 3.817127889203796*^9, 3.817127946658205*^9}, 3.817197028103486*^9, {
+ 3.817197066173236*^9, 3.817197105829151*^9}, 3.817197840657063*^9, {
+ 3.8171978941536694`*^9, 3.8171979070770073`*^9}, {3.817198605563414*^9,
+ 3.817198663128005*^9}, 3.817198745965067*^9, {3.817198871986658*^9,
+ 3.8171989082517653`*^9}, 3.817198993524138*^9, {3.817199036402801*^9,
+ 3.81719915472499*^9}, {3.817199214650189*^9, 3.81719924238663*^9},
+ 3.81719949964295*^9, {3.8171995521181307`*^9, 3.817199606127068*^9}, {
+ 3.817199653014206*^9, 3.817199715660084*^9}, {3.8171998628734703`*^9,
+ 3.81719988217598*^9}, {3.817199923819672*^9, 3.817200047007765*^9}, {
+ 3.8172001378170567`*^9, 3.8172001643989763`*^9}, {3.817200217372025*^9,
+ 3.8172003472950993`*^9}, {3.8172004167155123`*^9, 3.817200455504426*^9}, {
+ 3.81720316131075*^9, 3.817203174094232*^9}, {3.817203897725556*^9,
+ 3.817203945272635*^9}, {3.817204011992119*^9, 3.817204121995092*^9}, {
+ 3.817204163591261*^9, 3.8172042070966673`*^9}, {3.817204240782833*^9,
+ 3.817204274807415*^9}, {3.8172043955128317`*^9, 3.8172044503395233`*^9}, {
+ 3.8172047031255627`*^9, 3.817204709501192*^9}, {3.817205004979569*^9,
+ 3.817205059570442*^9}, {3.817205106897121*^9, 3.817205134762471*^9},
+ 3.817210054018056*^9, {3.817210124483952*^9, 3.8172101408168087`*^9}, {
+ 3.817211385711073*^9, 3.817211461402006*^9}, {3.817211675688643*^9,
+ 3.8172117217755623`*^9}, {3.817211753410542*^9, 3.817211833201375*^9}, {
+ 3.8172120745520897`*^9, 3.817212091409594*^9}, {3.817212211123355*^9,
+ 3.8172122275095043`*^9}, {3.8172122698902597`*^9, 3.817212283156934*^9},
+ 3.8172123869969254`*^9, {3.817212477265932*^9, 3.817212505367959*^9}, {
+ 3.817213142038204*^9, 3.817213156396003*^9}, {3.81721399823987*^9,
+ 3.81721406485555*^9}, {3.817214510874466*^9, 3.817214540922349*^9}},
+ CellLabel->
+ "Out[783]=",ExpressionUUID->"15e91b3c-4864-4488-8f91-7c413ccb268c"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "/.",
+ RowBox[{"eqB", "[", "testN", "]"}]}], "/.", "ARule"}], "/.", "ss1"}],
+ "/.",
+ RowBox[{
+ RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.",
+ RowBox[{"h0", "\[Rule]", "1"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",",
+ RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817212100311531*^9, 3.817212151983387*^9}, {
+ 3.8172121838725224`*^9, 3.817212184815969*^9}},
+ CellLabel->
+ "In[687]:=",ExpressionUUID->"2a7b9f00-b942-4f1e-89df-1d3081b1fc6a"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJw12Hk4VN8fB3CtlpB8S78iWSKm7KJIp0WSspZIsrRQlhZZUrIliYqkkq00
+QtKMfYkcy8jYsoyQJVt8FQYRM1OZ3/14fr8/5pnn9dx55n7Ovfec83lf6TOX
+Lc4v5eHhWbqE+BDfykjsB5fLxQ8kd0we4WWjy2zZMDaHi8U1hOKPEs7KVZOf
++cXFXxxqDYwJqysYnxkZ4+J8fmaiCWHtNSFdDR1cnJQ4amROeO/QdN1zKheb
+aJBfnCBscbfxrYY9F+/WUdN0JOzTFOLuXLaAafdq+b0Jt7Wt+lHh+BdnWlGL
+kglvKr+8VlviD07d9DCTTjjflbZidS8Hl4x1y00QdrivNvUlmI0nNVxW/cPH
+Rqzom2EYsfCZBBlnTcJk4a8bYgfm8FxjhfUJwglGah6Me78w38Vtv7wIB7s5
+Xlc8PIuLe4/lPCJ8c1mGj8fET8wWYvS9I+wY2LSlPX0aG1qtcfpI+MmH4dgE
+lylcsPncxx7C7/sUBDNlmDh+n4TaDGFZkb37jyeNYbqP/emV/GyUQwpzGRwa
+xd7LP6MNhPuqs6W0tEawwr35r4qEh7c/UccFQzjudeobbcJr/N9oKS8ZwCUO
+EpX6hEMLFOgi8/049IHlJJjDTDs5M96Pr5RekzhIeNA+1a+osx+LSNt7g3P2
+kSv3Z/Xj23w/FQwIW6xINLGy78cTznz3DhHeukG6kedmH74gy9I0Irxda3L7
+65keXEr6rmtK2Ek5IKC4twcr5Dw/D34hv7q1saYHsyJJkWDR9So+c/E9eKfp
+xAB4fv5SxSH9HuzTN3fHjHBlMdPyR0w39nXYSDcnbK3H9FfR6sJSmWTN44Sj
+d/i3HJDqwgxtextwvZLwFmuBLuy56XcAeI+kcm3g1y94bI5RB5bluv/TGvoF
+xw/z21sSZpZPpHl2dGLe2tCgE4Rv6080F1/vwFmnqinWcH7DcVPNsx2YrDLZ
+BOYxHvtEMe7AkyGcKbCf5fcGskwHHs/NVz9J2NtpmP6goR1PyZXlgS+E9ZY7
+SrXjWPf1uTaEjzY0ZvHT23CBzHisLeHw5gaVkJw2rHLUoABMb6unLCS04Sx2
+EAN8sLc2c+ZqGxYbSBQ6DeNhVqf3irfhtCHnQLCqSNnL7MsM/Juu72BHeN1x
+StTJ9a34yHMZfge4f/IR7w8ua8U6r+alwGZs529qky3YUi5nJzg8SXqnQE0L
+NozrcAYvjMb0vfduwVl7v9HAI7duKku0N+OnEctvOBK+ZPoo9oNiE5bxcWw+
+Qzh91mj8yZImPNQ3/A08+Hz53ktfPmEfmikbfOKbz7+S9z5hoyVt0mcJI187
+rcDRRjxmlHQVLELe1rY/rQHfUNARPAf1zlWvpm+pw3ttI5XOE36Y8apyD7sW
+27I194Jd7QK88htrcYxbiQV4y8ed3a+8a3HkZxcf8NMnb1Nv0el4de4xDL6h
++UhPw60GK6cZH3aCekbdp97srcGctzw2YI0EI7LUuhqcfjfGBTy+bDm/cNlH
+/KXKLgJsx/BuG139Ebea3aoH7/ewdU3KpeGmj4MHnQlLyu+SXBdGw8sQ+Tj4
+95d1LRG2NEx/qH8WnLevSct3BQ1r5CsGguXX7F963KoKv5D0LwILZG19zv+7
+Atu4mcpeIPy6e/jB95AyLKURMwDu8hN7kahRhv0OFo2BhSUPZZkPfsDhKhW/
+wN4O6a3F6ANuDQ/iv0jYYNhlfTinBBfZlaqAR5mTL0lXivH3wI0+YIkoqZyv
+ksV47Zr7AWAzNfOq6MYibOQ7eBdcdC1nmEMqwswWvVjwPZYnqX64AMelUArB
+pKWcXNdTeTiDcX0abEcmVW8WyMP1I9oscLT+qXZGUS4+0Nq9AOaElrJ0xXLx
+fvXWVS4wP1cF6Am2ZONxMd8tYJ53VJPygGwsP2FHAmua9Nt7Kmfjz/GKquCE
+qH3BPRFZOC7YXRfcSeJ7ePIBBSt5U83Ae90vZlX8eIedREotwenUulZFw3dY
+6fY7G7Cv5oP1nKWZ+NrPPefAG/eIJsddf4OVWOLe4ODAa1VL29Mxycr0Bnis
+sm3YRSMdNzx09geXHnpG0mWmYr4wg1DwaXOJvO6zKTjlVVkMeHzm1y4vGhmP
+qPDFgv2eNmFhOTLWTNGOX6y/O7h+30gy5uwzTAZv97c17zZIxt6uiingEimt
+Ds+0l3i531QqOK++tdq0JQk7WqhmgttEQluCoxOx+n/eUMAzlrt6848lYPFq
+3mywev+LWfH25xi1eeeDzeWO8Zg+i8V+WncLwVdcVgoGWz/D7QG3isHUWTfZ
+0a4YPF4j/gH8aZeUinjCY5z+saoMzPRn6JicjsahmeblYCFaqEGQ5CMc5ltd
+AbYW9Uy5gCMxRWlzFbhdfh9DkxaOXY6EVIOP6QovXVJ7B+MVQTXgeLoZVn/t
+gw3N9tWBA9sU2sSrjPFZIYd68M3HBnWumlfQRr3exeNVUvfuJooEowt9RXSw
+gWCpdcuqu+i2uMDi/9HnmYoreO8jndmfNHC4e5joi5CHyFS3fLGe1OmoWxJB
+USj84rVKsLMzyalgIRq53YzAYEMZH5vbejFojf3U4vgVeqtMzPyeoC+KuqXg
+HxantX+wn6E6z+AicJ1QxrbCnc/Rz1n/AvBb+tzmEJ84pGXrmAd22xPFJ/kr
+Aa3t76CCjdk9f35oJKGMP67vwMp5itOFHi+QNc9IBpgVMzCuwHqJ5ksjXoOL
+BW5+rvQiI9FVSc/BL5XWMagyKeh4z4an4FAzanNCUwoqnfOOBh9/OlTvrZiK
+WCs/h4OnpI9WknrTUWuM1OLz26E/gteHv0FLqKle4DLnwA/LtTPQflHhq+CI
+d3lFX6PeotHcQGew/K5N1Gh9CnI5+8sCLGhbmBkwTUGV1XeMF583f/MMtyQq
+Er46fwjsMFhpIeuXhXxe+e9eHJ/CvPHfz9lI7IrE4nyuzbXXz76Xh8pynkzA
+/N9dvb1qa38ecn2lMwLOamfvS9LKR7Su8q/gp+zHKGIoH7nJXW0Cn0N0nfN6
+hWhO2pEK5tapqm2YLka/c/wvgj16/lIjD71HI6SdDuCRiTrllUnvkcxY6wlw
+g8j57TNGJchDP/MAOO7E862NKaWo5CRTHLxjcIlkkDVGjXxZH2H9VH5vNa36
+BiOG+55SsHz0O1o/GyNL0Zxs8KrkzB0vjctR3obDCeA/ZtY9XGY5UpLWugLu
+zaIqYrVKtFFI8J/F9TrB5p/1NpWoxom5EtwetuLvpeBKFMLN58B6/8nhVLMk
+oxIJMWcHwGUivD7+nlXoQZkaFfziih1Nr5CG/OXT9MEJtvyUJ300dNe9Vwsc
+a5j3bIK3GsnMsBTAUVICronW1Wi8uE8QHNicv+Yvuxr1a7oxYL9yVBWyL91d
+g9I7A0+BZadK2DqVtUjmWawV7I9+jQdCZidq0d6GFQfB7Rn1wpQNdehw9DF1
+cPj5blnpq3VoqDlKEDzVxTHmlapHNLFoDPt1WfWuV4xbDUi1mLoZbBNfaOS2
+qwnRZ07QYf/Pu44+y51vQm2k9myw8Ika+76oJsSa2hEPrhDp8LQYbUL6pGfu
+4LUHbpomHGlG2037RcA3i+J8gznN6OOxB+bQfxwmf2k0sW5F6U3mJfZQzx2K
+U7V7K3oVZ5cMjr1wm6t7uxV9Wmd8FzyqpKSmSGlFHhJNFuCwosCYZcsZaOGC
+8yj0S/TGraeKqAwkNjkqBD7E8hqV5v2M2CSV/Yv9l7Hosl/5HciTU2UK/d5D
+R/5pdm0HOp7prwru9OLpW+jtQH84kmvALknM93wrO5HlJZFWK/j9ZJ2HxIlO
+RHpbYAHufHR78MBcJ8pwEzGFftOlfbYiWqsLeYayNKA/jbTvCFQt7EEJCU8p
+0A+Hju9GIw09qIx5+w7Y3/fV3/jBHnRB3cIWfOmx+w1e4V707cEjfrBJzTLP
+r+d6kX50/BkTuN4qqs73Rb+i0YIeYWOoZyHMeNS9D11OFDWDfr3GZJOQmegA
+El5u4AV5YEJ6nX9r3BCKK9fS2UnYy3ObY6TYCHrISntGgvWlR8TCiT6KyrLx
+DOQPB9/d//IeHUORSw5l88H6vU07vGoFE2l1RojNEvlFnr90NMVwCpUGTYr0
+Ed5U6npwRdg0UnEwotMJ83CWvvEY/IkEvSpLKITnzT/YVcvNojmD9LQYwt2a
+9uJyIb9QAPu9tzfhK1Yia2R65tDLIfVeyF8bYr5ZL9/EQg2ZLcnahCmnXqbN
+XGejQs3VImsJW+kFGNI/cNB7w8jkKSLfZdu5y+j8+Y1EP7GdGwizBA4sK7b8
+i3aHnVcjQ55s0dXaFLuAYs9fm7xBWEB3VUVp4gLyGC7RBlekdB2xJS+gqriB
+AF/Cqtd9HeMpC8iBTFt9nbDw5sL7G6oXUJr4dyUvwrVu6kPrfi6gaam3Zy9D
+fuVTjBI+ykWWuqvzz8L5r7I2Usy5aHL3X9YZwtTumtfGVlx0w4G+GyxJdSq5
+f4aLfgjMVTkQ/mOZMiLgy0Ut3ZTm04QLyZv1eFO5SH/wyZAV4UtCkzWpb7no
+WJGlHFjep8zCIJuLbFJ/OkFejjE6feFOKRc11lR9P07YYzru8TIGFyULV01A
+viadcpEkd3JRc7SrMniAtuvN/q9cNKY4fcmMsFlsZ1nQdy468/DxJORzvqXp
+h6UnucjXJksFjF192spnuWhWK+My5Hnvzwb2DhwuUpMNokLe/9/7APT/9wH/
+BVMTF5k=
+ "]]},
+ Annotation[#, "Charting`Private`Tag$2426398#1"]& ]}, {}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 1.5642814010661},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{-2, 2}, {1.5642814010661, 1.5647991127342145`}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{3.817212152439725*^9, 3.817212185115758*^9,
+ 3.8172122205512037`*^9},
+ CellLabel->
+ "Out[687]=",ExpressionUUID->"e1e88a87-be5f-441c-a4ca-2f1bdaae916d"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "/.",
+ RowBox[{"eqB", "[", "testN", "]"}]}], "/.", "ARule"}], "/.", "ss1"}], "/.",
+ RowBox[{
+ RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.",
+ RowBox[{"h0", "\[Rule]", "1"}]}]], "Input",
+ CellChangeTimes->{{3.81721216084793*^9, 3.817212194888206*^9}},
+ CellLabel->
+ "In[682]:=",ExpressionUUID->"8dd8c18b-504b-469d-8072-a9fb0cc417df"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "munfl",
+ "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
+\\\"822.9006276986833`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
+normalized machine number; precision may be lost.\"", 2, 682, 411,
+ 31478759869561735920, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{{3.817212140998989*^9, 3.817212162850238*^9},
+ 3.817212195088612*^9},
+ CellLabel->
+ "During evaluation of \
+In[682]:=",ExpressionUUID->"a55da929-28cd-4032-aea8-5daec85d020a"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "munfl",
+ "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
+\\\"822.9006276986833`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
+normalized machine number; precision may be lost.\"", 2, 682, 412,
+ 31478759869561735920, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{{3.817212140998989*^9, 3.817212162850238*^9},
+ 3.817212195092041*^9},
+ CellLabel->
+ "During evaluation of \
+In[682]:=",ExpressionUUID->"d9f18df2-5058-4626-9d48-5486b1743e96"],
+
+Cell[BoxData[
+ RowBox[{"0.`", "\[VeryThinSpace]", "-",
+ RowBox[{"6.159214973190065`*^-26", " ",
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{"0.`", "\[VeryThinSpace]", "+",
+ RowBox[{"0.017156691619484233`", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["47573.03979762524`",
+ RowBox[{
+ "1.0039108687835472`", "\[VeryThinSpace]", "-", "\[Theta]"}]]], " ",
+ RowBox[{"(",
+ RowBox[{"1.0039108687835472`", "\[VeryThinSpace]", "-", "\[Theta]"}],
+ ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["47573.03979762524`",
+ RowBox[{
+ "1.0039108687835472`", "\[VeryThinSpace]", "-", "\[Theta]"}]]}],
+ "]"}]}]}],
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{"816.195973209307`", "\[VeryThinSpace]", "-",
+ RowBox[{"14.003222613416897`", " ",
+ RowBox[{"(",
+ RowBox[{
+ "1.0039108687835472`", "\[VeryThinSpace]", "-", "\[Theta]"}],
+ ")"}]}]}], ")"}]}]], "+",
+ FractionBox[
+ RowBox[{"0.`", "\[VeryThinSpace]", "+",
+ RowBox[{"0.017156691619484233`", " ",
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["47573.03979762524`",
+ RowBox[{
+ "1.0039108687835472`", "\[VeryThinSpace]", "+", "\[Theta]"}]]], " ",
+ RowBox[{"(",
+ RowBox[{"1.0039108687835472`", "\[VeryThinSpace]", "+", "\[Theta]"}],
+ ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["47573.03979762524`",
+ RowBox[{
+ "1.0039108687835472`", "\[VeryThinSpace]", "+", "\[Theta]"}]]}],
+ "]"}]}]}],
+ RowBox[{"\[Pi]", " ",
+ RowBox[{"(",
+ RowBox[{"816.195973209307`", "\[VeryThinSpace]", "-",
+ RowBox[{"14.003222613416897`", " ",
+ RowBox[{"(",
+ RowBox[{
+ "1.0039108687835472`", "\[VeryThinSpace]", "+", "\[Theta]"}],
+ ")"}]}]}], ")"}]}]]}], ")"}]}]}]], "Output",
+ CellChangeTimes->{{3.817212141009383*^9, 3.817212162858392*^9},
+ 3.817212195095738*^9},
+ CellLabel->
+ "Out[682]=",ExpressionUUID->"7ce119a6-a1c0-48cc-9d86-6e7b6a1eafe3"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"\[Xi]", "[", "0", "]"}], "[", "\[Theta]", "]"}], "/.",
+ RowBox[{"eqB", "[", "0", "]"}]}], "/.", "ARule"}], "/.", "ss1"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"gCoeff", "[", "0", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"h0", "\[Rule]", "1"}], ",",
+ RowBox[{"t\[Infinity]", "\[Rule]", "1"}]}], "}"}]}]], "Input",
+ CellChangeTimes->{3.817203455666684*^9},
+ CellLabel->
+ "In[304]:=",ExpressionUUID->"b0a27cf9-de55-4cf4-9b19-ff7b3add442a"],
+
+Cell[BoxData[
+ FractionBox[
+ RowBox[{"\[Theta]", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ FractionBox[
+ SuperscriptBox["\[Theta]", "2"],
+ SuperscriptBox["\[Theta]c", "2"]]}], ")"}]}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}],
+ RowBox[{"1", "+",
+ RowBox[{"1.0745227484633069`", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}]], ")"}],
+ RowBox[{"15", "/", "8"}]], " ",
+ RowBox[{"(",
+ RowBox[{"1", "+",
+ FractionBox[
+ RowBox[{"2.2786089295146557`", " ",
+ SuperscriptBox["\[Theta]", "2"], " ",
+ RowBox[{"RealAbs", "[", "\[Theta]", "]"}]}],
+ SuperscriptBox["\[Theta]c", "2"]]}], ")"}]}]]], "Output",
+ CellChangeTimes->{3.817203455897637*^9, 3.8172042416897707`*^9},
+ CellLabel->
+ "Out[304]=",ExpressionUUID->"d3fcf7af-82f3-49c4-81c0-3bf29938e0d1"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ FractionBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"1", "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]", "3"], "/", "t\[Infinity]"}]}]], ")"}],
+ RowBox[{"-", "\[Beta]"}]], "/.",
+ RowBox[{"t\[Infinity]", "\[Rule]", "1000"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "1", ",", "1.3"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.8172052654521303`*^9, 3.817205279995434*^9}},
+ CellLabel->
+ "In[394]:=",ExpressionUUID->"f49c10e4-6ea3-40fb-85e8-436bcc73196f"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwV1Hk41VkDB3AjvGWJqCxDE6OUpWmGTKnuNzJNxEUqxghZK9FkGS22oUWL
+UCoheymFd1IR0uqWpboUhRhladN0fot7r6Le8/5xnvN8nvPPOd9zvsfQf/va
+IHk5ObntdPx/TrkhcuLmE7T7hshflvuEhh0LTOrMCJKeuLq69Y6h5K3Kefuf
+CHJFwmM+W8dgH3TZ7Rz10wjBmR8CxzDY7/n5P5YEF8oyODWfMXz//KywhXp/
++vpLjNsYikQYdVtEoOwbX+1iM4bC4kg738UEe1I/zlyuNoa8jT0vdgkIun8Y
+DrtXK4Og66/9PdRdQsN1767K0Ldu3sLlIKgyyS/U+VsGA6foZLkVBCdWfaN4
+tFSGXBt10wO2BJsc6lW6MmXI0V4Zk2lPMHxzTUb3HzJktZVNq3QkeK+tuYG3
+kCEw9JV46hqCX8W87VRTGX5U1EsPp74RGlRjMVeG5sUHpy5wIii7eHxK3CwZ
+xvNDVMqdCbRvW5T9ri6DX7ix4kVXAgfVwxOqrBTzVfJk5zYQRIyvOvCuVgpJ
+SUe1kgfBzcoHjbnVUtwRqMUEUx8PXKfhfkUK74jY0TmeBJ/ltUtayqU42uXF
+lvxGsFN10v33BVKwpdojRd40H6W6Tf0HpKi1z/gnz59AL+ViUYCnFM3EsV4p
+gMC22yDEYb0U3bkKp8OpZwQvaP5prRRjfMxaQSCBmsUSJw0nKRaf9WnsDSJo
+chsNGoUU1YrmF/W3ENTopW3fNE+KKyLRn9nbCe7HaXhmfJagfPW42slYAkez
+S7M0yiToyxKOS6jHOmJCn5ZKoPG24J1HHEGesKYk+6wEEQd/ua8bT3A4Tl5s
+XiiBdfPRxDMJBNe+OFaFZElwa40hV5JEIBSLNBYdkOCpcNXzqhR6vuQlpXrB
+EoyvSy9qyyRI1df4NWWeBH9UB1bYnCBQiEsvPzxXgiHdJbXF1H4YKEg3luBR
+38u26JMEC4UtxvmzJSjYbPmNXhYBsXLyf6QjgX1sp69/DoHGG+WmyCkSHCnW
+N+AKCUSC6V0t70ehz54/Nb2SoCJgZbrjlVFs1ZvCvHhAELJ3tUGO+yi01hz7
+79t+Avc+TXV1xVGkqhaIJz7RfGeNnKq7zsO/s3PDBi0GAasHbMS7eQSZrbe1
+MmNQ+vvKoYd2PGymeR7R/YVBUXpAhLsKj61fk5ev3MhA8HpH5J0eDqHxVi5R
+MQz6V7y+o3uJQ3aKeaNpBoM9b5R2VidyMM5xLpxzgcExT9HwsBeHBAHXa3KX
+QbRs4a5tVhys391ODO9hMGN+inK+JoeGuTP21o8yCK+x7lAmLKL+rXyfps5i
+QM9IjXvMYl9D5PVSExbtnrV9iVUsQr6rfy2yZXFF5+GU70+yKEmxiDX1YqHi
+qDP+aQ8L9bjhKK0IFsGPjeNDA1g4yRs/mnSERZp/WNiAA4vBtEOpi0tYfPG+
+t1/JkoVzRXR5VAML87RJnPW3dN3j/I/Wz1kYvpzV0KDAonOKgv4yui/Ds9G9
+BwmD006DwQ7KHEyuufgE0HPUnPqgnWPEocJAAtcHDBTCBRYRNhyU/xw5bHmN
+gVGHVrHrOg5eRlZzTYsZ5NhrJkRu4/Dh+LZ9LM1tyP5E3Zn9HPKcxpc+S2Bw
+yNnWRzWfo/k0bQ3bzmDjS6sguWoO7XYjskZfBvJK5a2fxfQearRqbV2oLYXZ
+S99ySGoyl7ddweAJiXyQNIlHa3jMx9CFDNqXvPRyMeAxHX95OxgyMD8c4+63
+iEd8RWFbMn0HnmHHLu104bGqdvLPjAKDfzw6QztCeCwN3PbsvJT2/uGmtOoE
+HmIDidGHdwS6T3doFZ7m0WS170BoL8GnV2UTj/7mgcTuGTptBFee9fM2l3m8
+WmZa/FJMEN46c+QcdeR3mYsuUg9cTeqOr+KhlHx5i4C6NcWresFVHr4qX6cG
+Paa9XKC842gNj9VL5Z2rHhLY7d4y6HyTR1+ddrp7M8F4eH7Pdeo3TzobDKiv
+BXS0z7nFI0aawb5uIjBztr09QW1TKdscSz19tm5e+R0ekzXDM87Sngw3PvBQ
+E/E4/9VULBMRFNR+Ee6iLohdJrxL7VVptWqIWuS1tC2V+nFWgdWN+zzasyaG
+jKhrQndOC2uiPbqx29G5kf6bfhWTu6hjB3o/alObrx/8at/M44KFSfarewSF
+Atd/9Vt4+GVunoih9rbcP5RCnTvoc82Oeua8+hc8tdOtn6PUqMX67BO/Vh7D
+tqz187sEh6bNa2mlnr039UsR9f8A7zSg2A==
+ "]]},
+ Annotation[#, "Charting`Private`Tag$58265#1"]& ]}, {}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{1., 1.047762865397324},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{1, 1.3}, {1.047762865397324, 1.625169762983195}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{3.817205280138452*^9},
+ CellLabel->
+ "Out[394]=",ExpressionUUID->"0ede64a7-b62f-453c-b5e6-06e4c6ab27af"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"eqB", "[", "0", "]"}], "/.", "ARule"}], "/.", "ss1"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"gCoeff", "[", "0", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"h0", "\[Rule]", "1"}], ",",
+ RowBox[{"t\[Infinity]", "\[Rule]", "1"}]}], "}"}]}]], "Input",
+ CellChangeTimes->{{3.817205463367375*^9, 3.8172054635510263`*^9}},
+ CellLabel->
+ "In[410]:=",ExpressionUUID->"67bd5207-9130-427b-afb3-21bda9c7e82e"],
+
+Cell[BoxData[
+ RowBox[{"B", "\[Rule]", "0.14154259239895026`"}]], "Output",
+ CellChangeTimes->{3.817205463782987*^9},
+ CellLabel->
+ "Out[410]=",ExpressionUUID->"39e5dba9-9c25-42e4-8876-75a530e46ee5"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"RM", "[", "\[Theta]", "]"}], "/.",
+ RowBox[{"eqB", "[", "0", "]"}]}], "/.", "ARule"}], "/.", "ss1"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"gCoeff", "[", "0", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"h0", "\[Rule]", "1"}], ",",
+ RowBox[{"t\[Infinity]", "\[Rule]", "1"}]}], "}"}]}], "/.",
+ RowBox[{"m1", "\[Rule]", "0"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",",
+ RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817205427919524*^9, 3.817205479543686*^9}},
+ CellLabel->
+ "In[411]:=",ExpressionUUID->"6db9bdd5-3bc4-4993-85d9-2bb9c2d0db38"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwtlGs0lAkYgCeXU24ThbIhDLo5inbH2VHnnRVFTDGrVHLLJaGlqQzLlltG
+kZGhI5cyHxXqEDUhl5eMQ7UilMKyWBJn3Nmhmm/bc/rxnOfX8/cxPBXK9pej
+UCisb/xvc9CeIEkSJSVnx0yyCAxdpiUtr5AYbi0qnhcQ+Oixhen8IomOopKb
+z/kEWm5lnRqbJNGfN/DJl0eglUZC7589JFZeUHV/Ek4gc2T25a0yEg+ciMxI
+PkIgm9f2YLcXiXOB+VWqmgRy2xPOnq6XodWQ+W3jDCF2d6tMNPp8xfOzrz6v
+S85HvYZQTSvdL6h9o5+znnkHRcFixbV/rWAqP+PiwcQ89E6xmPkQt4y6O+c8
+NlTnoDQ9KglBilu0KLt/0cnGAuqATtbQEjrOUbsD/bIw96AFp+vqIob1Wgc3
+N93EuBCfiG0OC3j9HP+V2D4To+RLuBzJHP6asOyysVKAPjHtxu+KZtGy4ZrF
+3wfSMbNuNCs3aAZ1q2Mi3cfS8NngVtWHRlN4w5EcjupNRZo608b19iQKHvgS
+0SYpWLE9KWh4ZByVVKDmPvMqDjaXG9DpYzhQ4xeaxknEUbNMS3w6gqw2P7ZC
+fzxqXCqmm68awg6nXHNjzVg0o0+b3Z3vx3f3K9ZskfsD420lHdURPViSPr4+
+m8tFLdfStOMbOlHRMITXTuVgxVLz2lbjlzgZ+Tb6mXoQ3u0bvf4poR5FUoqB
+ymlP9HDRfdLnW4gCJbG2hGWL1cpRb59fLAC+r/fka+998NPwKv3YYwitYXyR
+PMMLaDM1y4znLyCmSVXeuvQMOBR8aDt0rBPOTZVZSg9zwI61Tn5R1ANGAl2R
+q4gLfK+emF2V/VBy0knWJY6GlkN6as7rhoA/Y+BxzyQWJIZalzqzR8BGN1GN
+gfFw8cIOH772GJTmaNTnuSRCT786O6B1HOziOmye0K6Cd+Sej6udJsGB5z9V
+1JYMTTusrjUpTsEbhWCqeU0qmCrVjhfaz4Cwbblb2pAGerXBdopJs5BIURww
+oqUDZUWumDM8B2c8uB1JJQL416XOs9lkATqT8+zDN2dC349em0wSFiGsZKJo
+pfYmhLmpaxj1L8FwFdPusUcW6GT8c0xBTwohj+MPOUtuQal7/v35iGWwCnGd
+MH2YA257L9u31q2AHs3p9ah7HpR7njVifPkML8u5Jyjr74BUeZ989ZGvcLn3
+6LZdcfnAfmNN18uSQaeoI4oZLgRla5XG2jwZtH4QT+f/LoTGwl7HkwUy2Pjm
+ME/ushB2RUT65JTKYJOYavqCJwTq5soUnWYZpEtEtn63hPAixHJEa04GLfRi
+/a5aITDXbEujOpHArkpj5CoQID0n/aHUhYQmv5wMmhIBZX0td1luJAQMOls/
+VCNAvyygJuUUCUIZ9UKjNgFfjhSOKUeSAEbmVZ+3ElBZsHnv6nsksKSBTx+x
+CPhNbbrl3gMSnOOPR7HYBJhy69n7y0nYf8WNmDxKQMZBj8ArtSRULHRvMvMm
+gDObLZDvIqFBSh+u4xCw3T1Iv+A9CZeyF/v9uQQMiX8uthkggcEIsV0bTYBz
+1vv62E8kfNzT7hlwhYA1ckUOhtPf+p0+mprXCMBgbnfDAgnkjiXrplQCwt/u
+9/JeIcGfO/juvICA7/+C7/+C/wD1yYEt
+ "]]},
+ Annotation[#, "Charting`Private`Tag$58884#1"]& ]}, {}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{-2, 2}, {-0.03631704748007345, 0.03631704748007345}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{{3.817205429041562*^9, 3.8172054394073963`*^9},
+ 3.817205479781142*^9},
+ CellLabel->
+ "Out[411]=",ExpressionUUID->"028520eb-aee9-483d-9152-2416a8a91977"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ListLogPlot", "[",
+ RowBox[{
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",",
+ RowBox[{
+ RowBox[{"Sign", "[",
+ RowBox[{"\[Theta]c", "-", "\[Theta]"}], "]"}],
+ RowBox[{"Abs", "@",
+ RowBox[{
+ RowBox[{"\[Xi]", "[", "0", "]"}], "[", "\[Theta]", "]"}]}]}]}],
+ "}"}], "/.",
+ RowBox[{"eqB", "[", "0", "]"}]}], "/.", "ARule"}], "/.", "ss1"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"gCoeff", "[", "0", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"h0", "\[Rule]", "1"}], ",",
+ RowBox[{"t\[Infinity]", "\[Rule]", "1"}], ",",
+ RowBox[{"m1", "\[Rule]", "0"}]}], "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "1.01", ",", "1.3", ",", "0.001"}], "}"}]}],
+ "]"}], ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
+ RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.81720558184165*^9, 3.8172056145702963`*^9}},
+ CellLabel->
+ "In[415]:=",ExpressionUUID->"aab225ac-8e68-4d46-a4da-600fe6364133"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {{}, {},
+ {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.007333333333333334],
+ AbsoluteThickness[1.6], LineBox[CompressedData["
+1:eJwt1nlYjekbB/DTqdO+nLZTKpEsFdkpFd8HGSIKmYRRkZCJIqMYDLJNtqxj
+K1kSI/v0syTL2BUzEjKGIVsh71anvd+7PO8/Xec61/uce3vuTx7T5o2boVap
+VJ4GKpX013vK5hs1Xgy2Jvjk+Ee1I9ucjb639mVwafTz8SUH3UnLk9TKzr0Y
+dNO1HgtraktmZX79Gf0YdPjB7Xmv6W1J6ehp2okDGEwP8Du2qMyNDDR/dihp
+IIMwj5iBm8a6kbzbo/zWD2Zg8pQt7vnUlditunY/ZxgDm6w5ZyZMcyVL0W/q
+pRAGbed6vWxf40I+Nh5jH49mEOlF9OUbXci4C+6rP49l8CI5xuZ9VxdSmCJF
+yGBp3WTTKw/bkC69TE+4TWLgERQ05dvCNkQObyqDwqLtxc4ebUiTdNw0BnPU
+PnffPnIm8fLDYP/IgokGK53J3x3+qV+WwIAvKEzt5edMAl+Hbdw1l8Hn82UX
+/b45kdy9N9ufns+gt/Fb79fHnIiY7Pm7PzHQ7a2YXRfvRJY4nBz+ZjGD20Ni
+v0zs7ETe/yUdyKBL4obxLz7qSLh4mt0qBuYzXCujfteRSyGW6q5rxfolOHe9
+kKQjnYxX7BiawSBq4LvZz/10ROrGlM0Myt8nphxQ6UjDsgQxZQYF2f7hdfcd
+SZwcIIOkr4Ma7+10JI/04yuO7GWQs9O9v0GcI5GiK8pm0PXTkAkZvR3J4SSp
+Iwx6eTU7RaodibXv2f3fjjKwG3Q8PaLUgaSJ3TU9weDTSp97KUcciHiYmDCD
+w+k27Y6nOpAxUnvPM3h1tOnsx1AHIrfjgpiff/Emjw4OxFMqXyGDv+a7rgmt
+sydyutfEefCt7jj1kT2pk8K7Kb4/u/OB0KP2RD7uLoOH3I471r/Yk5Ji6WHg
+Pjy1fm+UPRGHJeb9Xwy8NT5OX/rYk4PDCvjmJwxin9Qt1lvbE6l6unIGz658
+ri6osiOLirJdevzLoNlh1mHPO3bkzWKpIQxOHN3Tze+wHQmVD2SQ0bg5+fMK
+OyKdllrJYItB5amAGDvicXq+ONJi/apck9vBjmT8KE0gA+ui3mu2u9uRWi/p
+gjDop25U72ixJTFygxnkkb0D3F7bkgc5UoAM2JT0gk7XbIk0zZZqFoHbCoLy
+c2zJATG6jsYsakaF3zi5ypbI18Ocha/V9MTO8bZkoXzhWHRWaTK1IbZEHj87
+FvE/7j0+u5stGSknzCJjycTo7lpbIrfXhcWxVx/TJgta0k5qhzuLtiO++/T1
+uZbI5evAYpjjtYtvr2iJIKXbmcW2f+3b+h3SEjm8riweVf8x9dM6LbknHdeD
+xTdN74/8XC3pIz8s9pTlDYicoCVZ346KN5jF354zOZsgLZFuW1wgi+tLt99y
+9dSSBfJCYBGTr1+aaq4lYrLiQLNI25ylH/7OhoyQG8KiT1baTP/zNkSavtuj
+WJy2Wjm5KN2GtJ0kTTQLp9lbTJ9OsCFicx/qx7MYG/rr7SVdbAj3WFowLHq9
+OGd9ot6ayOtqCgvV7y6LpxdbkzvSeokR6zHL+VpWtjWR10GcWM+Fn89PWmBN
+9knXdxaLNk5xI7YPtybydfuRxfR7h9NHuFmTZHlhsWgfJ2xIYa2IPM4pLIzZ
+A/sc71iR7+SBYTHPjtN477ci8rj8zKJvo3evEwusiKvU3hUsmo2379030orI
+7VjN4h/dgad6DyvCSOVbz8K9wmzt5XpLIqe7kcWZ1RZx7/+2JLek8DLF+H/d
+03/BcUsiH7eDhde7k8+nrbIke3ZLD4vbXbb1PTvFkkjb+ex+FnPXDQyO7m9J
+5skLlcUGkzPaWVpLIlWv4oj4/fT4M/erLEiwMtDIG1M4avUtCyJtK4eTLA6s
+mWu384AFaSMfyMIzzn5Y4xILIq/nAhaR67N7nIu0INXSOr3EoiTim3dhHwsi
+r78iFi13J+xy0FqQP6V1dYNF7J6eHy59MSfyernNorTtis3598zJb9I6uM/i
+3OP1us+55kS+vg9ZOIxKMp2fbk4S5YXPYm2/ikYyzZzI1+MZizHjbm75npiT
+IfKFY7HL/em8M+7mRB6/1ywqNIkjw5vNiJOcMIsJVZ4ver00I3J7P7K4Wr7t
+v4jLZuSL1I7PLBJuWXe5sMeMyOX7xsLf6YdlkxabketSujyL8palRQGTzIgc
+np6F5vuE25EBZmSndFwjC7eG8iWnXcyISn44xC6zeDC00ZTMkUHiMNl5U672
+pSkpk7g05VB6wspEd8WUKAuBQ8Lb9p/HZZmS4xJHWg47O7SJvL3clMh8OHAI
+TH4SMS/WlCyX1r0zh6eaTD50qCmpktazG4egzBvDp3YyJRHyghbfd6tMOGhi
+SuT115GD4bzZS5yrTIjiOYdTn+L3XS02Idtlzzmk38iq2XnKhHrO4dbB4HP7
+t5pQzznMX/SfpnShCfWcw/V1vh36R5mQQfLC4pD/RwO5HWRCPefQ9qFF9sr2
+JtRzDi4tjT8nGJlQzzlYwKPd0k/G5JPsOYf4P5NKLhYbU8/F88fFlbY7Y0w9
+51CW8d/ykzuMqedivQzdOs1YbEy2yp5zaOi/1nlotDH1XPy9kX+cHR5sTD3n
+xHkeFjbf25h6zqFlV0noDWtjEiQvVA7P0m5a+gka6jmHEru5/KNyDfWcw4OU
+OzM3XNVQzzmEFS4onXNEQz3nMGXdsYOJGRrqOQe1xiM4M1lDPecQskrt/TRS
+Qz3nMOK3spuBgzTUcw5uV5M2Xu+ooZ5z+HtRZUO8hYZ6ziHxdfrarpwR9ZxD
+9uW8U9blRtRzDrtri1mba0bUc7EeqxMfdj9qRD3nUHCx6U7CJiPqOYeA6rJp
+fy40op5z4LN6dvL/wYh6zuH9E/tdd4ONqOccDlWHDEnpZkQ953DjSsTZAAcj
+6jmH4frYFNcmQ+o5h0geTrp3htRzDh6XxnX1KTaknnPoP2n9kMjzhtRzDo/W
+jGf27TOknnPovXjXvYZ0Q+o5h0qXvLikREPqOYflMYFRzRMMqeccrGtjSM4g
+Q+o5ByfntPOTuxhSzznc/73r2G5aQ+o5h9CN0efs6tXUcw659r3TrN+qqecc
+Mu9UD273QE095xAVanIy+Lyaes7BMtUietl+NfWch/2eHP2DNWrqOY+3X5e5
++iapqec8XvnHzMuJUlPPebhnqnd7DVVTz3lEhLrhRjc19ZzHXYfvzebq1NRz
+Hus8gw90Vamp5zxq9kfnN1QaUM95PHdU/fOi1IB6ziPEZ8KTB1cMqOc88kfE
+DCs5akA958FnVL94lWlAPedx4uLWIaqfDajnPHwmZ/v0ijegnvPoyLUfkhxu
+QD3nMWb4c/9rAQbUcx4TH/e92raTAfWcx5MBYWvW2xhQz3n8XlUBwwYV9ZxH
+9K3RWb++U1HPeeje/BLR7pGKes5jyzSN7vpFFfWcR++Z3M55h1XUcx591JUZ
+PptV1HPx/VCb42yainrO49FKi6M341TUcx5jA1r9D4WpqOc85uxbqdsYoKKe
+85j5v+zaFZ1U1HMxvhclW1ZoVdRzHpXN5QOc9K1QPOfht2xlLkpaoXjOw/nk
+y+dLDrVC8ZxH4PQPQx6ktULxnIdx68hI3/BWKJ7zsDg1aX1O51YonvPYfM1g
+dJfmFiie8xhteE1XVNoCxXMeq4IOTJ5xvAWK5zxu5vbIdFvRAsVzHqOWL/St
+iGyB4jmP6/urci90b4HiOY/FuuSUfZoWKJ6L+bwbZbXpZTMUz3no9+sqN5xr
+huK5+H2XK8t/+7UZiuc89i5aEHI6thmK5zzehOcXlfo3Q/GcR56ZbqJa2wzF
+cx7rR6/bFPixCYrnPD690fyzrKgJiuc8js88VfBgRxMUz3l8cSnc45HYBMVz
+8T5tSlb9EtwExXMej6NdYz+4NkHxnId/lbp/BN8IxXMejlXxdXfvN0LxnEeq
+2wKP4IONUDwX5/exn8+ttEYonov37aecjFFjG6F4zmOraVLRU69GKJ7z6LK2
+e2C8qhGK5wLKQnwW1z9rgMyvkYCJIxP4zacaoHgu4FVUrrv32gYoC0GAfvCg
+BTenNkDxXED9w56zYvs3QPFcwO4bdimtVg1QPBcQlK+xynpfD8VzAfEnTuYF
+XamH4rmAtxa+hS+210PxXIDlPW3hoh/roXguYFVNuJt9cD0UzwX41w0OP+Fa
+D8VzAQuPZ9wfwtdB8Vw8b0y75rL7dVA8F7As1jdqxsE6KJ4LmDfQNYxJq4Pi
+uQCnXaljfhpbB8VzAQvuCrdqveqgeC7A6+t4z2RVHRTPBWQXTy9990wPxXMx
+/03M4LGn9FA8F+AWeLH8jzV6KJ4L6Nw43chuqh6K5wKMOs33mdFPD8VzAZmG
+fc+dtNRD8VxA6tRCo+qKWiieC7h0pXRVh8u1UDwX6zvj87ZRW2uheC7A3FS7
+a9bsWiieC5jg9fJrKqmF4rkAdfcE/RKnWnyQPRfj8/zONrm6BornAta7RO+K
+vFUDxXMBPwXUVXTfVwPFc/HzzN1htfNrsEX2XIDjhtae+SE1UDwXMDTV8t9x
+7WugeC6gMqIg90OtAMVzAU9za1/NLBEQIC98sV8vLzwpOyRA8VxAeczdJz3E
+OBXPBfzWo8h7YbgAxXMBZu++uh7pLOCd7LmAbwPHsUVN4p6WARbQV5f29bp4
+7xTPBdQUzh2bn8dD8VzA7Mt5k39ZxmOT7Lk439y34QERPBTPxfetR4a98Oah
+eC7WO+Tt0ehW8f8k2XOxPovY9Hui2/8HL3y1cg==
+ "]]}}, {{}, {}}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{1.0039583333333335`, 0.6557531074626566},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{
+ Charting`ScaledTicks[{Log, Exp}],
+ Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ Method->{
+ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Exp[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Identity[
+ Part[#, 1]],
+ Exp[
+ Part[#, 2]]}& )}},
+ PlotRange->{{1.0039583333333335`, 1.3}, {0.6557531074626566,
+ 7.83713008710278}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.02],
+ Scaled[0.05]}},
+ Ticks->FrontEndValueCache[{Automatic,
+ Charting`ScaledTicks[{Log, Exp}]}, {Automatic, {{1.6094379124341003`,
+ FormBox["5", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
+ FormBox["10", TraditionalForm], {0.01, 0.}}, {3.912023005428146,
+ FormBox["50", TraditionalForm], {0.01, 0.}}, {4.605170185988092,
+ FormBox["100", TraditionalForm], {0.01, 0.}}, {6.214608098422191,
+ FormBox["500", TraditionalForm], {0.01, 0.}}, {6.907755278982137,
+ FormBox["1000", TraditionalForm], {0.01, 0.}}, {0.,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 0.6931471805599453,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.0986122886681098`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.3862943611198906`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.791759469228055,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.9459101490553132`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 2.0794415416798357`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 2.1972245773362196`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 2.995732273553991,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 3.4011973816621555`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 3.6888794541139363`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.0943445622221,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.248495242049359,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.382026634673881,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.499809670330265,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 5.298317366548036,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 5.703782474656201,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 5.991464547107982,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 6.396929655216146,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 6.551080335043404,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 6.684611727667927,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 6.802394763324311,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 7.600902459542082,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 8.006367567650246,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 8.294049640102028,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 8.517193191416238,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 8.699514748210191,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 8.85366542803745,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 8.987196820661973,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 9.104979856318357,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 9.210340371976184,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 9.903487552536127,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 10.308952660644293`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 10.596634733096073`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 10.819778284410283`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}}}]]], "Output",
+ CellChangeTimes->{{3.81720559874267*^9, 3.817205614807034*^9}},
+ CellLabel->
+ "Out[415]=",ExpressionUUID->"6e880d59-ffe1-440b-af8b-754c17269f6e"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"tastTab", "=",
+ RowBox[{"Table", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Sign", "[",
+ RowBox[{"\[Theta]c", "-", "\[Theta]"}], "]"}],
+ RowBox[{"Abs", "@",
+ RowBox[{
+ RowBox[{"\[Xi]", "[", "0", "]"}], "[", "\[Theta]", "]"}]}]}],
+ ",",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ FractionBox[
+ RowBox[{"Abs", "[",
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}], "]"}],
+ RowBox[{"1", "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]", "3"], "/", "t\[Infinity]"}]}]],
+ ")"}],
+ RowBox[{"-", "\[Beta]"}]],
+ RowBox[{"RM", "[", "\[Theta]", "]"}]}]}], "}"}], "/.",
+ RowBox[{"eqB", "[", "0", "]"}]}], "/.", "ARule"}], "/.", "ss1"}], "/.",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"gCoeff", "[", "0", "]"}], "\[Rule]", "1"}], ",",
+ RowBox[{"h0", "\[Rule]", "1"}], ",",
+ RowBox[{"t\[Infinity]", "\[Rule]", "1000000"}], ",",
+ RowBox[{"m1", "\[Rule]", "0"}]}], "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{
+ "\[Theta]", ",", "1.01", ",", "1.4462747730035337`", ",", "0.0001"}],
+ "}"}]}], "]"}]}], ";"}]], "Input",
+ CellChangeTimes->{{3.817203327473588*^9, 3.81720343332192*^9}, {
+ 3.817203480635425*^9, 3.817203492915291*^9}, {3.817203567652894*^9,
+ 3.817203683334523*^9}, {3.817203792400964*^9, 3.817203867074172*^9},
+ 3.817204689929282*^9, {3.817205150944984*^9, 3.817205152576948*^9}, {
+ 3.817205223522706*^9, 3.8172052338427467`*^9}, {3.817205288780418*^9,
+ 3.8172053029241323`*^9}, 3.817205411974576*^9, {3.817205654107472*^9,
+ 3.817205717556713*^9}, {3.817205782518643*^9, 3.817205785669633*^9}, {
+ 3.817205818678906*^9, 3.817205827254903*^9}},
+ CellLabel->
+ "In[430]:=",ExpressionUUID->"f01a72f1-91c7-4454-9040-b54a61c9cd07"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "munfl",
+ "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
+\\\"714.8507679457919`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
+normalized machine number; precision may be lost.\"", 2, 430, 270,
+ 31478759869561735920, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{{3.817205655271134*^9, 3.817205688892234*^9},
+ 3.817205721737104*^9, 3.817205789890027*^9, {3.8172058233032007`*^9,
+ 3.8172058313878403`*^9}},
+ CellLabel->
+ "During evaluation of \
+In[430]:=",ExpressionUUID->"46cbf58a-9f1b-42bc-8a11-616c84d0e1d7"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "munfl",
+ "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
+\\\"722.0335445780802`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
+normalized machine number; precision may be lost.\"", 2, 430, 271,
+ 31478759869561735920, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{{3.817205655271134*^9, 3.817205688892234*^9},
+ 3.817205721737104*^9, 3.817205789890027*^9, {3.8172058233032007`*^9,
+ 3.817205831391543*^9}},
+ CellLabel->
+ "During evaluation of \
+In[430]:=",ExpressionUUID->"c25c6435-fc6d-4b46-b41c-a3d203aa09da"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "munfl",
+ "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
+\\\"729.3631832016845`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
+normalized machine number; precision may be lost.\"", 2, 430, 272,
+ 31478759869561735920, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{{3.817205655271134*^9, 3.817205688892234*^9},
+ 3.817205721737104*^9, 3.817205789890027*^9, {3.8172058233032007`*^9,
+ 3.817205831394842*^9}},
+ CellLabel->
+ "During evaluation of \
+In[430]:=",ExpressionUUID->"3a09025b-666f-454b-9a32-9f324e354788"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "stop",
+ "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"General\\\", \
+\\\"::\\\", \\\"munfl\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
+during this calculation.\"", 2, 430, 273, 31478759869561735920, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{{3.817205655271134*^9, 3.817205688892234*^9},
+ 3.817205721737104*^9, 3.817205789890027*^9, {3.8172058233032007`*^9,
+ 3.817205831397901*^9}},
+ CellLabel->
+ "During evaluation of \
+In[430]:=",ExpressionUUID->"5b1f7808-f0a6-4257-b7ed-4acdc8c4ac95"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ListLogLogPlot", "[",
+ RowBox[{"tastTab", ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
+ RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817203685047369*^9, 3.8172037150151052`*^9}, {
+ 3.8172038305379047`*^9, 3.8172038309130993`*^9}, {3.8172053051002283`*^9,
+ 3.817205343292968*^9}, {3.8172053927899923`*^9, 3.8172054097503033`*^9}, {
+ 3.817205661259445*^9, 3.8172056675554*^9}},
+ CellLabel->
+ "In[431]:=",ExpressionUUID->"1dfbee5f-7e33-4446-bc10-991ba8838497"],
+
+Cell[BoxData[
+ GraphicsBox[{{}, {{}, {},
+ {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.003666666666666667],
+ AbsoluteThickness[1.6], LineBox[CompressedData["
+1:eJwU2ndcTW8YAPBb3XbntpcoqSgNaWnpPBENqdCiiZCIdlKJKKWEjAYaGtql
+Ukk4kZBIRkpa2kXET/NWv8dfPt/POed9n/d5t5vsvuM7D7DSaLQiARrt37/8
++rTISO5lkH+D8S6Fn6Aedm/0V5mShHHZ5U8nBQnqSFHmJY5+SUhNvm62WYSg
+VnCeGOJ/Jwn8LYlnE8QIKtWXM8H0kSQ4+29M/CBBUJ5qlllFBZIws/ZLopAU
+QdFlqs2NkiVBfFPrnW0rCGp32c+C+ShJkPpd1X1KhqAci5Kn+v0lQXDrrn1F
+sgT1/Jn4vqm9khCZmW/2UY6gfhS7KWrYSMK7n0uFUwoE1VtVF3vDSBJaIgZz
+hBUJqux21utVqpIgf0XPWnktQWlnROq2SUlCxY311EYVgmpNuSZTxiMJNRpu
+AtvUCKpPrOpj6awEvP15336XOkHdMjEs+zgiAQG1l/PtNQjqfNYbhnS7BExJ
+V0vbaRFU9kHDHXEvJGDb9n2vrXQI6qLnvq9S1RLQMGzcsFmXoFSyFiVaciXg
+1u3TK7T0CeqB6DX/7BsSUHnt5ZiMIUHNcFo434yWgOFsU5LTiKC6kt9srQiS
+gFOHKlTHSIK6HqNVMH5QAp5IbX/50pigptT6aCYOEmDjMbgyazNBhV4+9PKh
+qQS0dfWYhWwhKLtI/zM7dSWg+IrOjm2mBPX0Q2kpp5IE5G4Jt5A0JyhB75KO
+L5ISYF84YNJvQVDuzq0xr3kkgH58o02+JUHRnmqZd8yLQ5HSfOgRK4Jiu56S
+z/ZDHI5qb/isZENQ6Zo7DCy6xUH1UIXPwA6CqqxRSixqEYc/xV/tb+4iqHJe
+J5O19eIgkfImycqOoIqyAsaelovDQqON8aI9QcX/3SYTlC0OpYb97gWOBPU4
+ajxi8w1x+Hm3im3XHoJadiOycG2MOHDEV+jMOBHUwmG7zconxYHmFMqR6kJQ
+kZIlYyZHxeFmqFeErhv21483W4NdxYF1Y2rxB3eC8jXuWay3EYfWmm+3juwj
+qKau4Yfym8UhKvurI82DoGLeP1RM1xaHu0L9368cwPHx5NekuqI4ZMuLeqw8
+RFDWl1qfdywTh7pih1eFntielJ22KQSW98J+jZYXQRWv47A+ThOHS3vOxzw4
+QlDq5wUPO/0Rg6jritMG3gTlxL7KwWVIDFJctoQ/PEZQjQP7WgI6xOBqyX15
+XR8c3+r+sZnNYvDxl8z0PV+MV9jZqP+JGJiZzC0o+mN9Iefz9CrEQJmK23Q7
+gKBEmFVns3PFoCvvxxtGEEGNiM/Hy6WKQf9NvvzwYIJ6VFwQWXVRDH7dy/86
+eoKgfBr2yLucEQOtZCffXScJqi2hTUM8UAzeZFw6XhuK47NM3GfAUwx2N13o
+kQ7H/qCM0hucxWDiider06cISpcj/ly1jRi8fLdauzeCoJ4cdxysMxGDnN7L
+azeeISjuJ4yYj7piEGFjfy8pkqCsxuW1FlXE4EkvrfXnWYK6f1+0XE9WDJbH
+T1/eEkVQEsf3vI4WFQNz54iZ5GiCmv/uYTHILQYqunWMsfPowpQ520VRMCy6
+90U3lqCuSFvkffotCpeKNu+PukBQB1eXrjw0LArlOzaUtsThfLnfv577qyjU
+XtJ8Ln6RoF6m9hQ8fCcK5iP1hS4JBCXs7ed06rkoqIpbH868RFA12UYiO2pF
+4UKtMr3/MkH1t1bmapaKQs7f+MhViQTFP8MYVMgWhRf8F8fcrmJ/8ljeWZMi
+Cn2Eyqab17B/ziuX6yaIwnszm0sfrxNUmo7SqONZfH+x8TNvEvYPLWR5zAlR
+GO41kTVOJqjDA6yrGr1FQeL2Qd+AFII6x+/2Tmi/KHB53HuTk0pQ3zjeL3o7
+isL5I1cNPt0kKJ7fZlGft4uCrbcHxXqboLKYdobWm7G9qw7uVUvD8dKqsvBR
+VxQ86hrkHNMJKlYlPdNTDeNxSOI7nUFQP6Mk6TzyotDj07syNxPX09b0pRpJ
+UaixSTjQdIegZHc1HQ/kF4WfIaE937MISiHhqTrJLgp1gsevEjkExQEgIzYv
+AlpbV0Sr5BIUX1C0xNwvEbhWvqbO/C5BiVe4z40NiQAXtUL/QB5BeSuuzBr5
+KgLt9HB6RD5BpdBSJn+/F4FXGfdkkgoI6vNDmefcr0SANUnscnEhQbnejl5Q
+eSICHKundj8tIqjvilKhzvdF4NiKC2c+FeP+UJYlnVyI9a9n8gyXEFTDpPOr
+nkwRsNh2cG6qlKBs6qedNZOx/s73u9jvEZRb442HiQkiULNqo5RQOUG1b2p+
+sXBOBOTOXrFdUYHjZSzJIyBUBPY+L2ZbU0lQrI0egVO+IjC0b6/KuvvYXgXO
+7rOeIvDytfd77SqCCkmtjVzuJgKWhdGz+tUEdZVjpRllJwLcyjtzjGowv0UG
+wsctRWBC83AHPCCoZFv/V4qbReB5iUOKcS1BrQmMt/mhJwJf62+NwEP83rsg
+oU5dBOwYhU1Gdbh+Pbf0urFGBNLGRzYZPCKo4dDtTSelReBIZpmtzmOCMnfs
+uX5YVAQSM2zY1J9g+6zjK/fxiUBSLe9ORYqgpkc1GQfZRKDRQdJEph7nUw13
+nP+cMOwqyvkq8pSgrjVfFY6bFIal8VZp7mcEJWWcf7loRBi+hFUSTLT6M5/x
+zz3CUKW4u+hHA0FxKbkRxGdhSNpev9D1nKAqGDq9294KwxjfAP1NI/Z/KKvV
+tefC0B9S0lD7gqDWxksZD9UJQ30jG9x9ieNRWTbbuFIYJH0fhSS+wnhfzu3N
+LcT6jxYGhDXheiTVdkAkSxhyra9pHniN+9dPhZtxqcIQcUL7gWUzQf3+mfGD
+N1EYRPU3c2m+ISi/02B+PVYYbrEclpN4i/MnhUxdc0YYasPNCSY6uEDyzdMT
+GH/DqZfdLbh+nY19e9BHGNJDUh2odzhfNsfECXsKw81fCo8yWnF8b7ecfOkm
+DE923pmPeE9QTNLsR7SDMHylYkRdPxCU4qyS93ZrYfgYaEEYfCSoy0kdrstN
+heG/YZtBsU+4/0adKPtjJAwvRxfSJ9E1se42H3SEYV9TIfm6DdvzeZXqQzVh
+uBtQ3Jj1maCSlM9rF64WBtkEqw2h7dg/wxccs6SFwfT6h6s7OnC+aLhHZYkJ
+g9pSSPfqLwT1Ws67sJAhDNttT0jOo7+MWtQ+5BAGru2LW992EhTnfEPmh0Uh
+uPlD63DGV6zPrH3HnykhMMw0ivTtIijDoPLaZT+FgMtuwzXjboIC0XvN5sNC
+IJaolSnQQ1Dh/e4nTvcIgWXSlsJudD4jvOTxZyEI9fOvLOzF/frkhBv9nRCQ
+kvWPg/sIioXvdfiOl0LAdka5edM3gtr813Y2hxKC+ar8br5+gorgmnvG8kAI
+Nk6rzHxCl/DuavG4JwRTzzKWpQ3geiQgR7TkC4H9/JjpgUGC8m+xPw53hEBq
+YvyM8hCed9jpIzWpQvAo4FTTL3RWm+dh3atCuH6ckLs/jOv3uvHBx3FCUP88
+L+HECM5PdQkby3NCsCankzAYxfF9JSu1N0wI3nu13WGi68UO1YQGCoF3827r
+R2MEdWh2760Vx4Tg5WlZ0fBxgmK41Og1HhQCaufAX4PvWP+z8rOBbkJQo2n7
+ZxYdFvXIW9lRCCa2S/NX/yCoZnPP8WEbIbAQG7fwnyAorXMHfhWYCwGrq2ue
+2k+s73esT8AmIejZL640ilaTaXYzMRCCxYGyt3d+4X74bXP5Mi0hyFStT3Wa
+JKg9I0rO0ypC4Kn0JUH4N0HpG3ze8UVBCIL8Y4ua0G9eNZx/Ji0E9IOOf0//
+wf3274Xf5eJCILK22UvnP4KKku6LzhMQgv2NBxjj6M86t/WyuYUgSe1OX9pf
+7P8dFUs5rELwYsfc4I4pgqJ0tN8WzwtCrWL/cvo0zn/mjtSH/wnCjYY35++j
+A1Psdrf8EAQZ5zWKB2fw/bN5tNEhQejevXtJdBbnu1lLFFevIJw4/IrxHB2q
+6NWt2iEImec6HPznCOpdrRZt93tBOEUb6Vw5T1BLMex9sa8FYSnF+tYb9Ofy
+N0FUgyA8jTyUGsIkqLdXkquZjwRByfvsZ/kFgppziUsxqhaEW8l/bFvQbR8H
+hKLLBMGqiy4SskhQln1MyQ/5giBbQxNbtURQXltMchSyBEHAXtW5CR2xxaQw
+/JYgnEt/M+xLY1CutmmrOq8Lgvdm2VoJFgZ1oZ6X1eiSIBg89fj4GK3u6QK5
+MYLw4UTrBg9WBtXtFvpROFIQGgpuD3KxMSjTEo/70aGCwHuR2V2Edp1T+7IY
+gN/bSCvY0BnUb+DQDzsmCL5r1R/8Rv8Xq9K8eEgQHPY637rGzqDy0mfPR+8V
+BJptU4s2B4M63PjFQ9hJEAzPpdm2ob8F7tyTYysIhzLmlIM4GZSd8IyboZUg
+uMQv2ItyMSjL4mDvdlNBeOL1rK0CXVp95WSIsSBI5h4o2sHNoK6+WhYhYyAI
+AbNz7RPoQad5vyYtQTANSXKJ42FQQrHrrE6qCQL7LUuDNbwMKu1NI9c6RYxv
+k5L/U/T3V/2pI7KCUP9Ej8OFj0H9oNcxc6UEIfTb+b9T6OjSpNVeooLQMr9s
+02UC4z/cKqDBLwjU8PR3RQaDcuZoq1jkEoQ5EdlpCn3TVp7rHasgRMTf2OvI
+z6DWD1hy5DIFwGLWTvUnWqJlMvf0lACcLt3jFCXAoFZGNn5z+yUAopW3vy8T
+ZFAD0ZfKN48JQPcz0W+l6J1Wq/hVBgQgZ0+1oYkQgzJhekxKdAvAttqAhc/o
+NE2rnTztAhA8uVHhiDCDOtg/sJb2XgDufqPdX0C/FoGAudcCUGWRX3xJhEHt
+eBC9Zva5APi+WCkgK8qgzE7+3Mh8IgC63VZd99CssVQZW60AyLJKim0SY1Bw
+3DqEv1IA0lL3PWxFt/XSrsiUCEAYN/HWXZxBNVw0m9TME4CRsmmrn+iJ//Ku
+Wt4RgKezS0bhEgyqcEOF7+FbAmC7myWdR5JBdf3giLpwQwCkHT4dT0Lnze14
+UXpZAMYSd5XLLWNQHXttNDouCMCyph2HStFjK5qfcEQJQERX1iV9KQZVNnXr
+sG6EAAy2Sak8Rx9xzFM6FiIAxhOxG62XM6ga5b7Zu/4CsP1SXUM7+n2x6cdB
+bwGocz39dO8KBpVuPlq+xlMADpAZG8bQQr69l7z3YfkOg/J+0gxqW7DtgWpn
+AbgmKh43i954JESV3UEAzmjPe52WYVCpvy99s9+Bfm73nGMl5l9h8FTRNgHo
+WzuaGo9WPPKeyb5VAN6vDvouKIvj2e6R/X7A/HY+rL2Brjwlfr5BXwBWtQRz
+SK3C9h1yjVHSFoCEPwfepaGr7aTsEtcJAHUXJFfJYbzr+ocXlQSA+Yjqy0bP
+uNobHJcXgEsRt9eukWdQhiUrLfqlBeDYvfj/8tAblWYZTpIC4JC8CdYqMCiH
+hcxzbcICILfgyyhEm+wZybFjCECzerOb8moG5b0r27udSwBKBVhwX2ZQsfU1
+ba5sOD55niSsXcOgzM1X17TO84PaygrvfLQr4TD5/Rc/cH2Peb9GkUFF1nFZ
+8w/xQ3L22KMc9FS/7QvdTn4gV55Rl1NiUDwnDtscfscPWzr+rM1AV9+K6c14
+zg8OkyPFy9cyqHZvrmM9tfxwRJu9Nhk983LnT/kyftCT/W4toozrlfjgHt8c
+fhj+RvpcQk9K2txtSOWHSNdMKR4VBqVRseG19GV+OL6+bOc59Nr7Ox9FRPGD
+ShWP2CK6qdgrYPgkP2zgtDoYrMqgsiqdhu18+KGFVczkF9pNT4R4fYAfBKwW
+Sj3VGNTX99e+bnXiB2vH2wW9aF/GL8tXNvywwzVBy3Edg3oCFnY7t/KDjfch
+qxb0WvuO730G/OB38PHMFnWc/9kDPCfW80M4i6JWHTroUUOuyBp+sHy3gUVj
+PYOyhv7q6uX8cNr4tPtd9MaSWu29QvxQnJW4c7kG5mdjm7ggFz9oKy59voz+
+XtJq92KBAWZDtpN0TQb1buXu4bN/GHCnSzb9BPrMkGLD1lEGBM/+7htHu7oQ
+A/w9DNATtq111WJQl559M+r5yAC7vy2KrWgt/uvNlU0M+O3yS3WzNs73Rpmo
+yxQDHrIYNVWidT9ddPerYoBNAiwq6DAoP69Z+z1FDJAoPtV0Ax3XHOdudocB
+jeyn1nFuwPmnHR5omMyAz/BMNRjdVSiSoJOA9fG8fz6E3t59947OOQbMCKvO
+2OkyqKSF1ELDkwzglrB/3oC+luyeaebDAL/ON6qaegyK/0RI2J6DDNinLqKR
+iR46GaDt58yArJm77xn6OJ78Jxou7WTAyBpOgTB0PGuiXIUZA/gbS8ZG0Noh
+4hZfjfD9yWX77Qwwn+Um63m1Mb6+xpB6tNHf762kMgMWRlTWqRoyqDctv+RP
+yjKgPKjxbDJ6enajXK04A3ol+U6wbcTxr9nyfIlggPLZQL5jaB+5IvZtdAZ0
+RYcYt6Oz9Ec7b84RwCaTIL7JiEHZJN41/v2LgBpvxUuFaP+3IupWwwRMPK7L
+EyFxfC96ZZR2EXDpwmOPcHTymV9xYh8JKAvKeDaI3jMwPR7ZRID+7o/PtwP2
+/4ueB/9RBEjpvz5yH33jqdDPI9UE8Nj9vb/cmEHd28wZNVJMwG2pp9ln0Yxg
+MtArm4BVGzJ0x9DCSuYPJlMJOHRhwddmE4NiFjyyOHWFgOuapjuq0A7VxnIC
+MQSsSxhtk9rMoEQdogzvniKgVMuG7Qw6vnHz5c2BBDiwDrUNosOdNksMHiFA
+VlR0p4UJgyK97N7G7SNAu2VrYAn6kIp90YbdBHxu7wehLbge5KoUjVgTIL7K
+9n4gWudK04u0rQQEDiy+b0c/NVCZ3b2RAP9si1SDrQzqfrCj/jItAnw0b/Om
+obefco/qWUuA9D2nNTRT7K92t4/5sgRoXBz7sRddaBYmGyKB+Y8tdnuGbisd
+PLidn4DvNZzh8ma4f89+SlvNQcCyaKetUWg2tivP6At8MFPKUzeI/nvOo2X4
+Dx8Ubw/q3mLOoD4x79a1jPFBQcticQ465kZdVF0fH/Cz0JXZLXA9FyMUStr5
+4DD3oJ0HWuEZcT27hQ8qvWnrnqF/2Ri+S2/kA1OhyirZbQxK/7VMa/ojPvhs
+4PIjAu1/2iwxu5IP5K44fuhCB3y3ZpQU8oHectbDBpYMald2O1l3hw/Gtt0v
+SUa/NE6QbUnhA96/zdl/0cusFUqGLuPzXVnbdm5nUFyaTr2sMXxwhUjMKkFL
+rZgql4vgA6n1v4t4rPB897thpXkQH3DoLfc8iP6rmy7v780HkXyen+rRCxwH
+HmR64Pc01b/LrTGfPxY7PjrxQUxH/YtgdMGwyxm+XXyg2By2/T2a3BpaYGbB
+B69PVUSr2OD6l+5oE2vMB294HvpHox1ql7zf6vJBwsKwSC9a9nTkorg65md3
+gpfeDgZ1cniOeWANH6QnswQmog8PXPCokeaD3wXXtMbRjfbO6vxifHB0LiV/
+804G1T+T4eRF8EG21/6PN9EFVol9r+h8YL9n0/0/6Mlrvo9Umbxgl33ectsu
+XE/Kzo9d/8MLHzLOpt5Bi0greLCO80LQ6uj0WXRIX6aC/zdecI3rdrKxxfkQ
+6LJ2pIMXtHI7W3LROo8fe+9t5YUtLa/nmej9/2mOd7/khfQ+Zs9OOwaVnaqR
+5k7xwqRBXVgeOv7Ihsihal64X2//fgH9y6Ix0aeUFwy/SvTttGfgfcPr9WIu
+L5wLtcq/ix7ccH/NlTReOCK+WZmJLtgFWWtu8ML5MuNDNg64vocV6j29yAvq
+rddcstH6UbeH3KN4IS4hmjGDPsnfkMMWzgtbY91PbnNkUFdOf/ArCOCFFxNH
+MtPQHyejze2O8gLLycmzk+iZVRkKdA9e8AvQW2WyG9ffo8Os1U680FMVF3YD
+/feecpf3Ll64ULDu6gh6bNemMsVtvNBgfvSg/h48D8lxnhjexAuasjFTceim
+Xc7qBfq8sN3m1eYu9P1jaz/5aPBCxIVAKzUnBiWz1X2fwVpe+CH+XiwC/WX4
+9wfuVbzg3iZ3uwXddblL4askLyzolfbJOGP7M2RtywV5wdaqZuA4ui6+cU88
+Ny9MVUXmPkHLf+zQ9mLhhciyHWv4XbB//xzr2zbLA8aCnodc0W2O6bvXT/KA
+qAXXoWI06XAhddkoD2gcCljNRLtL2WVw9vGAtuBEjoUrgypKX3topp0Htlys
+GkxGX8wwGP/+jgcSHzOGhtATlx8rDr7kgfzVG+5queF5NOGnVB/FA45Dx5Ui
+0TKOAvW9NTwQ9njmaAvaifQUGSjjgVQBQb/l7uiVJkLjeTzQ2DOtexhN2U1V
+/c3gAYvW8fr76OTitkW2FB5wU1UmWPcyKAG3TUOiV3igv+fPMiu0w9LNw8qx
+PKAYcnY8Be0XvC3K5AwPhKiJRwyiL84+0t4bwgN/vox/Ut/HoDKmDgSf8eWB
+dTSjX6FoY5GHW3MO88Bco/nbRnToKv2M5r088HzJwkdwP55XBQ+cnt7NA+Vy
+4W1O6GMjT/sVdvLAoq0USy5aqran0cEC2+/m/usnOuOW5eqLmzDftdHZeh4M
+ajwtffG5Pg+cjH654iza44m/Jasm5u+Km3Mzesc3T75NyjwQbRflLnqAQXm+
+lDOIkuMBxqzfWlf0C3arT6+leKDCZm9tLlp/5vpnUREekOyJEfiJtnlcYrSf
+jwd+fJJV3XAQ86Fmw1lJ54FNYh4CEWjrNzpqXAvcsHn9+dpG9N/ncmVuf7mh
+0vOpMuMQg+Lt/Rpb+4MbXpRaetihQ4JVaiSGuGFHobPHLfRT/74NJ7u54VG5
+oko/+hDZwt7Txg1m74YeKnni+enJG2nTFm74U98s7IPOtHgQUf6CG2pn+bWq
+0IOZfgqyFDdYpg0uZ6Idh7v5rtZww7W4yLfGhxmU7Y1hDa573LBul5T5efS+
+0JPXTudzw6aNA/HNaL6iWDVmJjfEmwmmCnoxKI4I3sWTqdywR7nNxx69+tzc
+EjORG57uOih4E30/zG59ZBw3HB/5L7QH7bNL5hLPOW5oe1lZJncE8yfqJnYj
+jBv+XmwvPYSWHZVpkA/E9l1IDClE/+DyvV7lzQ1FzSKMn+jaBwfObzvIDcLL
+r3hrHGVQx01Ek/pduWGAqZsciD47kVp/yoEbhks2JtSgr/4Wpa+w4QY3tXfW
+82jLkHynx2bccEJLtmujN95fE8Oe7zPmhjcb9uqcRu9QqTXi0eeG1qOU01N0
+E/+VhkoNbrBqPLadfoxBGbRp2u5T5oahvzd5t6L1BtrHhOS5wedo8I3zaJN9
+tVGNy7khco/6xEv0Gh2xVeGi3NBe9leI5zjuf0zVRzoMbvi5coq+Da1JM7X9
+w8ENCivcG+LQ1RsKBsqXuMC3Y++OZnSGfvaRwBkueLFNqYjPB893hlFD+pNc
+cFhl4KMl+gFX5k62MS7wmnryOh4tNm1V/PYbF8iMjF5uRluPjf651ckFMWyX
+5Pl88b5v+k7u2EcuyGV8jd6Gfvtzv/6mN1zAvLpQfQF904BHW7KRC3j7ZWpe
+oX/9Vhb885gLogWOn+fyY1BbzLSbW6q5oGVKbLUpWv399f2lZVwQprP5WhT6
+ehT18Uo+F2TqyLx/hn5cqrwi+A4XyCm09bD443j9ZaPvdpMLrKYTH5HoOc1i
+JYtrWP/h00fC0Z3F1MiGi1ygwvpqtBZd8Z4RqBjNBVuIJN2Zf94p3SwVge3J
+FHHUDsDznkjIuOAJLnBMO2Lmhz6mWvSOx5cLaouec5eiLXtNQzi8uCCctLw1
+jr5wtecbfT8X9F9VpCkGMiiLt9y8HM5c8OneWW0PtKCG+09uO2z/0WjDDHRz
+YMRFASsu6HPfLfoV7e/O2S9pygVqc/KUeBCDevgs9YcCcAH/McGNu9DzQT0F
+WnpcMPh4a3wCemzHKYmtGlww/vB78St0+ho5rT3KXHCERfkOPRj35/qweR95
+LhCcVTxMop91GB69sIILfL4QbCfR4eIS53LFsD8LaT6V6FyuRnjOzwXypGLZ
+BDpnBUvGEBcX7NQrfKZ4gkEFZken87ByQRJvWcE+9LNnYhvXz3OC7rTzgVto
+qaCAoD3/ccJGov3PJ7RJ1AHz6B+cUKlmas8fgvfpqPKKyiFO4CfexZuh09+t
+rhjs4YTAtclJZ9DzZy5vkezghN6OhqBatKEv5Wn9nhMaydC1f9D6aheWxbzm
+BO6dveXKJxmUIvOZ47MGTjjVLiHggXZ+s1WW5TEnaHqbb7qFLjWa8DWu5oRb
+YTfMP6JXXk02O1fGCeJb5VfzheJ8Ll2d9SqfEzo7xdo3oxXEwiIEszihVC7R
+LRR95NupTqdbnDDf9qCuHF3cIH4/7zon/Iy893MU/WlhPc9MAifwxt6aWRmG
+51+nh+3mMZzgJJP22QHdqpEtnXaGEy7YdMQnoJe59nT8d5IT/Jg+Es/Rkhv2
+cVkFcMLq9vMn59GZV+Xz8r05Ye8xqFgfjvmqX1nNeYgTCmUePT2Etojcpenp
+zgl1q1bm30a/5qxb9no3J2Seizv4AZ330+mI+i5OEFKSnec6hesjuUEu2ZIT
+GppYDxmhZ/faAutWrH9+R4E/unNlHXWM5IT98urP89CmWSF3unQ54Vz04+ou
+9IJnar+VBidU6UtHCkUwqIatapFPlTlhZr2PvCn69j7TMF0FTujS/pQWipZV
+n2spk+aE0yPek6Xot0ddQpUlOGGqYc/yAXTw8gtheYKckCBTJyNxmkGFRd1s
+XcPLCSMK5fPb0AdVS0/k0zGeHueyCLTcp4HjqoscoKv6dWMFuijQ9X7FNAfk
+NFlnD6F9DcHUcJID/LZ/7pc8g+eR82VyL8Y44KtCItMS3dz/2cx2gAOW0tIn
+ItC2HH2V/V0csNAtXVuO1mueORD4mQOMh9XcBtEXta32cLdyQN21iS7xSLxv
+7hO6nN7EAYyMMB0LdNilE+y6DRzw/Pa0ZxiaKVRV8/4RB+QuhgeWoJV2s+Yd
+r8bn/GrOvWha341Wxj0OGJlTWCF0lkFt1SvVLCvggNjGszWb0XILMc27sjnA
+yP6AWiD6v3f7U2dvc0Cr18ipXLSD25mbmUkcEHRnbcFndIOdwtttVzhAOsS8
+jOscg7qz97r6zAUOCDPbd0UPra0qWZ97jgO8zRK3e6GPOM+FO5ziAGbC1EAq
+ejb23AGeExxQL1Dk8BptZcIe9MSXA35ltOTMoxN4mouDjnBA8WR4i3IUg0o0
+X8urfoADpK59+OiEFtztHz/uygH5M9/vx6FLTzDX5TtygNnxIb+H6IXm5f95
+7uSAyDVfecfRd51VP6+15IBa9bHTy6IxfiL288QWDnA+qfLeHF12J/5PJckB
+4h8fL51Ae1bfUArX44DZH3XceegXjzlPmGpyQJHjpl9t6Lwl4y5hVQ6ojPKq
+YD/PoDQS8x2+reYAzxc2u7TQii7Zg+UrOeDADoF3+9DiwqlRUcs44LJug9IV
+dMm6/7T3iHCAk/959ydorb8r/qozMN8dAQE/0GmHz9Vzc3HAD4W7B6RicD2w
+vZEywILx/9HVMkdf1W8IrZ9nh8P1Jr1B6Ieupw9m/GWHqJ8Dh7PRFQ+NHM/8
+ZAebes3WVvRFtkBrj1F2KHPeJraETr6VamHej983bdFTiWVQo2mKZupd7GA3
+Zai/G/21NWWr5Gd2SCy1kIxGJ+V7mdBb2SE7L6atHF1gIgmTTewQEyzg14P2
+Oqyg29vADvI35sd5L+B+flZAufUxO0ju22+ii5a64yLeUMMOMiv2hnqg9wZc
+ma8pZweNH8SVy2iGmUZbaRE7XP8aGVWHfsHxMicvlx2UvrQ7jqALNb96ZmWw
+Q9gDRV6ROFyfR2ZXZKSyw3uNuFskmqOt+FnaNXYo75cgjqAvGkY7piewg6/V
+mPMNdPGEUGdmDDtMfhGPr0ffshw0z41kB5+2B6nf0RabLmcVhbHDW/+RGPF4
+BrVxS95QZRA7pLx+aL8JvXfnM8EnPuxg+3Ub3RtdN35C7rUXO8RdKLuShN4i
+tm9Zhwc7LGawLNWj6x0k/464ssPDd/aW39HXKvXL5xzZgbz3IkTsIq6Hxftt
+GLvY4QV15DygDxlpvpXbzg7qHnsCvdAKX8zXGpiyw7bhgs3X0Dle5vttjdmB
+ER7w+xH6zvZPwccN2MGZfHtmGD2wM/FgvDY7lK5rmRRIwP2ldrVa4Tp26NBJ
+2KSPnlbXf/NaiR10FVYF7Ef/fRe4aUIO81GeGR2Pjl5xLl5Imh04TsudvI+e
+YBEs0JVgBz+Rx1bdaNeWVynuQjg+es/TOS/heqPvsucCHztwGybdXIfucgod
+u8/BDvs9WUUc0Ur5n8z6aZi/hB7v02jRGekAoXk63KBM8vPQjJO8Rzb/pQPv
+rGnjO3RLrY1K0E865EgtNcygfdNyqgpG6TD3X0TOyssM6rTbU66+fjrU6fce
+MkM7XnSXleymg2C8Np8PmpPHYGlnOx3cfK8nJqEvcDEyE97TIc1ZdP4xWpA3
+ib25mQ6e+U1bhtBCfdeUeV/QQfV2kx9xBe/nOS8ELevpIH5obaQWevOjX1UJ
+D+lwcuWSvxO69eN7yQ/36fC42cUsEr28Z72eZBk+3+20lIf2Fv4gvLeADgVp
+fCkt6MrxsLyCbDq8dI0WnUJ3rZr++zeNDq1buwKWJ+J+W8EzvymFDlcmFKo3
+oYmPZ6quXKXD7faAr57ozbNr1ny7iPH6dQ8koPe9e7VNK4YOp0WC31WiL5Ha
+cjGRdEhh3ZX+BV21X6+oK4wOSUeid9Cu4n0iIXdQK5gOg4cVhhXQPVut3l70
+pYMJm4n7NvT8JrYDI0foIKs0VeeDlj6SkmdykA6JNdYL19FZnwaT7rjTIeak
+h+xDtEjj4/WsTnT4LGem1It2K5wP2G9HBys7hij7NZz/0oHujdZ0+HWzaUAJ
+7dJL/7PWgg4/fC4nW6HXd0QpXzGhwzM9f3V/9Eqxj1yzRnRIMIsuSkLzvWyO
+3adHh7LOr3x16AVjq+I3mnSwk76woxedO73BT1+NDgcVM0/SrzOo4VCvz3mK
+dMhc1IpRRJMRLzol5OhQnOh40hK97e36UxdW4PfPpHf4oP1tLj5aEKfDDudU
+vmtoTY4nyX5CdGgR6y6qRo9wFjNG+eiwJYW5vvPf83NG0ns56RAdzHVrEX3m
+sVPjFxY6DGmIjMveYFBfiAl2eyYbBOpryGxBq3T2dL6fYoPJsQBdTzRvxnLT
+HZNs8CVhQicOrTl4eWvrOBtkud5bVoImjdd27Bxig9rTLf3v0BoOnxc+9bJB
+DrdT4h/08k/nK/Z0soEE88BqsSS8X/ipzPZ+YgNBc9YMXbTOr6o3nu/YoL/F
+eGkP+ozIMvXfTWzg7KpjEo52LzKXCX/OBm/KJo+lo1tj9FO5KTbY4BcVUY9+
+Gf4tPamWDfQN2YL60ePuuuvW3Mfvk8J2siczqE1cWqY1pWwgPM8qugbdZvZ2
+yKKADdLe3H1khj79l0b0ZLOBn0eYpRc6oauxJiCdDdToifVx6LjXUqO8qWyQ
+1zu7vBg9epZ5K/saG4wuf+76Fv382cEPRpfY4NZr+vmf6E/k7rgvsWzwcOLV
+dYEUBvXxzodnwefYYCxYIW49OjC+LVQsgg3PE4qHdqI3Xd5fXhXCBqvX9yv5
+o5W0wg86BrAB75+DH66i/X+uTpo/xgbPjBr2V6KjlA5szjjMBrOVvJ0f0Wm6
+G722erCBz9B2vb/oavf7PBOubMBve/OUaCqDsn//US5pN+b3GL1Q+5/zsyqN
+bTE/ySmP7dA142vrflixgcGqIw8C0fExAXo3zdmgxir25nX0U/s4ZQsTNrhk
+Qz9wH70kHHplzogNWLd9F/2EDthv41WkxwaGO3eU/IfuaZa476bFBuNem9VE
+buJ98+E3H5F1bFB64f11TXR66KNbTUoYXzJjcCf6luGDDZHybHDCi3O5H3oL
+3zAYyLBBbFOz/hX0+GfH6r+SbPDS95hxGfqCl2zqPRE20OJlrmtBdx6xHTnG
+zwZtGlEcE2gtN45MVR42UA6SfM53i0Gdu2P57AedDWRtXx5RRoP3RqvSJVaY
+N8ycM0ebtPwEvzlWKE2s8PVEd5WGpur8ZYX3eYzWaHRO8+xu5k9WiGuol8hB
+X6w5e+rZGCsMLv9q9gz94YsmZ/wgK1R8Obq3Dz3urfDHrpcViiTO7lv6V/+p
+AGPZTlYI7Ve1XHEb+29s4+SPT6wwqhcmbYAWc09nqXvHCo/5wjsc0RHO1b5x
+r1mBgyTDg9A7lXPAuZEVfuW0cl9DbxuM8VarZwV+7s0R99Cux89Os9SxgvWq
+O11v0Z0hVV1tVaxAS1uQ/37733piIlN8Dy3lYcedhvvzM5uH54qwvWsHjq1G
+n9+5VOZylxUEd8T7bk779/8bgUsb7rDCV/oRF3d08MHPOcK3WeFqaYJGOHpk
+wDLrVxIrnCpmn0xB30lnTr1NZIWG7d3JVehjpxgZJRexve9Xr/2AfqRcePtS
+DCs88fmR/RPdIcyc8D3LCs9tgJsvHePdr3zV7hQrNF9UdVD8Zy6PWP0QVnDQ
+eZZggmYtbX23MoAVllvyl7mjb1IZnlzHWUG1QeZhGFrtwKL15GFWGIhmLUtG
+Z5+WiO70YAUZn+cJlegj5St4Xrixgrx1kMM79BnbjZ0Ve1ihbWgVz3d07sm7
+M5l2rJD+oz2XMwPv95Pxe6/YsMINIldVDn1go4xo5DZWyBhISjNCe6ReFgrY
+ygo29LrZ3eh9c8K7DxmzAs9vGTIQ/YbeNexkyAob1rQeu4wuEV35eMcGVmAR
+7IopRLcZCnWaabBCtcCOi43oScPRjcaqrJAWqh/Wh353oXNQX5EVtG7m2jHR
+4ZYr32vLYf8U35EUz2RQoY4/WTSkWWH8m8HL9eh+rTMB6yRZYWpfxF5LdIEY
+v5KaCCucNT05eBD9uPe9tBo/KxxK17M9g94ix2m3jocVvns3Fd9Ef1g23LSe
+nRXuFej9vo++WVoSoU1jhSXja7Lv0IkBqX768yxQLzJsMIbuyh2+A1Ms4Dpj
+ZEy/w6DuqXzkN5tkAZnqvPXSaI7raTU231mgl389oYt2EYu+tWeYBXyqBj7s
+QGslNNUe+MYCHrveRR1Bbz1dJOTXxQKa52hyUegKUe+siHYW2Nt5pjAN7bDc
+6mjCBxbY2esuU4OeZ088mvaWBa7wF5xqRd8aDs0qfcUCz74cfjWGvn3CWuBp
+AwvcyCtaYsvC+6jQjvJPT1hA9NMp2RXocyXPY8ZqWcDr3nc1HfT08O9EWhUL
+rDzHqmiN9p+Rfid+jwVYYpv5PNGvay6T6kUs4DZp33Ua/TX9Uq/5XRbo6i9O
+SUEP1u8v97jDAk/CuozL0e0tdpWnb7NA3pvJT03oYrHSwdvJLDDaNWXXj755
+6sGWuquYj4KZ+nm0x4UnHzoTWPB+xLZMJBvniz3fJWYsC5zXXeWqgs5NGQ+S
+jmKBcGpvggk6LDP/gvFpFii68qbAGX3Z9uqrA6Es0BToWxGAtlSf0ogLYoEs
+ld158dn/fq9c2XjPlwUKjlyOzUZ7mLpHdhxlgeLuVQ516NAj7IdYPVlAbc1y
+wY/onTFu/ir7WWDq6/nqcbQG+5NcB1cW6Lvoa8GWg+f/rwG0c7tZYODRwKtl
+6KCb7yPu2eJ4GP6urYF+7r5WvteaBcpPXk8wR9/8+vY7/zYWKO0e/eCOrrcW
+7oCtLHDG5y/7CfTYhW0jfsYskHv2mfwltPzEa8lcQxbg2uemnovW8xw9+mUD
+C0hYflR8lPPv97PZXn5NbO8JVcZHdK3szsCtaiwQIxrUO4a+y2qhdEqJBZy3
+PkhnycXzoKEus0qeBYjVrJYSaInwgB+/ZFhg7LnToBo6acmeqSzFAuxqrUe2
+oGfO6yp6irGAkYt3jxPa38PPJ0eQBTTMDcAP7X7U9WM/Hws4dm9JiEHXLtnv
+kuNiAV5a8qs09FmO6u/72VggPsbwdyVa9ldHes4iDVjMjbheoxvKpY6OzNKg
+hDuPtw8929Ruo/KXBu9izzGn0O/1j233/UWDrIjuL3x3cX+P1dtbPU6DjGQq
+dxWa91ly3OIQDXaGaLvroj8Hjb3e+o0Gxx+ZclqhRWouyl7uosHYNMut/f++
+X/4t7ks7DfgrjkmHoG/WmfKs/kiDXT7JCQnob+tlbvm10OB2Xuz3LLRj0iug
+mmgg3Gyp+wCdG5M3zWikwaFN333foh1kpSnXehqUefml9KOPMuNTSutoEHRz
+tGQGPaPpeJalhgYtq5zLiTyc/+79YbYVNHDc+jFrFfpbUmJUXgkN7DY7n92A
+lj3WdGshnwZXrBZtLNHhf37W78rB9l9r4NuLvlXp+V9BBsan96AqED36IFWT
+7RYNbuwesrqAZkZ/P+WcRAMVLvtPaWilZc8/VSXSYNRGyKIC3Tcet0EogQZi
+GxSKX6CtJ/KyjsXS4Pf95MVOdEX8OcnmczS4SQUZ/fpXXsH55LWnaSC56dVR
+ej6DUs2RWnkhlAZ+K1JjJdC/rQpKx4JoUKP655oKmvPP7a2Wfljflu4EQP/Z
+uXegxJsGeusPBNui6bluMUKHadBTfsXKE30pha4R7EEDiPYWCUM/tK7r/epG
+gwlX1leX0NFuf65udsL2j+w+moX+9UFsW6E9DZxfhC9WoRuVr7GL7KSBS1Jw
+RNO/eBw7noZvp8HWHzY/u9ASlG3kiBkNftgJW02ipXQDN9ua0CDO/uVNegGD
+usFdwF5P0mDwaEi7ODpyYt9LNQMazDHU6croq4ICcbd1aOBR+FfaCN1LrNpO
+aNBgef4HxR1ozwluxilVGlQf+iDrgb6gqvfmpyINLMlF7mB0TqXshX3yNIg/
+7dIX+6+8Tm2TNhkafAiYu3ur4N98HpmzkML6XLpdStHSCUXFlBgN7gUJsT1F
+9/3467RBiAYmv9OTPqK/XdNlLyVo8Ix5SWoYXcccyVvDjf1XO54wi27hCdua
+SafBGYu6Sd5CBtXNf6hLikaD5noeE2m09iXyi9r0Eiml3huljt5bpju2ZmKJ
+LL69pXoTujIrd3TV4BJ5ntek3Rb92zn4s8zXJTLTf2DkIFr4Tkq59Iclku3V
+utETaIpnIUSmaYm8Pa3WcQG9eemKyqr6JfLEwFjNLXRKtfmr1TVLZJL30ZgS
+9B99MWvVUqzfq86UQh93HavTzl0iyYL+qVb0lYYHgnB7iTwwPXa9H7376wlL
+y2tLpLhIp/xftHPv8qN74pZIwbq6LI4iBsXfdvO4V+QSCdnJQhLo0fjvdmEh
+S+Srk8G+SuiY2xzSl32WSL3hvZQ+ut3zW2POIazvgvvSNnSieIj1I9clcm4h
+VM0FTUtpqGqzWyL7PtVtP4Y+eufJ/KTlElmWpuwSgXYtObCC32SJbOh+53wZ
+XTJfvkzNYIksEr1vmYnujM/+baWxRF6s61UpRyut0c32VVoiF7Y4LzxFT+44
+qnZj5RIpL63++AP6uR1crhNfIrMLPI4PoO8ZVL4cYGB/WLAK/kXfaH7ZxuDA
+9jsIZrEX4337csQD/YVF0mxVqoIY2qP5y3HP/xbJbTPZyavR1ee6ZpLGF8l3
+0vpMHfS6kLhdr74tkjs+7bUxRX9SGD3F7FgkR23lrzugB+rnQ9a3LpIe72Kb
+DqFlyFebPV8ukicDUn8FozvMHDszniySpw65csagUzaXkZ1Vi2Thqy5GMvrX
+to7j4iWL5Kr7Kznz0JI6X73schbJuo3rflWjxS8+XXf91iJp6ivY9ALdf+XG
+o7ari+Rlh5Zrn9FiBvuFl8UtksK/fWyG0RWaWupukfjccJE5hX71RVQ4N2SR
+jFeJSOUowfPsJtGHEz6LZO69eUWxkn+/B8AaPc9Fcv/90DwF9F/JHPsoN/xe
+ilNSG92/ZpfZB/tF8kl9zkkTtKbGnvlVVovkjwi3N7vQTKrpWMCWRXJyjaHg
+frQHb1XmC8NFcipq81Y/dPOU6tXlWoukunv40TPoFLEtm/yVF0m+4Mmzl9FT
+BYyS16sWSauou/Hp/+LLSPuksGyRfEzejS75V/8l7pozgovkGbsZ30do0ToP
+2x6uRVLQ545VM1pOuDHfiLZISmkWL+9EH1UxqU6fXiDTDVd+HUUHm02Fsv5c
+ICUU2C7OoA1t/ps6OLRAqkS4rOMsZVAHP9qvedO1QLK36zwTRTfzbeDT/rRA
+qlbfMJNH534uyU5rXiCz0s490UDzP2j/yd2wQFI8XIrG6G1fWr4HPVwg/f0U
+I63R67nLUgfLF0hx0x9vXNA+1ddn7AoWyGv/ufAeRUvN3WZ/mblAOvWd0T+J
+HooZogxSFsh9x9ydYtAJjy4q3bu8QGpN047dQGtdLTdSjFkgF1u9/LLRb3IC
+ljIiFsgo6xzPcnTc+v+8pIIXSO2H1TYUWk5o5+mkYwvkMqf8tW/ROk9LjUQP
+LpATx89MdaJZndblXHNZINdrm1aOondd/VMuardA0vpYPKbRy5/IHEq2XCAt
+s2vY2ctwvr39TC03WSBLC/xShNBHrOHJHYMFsmjZBpmV6CDPU3vXai6QHqJE
+kir6xdfq3Iq1WF71PM0AvZVbOMFo1QK5S4zHxQx9Y6BK7LXkArl8C1lohzZd
+bCJ3Cy6QdJs74/v+lXcqmGuUa4E8Y6Qv7YMWVhg8fpK2QHIKMzaHo4+bbwwk
+ZpjkRJP8ngvo9I588Ts/mWSCa9T+JHTfbjt73WEmqVCv45aNpg94qb/rZpJL
+veT2e+j51WI5h9uYpOvdu6qP0boHz1bQ3zLJ5JkA2mu0UEjPnsznTJK9suT5
+Z7R9k0Mq+YhJEpVO4QPoaIdlvj2VTFLxbeSaSXRBmV336SIm+ef92oYFtNu0
+bp9cNpNUTdizi+ce7ofdf068vMkkcxolPomhz+VXZR+7yiT3GR01l0MLqZTv
+F4tjkrHlTmXr0Idfid9/Eskkz3f+4DZEt/pLJnudZJIdR5XszdDsRaO84n5M
+0ktU9Lot+ufph/zPD2N9EdWN7uh7CU/vBOxlkv7W4uNH0XcWNRoUdjPJ7tUG
+rCFok2hj/3YbJqmeqcQXhdY6JFcab8YkX9qNcl1B7zvGCN4ETJL18+mZW+jY
+P7pNsxuY5LvyqS956Pb2jrvl65jkYb8dZZXoPRcU+b3XMEnP1KQTFNp5wXlJ
+UYZJvi9o0WxG85WVBg+JMUk+Gdq3z2ip/N3BOQwmyXJs3dl+dF7QtYUDHExy
+lNtD/Cf6mloqt+LiPHnDPTtt7l953jmp43/nSYvOKQmOctz/7CZLy37Mk/e6
+90YLoucuPzALHpwn17weH1qOLrLU9yC75kl/Zqq+InrKoIyF+9M8+fFV4BlN
+tNUNx5Ufm+dJvejIh0boRTHfJxkN8+T60y9GzNHlzA3dx+rmyUqWbdx26HXc
+30ONKufJ0zbCK9zRWaebk/iL5snO4tXyR/49V5Jc/y1rnqyyj5MOQidZCJlW
+3Zwna86a8p355+KZ9rir86TS4b0/4tAXbxJD++LmyUmdnvob6KWuRG+Ds/Nk
+g8SL2Ey0zOOmY6Kh86SojsyWIrQGfWbkl988OXXvx58qtMu0S+cbr3lyc6Hu
+jXr0ahfYUrRvniw05FBpRlee6FeI3zNPXg9zvt+GzuWJD/PeOU8ahxtr9KHP
+2USY2VjMk+WWD++Mo13pbLFam+bJJ/+1cEyhDZ1dNi7TnyflQ6NcaRV4PuL+
+5MGiMU8e6OvL50E/0Lu3OKo0T87Lj4+IoNOv6vF8lMX3ybtSMuiNelXRTyTn
+yWUKyzcpoVc0HvcvEpwnuV9aO2uiwbq0JZV7nvwjYua1ER2373HqBZZ58v1/
+PEdN0Sc4hj+Ezs6RaZZpe3egLzzwP3lsco40W+Dc5oRm9Su9uG90jizq3654
+AG18e5DPsW+OrGkPnD2GzpXZN23VMUfuvhf1+ETFv7/387U0bZ0jY4zOBkei
+7XjceY1fzZEa2wPk49FesaGahvVz5Mlc1+fX0WHxgg26D+ZIN36zPenoq5t9
+6nTuzZGq5jr9eWi2XUNSOvlz5GrBde7laMaHp306mXNk5Urd1ofoWGs7Qi9l
+jvRQddB5jiZf/LhteGWO7Bm5cuntv/wVfk00jp0jR2kTXz+jq3v9xk3PzJFX
+ZXyl+9CTD1nuWofMkQtjK23H0KfpnQ2Ovhg/O9upP//y/dvGZP/hObKOWHGL
+iV6zrkr++N45cn9aQAl7Jc7vDy4HwnbPkbFW/PcZ6LlDN9njdsyRh+79LhVH
+tw8+pd80nyNP2cunr0QHVyruKzKeI9Nf5UcqoVULZFc80ZsjOxNj9migy3jZ
+tD+snyOjdBpXG6BPx63KH1GaI120PYc3o/+Yt51Ykp0jrfgCblmit34MyBJf
+NkcWaP3cYoe+I2+nuF5ojpSX7+l3QV/KfMthyYP5sDQPOojOX6Fn5Mk6R0qt
+0Fw4hl79+fubqLlZsmYp80QwOiV40/3s37Nkt9PNkQj0ceGrfxrGZkn16/Lb
+Y9B3lXRjhr7Nkg94N+deRgdmxflxd86Sn6WYf5LRbz8M31P9MEtGSdvpZP4r
+P/jull2vZ0mpw7u889EsFQqqJ5/Nkp7bmcn30GdEHx+683CWrJW0e/AAbX29
++b/XFbPkhMT+t/Vo5uXiD1OFs6RponL7K3TJ20dsctmzZN6rirZW9ETonnM2
+t2bJ3Uu0pg60pGqfbcS1WdLdR6K8D63UVRpQGj9LStovJYyit/yQ7+89N0sm
+DdW6T6Kvy6enC4fPkr62Nmtm/+WnNDzfNHCWbH/b8I12n0Gpr1xJC/eeJbPO
+rLjKhX5xdOhOxYFZUu66m64A2vuX+pVxl1nSR+3ye3G0u5d7k7w95ut45V4Z
+dMzCp+1uVrNkeWDr4Gq0g/qfZTe3zpIzzt9d1dCO3yXXtxvNklcNed5oo7+F
+F10S2zBLvldUV9+IzrhK6NivmyVbNPbHmKDPGGXIJa2ZJdd55n3ahl4++cKh
+Q2aWdPtAl9iFPhEx0rpcYpY8GxpuvQf9VPrglb0Cs2SMh3jYXjTtQM71u1yz
+JNelz7c9/71vxts9QZslvWaeVh5HP5FZOLxhdoZsSu2mgtC8mb26ZyZnSCXv
+dU/D0XbfpCyaR2dInf21NefQAY6ityW+zZD+3uey49BKnzXXH/wyQ24KSYxK
+RNde7ma//36GfOEz6pSCzhENX8b+eoac1U9Yk4HWsQ0+Zv9shqx6GDWSi96T
+rM2S/3CGvPvhY1ox2jBu5XtmxQy5x/20RSW6RyOzd0fRDGlseHG8Fr0wuVIl
+L3uGzDaiRdajb5znrly6NUNSBt3ES3Qm43mw4/UZspCucukt+tXCo6DyizPk
+gUMT7J/+xbvGrYyIniGH1db6daI7qoXlvU7NkKJyAx/60G82mLa+CMJ8cMkq
+j6CdYw9Urz4+Q77OHAyeQIuPfvkUfWiGbC7Sqf0Pvf+HsMqI2wx5c1Di9xx6
+Q3T4AwvHGfIb/YoMSxXWzzwXXmIzQ7pTWZs40Z5/koKFzTHeJjsnAj3pIX83
+xBjL/1B4WBidn53M26c3QxrFFHhLoj+57M8215ghx6/YH5JBP776x6di7Qx5
+OanSXgE9klHjIy03Q+pvfGWgjN62YVXWBakZslguRWw9+qZbBueM8AwpNKo4
+rIN2DMm6fZBvhjylGF5siN6if8ujjT5DrjqZengTen3JvJPpwjRp7x8lZYZ+
+pKN59sHfaTI4d9Oz7WiBuMoOlYlpUjqrzX0XOqR60jVzaJoc+rvlP0e0yQoX
+IfGeabJU8Xq4K3q33+E/Fz9Pk7ufvmTuRzPqY1k43k2TK0wHfQ+j6w+tN4x4
+OU3q6v78egx9V+LjnVlqmmSIjG8MQN/rGNQKfDBNOtt3XQv5lx+2zsnJe9Pk
+r+CmvlPozk2KHccLpsnuiSr5c+i/1zeNTdzB99XuusSiSat0+eM3p8mR3PT4
+BLQSf+X5X1enSc3G7HtX0YtvpoT846dJg+na5uSqf39/0vV86tw0qXhnqOs2
+mqjoSQ8NnyZDVFQG76DXOvlnsARNk19mLn27+z9H9x3Pxf8HAJy+KEJCKSml
+ohKpVEReUZGkSBQNMisRykgoys5WRiW7KHvPs/fee++9hfB73e/P5+M+n7v3
+3b33OvQXKqZiB328P53dTX/Qly7ysezUWYZTjflEHNqoWeKjv+oybHz79iMZ
+/X1r6d6j95fBc3eYcQZ65ppQfazcMhz26RXPQXM+oo29JL0MgoZKVIVoAZ2k
+mHLxZWzfbM0qRUtVJtWqXFwGc/1V3SryuNTHXeNn8H0dP7OzHn2j3d/cgncZ
+duol/GlGi3S9othxZBkarGzEOtBlc47hwRzLIB0UUtSDvkV7/8WFXcsgx7rv
+2iD5PlSV5SsZluHersm0UfQDa1pFTZpl2N29/+gUWl1ywOTfxhJERsTZzaEz
+67WSPy8vQULkn64lNMtXOhaBmSU4sYuFbw29R+X2p/KRJXi8d9RwE53MHnfo
+ae8SXB08E/VfCmPOqzNRddRtS8AQutC1Fe0skRsQWrcEDlZnttKjjS/o2l4t
+X4J2/5mjTOg/14/bDeYvQTjHWRFWtMPfN4H2mUtw9OiG5B70KktH/YmkJeiv
+U5TmQEN8FWd11BJsiItJHETnCtZ+eB2+BCyfMk4fQf+U1Nhk/7EEUFLLdgzd
+2UHlmeezBMe32y7won+cOy+i674Ey9qtxafQ11tMV1kdl0BmvM7jLPrW5xvV
+hPUSPA8zvnOBDJ/tqTRd8yVgDSykFUGP0v1K2fNqCdz7i1LE0KVV58qKdJeg
+w9jyoQR6IU9lxlhzCW6qTC5fQzMd8jvO/WgJ5jzYnaTR+5+/Mm5WXALdfbQs
+smhr7Rf1jreWoGcu01MOnX5065VLUktwmvki7V30xY2i/FlYgt8GH03uoYc/
+nVL8KbQE6v8FtqmgryYVLD06vQRLme7nHqOXAul+7TqB79NFxf4J2pWwfVrF
+tQTaGpQ1mmijovQLDvuWIPW4446nKeT6Gf5dV1iXsL6/eE0XzZOtTbFJvwTv
+Tsi80kc7vR75m0G9BEoCLj6G6J7vwhtvNhbBNIuIf43mle7ZIby8CHVxQwWm
+6IJSdb6V6UVoHqOuMkcfTZFSSh9ZhJErh6os0SsTu5wseheh+7No4Xvy+Trd
+LYG2RXiR8iDhA/rsvBMTVf0iDFrY+Nqh/1VcVi8tX4TXqYmvHdE+lBuZbgWL
+0Ci8JPWJjC9ZNw7ey1qEX1U3mN3QBw1inDmTF4FXIrneA81fnrgxEr0ITx+J
+fvImn19ev1nCz0U4Ndwj4oN2cSlcsQpcBI7Qn31+6Cch/e9l/PD+lLzff0Mr
+Zhcz7PVcBO3syF0/0COtaz+GnRYh328qKAhdfYbuQsqHRbgcqnE0FP2flGWd
+vcUiPPJhCAxHSzR2GyobL8KzEzM7I9BbOzNZT+qjmXe8/U3Gv4Af6ZvaiyC3
+Rb89Cm3qx6LRoLoIrZFMZ2PRU66hDJH3FyE4fdU6Hr1o1ZX2Xn4RljtPlSSi
+v0bI6ty/sQjniATqFLSGq9Wu01cW4R6N08U09OGJ9Xw60UXQUU7WzkB359w3
+GhRcBJ6Hok5ZaANpjoO5fHj9WM4wgoyPlE0V37kXQWNRIyUXfSaExewt5yL0
+l9Dn5qMZeDQOqexZBNai/XmF6Nj8OyXCOxdByM4/vRhdPGnwgp1uEQwC7SJL
+0ZH3bjL827II6RGDHuVohdlXkV1rC7DzXIZBJfrQiMmVvIUFUKynk6om40P4
+QHP45AKIs7Sw1qJfN9zU+TS0AF+tudvq0L2KMGvUjf+PWPnSgD5986axSssC
+nGRWlGlCf2OlmpeoXQCXK6LLzWgu6eVnJ8sWIDo33r+VjC9Ecuvu/AWg35F5
+rh3t71gvviVzAfb+eVDSga5Y6AqaSlyAS2yf73SR8dfp+Up71AIMVeg2dKO3
+M267Xha+AHpS/bK9aOb30i5pPxbg8uZGdh86jj23JMJ3AbKf5/EMkO9DgXLV
+32MBpDYEHAbJ59f27aCL0wJcO3mrZwgt5sct+v7DAjBp7RcYIfOnpNM3X1ss
+wHm2YNNR9A5XeblnxgvAEdOdPIZWy9h7XVV/Aa76tE6Ok/GN6cBZJZ0FEBby
+4phEc/jOMd1SWwCPvzuuTKH5/Hh7JZUXYFZU4ck0etbjUcjlO3j/T9VMZ9As
+F/ffE5FZgMC2i7azaD2bzbXzVxfAfn7QaQ4t5+3ncfbSAgTv0HKYJ9Nf7Xu2
+0+cXYNkxw3KBjH8NN1xOnVoAm4yJ54vk83vpMsd/bAGc1tZuL6ETorokTx1a
+gHM/Jk4uowNrGhwF2BdgYSWX8i866w5NxhmWBeB/9K6KtNMgbds5+gVw3nPM
+awVNaWQyJEy9AIlviNurZH63p79bbGMezCuuU62R6eXUcOHV5XmoUymOJR1+
+jd1XZmYeul+IKf5DW3GyKimMzkPe9bhZ0lKpLzYf9M0D1dnDdutk/iee6aXV
+Pg9M+j7MG2ihw1+ZDRrm4dvFnT6kWdeC3r6tnAenZi+WTXTNt2dV9kXz0GbN
+5UCahdmZ7jMxDzmvcxZIB/r9OBWSOg/+owbKFKmMObt/Xb4UHzcPs2wXkklT
+D289mxc5D/bndm+nRPOfc2OqD5kHFZOd90lfCDdoHPg2D+/oT34n7Wkjab38
+eR5uHnvWRlpU6jfLdrd5UP1bvmMLOjlM+BOnwzw8j7h3iXTxh09jgtbzYKO9
+Q4O02poYv4z5PJTeX3pPWkFlQkn91TwQP3f4kDbhEtA0fzEPm2aPw0hz0oYr
+emnNg9fM4G/SYsujJ6Iez4OHQEQk6f20vv3F9/B6yr+DSEu73nzXLzcPlY7T
+7qTv04aub0rPQ1SXmRnp/FMij/dfmYeLr27cJ10xGh0oIjoP42o6AqRv3flW
+oHJuHj4QdRT/P54cWGrOPw+0YW6l5P2GflGO+cozD7VHg5xIz4RoGmcdnAeT
+u3RXSavlqe7r2TsP/eJVi+Tzzdw6GvgfyzwIrU//IG2SEUB9jH4emL2NJEh/
+UuKUlqWeB15m5U7yfZl+oNV9tTEH6dbhBqQX9v977r88B9zjj/6R77/3zJfr
+eTNzIKJo8570MQrT/8ZH54CxcPc6GX/eLVz6yto/B/vEDhiRVo1x2gEdc3Ag
+72s3Gd8KKdZVnzfOgZi85zXSJ0cFP32pmoOhUapQMr5K+NV55RfPwarD0ioZ
+v2cMTUxmc+Yg5PjzG6TpqHLPHkyfA+1CdU8yPYgxKZTfTpgDvrv9dWR64bev
+FH3/Zw5uVExtJx3rUGsfFzYHalwOl8j0dleT4k9/wBzoSMfrkOlx3Hft127f
+ORg9Y+BEptd7DZpWNzzm4GtVQRiZnr3nO3nfOc0BQZeQRqZ30y20cYkf5mC8
+/lIRmR8kizgwjFvMwZFdT8vJ/MJ028ZlLpM5qEsRLCXzk7cUDDIqL+egMCSc
+IPObxtF7vF5P50CGyIkm86PyVOveiidzMD9l+4XMr5Lc+PS2PsDz71oxmUAP
+ZW9UStydg1+79suR+Zt5ge9/72Tn4HTVwiEy/7t88wdDpuQcVO3/MEHml59O
+JY+vwBzo95bFDJPlibH1dyHhOZBeqNIl89dt8mFcZmfm4JiA50Ey/9U9UmSe
+yjsHZ/XYqvrJ92fpELZyZA5obJ68JvNvRzaPYJEDc9B85RULmb9ztX00tGKb
+g8N2t3+T+f9C6zbmPKY5oNq3IkKWDyv38j7Q0M3Bep1RIVl+uOQqFcn8Nwes
+loQUWb7cjtVt9fg3C1VDvXlk+bMyGp7ZsjgL7B0d51vQN9SiXx6cnoWPPAkh
+ZPnVJHBs7unILPzz0KFtJMv70PQr8b2zsNL3T6eezG9P02v+a8Pf9xgTZPl4
+yTT/jlTDLOy73bijBv1d3H6HV+UsJM7uV64i62P2G37dRbMw63jnawVZ/uvW
+zJ7MmYXiZuOmMjSjSOjut2mzUO/nREeW1/f1Dm0ri58FURevC2R5/ipsunDv
+n1n4puf1iCzvy2KTbz8PmwX+xU8WZH1A0P5AWEbALHztsPEm6wu9N6oLGXxn
+Qbzd9P/1CdPrhnFqHrPQE64fQ9Y3bJf+6CQ6zUL//LN4sj6SvnhiZNvHWZAw
+fhFN1le+MnmfeWw5C4YdZiFkfcZBxEMy0WQWXFo9PJLI8sm7/PB2g1k4vy/d
+LAHdrj5Rqv5sFn7cWrgfR5YnbN+FMtRnwZvzypkYMv7L2r9kfTgLzkIRVGT9
+amvxXX19xVnQlDheE0keN4wRLL01C78GCr1/kenniXjeket4vULrO2T97UlT
+4m5r8Vnoc1SlJet3j88nnu66OAvVDU/SyPqf6M4xZlHBWXh73VmdrB+ycFKm
++/PNgoJtF9V3tPzlUO5V7lnwOPE40B8dYWl1X+XgLKw30p/zRXduFbmdsXcW
+mI5M5n0m6xdCtnT7WWYhLYbyhhdZH3Ld5vSOfhZimWXL3Mn4nmhQ2Uc9C1cG
+a6+4ouvfPGuQ3JyBB9meyc5ow6aAgN9/Z+DzWU8usr4cPprJu3NuBlha6+zJ
++jT76su3puMzUCx+b4isb2cZa7p0DczAgc1DYtZo91nJJ5JdM3An6JybFRne
+4wVL0c0zIJji3foWvUThKLundgZEqsT3vyHzI2sJLZuyGbAzwiIM/bft+6XJ
+/BkY43d3f4U+pXW96X7WDAx+Op9jgH70fZq/MHkGvrOeG9VDa/KIS52JnYGF
+m67byfbH08qxA4ERM/Ao4yoP2T6JeOefxBgyAxwDKqJa6I93N+isvs0A6436
+G+pk/cah4MDU5xmo0I+9o0rWvyy+zjx2m4GAugWFh+jltNPvaxxm4ONC8C1l
+8n1OnquUsJkBrjtZEkpkehtVak56OwMzOpICCujfP68EHDeegfnYy2xke8z2
+6u9DAfozsPNn9PJNtMh/l56wPJ2BmjzPWrI990vm10PHJzPw5O10qCS6OPIb
+C8WDGSiQLDa8gr5TV2prehftxyF0Gd3j2x0/LTsDKcOzy6Jkfrri4v9Uagaq
+g6XjhMn4z2or2nd5BtZFuDXPo0f5jH0fXpyBTi4nJrJ9eiGaMbr57Ay0Fpom
+k+1XC64tlgp8M0DrOat4Et0gQkFdwz0DWvMrU2T791l12jXZgzPgctfL+ij5
+/Ju6xcr3zkD7gRwGLrK+ond4RpplBmzSbbwOoA83nVMupZ8BfddO5n3ova9L
+3kjTzMBtinpnNjK9/Ngb4r05DQGvtTZY0G7HnuX4zE2D2y2f52R7/tOh/hvf
+Bqfh3MzzGrK9b6I/Lh7cMg1y6X2naNFdwkOhEeXTYEBP6UiNdl248Co+exr+
+Xi1pp0TvVrz2JzNuGphzLx7bSCbz11e3S0KnIbxDRX8VfRJbLo0+02A+dyL6
+//0TnkW1/U7TsOdh1DDZfyG8PyVm3nIaagwH2KfRvHOPF6kMp6HEqU5qHH1R
+50gwm+Y0bFl/oz+MVmHTT+K9Nw18+ztd+8n+pt5gfvEb0zAttvGrm+xvGzvO
+cP8SXj+xO7Md/df3uZyBwDS4V38oI/tj3vlWLDsenoa47olasr/mZkvKlrDd
+0zB2dn99NfqKs7dBLu00jO9lqypHL3GXX+7+NwWXuzryitHhmgVGG9NTcL3C
+IC4ffebyKDVn/xRc5G/0I9BKf4NXLjdNAacsvQXZv6TC+EBWs3QKWg323E9B
+J117S+GYOQW8PWt8CeT9h+oxx8RMwZ+e1PVodKHhN5um4CmoTpYvjkQPXTCS
+2/w8Bf1hJU7h6J5c5bfHHaeAcYbzOtkf9oQje4uixRQoNSlvkv1lZp/phqxf
+TsFPX7NYP/T+zMgjsepTkG1s9eAz+rEaXXa34hTAbz0KDzSV1+c4Jukp+GV8
+/ccn9KOw1A0J0Sl4wrRTyIF8n8d6Qk1O4fmSSss+kP2p02Yhv7nw9wGv771D
+76WfWendNQX6/7F2maNpquN/7qWdgh72yMcmZH9bGf+fO/8moYxduNWQfD/V
+tTQu05MwdSFfVo/sz5qiTSnpm4T2sBuZT9H3TK5lUjdNAotP7RFN9Pzi3K6r
+pZPAdEnFXhXtcNE6/0PmJGwvGepXQa/fVi0oiJkEOZ03F5XI/sn3/9i2hkzC
+5nVWZ3ny+SqWZN34Mgmc/mmNN9Fu3meS3BwnIdxOl53sX31w5fd6o8UkWAif
+VL5C9h+GBn/ZbzAJRh3rHmLo2xcc32lrTIK4b1+BMFosvTolVmkS3Lw7ZgXJ
+6/MMi/2TnoS15ck9Amiv1Mus0pcmgX5kz0WyP3iyR/aCj8AknHFUVeRGN995
+/3Po8CQ0buQ/P0Q+n3/SmhfYJkFe97o5B1qNdr+eI90kTE9PfWAj33e3bm7H
++gQM/UmzZ0YHH45QOz07Adq5kbZk/3VagtQN+4EJ8JcpsNxGxuff6ZZdzRPg
+/XSbwX/oNjXj1fPlE6Au+ObhRhJjzmftccI9ewJoy/ZcWUEPOLpXjsdNgOGV
+0cNkf/qN+hau62ET4Js2sUH2t1vaCRFhvhPw7OrRhlF01qEjwVSfJiB51Ttk
+AL3/MVO55rsJ0J27pNeNlj5lJFxkNAGyl7lOt6Fp8rMnjmlPwPm/V6Yb0BbW
+ugOflCeg7WTYz2p0C/0U59zNCaCfkVIpQx8Wzwy4f3kCrO/wby1E/yd4Uy3n
+7AQwa6pEE+giQVbN4zwT8ORs1W1yPOJkhVOEF/sE8Fc5j5PjFZSZ3AKbDBNw
+WvyzdQzaY/Pxsi7lBHD5TuyMRCeWRW60LowD0en1LZQcD3GyviY9Mg6F+1wO
+/SDD169SntY+Dn0qbYHk+Il2YrQbb/U49ARbsnuT4WNZ9AjIGweTVTNXV/Su
+W+G1zMnjoKtT9c8BHT9+8ZZDxDi4Tb3T+oAWj+TduvltHH54uZWQ4zmh72bX
+TNzH4b3y5lEz9Ac/6pMzH8ZhXbzW0gjd8LD3y3PTcZiV3VrzAl2utSEy9Hwc
+FCxDOHTQ7fZN7BqPx2Gt6qcGOb4Elf1neuXHYfjy7rAH5P2YBn5QuzYOXDUz
+PYpo73U7+l6hcQgyE2aTQycxMleqnxyHT+fmpG6gD7llFgxyjsMixf5X5HjX
+LX/K+Wcs40DVkOErhi57//DeNA0eD69JFSLHa0qvzxqvjsEWw0f1Z9BXz0jk
+rE+OwcdjmiMn0bp/CvLtesegNW9omRx/k1e7ucbUOAYqgsOUh9CCvxW1v5WM
+gZ+BDs0+dATnI6rjmWPA/PwZ9S60jG13Q3LMGOgxT28womNblJuvhYyBpMrq
+HDkeuFtGenvTlzF4dtqldwv5viR4DXScxsDXLqLsXyJjzgtlS+pVyzHIl5KP
+XiLHLx9nlbkYjkHHE7tPM2gNxWcEl9YYDOfc0BpD/3692Zd6fwwWbwcKDaAD
+eTYE5W6OgfyKA00XOZ7JMJA4AmNwMZymuhndunxK3ebsGFDAPk9yPLR4Uk10
+P88YXPhdcrscrXBsSSKNfQwkapm2FaLfsr40VmIcg4kvi+nZ6AV5mfoFyjFo
+7jF7mop+l0D30HtxFDo9vzHFo0fE+HacGx2FSTf1hN9otZNnJ5o6RmFXeoVc
+GHrL8Le5NzWj8GquYySANP34oQMFoyC59/Nbcjx4v27Am/yUURhjWN7miT5I
+I7Ty7PcodERTeTijO5iEA3f+GIXAVoLFFs0wy6Wf7jkKE89PeFihBcVM1TXt
+RsFLTJLWDP00N8Vih/koWJ/aZWGIvmGsnZmhNwqZbH6jz9GVttSHnj0Zhdc1
+9fKa6MNybJFsiqOwdro4kRwP91E/cK/4+ihEsRgz30NrWXznMRMdBe6b3c/l
+0BYubPtOCIwCc9zWbGk0a8qO052HR0GMbWY7Of5Of4P2mQfbKATf8b8rSo7n
+l9jnSW4fBcXz23zPJZL7UzFeWt8YAS9vkSZ+9L73XC2JcyOQLXZ+xzH0epSk
+l97QCChTr0ocQkvEburxtI0AVaqDITuabqVWp69yBMKPDvizoKlPSLwPyB2B
+QxyMBD3am7Ux+UHSCPx+uq2LnH8gk7ZjO3vECGg1NyxvJGB9+bqpReu3Eeg8
+a0z/l5zfcdCDzt99BPyvj++bRT+u6Ut88HEEdLqFuMn5DsWsc+YHzEZgf64q
+bz+6pfXqwz7dEWhOesLbge4XfnL/p+oItH28zN2IPmNVqa+nMALWC+v7yPkV
+2w8w/RCUGgGNsq/0xWgdImbk38URkC7f95dAs5w/K1PEPwIcGe+6UtE3Ph4q
+cucagbWHpUQcOd+klVL54e4R4H61+jUSPer14L/jdCOwk2B9FYIOEksuWFof
+hpeU7Ne+oaM8/b4Vzg4D0+p2ZnL+iJKJi9PnwWGY05lodSG9vtdVu3UYrtBm
+fbNDv3taHC5Uif//+k7lHbr86IGG7bnDsKf9HAs5X4WmJnxXT+Iw/P3QW2SA
+HuAfe570axi2yX80fobuO29Y7/xtGD784+RUR29sK7yl4T4MiZCcr/L/+SH6
+HSIfh+Fi/XUNBbS/3t+3u8yGoV6/dV0Gve3g+MkZ3WFwLH3mdRVN3VEzVa6K
+5/NbO0zOx6n8cTb3l8IwcHu7x5xDy3z+HmInNQxs+ifO86NDmP0+a4kMA3t7
+WQo3usI39su1U8Mg7fpKkJz/c7ZRP5z78DB0CHP/YUOzBT4u2MY2DDJuAweY
+Esj9FOhmxumGQRFiP21Dy+7bPFazMQQVK06L5Hwjq7tF+klzQzCgZ6K8Eo/5
+G99EztehIdiQfp06i/6i9O/Ah7YhiBaxYx5DJ0XYOOhWDUHydJROHzl/6uT2
+9bt5Q3CReTKlDa3PwGUByUNgdOvaf/Xobz8VqHkjh2D0Vqp0ObrH6qQvW8AQ
+PMuScs5Hp4gLC1J7DsGExGJxBvpDCU3rvO0QBNnnbSagc3Zx2fW/GQLWs3Fn
+yPlZfop7RBr0hmB+PE8tFL3QabJc+GQILtxfcfyG1uMvT09VHAKO/UrR3uiu
+6eCPf6SHYEd3W+UnNM2i892gS0NQLu448hF9UZj1hM/pIZAdUd+wQNv3llK5
+Hh2C1NfPdhiT89NERAZs9w6Bv0PAPj10TPZSsRXDEPwq+O+wFpqRzjnGjHII
+xkr8jz5CXxuy83+1OAiOglqHyflsF6++cXg5OggHwjU5ZNEel2bNXnQOgnqG
+P9M18vmxWuk+rx2EFztpKS6h95+JUX1WOAj2V+PGBNFDx1kVn6UNwtUZ75qT
+aKpkUZnnUYPwMSYp7gg6PzVV/EXQIOhw7HIl5+MFi+4Revl5EBRrErVYyflv
+r8b5XjkOwrzGFyF6tFRKHpeZ5SBcfplBQ4VmcuTfbWWI13c8WrMWh/VFD2Kr
+rdYgMEo3ec+T8x0DaZY/KQ9C/5Xqu+No4Wjv/s+yg0C9g5mJnE+4o2W14of4
+INSJBRa1oas1yuIjz+H1tN+a1aErsry9k48Pgip72NEy9KE344b5+wfh2viB
+qlx09G21G7U7BwF0xwzT0JRctvt7qAdhHy/tzjj05tL42PTKAMymW/wm50Pu
+/ccdTzE1APyRkuKB6KWPJUbMfQPgaf+0zgf9YbvGyaNNA3Cot/+xGzr2lGOX
+UNkAHLyaPmSHtkypdJDNHgCpS5PPrNAlrvknNOIHQPu+1Ygx+nTxev6b8AGo
+OfhSXQ/N57vjrof/ADAdym3WRAc+/tQW4ToAf/uMrz9Er33bei/fZgBip10T
+FdCMa6ylnSYDUFHNwCGD7rt2XWDl+QCs0i1YSaCPG5z7tEt1AIyOXekURpe5
+G3ScURgA5+h/50+j3QdcDspLDcCBw1yfjqFDKg7dNxAZgOPbkzo40Ueqc2zc
+Tw0A+3jyMTZ0/ZfNH3GHByBc8rgBI5pz3iimnm0A+gIZEqjJ8DXHxC5tx/9b
+aM3+i8Xy45FMCDvFAPCpnOFdQCfmtNnBQj/8zTBWG0dvV59X0Rrph+lDpz36
+0IFFJzg/dfRD8nbtrFa0is/u+oSafnj8d9dgDfpo0E2TjoJ+uKYtsa0Endug
+vo0mrR846ye4CbSt5LSDQFQ/rGXsFk9Ge/E7LD8I6odL33OVokiP5Cs4fO6H
+4LkpHXL+sOO80Pckx34QvRD4+iu6ftayvt+yH14PNll4kvOFI44vMRv1A4Op
+93tH9M0t9VRXtPvhhFbbu/doCdqdm69U8P/HIs1NyfnJE+YDYbf64ZAQtaE+
+unvjZ2KLRD/Mb59U14ol2yunXtJf6AdJdg25h+jU4AgWcd5+mGh5KqyAjreN
+CjLh7IeLWZv7b6CnhOr3RLH0Q6LI8Y3LaO6MeLOBrf1wr2So9UIsuZ5mIIfj
+Xx/oNgnH8ceS8wM3ZxRn+iCy5fDHo+i2nQHb3Af6gFM8/A4HOsPg3tbylj64
+YJ3HwYLW8iuYoKnsgyBa8z5acj72PavUK7l94HajKoQCPfFl/3PrpD74nJCj
+Rs4f/6MjQpkT0QdOCXf2TqF/rhhYbn7vg5BU28oBdFTAvS7w7AMPgQeW5Hx0
+uTKHw9Z2fXDfoeFYHXmcKeBmvnkfKJ6cry5Bz/CcVqZ52QfyDqlGBJpyuP36
+DY0+UN/KvTMZ3XVNaJ/bvT7gYb30+w85H/5RT3WDTB8Y7tm8HIJu1dHX3ne5
+D7wt9er80EaERZe6YB+I/XFUdUfndIdd+H2sD2zoFUfsyPBqfjRc4OiDUura
+F5bobLoEZ7GdfbCysTHxCj0VXWHrSN0H4o97nj5Ha9x6odq40gtXHU161Mjz
+0fDt4Zrqhf8G8xTuoQt2Rca87OuF2caiPFm0QKvV0eymXmghPvBdRXdXSb5h
+KO+Ffuo1r4toC+/vkY+IXoim418SQPsNH0iLTugFaYEDd3nQ9mHaoRS/eoGp
+pSJqP5qznOmFwrdeqFcX+Y8Vfck4bcdP917IF9C9S4d+1f3Pde1jL5gHPQqi
+QH/SMh2Ve9MLbKysY0vRmD/YFB74qdcLPUNu/JNoluoP/BtPeqHNtE6/H+1L
+fXuPklIvHDjSGdmKrlvPb4++0Qsvrsf1VaOpYt6ZbYNeqLkst7sIzX2Kc0r9
+bC9kPc24lonelwCi2Ty9cHTfgkE8+pWrlTo7Ry9ox6/5/CLXZ5x9o2bK1Auc
+DvXpAeiJM5XnGql6wWPRotWbPJ/onr6zKz0go7Ay74TO4vir6TWJXpGmI9eT
+lOfQZc/39sCimAGHKfr1mamJu009cPat3gk9NJP/5dnksh4AqiuC5PqUHWKB
+ZXuJHmg6NSesjN794beZZUIPbFOwELmN5hynWOv92QPWeX1C19Beu0Fe6lsP
+7KvjPiOCFs+nehvl3gOPGqV5TqOzK2ZMWW17YC+n7B4eNMfJYCmLNz3gSXmG
+ej+a+m/K6IBeD3yuWplkRjtp1j66pd4Dws1hddvQ63kuIalKPcD+4kLCRhRj
+Dq3Np/TDMj1wuzPGbQHtwKcX7AY9cMmc6ekYWke/WuXf2R7o8VAR7UF/pFPo
+f3asB/yN3Oib0A0DPiItHD1w7HlsSzl6498lDamdPdBYmB2Yiw57OaicQt0D
+9+oyNMn1RZnjD8XkFrqhu/3XkSj0hXIjrbOdaD77nmC0mbrssT1F3eDOct+X
+XK/EV81ntxHdDWrNHDdd0XY6ilZDPt1wKr9p7QNaI4OaqeZ9N7w7aP/zDfqN
+x/uLGc+6gUXo1O2XaKWxres/73SD8p2aOU108nqn0heRbmBI0fVUQZeIXJOy
+O9INOlFb+OXQMjffV5oy4P8tvhReQy8w1o08X+oCsWfHlEXQ1f6WvqrdXWCZ
+njYiQIZHrKhdsaQLJhJlXpPrub69m46TjeuCg9+71/ahmfddYpfy7wL6FJN3
+O9E/qeZZJD50wR5J5k0acn2XtmKA2IsueOSSYP7vD9Y3gn+liip2AUf1g7lZ
+tIHcaXVRsS64J0uvPYx+eUnQ/xJPF9yWLmrsQG/VX1K9zNQF3f85i9ehn3Fk
+xV9d6YQHWQ8iitEeqZUeN/o6wTRJmCELfWtE7598eSdY8nLrkevdJu36Z1US
+O+H4Y67Sn2j9sNeGWt87Idz51KHv6GBHHXNDu074OnvL2BO9Gb2F/t3LTpCq
+tC60J8NT+Omo6/1OuPagdKclmj/+ZlGAeCd8aeZWMUInuzpOxp7ohFXLrwE6
+aOcIJ/8Clk4wczzW/RC93danovVfB8QIVu+784ecT7ZsMzPYAYFp7nelyPC6
+zmduq+6Afnl9R1H0WGHdG67UDnhz/ln6afR6bWfqpaAOmPhhM8xN3o/Qozcq
+Th0gUpTBxIHOSvRLN3vVAcs9u87vRFed6Xjr+7ADdvN43iPXI3rV62WmXeuA
+rdWnjdd+Y34w5vO2g78DhhiXXGfQ8pshqRR7OoCLoyd0EE1d1m7ETdkBRbyz
+yW3o3guOEbJj7SBqdKKwGm2rvfTApL4dbA67VBf8JsdD9BwDM9thzyv2pjT0
+NSvh0xVh7TDhVd9Crq/M/BF6Z8W1Hb6kpjWHoG/Pr0zwmLUDI0tVnS/6qOfH
+zXtP2iG1YWeZC3q1yM3R8UY7xPPbZdmgeRl1nDLPtoOJ/MkoU/TdXUqUsxzt
+QKFH7fcC/Trj1yQ3TTu0xzJbP0EHMP2+9Xi6DXbfVNRSIs+nGHHYp6UNhPSq
+rsmQ4Vuf1q3NbQM5iXdcl9FMEeXcDL/bYO7v0zVBdPBJR4Ub3m1wPvtTzXH0
+Y2fjWQfLNviZPR5Erle9sdK5WaLdBsbc9i9Z0OJtO6zo5NpA4pCa8Da0St59
+XVnhNjjSZrr5LxLza2OaYg+uNqh/W507i54a0nZv3t4G5gJP3w+huS6WFB1Y
+bIXWQ1dE2snjuWbPdLpa4fCbJ3PVaH6KYtO44lZgUi0IK0DThVNiPa8Vtvx7
+oZiGbvQybZD2b4Uk04eU0eiEFtNDvh9a4e2KV0Qw+n28fPPwi1YQ+8V6ywc9
+53J3UUipFZQiu6ec0Xw0NebO0ApRR5ec36N/DbDodB9rhRhQPmpMrgc+ZJAm
+yNwKuvvpMp6hY3sFDZ3XWuB2P63sY3I98Jt4l/6BFtBNUm6/Qx7XFWa8VNUC
+6imrWlJoLW32OZ+UFrhAPzUhgj4hFS60ENgC35oEDQTQhnv4e+WdWiBLqGb6
+CLph53/jsa9a4MbdXN29aGo/E8Wdj/D3N2gHGNAC0Mb5SrIFtEQj7m9Br+W/
+k2461QL0N4JLlyKwvGVJq724twUMvRbPj6NLr7akBG5pgdULoYHdaAg4tbZ1
+ohm8lGJoGtDT7ju/GjQ2wxDDnmcl6OfpNV/aspsh6213cSY6Z4CYvParGTaz
+aA7HoWOoz/yI92iGP7Ou5mFoRjCPPPi2GXTOvqnyQ6t2jTO6azaD54+iA67o
+2odt5RS3mqFN3kzXBn1C1a/H6EIzhGu5JZqgrZIsbg4dxOOL9KvPyfXhD1oY
+H9A1wyjHnIgqWsOEgqd2vgmqFsBcAT12X9r7emcTHPZZTpRCD1ttVcotagLK
+/ewTIuT6dTc3XZHYJmD48YtTAK308HxDsl8TfDoXevsIud69T87t7IcmEPrL
+YEGul5eWFPwW96IJjDeGQunRuW3nVgWUmoBHVaCMAv1vLzbLoAkqBcbHF8j9
+AX6Nhp893gRqjnvoRtFqSlILycxNYGKVdqQTPcjO7i7yrxFuHa0WqUXb7Ul9
+kzvYCCaeKrcL0bu+msZer24EjbaHqmnk/gNsMWdrUxuhgqlZNwrdxpu05UFw
+I4hJl70OQqf/6OEYcm6E918umH9Gm2k4WBsZN4La9oMWjmhl9/8EKFQbgUj7
+aG6Jvvc0gsfteiOYJ2gbG6L3KNXqcJ5phBLa4hda6IqJuunYfXi+ynA1ZfTa
+MDVxhboRKHZslZdF6/HmNTRPNYBM18glcTRHvqqAXksD/L0hy3MO3d13vva/
+vAbYrXmO4Ti6fehH8tffDWAqFDzNgXa+M98t+LkBsHldxUTeX63jzWqrBjCU
+YYyk+kWuR85ce/4UHbbDhtyPgeFt/8TWOw0gNuunNIFOyb3PGS7SAB9Eonl6
+0HN3jD2vHW0AJXfZxXq0ZYDntSHGBvi8ZkYUo4+I0Ak5/K0HT4fTdhk/ye9/
+nHvG21cPIhJm0jHo4o8vW6rL6+HQ2Vu05P4RbQd32hon1cNNrcTCLz/J+Z+v
+9Tl+1INN328rJ/RBsUWvAod6WE04J2hF7l/hPbGgZ1QP4X13hgzRN7yT3Pc8
+rIdZE6rPWmgbmt/aBdfqoc9M5rIy+nw7j4nhqXoQnDk2chNNd8w+m3NvPTAP
+fP90GZ167AhUb6mH6w9+8wmiH15SWX43UQeyD++U86BzJj4OnW6qg0OTXlr7
+yPD1bW4fJOpAn8XwHyOac4pbxy+iDpQbxty2oENolJZvedVBpOCWg+T+HNck
+RzOoLeugSij1zyj6zYRoYpZ2HTQMMJzvROs9iuo2kauD86JUmTVoDi6fS6cv
+1sFFiW9iBeiYYaXKicN1EL/SlJWCrn0n7RrBUAezmknCv9GGPeXvdJZrgcpO
+KJ7cTyTksEgQd28tvH/8hMcTrW2/MDtUVgvfpgX8bMnz6Ska/kqsBc6Lv7a+
+QWs8zDigG1ALjmIlRi/Qy/8+rPA71ELFP482VbQ8BwPlgmEt2LymAQX0YmSi
+YPqDWtgRxh0oiXbObPGyvlYLPC7z68LoYIfm/TdO1YIUr/59PvTo0x11LHtr
+wdrSJ+ZgOLlevSuma0stfLA2+I8VfdMqNDlyogb8BFcVtqL5dxODpk018NPr
+XNBqGKZPBxdRyZwauPD18Pgker5dP31XZA3ckio83YsWEs17PORVA/Ve+4zJ
+/V16FoeOpVrWwA4LnqRi9Kyp6B5nnRroXh2dTUf/UOA6qSpfA1u2a/JGoylF
+/2oIitRAdPiXJ0FoEZoDBN3RGvAttvH2RjNGzIv2MdaArM7xAnv0QfP4NOPZ
+asiycp4xR1v9fSR6vBBNE7lXnwzPx0iKbt9qcF62hSfo02zK1D4vqmG39EH1
+u+htkyek5S9Xw9jcG2sptLxtbxkDazXwTXh9v4juCBBzrBiugiTel8l86JuX
+qD64ZFTBwE/6ioNh5P4TC8lyblUwqqTXxYI2vFd3eLdGFSjwe07SoP8cUCvp
+PF8FRoctVlZCGXOSKJ6E/KSrgpO8J7dMoj2v+Sa86qoEvoshW3vQdcaly+Lx
+leB7tY+2Hj2snKrPbFcJ58TGthWhR1aPsQ0qV4IPeyZVGlouqHs6ja8SQiru
+r/9GGzQGLrtTVoKwVO5cALmfkOppvueNFRBhsTTggda9puR2LaICxh6v1H9E
+C1Y1cBy2rACn7jLCFD1ladSwRb4CJqZ1fz1HU+xZTBw4UgHj7ztdHqHlA7iy
+Sv6Ww6rNQQM5dIBc7nh0RTncHTp3+wp6+rcP+ASWQ5r/Ad7zaD69FynWr8sh
+wa39v+NoX2eaO/rXy+F0ol7rPvSEGB/jI45y2Lbc+JsRHbzyc0x2pgycJHe9
+pUTrvBAbulxQBgXuJ6UWQjA//pC6ec63DBTyOZiGQ8j9abvO8b0ogzflQ42t
+aNoPZvbcl8tA8IuzbwW62/D2/CHWMqBgor9PoBVYTppxjpQC/9FnrOR+Tyvv
+m1k5M0vBOzekMpTcH4pxX8lB91KIq8n84IMWkM1xP6JZCimXks47oU/SeOid
+ECoF1XmXIQt0NNx7dIa+FCQ7pLxeosOFOx+L9pSAZl+/qDraTX/S4HpiCThO
+q/ffRfd63vFUcigB2slCOyk09efmXO2HJbC3gIHnIvpZgNSGmUAJ3HkkUnAS
+bbxDX9KFqgS4gm4/5kR7fdztF9JSDOamMos70RG19IsZf4qBoeSUIxW5XxbV
+fuWm98Vw1Xx973IwYw6rOkvB3N1imH+d9HM0mPz+TqbgzuPFUBlw/0xHMLme
+diDi9HoRHOsaTqtCs39S5rpbWwSrezTFctF9GcPfzMKKIEmwikhAH8t9uOfH
+myJo280jFo6+f8bOq1i2CHhDX6b5oqM6TjPMHSoCidxfp53RqwV8Hw8sFYLe
+nfpwS3QQ9/Xlm2WF4Cgys8cA3f3qtpZlQCEcV6NwUEffUmSujDEqBOcQqoW7
+weT6WFW+AUn8/cj6QylyPzF7Glv2fYWQsXMyTxi9eaGp7s50AbygrD96kgyf
+aMAul/wCeOwXa0vuZ+Yuw3+z1KcA+DPs+pjQnHJKxltfFADzdSXR/8jz6Q65
+SV0ugIGDB70Wg7B9Ohft78haAFe4B4eG0TsM3ntXjuSDplD4hTb002BeC5as
+fDh0QdO2Av3dwlrugUc+0Gw5WJONbjqqwBSmlQ8qZm1scWi1FcP0GeF82DTz
+fhiCtrWNkRVjzAe3vlsBn4PI/Vc6S1z68uCSF12nfRC5/1zVie7kPJh6WrLH
+nNzvbbeC0RnnPJAXd5R/gW7mgAB71TywXZG1f4z+FK4Z1XU2D37ps6XLoYte
+fwm4sC0PzlkOjUqgb5n/NPDsyAUDyszd59AUnc+5pmPRzb6XedDv5xPiZW1z
+gWiz1NmL1pJSOhitnAv5Q7rO29HhnkefM/HngmaTxp/1QHy+eYuur7fkgvpH
+7bJpNDHn79LWlAP05a8Hyf3vpI1GNSV+58DLj27r9egoIonlz7scuOqUwkzu
+l+fi1ODLdjcHZpMmj6SiXePZ5z8eywGbnjOCkeget3SJkRUCKvrsL39DZ+3q
+v1oWTAD/50lpV3RJo/JYjAwBVdWacu/Rb3eUCfgtZIPr8ykFI7S5Wvcuu+/Z
+UCzqfFcTPV9wzcdEMhtK94veUULL+ETEP5/OgicDlLLX0SNuKVrqvllwSKfz
+6kX0Uj5H9CPxLLhlUS18Es0Ybuf4cCwTSldaeA+g31GFLD72ygSxpFV2JjTl
+9oMzmqKZMPnh3NYt6N3wx0R/MAM6LzrNzP/A9rntkt1b1wwoiF5pGkQb7I0+
+8OlCBiwlfExvJvdD9LIRCexJB+sDJ7+Wol8PHW5PcUwHobwZswx08yOJtboz
+6WBvVK8Qhd73w9Vvtj0NPm9p5P2Bro5IS2CxTQOha0sUHmiHhtdSwvxpMEAv
+VG+D3qg2vKPenAozvF+DX6PFQtTrXN+nwoXXB19qo4OjVwqyj6eCVkqJ0H30
+yq9Rnrm6FCgr8t6URqv8GPx7zCIFFF7Z5oug1xYDz2kcTQHC5etHPvSsTnV7
+YFUyOA41S3CiM6mOjvaaJkOarMgGE1rntNID7kPJcMCrKHkLWjuCTUC/LAkk
+7cxfLARge878gFbaqySQX7rHOYS2oT34d+v+JLgYr1rdjL5EXzekXJQI3g6e
+FqXoGNcx/piXiRApNcudgT46xVm1dW8iuGRZVP1Bm7Qfy9PIS4DOlHOvAtCe
+ypnb8nUTYC/V/l3u6OdZHj+O7koA5ZdnE63R4tFqH52z4+F10Ru5V+jOw72J
+CzrxMNg4M6qJbtEu53+yMx7Wnvm9V0J3MbVM16THgeut16zX0UH0OYtXNOPA
++LZNmDB6zkNULJ0hDtouFJzlRQvxbi0+mxILA3UXCQ40d2yrS6xaLCiPD0kx
+kuGR0ncXoIuFGJnSys3vWH8v3/DV0YmBQ9l9crNo9+9u716nR4MrvWBtH5qa
+m7rGniEaPCmybzWgdQ412QapRYGThnVpIfpz/5tvuQl/wHDDSjwF7av6dMcI
+zR/Y65+S/Auduou9jVXlNwxu8B73Rx/i3fZXKioSdi92+Dqjf9z5o2lNEQmW
+V8upLdG/m9/vy1WIACJx+aU+Ov4rxZ6tP38BL4NGsyp6566figqrP6GWlVFU
+Hr315kx1mOxP0PRc+S6B9uq8b7MRGA4GN7nXz6I9Vh89fbQQBttoPysfRQeq
+W1rmSYXBEVfJhN1o5afnsvi+hsLjIBG6bWiFaarDP6ZCYPc248cr37C809GN
+3C0RAjft52PG0C31I7e8PwdDbX/KRjvaMm99+57RINjXl3ejEq0hz9sZJBoE
+upK7vLPRr4/PZ512D4TYhpi2GHTNerSCW/EP+CjndSAIrcmdLFSsHwAvLHNU
+PdG7Vbdwbd/9HW4eEAr4gL73+CvNg6yvwL202voabVPr2Jms6Q8mxbQs2ugr
+7s3fD9D7wce7WtL30PDKTcwzwQfUVBktr6PFdLKSdz74At8jqKOF0U4a+uvf
+tnyG/gWZjhPo1aextIKRXnBkS99WDvTDj551TfKeYOpZIsCAPlt25Lbtijuo
+aVPc2/jKmOMYNTNhJeEGj8SczKfRzZ/F3tF5foIHbdpfe9DbvZWvRPU6wuXV
+L2m1aI+/z3h0TtvDp0f7GvPQoXv89wpZf4Rf+QuTCWhtfNIHa61Bf/wwVRh6
+xHxv3iUJKwj1imD7glZPeHD0WZ8ZFJvbHbNHm/26tzvP5hVsU804b4Z+oDXe
+5y75Am5uXJd4hl43vcr91/4J3N4tIKNC/r/9WfYQtwwoahrKy6BzHO+IKwUB
+8TOMQVEU/a5RkElX4xGx04daiQ/94qtY85D+M+LwovLdA+T16G5ade8yIqQt
+tsvtQN+/4c7J+dqUeDPCLk2BNhQYNDpTZ0E4LDrArD+2z1h7Kun3WBPbVJXO
+9qEVTUsfjxV9IC73fDhS709+D3hwPc7YjtgnyMxSQB6/PJapccSRcNq1ZTMR
+rSfhFLVZ50wMiN0dCUOXPDXttbV2JXSe01Z/IfdLzhU4t+bjTjDd4UqwR/vL
+rv05Nu1BBMf88DZDV5nNqslIehHGojavnqFp7UeUNb57ExVxZbdV0P81JQYa
+LHwmPpe8OS6Dbh8/LvZKxod4LuxOIYr2M2AX0Q32JUoyGRtPovuO3Q+8v+JH
+tNEthe9HK+xINBGR+0potkuaMKKPX9goYvn5jTg5RHll0w/LlwFq/97174RH
+Hw/DDNrR2u9v6N0fRIJ9WkMPmksxfzFaMZC49ynFrxbtyVR5iYYyiDj/k+th
+Hnp5ovr+/T9BRJTr2r4EdNvb0zJh94KJur8SrSFomWGlvZNbQgibryte3mjN
+hdDiU9EhxOOTB2/aovs33qnoKYcScWoplCZoKsqbTWFUYUToJJGojV5xfgGt
+MWHEVoeLWvfQZ+uu+m99EE6YDPCwXEezBVwYF6D5ScimOGQLoUVVfp5XjPtJ
+BCc+0jmOFtix9P71w1+EmPtPBnZ0qIZtlevWCKJlXTuODm35PflwaHwEkRr7
+7c6aL6bnsLGPiY8iCcqH0rPjaNVN6yVi22/COF7PpQNd0tRhUZTwmyjTpuOp
+RF9bUuEoefyHkOc9mJ2Fbq940FpAG0UcjY+5E402eiGWmpkYRXBGpQ0EoH2d
+nmTFqEYTs5Vir93QHTaHJ7/TxRAthUD5Hq2i1CdjnxRDHJDMcjZAhzetT50T
+iCXMNlNYnqCzng/Vh9nGEvHBAn7yaG31ViWW9liCp4eHQwJ9gYHa3EogjujS
+Cfh2Bs3s5gPDtnHE6Kg3+2H0r57sCNn2OKJ5F/0XFjRXza/0OIF4gv8r1Q4q
+tBnlh9csdvEEy/F3tgs+jDlKk+atRu3xhIa+xcoAOnEga7xaIIGY2Lv+vBGt
+yfgm6oRdAsHcRtlW6EPuT9F68EN7AsH+yFkyGV2Ys/16q0AiQSnvHxuOXi0X
+Pcpnl0iYaJza44N+ud0v3ao9kaCRkLG0RzN33KSrEkgilv2muk3Ro0Yfd++z
+SyLE97Bffopm6NLt1WpPIkqeVX2/j6aiOaUXLZBM0IrQr1xHK/5eyViwTSZk
+hBrkhdFbni9XC7UnE78ZeH4dR59KUfhtLpBC7NGh/rcXrdovLJdum0LsmHkp
+S0eGh70xZ7kthVhX0Pm2+gXbSxpym2cEUgl6sYmRMfT0jyaGF7apBJfy5pl2
+tKeb51RwWyrRdDvIvBwtXhkd0nwqjcitqCMy0LdrFE/R2aYRK2+8t/whfz8Z
+53WxLY0woRyW+IauvzdZ9/RUOvEfQ/n7T+hMzjPT3h/TiYOS4pkW6OTTkWPZ
+rekEl9KNxRdojQfviof4M4jlwSHeR+glqXZ7+o8ZxJcANjVZ8nzWw3wCrRmE
+/rFOj0voHKPKDHn+TGKFVyiXD/1XM/ms4YdMQkH++NR+dL91uY9rSyahfjlu
+DyO6tf7cWARfFpEdWHOZ/J4Aq+QBvnybLIKC3UF7Cp0cGqXe1pxFXFZocexC
+V3+nd5k+mU2Yz+dGVqFf52hEb7HJJj4FXSvNRndZtZewNGcTi/9pDkajK05+
+6+I6SRDTOfs3A9AhlFWzp6wJItXq1W439FM2PyqRJoKg6NfifYeeSPKkD96V
+Qzh5LV56iVYyqPQ9ejmHSD93+JYqWiOA6div5zlElP70g9voWBaDjOOfc4jX
+/So6gLbz21SIJHKIBCFtg1NohtG6ueNjOcR2FmZTTrRlzLrvL9ZcImm36tsd
+6J5PXlLckEskD8tabnpjeFl+bQY/yyVYT3RbTKN3ld/KO+CdS4hbs5h3owd4
+v7r7ZecSGe7jr6vR1KGBuiyj6DUdPQL91Nvo7ieWPIJHy1Ejhvx+xJ0jN6nE
+8oiil3L3fqA3jpYqvH2aR3BnZ113Qy/Ivn4x65lHfJ+rvfCO9JqQj3ZWHnEg
+xuXIS/QppRONbcN5RNDnWUZV9FWzBzy3mPOJRqmNJfL7FbeNul1zRPOJIzqJ
+HWLoLulS+jM6+USGN2sOP/rTCm9wsEc+EWPIGXTAm1y/wS7HnInHAxrfMaJ9
+fX+yWQ/lEzqZFx5ueDHm+FwfWpliKiBO6Eqen0I33h1dfiBSQOyS2cLYhR74
+kM9colVAMP3T7a9Ei3vby5x1LyC6939MzkL7Xrwe8j29gKCTk7GPQrcd2rNv
+62ABkXo6T/E7WmeCNvHljkJin/roIRf0whmBl83ChcT0u9xxC/L7HrbfZcU0
+CwmKEzIJL9CnX2jKhboWEv4bdmYP0Ve0fMxo0woJmm/GIjfRtcPXi/X6CwmR
+QLZ/IujxJ86XahmKiM1feum8aLWLhh1nhYqI7XfNTPaho6rpwz6rFxH+YkIC
+29GuZga+S5+KiC7q6OFVT8ac3o/RKUopRUSjZNu3MfRD0db/knuLiIsBWbfJ
+75mU9myxYqUvJtx/3acoQ4dGXuIxOl9M8G75E52G9qr6SlGtVkycl0pViUDz
+mZ3azutcTHxmsaLyI7+HUkl33S6pmFjesvHbAV03Bak93cVEQayQvBlaabHn
+4UW6EsI4lX9BB223sHneS7CEWE/s8b6HvrYaLTX+uISQFL99VgqdzkjhLuFY
+Qqwtm1efR9sKUu/0SyghvF5pPuNGrz2tKZ/qLCEUbtFT7kabhb7KvbKtlLjI
+9eoLNZq2jWLe50wpwefod3zRgzGH56/jk/GHpUQ7x/v0AXTXyEFGMftS4osJ
+j3QDWsujecUtrpRIO+XemI+urCOO9raXEtd601UT0FxO456nacqI7Ud+DQej
+td1fSFgLlBFx7vf1PNGp6XfP1aiUEc5ExYw1ebw96cUB2zJi7Tq1kSF6GxE0
+qhtTRvQVbJlVQ1ueORGV2lpGcJcX6smhRf6ppVJRlRPa87dGAP2j9x69HH85
+QdMYoHYK7R16MNL/fjkhsTW56QC6larSc8CmnNh/6PMNRrQUoV/MF1VO6KSJ
+Zq67Y3p0ZZM2aS4nmrSjeCfRJidb92RTVhDxxLBvB7rhVuEF6pMVxC2Vif8q
+0C2Rk+EyShVEUEXGiww0LGjoeLyvINz/KNVHooU7hc2bIiuIn25ZF/zRL3db
+97A3VhDPt8/6OaK/35b5+nizgtieNLtihu6/EPk76Hgl4X0o595TtJ5lDPOA
+QiXRMfgw4R66qfJF7VGrSiLgSwm9FPpy0/yI9q9K4kjJf5rn0cFXlFR+1lUS
+dYw70o6i0/LDuIf/VRKxG2Pbd6ENtizc4uapIkJ4fR9SoVOj7jRoylcRt46z
+/Z53w/bKq/qU4LdVxEHnp8t9aNYtDqvdYVWE9cAn8Tp07Dab7xw1VYR+yUfH
+XPTMhfqg+6tVRHOpXHUs+Xtxl23eR6oJi7ezzIHoqabcuqpb1UT1S527bm7k
+92ptKGnfVBMnhBO8rNzI8avezxIh1UT6s8YaPTTb8rT728pqQsOravsjNzI+
+EPMJy9XEoNSPqzfRo4Zx3YtMNUTfnutvRdCiOsbmO7lrCC+f0pgTaL7oxLKT
+IjUEKB7p24s2OPa3Rkquhljtu89Mi96bVuKirlVDaNXqXP5Lfm/qagylpTn+
+Pk7+xTBaOV6Qz8ethqhlZvvShI4f6WWKC60hLO1SswrRHnUQVZZWQ5z6dr4/
+Ed2p0rxloKqG6O73oAlF3355mnm9v4bgnCzj8UJ/3mxq37VSQ3yU6pO0cSX3
+45RT42esJfhtWjQM0ToPjwVKHq4ljE5GW6mhB5mHvj4WqiUON2r43EZ/38ty
+10S2llimW40SQwvpCpW6qNcStg8N8/jQDtTda6GmtcSh+2UNHGjPEbeJjE+1
+BNMn6sHtaH22hq91QbXEJbvD86su+P58BOlGk2sJ3YYjm6PoBcOLQpvltYQy
+FR1tK3o4Tp97V28tYRxSz1TiQu7HqtJ4YqmWmBWz2Z2Cdgi0u3Z5ex2xoLGb
+PRx9yMTCVPFgHaH4w33f/zi673gsvzYA4GVkZhZZhSSjbBkRkkiIrEIhKhSy
+R6GQXf2syExkpiSlNC4zK7L33ttjb72X98/v5zz3OdcZ97nP4bmfE43m/Vd+
+z0ayCWq8Flj998oznOT2UW+C2VCZI05o5yTHxEjTJljTt2a8tXf92mR3hnMT
+iFs9odbZO28ssKPve3ATRGv5Eu+dN/afZ2X636QmGIq6vy60F9+OgsTwpyb4
+8VtxmgP9V7k2cLWqCWLs/3VTowN9F1Mo+pogmzWrZiuMpphj+Zwf+1ITiOqe
+K5zac7vMKWHyZlhLhZRONI3d/UQljmZ4G3M6pAots8+sXVesGSa+Bj0oRG91
+JHbdVm0G4ohGvXS0j9qHDDeTZpDJJZeKRjukcigEOzTD8yghZn/0ZWXHlLiA
+ZvjdqLziiNYJOPM3J74ZXsypNZqjA/4uVf3IawZ753M52miWQPEXdRXNkD3D
+46eAfsTqw93X1QxXB7avCaGvbZn6zc03g13H71McaKk3pvm7JC3w84bfLhX6
+YihZHg1rCwyti9VvhtIUn5AZfHRUuAVOi7XFT6K/iLuyCF1ogeVw27sdaD9y
+7QD56y1w4fWGSCX6ufp6mYZdC+yOeK5/RjdGrDcZ+7VA5/jCzzT0mcddn2xi
+W8BGxPRJJNqu8ORdj9wWoLpYdt4XfW7YejawtAU2PhwlckCnFAiovmxvAbYV
+BzBFpw8tOafNtMCDhJ+eWugBgStu+ftbIeIUkYQ8+rDOb61iplY4cEpxWhCd
+emx4q06wFcS53F+zop/cFfbpVmwF3ohsXQq08D7Jzgn9Vlgk6SBZD8H1f5UX
+5apNK5j/21cwhj6TFslI/LgVWMh4zVv3zut7sm+FNroV4lJUqcvRx3S0PrBn
+t4KY3p3P+WgbWjJlfmiF7VRfkxR0z4+CPMmWViBjSty/d97fmVuD60qTrbAp
+9CXNG51Gy8yutYvxO9Wr2KKbevpZjRjbQMFqbMQY/W2iYuU2Xxvoh+8+UUdr
+GenmOsi3Qa8jM4cMmtKM4bzX1TZo/U/0y0m0kMizgqC7bcBir6nJhOah0CKN
+etQGp8LvDZGgaUX7JZLD2yDeM8xlKRjns9Ua5ez0Noh+n3dgCJ33IV7s8/c2
+OJ/XEd2Abv3evb+4oQ0yiEiPA3r2yeH8mtE2cOE78z4XXefQrNy62QY30u5L
+JaAziV8X9tO2Q9l65q8QtO1XUpopnnZYy5hW9kBfZ3mhuizTDswSkpV30Wbf
+flvuarWD0LEANQO0n7jUHXLLdmid6qu8ELz3vsc9DQaPdmg/oqgiji7TnmVm
+f94OyQLZxVxokmtq1SdS28EjhUOWDj2yn8xc+Gs7hOzGfdwNwucXc0G/dF07
+/CnlPjmLnrrXpXJ+qB127T7HdaMZu0miLq+1Q7efLnUNWuTyrxo96g7oebLz
+8Ct6Iid86gZXB8hOfppMR6esUizfOdMByrJu+tHoNaH8cfvLHdC+rAp+aLVb
+h3+7m3VAfyzvSUe0VOavF09cOoA6nfGZGdqdW0YlJKQD6uJpF7TQwju04xHJ
+HfB4g1VXHt1gV+8SX9ABd86d+SSIPv3130JqdQe4T5rTs6L/8QibvOvrgESP
+JFty9AjlREHBUgeE2c5UrgbifFL7efsHeSfUKmtwju6dx9l0XKKCoxMKPX+5
+NqPDon8a14l1QvZ/yrUl6IAYGudW1U54TdzDkYcesnzj1WvSCX46QXZJ6NZo
+Eo9Rh05gWVf7GYbOqCu+MxvQCRvORykfogW+31Jdie+EVBUKfWt0yRFXtp28
+Trg8TpFkiDZ/FzBM8rsTONs5R1XQD1U5X1N3dwJjhJbA3nmhwZX1OocInbAQ
+FWnLja44fHSDjbQLrE0I7+nQj07GvTzO2gXblrfndgNwv7xTLyAo3AU0gkuC
+s+iYdLUvYhe6IE8g7m43mvFspIzs9S5Y6zdKqUanDcp+VrLrgsbfkp2F6Oo/
+tfyX/LpgwUiQNh0dfbYpRju2C5qY5ZSj0EEeXf8MczF/DysXXzR//4NbpqVd
+ULCR9/YB+lcjV/Gd9i7Yf5ip5SbassyDxW6mC/6oxO7TRN8TJ7V32d8NRGTS
+gmfR/3K1Sx4xdYNc84ouP/rznwk6f8FuWOZp8mRG658xuhmq2A32rnXJpGiu
+ZNHsCH1cpChNlC49xfmzamv5lU03BO8/PjKIzvNVUUjx6QZKYW/iBnRSVnxw
+ZlQ3SF/Y5Py1Z77Qlg9Z3fCqKEbuHZpx/TVn4a9uSKIyNIhDjx+1sfvV3A2Z
+edJ2QejnH51+VUx0Qza3vL8rWqhZnb5upxuKuyxjLdFQ8OhuC0MP5OvkZV9F
+b0a/LOk+2QM8+zi/K6IvlJ/gHJbrgTc3C6qF0EcTC/2mdHogYtS2jR29L7Rz
+ZuFOD7Ae1BykRLOTs5hsPOwBe82rU+v+OB8mEjftC+8B/aPeC2PoU0O8V8jT
+e+DtWsNqC/qbF10L7fceYNS5vFmKHj+hZc7c0AP73sxu5aHbkm3Xjo72QKn5
+160ktGjx9kvezR54QfZuIwy9bBOsKETbC/aU1Sue6NTIlGVJnl44P0hLsNo7
+n1e++ZO8TC/UEj2ZMEBLP3znraLVC29H2fsvoAn23/U1LXpBct9Isxj6tNZz
+GX33XuipavvNiS649kngxrNeSPm8UkiDNhr6yn/7TS9kyillbPvhfKd1Wsq2
+sBeg+VvUFFqQLlnX5U8vRBNMH3egK3ISfLwGe6GVXMLmN5rtc8H3p6sYT/iZ
+qwVouiYX8udUfTCwz0r6Dfpbod2dl5x9wF5bxf4f+thpobYkyT4Iv339nxe6
+lkL5WoZ6H9CpsA7cQ986Izf7wbQPVPqo4Do6/l1m9FfnPvjzVihBFe3pxny1
+JLgPyOn83CT99t7HZT5ek9QHCuEUOsfRBs+lKZo/9cGLxFI+erSDKgVpT1Uf
+7M96v7vrS1P8SZiFebS3D2xP1jfNoImy1xTmFvvALYzrbRd6UkDi8RpZP3y9
+nOVShSaTudmxj6Mf0jtuX/iCHrpPeolSrB/upxvSp6F1HL41Mar2gxSfT084
+2paY0pXDpB8ON/a89UEXLAaIn3Toh05GB1tbtD9nMZVoQD+IWMiJG6OpfVX+
+ycb3w0dRhTU1dBpHBo1KXj9ULnh8O4NmonGRvVLRDxWHZz140E4+Cn7Xu/qh
+ivaVNAO6/+PLSYv5fmjW8V7594SmeOMhqZQU0QBUaSbmzaL3mbwM+kE9AJYu
+q9bd6HDJ35NKzAOgJBvCVY3mu9JrVMk1AL8PXm//gm5eP96jcWoALplbhKah
+g8OGbJvODMDi2yz5CDSLnTndNaUBGNM49f/zsfmpJst6Lw9A++/pBFv0/e6S
+IAuDAaj0n7hkjP7PTMJ00mwA2Ne4V9TQxrzBqvb3BsDjeXzSGXRGKfn5FZcB
+EPh+9SIPOrF1S+vh4wEwnFWboUcLUuTY7Q8dAJFo7//+Pcb2ZjBNCYweAD/u
+ZbFZdMgHs/GDrwdAijS7uQvtmr2uGJU9ABvvXjtWoePa7N+zfh4A2eAO2i9o
+QQZakRQYADuKqzmp6HmVY79P1gxAV8JBlXC05u3JB+9bBiAqn6rXG61m90VE
+sn8AIr9pON1HR1n/Jf0xifXjbCQzQqfbeBHOLw/AL4NXcarolhcUC9W7A6Bc
+81ZQ8vHe+1c/yXQoBuH95GoRN5pndUCig3EQFI8/U6NDm2T/cjc9Oggqo1Yt
+Oz74PLdObh7jG4TSxJCb0+ivgX9U7MQHIapocawDfePOi78r8oMQmJVi+xud
+9EDUwUttEBQ6YhY/oRU4tgVIdQdBo6DVJQX9eE56J+zGIKxlG689R4c5iE4c
+shqEOH4Bt0fo5wrCMwmOg3A5UWnFGv1y+yHFCa9B2Of0xsEQ3XHNXDE3cBBi
+mTVnLvjsfZ+AP1wyYhCq1pRui6HfjbNv/0wYBN7HT3qOoVUKAp5czBiEkxzU
+Vw+iK3TzuP5+RJ8dqtj0xuvzhnsMf2B8F0mkJ9Bvi20+DfwehPxsx8xW7739
+wou31o2DoNZymrlsL5024dNi9yCUC53xz0N/cO3qfTg2CKsnwuYT0bmDUTyk
+C4OgfkLkeih6y/dw0POtQdCK5S5xR1O9Sic/cmAIOKcsTt5B59lFpKfQDQFl
+wHKoLprE+PgtQbYhIGpvmVNEJ5Wknv18YgjmVUm1hdDMDDfFFUSGIFE54AMb
++nh1wqVq2SHIkrh2kAKtZZ/trasyBHFPH1qveuHzP66xqffKEHS+JpQNo2Nn
+TC5aGQ1BFKGQvRHtfCimc9FyCDb6Gp1+of/U1YR52Q/BgbZz1Tlo2sHzZuSe
+Q5Cq8I/9FTriuLpepP8Q+DxltA/Ys5ug9dEXQ3CG/hE4oW/+EU3OejUEVhoy
+NOZo5aOZqxJpQ6Dy+rKxFvqba6d98fshEHD9lH4WrTNDR6XxbQiEpBwIfOjZ
+N6+q2suGQEnjqTQT+nXtr0yL+iHQPUrwJkavptXmzHcMAQVTfhnhEU1xsSdV
+08PhIaBJqD3QhzZPr2YjnxuCriPyarWP9n5PSyc4an0IapYPBH1Fy2XOsXIR
+DwNrLP/vt+gG55mG3IPDMGHzligSHeP/Mkf2yDCItnrKP0b/dJbOqeQehrZz
+2a62aOIFjga908PwkFbivRHaJj+CdUhqGPreHxlRRXM8HgqxPz8Mt/2vHZHc
+i0f4OteOxjB4rS2pcz/a+/39830hhsOgYT/9kBadVTdVcuTWMNDqKuRsP8T9
+VW7in/T7w/CDgtAxiW7UztiVcBuGY5s7JO3orGbda2VPhuFgqLVwOdrBbL5T
+J2wY2I6LX/uIphL57Tfwchja+Yx9ktC1wTwG9inD8JJoKC0U/ajMQGc3ZxhS
+maqq3NHpSlkuz74Mw4nag9O30XZuVmXsJdg+AZ+odPfKGxuQfVc7DJa53wQU
+0Qycpj1n24ahMZ1T7TT6aJlwZu3AMJB2TFiwogleyUnG08MQkM7gTYa2oNmC
+6ZVh+OqW9HLZE+cLxRfUj/aNANHHsNxBdO98pj811Qg4FPaW1qOPkkXzJR4e
+geOE8LbvaKHHr9dPc44ASXHWROaeLY+s/BIYgbHQExvR6LTaS0e1JUfg9ldS
+cj/0zb4nzoMKIyCdrX74gefe9w0Orjuqj8CXimXOG+ipRdksEv0RULYnEVRH
+U0QYBL00HQFmKk9xKbQj8/toPpsRUNnRl+VBj60/byxyHoGSrFgFerTAj4ty
+mj4j4O58XnnXY28/w93WHzwCbCW6KtPoZk2HZMeoEdBb+qPSgaZ384klTR6B
+F3bvL1Sgu6XiS2KzRkD75bpSPtrpNgPbqYIRqK3LkU9Gb42KvYVfI8DpXiUV
+hh58r26mWz0CtutaIh7okd8ZGuPNIxDyUeHkHTT/hVibh30joH8gnl0X3adp
+U0Q7OQLW183pFNFBbPfl0pawfQ5GEp1GM61ME6R3R6DaX2SJBW0oLt1RRz4K
+XVyyQwfQcQrJi7cYR6H+Yt7fJfe933ewV1znGIU6/cjvA2ix72slz/hGoSFv
++G0d+rpOgNtx8VH4+i3leRH6ALGN+Tf5UdBoqnPJQFM8X/C5ojYKx0ysjKPQ
+PCX3mkevjkLbVweFJ2iPRydNHt0YhaJLU1x2aI6PTqyMVqMg/qCJyBgdYp5M
+k+04CleeCQypopNSNqSVvEZBm2gJJNDZLxtfdQSOwlGRUwlcaHY3V9EHEaNg
+79bmSoOODpXaR544Cqwyi1e23GiKQ09bHnidMQo/W31OTqCJqi9fkM4fhepc
+n50W9FSXfFHDj1Eo5VpsLEE/Wwy2sq4chZrw9rT36OY8nytETaPAeVPENR5d
+WWVnH98zCpVj2ypB6Ov/0qskxkfhR6j8IRd0nKC7cf3CKJS/WxwwR1efEeOz
+2h6FpCz2d1poNfYTwkRkYzAx+N3lLHp28vWDBPoxYPvcIM+H/gErM2fYx+CV
+rzHJYbR6g1NaI+8YpGeZVO/fy9/sXsx90TGwDm4Jm3PF53fVqd9kcmNAeFym
+1Y3OdyAXTb04Bjzz/LRV6NpOrY5zOmPwR4y8vgBN8Z/2jy7jMajLvhmagraU
+utnremcMYj6fVn2OJntadZbRAcv76LL/IbpLaaD9w8MxcNs5U3QXTX9p9aNG
+wBicWXNw0EMnBhvXTP43Biw7vCeV0BKk5lyB8WMgaGvQfRot1WhYyJM+Bjfe
+7nvOulc+U3hYad4YBBLzKpChU2lvpph9HwPT0d9zSy44Hx6kW92twPIyhxMG
+0GGO6yGJDVjf7EeX6tCPPluZyXWPgYNaxPI3dJBZvmv36BhQD/AkpaOH6U/W
+exLG4EK9xMVItNfDI3dZt8ZA+UHpjA9a0KJDqYh0HAa568Pvu+ydH/71phHd
+OJApX5O8jjbno/q1yToOAafN21XQCytcZvEnxmHs3KSbmMve/8+uqMiJjMPX
+ZgLTMbRb24htr+w4OKm5F1Chd69KdnmrjIPpho/2ujOWPxURwqk9Dh/Pk0+P
+oCVJtX1KjcbB9zG9fyNa+xh8tbw9Do00CWy/0Aw1YlJkD8bB81Lmx2z0hZyd
+zSxPzC/szMUY9HMvRxLNp+PAJq7a6beXP92ILuHFOJx71WXzYC9d7e1kZNw4
+SLAubJqg5Y9R/JZ6Ow536UODL6ElUm9Ndn8YB/auTKYze/Gsk+g9LhoHn7/q
+b7jRVobKB05UoDUcTtHuxUPrsK/m7zjwvGP/vOWE62+/wfP2XeNw5pKm3AS6
+4tRE3aFRrL83cWkLeiSuI6Vofhzc0xUulqCPOB4As81xqGAjqs5FK9yvOEFG
+OgGN0pfV49Cl163bcmknoNWQrSYAfZTzYqMe6wQcb3ZUc0IHff/AtM0zAd9I
+rlaYoq3kN9NThScg7uI3RQ00W72H72XZCYDFzCJptGeOb9bShQnovMUlfgK9
+xG/NnnBlAl4TuLPp0ZcLnnRfMJqAzyu5x3YdaYojaznHZy0nwLO2NHIK/ZQs
+XiHGfgJu15ofaEdLMqmMKnpOQJpWqFsZ+tUPp44p/wlwe68w/gEt3/aQJfrF
+BCwo++gnoB/p52cqxE3APiv10iD0W+X7AVNpE+DulHLaBX2gZDc/+sMEcIF/
+jDm6jQSElIow/tTlf5rohBtEmzPlE1DosXBHFr0rcvTwq78T8PzVwz+8e966
++1ilawJijCNFGNHxVyXlFkcmgOeITOQ/B+yfwW615PkJ0D1puzyN1rH5mK6x
+OQEig8J6HejwaiqDTZJJ+Jj4JL8crbCgaJhJOwlpBbdoP6LbptOzDVgnodar
+2SbRYe980Uht0hOT0KPdUh6Mztu8calAeBIuPL3N4YoOiTeOtpCdhBjHQOdb
+aD2+YQlGlUmgfyBbo4UuP36Zr+zKJJC1eh89i37JN2XvZDQJL9f1HE6idyaZ
+qHluT8Jv0Z+ljOh34nw7LfaTENBeyLDPYe/3hZ2VAzwnIU9RxXzmAa4HKPT6
+pZ5OAmP57fcdaNEM9sbJF5Og+ZVlsxyttHiCJSFuEgadzC98RBuLVhZqvZ0E
+aU35Z4noonLD3P15k9AZl9sSjHY+IbxZUDQJvfn5rK7ohNG0JKuKSfCe1jC9
+hV7Oo4tnb5iEwrhHb7TQc5dr5hu6JiGB6fyILJo6mj/x6egkTBQk8pxEP/UL
+SJUlTIJX7QsLRvR3PhliwuYkED4cSflnT1P84MOrH29Jp6CjULp3Gs1tsq/B
+mG4KvkgTmDvQYs8q5BnYpqAlUEGnHN1apHSg+sQUhG7yBuehNd3q+B+LTMGh
+sXRIQI/blWRKnZ0Co2RYDtrLz8rVb15lCgIeOvC5oH8pqxRlaE+B1d8fRubo
+yu0ATTPjKaicTwnVRH/PjJJnuTMFxqJc32XQ4FYZ0vRgCsomZCdPoK8WuEuG
+PZwCd5v5wwzo/eX7z10MmII2SgWlXTvcj/L+SNsXPgXqRwXuTaH93PbbfI+f
+gp31vMg29K37gs9d06fg31xzUSk6sS2SXuzjFLjpRQ68R3O9iVqe/T4FZ7zm
+SeLRgW2BUtm/p+DIz4mTgWj/l5VddxqnYOiuzyUn9BXO933He6bgSuMna1N0
+aV208uDYFHzWCAi6jGY+1EmRvDAF6afX3kqh7fybRG9sT0F45YHS43Z739/t
++c5GNg2vbT/30KIF8q9mdtFPw44j8eqWLU0xK8eLtVfs09AgsHBwAk17cDbr
++slpODThzdOCpkquBBYxvH7nnUwxWo3aU6ZLbhrUfz3UfIc2zjZljledhm+P
+pk1j0eemm6+bXJ2GyNDtB/7ouBti+4/emIa78h8eP0D/fNd2cODuNISNEL8w
+Qcu/Zn/8xnEaLJs349XQVhxm1257TQOPSVSGxJ5P7LzkC5oGosaGj5zomPYr
+cjMR07Dhl1dEbbu3HyxQy0ucBspK8dL1+zg+VAJ/OGdOA/mMUdUI+nMjT6zM
+p2n4fYG3rgH9OH2ye/fnNKxzv2z4gU5wEQsqr5oG1o7spkz0xkGTxJBm/Pxn
+y+YotIhJGZtO3zQYHSxveoxOs6kgPjI5DXwi1Q330SXmoN+/NA2O9s5119C/
+AmkYMnan4TL776oLaGYlOhl7ihmoDPxVKoK+S8ddK3VoBvqJbn5nR8e8TKna
+d2wG7vel5ZOjFyNmRGv4Z4D/XmTm8j2aYvthM7IoiRmo3uBPHEAf9je5dFNh
+Bla7rP77g7b9T36dT30G6Ey1fb+i15VuHVrWm4HYtgHHNPTAAl8SmM7g+o71
+1n/o98yE6FCbGVgb2LnyCO2gzrRt6DIDwodC5azQpxQ3G3gez0D8w9KTemjD
++s1DiyEzQHw3jV4RXTnpWgXRM2DLK7opiO5Mr5t+9noGIimsB5nRTjI3fUxy
+ZoDbTKOSGK2/Eugn+GUGijy6c+ZtMD7N7PXN4hlofcv0ohvd2MbTX1M7A2Pi
+uw8q0ZrKhlLxbTOg6BSh8wnNdDdl//3BGRD71CySjN5/xuKc/MwMlJ8vpQlF
+K5Vvz9KszYCAw81pV7TvxXq6wf2zoPIs8/ct9BK9dMYn6lmgGnv9WgsdkRD3
+MYB5FuRqVD1k0SWPDESMuGchNihRmxdtZfPnuNDpWfhu/4aXAf1F/kYYkfQs
+CNcbbO1Y436IYG3Tfn4W7BeL6ifRRYm6v95pzuL98/d1K1rmycMg32uz8LYi
+0qEE/W39fPU1i1lgoqdQykWf86N6Imw3CzLGwrSv0CElZ/IOeMwC++KBHn80
+myuvYZ8fXn/8v4wHaPWncq5fns9CjnytgwnaZKXr4ItXs7Dv+VdZNfSXOYuj
+VmmzoHDrGpEEevi7TKbSh1kgJc+pOoZuqf6Vw1Y0C3//5D2jQv/I0OdfLcf0
+XWudNSu8H8jMuRr/zgLRZBvjsNXe+TPKUe+6ZmGha62lHr1TbOYbNDoLlFx1
+UUVogiDbjCVhFq6RG+qmo1+cbWtU2pqFyd5ough05pUV8WMH5sB9LviPF3p0
+upthh24O1gLEA633Pv9l1q6bbQ7YlyMU9dF8ns/VinjnINA3c10RPXKc+/Ur
+0Tn44e384RRasoLa1UNuDi5IrlkeQZ+IzK+5rjoHvosiLCTotDG3JNmrc/CT
+iPvP/F0c33IlC2w35oAjv8arG61zZql85+4cdGsIClWie2Mdjww4zsHBYxd6
+89HkWmkzpV5zEO58ODQJPWwxq5QeNAeKr5KlQtBaBz8dCYmcA/LOoSEXdG6K
+kYNd0hwE+PSHmaN1Ey9p6GbNgU1HtKQm2iNlNEu6YA7EhQ/0SqM9naNCjsIc
+GP8V8eNBT+7/MUdSMwcXSZj46NAWRqVt0y1zoM7ypXbrDs7XBQeVm/vnIOw6
+vd04OukeicT3KcyPjo+2Gf1u/8Hs1JU5uBq0+f4X+hXH87dh++ahjjpYMxv9
+O2yO15VqHlImmqei0Sbno4XMmObh0Z3ugCfoBsPJH+pc8yDUmMxli/5LfbVJ
+8tQ8aDhxfb+Gtqs8Y88lNQ/mMWa6F9AXDv2LPHh+HpYCb0wJo/PSGZQ2Nebh
+/osjj9nQZdc6XccN52FxLfwQGdpM8Ltk6615GKGqyVi8TVOcfpHTu8x2HgwO
+l8j0ofM2Hmjnu8+DzU23mmr0ZtHh3BS/eVgQmb3+GX2bzy0q/Pk8HGjnnniN
+NiHbPeD7ah4M4464hKE3LjCSOqXNw5vy+n3uaP7VYy8sP8zDy2SVUAu0s+Gz
+twZF89Dr7HXoCpq1vlztUgW2zzPXBFn0tzFhD7mGeegTFz3Oi2Y3lJYS6Z4H
+27zcTHp09raqH8/YPORqzJzasaQpnu+tusGyMA9tOrMfJtCD/CcqabbngYzi
+o2gLWilh2NSXmADHvkvlA1qjgjpth5wAYh+fiOagqW8ri3jQEGBb/MWHl2j2
+0R8kK4wEuB9mdsoXXVr2nsuBhQDkxKsZtmiiKK3A2aMEcB24wn0d/WGnUdKG
+hwAatnbxF9C+P+1Oj/MTYHVBh1EEzfvWyM5SmACdXzaD2dAX42vXByUIIEVi
+/e8AOit+7Y+pLAGUuROdFi3w+V14aLpXgQCS12PGetGMh67rmqgQ4MCC4bVq
+9PfZTdJudQL8EO2vKkD/iRIhNtImgKzFaenX6Dx7kcud+gQwqDufHoqe3xDp
+u2ZMgOLCY4xu6J5yqx8dZgRQsCn3voW2cKMZu3aHAFdPiU5qWuz1xzXjzntY
+P5U7V2XQRvHe7EYOBODdsSjiQd+p/MLf7Yrlxwlw0aENtKX9TB4RwP12UcDW
+LVwPqcvy9z0hwMs0xukxtGv/EptZIAHOJp/RakKzaCcYD4UR4HLC8byft/b+
+H2QzYRlBgLmhLrosNJ1ETOl4DAG6v5k8iELLx1ybskkkwO7drHofdPXnMdO5
+NwRgkigRvIdOV/A47piJ8VimBRqgbbdUJVdzCeChqDukhDb4HRLt+YkASwfr
+z55Gs0d5XPj3lQCOjIejjqBT7DXO+/8iwO0YvmlitLDn2RcU5QSgGSBXmjfH
++s54C76oJkCs+JfoLnTk4SvMh/8SgKtDZLICrWQycjW+hQBFjB5nP6KZz7n1
+cXURwPrUi7AE9NwVxaLMfgLM33XqCUQvy7uPCY8SQIWaV9AJnVVraFE4RQAq
+0wz3m+jDLcyiCgQcP2/Xyi/tpV9auFK5QoAsXmY6SbTXGY7iK1sEeMJ7wIgT
+rf+j5UnHvgU4Ol3+hgr97ZBOtPmBBfj+TXdq1Qz3Z//Vbk5RLUB+e77IENo8
+zivfmX4BzoYMudShj+S//rHLtAD3mYa/fUW7OdixBLMvgGlJwXYq+lcwZzUj
+9wLQNRiee4GuLifUJp1cAPPAP96eaGUSFm6B0wugcIrx1230h/PNtZ/FFkCf
++NS2Njoz4nq1kvQC3NRhlpFDWx4bY62XXwCCUavzSXTzqU/FRsoLkGF55wMD
+2o95q2hcbQGW8msmdkxpir/qrVO4aC2AdAgR1yQ63XE0l0hvAUqEaK61oPWO
+7KT/d30BekZmnwF6hNRz5ajpAqQTUkqz0V6HYl7lWi6AzEuB1Wi0+5kXkXI2
+C/CNJYjvCdrVLXG41n4Bxn8VXb+/l9/2drCxywI0VZcGG6LvE08GTHsugIj3
+66/n0ZEjCV0PHy9A5TG9sdNoIXq9p9QBCyC32MvAgjY+pB6YGLoAXDLnzpHs
+xRNRNCAUvgBE0i5W8zdxPF4eDC9+uQBXxfzCu9C3mDbjriYsgNU9q28V6Ptj
+itsjKQvwkvfEQB5avmrhs1vGAlBnfCNNQLsMqVVR5i7AmjCvQCBaxNVXPCl/
+AVxI7mk6on/3da2Jfl0A97tB9jfQ2+HPD//+uQCz8d7/qaG5ObvCjMoWoGJE
+M08cTSuxeWO+Cuvjv1p/FK0fKRjsX78AMb/cZyjQskdzaFhbFmChpYV85Qau
+f/9+nvvQieODkopnAP3yVxD/xX4cDyls52rRMmzm2BcL4NxzwPAL+ojYozyn
+qQUY3fljl4LOtmHeoSQswCE1u6dh6BTVB2/frCwA685UnBua4W55luzWApww
+Vf5wCx3pq0PZvG8RbuS5lWqiL9vrV947sAifxYJapNHVHDSDJNSLIMnnMnoc
+3RT3zTCJfhEims6t0KAdaF4KSjMvQqHTKPGmCe7vfg6aNLEvgoGmNf0oeuVA
+9/R97kWgS6nhaEBfsSruIONbBN88Cv7v6DyPhuOppxdB9CeveDp6cv5S3Tnx
+RXhOzi0Xjj6RcK+1S3oRFpq3lB+hD9x3lnM7twglZgXqd9HfrVOJDl1YBGbC
+Ze2raO4fUnwfLy0CX1mpnjy6Lv1BrtaVReBnY7nGhxYJeRYxo7cIm9JXjBjR
+b4br2kOMFuHrjdvGu8Y0xT6aDl78ZovAW2NsPInW9Cn0q7q9CBwgZtSCrtMc
+mLp7bxEsvaYMAU2ZI/iJzGERPqj46WXvfT69syfDdRECr+1ciUYX3xewUnu0
+CAGr19Qfo7+o3dSffIL5m71UvodOefM5LSRwEapbP581QN/e52Bw6tkifI8p
+FFNCL5M22tRHYHlj8Xyn0HIuTEMPYhehYr8FBzP6nJDvD8akRRAQOEhPhBYQ
+1t/8kroI8clxxLNGe+frNMQbZS0CzRuqlXb0Qqxkyu77RbBzMBstRf+LrqBM
+LViE15qvWnLRAcSlHapFi3DX9UtpLJrL/T7VLCzCf4JfP/ihxbIOpEZULELs
+u6R4O/SWTVOydO0iKMjYBFxH/86jJ+pvWAQierYHF9BjYQdqnrYtgpbTx2vC
+6FGRpbVTPYvwNPm0Iis6dpYlrGVwEXZbXvCSomXFfwY8Gl+E5asdVITrNMWO
+4ccmeGYXIfEaGaEL/aXQL69ucREOn+BorkBPOp8acF3H9llj+ZyHJv1q4sa5
+uwghNLvR8eiCF4auNcRL4JRV7RKA/i1g1utMsQQbB7z0HNDHOr69O0a7BNO3
+j4iZoKcPZI7UHFqCXpIEGlV03EW7p66sS5DLTT4limZV1X7BzbkEbTsm5exo
+Qkc40d8TS1DWEpdIhhaede1/KLgEnGMlLovXaIpro5V5+UWX4NiDJo1etBep
+XHvbmSUQ//iHuwp96L+0RX+5JXg6nreWj76dXeIufn4Jruv41CaiH021Ww+p
+LsGnU9JJQehislO/wzWXAAq77Z3QZN1Ez5V0l+CWiI3iTbTjzZSShWsYb8sw
+7SW07HsN8zc3l8BwSK1PHD1Opm6ra7kEl2Ne5RxFn63tGyWxWYJTom1uFOhc
+D+3aL/ZL8GZ29/yyIU3xzJcRDmuXJTCnPHSwH92mNtjL9nAJOsoPt1WjM5jD
+qP4+XoJoI5KkAvT6acEM3wBsT/IBy2T0zleSj2fClkDtYJZACDqI3JR/OnwJ
+JtJM553RUi8e072OWYJ5apJPpuiwoQ939BOXIMr3pYs6mu67+Cmq1CXYPM8s
+JYm2WL5qXpK5BJShAWvH0Hef6R1wf4/9ETPyhRJtlenDJlywBKfTRV1WDHB+
+DGVLGfu2BH2LtmID6D9J9jFJgP1V9GquBh34oGzXoGIJfGQ/Z31Gq3y82U5b
+i+39vtjiNTpXMpirumEJdnR/sIeiO1ZDen3blqD5TmaLC/oD/Tsq+Z4leHf8
+aagZuqlS4t3a4BIs/76qdBk9520L+eNLMBxGvyqJDihJUrGbXYLWjyVZnOiM
+c/QKAktLMORgYUKFlqo5+G5sfQnOUqwdXNXH+G/0hqXuLsHKp0e/BtDch6sH
+zUiWYf/7Zdta9C1J1pyjlMtwS9yU/Qtaipd1sod2GXp8flS/Rpu7MCTEH16G
+a3+pXUP1995f0Cg3YluGZze0uVz19/6/wXiLlWsZxO8E1pqh1ww+uHTxLkM7
+T77zZbRu3L1/caeWga21gf0MuvJMxD9jsWXwzh8u40TfTLR15ZBeBuv1KWsq
+tORtNct++WVQHhqjWdXD6zVsq1OUl0Ejpz1/AF1+5mS65aVl6H/+U78W3SJc
+snnyyjJwVMWufUbLWAdUTustA0+Edexr9J+zpdR5RstAzSciHYoOOFlc42y2
+DH/LZ9pc0P7Ntftl7yzDjdRkZzO0IY1o/r97y/BxV43+Mnpf/dmeCodleEo/
++U4SzSMi/TjMbRlSmB6rcurtrUcdk3S9liFfjWaQEu3AIiXF5rcMBkORHiu6
+eH+kNqkPBy2D5FF6+gH04dbwzpzny1B5JiCjBl0XVTLsHLUMPneW5D6j0wjv
+rc/FLUPt+LXGZLTrsYx75K+XYWv5i2UIuvrx2mTT22WQrjq45ow+kDg7kpiz
+DMPxN4JM0a9PtJtYf8T6ZqcfUUdvLu+/Klm4DA2nJjMk0Oy0P8r3/1wGvpsn
+zhxD70vR/Vxfugxc7sZlFOj3+5l5EqqWIbIg9MryVZxPPurR29Qvg5nml64+
+dKSRsZd0yzKYPOq2rEa7NHpYkXUtA+/DrdlP6MBD/5ra+pfhvh+TaxLaWkP2
+Z/roMhDqT+0EoSX+eJ50m16GgzHn/JzQCfR0DGoLOL4Oa5DfRK+WX/JiWVsG
+eT/9MDW06zc36+ntZTjCakwrjr46O9n2k2gFpBhvhHOgx4MJFf+Rr0BPhjED
+ObpluPuMJc0KyNIbRizqYHkPt/mlD63AnaAr9L3ozK03ydSsK+BzUeVFJTpH
+jjN28NgK+PlLU+ejvZQqGAtPrIDTQ/6gBLS/zDDDM8EVYLQ8QhyIZn9cG20h
+ugJX3Ui9HNAWiX8TZKVWYGOWsGKMfqKixMcgvwJf93XbXkRnXHeUnjq/AmIT
+ZSMi6GfjBXWlaitA0ZtjxIbe4TeeiNdagV/MkX9J0SNBhUEueisw0uChTNDG
+5+8r9g9XjFagQtHsSxea72ivsYDZCnQmX+SrQF8g03hBemcFTHhPv/qAznT8
+cWnw3grEUR+iiEMff/ck9KfDCjSEbLn5o5NPz+vFua0AZefwqB2aM/laupsX
+1ke47up1NFc7/WN9vxVoqSj8pYxO7bIbEg9eAYuWVH4h9PXesjqGFyswHREe
+eQRdr3T7/GIUXi/zZJtor/xXGYpNcStw45+j5ewVbI+3/VX5r1fgO/vd2nb0
+J/1b3ZHpK8BZfUO0FJ1a7e/u8m4F+OUMX75Dt2onvDbMXwHTXN3Nl2gjm11d
+2a8roKmne+MJ+m7FvkiOXytwzcoA7qH1lDZu7C9fgQXOG5wG6M5Z+c+j1Stg
++PnuY0W0DNWJVzV/V6DXxLVfAG1ASUqZ17oCpVrB8ofR+59JkL/sXgGW0tdx
+/7RoisnvUEY9GlwB8rkfq5PoO696cy3GV+A/ij6dFnSwCanB5dkVgMsk736h
+DZk6w8SXVuDhtDBpFtrLNO8q+8YKxB4zvxGJDiQaziD9twJLR2MLvNAM21Vh
+8ySrcJWzldIKvelZtL+LchVMjI6YXUXHDtCSVdCtQgnxrQI5dHUxV2Ie0yqw
+6eaTnUQzD6mVJ7CvwoI3hRE92vRc36Ng7lX49vNuzpYmTTEv0dlKV75VGFGp
+2xpF/372NdVSaBX+aMpebkDHOOcx6Erg56k+vCpCL3k9OnRedhX2fxEcT0Nv
+p7lmiSquQoVvnvgLdPORjUaui6sgmSnv44EmyN18zqCxCg4mzdUW6ENZ+/qJ
+r66CaasDoxY6m/9s+YrhKjBfYjGRRuPO6dzEjVV4Pludyo2mejOi2W2xCgHr
+flPUaOOzlEv11qvQm6wqsqaBz+9TkkJl9qtgxHLYZRDdebnkX6HLKryJm/la
+i5Z5S2mV+3AV7l2v3/qMDve0vZv6ZBXkQ4vkX6OnlS/uvgpchfe3P3qHoN0/
+LJwKf7YKckc//XLW2Hsf589SUOQqqE3Bzk30XSkJ3SevVuHsv/azl9A/S55e
+9kxeBauILXdxtGPN0V6nt6tA1inwmQN9j+EGuV3OKhiS3yGQoYfCk+qsPq6C
+p36uwOJlXF+5K522LFyF2JV9lj3oDqG0k2Y/V+Ezh3nCbzSl3omfJmWr0E5U
+35yH9is+Pne9ehVaO1Up49Hj/rtFhn9XIbW9XuEpOnTqEI9B6yqwiFo426M/
+Of3m1+9ehS1W0szr6Dfdjn/0BtHVBV3K6E0mT2r9cczP0ZFaCN2vKzelP7sK
+TOrn5I+geTZZ7hgurYK+/xFbIrR/jtPj6xurwGmwP2FGnaZ4XjlbxuTfKjQu
+rVe3odM6j0aYkq7BaPi/1WK03E+xEAuqNci0PHw8B+3tqcptRb8Gzq9ltaLR
+n9p/Gdkyr4GHh727D7qybVPciWMNJo4XpFijcwpuvPc4vgbDzeQ1umjeqUs1
+j/nXIOSn7YI8+pcgd1CQ8BpMHRpm5kPT2Vya+E9yDeYPWsszoCmauKdfnV0D
+755/5tuXcH/4hz48VWkNAgsyno6hl/Z5duWqrkFLtVlmw561ofKr5hrwaQvW
+FKGFelWul+uugexDsuk0NCex44uG62vww3uF8gV6+kamTa/pGpx7vsLvgQ74
+rTk9dXsNtHvJ1Cz20nUr6TfuYX2TT93WRFsae/aROa7BKXLLJ1Lo4gd/dJjd
+16Ba/X0CF9rszvH7J73XID2OqpAKPaM5elrafw2YBR81rKjRFPe4ucdcClkD
+c+F9k/3oJ87KWcb/rUFcV8y+GvR9xlwLu5drQGSmzFyAvmLJXvkkYQ2yFolO
+J6ntra/Xm6PfrMHTijalILRNfFZIdib2DxXoO6IDhl5Ow3u8fv27lQn6dyLf
+WmvBGtz8Wed5Ed1/rDJ3pmgNXj9fDhVBf97uoiUpWYNnSSIJrOguijoO9so1
+aD/mm0OCfnnzQIdEHbafyuS3OVWaYm09wjmt5jXQV7pT2YFODVi+atW5Bm8v
+bjSXouubHx3y61+D0sA3/e/Qv0yW/JJG14BN6tbUS7TT09KUouk1YA+UXn6M
+Fl7Rs2tfWAPF7BM7Nuiml4enltfW4E0TP6k+uizW/jDjLuYvpkKtgG63rSeI
+kqxDxLYbAz+64E/iIx3KdXC8VcrMiKb8eOmbA906uLzkYd+5iO1tdC4jgmkd
+4muSjo2jfa9MXCxgXwcqUVHuRvSL6wWxbdzrELnVffw7mjuYNnGDbx2OmyTz
+vEUrStzV4xBehxz/hzwv0POrfKAkuQ6r6Q+Oe6BjPpX23jm7DmXL3lwWaPXI
+N3lhSutQmJx+VBM9TCol/Ul1HWI6x1ml0C6lc85dmuuw3XyeiQv9oFL6LpHe
+OtwoLqSjQhMZ+9MKGq2DfsNFyhUVLJ9KyU7PbB20JQlE/WjP931+3nfWoYiz
+YLNqzxZ12ln3MZ6yiIV89EC4V2uL4zqoaIeNJ6D1pkwZ9nusw9Lq654AdMyd
+UTIhn3WQn2xoeIB2Vff5Yvx0HZSusZcboWmPJx8NCV0Hdhe/LxfQSlVfFL+F
+r8PygwOZQug/xtIckzHr8OnR29gjaH/1lwUsSRhvtVkQEfqohjLZ5bR16AqU
+dpu5QFMcYZF/2Ct7HbYmTt1uQzv0Gwx8yFuHVI5zV4vRIkZpd4e/oA3un8tG
+WxbRvGP+if1bXsgfhaYUp3yvUYbxxXIe8kZPKVPZ+VavAz9Rxs5d9PdvATNf
+/2L9xC6P6aCT3y/wE1rXQcz4YP1Z9MWQEl6+nnW4kDNbcAKtQHR/2GxoHZJ1
+Z+Jo0easd83iJtbhoz/F4w1lmmLGE/xJLXPrUGKnYjmMlivjS6RdWYcT51+r
+1qGNR3tuXN7C8SPMKlCI7qz5MRC4fwNyb3+iSkFfJVbkrSDbgGNM92dC0Cu2
+fULENBvw34MLf5zRcbJ0W0qHNmAzTS7nJjp2UjP0CesGGA/rBauh5TXoBko4
+NyDd+NkdMfTppw0bRCc3oEJ+7Dw7+j9y8s4LpzH9m+nRA2iXBBHvQPENmNvd
+WJ8/T1N87Hr5ZI3MBtjJf27qRDtmybPTKm7AUFp4Thma/DIzk97FDZi1fOGX
+iy7V+tP+SmMDJHLfG8Wgl490mA9c3fO8yJO9dPMvBSevb4Bv1NUD99BuksMN
+9qYb8CqivUsPPb7c9eXr7Q2ob/N+fw4do896l+j+BqT+p/aED61/6+iQhuMG
+nJ2X0GVAH39oyRfrvgFU3Bd4tpVoikUNbGRHvDfg4jXX5VG08b/cI6JPN4C+
+pLbsL9qnM7fMO3QDQkIvRHxDVyVOnK0L34CmsQHTVHSnSe8T9lisz/6UU8/Q
+n7ypXt5P2oApqqfrrmipskX3n2kbkC3+rMwM7XKeUZA2ZwO4Mr89U0cv3599
+Z/5xA9hiKQ0l0ELURP8KCjfAT+zxsaPolvNNXBS/NoA4nXWcDM35rP/wzfIN
+uMbVlbugiPdHSU73p5oNkGr+5dSNfk/7zYmycQPOTFVJV6B9iUP6zNs3YCJq
+ffs9uss3hb2odwO69msVx6L5//oKMY5sQKhpta8vOvvpx0O2UxvwoMfmwn20
+f/LHv5UEbN90MVIDdKojmdnxtQ3gneWsUEDrfJT67bOzAV96Jf350c/vVRL1
+Em9CTrrDeUbFvb+3yjGdpdwEU9eWf9sKGO9ttv1xdJsw4Xnzxxg67NV02QbT
+JtwconVvQAeJi5sacWzCSNeEWBH6FqtH8/fjm2AdMTmTih6PusB1VGATVs8w
+pD9Dh1/iuPREZBO8V2/ddENzKIReHj2zCdO73YfN0X09TPzq8puw4eX1Rx3N
+M6029EF5E4JTVH0l0M8js92Y1DfhRoys1NG9/MwrJr20N4H7mcE0GTrv/HGZ
+MYNNCM2LT1o4h9cHat25cgPThSl1utFDg40O3yww/cwbogr0TWtpEx6bTVBd
+tvj0Hl0Rc5D3vwebUBt9xSIWrXS59++26yZEqd1m8EU3/xY3svHaBGLZt8X3
+0Az5iRUdfptwO4bWTh9tzZrJoBayCUeep7EqoCMdB5S+/rcJGpctf/Ohf0e2
+6PLHbILktpYDA7rwJ8Ol+MRN4Ki3ZNuWpykWiOHnpknbhH1zb8tH0bpCmf1P
+sjeBKpjB9i9aboPDdzVvE2T+ZB/6Jr/39xZWyvuFm+AyYvf9DfoBtbD70M9N
+6Ny9aR6GXrk8/ed6+SYIqT084IqOej9A3lSD/TNblm2KPvz19anLjZtwjk1G
+6xI60eCndEX7JrjvdhHE9vIfrjqt2LcJXWVZEexoM24D6h8jGE/sW/EDaLYL
+6y3S05uQlVHfPC+H8+vI+aAvC5ugd+yEUyda5WANr+T6JsQKZtGXocPFuT8W
+7G7C1LrRh3doq7MDJyVJt6D2k6zGSzS366vQL1RbkBikNuGDXk0d7pFm2ILy
+VH8/a/R/S3rsP45sQazoPIcuWpHYX13x2BZcuxlUKIdmHCSzqjixBZoG2tq8
+aH0qd5fLp7bguYrqBO1e/g73nZrEtuDeNVufjbMYr6PXLSOZLRgsKj08jOYc
+UlYeVtgCkleqOX/Q1sTXmWwvbsH00W2FL2i9ZwY9axpb8J/7QHMyujSrLdpP
+dwuKG5fvBKOPrTop0xltgY+BzIYjet6vejTRbAsyxN6HmKC1Ox29Tt3dgvVw
+XbaLe16govphuwVXX/PnCKM/yIm+0HDeAqVgEVkWNCHFh7LPcwtC3a2qiNBO
+3lFeD55sQeurRv0ZWZpi2fSDk8RBW1Bw5P5QK/rs7WDN2OdbkM8pbQdoBp/0
+nNPRW3CpV3IjE80oQkJSHr8Fux63/SLQ/qfPGxq/2QIp7krqR2jt9H3pS5lb
+oLvfOPq27N75xAOEsA9b8P48F8cVtCCfr/TJL1vgR8+aJi27d35HoFfpjy04
+9kpFgBtNCpHFN8u2oIwk7QMVOplLjWi7egu8fSQlVmTwfhdSU45r2AJ/ic3C
+Ppm992Ok/GXat6BXa1G2Cm1BXFTR2bsFyRscPz+ide44kz8c2YLvpl7n4tEu
+mVSaHNNbIPqODvzRUnonoooXsH8oOs7ZoYud7vZZrm/Bp9Tmn4botnD3U5T/
+tuBZGrGcEnro2z/vPNJtIJOy+iaAvuqR1mZIvQ37A/afOYQW6KeR2Me4DaI/
+/n7ckcb1rNd4TBbLNkiTNJ8aR3tatxPpcW5DYRBVRoP03nk6QS7/eLdB2dmD
+swhdRp9GyDm9DTcW2F+lon2ftTpfl9gGP4FVumfo1LZKIvKz2yCjThrkim6O
+440vVNqGJk/1XVO0KU3SOSu1bagcq3C6hK6d6ZplubINul/dJsTQth4hWX/0
+t6GPxcyEHT3vY+T42GQbvCV9/pJK752HvqEmabENUZKtSvNSNMUn2g8LTVtv
+A9eFW5860H52ptxvHmzD9VBenlK0J00Ar5HbNuhIckfloLMlZc8yem8Dw319
+4mh06Nwp8zr/bYi9XuzgjfZtoH0VFLoNHSct+u+if/yLGr4QsQ1V+85p6KB/
+CdkrEb3aBkkana+y6H1JOp+Kk7eB2DPhOA/aiIMg8zh9G5ZsOZ8fRGtQ/2tV
+zMX6MPaurZ6hKU4xEg8iKtgG0+gmswH0seDzOhVF2yDAvr+6Gs2bPSQaXLIN
+841WIp/QRrdqBLSqsL8GKGIS0IqTeXKH/m5DyIOR7afoYQotq+7WbXB/t25u
+j35+3Oh9as82OP+8+Psa2lDgOa3t8DYs/qnnP49uzEgNk5raBlWS8DBB9J/v
+erzEC9swFPZs7hC6l92k9+/aNhD9V35lVxLjYXHJT9zdhokzZ/LGJffOazNO
+v0+6Az3ZQ7SNaPvDf77JUe8A+eEauyL00Vy/2YOMOxCYNPMnFc1Hr3h+gGUH
+wh6oCzxDH3oBXz9x7gBHwXCAKzqWrkQn6OQOKEZ8HTJFC7GR0NwU2oFF8Wr5
+S+jXjWpzEpI7wFt6OFYMrb58ZYlabgcqbyctsKH/DXZxjJ3fgRJVC3VS9IfY
+HLviSzvQ8J/lmzkJmmL2L/5j8do7UGX9ZqMd/Z87f4C74Q7c2WLXLkGnww0t
+g5s7YG3X8jYbvUo9piB5ewdcp6s2I9HN/oHGh+/vwMX4TS0vNMU82ZtVxx2Q
+S7d+cwf9tvD0oU6PHTgmybRyBf1sHvJ/PN4BjQf7VGXQTpoB3imBO6DzmC+W
+Gx0kdMk98PkORD97PkGFXnvZ+Nouegd8isWkV8RpilXFJ9cNEnbgvtLhwD60
+2jWjJ4qpO5Ahfaa1Ev2bhCArmL0DvvXR3B/RZoMuvMwfd0BCUMI+Dn3o/NcL
+JF93YNmV/rsfOprX/+Xirx2Y7jx9wBYtezaDfahiB049CtY2QP/pnG9v+rMD
+M0954hTQVylPV5c37wD7sX9DfGjwE1oo7NqBYnsWQQb04rty7XeDOzCS7OS4
+JYbjO7F4ImViB4zaD34bQZdzLH+Lnd8B+nMTu3Vo9yzRiv9Wd2Bui+hCITrL
+ToMqZGcHvkvfDHqN9rhy5Jk/yS6IsG/WBqObhqwvP6baBZ76NhontIgLk6oX
+wy4ouC5rm6BdKZYfP2TZhZNyuhEq6MHrnRuenLvgprrUJIR+2ZGY//DkLtRB
+C8MR9MGPLO+8hHbhy581nf3oc1Unxh9L7kJ2tMl/U6K4n/gVb/lUDss/T1zf
+jD4+p38iVHkXMjamKX+iyR4IC0So74LLMJNqOpqOhcQ5TmcXqE76+75A/3qU
+R5x2bRfeTIv/dEcnzdJ3vTfdhZhrvGvm6AveB9aL7uwCcbSxyGW0CJHtzSrb
+Xbha1WwlgS6jOUHT7rwL7iwvXnOgmbZpyMcf7kLBh2ftB9B9o1Sa6767cCT/
+70GCCD6v3+30UoZguqq+cif6zcrv70fDd8En5qh7Kbr+9OVx8dhdCKsSfJeD
+jgqyM1dP3oXP+736o9DEREyCt9J3YdSagcF7Lz/TkyoPc3fh38kZ5bvoeyLB
+edEFu9B7i9JFGx38l9vu4/dduKxk+1YGTWTZ411fugsLk4daudFZg0nDM9W7
+EOu3n4QavUqpl0jduAsrEuJiK8J4vziMvTvdsQtZPNmmfWhbFyVG7f5d0PS4
+E1aJfquu0+g0tgtG162+5gnvfT+VaCJ2dhceTX8YfoXW1bxwDZZxPBjI0/ih
+PXeJj49v7UIN0EnfR7cEi16iI/4HfVoC5vrorIs/a2Up/0Hm/yq683iovigA
+4LNvZiyVLJVIZEm2EkLZlxRKCpUle5QKKSRCka2QJQqVkhaKUpY5ChFZSgjJ
+1mb9pUJJ8zv9+f3Me/fed895953rM97Ix8XqoV0OZBR5CPG4mUEqJWuU/31/
+r/RriiiPS9i7olsQ/bCYevbZSh5XgmDz99c6XA9CTkVNy/K48rFN0sNor/eL
+h6XX8bhuKxLMmtHSZhXX7DbwuMNDab5l6Ca+gy/idHjc97yPSVfQcXbiVmDI
+41pnhT04i36jUbNp1oLHdere2+GP3n55T6LyDh6XNXDmpz16+a4eU297Hle/
+a1rYED0sou993ZnHpYwUbliLvhZy7vuAJ4+7cW2hrfC6f783f+ezxGEet/rt
+f0f/KuF6Qbxjsj+Ix91Hi0j+jOa2nxG6Gsbjjg7b321Dl+armw9G8bhKqSGN
+T5T+/R5uxeTqeB63V+fTSD66rGA52SeFxy0kZ/HOo9M695wtzuJxNfjTxQLR
+o6RjoXN5PK565Hu1/eiW+UPD+oU4X9F+W02V/r2vyKYqvpjHTdAxPaCCXmko
+yffuMY/LbPE5KYbOHhl8JcvlcUlO3ckktNJ8Di2onsf9b0lywdhafpgU3Peo
+/hX2J3yxogNddUOuX/Qtj6sQ3d9ahf5PmS/ct4/HVYkLHC5AB0sIZtUM87gx
+5rtnktCC7wxVRMd43KAvZxgn0GeePTTwn+ZxDePnxVzRc5qHXjf+4nE5DtUK
+W9EUS33/iwQCzAQ1a69HP8kmPN5CIYABQ9ZiBdq5YqFqik6AQbWmPTS01Nua
+6Kt86GWVHlOKGL+MTn5rAQI4fJk71o2eXV9vT1xMAK2qiNM16Mv7lnk+XEoA
+T65d/G10g6nLRg9xAnQuDk5PQbfdkW4SkyCA34ePeaFoj5eTq1qkCDBvklvk
+jt5/wGrzGRkCWBy+WbodbQavJbXkCSAeNl+5UfHf+9ZpDVNrCaCdll0r+c+x
+JzbcVEH3xTUx0avkn3o7rSdAf1B9+7QCXt/MbndRTQK8iLXq6kUfGRySe72J
+AOFasn21aL4DY6XxmwmQftti4C66IJzEMjMkQB6xavgSurP+iRzFlACcA2Gf
+wtGatteEaiwIYPv9/BcvtFKbTd2p7QTo6Pzy1Qad7b/HSHcHAf6qpo5qo1N+
+WST92UUAJfnEUWm0RnVVQaU9AW4PdH5lo7fkGZ8P20eAJ6GHvvyUx3wQDtbd
+7EKAm1K7PvWjH0qOVRHdCXDxe9zwC/TY7g2cOi8C1C4VHChGl4xMKMb6EsDs
+/khvJjrzzB3x7f4EMB5kdEWi/aKZPYsDCPCyLbT9IJq/Lcen5zgBBvK2NNmi
+xT6QXuWF4PUH29bqottrXxN9wgnwKri8UhZdrnCLqX6GADH1vqUC6NIdEh//
+xOD8RB8pmpPD+kqkPfVFHAHIPfV5g2ibib1iKYkECPnsm/4SnT68/5jTRQK0
+tx+If4h+cD3g2tpLBHhbWXQ6G+1wXOf270wCbGg2CohGW27eda4xhwCPpJU9
+D6GVTu3Xy8wjwPQnH/vd//qznWv2vkGABK05iy3/2ot4vn5TIQFWbu7aJI9O
+9nAJ4twlgP4yxtpF6EhKwMWBYgIc+ha3bH4Nxo+XE1taSgCFj06sEbRPTuTe
+2HIC/BI7O9eMTm+s43OqJIDcQ8KnMjR7MTtjAxDApKP59RX03Xu/iZxa7D93
+rPos+tPxjRYfXxBg36Z9t/3RXt+8jlQ3EYD3QirNHh1gohGc0UqAZ95a4QZo
+xa2mTsfeYDwMr3spotecMlpj1UUAlxOuNkvQ1YyuNsVeAmQrBWgtyOL44NZe
+5gcCFJ15J/kJfWKNW9PnIQLkXrlIb5X9936T0hUvPhEgMu/qxGO05jFj25uj
+BPC6T3iTiw6te3743CQB9MbKHsei9a73+ftME4ARzL18FB1O0NuzbYYAhcEr
+wh3R78Iuyar+JoCMYJuLETriWFqf8F8CrHPpMlRCb54YPTlPJMLDRHWZpejD
+d0xJQ1QihFWMUHkyWB/J7TvWyCSCHmvs42e05cX3LSUcIrzMMalrQ59qCxG+
+LESE5ozZa0/QetFjptHCRBhd8TciH93AHvTwFyPCMysHp/PouVNCx/auIMKU
+NVsnAB1ZrOZnLkUEutES0X3oXPX5XRtliFC49eh3Y/QF+1XrZOWJoBAn27IO
+vU7deUZYiQgrVqneEkF7X/S7T1PF9jZcjCCghfkoDnPribDw2dzh62qMx4/3
+M6OaRHjssEftNbrC61FMvw4RfIurmBVoGXNz1pstRHDgOzlwDS2hszOywYgI
+3xMSHsWj392/MFVtRoStDnPnA9Fivc92PLIkQu7Fp8770U7VN+7csyaCln3H
+elM0v8zvhZu2RFjWZsxQQUcWnDbN30OEADGBXlG0/s3fsTl7ibB3t8pdInq5
+g0J9pjMReooKT41K43655vWfS25EIGuFWL1Bbyp+vC7NiwilkjdWVqJ3NeXs
+TfUlwnTUmqnr6Og4i7Op/kR4cJZUnYBmakfdTwsgQoWFRnwQese8UGd6MBEW
+//fM3gldV18xnxVKBI/MW7JmaG9fC6mrp4mQ6vV5WgWdmHbW9HoUEbzCw6vF
+0H11uodvnyNCMs8/loTO26uZWRJPhEpW5c6xVXg/XTKsf5JMhFvPnFd0oCPj
+184+SyVCt5nTp0p0i1bN2lcZRGBwH9+7gT4b3ObZnY3nm/gEJaJNqAqFI7lE
+OEU8rnscTT195du360ToFewnO6N9/Hj6hEIiaF+62miGFtVceVngLhFWP6xI
+VEWT1doXVpYQ4cc5tZ3i6KG0rz6qZUSgaFFEyGjfc7rDhk+I0D6i0jMmxQ93
+xK557q4iQtLd8uwO9H2Tb3MHa4gQV3p5fxXa7zcvPaKOCNLLelYWoIsFbhln
+NBLBiRQwkCj17/3Rz0nFr4hw57x37nF0WvjatoZ2IrC7nzo5o1UsuPeG3mL+
+MrwkzNFU+z1XF94RIU3vSJ8q+pf523yxfiJwLndmiqPFHi55qjFEhDm9DDsy
+evnqmY+2n4jguvXRonFJfuhZ47AmYJQIaoMqLR3oFuNV4amTRDghxYitQieT
+VSfLpjHflHQMC9Cen7wDu2fw/lv96k+i5L+/15QI//lNhNfyFWXH0Y82TrRK
+8ogYR9ohZ/TjSvINEzIJlPvvyZijiel9aX50Esi3lvapote4OF9L4yPBDmvR
+FHH0u+rglmoBEgREvjMjo1fsFxT9upgEy2PmFsZWYvx/LYpYIkqCPyGBDzrQ
+NHs/lv5yElRFWXtUof1sOWWHJEnQB7FiBeidHYMROatJMG8t1ZyIVuzoOfJK
+jgSXd4mcOo5+feBr9N+1JFCdOqjsjN5UyKtWUSWBtt7KATP0miFBCbcNJBA4
+oJqsim5zF7qeoUWCLafyN4ujSwpmbFp0ScC7f3SShNZc/1iOakCCWtH87DEJ
+vH8qLeR1TUjQ0a1i0YGW579tG2RBguOCK2cr0XzirUXF20nQ9cH32g008Wep
+8vgOEmz1FLdKRHPf7R6U202C6fo1v4PQhQplNR6OJJiRSLvuhM481tR+w4kE
+iUmu283QuQezFn06QIIHmsmzKmjd2VXRa7xIEKItkSuGvi/vqeDjSwJCGduM
+hI4w9SHf8yeBcYPj1OgKfqh5oSL0PYAEeql8l96gg+3AVusECdo1l+tUoi07
+V7aeDiPBj7cJg9fRqa67IxojSJB13jkmAa1j4++7OIYEoSdSFYLQz9YHXtgf
+R4I4rnzLfrRx/5FvtxNJkBkmecQUfdTpWMLcRRLYvAlerIJOYp/zME0nQfiA
+Wpko+sopblj6ZRJ8qN1uR0Qbpil0fLlKgqW5zTNfl/PDt+Ben03XSdB84c6l
+12h6zkeDpFskyH8yuaEC3VGzb9/IHYzvxpSOa+i6GfsK7RIS8CtkHY1Hx2d/
+23exjARQQhYMRBt56pqMPcF8mmi9sw8d4bw70LiaBLELf81Mlv/7f3GH8dxn
+JLhKuDCyDh1d7XZnoZ4EDktjwkXQzjMXHzk2kWDZ/n4xAtqRTmVXtJLAcTbz
+4ZdluL429N5d1kECI+ITy3a06DGtnLBuEthe3vTxCbqmQL93oI8EGSNSYflo
+jo+Yt/EgCc7/ObjkPLpE6bNp0UcSbCSJFx1DF7S8Dl40SoI3S9bq7/3nDOrC
+yUkS5O3M7zRCHza7/XZkGuPzPvSgEtqWf4JsPUuCX+0VPGF0VPL8ucp5Ejy3
+ckr5K475M0HxUCCQgRHkKfsZLcrVys6kkOHJgY7yVnTzsua1LCYZ+jcWWJSj
+j2ZNiYZyyHBc6H1vLpph+85lSogMDgInfGPRbZ+4DLelZIiwPvnnCFonuJe/
+R5wMld8Hzjug9cvdA21WkmFC5K64Idp4OFP3pTQZ+nr7bymiLepKvYzkyLBr
+f5DGErRV5Y9Z7loyiFQfe/5HjB/kKjLHdVTJ0CPWZfURvdjyo2nFBjLYJuf2
+vkKfShHn26RNBtUtbR6P0AM7Tm2s1CODrJnHtytopzG7Fj1DMlyudw05i37o
+PN72zJQMjj11FH/0J8dzW8wsydCdl5SwB226Lkii1ZoMDzeBsD5auYPku3sX
+Xm/97hx59MJsqMKgPRnUne1WL0J//7He0Xc/GV6uqbz9W5QfNvaE8uZcyRC3
+KVZlGF3qd0v0rCcZap5UlTWhtyhzbi31xf7AXrsUbe9Iun/TnwxSh/dVZ6Mf
+TA6s0w4kA2G4QT8anXGLLN9yggzp2tm1fuhW/hdXDpwig2Jql4kd+ufh2Au/
+I8nA5g9p0EPrf75NSjlLBpv6GPM16F1OCd/XxpNBpfd3owD6elqqe0MyGd74
+dJnPiWB9tELWwT2NDDopyxsH0PUHCl+Ts8iQf/SlaSM6rORs27UrZBiTHawr
+Qbcor91lfA2Pb3E2zEITx8iuX26SITHGHCLRrM6wufg7ZKj1u6xzEN3wiiWu
+XkKGd3l25TvR17JXNPSUkaF1S4i6Dnp6QYES9ZQMQV7Me6vRvnmFreu4ZMjV
+IMpx0LBu0dre52QQa3TN+7mUH9aafxCPbcDzddeJ96OFUxJyNF+RIerBgYv1
+6EMll8u+tmO+GJFZ99F9VnFu2Z1kKFrEiUhHv5buK7LuJeN+IWI2HP3xP+EE
+2gAZDLqc/LzQE+ermdUjZDBhFg5Zo20+7Jc+/pUMRyb27tZCX5+M6FWdJMPq
+vJAmKXRoT6n65DQZjAyom1lov5EYpTuzZPCb+FUyLcwPI0djXx78g+OrsV/d
+i1YVtmYrESlwvGf1pefC/34v1v/HFJUClrsd6XfQiY8io0pZFCi2XTieir5S
+K1l9UoACT6dYX0LR6ezP+QZLKJBuHLXbHc2VDVjPFqMAOdC7fhu6YNwroGsF
+BaQyn67XQN8I83K7vooCGu3H8yXQ3QaitGNrKDCqlSdARwd/X+louJYC4v9p
+hE4twfU5U95dWJUCrUJaX7rQ99IGZb5uoMDbpzd3Alr0+syVam0KjDDPVN9C
+XxgQe522mQJPxJvkLqB3NP2FQ0YUqGCdvngC7bTN0c/cnALOc3nzLmi5qs/d
+MtspkPxXxc0CrT68n0rZSYHITUrNauiyv2E/hndTIL/5kvoytM9Lyq26vRQY
+f+WXRUZviCiTKnShQP3eB4TxxVgPDdkeSPSgAOGSm0cH+ozW7UOBBylAvBTV
+VIl22RduvN+fAvdOLlK5ge56mvvVLJACNs78qQnodrv3ezecxPk+EDwbiKZ2
+0PKkwymwkGvtsB/93/FvjxdH4Xg10itN0CyVgGvUWArIbrGUUEZ/v+Tl/iuB
+Aqt6DoeLoE/9us2bvEiBQCnSAG8R5sNe8YBP6RQoUSNv+YKWicio/ZBNgUUK
+x662oZvGmN978igQJ7Pjbzn62+ddxO4CCujo5+7NQ19J9PjWWUSBN+n7nsai
+7zXJ1XUVU8DFLE7kKNrpQPypnjIKBB+SDXBAz82eWfnhKQU6ZNTaDNBpAtTb
+H7mYb+fvKiqia8UYkpO1FCirzIhZjPYPPHdmrpECzW++D8wLYb0XFNVJaaVA
+/GS19gh6wndBfHEHBQrlf6c0o91vze6QfkeB7Nwb46Xou6dPnt7QT4HowzVG
+Oehsh+Qb5sMUmHiwLTsa7XnPpNbpCwV+nbX47ofm57/Xf3yCAvrMcnM7tJ5i
+z8yFaWx/56Wreuhd/YP892YxX6M+/pBFzyh+kGv+Q4GLZTfMBdCullMm40Qq
+TFK6cmYFsZ4rUTvIT6fCdMKJbx/QGexX6WpsKlT4Jhg1oLN3f2zZI0SF8cpF
+6cXoFe9uLIpYSoWYLObXDHTwWh33omVUqJU6qh2BjjZ719AlSYXsw5bnvdG+
+MSWbabJUeH4lo9cG/eLWnyYNRSq0v7RT1EanDP087K1ChW8CZ0+uQkf29ypd
+2UAFmfPyjSy0RP1/9LfaVNhppyfyXYAflpifJPBvwc+T6tx60fnXa8TMjang
+ac0teY4mFy22i7GggmOZ4t8iNKkJHtdZUSGhh2WRio4RWaFP30UFq769aaHo
+fVanf1g4UKG1Q2rADf1wxLgj2YkKPz/YK2xDx1FfDXW7UWGjODVgA7ouP3iV
+tA8VFl+RrlqBVj9xP+3wYSq8PFtGpaELRfv0qgOooPj96bZJftwPjftKCpyk
+wpJ59bRO9CHjDh3XcCp4VUj2VaMV9p+79DiKCqbWEatuou95klUE4nD8b3Z5
+JaHrkp7zeSdh+85X7h5HL2NtXVuXSoUPSxynndB9opKp0llUeMeK1zD7d77w
+K+Ooq1Sg7FM9qYJ2Ojlg+Pk6FRhrtlaJokmj48mWt6kgEv2OR0Dzaccql96n
+gk1yn/5XDj8cCLFeJVFGBVcP2zPtaC556GDcUyqsXaVf+wS9+Pgg/y8uFajv
+8yn56KdtMxyfOip8f3jCKI7z73ndcvD9Syqo19SdOYo+JCymuLMNLXn2mQM6
+hRK/vekt5s9YFcEQ/ebnQLdxLxW2bvbRU0SzlTqbnw1QYemG+JDFaOfT65QM
+PuF8fZUun2fj+nmg5M/zMSoUBqn+GEY/m1LQM/tGhWezpcrN6LTpgz9aZqig
+cPaeTyla+of5qj1/qFC1ReJGNvqz4dWXw0QaPNejfIhCS5G3/neETgNmtrOo
+H/qFsuolEocGxAB1m13o4/e1uWmLaNAyEBqri65x2HVIUZQGAQs6NTLoHYyA
+gucraPB25NgcB+2ckeizX5oG0yVSyjN8WE8S8qvm5Wjw+ZSJez/axK44//I6
+Gkh4DmXVo2f7YLneehrG42frPfQxgYF1w1o0cJwOp6Sjb99d2Re3mQa5TRGa
+4eiZF5fWbDCmgab8/EFPtHSzy5IhCxoorxm/YvWv/Qv5Ny5Y0+D3B9v2jegO
+t9P9hnY0GPfbQJZEy4vIPZtzpIHoWMJ6BjqJ0byz2IUGKUf3u//H4gctjeuX
+fDxpICZxM60bnWA6mbDGjwbbmF51gHa6PKHz+Sj2vz3vxy3Wv++jjRUUBtNA
+kbZT+gK621ej9dApGphbhtmcQBuUSz/RiKLBN23JcBd02ALHixiH4xvfdMcc
+3fF314eWJBp8ONnWrYoujXVddTWNBjWEfoo4eigqd/3RyzTQyHBTIaF38yLF
+zPJo8MjRzXGUyQ+EzWc6JG/S4Ij7++jX6Detkt5/7tCgq6X1/lP084uDPT0P
+MJ4PNr3LR198ZaNUWU4DXQUp0nl0hRbFLbeaBmE2pxWOoXuWXIw8W0uDkC32
+OxzR88qX44+8pAF78Z0ThuilhPro/W00cB0MzlVEG9zjHtneSQPBF9z6xWg1
+OR1b/T4aZL4/PT7PwPpFZUZl4xANuvUqhUbQZ47c51P5QoOt5KMazegLcSpf
+FCdpMGOa71CKlpAxf6nwgwal0ttOZaPdKW1la3/TIPnB0bwodIDItXuqBDpk
+cRbX+qJVzt8s16LRQWbbuk+2aNe+xi4jNh12JdbSddGGowsCOxfRYfXnt3Iy
+aBJzs7ubKB1cA1zNOeiCJcm9wRJ0aNju4/2TjvX8mfmg5NV0KEucOPceLR2a
+sqlIgQ6zVuM369DTw0eUGlXosOa2R/1d9PLgcutRDTpUlO8dSUMH9ScX8uvS
+wSu1hXgKvbpirY6GIR2ouyslPNCJtXVsF3M6qIvJbtqODu3OWZlkRYeFn3y7
+NdBLhXjBsIsOsbRDRyXQij2bVvx0pMPdA5YJNHQ37b6gkisdTsrevDlJw3z6
+XLHby4sOn7xP1XSiW5xaZgoO0aHR+HVPNdpiwWH6SwAdjr3N/16AZvB/2L4u
+hA42Kv/xJaHvPB4QPB5Bhy1HnkofR9fzT+k8P0uHkfvETU5o33X5XYsScb7o
+9TamaGnryx/dU+lwIonupYzWGok6WJlFh+eu9WEi6E23Fx1amkcHchYphUf9
+9/84xOljN+nQta3y5mf0nTHRPx136ZCS/r2iFc22lbugVUoHgwu3Wh+jU+aZ
+j/Ke4vh39g5dRT8uzDvMqaGD8uz5n2f/tSfw/lnoCzoopT2l+6MHhh6WTr2i
+wwVTT7E96OK5NRYeHdif7EWFLei7LsbnBnrowLXctEkO/SR6VcD+QTqYtblu
+FUQHbRlYNPCZDnrNDMc5Cj+MLhR6u0/SQc5ByWcA/aqrLGzyBx0yk9uCG9Af
+HxjZhszTwShuOqYYvWJf/jQfiQFs55TUDHRlkcz+XAYDGuUf5p1GG2SpZGsK
+MECauOOeFzraW+VBhzADJv4efmqN3snNuRGwnAHnN3HqNdG76/+EiEozoK1V
+vl0SzbF6rw3y2F5HXS8D3TnV8/mgCgPkDwx+/I+Mz6s1OeeWbWRAWGroVDc6
+PqxrVasuA6rD0+cA7VdgXhljxACinhqxEF18netgsJUBql8tmRfQMhNCFNIO
+BpRlfhY8gd4aJ1Ndt4cBmz1Ioi7omi3jiQlODCB550iYowVL3ULtPRigUlG+
+WhXddT4rXt6PAfXHbBXE0A2ZBXULxxjgVOSvTEQTCPeVOk8ywD+Es/4rCdeT
+3Z9fPohgQPsfBc129NS75Gsp5xjgY9K46QlaPPp3VXASAxyOfNHLQ9PMIiRd
+LzHAN/2cfix6vUJyu1UOA5pbCg2PoKMDc7v0rzNgm4qlsT36x4CWlmYRA9a/
+PWyij95SMf1H7QEDzN8uMZVH64n4y6s9YcAl802mQmitWfe6DcCAXLNhk19E
+fB6dTO/SfcEA4Qm2ySDand3lYdHCAPtt5UaN6FOJtJOObxmgHfnRoAQtFC8i
+eqSPAZ+upW7J/He8J5/Z+WEGCL6s041At8d9F7w9yoC9nBPa3ujozG8nXn1j
+wEj0PQ0b9JO8jXE/5xjQbemhpoVeZMUwX0VgwvvjuUpSaFmJx1U76UxgSu2T
+Y6IPJ9+aiuVnQqNT9qpvBH4IcdnxqVaYCce27l/+Du1duamQsoIJOxbyhWvQ
+VUcXNpuvZoJkvA9/ITpc3eDBRUUmlAmW0S6gy5/X0wfVmNCdH/k3GB200cFs
+vTYTmu3f/HRG9yj2h8TrM0Fq+81xM/QTountr2ZMMMr4O6SClhDP7t1qzQSX
+7e+6RdGkRXMiD3dj/7EbWwhofWKs50onJjx0Fnv+hccBYnny62QPJrwbP/W4
+Db2H5+ZCP8TE/ahXUTna+93h5WcC0RFvr+SiXZ8rsylhTIgrr79wDk2d26gV
+F4XjoehE+aMLHqrcEY5nwuMTG4L2oN8Fd/kVpDChR/Wh5xb0FTtejM5lJhww
+Ktsjh45UvkDozmdCYcMmc0F0CTF+OPg2E+CtidbcXw48VKFqrXzAhICoTrkB
+dFerHKvpCRP3WaMiDejNk1rOoTVMCJaOohWjnw9fNFJvZEKSQf6PdHTs1Rsw
+1Ybz62w8FI4+MDv/vqSbCbWpfq2eaN9fGwtODDCBMSteaYXer7tE2vQLE9qv
+bLu1Ee2u5bZf/D8mBF2jpq5Ei1xa4vp9lglflhuG09HUGEXN1zwmlEvRfKYW
+ODC2vHH0EZ0Frg3bbbvQ2YVrovIEWBCqsEKPi34nmM1/UYQFdvuOrLmJrpa/
+lHpuJQusgrcKJqEJy/Mko9ewYEtq0VwQ+gb3QNVZZRZEvrgwsB+t/Dc3MHkj
+Cyrk/r4wQX/coGl7dTMLrrf9d28d+tgVGbdSUxb8euOdthRtcj+yuNWKBeWW
+3iF//3Bg+bkYo2+7WfDCasr5E7rXIUZRzJkFtT/mjVvQlV0//U29WLDSNknh
+EXooy1My1J8F5yIL+a+gU7MTjB8Hs6Azw2I6Gr0xX2t87jQLhu4efeuH9ni4
+T1I/lgU53VLlu9CWiezJpAssuKqyJ0sX/UPypMvHTBbkNQqHyqB3k/7E6Oez
+oJLrsI+DTpliHrx+mwWaMmv0fs5z4LW5njj/QxaYLwmReI/OT7fLO1XBgoY8
+u7+16BH6es7McxaEjTx5fwddM9vrE9DMgvs/r1emoredDH7xq4MFB7+IXA5F
+Jw/vUYl5z4L0rkUn3NABu6YfiH1iwUhnmp0l+pzVwN7SSRb0L+Sqr0eX6H/c
+ZDfLAg239YLL0SJSY/t4PBackbAeJ6O1CZT2+ww+TNcfL8Z+c4B92+eapxAf
+3J+WvPYGHbz5zLCsOB/c3tAZVoH+29V7dWIVH8goLNlzDX1YVulzhSIfjA73
+qJ5H50o4NlxYzwfrwxT4jqGX5wXuOKzLBzcZ5BEH9Io1T1JtTfhAMtet0gB9
+KyDpir4VH9TttkpV+Ne/ZXK4xh7s3+T5wUVoSdlIU3UXPvgVCQa/f3HAZsKB
+punDBxmrTcWG0BJVW5qNjvHBdYPdU43o+9fjCu1D+aB96r/aEvRNv5p7QdF8
+QDJZkpWJvuGRO345kQ9o9jWHItAH1ZYGNKbzActgzsAbbZllbMfL5YMu4SdL
+bdDZ7jHXdW/zgesoeVQTPbrewz/qIR+wu7orJdHSroVNbyr5oGh6YxID/Xtk
+a4NiPR9k20i5/DeH+a4TGRzfygfLmWlq3WgXx6eTP7v5QEs9hQzo5pxsXa8h
+Prg0sqzjJvpbNTt4eIwPnNWVryehD3UqlHj+5IPX6q+OHUeDo+2fH3/5oGzh
+p4ETummtjN95BhtItwqFTNHLs4NFFBex4Znplw/r0N5nfAQ6lrGh+XvJ3aX/
+zt+7xztGhg03n9FC/s5yYIPLkJaBMht+1H8y/fTP98bT6FpseLxsx5IWdLR/
+7sVOAzZYvDYbKEPvWepnfN+SDbfJTUU56PSzzNoLdmxwqu8Oika7uweuPuXM
+hg1KR/X90CLWv0MDfNhQbJ3Otwtdu15pJCCAjfE1e6uD3pY/5R9+ig3HpaOv
+rP53vswR7dRzbFD7u82Tjf5+R2XPw4ts6JvIV/4xw4GZnwuDfdls2EeJmu1F
+BxLmpwRvsmHa8Vv1c7TM+ZwsqxI2vKGNRRehRbKKf2dUsKFI4ohlCrqObCc/
+UceGLaVnFoWglZmMLZZtbGgcWtXtij4/k7XnUQ8bRiu251ig3V7pJSh+ZIO5
+Hd1VDc2bOz1XNMWGzQ2WsuJoJmd72cbfePyalaNEtE3i9/4WCq7r50/d/fqT
+A1H1UheOCOB1Ug/6t6PFr018XinOga33R9SeoB2uvua9W82BhMtjP3LR2k9L
+f15V5oDmQPijc+is4KFPR7Q5EJeSd9wfTfm+9JuVMcal2VpzD/r4txA1bWts
+50rC3Ga0yOI7jSqOHGhduad8DZpJKXur7oH9ehQfF0CH1ogFGR7hwGD0JY3Z
+HxzoHO146RTKgX3prJ/96Gxpxx/nzuK6cYf9sB5NjcxZzL2IeduX7X8PLSXI
+tiBdweeQdoXSJfQyh4wnOwo5YPrBczQM7SlQHlVcivdtf36BO9qu1LNlGWDe
+Wfq6bkPXuik9TW3CvDeoXbEBXVG4zHdZF8a5/Xb3cnSOSwejeAjXdQHJFAra
+oeJ82Y5JDqgvWb1t/DsHRE34Msi4LmT+94jWgVYWLut8hnW3FLebW4EO/hWT
+kSzED7HJscHX0AZtK6h+K7AuDW1UOY92+lputEce675LGV+OonWidE/v2ID7
+yJ8zVx3Q6u7ag476uA+7N2JngA47M3YhYBvWXR0uHAW0YbtuVbY9P9SGH3ou
+hNaWeJPY8e89g89YJ35N4/wtoakvP8oPv4o11g2im20nO4+dwjr7wPRQA9qm
+yO1Wbxw/0Kd004vRol70zp3pOF53sa0ZaOZrvaS+a/zg/z7qbzj6RpU+JagY
+60y/0yWeaGNDcQ/JKtwnyLLdrNCmmbc/9TbyQ4KU3NKN6H7BB+W3OvH4Ix0v
+JND1mq8Fzg7zQ6mi0Aka2k82VfL4f9i+W7/85DcOfP7oJ3liAet4VZ2et2iz
+JQ3GCSwBiL+pEFeFfnqN3PBQRAAO9BRq3UDPNIV/GF8tAGofnnyJR4fL5dZp
+qgmAz0uH9AC0Iu1NafpmAZh4GG+8F71yKP0Lc5sAZBZZfTdEuy6LyUlyEIDH
+DddyFdEh3TuF5L0EwEYydttidIHs+8jOQAF4X8/79fs/fL5tU1TLOCMAGq30
+giG0mGuo86ELAkC3ybN5iZ5evNXa/qoAFOxv/lOC/v3Uztj+rgD8YcfezEQT
+bhVFHaoQgFb/LpsItEB5kW1mowAsvvp43gvtqyKy8K5LAETuyt+wRi8dEX6h
+8kkAou4obddEL9zYspDzQwAUHz2fWYlOin77M5koCJ49Y1foaCOYOdzPEISn
+ygUmU1Mc2NKbnrpRUBBqX05PdKJvPxSLzxYRhDvV7anVaIGq++GclYLQJ2m4
+qQBtWOueGScrCM9opoMJaNMRGcqSdYJgGfE+JhA9Wlw9VrhBEOYKaWv3oe+l
+fw211MXPk5+1GaFTTtp8nDcShAALocC16L0xmTvLLQXh5cS06BL0RjO32Qhb
+QdiS4Fk5j/cRl+RItN8rCFzdw07D6EGzDdd03QQhZzGL1ISufw8CKr6CoCOp
+ef0B+tDA15MqAYLgHvLLOAsda/hcbHOoIERpbv8cgd52KWnV3ihB4PhpnPNG
+f5B62Xw2XhBm5B/I2aBf71exeZYqCL/P1jRooj/VN33lyxGE/lQ3L0m0J/1P
+u9sNQeDzuUxnoCUzIkxe3RWEcTGPgqkJDpRXnos2fiQIZ8trjbrQ376Xtryq
+FgQtu8dD1egHvWsPeLwQhJ0CeqcL0E8SCqIF2gTBZXrPikS0a2jAycZubF+I
+8TQQndJx8WzqoCD0xGy124fOOFj2w39UEOJcpaeN0NH6dnxO3wVhdVlSwlq0
+xuXapU5/BKE0K1luCXqqZr3bEaoQeErKPp8f58Ar7zaDS/xCoLrPet8w+nrL
+C3KLiBCoewrMvkQLnz/wW1RKCBZvO5D8AL1NQyT0uIIQ6K6ylM9Cf36dOvBV
+XQhm/jbWRKDHRAcj/HWFYHamz94bbXLTq5LPVAh2rIj+Zo1Wk186VWEtBCcj
+np3TRBeFeodEOAjB5c1pKyXRnl+S6va6CUGuy0IZHZ15OGz99kNCwKHMb50a
+w+eZLV3NLlgIPqgmDnai4R1PITAS+6M/DqpGZ9vtTCqKF4LQtEC+ArTOPdnX
+vy4JQdtE49UEtJ3BrLdznhDuV0rVA9F6gZVtH4qEwGHr+hd70fxvWFHBj4Rg
+4qSFgxF6z4ImVbFGCEKezYwrou/6x7ybbRICgQWF8MXoQWOjuA+dQhDLKPad
+H+WAKpNwY2gQr++v79wV/Pzaq+IK4oQQUMVrNr/MYMP/1AvlbQ==
+ "]]}}, {{}, {}}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{-4.944169661387873, -3.860605720000853},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{
+ Charting`ScaledTicks[{Log, Exp}],
+ Charting`ScaledFrameTicks[{Log, Exp}]}, {
+ Charting`ScaledTicks[{Log, Exp}],
+ Charting`ScaledFrameTicks[{Log, Exp}]}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ Method->{
+ "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ Exp[
+ Part[#, 1]],
+ Exp[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Exp[
+ Part[#, 1]],
+ Exp[
+ Part[#, 2]]}& )}},
+ PlotRange->{{-4.944169661387873,
+ 6.5092869103086874`}, {-3.860605720000853, -3.574604509430403}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.02],
+ Scaled[0.05]}},
+ Ticks->FrontEndValueCache[{
+ Charting`ScaledTicks[{Log, Exp}],
+ Charting`ScaledTicks[{Log, Exp}]}, {{{-4.605170185988091,
+ FormBox[
+ TagBox[
+ InterpretationBox[
+ StyleBox["\"0.01\"", ShowStringCharacters -> False], 0.01,
+ AutoDelete -> True], NumberForm[#, {
+ DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01,
+ 0.}}, {-2.3025850929940455`,
+ FormBox[
+ TagBox[
+ InterpretationBox[
+ StyleBox["\"0.10\"", ShowStringCharacters -> False], 0.1,
+ AutoDelete -> True], NumberForm[#, {
+ DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01, 0.}}, {0.,
+ FormBox["1", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
+ FormBox["10", TraditionalForm], {0.01, 0.}}, {4.605170185988092,
+ FormBox["100", TraditionalForm], {0.01, 0.}}, {-6.907755278982137,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-6.214608098422191,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-5.809142990314028,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-5.521460917862246,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-5.298317366548036,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-5.115995809754082,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-4.961845129926823,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-4.8283137373023015`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-4.710530701645918,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.912023005428146,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.506557897319982,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.2188758248682006`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-2.995732273553991,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-2.8134107167600364`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-2.659260036932778,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-2.5257286443082556`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-2.4079456086518722`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-1.6094379124341003`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-1.2039728043259361`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.916290731874155,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.6931471805599453,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.5108256237659907,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.35667494393873245`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.2231435513142097,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.10536051565782628`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 0.6931471805599453,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.0986122886681098`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.3862943611198906`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.6094379124341003`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.791759469228055,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.9459101490553132`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 2.0794415416798357`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 2.1972245773362196`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 2.995732273553991,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 3.4011973816621555`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 3.6888794541139363`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 3.912023005428146,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.0943445622221,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.248495242049359,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.382026634673881,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.499809670330265,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 5.298317366548036,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 5.703782474656201,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 5.991464547107982,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 6.214608098422191,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 6.396929655216146,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 6.551080335043404,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 6.684611727667927,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 6.802394763324311,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 6.907755278982137,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 7.600902459542082,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 8.006367567650246,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}}, {{-3.816712825623821,
+ FormBox[
+ TagBox[
+ InterpretationBox[
+ StyleBox["\"0.022\"", ShowStringCharacters -> False], 0.022,
+ AutoDelete -> True], NumberForm[#, {
+ DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
+ 0.}}, {-3.7297014486341915`,
+ FormBox[
+ TagBox[
+ InterpretationBox[
+ StyleBox["\"0.024\"", ShowStringCharacters -> False], 0.024,
+ AutoDelete -> True], NumberForm[#, {
+ DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
+ 0.}}, {-3.649658740960655,
+ FormBox[
+ TagBox[
+ InterpretationBox[
+ StyleBox["\"0.026\"", ShowStringCharacters -> False], 0.026,
+ AutoDelete -> True], NumberForm[#, {
+ DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
+ 0.}}, {-3.575550768806933,
+ FormBox[
+ TagBox[
+ InterpretationBox[
+ StyleBox["\"0.028\"", ShowStringCharacters -> False], 0.028,
+ AutoDelete -> True], NumberForm[#, {
+ DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
+ 0.}}, {-3.912023005428146,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.8873303928377747`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.863232841258714,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.83970234384852,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.7942399697717626`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.7722610630529876`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.750754857832024,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.7090821614314557`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.6888794541139363`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.6690768268177565`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.6306105459899607`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.611918412977808,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.5935692743096115`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.5578511917075324`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.540459448995663,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.523365015636363,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.506557897319982,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}}}]]], "Output",
+ CellChangeTimes->{{3.817203690916932*^9, 3.817203715261232*^9}, {
+ 3.817203798123995*^9, 3.817203867889276*^9}, 3.817204691973131*^9,
+ 3.817205153773066*^9, {3.817205225742158*^9, 3.817205234468196*^9}, {
+ 3.8172052905369062`*^9, 3.8172053435137053`*^9}, {3.817205395371584*^9,
+ 3.817205412720125*^9}, {3.817205657090682*^9, 3.8172056899382067`*^9},
+ 3.817205721948454*^9, 3.81720579133876*^9, {3.817205823516931*^9,
+ 3.81720583160579*^9}},
+ CellLabel->
+ "Out[431]=",ExpressionUUID->"e57fa90a-27ff-4013-8fad-ca7e3c98d348"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"testSol", "[",
+ RowBox[{"[",
+ RowBox[{"All", ",", "1"}], "]"}], "]"}], "/.", "ss1"}]], "Input",
+ CellChangeTimes->{{3.8172003240680037`*^9, 3.817200332875305*^9},
+ 3.817200491854622*^9},
+ CellLabel->
+ "In[134]:=",ExpressionUUID->"8499af31-a50c-4059-afac-b628095fc761"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ "1.2224099537167044`", ",", "0.9625817323086974`", ",",
+ "0.9863025304522565`", ",", "2.507988676370416`"}], "}"}]], "Output",
+ CellChangeTimes->{{3.817200325692165*^9, 3.817200333083724*^9}, {
+ 3.817200484546897*^9, 3.81720049228555*^9}},
+ CellLabel->
+ "Out[134]=",ExpressionUUID->"9aaf347d-0fae-4cb5-8920-f15fee437a9e"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"D", "[",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["h",
+ RowBox[{"16", "/", "15"}]],
+ RowBox[{"\[ScriptCapitalF]", "[",
+ RowBox[{"t", " ",
+ SuperscriptBox["h",
+ RowBox[{
+ RowBox[{"-", "1"}], "/",
+ RowBox[{"(",
+ RowBox[{"\[Beta]", " ", "\[Delta]"}], ")"}]}]]}], "]"}]}], ",",
+ "h"}], "]"}]], "Input",
+ CellChangeTimes->{{3.817124847184207*^9, 3.81712486296763*^9}, {
+ 3.817203222166533*^9, 3.8172032400147877`*^9}},
+ CellLabel->
+ "In[186]:=",ExpressionUUID->"fecf4a67-c7e8-40b5-8e36-582a0bab9fe6"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ FractionBox["16", "15"], " ",
+ SuperscriptBox["h",
+ RowBox[{"1", "/", "15"}]], " ",
+ RowBox[{"\[ScriptCapitalF]", "[",
+ FractionBox["t",
+ SuperscriptBox["h",
+ RowBox[{"8", "/", "15"}]]], "]"}]}], "-",
+ FractionBox[
+ RowBox[{"8", " ", "t", " ",
+ RowBox[{
+ SuperscriptBox["\[ScriptCapitalF]", "\[Prime]",
+ MultilineFunction->None], "[",
+ FractionBox["t",
+ SuperscriptBox["h",
+ RowBox[{"8", "/", "15"}]]], "]"}]}],
+ RowBox[{"15", " ",
+ SuperscriptBox["h",
+ RowBox[{"7", "/", "15"}]]}]]}]], "Output",
+ CellChangeTimes->{3.817124863164054*^9, 3.817203240540386*^9},
+ CellLabel->
+ "Out[186]=",ExpressionUUID->"742a0341-4af8-4ba4-a799-e15a1e847a9c"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Series", "[",
+ RowBox[{
+ RowBox[{"Simplify", "[",
+ RowBox[{
+ RowBox[{"\[Eta]", "[", "0", "]"}], "[",
+ RowBox[{"1", "/", "\[Theta]inv"}], "]"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]inv", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817123536056196*^9, 3.817123556576008*^9}},
+ CellLabel->
+ "In[202]:=",ExpressionUUID->"9884f3ff-ff57-4cf7-b122-2aebcb709801"],
+
+Cell[BoxData[
+ InterpretationBox[
+ RowBox[{
+ FractionBox[
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"-", "1"}], ")"}],
+ RowBox[{"7", "/", "15"}]], " ", "t\[Infinity]", " ", "\[Theta]inv"}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}],
+ RowBox[{"8", "/", "15"}]]], "+",
+ InterpretationBox[
+ SuperscriptBox[
+ RowBox[{"O", "[", "\[Theta]inv", "]"}], "2"],
+ SeriesData[$CellContext`\[Theta]inv, 0, {}, 1, 2, 1],
+ Editable->False]}],
+ SeriesData[$CellContext`\[Theta]inv,
+ 0, {(-1)^Rational[
+ 7, 15] $CellContext`t\[Infinity] ($CellContext`h0 $CellContext`gCoeff[
+ DirectedInfinity[1]])^Rational[-8, 15]}, 1, 2, 1],
+ Editable->False]], "Output",
+ CellChangeTimes->{{3.8171235297148933`*^9, 3.817123556761306*^9}},
+ CellLabel->
+ "Out[202]=",ExpressionUUID->"5f69419d-b0c1-4cd5-9616-460f429c823a"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"SeriesCoefficient", "[",
+ RowBox[{
+ RowBox[{"Simplify", "[",
+ RowBox[{
+ RowBox[{"\[Eta]", "[", "0", "]"}], "[",
+ RowBox[{"1", "/", "\[Theta]inv"}], "]"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]inv", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817123200393565*^9, 3.8171232461064463`*^9}, {
+ 3.817123515479413*^9, 3.817123520791197*^9}, {3.817123588104834*^9,
+ 3.817123597584608*^9}},
+ CellLabel->
+ "In[205]:=",ExpressionUUID->"c18d621f-7e5f-48db-8ae7-0fda0221c79c"],
+
+Cell[BoxData[
+ FractionBox[
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"-", "1"}], ")"}],
+ RowBox[{"7", "/", "15"}]], " ", "t\[Infinity]"}],
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}],
+ RowBox[{"8", "/", "15"}]]]], "Output",
+ CellChangeTimes->{
+ 3.817123208606057*^9, 3.817123267470529*^9, 3.8171233432472973`*^9, {
+ 3.81712351283296*^9, 3.817123527892489*^9}, {3.817123594979403*^9,
+ 3.8171235978221827`*^9}},
+ CellLabel->
+ "Out[205]=",ExpressionUUID->"b45884b0-ccdc-4e99-ac15-83498ea86eff"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"eqMeta", "[", "3", "]"}], "[", "3", "]"}]], "Input",
+ CellChangeTimes->{{3.817123015487031*^9, 3.8171230339984207`*^9}, {
+ 3.817123072431489*^9, 3.817123073231268*^9}, {3.8171231656411247`*^9,
+ 3.817123165736641*^9}},
+ CellLabel->
+ "In[206]:=",ExpressionUUID->"8e16b08d-33f5-4a51-9850-75f98a0e6a08"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"-", "1"}], ")"}],
+ RowBox[{"2", "/", "5"}]], " ", "t\[Infinity]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "2"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"8", " ",
+ RowBox[{"gCoeff", "[", "2", "]"}]}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"15", "-",
+ RowBox[{"8", " ",
+ SuperscriptBox["\[Theta]c", "2"]}]}], ")"}], " ",
+ RowBox[{"gCoeff", "[", "3", "]"}]}]}], ")"}], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "h0"}], " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}],
+ RowBox[{"16", "/", "15"}]], " ",
+ RowBox[{
+ SuperscriptBox["Dmeta", "\[Prime]",
+ MultilineFunction->None], "[", "0", "]"}]}], "+",
+ RowBox[{"5", " ",
+ SuperscriptBox["t\[Infinity]", "2"], " ",
+ RowBox[{"gCoeff", "[", "3", "]"}], " ",
+ RowBox[{
+ SuperscriptBox["Dmeta",
+ TagBox[
+ RowBox[{"(", "3", ")"}],
+ Derivative],
+ MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], ")"}],
+ "/",
+ RowBox[{"(",
+ RowBox[{"30", " ",
+ RowBox[{"gCoeff", "[", "3", "]"}], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}],
+ RowBox[{"8", "/", "5"}]]}], ")"}]}], ")"}]}], "\[Equal]",
+ FractionBox[
+ RowBox[{"m0", " ",
+ RowBox[{"(",
+ RowBox[{"1", "+",
+ RowBox[{"4", " ", "B", " ", "\[Theta]c"}], "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["B", "2"], " ",
+ SuperscriptBox["\[Theta]c", "2"]}]}], ")"}]}],
+ RowBox[{"2", " ",
+ SuperscriptBox["B", "2"]}]]}]], "Output",
+ CellChangeTimes->{{3.817123021370584*^9, 3.817123036214219*^9},
+ 3.817123081247479*^9, 3.817123173582923*^9, 3.817123603151895*^9},
+ CellLabel->
+ "Out[206]=",ExpressionUUID->"21b799e5-0965-4692-b4ba-6083041c0cdd"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"eqLow", "[", "2", "]"}], "[", "1", "]"}]], "Input",
+ CellChangeTimes->{{3.8171227644902697`*^9, 3.817122781401775*^9}},
+ CellLabel->
+ "In[178]:=",ExpressionUUID->"4c8cb259-b56a-423e-957f-9a65ba700a16"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "h0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"gCoeff", "[", "0", "]"}], "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]c", "2"], " ",
+ RowBox[{"gCoeff", "[", "1", "]"}]}], "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]c", "4"], " ",
+ RowBox[{"gCoeff", "[", "2", "]"}]}]}], ")"}], " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}], " ",
+ RowBox[{
+ SuperscriptBox["Gl", "\[Prime]",
+ MultilineFunction->None], "[", "0", "]"}]}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ FractionBox[
+ RowBox[{"t\[Infinity]", "-",
+ RowBox[{"t\[Infinity]", " ",
+ SuperscriptBox["\[Theta]c", "2"]}]}],
+ RowBox[{"t\[Infinity]", "+",
+ SuperscriptBox["\[Theta]c", "3"]}]], ")"}],
+ RowBox[{"15", "/", "8"}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[Theta]c", "5"], " ",
+ RowBox[{"gCoeff", "[", "2", "]"}]}], "+",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}]}]]}], "\[Equal]",
+
+ FractionBox[
+ RowBox[{"m0", " ",
+ RowBox[{"(",
+ RowBox[{"1", "+",
+ RowBox[{"2", " ", "B", " ", "\[Theta]c"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"2", " ", "B", " ", "\[Theta]c", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ RowBox[{"2", " ", "B", " ", "\[Theta]c"}]}], ")"}]}], "-",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]c"}]]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"2", " ", "B", " ", "\[Theta]c"}]]}], "]"}]}]}], ")"}]}],
+ RowBox[{"8", " ", "B", " ", "\[Pi]", " ",
+ SuperscriptBox["\[Theta]c", "3"]}]]}]], "Output",
+ CellChangeTimes->{{3.8171227688834267`*^9, 3.817122794227809*^9}},
+ CellLabel->
+ "Out[178]=",ExpressionUUID->"312f09f3-55f8-4f9d-a42c-05ca1c4aea27"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Simplify", "[",
+ RowBox[{"SeriesCoefficient", "[",
+ RowBox[{
+ RowBox[{"G", "[",
+ RowBox[{
+ RowBox[{"\[Xi]", "[", "0", "]"}], "[", "\[Theta]", "]"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "\[Theta]c", ",", "1"}], "}"}]}], "]"}],
+ "]"}]], "Input",
+ CellChangeTimes->{{3.8171210214179373`*^9, 3.8171211416354523`*^9}, {
+ 3.817121307262643*^9, 3.8171215023948812`*^9}, {3.81712258147068*^9,
+ 3.817122585574129*^9}},
+ CellLabel->
+ "In[172]:=",ExpressionUUID->"069edadd-116a-4ccf-831d-0fe6e07540fe"],
+
+Cell[BoxData[
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ", "h0", " ",
+ RowBox[{"gCoeff", "[", "0", "]"}], " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}], " ",
+ RowBox[{
+ SuperscriptBox["G", "\[Prime]",
+ MultilineFunction->None], "[", "0", "]"}]}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ FractionBox[
+ RowBox[{"t\[Infinity]", "-",
+ RowBox[{"t\[Infinity]", " ",
+ SuperscriptBox["\[Theta]c", "2"]}]}],
+ RowBox[{"t\[Infinity]", "+",
+ SuperscriptBox["\[Theta]c", "3"]}]], ")"}],
+ RowBox[{"15", "/", "8"}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[Theta]c", " ",
+ RowBox[{"gCoeff", "[", "0", "]"}]}], "+",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}]}]]}]], "Output",
+ CellChangeTimes->{{3.817121094109949*^9, 3.817121143267645*^9}, {
+ 3.8171213363219423`*^9, 3.817121519328246*^9}, 3.817121561056994*^9, {
+ 3.817121593382764*^9, 3.817121596725091*^9}, {3.817122581937236*^9,
+ 3.817122585949751*^9}},
+ CellLabel->
+ "Out[172]=",ExpressionUUID->"e6426e3c-3d4d-49f1-becd-dfef45704088"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Simplify", "[",
+ RowBox[{"SeriesCoefficient", "[",
+ RowBox[{
+ RowBox[{"\[CapitalPhi]", "[",
+ RowBox[{
+ RowBox[{"\[Eta]", "[", "3", "]"}], "[", "\[Theta]", "]"}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "1", ",", "2"}], "}"}]}], "]"}], "]"}]], "Input",\
+
+ CellChangeTimes->{{3.8171210214179373`*^9, 3.8171211416354523`*^9}, {
+ 3.8171213154472227`*^9, 3.8171213244868927`*^9}},
+ CellLabel->
+ "In[157]:=",ExpressionUUID->"3cd180b6-0e22-4832-af2b-e9ecec7e0a49"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"t\[Infinity]", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"107", "-",
+ RowBox[{"75", " ",
+ SuperscriptBox["\[Theta]c", "2"]}], "+",
+ RowBox[{"t\[Infinity]", " ",
+ RowBox[{"(",
+ RowBox[{"17", "+",
+ RowBox[{"15", " ",
+ SuperscriptBox["\[Theta]c", "2"]}]}], ")"}]}]}], ")"}],
+ " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"gCoeff", "[", "0", "]"}], "+",
+ RowBox[{"gCoeff", "[", "1", "]"}], "+",
+ RowBox[{"gCoeff", "[", "2", "]"}], "+",
+ RowBox[{"gCoeff", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"gCoeff", "[", "3", "]"}], "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]c", "2"], " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}]}], ")"}]}],
+ "-",
+ RowBox[{"16", " ",
+ RowBox[{"(",
+ RowBox[{"1", "+", "t\[Infinity]"}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]c", "2"]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"9", " ",
+ RowBox[{"gCoeff", "[", "3", "]"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"gCoeff", "[", "0", "]"}], "+",
+ RowBox[{"gCoeff", "[", "1", "]"}], "+",
+ RowBox[{"gCoeff", "[", "2", "]"}], "+",
+ RowBox[{"gCoeff", "[", "3", "]"}]}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"gCoeff", "[", "0", "]"}], "+",
+ RowBox[{"3", " ",
+ RowBox[{"gCoeff", "[", "1", "]"}]}], "+",
+ RowBox[{"5", " ",
+ RowBox[{"gCoeff", "[", "2", "]"}]}], "+",
+ RowBox[{"7", " ",
+ RowBox[{"gCoeff", "[", "3", "]"}]}]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"gCoeff", "[", "3", "]"}], "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]c", "2"], " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}]}],
+ ")"}]}]}], ")"}]}]}], ")"}], " ",
+ RowBox[{
+ SuperscriptBox["\[CapitalPhi]", "\[Prime]",
+ MultilineFunction->None], "[", "0", "]"}]}], ")"}], "/",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ FractionBox[
+ RowBox[{"h0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]c", "2"]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"gCoeff", "[", "0", "]"}], "+",
+ RowBox[{"gCoeff", "[", "1", "]"}], "+",
+ RowBox[{"gCoeff", "[", "2", "]"}], "+",
+ RowBox[{"gCoeff", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}],
+ RowBox[{
+ RowBox[{"gCoeff", "[", "3", "]"}], "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]c", "2"], " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}]}]], ")"}],
+ RowBox[{"7", "/", "15"}]], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"gCoeff", "[", "3", "]"}], "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]c", "2"], " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}]}], ")"}], "2"]}],
+ ")"}]}], ")"}]}], "+",
+ RowBox[{"30", " ", "t\[Infinity]", " ",
+ RowBox[{
+ SuperscriptBox["\[CapitalPhi]", "\[Prime]\[Prime]",
+ MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], ")"}], "/",
+ RowBox[{"(",
+ RowBox[{"15", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"1", "+", "t\[Infinity]"}], ")"}], "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ FractionBox[
+ RowBox[{"h0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+",
+ SuperscriptBox["\[Theta]c", "2"]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"gCoeff", "[", "0", "]"}], "+",
+ RowBox[{"gCoeff", "[", "1", "]"}], "+",
+ RowBox[{"gCoeff", "[", "2", "]"}], "+",
+ RowBox[{"gCoeff", "[", "3", "]"}]}], ")"}], " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}],
+ RowBox[{
+ RowBox[{"gCoeff", "[", "3", "]"}], "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]c", "2"], " ",
+ RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}]}]], ")"}],
+ RowBox[{"16", "/", "15"}]]}], ")"}]}]], "Output",
+ CellChangeTimes->{{3.817121094109949*^9, 3.817121143267645*^9}, {
+ 3.817121316453334*^9, 3.817121325487088*^9}, 3.817121616050745*^9},
+ CellLabel->
+ "Out[157]=",ExpressionUUID->"45f19748-f63a-49e1-8ced-a4f5c5dda272"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"params", "[", "n_", "]"}], ":=",
+ RowBox[{"Join", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"h0", ",", "t\[Infinity]"}], "}"}], ",",
+ RowBox[{"gParams", "[", "n", "]"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.817120640956625*^9,
+ 3.8171206641227827`*^9}},ExpressionUUID->"3ffc56f5-fc40-4c69-bdce-\
+f91a4aab1c67"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Limit", "[",
+ RowBox[{
+ RowBox[{
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "/", "\[Theta]c"}], ")"}], "2"]}],
+ RowBox[{"1", "+",
+ RowBox[{
+ RowBox[{"gN", "/", "g\[Infinity]"}], " ",
+ RowBox[{
+ SuperscriptBox["\[Theta]",
+ RowBox[{
+ RowBox[{"2", "n"}], "+", "3"}]], "/",
+ SuperscriptBox["\[Theta]c", "2"]}]}]}]], "gN", " ",
+ SuperscriptBox["\[Theta]",
+ RowBox[{
+ RowBox[{"2", "n"}], "+", "1"}]]}], ",",
+ RowBox[{"\[Theta]", "\[Rule]", "\[Infinity]"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.8171124154028482`*^9, 3.817112454613448*^9}, {
+ 3.817112487487479*^9, 3.8171124889053288`*^9}},
+ CellLabel->"In[2]:=",ExpressionUUID->"e131ab87-4ef6-4852-9ddd-e4499b39559a"],
+
+Cell[BoxData[
+ TemplateBox[{
+ RowBox[{"-", "g\[Infinity]"}],
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"gN", "|",
+ FractionBox["1",
+ SuperscriptBox["\[Theta]c", "2"]], "|",
+ FractionBox["1", "g\[Infinity]"]}], ")"}], "\[Element]",
+ TemplateBox[{}, "Reals"]}], "&&",
+ RowBox[{"n", ">",
+ RowBox[{"-",
+ FractionBox["1", "2"]}]}]}]},
+ "ConditionalExpression"]], "Output",
+ CellChangeTimes->{3.817112456722063*^9, 3.817112491017767*^9},
+ CellLabel->"Out[2]=",ExpressionUUID->"86a22957-07a1-48ab-90d1-d142a27afe22"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Series", "[",
+ RowBox[{
+ RowBox[{
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}],
+ RowBox[{"1", " ", "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]", "3"], "/", "t\[Infinity]"}]}]], "/",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"g", "[", "\[Theta]", "]"}]}], ")"}],
+ RowBox[{"1", "/", "\[Beta]\[Delta]"}]]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "1", ",", "2"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817113144203745*^9, 3.8171131899556923`*^9}, {
+ 3.8171133354068203`*^9, 3.817113340206203*^9}, {3.8171147270042553`*^9,
+ 3.81711472915556*^9}, {3.817115345578602*^9, 3.8171153483540163`*^9}, {
+ 3.8171153872352037`*^9, 3.817115414338681*^9}, {3.817119661417726*^9,
+ 3.817119661505088*^9}},
+ CellLabel->
+ "In[101]:=",ExpressionUUID->"22a30e99-2bd5-43a5-9353-3a3be14232a6"],
+
+Cell[BoxData[
+ InterpretationBox[
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"t\[Infinity]", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"g", "[", "1", "]"}]}], ")"}],
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "\[Beta]\[Delta]"}]]}], ")"}], " ",
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "1"}], ")"}]}],
+ RowBox[{"1", "+", "t\[Infinity]"}]]}], "-",
+ FractionBox[
+ RowBox[{"t\[Infinity]", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"g", "[", "1", "]"}]}], ")"}],
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "\[Beta]\[Delta]"}]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "5"}], " ", "\[Beta]\[Delta]", " ",
+ RowBox[{"g", "[", "1", "]"}]}], "+",
+ RowBox[{"t\[Infinity]", " ", "\[Beta]\[Delta]", " ",
+ RowBox[{"g", "[", "1", "]"}]}], "-",
+ RowBox[{"2", " ",
+ RowBox[{
+ SuperscriptBox["g", "\[Prime]",
+ MultilineFunction->None], "[", "1", "]"}]}], "-",
+ RowBox[{"2", " ", "t\[Infinity]", " ",
+ RowBox[{
+ SuperscriptBox["g", "\[Prime]",
+ MultilineFunction->None], "[", "1", "]"}]}]}], ")"}], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "-", "1"}], ")"}], "2"]}],
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"1", "+", "t\[Infinity]"}], ")"}], "2"], " ",
+ "\[Beta]\[Delta]", " ",
+ RowBox[{"g", "[", "1", "]"}]}]], "+",
+ InterpretationBox[
+ SuperscriptBox[
+ RowBox[{"O", "[",
+ RowBox[{"\[Theta]", "-", "1"}], "]"}], "3"],
+ SeriesData[$CellContext`\[Theta], 1, {}, 1, 3, 1],
+ Editable->False]}],
+ SeriesData[$CellContext`\[Theta],
+ 1, {(-2) $CellContext`t\[Infinity] (
+ 1 + $CellContext`t\[Infinity])^(-1) ($CellContext`h0 $CellContext`g[
+ 1])^((-1)/$CellContext`\[Beta]\[Delta]), -$CellContext`t\[Infinity] (
+ 1 + $CellContext`t\[Infinity])^(-2) $CellContext`\[Beta]\[Delta]^(-1) \
+$CellContext`g[
+ 1]^(-1) ($CellContext`h0 $CellContext`g[
+ 1])^((-1)/$CellContext`\[Beta]\[Delta]) ((-5) $CellContext`\[Beta]\
+\[Delta] $CellContext`g[
+ 1] + $CellContext`t\[Infinity] $CellContext`\[Beta]\[Delta] \
+$CellContext`g[1] - 2 Derivative[1][$CellContext`g][1] -
+ 2 $CellContext`t\[Infinity] Derivative[1][$CellContext`g][1])}, 1, 3, 1],
+
+ Editable->False]], "Output",
+ CellChangeTimes->{
+ 3.8171131901632423`*^9, {3.817113336562134*^9, 3.817113346309887*^9},
+ 3.8171147295944853`*^9, 3.817115348650196*^9, {3.8171154064111156`*^9,
+ 3.817115415021256*^9}, 3.8171196617654963`*^9},
+ CellLabel->
+ "Out[101]=",ExpressionUUID->"470e97c2-b944-4611-8c77-75e5a0915c04"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Series", "[",
+ RowBox[{
+ RowBox[{"M", "[",
+ RowBox[{
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]inv",
+ RowBox[{"-", "2"}]]}],
+ RowBox[{"1", " ", "+",
+ RowBox[{
+ SuperscriptBox["\[Theta]inv",
+ RowBox[{"-", "3"}]], "/", "t\[Infinity]"}]}]], "/",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"ginv", "[", "\[Theta]inv", "]"}]}], ")"}],
+ RowBox[{"1", "/", "\[Beta]\[Delta]"}]]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]inv", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817119695521706*^9, 3.817119719402121*^9}, {
+ 3.817119757242896*^9, 3.817119760810754*^9}},
+ CellLabel->
+ "In[104]:=",ExpressionUUID->"3752e4d8-bc7c-475c-b88c-a0d99559d99c"],
+
+Cell[BoxData[
+ InterpretationBox[
+ RowBox[{
+ RowBox[{"M", "[", "0", "]"}], "-",
+ RowBox[{"t\[Infinity]", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"ginv", "[", "0", "]"}]}], ")"}],
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "\[Beta]\[Delta]"}]], " ",
+ RowBox[{
+ SuperscriptBox["M", "\[Prime]",
+ MultilineFunction->None], "[", "0", "]"}], " ", "\[Theta]inv"}], "+",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ FractionBox[
+ RowBox[{"h0", " ", "t\[Infinity]", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"ginv", "[", "0", "]"}]}], ")"}],
+ RowBox[{
+ RowBox[{"-", "1"}], "-",
+ FractionBox["1", "\[Beta]\[Delta]"]}]], " ",
+ RowBox[{
+ SuperscriptBox["ginv", "\[Prime]",
+ MultilineFunction->None], "[", "0", "]"}], " ",
+ RowBox[{
+ SuperscriptBox["M", "\[Prime]",
+ MultilineFunction->None], "[", "0", "]"}]}], "\[Beta]\[Delta]"],
+ "+",
+ RowBox[{
+ FractionBox["1", "2"], " ",
+ SuperscriptBox["t\[Infinity]", "2"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"ginv", "[", "0", "]"}]}], ")"}],
+ RowBox[{
+ RowBox[{"-", "2"}], "/", "\[Beta]\[Delta]"}]], " ",
+ RowBox[{
+ SuperscriptBox["M", "\[Prime]\[Prime]",
+ MultilineFunction->None], "[", "0", "]"}]}]}], ")"}], " ",
+ SuperscriptBox["\[Theta]inv", "2"]}], "+",
+ InterpretationBox[
+ SuperscriptBox[
+ RowBox[{"O", "[", "\[Theta]inv", "]"}], "3"],
+ SeriesData[$CellContext`\[Theta]inv, 0, {}, 0, 3, 1],
+ Editable->False]}],
+ SeriesData[$CellContext`\[Theta]inv, 0, {
+ $CellContext`M[
+ 0], -$CellContext`t\[Infinity] ($CellContext`h0 $CellContext`ginv[
+ 0])^((-1)/$CellContext`\[Beta]\[Delta])
+ Derivative[1][$CellContext`M][
+ 0], $CellContext`h0 $CellContext`t\[Infinity] $CellContext`\[Beta]\
+\[Delta]^(-1) ($CellContext`h0 $CellContext`ginv[
+ 0])^(-1 - $CellContext`\[Beta]\[Delta]^(-1))
+ Derivative[1][$CellContext`ginv][0] Derivative[1][$CellContext`M][0] +
+ Rational[1,
+ 2] $CellContext`t\[Infinity]^2 ($CellContext`h0 $CellContext`ginv[
+ 0])^((-2)/$CellContext`\[Beta]\[Delta])
+ Derivative[2][$CellContext`M][0]}, 0, 3, 1],
+ Editable->False]], "Output",
+ CellChangeTimes->{{3.817119714939983*^9, 3.817119719611507*^9},
+ 3.817119760979968*^9},
+ CellLabel->
+ "Out[104]=",ExpressionUUID->"db6b4f65-90c7-4c37-9945-5690d8472368"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}],
+ RowBox[{"1", "+",
+ RowBox[{"0.1", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}]], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817114731164422*^9, 3.8171147570601673`*^9}},
+ CellLabel->"In[15]:=",ExpressionUUID->"6a34969c-5bbf-4acb-a54f-a9bfbf2c9f87"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwV1nk4VdsbB/CzOYdzTOVUmsynEOWqWymV9UYos1CRKWMUF0mSBlNUlIpS
+5qkIReFGZW8hMmUKGcrNPGQbk/m3f/uf/Xz+Wc+z1n6/37WlbP857sBFo9GO
+YjTa/99x12x5dtrfUb21vEI9JCprktQ9KemMmk5UqY9SXvlUHCgpeRmZPDLg
+y6Us9KAgh68tAK0x1NDWpxxHhEswJG+h3MUz86XLJNpO2t9dcbqHbrpaCrMp
+dwnFLy+2PkAjaCJ43xKJtjxj7Z1fiELVht/0lRdJdP7QRddZiSfIQKnZVmiB
+RG+au1On1WPRt6iUtx/mSDR/TrdzwikByTQLaGn8IVEi1nlrViMJJep9o6f9
+JtGR2vtbf7cmI8ZQy2DnNIkGo7VKpp1T0aqbbUOjkyQKs1+ymFpIQz6eBcvN
+4yRqWjgbOS6RgZ6b3kQ7RknkXSGuROa+QF47jprFDZFo08Pm6l/qWWg1V4ht
+Xz+JbOWBe8TpFaLLukosdZOIa8H3y7RfDnKRky6p6SJRc7ep2LRGLkq76K7o
+1U4inyz+wsnW10j3H/Oj2k0k0n7QzzOZ+AaJnjPs8flCIlGfEpMJ5zw0gKJk
+rleTiFC/NE4u5KP1qSqB7FIS8Xb8lP0lUYg8kqZSjHNI1EZ8uDg6WIj0h9gR
+qpkkevEsunQktwjVHvirm/aMRPqe+tbD6u9RYZD6Hf4YEj1iFT0acMKRn2Ky
+3L5AEuVd0va8sIFAc0f5DLv8SBQ7rLxxyo9A6aeHn5p5k8itnu00qVGC/HZt
+9Ws9SyJ2bCXXROtHFDjjED2gQ6IFoYIM94Ol6Hn4KI/GERL1+qcYjieWIpdb
+Wy0vHyRRgdO1eNK5DD3JcU513E4i8793q4wtlKOHrDtdx/lIlFSV4DEi8Rl9
+3F6sdb54DE1H58v/CPuM4ui1e0++GUOaTtU9jXOfUR9+/Yxw+hga5Z41LWqq
+Qr+7r+pPRYyhfYf0VW6F1KBdCdIN523GUP2rRS5Z8gtiVwye2fn7F2IjlpWg
+Yj1K3Om8R3DwFzogE6kSYl+PloSPjP777Re6O50x5dtQj5pcm6Yvv/+Fdt//
+6mCb2YC6QofZOdd/oetV27V3WjehO+EhOj8XR1F67r8ymVFNyPZON5Y5Mooa
+o9W4t9Y0oXShPh+19lG0xenU+w37m9FPs8z0roJRVMUdpEhb8xVJ/ineXO46
+ikQOdbC/fGpBWXejIs0aR9DLV7c6ziu2ozd+I1W53sNomD0cpn2mHRlF/WvU
+ZzOMZL21VeUi25G10U6rMe1hlHiQP6lnrh2tr46T8RcfRg8+hzmal3egtTr5
+p16UDiHvnnsTWhZdKHx4rfIaniGUwF8dKKzRjWIHAlPCzg0g1UNXLG5YdSPF
+Ffe4IMMB1OmmsIe81I2eOXo+NN4zgDY03umvedGNvjk65Xsv96P70brHQlf/
+h6T4n2U33e1HgVvrhFY6/kOcHhWDP8/7kBNqeDLq2YMO7b5neOV9D6Il/y7q
+uNODxLlqLmyM60HRdNHOqtQe5N2i9frB1R5U+dlRPKOlB+03nekRUe1BciaL
+yQ4qvajFwfjH2Q8/0eBZ2azvWB+68snTVDv/P+Ty4GpxfUQ/Otg1t+/xuh/I
+rW9bT97LIXRbxD9q8flX1G31jVnyeQhJ3+DBxoy+IuO2UMXa3iGk4fXhRuxC
+M9pXPXC5b9MwGvuS47lLvxlx56atFgkZRjMfXhzWH29E0X5SqpesR9BtGGlJ
+l6tHJWs2Ptm/+hfy2DWeqNdehvikgmR/7BtHi54Wz2DsCX53dbV8ks0UysBX
+DJ5afsNtO0xw7prf6MiK0gvl+0O4R3mQ7T+y86jtXVdZbPwkLt6ryfP773mk
+/OSK5szrSbyai/XCD+bRprTU6sMVk/hWCJ+4ZTaPWsfmXxSQk/i3oqgbqXfm
+0bkDcfpCMIUfznkW/42cR4Pnnym4fJ/ChWMq29XfLqARmeSxQOEZPNddwHjD
+sSWUlurAv8dgFq95uuZy9okl1NXOJZp5ZhbvL9uUoGa/hJJ9mz1Xe83imzZu
+Gzl/fQlxof2d6dGzeFCJRmBJ/hJac4rgXf3fLH6Cff2Ni/QyuiW2NeGN2x98
+/s3Emg8Ly0gxzfW88tU5fO33P/uPs1bQNyUbq7vhc7gik2YzILKC5LVuKzXH
+zeF2FkJZwrtW0CCmcmF78RxeQ1c44nh2BQXbCrusWp7D403tvVZ9XUF9UfEm
+Cb7zeNKVc8NKJ2nwzjZ8lHRcwJUI1p8QSxp4Culq/+21gBP0dMYPOxpwtjT0
+Ovkv4N3hvZLh7jQYjinvSI1ZwMUTLU8O3aKB9xkk6/ZlAX9aZlCW9J4GBXnW
+2w7vXsQfCO6OZ0tjoMYMSKRPLeLSxxszneUwcOuXKPJeXsRzH7kXEooYFPol
+PWxnLeH1EtnNbgcwiF7wjrkkuYQL7ZLhrzbB4PuGlShevSX89okNPoEhGFh7
+DG0NSlnCAxIWjaZHMeD6oim1SXMZN1R666EwhQF/08uaeINlXLzkwn3bOQx8
+HTYHipgt40U/h+vrGVzgUmyg8OPcMj659ZtBtjgXiKS7c1oilnHbrHw9R0Mu
+ePdjY6pN2zJ+uNDtWNsbLvBfd0Rlo9UKLqQt77yqiAu4SiRfCTiu4J3tfaGa
+BBdUbGaxp11XcJ9Fi8q8Gi6IkjxGxF9dwXOQjtb9Pi54drznoX3sCi75SVZD
+ez03vFxr1fy2dQWnNXXDe19ukC8/pd8lTSOChoqTfP25Yb7w0IidDI1g0eK4
+9odyw9DTRqx3G41g7zAry4/ihlLRkpx6JRqxNaRB61UON/wjSX9uoUojtA98
+1E/u5wbHidQg9VM0os4o8ZXNL26Id5nebn+aRhifvbZaYpob+n67J1+zohEW
+USqNMRgdMpxmWUn2NMKNfG0aJUqHnYW3rWLdacTDlBSL0ON0aJqcLPQIoREb
+ivw/aJrR4XvoUNbO2zQitt5anGFDh/H1p0tGwmjEs6XN3f6udDi/v9JO/wGN
+eHsy0u5KKB0KcDfpulga0ckf7OJWTAeJqk7p9zk0QsbL0cdEngHLR4x+eTfT
+iB0qP4wTlBjg/23gL9sWGrGbduqv4b0MCC0YHTjaRiPUwo71X1dnwKI532dm
+J42wSt1ukmnBAHn1xrLjPTTiUfPkX1z3GBCXY3p0zQSNiHt6jl8vigHfrWta
+/p2kEak2vf2PYxiQpHVY7NQ0jXg9+jVuRzoDmPnRP+/MUudFL+Q3K2HAf6ya
+EmKJRjD2XB94NcUA5Tfn7OxYGCGwMPtxfo4BJQITp8v5MIJd4h6vQeMBQ6Mg
+PY4ARkjq2Zp2CPBAnGGnQpMQRhx00CjlkeGB9dukNLjXYoRXFH+C5SkeOLzu
+iG26GEZcOR3km27FA0WM7MpqcYwIkFoynbLnAaEMR6cRCYyIyB4TuOXBAzdi
+T1pKSGNEVnmDb95tHkgJCX9sLoMRvTOPT/B/4AHTWJ0kKUWMSD7894WuUh4Y
+ed76TuwvjLAOr7v3qooHQnbmZK9Twoj2LYzPxm08oNFiKz+3EyMajD0PxE7x
+wIOXfQL39mDE3QTBU27zPLDuBJeTy16M0B1J9wKMF6DiePFhZYyoDPiR3SvE
+CzX9mpd692FEca6u5A55Xig7VB85fwAj/JYGDq4o8cKVyzPmBQcxYv+xQLMG
+ZV6o/uKi7nYII/K6Cx9c1OAFc/dH4Y2qGPFilSyj2IYX3lq73XQ9jBFnT3+U
+inDiBTl2+nc+NYzY+txS1daNFz4kX72aSjlRNfISjx8vfDbqSaxRx4jHrtiw
+/mNeyAHFhXENjDApjOWRiueFIv8puocm9X0Y+zhTqbxQe7ra5xflu7FuFo9f
+88JpRcWcDi1qf4Osy86FvBBh6uandxQjWLvTog4QvHDVXaHsHeWg6o66H7W8
+EOdxpjX8GEaorb80ktvMC31aXpkTlFds2cygDl4oJpUFjmtjhO/80cNyQ7xg
+OPkjiKmDEfs0ey3nSV7Q/qaWZkV55v5135rfvOCabmyXS9l9W8EbdzoT/tE+
+8VlXFyMULxrVq/EzQUc283IU5RFidHQtmwnVyxfa2ik7nuLIFEowYctH7PVp
+PYzYklqsdkeGCbiY0J7HlH+SZtaWO6j1jotd+kLZMiQiGjvAhH1i2Uf36mPE
+piaF/KbDTBC5ZNZtT7lNvKIh7SgTGpRstCIoP3KxHbtkwAS7wDr/t5RNCpb4
+tE8w4ZLSy4ddlNlcT2RFLZkAAQz/Fcpf9HYfGbNjAtJp1RM3wIiwJ19sCBcm
+7OiXXt5PWbvP5eoDDyZ07OmNOk5Z8yon64gPEwycXd85UVZb19n++xoTzO8V
+jF6mrJodycoIZsJcu++OW5RVNPT2nQ5jwjVNT/8oynu7GE6CD5nw4qHRaDzl
+XReLo/AnTKjTqfJIo6woeKnMI5EJv/Hb6zIoy6f9NcV5zgQplmrH/y1zaFCq
+JZsJF5lhn55Tlv6aaBiax4R7Ths7kimLu5pdV3nHhIroENEYypsY7JejJUy4
+3ep1N4KySFxVZ3wlE/Ll/HYHUmbvCeQ3+sKEZfM97AuUhWoPqHC3MMGSd4+C
+DWV+h+mz+Z1MuHlfIFCbMnMp67FTDxNs5bTFdlGmRzl82jjMhKhPPksilGk7
+xGeqx5kg+Lek7Bx1votlLZxrs0y4j5XHtVH+Y3HvuNIyE6wfDtrnU56e1vL/
+SWdB7XrWjXuUR7cUftdks8CI2EYcoDz43kNwbgMLUg1ERgUp95rIH8yUYIFf
+RtvlLmo+OoNinqzawQKtiMhKL8ptoiaVJX+zYGbdmYiDlJvzBGYvqLBAzyyj
+AqNc03vVpE2LBW4KSg+CqHms9NsbeFufBSKn5barUS5bS+YeNGUBd9gq9SVq
+vt8fsVmVZMuCTL+F6XOUs1LVqpyvskAG1ZYrUHlJP7jwZ3MQC4j9rSlfqTyl
+Nr+RrbvNgmPJEhuvUo6lbw3eFc2ChqWTLWVUHsPteWHhNQsyXBVnlKn83l7E
+3bILWVClyRqoo/J9M9InzppgQYrRi1t2lK+VDc2X1rLAWKzyVzDVD25bavLD
+Blkw7HUz9BXVH/q9EQri4nwgxEgviEbU/hR6my228EF6QFHOOso6F5Svxcjz
+Qa5BfWME1VdHub7Xb1Dmg9J7kdH+VJ+pSSp4rzHkA1XnwfN6VP/tsSgnmAF8
+sNoj40gE1Z95KRtctEL5oEGS8W2c6tddI+fW3LzLBzauMUUGlBV92Y7cMXzA
+VPFxY+7GCLloa/7lN3zAw3+l1YHqZ9HmOdOpPj6wnK2NaVTAiKeb9VZ2jvKB
+7CcbwY2UN9olprtP8oFp627SUp6az0nNhV/LfJCStV6gRw4jVq+OTBxczw+e
+kw/62rdiBLeu4kjXMX5gdv/oD6Dul+FS2xuV2fygu3vL3x+FMULifpvL3Tx+
+2Juh/+fTair/VvqmJu/4YVraZ1fVKqrv/+yX767kh6J9x1bVCGLEgx3CzbM9
+/DC1vSXrA3U/HniMy8puEoAACLpmjlF94CL6JfimADAs0hRukzRCUbhFTN1a
+EFxEBLiVK2lEf3h/QJSDIAwoXTSnVVD3Nd/swMA5Qbi7WrS2spxGCNA3vA7z
+EYQwySHWyVIaMfzbTLPlviCc6r7Hci6mEWmdXW7OZYLgvUXbwj6PRoim9+H3
+tgnBJ6s1rSUJNIIPzZzpnBICi++rvK29aITWL/NZadPV4GVJ710RohFtH+0x
+8+3C8LaifCFKewXPDy2zkpwRhkcbCjREbyzjjoyL3XV1bDg1/H6dOfW/aed5
+JV/g6Rpw0PULWWlZxP9yUqjTPbMWXNa/st3DXsS/sLfzX9y/DoLLReYl1Bbw
+dy8DYrZzi0DxK/srP4Pn8SuYvGFNlwiYfL2+iiTmcL5O36NueethpG1fEpN3
+Du97JhWZ4LcBdLgY7+xs/uCRchvphaYbwVEsUWr59Swe8dSx4ozkJmiv5Qnr
+Xj+Lm0da1gkMbIKPVje6ZoN/43+OpM0lFG+GnRY3fHTHZvCePjWfjyGiYCwV
+alntOIMnH9q5ufaMGFQUKb/b1j6NZwdfFHbaIQ7SY5IRFy2m8RBTOx3uGXF4
+n3Dh5oH+KXxPZ1JGSK0EPOqtQCbnpvDobTHZtTqSgFr0BWyXJvHrRHi0TqEk
+qF3yEpO7M4nrbTZNq9oiBdYxNJ0iiUn8sFvFaeFbUoCqCoX88Qk8QdR2S82M
+FBzwPZaofXoC31L6/JH+aWlYVtub54RN4BE7Pso3FkuDGvvRdFjWOO44RW/4
+LM+B2hQFyRnjcdw2d1Ly1j0OVBn8E3CGPo6fDzBe1L7PAW/JkCI69zh+0Tiv
+VeAhB45KsxXSsXE8dObi3YhHHNBgxrv8WCLxl/vnFh7HUeajt3NNkfhcyUrL
+s0xqvfY77626SDyiUSC8rIIDLdc8/nN+TeJPU1zP3vzMgW09nw8VvyLxFK86
+9aPVHDjZOMS7JpvEC0Qi5qvrONAgJ9734TmJd5qvOdv0lQPnuDKJDXEkLtuz
+Uf1nDweyShf7f4aQuFKer3hqHwfKT5qvVQ0mcZXgjjmHAQ7sLprLfhJA4rqy
+cTlDwxy4bBa39fhVEvc8Jyk+McGBMbevnEpPEvc76D/3eooDJQXxOTLuJB4s
++LPZa4YD7wyG0oNdSTz6VcqdP384wH6Z3HHkLIkn36A7Fc1zICbhv3VpDiSe
+aeSg5rfIgTgVtXcMOxLPk/4kprrMgabUrGpHGxIvnpKZW1nhwD4+llalJYn/
+DwGww/8=
+ "]]},
+ Annotation[#, "Charting`Private`Tag$3796#1"]& ]}, {}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{0, 10}, {-2.1638981941515714`, 0.9999999999999584}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{{3.817114750430457*^9, 3.817114757239752*^9}},
+ CellLabel->"Out[15]=",ExpressionUUID->"70cff46d-010d-4a9a-8cf5-3901b2a30edf"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Integrate", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"x",
+ RowBox[{"(",
+ RowBox[{"x", "-", "1"}], ")"}]}], "-",
+ RowBox[{
+ RowBox[{"Exp", "[",
+ RowBox[{"1", "/", "x"}], "]"}],
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "x"}], "]"}]}]}], ")"}], "/",
+ SuperscriptBox["x", "3"]}], ",", "x"}], "]"}]], "Input",
+ CellChangeTimes->{{3.817118655752342*^9, 3.817118685640291*^9}},
+ CellLabel->"In[81]:=",ExpressionUUID->"6afc45fb-65bc-47fe-b120-408f15ede40b"],
+
+Cell[BoxData[
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1", "x"]], " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"-", "1"}], "+", "x"}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1", "x"]}], "]"}]}], "x"]}]], "Output",
+ CellChangeTimes->{{3.817118672704093*^9, 3.817118686099999*^9}},
+ CellLabel->"Out[81]=",ExpressionUUID->"4cdf78f8-6821-4e67-9385-8a091cc9cf9d"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"R", "\[Rule]",
+ RowBox[{"2", "^",
+ RowBox[{"Range", "[",
+ RowBox[{
+ RowBox[{"-", "2"}], ",", "2"}], "]"}]}]}]], "Input",
+ CellLabel->"In[21]:=",ExpressionUUID->"b66a0012-a40b-4041-8ea9-a9cad40db85f"],
+
+Cell[BoxData[
+ RowBox[{"R", "\[Rule]",
+ RowBox[{"{",
+ RowBox[{
+ FractionBox["1", "4"], ",",
+ FractionBox["1", "2"], ",", "1", ",", "2", ",", "4"}], "}"}]}]], "Output",\
+
+ CellChangeTimes->{3.81711492411154*^9},
+ CellLabel->"Out[21]=",ExpressionUUID->"9744135b-7d1f-4023-b02d-1bdf3b29d60f"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"D", "[",
+ RowBox[{
+ RowBox[{"x", " ",
+ RowBox[{"Exp", "[",
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(", "x", ")"}],
+ RowBox[{"-", "1"}]]}], "]"}],
+ RowBox[{"f", "[", "x", "]"}]}], ",", "x"}], "]"}]], "Input",
+ CellChangeTimes->{{3.817119205409995*^9, 3.8171192327379303`*^9}},
+ CellLabel->
+ "In[100]:=",ExpressionUUID->"7ceb4bac-ce7b-4adc-aeb9-95a215777744"],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "x"}]], " ",
+ RowBox[{"f", "[", "x", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "x"}]], " ",
+ RowBox[{"f", "[", "x", "]"}]}], "x"], "+",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "x"}]], " ", "x", " ",
+ RowBox[{
+ SuperscriptBox["f", "\[Prime]",
+ MultilineFunction->None], "[", "x", "]"}]}]}]], "Output",
+ CellChangeTimes->{{3.81711920936974*^9, 3.8171192332338257`*^9}},
+ CellLabel->
+ "Out[100]=",ExpressionUUID->"9c7df971-6bfc-41f8-a68e-fb9921c0b017"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"x", " ",
+ RowBox[{"Exp", "[",
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(", "x", ")"}],
+ RowBox[{"-", "1"}]]}], "]"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817116910643228*^9, 3.8171169972761393`*^9}, {
+ 3.817119152970964*^9, 3.817119183489099*^9}},
+ CellLabel->"In[98]:=",ExpressionUUID->"07932986-b2e1-477a-9d99-1b9701e3af0c"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "General", "munfl",
+ "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
+\\\"4895.104895104895`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
+normalized machine number; precision may be lost.\"", 2, 98, 20,
+ 31478186269791883738, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{{3.8171191729103947`*^9, 3.8171191839132*^9}},
+ CellLabel->
+ "During evaluation of \
+In[98]:=",ExpressionUUID->"f0c4d2f9-9d6d-48c0-b78e-b8f84a7f6bb2"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwtlGk0FPzfh4mURhgiSmMWS4S0cEfM91eW7KWoblkiWVJIydodlYiRsS/J
+TmRLyVJ2Y2fsFCpbtmxjLAn595zzfM65zvX+evEhWDldvLmDhYWl8i//51f/
+WXEcsw4is/z/aN14vSt4e0jdO+6w15eNuF1f8QSP94CbzQLTV9nr5V9VBYvu
+xD+HQt6L10tfyp+6rep6Z000FtSmRNL+DM+eft8znLasFg9q3nS3ed8rKr8d
+9IYYtonwDRcmERqSp5LEOvR8TSMZ+ui+9TLXllXU20LFV/tT4N+ScN15O3nV
+qZhz1cv2aRCfVp6btGapSrHeMmVupMMDPX11SfZgVXn5978Ywa9Bc3E33vva
+O9XuDbuIRdEs2PNQkRaH6VZ90ICTXyh4A/fuzr82rF9UPRDe0zKnlgO/g5k4
+p3pOcoV5oO1sby54XeCwoKYTyFbSiO2nbT7o3nuzVjWpQN6x4dm+7P0WLlxv
+Hmz4o0XuGTY+tKxRALD2dMDpqQk5o17egcn9Dj65czpJ2N4iu+dgSpf630GA
++eGIfd/cyTphExxLSe/BcPFC4wn9Z2QR92ojhn0hsKUE3kqWCCfPm8WnLB7/
+AEd8DAfG0xLJVWpuiwsbH0BhaTjQ90wWOUzqInmBVgQ6u6LzMwLfk615ZCnz
+wcXQL84eKWxXTlZc2TUwd7kEikPIcnVhdeRdg6OSc6KlUF3rrGu6QCd/rip3
+nZ0qhfrHOS2Ukl7ym4yY2p8FH+G9vvL83rmvZG/KPexPz0/wZh4DImfHyQYu
+BhYzamVgRs31LdyaIeOvSuVOc5WDpeHU9aRiBnlJlX1jqrccnL9j+DcYq2Qa
+6bvWVEIFoPwZhsjVLXIU58eoSdtK+MMY0vsWtAMK3XRc7glVgfMQf9OG/C6I
+n/lHmOldBXkBR6OjPnCBn5l4lctIFdCS/kkojMOCYwef7ZJGNdxi+mA7bATg
+ihoLt8ubaih4pUywoAsDKporZHDXwPVagTUYwYGU1OC1u/dqYHr8PN/CFSLw
+xTfuYPTXwC1uH9fQdHHY4C7KclaphUf+8qnHraRg3Df1wmJSLdxQyF3NiZKF
+tmXqmtNOGhg/qx1kkTgGRbb/JSzY0+B9rFp6Zt0JSBxw0HCi06A9Q655Ok8R
+AvT/nZ0/XgeXvTP07SaU4G6VZrhjdB2co10rbXVWBZMTJ5XnN+rgtpKO+fUs
+BGoZhJE71+shljG64dp4FmSEeQLmaPWQ2xfl9Wu/BghQNuXuSDXAOpXtqELc
+OfjzZ7p3NrgB7DNTCfcNdWDybr/37aUGYGQKDq+CPnSM00izlxuhLOtgzsaJ
+C5DcnHj3p2gTDBWceBRVdAmWYz5If6c0gfvJF3mxXcagadsy1rXeBKc5emWf
+CFyFWIWR+HqbZsgO05WI9zGBWbY144/dzUCvlhcSFzAD6OLiyUMtsA8r4GXc
+YwFhScTG5NwWaOegFOVaWMIpVQPl5/6tMIPdc6DkhTUEYayZ3sutQMlOVTTW
+toFvXzxynC3bIJaybbJbxA6ePkjHXT1Nh1dG0w/SMLehX/1Tv24mHU4G+jz1
+lHIEaf5OKgi0g+bNpRtJ8s7Qkb+5Q3KhHSZGMDx4qgvwAaf5XrkOSL8Y8hXX
+cw9OS0Qo+1t3QFWkoMWAuCu8WM5ienZ2QP/XMK5jTDcoGTzZsbyrExzd2XkP
+OnnASE1ljiO5EzCSt4Ms1j3hZGjvTavsTsijfbLzVvoPzN2vnx0a6YRzZZSQ
+0IVH4G/xE3dZqAs2ZbXtVQd8YECW9bO2XxccLfqIi/rwGB41y+gcs+gGLWfF
+HsmGZ5BZUCyRHdkNO3JNy3O++UNXzFk28dZucHg03P5jKwDEbK+WCSn1gEGo
+PefzS0HQzPZUjoW/F2SxF6c2ZamwPMON8dTuBYmrbrN1n6lwqCt2kvmoF3r8
+dE/d9w8F56T8pMnZXmAe4eX0WQwDQdVBvvb6PsBFu5YgRiQgMZsFra0++E39
+cp74KQrsMYyWmhP9cPD9JN9IQDSUfeHwK0rqh/nliLC5o7Fg9eD42ivPz6DF
+ea55Izse8vKfD96WG4Ce0+p2kTIpMMM3Q9GxHIBxZ2EP1tcpIPlAh3w4YgBS
+DPiLdpJSIUkFkzy2PgB9EhFB7aJpENZEsTGpGwSZrou0kzIZ8GAshHHO9CsE
+cEsUUV+8gXeaiyniIV8hK/WtQRwhGxayLhix1XyFY3HPA0SKssHOGVtcIfkN
+KJY468djOWCyFeatwPwGD3luDUSfz4dETMsTrMYw1D47suOJwjsgq3qZ+pgP
+g1h434hu4DsYcjyisOA2DFFJEa2V39+BUFfQROubYXBZunYnjfIeQmP0tAN4
+R+A0e3Xc2flCeCJO594eHAHTI5MZo+3FYAudsbMuY+AXVFlsubMCWFJWPw4G
+jcGdt58p9x0qIIZdZKg5bQy6Ik25uboqoLHJBpfVNwbJDRifuqRKOGy0mXJT
+eRzGLneki6VUwZSdZM431h/wdKxWyd7w7w+FPazooE5AgkXcLHaoDhx/SI0V
+5k1D4lFkwBncBsPmX3ZXN00Dh+JQ8e7uNrj0OUCubXwafJzFMpSF6XCqZdLj
+x4EZcJ9QSTiZQQe2gnReQf8Z8Ki15nCraYcYbwLZzeIn6CkukpdZO6GaXzhW
+iXcOXAedFkSMumEP4ank91OLMJ2D3mqf+AwveFukk68z4Z+Vhv0tv4bBatCo
+kq11FdSwjSX3Yifgbt1TKyfJ3yCqV39V3GIWCpy5Lglpb8HugFJ17ZVFSPZy
+mJG/woKwmc/KknYtw+PETcPlWVYkdOpj9hfGKrB0D6MyTzbku5blY9y3DhL3
+bdyNpHciwYdX9JpYt2B8JfoyppwDKSkRRbBb26Dz49bDsLu7UY353pvLCazI
+YJx6BIfbg0zHtY14lNnQTK2VT2MuBsXnqVDkPrEjOWzfITWLvUj6lF2apzkH
+2gMrlkNMbnQHb2UmOrkLnZszWSMa8yIBSrRwYygn+lxjzWoig0UHGPq1pQoY
+9CGAZo5fwSKXQSd0oYIL2ex0HabT+dDEdsRchR03uuHi9YErjh/t8DLfDFzj
+QUdtj9D1LPeh0LHVomeVvKidTwbjqiSA8EPX6qQisOhT3uOXMmyCKIY5utVl
+woe8WKUvtH4VRNydStKmx/nRniFPLcfC/YjZsmQmzbEP/cggRCR6C6GIK3OD
+oy37UMRhYfZSY2EUhQ2YcksRQNQ4mwZL/AGkxknbmrkliEwizOhckweQCUe3
+QuDR/eiXevp6YsVBNMceF8q+UwiN/TjrXuMvgtzH8G76rUIoRfXYwTbLQyic
+x3KnS5owyvVzxdrK4lCMoWujmeMB5G98Q5dtBYdUtvWa7E4eRApDyVn+baLo
+7Xav+nmMCIqRepnbpotHVpkamsxuEfSoKjhGtxSPzOZSPe/lHkL6B43Tm8UI
+SFIiOpL7CQ6dcWy4hn1OQEFleS8tdERRooiVWOsKAVU0Z4ZoYvFIrPZ1lME1
+IvI+ctxT8QEeUWVrpLsqiOhog5Si/Bc8smGydzZJk5CNZYl9jDoBWRUs4Z+H
+kFBtz+uz/ZkEdPvxpU2dUBL6wlH9M+oNAbleKuznCiehatrpyMs5BBSw4vqC
+GkVCsf8ZT/fmE1Ce0vpG9CsSUpfYH9VTREDr1dt9GdkktO9MOWsXjYCoXVzB
+tAYSCtScwLcNE1Bc6h27Z00k1HqfpY8ySkCp9+lqWi0kNMjvEaQ3TkBFgtTf
+LXQSUlbzW2uZJKAhE3677l4SKq7i6Gme/9thTFhtdIyE4kVjExo3CUi+0BOX
+9oOE5DhD/g34Q0DKfoPrNydJKG90ZJ8WCxHpSb56Oz1DQlc4EigNbETk4oDH
+MRgk5OB+x6d+z99OKr7r75gkpKStRX7GRUR+e0d77q+QULjeo00NbiKKyU8N
++vWLhDoorJ51WCJK8WG3/fibhMri9JT8+Iko2/DmWe9NEjrzkPlLXYCICon1
+h8h/SGhDZLWEfT8RVTAl1re3SSjAysiDJkRE/wPKgK3A
+ "]]},
+ Annotation[#, "Charting`Private`Tag$37696#1"]& ]}, {}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{0, 10}, {0., 9.048373977232828}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{
+ 3.8171170011216297`*^9, {3.8171191612154016`*^9, 3.817119183930393*^9}},
+ CellLabel->"Out[98]=",ExpressionUUID->"82bf5b22-f54c-4da8-bea6-61b7c42c3450"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"D", "[",
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"x", "+",
+ RowBox[{"\[ImaginaryI]", " ", "y"}]}]]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"x", "+",
+ RowBox[{"\[ImaginaryI]", " ", "y"}]}]]}], "]"}]}],
+ RowBox[{"x", "+",
+ RowBox[{"\[ImaginaryI]", " ", "y"}]}]]}], ",", "x"}], "]"}], "/.",
+ RowBox[{"{",
+ RowBox[{"y", "\[Rule]", "0"}], "}"}]}], "//", "Simplify"}]], "Input",
+ CellChangeTimes->{{3.817118954501877*^9, 3.8171189919657993`*^9}},
+ CellLabel->"In[91]:=",ExpressionUUID->"13e1541b-4ad9-4a40-89f2-be40a0e4d6fd"],
+
+Cell[BoxData[
+ FractionBox[
+ RowBox[{"x", "+",
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1", "x"]], " ",
+ RowBox[{"(",
+ RowBox[{"1", "+", "x"}], ")"}], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1", "x"]}], "]"}]}]}],
+ SuperscriptBox["x", "3"]]], "Output",
+ CellChangeTimes->{{3.817118982445229*^9, 3.8171189921596518`*^9}},
+ CellLabel->"Out[91]=",ExpressionUUID->"dff49a57-ddf5-4e9d-aa0a-55006221f3c2"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"D", "[",
+ RowBox[{
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"x", "+",
+ RowBox[{"\[ImaginaryI]", " ", "y"}]}], ")"}],
+ RowBox[{"-", "1"}]],
+ RowBox[{"Exp", "[",
+ RowBox[{"-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"x", "+",
+ RowBox[{"\[ImaginaryI]", " ", "y"}]}], ")"}],
+ RowBox[{"-", "1"}]]}], "]"}]}], ",", "y"}], "]"}], "/.",
+ RowBox[{"y", "\[Rule]", "0"}]}]], "Input",
+ CellChangeTimes->{{3.81711900192594*^9, 3.817119038278656*^9}},
+ CellLabel->"In[93]:=",ExpressionUUID->"6def2df0-3761-4f37-b66f-ba9071b93625"],
+
+Cell[BoxData[
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "x"}]]}],
+ SuperscriptBox["x", "3"]], "-",
+ FractionBox[
+ RowBox[{"\[ImaginaryI]", " ",
+ SuperscriptBox["\[ExponentialE]",
+ RowBox[{
+ RowBox[{"-", "1"}], "/", "x"}]]}],
+ SuperscriptBox["x", "2"]]}]], "Output",
+ CellChangeTimes->{{3.81711903374153*^9, 3.817119038467194*^9}},
+ CellLabel->"Out[93]=",ExpressionUUID->"175a2c7c-fa54-45c3-bf4f-c4ed89dad110"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Solve", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"ExpIntegralEi", "[", "x", "]"}], "\[Equal]", "0"}], ",", "x"}],
+ "]"}]], "Input",
+ CellChangeTimes->{{3.817118531078148*^9, 3.817118533157342*^9}},
+ CellLabel->"In[74]:=",ExpressionUUID->"657e079b-66fb-4614-816e-af41b7fabf10"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "Solve", "ifun",
+ "\"Inverse functions are being used by \
+\\!\\(\\*RowBox[{\\\"Solve\\\"}]\\), so some solutions may not be found; use \
+Reduce for complete solution information.\"", 2, 74, 17, 31478186269791883738,
+ "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.8171185334968357`*^9},
+ CellLabel->
+ "During evaluation of \
+In[74]:=",ExpressionUUID->"f6532f4e-d02f-402b-985e-f8964b91f90e"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{"x", "\[Rule]",
+ InterpretationBox[
+ TemplateBox[{"Root",
+ InterpretationBox[
+ StyleBox[
+ TemplateBox[{"\"0.373\"",
+ DynamicBox[
+ FEPrivate`FrontEndResource[
+ "FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
+ ShowStringCharacters -> False],
+ 0.37250741078136662132180845219409093261`15.954589770191003, Editable ->
+ False],
+ TagBox[
+ RowBox[{"Root", "[",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{
+ RowBox[{"ExpIntegralEi", "[", "#1", "]"}], "&"}], ",",
+ "0.3725074107813666344619918665801190408544781383913929553002`\
+33.599986712079"}], "}"}], "]"}], Short[#, 7]& ], 0.3725074107813666},
+ "NumericalApproximation"],
+ Root[{
+ ExpIntegralEi[#]& ,
+ 0.3725074107813666344619918665801190408544781383913929553002`33.\
+599986712079}]]}], "}"}], "}"}]], "Output",
+ CellChangeTimes->{3.81711853353478*^9},
+ CellLabel->"Out[74]=",ExpressionUUID->"5f2bc73c-3ef7-4874-86b3-dd3ac3e99858"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{"ExpIntegralEi", "[", "x", "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"x", ",", "0", ",", "3"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817118477157076*^9, 3.817118512925106*^9}},
+ CellLabel->"In[73]:=",ExpressionUUID->"49f74264-7484-4d5a-b52f-d0892384e631"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwVkWk8lPsfQGeM8Ywt2WWNJxN1RZSi+P5EpH+K3CgkS+RGQlmzJVSTEaZb
+kZJk7yope55HhVHZkqYUSrrXkr0h+73/F+dzXpyXR93j9EEvAQqFkvYf/3dN
+77WxNTp7YFRKsNY3Zy2ZeHy9VhtzP3BEzb89y1tDtowNnGQzXeH8E7E+sS9y
+ZLHsp7sfM70he0ZM4gfIkhNl5kl+TH9Q0DN446UgQypqv69Z4QXBZbUeY76+
+NGkSxtrcnBkChp+tY+1CpUi3JtP8NPcIECkyOpj4QZKMk5tWdmFGQ1XosuaH
+/ZLk28f2zWn8WNCr5Knv7VpNHu/WiZ/lxUFMw2jgWZ/VJJ/KAJfqeNjfx4Ah
++moyUbt/jsxMhNQ2AW61owQpb1f7RDPmEiRqWXoNlq4iC8Kun2a5s+BvyTZz
+E4VV5Oumvd/tmcnQEvl485yAOFkSKmXrIpgCB7dnRw7Hi5GhV2L+SuanwIni
+1V0/xcVIRtkRn2leGjjoFcW66YuS7Y2NDZrNHNBVMYhnvxEh07sN8MPV1yBe
+1z/OzVeE3CCwqrc28zqE5iWxXZ8Kk1Oy53aMs2/ASueI2edjwmSN9uBN9Zib
+YNDYYp4tLkzus3tun+ieAb8qm1JFghjk6bshzQeYd8Bo7P3R0cMYuf3JN2ac
+fBbI08/HLctjJOW41i4nwbugmzkiO/lBiGwO/TMriX8XuMuPNom7CZFOWaed
+Jnn34HzVqYMZsXTSVJt5mWWbA1vSsDblfXRSo+xzBd6cA8XVH8R4CnRypNFa
+1qH6Prz9w1q66qkgGTmGt1dn5kEC3Va9c4FGuoV1L9vL5oOCfa57cRuNtBBI
+1Rll50MX/WHb0fs0UlxumaUWUwCPqFFKurY08o7Jh93x7kVg6toxUvJIgKxP
+SqqxYZbArOY2//KrVLJu+OMb0cISuO+ZNLnFl0rW7lnf27zxIdAtEx9YWFFJ
+ZwF3So7CI1D985UCnUolD9UtaKiplgL3fc/3tAgKuddws4+8dhks0phhUfQV
+Ys93XkDIyTLws73TIfh6mbC6Fh3eVfxff/hewCx1mbCYes3ibHoC+tO+Hg1q
+y4RpifdfElueQqubaFeCxRJhwMycwqACIpF53e3CBUK/a9eCd2wF7NRTGL4e
+tkDoxQ/RGusrYPsR0UOiexaITf2GsvEWlVBJveftPDhPaN3p2EbZWwXG01oB
+9pvmCWU5LOrX7zVQu6BlWd7yi6ALBWFDJwkIlI0xabeZIQatYySm8wmYP2Os
+3LxhhnjFTpJfGiAgbSBnbhGbIZpYnZxLuiQ0jbdoS73gE1ekxnIyC0kQrTZ+
+3r2DT8ho4C9f3q4HVm3/JcNtPwmmGVtQNvEFhGS25/vaThHy3ziMjPsvIFdK
+Y9rFYIpgJGSIqb14Ac2MM0fPyk0Rw9x8GW3KS+g+pvxUumeSeGj7fJ1JxEso
+cQkex/wmie1usxZe/g1gVHCkzydlgrCOcU946tAELOkp/tiXUUL/ar1l9tkm
+aGOeKWh5OEooZ6kz2GlNkKhyIaAvepSYqPvKOt7aBPqDWgYZKqPE9WX3FGlL
+LmQEnmC5Hv1BDER53Arc2gzFuzfkVH4fJmIjPUt1ZF6DeVbchQq5QaIi3Ksn
+t6MVMk8pdZr93U/kmfryFKdaIThfqCeopp+4TgvsuCrVBvYXng00pPQTIezI
+hnD7NujCxLjtO/oJw2zOXzZdbeDg08YI4nwlnAe+1EX4tYOG6KaEvD1fiG5R
+iasaAR1QsM6FA2mfiI9OvrpBoZ1g9sfl6YM6bwlJK7Z3PeJBye6zlYzge8Tq
+d16Ptzl/guZE8d9lzF4BvtavMMGjD4qKJgbXMj7B9p5Tr83SvsJijef3A+nf
+oH4+dt+7W9+AoF5LsO4bAh+Cy62L+w4xlg2HymPHId0zX1HW7R8oc8XJRv8p
+0Dn8dWbZawjKdlvFrbHiQ+/0gVZkPQJffqvf8e7bLEz1rdGTOzQK6U3OlxVL
+5yGlOOKEo+M4vLHhvVp/agmYEgybsFsTsPsGd1l5bgXKA2KLk7Mm4VKVtvyo
+KxW90+RgdmlTcLMowfxisQBad6FT62j6NGyTpkWLyAsiI9u+LVm3foKqMKNT
+JZaOegISTNlJfLASFlNN6RJCj42OiDekzoDd+og1xTYMJOfQ9LEgYRZybELe
+apcJI+inpD4/+wtOPbxnZqMgitLlfMSZYXOwZDZ8ZCVHDMXd+ePi1pPz4HrD
+X6NOZRW63XqzMTlgARyV+J5G9RIoyp8zoRK0CKa3S3NFnqxGI+5aCkc8luD8
+ZH0oO1oSXVkaFuz1Xga9EfWKY25SqPqH1fgqpxU4WGxF8TaSRu81t/cbr6Og
+s23/6LnIyCAfbU9dTi4FlVqIdhwWlkX1Ds7nzFSpaLZk4bUVXxYZHB4ulMmm
+ooamzReTl+SQ3wVLnomSAGr1t7v3alEeXfJmzFM5AkjNxzjKZ0UBPVNxXxmW
+oSGkXlrAU1dEVcuJtA3JNHQ/w0ui2lgJtZaZD7MlBdF6O/uxkyHKqGGtd2NS
+miDatf+2pX+lCoqvOJT9VYSO/vdohrN5QhW5aHx2dWbT0cVybbfC9WvRQrmu
+0kZMCJU9G04TfrsWRdKG3vwZLYR00rduDopRR3LrjNw1KRjaKarwWdFcA4X6
+O/wUCcfQNVUnjiIVR8qGx7nMcxjK8ShpPSeII3IpMHNXFIbki/zu9mA4EmGz
+LSLOY+jN22IsZxWO7hS/vDZ0GUPRi12DW5Rx1Diov5WbgSFz6UWp4G04kvGU
+CEmoxdBPKanJE/44qtqgsje7DkOXt7oZfw7EkevUBtVnJIby9Paq2gXjqOC8
+ZePPlxjCGsLLd0biaMfdKLnjLRjSvEj9TYmFI4+ekfJdvRgypGVa83NxhOXO
+sVy/YIgzUbDvTCGOHvhhxyL6MdRiHfxj8gGOZhY0sMd/Y8hR/b3AZBmOWIpO
+jurj2H+fY5Jn6nGk239io8kkhpIp+8+FN+DoXWHwyuFpDGk1TdCXuDhSNUrN
+T5nFUGr/Tj69HUcvKFnnHsxhaKpko9OVThz5cB8c4C5gyNkh/KgkD0diKdX4
+wBKGevL2rNzoxlGpI3d2ZQVDs8G1oNaLo38Bve5Jsg==
+ "]]},
+ Annotation[#, "Charting`Private`Tag$28797#1"]& ]}, {}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{0, 3}, {-8.31918132352572, 9.933832160716504}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{{3.81711848451934*^9, 3.817118513133811*^9}},
+ CellLabel->"Out[73]=",ExpressionUUID->"26e2807e-1336-4751-8e74-d4414f081679"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"\[Theta]c", "-", "\[Theta]", "-", "1"}], ")"}],
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"\[Theta]c", "-", "\[Theta]"}]]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"\[Theta]c", "-", "\[Theta]"}]]}], "]"}]}],
+ RowBox[{"\[Theta]c", "-", "\[Theta]"}]]}], "/.",
+ RowBox[{"{",
+ RowBox[{"\[Theta]c", "\[Rule]", "1.3"}], "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",",
+ RowBox[{"-", "5"}], ",", "3"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817118259896755*^9, 3.817118285169368*^9}, {
+ 3.8171184560131187`*^9, 3.8171184560921507`*^9}, {3.817118596543433*^9,
+ 3.817118612159177*^9}, {3.817118697976997*^9, 3.817118718273074*^9}, {
+ 3.817118754442111*^9, 3.817118789499082*^9}},
+ CellLabel->"In[88]:=",ExpressionUUID->"3bd71288-3233-4171-a393-57251fb3dc52"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwVlnk41PsXx78iM2XNEBHKrW6WlK2ynkmMtVsUSSWpUEqb7VaWKCFttyxt
+WkSUbEUkPt+yxy1cLUIRhpF19pnvjPnN74/P83lez3Oes7zPOZ/nszzouPeh
+eRiGMaTn/3eWvgJHIqHgHVvXTdzy5UKVaFHDOTEFZ8zM2Zj4cOFbj9ZNgZCC
+q6bmHq7fzgXtW6vMWBwK/iF6Z/DsNi7cIzseo/+m4NtHm/s8PLjwcDZmpP2r
+1P5xeZUQuPCsnv75dgkFdw3MlqUacuFtyPtKi30U3LIkKyuE4MCR8fmcgVI1
+fN7zL9w1mRxQGdiQpqOshveYKkZ5WXGg1+pX4qXwRXiw3t/Bit1sMGvS4h99
+p4rXZIbKd4awIbbVvuGnvioeuUhE6GFsyFP+sSR7UBk/W/qkOD+dBTnuZqf+
+S1XCXeYpawk1WXDh6P4YQzdFvJV83F22gAmxss+iT00uxIMS5P4VGjHhQMKn
+FV8KFuABC2ptn5TPQlbtSPa9I2ScnVZTt8h6Fn4cV5f3XUTCr8fbpfeXzoAa
+edlyo0/z8bRk1uqYNTOwS8PJavakHN4LZT/nWU7D9C8/VR0dWZyelJp/kTQF
+JzPdb+/rlcGZq5Tl6oYngIR26GQlYPjOPT83TN37DZS70Zldf8+hxqPr2r0D
+xsHhcdTYnrcEEj1FqYu5Y0Ay2tlSpCBANK2kix1Jo1AYOytrnspFgVr7FJZq
+0+FkzVuz+x0s5N1AexsQNwxqjZtq7GmzqGek69dtxi94lLMtz+XGJKqcgY4b
+LoMQdim+6qfhGLrmutiQ//EHjJIMkn7pDaEV+32WvVrcC4HVngeDtvYibQsu
+VtLyBUIP9Qo0bnUgxNbpcbTvAk9ZZ8FZ2hs0FJQQVe7bBo8nujuxlWXwIvzT
+G9mbOCSoFM7c/NIOagPXdJ7S8mGw88UFe/9vYF2XEdHiUIgqqpc/ab8+COGY
+/bugNw2omRnzUSWbDktXbOBlzutC/i3Xn/e/oIPzH4ZWOqu60NT9gpTn9XRY
+VeNbUeHWhdTdvjm6TNMh7k+Ms+ZGFwp8sOF1HG0UQnQU2k2X/4f4HtwHk+xR
+WKn+Le2Kczcyyjt9ss2LAQeuEB+eP/yC0neGq19SmACl+i22owW9CA8ooA3p
+T0CqKdX5r45exD70KwYsJ6DE5GtyJ68X7Y3w7eftmQDGT3HQGpc+ZHrDIT+0
+eALyv+yIgtE+1PlBeaO71yTUya535Zr8QIsdSnYrZU1B7HnO3QWhA8jdmXHl
+8HPpHPiv9SmNHUBxnn/gjWgKtpicCg+9OYBG/bNWxI1NQdGzS/ZKaABVRcdP
+TllPQ0qyWquJ5iDaXbY1vqNvGh4cTigc+DCItqnFdLrdmIHK5uz52puG0Ni1
+vd1Od2eAUk479dpvCCUobf4KeTMQlr5E7ciJIVRCVu63qp6B1zxJlsrDIaQs
+yR1bPjgDXnOxmYHYMGr7/UkiWDcLOWeert7cOIxojX+aPuuYheb+nPGI/XT0
+w1HJLO/7LEwWGlZqnaOjKJxp8XB4FrJzzcO+ZdJRXk2tdSZ/FrDnXY+K2ulI
+rny7c+IyJuwWbpgusR5F73Li9/ifYIIf6YL/gSVjyC7ma9pCVRZ06SRs75hl
+IGNzNqdfmwWiRe5thpRxpD2hur9sJQvConqcyyzHEX+f+wY/WxboPEgq9IwZ
+RxUutUN5wSwQaD2taZL5jUw1c+021bJATXbrqf16E0i3Ez1Vb2EBKLfO++04
+gRQv96mNdbFgbVKKbHHIBBqf02BcHZP6k83oGyqbQPn0lIw+ChuuaxqJVrtN
+Iv3K8KnoI2ywiplYLHNhCimfuLzLI5INiV8DRLeLptCcYUGDXgIb7ldEdcV+
+nkJ99wfvNGawQSSrjpmsnkbZF3e4UN6xofZ8GGVL5zRS9bF5WKzJgTvMf1Ys
+vjODJMo7FRINOGDxNPCIftkMmmo5HeWzhgO07TcP7m2ZQe12LzxFjhyonDww
+e443g1JXLBO4hXOgn/bIJtJvFs1jz/ceaeCAeNzAUu5PJnrf9HJU8pEDuZ+P
+RR2iMlHi7f2x2j0c4Hw6F6vhz0QyUFuwdZID5eo6W09cZSIsLUJSrcGFp4GW
+j+IJJsL3GGR063NBTuwRVa/JQvFrO4ympe/22tHo9khLFprrNvZd4cCFTxHu
+fZbHWUisP1R0NZgLSYLqpFPjLPSWed2x8AQXmrcsiTm/kI3ONTp8qz/DBc8d
+f5eoGbOR6MgdWcFVLqyO2ej39hgbCSu8/A+85gKFsnmXioAt3VectJHMgybj
+iDsLVnJRlV74fW81Htwrcwsx8eSimFkdi2NLefC+7v2j7NNcxMuMDni8jgcD
+jxNHzOu5iDtoWqG4iwfdRV9Hig/yEDv6ftBgIQ9syVsfv3rGR6/cPfjESx48
+Dd6YZvsfH0XoCq4sruPBPI91lx4SfMR6v6Pao4sHYkTbM+khQEwlRdVKIQ8y
+8zSUBQwBms49U5vmwQfPnLOm5ZoEkn+5rybWlw9a89dtee9AIL33TtUn9vNB
+rrBvwPcQgTwHlCt8o/mA2Qz9IyklUMHS3CKDXD6cJUV+JjaJEDJOeaZRzAeL
++wlnvx8UoS82xwrI1XwY9zaR/HlJhOR2bXgy9ZEPduFyo+QPIhSY0Xb3jZAP
+Qw3d8bWuYhT9pPT2i/kCcI3IHZsIFqOrLzOyHqoKIMbc2Cvxghi97dx3M3mV
+AHKqRor6a8VoiTI7zdtbAA53P97YbjiH1un2pDjvFYBd90pWseMccjWpS94Y
+KgDt9YP/nNg9h6LcUxL14gRQbEcUrb48h7qSl54ZLxRAkqJxc/zQHGJkyMT0
+vxKAfdEyhj5/DmF59MgOJABNDY1UE0UJMq0vPVn5WQBN3/VzrplLkHNXxvHC
+AQGcjesLHHOSoD2DZ47d+y0Ao0vytuW+EnRZ4nQ4UUYIes/93XNiJOixslFI
+pKIQlhqYLK9PkaA3uiqHQjWF0Nlp5BWQLUFjtj2Bf60RgnqFiq+4QoKcYo75
+ae8SQnLPn1HyvyVo9yVvX6WDQqCdWxIkz5OgU5kbdmDHhbBGxt7cSQbDH76S
+2Ua/IIQIGDisqIjhr+vpW3quCSG1t9xEYxGGf+xq82i/I4Q0T1XKLw0MF81k
+uJSXSuOFKhxp08NwCnbWOa9G6s9BM4xhgOFGKoGbs5uEwLtqWfpxFYZv0nPe
+dLlTCHa0czLnjDDcb40RxPUJweJR5SrmGgw/bqdif3JUCIFZG0fNzDA82YNt
+c5AphNkD9QvsLDG84nDdencyAd2L96eXW2P4B2aY3kIKAfTSolsadhj+4+wS
++Q+6BMhljQ+6OGA4S655MnU1AbNRM8buVAwnX4347GZBQKPVWUNdRwxfqmlQ
+u8CBgJx/ll5/txnDzR5+etLqSkCEppH6RmcMpxnGpqduJ2Ct64vQ8zQM9y83
+inALICAN84EcF2m+tt92LzhMQDAzxPWaK4ZfaLi4ufU0AYbrq8x93DA8e4uF
+cWocAd9/Zj2fkfKLLwNqbqkEjF/+GBDkjuHv910Vkm8RAF+vcZ9J+cuY7a+W
+HAJuVZ7SaZPy75OM1pRCAiYfHY6olzJGZJa5viKgNaUm/5aU1S843SYjAhwu
+in1AyoZKzISWVgLcNyutaJDGc8h8EJrSTcA2imLZH1L21t+yzfUnAVty/O8G
+SPMNKRBuII8ToG+RER8preecWYF+C5uAxCfX+aHSeq+/8SGlSAioLtn5wFqq
+R95m2WmXhSKwGV6tMCbV60176ReShpTnR3ZGSPX86BNQ16wvAnZ//8UBqd5D
+PxTyLxmJYF2i1RtjwHB+SPUVFysRXGTHzvnaY7jibHAkiSqCbBPGQJAthi8/
+o7632V0E1Oieya3S/rqnHzdxCRTBzxctJZ+k/Q/Q0FUnhYkgFL8YccAcw0/n
+fCCaIkXSf6ZL0ve1GH6vdGUb7bIItKmP0iKk8zXd3XuYVimCDsJiXbB0PuUC
+Ur3k34mgwNx4k4EOhmuNrrduahMBX1s1uVETwx0FN8i0QRHEWLXF16ti+C1d
+16fOimJ4NhT1uFC6HwX5nKvzNcUgL/fg3k5CgmrX5kY1LhcDZl7pa8aSIPqm
+OWfnDWLwbpGYhf6SIOvgV8NOQWJwLeRnCuok6EfxMgOnKjHYbHrZ63VSguq3
+7bP0eC+GZcNWidUhElTAvE/zbheD0/n5pvIBEnR6vU5Y4IAYQlUYT7a5SxC5
+TuPVOfIcHFUQKFctlyDzfxfSKvzmIL5pTYVN+xy69Jt9eJVgDvY1NHnIUeaQ
+1q1hPzldjBqduj4u/YwIvdj98CkrRobaIUm+eq2Fj3zt411baudR/SKec0aO
+cVBpwDEDG5EsVfvfvz5fPsBEvIWbZat95lMnqxIjHrVPIa9O2/W62fLU1hb5
+5L2NDES2VXj39r489eZPVx65lIHwJ9899uTKU5mhSd9r7zCQaczf++8Wy1Mx
+jYTBzScYSFH/dfqSRnkqqPfvxnUYqOWo+ZAGU5561NBoR1TEGKKSDa8re5Ko
+C3NL2KUmo4h/kq9d7EWihp466JmgNYpKepvztuwkUf19MsP85EaRXklwTXoQ
+iXrPcc9vgz46Evk8oS/8m0Td+spk77J0Onqdq29PyidRfb+3RlRNjqBwpenm
+/OckKvMg9+Oi7yNoVXSdN62MRLXRxO6fbhpBt9z3hl58S6L63ZTEb3swgk7N
+3rkp+x+JSnkZ1hnuNYKMdh/Ry/1GosbSzGwUHEbQYIN1oeMPEvVsYOlkidEI
+2pb9re48g0S1xk4sU5MbQeR5BW7Lp0lUO0jI+DQzjFBYdDfOJlHlkxjUjP5h
+FPWZti9QSKKeVrmte+DDMDKFxeMSCYl6ZXfcKuvXw+h/dZ6DUw==
+ "]]},
+ Annotation[#, "Charting`Private`Tag$30283#1"]& ]}, {}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{-5, 3}, {-2.0365202087767305`, 1.3961381174203673`}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{{3.81711826124573*^9, 3.817118285378669*^9},
+ 3.8171184563554583`*^9, {3.817118599026042*^9, 3.817118612354436*^9}, {
+ 3.817118702491795*^9, 3.817118718504663*^9}, {3.817118754989955*^9,
+ 3.817118790104854*^9}},
+ CellLabel->"Out[88]=",ExpressionUUID->"203873a1-0dd1-4567-8d12-97eeeed127f7"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Plot", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"\[Theta]c", "-", "\[Theta]"}]]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"\[Theta]c", "-", "\[Theta]"}]]}], "]"}]}],
+ RowBox[{"\[Theta]c", "-", "\[Theta]"}]]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["\[ExponentialE]",
+ FractionBox["1",
+ RowBox[{"\[Theta]c", "+", "\[Theta]"}]]], " ",
+ RowBox[{"ExpIntegralEi", "[",
+ RowBox[{"-",
+ FractionBox["1",
+ RowBox[{"\[Theta]c", "+", "\[Theta]"}]]}], "]"}]}],
+ RowBox[{"\[Theta]c", "+", "\[Theta]"}]]}], "/.",
+ RowBox[{"{",
+ RowBox[{"\[Theta]c", "\[Rule]", "1.3"}], "}"}]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",",
+ RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817117020437071*^9, 3.8171170338371983`*^9}, {
+ 3.817117398498486*^9, 3.817117468187888*^9}, {3.817117512932067*^9,
+ 3.81711758131702*^9}, {3.817117681614869*^9, 3.817117690510559*^9}, {
+ 3.8171181424068317`*^9, 3.817118190671282*^9}},
+ CellLabel->"In[63]:=",ExpressionUUID->"39644cf7-65fa-4952-a674-714ff8619dd6"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwtWnk0ld/3Nlzz7FZCg5BCyJAGw36LaDCVKTJESEiSREoqpFKSWUgpc4Ui
+SZ3XLPNw7/1IZJ6ne433XsrPb63vP+esZ+3nOXuvfca91tnlfPWsKxsLC4vP
+RvP//Z0x4/n1dSJuVHC8++NHCowGbVn6vUbEN1W6P9j8gQImwn0rXxhE/O2D
+UyGB+RSQOuzz9+oCEVdoYV7VzqFA5eMX3P2jRHyXfTrrhzcU4Fb+bwfeTMSF
+rkT/0I2jQKzfhdMhL4m4vtneQf5ACvzlljexSyTiI+dv2By5SQG3VJrZoTgi
+zvorc8X1BgUO1t63oj4j4mZZ1W++XKNAt9g7pwv3ibjw9b+P9D02/H+buIld
+3oiXze0E+3kK5LFef8tykIgXPPJO5tGiwCHzXM4kdSKuVvHBuekQBWrfDrir
+7ifi61haVaQmBfoNzZSc5Ym41n1uQ041Cmx5plRSJbnhH/8n1rOXAvclxuvC
+WYj49KUhpvAWCpxTt5/ibxDF/Uz9RJ7PkmE0NNb4Xa0oPn1dN5N1mgzXKY0f
+dapEcV4pyyc+E2R4FnjEz7tcFBcrL9c2GCZDFRL72/pBFBdXP0xv+0UGZaMO
+wZgYUVzlfn6WUzUZOFwN1cTtRfHZhQl+hwQydDioWk/ZiOJp/YcNMmPJkHZO
+8vZ3K1E8KfZs/1Q0GTSN5mqczETxnQVjSlcjyeCmnmCTqyeKFxPd5izvkaGe
+dSxES0EU3/zhNu8bDzJEpoW32q+I4JfHB7fLapGB2FXj9SZaBF/2cUzQ6yQB
+rvg6IvSZCB7PtnxosJUEXndvv3V7IoIrPLD/eqeJBLVy6j0KYSL4qmv16bwa
+Ety6kX76U4AIbvTpvEf/FxIMigYpVDuK4N4sfVIFL0lQZLx/fERJBLfit/Vu
+v0ACx9d8hHoFEfxB1TtfTnsS8C+N7szdI4IfKfRnHLQhgVtKqrX3LhF89pzl
+/ednSCAxxVu3vEkEb2cTVhA7RoL7ESPvuNaE8U2pmkIB0iQ4W5V8Ub5BGE/C
+Wq9e6+8EWdLwn7paYXxsPmQL6XcnLA8r27pVCeMEHl45tf86IYmzyiyjXBgv
+/e/Llf7mTug/OaWz/aMwbhfJkOL41glX2rS2isQK4wZXv4t4xnZCRG9PE91e
+GPfoNfrvoV4n2M7KnUiwFcY9M048NNHthH3rPlUHrIVxrrlHnMKHO6FViqPM
+10wYv+ao7PBAuRO2uChlTR8Txnv+DfcpiHdCxuSde/17hPE1UcGIgJkOCJrT
+8Xo+JIQfe1qzNBbdASlOB8exXiGc78fMyYuRHVDeud+FRhHCz7oFBv8K74B/
+X2TszjYI4TKz+jdKgjrgfgiP0aZCIfyIx1FhNdcOeCxCVkwMFsIXzp1LUzzY
+AcnqXlOvxIVwaxJGIPzXDt/euV4yIwrhD2Jin7a3tUOPmOMQi4AQPrWKmyU1
+tMOOtTO/nViEcB0meIv9aIc31QcbZcYEcbWQkkvNb9shx5I9L+uzIK7w8pCJ
+5LV2KL2Z7PHRVBB/tt/eejNHO0i7XHvXdUIQx7+/0Hn0tw2emp3oZz0miP8O
+qQ5cWmoDZ/llSwsNQdw5RqOzZLQN+H6fOcrYKognS2Xv6qlrAwddnq16gwJ4
+8BGFmpyINmDnCKih+Ang8w7GOURCG3jTTFhYvAXwtPqi3ewrrdDVu1tL/pIA
+3vb1llfzSCvkl3QWBNkI4Go7GVxKVa1g5a6SIqUrgEu4mltuudMK2Y2jvh5c
+Ang+5/GpuzMtYPLCUupfEj/+MfhS/sZBBbfUhE4axvDj+zwbutfymyGzo/7a
+80h+fFvDs5S6pGb4J6pdJX2XH49SuBQqfb0Z3sdIuxm68OPrct7hU7LNwB83
+l/dcmR93lAtdLwltgoaERwdlqvjw5c1W22I0GmH5oN4Fr3I+fNrsN2vXjkaQ
+7lqLKC7mwz/NSMVy8jTCra0+3YbZfPjVKzM2Ur0NIJ9kdcfrKR+++7ZWul5o
+A0Qky1QVW/PhnGQnS7WWn2CY+t3kxDQv/lnST2TBtB6oT3vWCKO8OOGzve7w
+oXpIDl7Nrejjxdl+pXCiXfUw7XiYS6uTF39EdeVWXaiDF9LFSKmMF58wfbCb
+EFcHf7Ly9xMjeHEHpYvsZ0i14F/0UvSPDC+eqZiQ04bVgFRGGZ68nRdXMSdu
+qZargZ8xv7ytxXjxL1f1fqfy18C2G2KNbby8+IecZ//Yu6qh8mDMgyoaDy5J
+io1IuFINgt8fL2YjHrykb0GlMqYKMusCKdfP8+BnpUjKZxsrIEnNXy/Hggcv
+FDUXt8mrgMhU34I/xjy4oeqHczpPKsD3uufjkxgP/rYucV/qqQrQ2Wmvu3M3
+D17hknOruA4Hkj+W2TDLjePFRyf1/RGwyXH577rPjaeb7Ax24PsGS8/Zh6yC
+uPH4y04XN1WWwfjqummkHze+f/cl78CAMmhpp8uvuHHjfm9inE2Hv0LSncne
+ptPc+FlBm7SdpaWwn9x8PGAzN56rEu28bFoCDqGxm1uzufAeUkpMuE4htMAy
+V8AbLhw/5mg8O1sAsGrNlErhwvk5dd6xpxeAlK9kn28UF/5cXD/nAGsBDDq+
+yd7iz4UnfjYMPHf3PbhpFWg56HHhJ1yYAWI22eA93+g008uJh1Scqp3gfwl/
+3itZxP/HiV9gNUvTyUwC08tRBtDOiT8f0j5K1E2E/f1nFaOrOfH0d5MV2pfj
+YL7516JG3gZfR84k3zYK/HPGHt4O4MRZhjn0NM9dheAL7B/4iBt6r/h4elss
+Kmg1fEbi58R91l0bVpzj0aBupHcqJyeO+SXcfr2cgAy2b1ZRYXLgPhLtGmvS
+L5Fgt1zB2QEO3Cwkbj97fTpKMz9VlPSRAz8nV3sy0SELIYPokj1GHLjw+B7t
+lylFaL6YHE89zoFTA+22XBH6hGR3S9z8Chy4e3mdbdn9TyiCPePgaXUOfP93
+J+efHp+RGf651FuCA+/nKDD+iZWg/sNdZcXjBJz6KvJ2O6EMsSjtRHphBLyD
+uXsqho6j21uOOoQFE3DfqEPbeqECraw7/629ScD3Sl5Qv/WwAs12ZGqd8iDg
+O8QsCwrFKtHvAOVSM1MC7vJOWHeXdhUqqdYptBcn4GW0tUCHuBp0xc4u4+Z7
+dlzuvlekbmQDGj8efOxrJjtOutXZ2P6nAbmopA8wX7HjWMhr21rVRmTLNrwz
++AU7fm53tBS5qxGdyPZMCb3JjvtqhrrHKTYj2cVbcdFH2XGLWRKJdbgVdT9J
+ephHZsPFz8w31LZ3oM4aqfwLrWz4R1DvOv+vAzWtZ7Vt/smGW2+tVt2l2Il+
+XC8RDylnwzl5w6/rhHWiN+c78ywy2PD7Swn1uBYJeSgKtP31YcMFHtdGbyki
+o9WGkK1m/Gy4T47SP96aLrSN1z1n8RgrnnXfUT3pcR9y+NEUKa3Nig+Ew0Wp
+n33ota+qj9kBVpzAtVqzwN6P5H4zNfP3sOLRf+1qJPT6kUr+0+qL/Ky47Meo
+tdHKfnTM5FNfB5kFN5XwsPCoH0CXX/zbXOjOgnc9lRw1mRxCngcUOH5vW0fu
+JmH572+NI1+Or1n+QutoTa5ZNPvVOLpFNjwlyraOSiSlpPKrx9HjG65RJ8f+
+oXM/V740C06g3OJ08dLCf0g9DBeyz5hAEwfElOMM/iHiy2mLmqZJdEmTYG3q
+8xct+22r/io2g7w5YxiTzn/R5PuDSelaM8ifsisl3PIvstkun+viOIPC/WHg
++5G/iMq1xnU7cwZlltzy3MfxFw2vlpvmqM2iEU3aXZ7kNRS5PL7tFzaHpjlD
+pN9FrqHSoksf/Z3m0CJFsAa7u4H7prPq780hws19vAEua8jh+3v9OxVzSPbL
+pdhR5TUUJt7ywW0HFV08+Ce7qmoVbT6bM7IYRUVu2QetDL6sItWUOVPNFCry
+EI9m/5m7io4ryBnqZFORz6qeQ0v0Kjqdzv81FlHRbZRD/OW4itzvyo4cmKKi
+u/vZK86br6LD7JKKPktUdP+1nfcfg1VUfb2v/8I6FUU8EPo5pLSKwCj9mr0o
+DcUa3gieXWWiox2DehEaNJRQ2qJ4bY6J5rsOOmhp01Cy/N5fC4NMNK1+5GeM
+Hg2lJt8L96cwkQtXBkSdoqF0vt/qjJ9MpOHrcUPxDA1l3NYYCPrORFN1/Fvd
+rGkoc+bps38FTBR25b8WbXsaet+KTbAnMtFf7oOMz5doqABLjg9/wkTBt9++
+OuNFQ58LF/R47jLRDodKPMSHhr5IG9Oe+DKRg8mbSfCjobKYzDRBNyZyHSrI
+irxJQ98JLEbRNkxUkG1w1+UWDeE3bBhE4414dI8vV9+moarRosx4jIlCjlVE
+5QXTUK01v4W4BhNpln1t3hxCQz/rXVlT9jCR1fteVdZ7NNR0GH3YIclEH0ov
+6Hpu4NbcrXavBZko0brP/8wG7pD05ZFlY6LwAnOnwg09ObKxJHOJgb4VST6M
+uEtDXX9lXeQnGOiUjYg/6Q4N9XgHi+T3MJDHVHHFiyAa6uv774dyGwMNbLpG
+qAigoUEzVa/CKgZifB7ut7tBQ6MVj8U1vjDQ8jErdpdrNDShNlxbkstA1Cxl
+GdJGfqYzdPwOp23ovaIJeRv5m9uUsKs8moEStvLfGnWiofkwaotuGAPlxTm4
+hZ6noaXlk7crAhhoyMf+x30LGqJfypDX92Igk9LZx31GNLTatUapdWSgIk3p
+qUR9Gvp30ir0pDkD9ZW6bnmvRUOs3z6qNhkwUMcy2UFCjYYI+3j6TI4wkOK7
+fPW+PTTEleoc2a7EQA5iTTLMbTTEK1h+2GIXAzV/c++/LEJDIlTvWBtuBmK+
+NcP06FS0yan+aM8qHRluPsSXN0lFWzt2zTnM0VFLMn3lYg8V7fhMOulCoSOe
+eNaouu9UpBBwZN37LR1tL2a7ZBVARXivicJQPB0NJ08tvL5IRVZ6Fy2tH9ER
+QebmMRmTjfUuGJkH3nREDQ7qapWiol9ve62FD9ERubHMw+zWHPLmnb8fqkBH
+UiuEyGn9jf3pw/mBvo2OSu/0NuwXnEP7tVQIA6x0tHuJv3s4ZRZFtIcUFDau
+oMIo5lRm/gzacTDu9+4fK6h+N9eZPd4z6HNKDmdywQraUXn1E0V5BvVf6rC7
+H7eCpF57RGz/MI0O/pPhMXdcQfmH+5y4sqbQqEKd0+L8MuqO3nSlJHkC3X7+
+O9J9ZBnJLe9Jf3J+Aokuz33p+W8Z7TzxLP/Y9gmkW7FVsKZ8GR2JuW37KWMc
+xVl7lMWFL6PXzayiuT/GkML34BGewGXEUOXIyIgYQ7h0jHCw5zIqjcg9tGw+
+hqZnvrm5mS0jO5FfDVmzo0g/VIB4UGIZlflI1SWpj6LuiV26efzLyGrpuS6J
+axT5mGpe3rm+hPjv1a7L9I6glxKOiGt4CS1lC45VPh5B8wUFnl3vl5Bt7Aj7
+Geowet1rXh14dAld4u1jb+geQmrDakySxhI6dsjje3L5EKqeFNm/f+8SCj2Q
+39SeNoRGV1pfjgpujPcc83R1GUIKokbXzXsW0etH+W0tC4OoyEBfWunmIsp0
+87ofumsQ6RnLnIvwWESV/5SrA7gHEcmc7dmQ/SJiYSe0v58bQMsXcEaS/iKi
+BB8/QPoxgLSCtNs5RRdRilVy+aTjAKr+qBHSn7+AXK7guYr5/ciyhFiilb6A
+3H2asp7H96PR8vmp+JgF9F2Q97HMvX7E3VBgbXxrAZ2j7wtrtepHxsP7VMoM
+F5BkvPp1eUI/omzd/SdmcB5tqTx8817THzR2b7O24dZ5pH9y4POjhz2I987H
+uRjeeeSU2M1j6dyDlANOZvSv0ZDF5UOVjjo9yN/7Du+tARrKP//otsrib8R5
+fqQrP5eG0kR59qW5/EayGsU3RHVoqHGyMY9h2o2cRy0+9jpRkaRadVrU6S4U
+PjDrrGBBRU7mmqY/9nWh3J6ILTcNqOjCx4rEzYJdaL6j/I6wIhXdytq/oNX+
+H2K7ezIxfHwOPdR8s8fW5j8EqhPtZwTmEK1c77q/DwWVxe09Pm41g2pl1i3t
+vpAQ9/mxi6zaM6gR3xGvn0pCVlKZ9yV2zaAacGk2fEBC87kyuNHUNDI3VvmX
+akpC8vgOrcK708ig3zHv3kQnSpzcpHorewq17nXznNrViW4A63Z+5gSSu17e
+lZbRjvZP/FpUSR1FKfrC56d+NCP9st88fzfyzM38Mvwiqhr55HykixA7EXf9
+5bSrRl+QlZvM647bX1H/f1IZU1/TUF3Tr8fq5qUQwueYz3M2FY4oVRSZJXRC
+fVnf9/X5L8Dmv7nHRbwf3I/n3OfTqgbbC7kdpRr9UH72WtS9C9VQdAp+8pv1
+g8aQSi93eDU477xc8jm8H7qky4ZPt2/UI/XlzwmL/RB6R9kq270GHki6HH/b
+MgCR/J+8B5JrgVBR9GHowRAcOykslSr4E7j4ze45z45CyaxrKU23Bc7tscU1
+ecZgTdHm1a3LLZB7zGWdV3YMbj3tS9sVu1FPBgbc+WQzBnJTfwiNEy0QP5oe
+SKgZg8Gq0Ysx8a0gV0G7lvlyHMRVJl12BLXBcf8Y58kTk1BKL+wWH2+H+OjU
+1z8ublyFN4SokevtMJ6f1f8ieBL+ujU4bhLrgMihbw5anychaKFM0smgA0hm
+w7aRO6eAbJxet/KuA1wUD5grL09B9nVtvVOXO+FBP0XPN2MGxlJnxVTYyPDn
+6+krAeUz8KJrIosiQYYjMXh8MHkGWtYa6uLVyUA9njvxmGsWBHhHvji5ksEh
+705UhucsaPjNPJdv2OD7y/4mqc/Btr9nhH8kUoDBcfirpDMV9HOaH0kadUGm
+70JzmjcVqmx/bXd17wKLvveDu4KoQL53y6U9tAsKSqX598ZS4YykcR7xRxe4
+efI7atRSoThSj3ZK7ReQ2voIxgo0+O/7i/MTu7qh4GW4WfA8DTTpTcbhu3qg
+kRg+JsQyDxrMLA/a8R4YfRIW/FpgHng0BOhJHj2w7XZofvXeedD0O30463MP
+RNjd5+ZznIe4elX/ltO9cGF7MJ7QOA9adfMtBg//QFDcHWv5X/PAyUj04Cn4
+A/ECd2bLRufBftvFcclff6Dpb9C2P6wLQIryO625rw8O/QkMkD20AI139pzx
+pPSB8Ksb+wvfbtg1PKbl0/pBUexG3bGiBTh6mEC4UtwPBlF+DiS0ADuOdvmN
+NvXD7bvXI1e6F0BuYJv4vbV+GHe8Nq4jsggvuPR6AhwGAJe6kt5wZxHGm18H
+f1UehN+JXgftniwC1aBGh/fUICwLe7XMJC6Cia3V81zXQdjH6rkm/HkREl6o
+jw2mDkLigPs568lFKLDR/nBTdAiuvnERHrZagmGq71Sv4DA8C0xKeXZxCZon
+/moeUx6GD2Ytew/7LMG2aK9D20yGYfbfwaPPHi0B3fCA+fGoYfA6z+d7qHwJ
+jDITpMS2jkCkGvZvsH4J+g38czq0RiCf58bjp+QlOLGmkqxzYQSmvvx5Mzi7
+BB5Te6+Y5o2Ax6aizshdy+BiVRJTe3oUHk+NOh5UXgbNtpfhVv6jkFspOT1w
+ZBk2hfln01+PwoRPGOGgxTIk7jDISFwbBffmcwcGwpeBu2B1vBuNQcTbpxVP
+YpbBQGnLXNLCGGQHVRprpi8DpVjm6O294zAmv8/tyddlMJ7QgLC4cXALX48/
+ML0MdhVSL/YETUC4vYZMP30ZWP44EWJKJiBT4/LHxxwr4Fiq9ixjfgJGBjvq
++nasQHnEOsnGaxJcIJP+6MwKbMmI3xd+cQqc6Ua2f0pWwMJtefCw0Qzcb703
+GlG1AiUXTTZtezgDbzJLfNXbViDm1iILVjEDAxZSTyImVmC2qmqFR30WLhQu
+fFPbRof7Z837OPnmICRi74nevXSI9U3NN9Odg3RHe9LDA3TAT1/fctVnDvoE
+6qZ7TOhwoYjGxdE+Bw4eydsf3qPD3f2nFJ2PUmH1F08L7SkdWG60NT+0pELi
+ycBgu2Q65B5dSiFcpkL73nN9qp/o8NKRfeu/p1TwTqyLSkF0WHQOyQl4RQVe
+7oMYVxMd+qTMFQ0KNvbx2ObXPcN0wAx1P3S1UqHfKuyMIY0ORdxSKal/qHCn
+dpG16C8dTrAwjYqnqVDyrtP54RYGBHt9Ee/jpIH5Zj3ivDQDnnVRy+ZFaUAN
+LaqyU2EAgZQlY7eDBvIu0bJqJxhQKZO+6YA6DWo7WcgpFgzQ1wg6l6VNA2c9
+nzAuJwa8PlND9jtOg/WivgO+VxjgYFJ24JUxDVKkTUd7Ahkg8NpTa68lDQ69
++BFvGM4Ax1MPKkTsaEBmVTYsesGAT5bSpfbONPC9lrqy7RUDCuy7pQXdaSA4
+wJ/9MI8BD69UbNl9hQZ5ZrfPzX9hQPijV6Vvr9HgBD7FbV/NAK4dB7SibtBg
+WOX817q2DRyZ1DsaQIN7rxouq/Uy4Dd74cT7IBrsEDoikTrBgPru0qLROzQo
+C85p4FpmgE/YREzMXRpYz24N8mVjgusFpbmSEBos2kco9goy4Z3PlKL5PRo8
+b175bSjJhASDkWKPDaykcymyaA8TZlX3rK1v8BvyKdrbNZjgtszjs1HPgNs2
+g5mHGBO6NY+Hvg+mAXtkceq8ERNetYrkN9ymQfqqrIm9DRPsHM7bXr1FA23P
+2H91rkyQ1mJhTbtJg1/d7B/VfJmAK+4UtvGjgf+p646pwUxY2Om79MaHBqJl
+g0LcT5iwerpYMtiLBh/lz+K+CUxoWhWfnL5EA6OkCp/eDCbsDKmuom3kd5xb
+ddeJAiY8TLHgirKnQVhAentRORMshm4K1lnT4If1XbUIMhNKIqU/CZ+mwfm6
+2cH5ASbwhM+NyenTgK7pEGM/y4T4OG3BgY35V92is6jGtQqnrt8UO6VEg5aw
+/LepxFXocj5g/1eWBh5LkpbcUqvwSu+9jf02GrwlMYt7D61CyGa/aUVeGmD6
+Hm4njq9CwZus3DQWGvR++rXl05lVyD0jc7V2mQpbYkpvRnisAlV5B4fOIBUe
+nfE/rJ6yCv9l7QxeK6bCiyYFr/ycVbipKX3NKIcKKYZ9abu/rAJaq99ulUKF
+Ap0ThK0dG/zKovBX96jQJS/Rusa1BpM1/vYGJ6mwl+2HS+31NTimt/eFTuoc
+1BZxPLc5/Re0g7QuBN6aAcKmuNG7zH/wbJNFa+qvcRCdDRYU5VoHjZQfFb9K
+xmFXvbvmW+I6dBNjyrfHjoPube3w+n3rQFpJScBNxiFweGi3iOM6sBn/uxBa
+PQazn9Vc31Stg1yEDyOiaBSmFcavORuwYH3H+aK7Xg7DolhvWJ4RC8b4UZey
+I2gYVgkdSYtnWbAhkT0ng2yHgbfvW0W4IwtWuv75XqD4MOyJiRLJC2DBovPq
++6MSh8B5VbNwIZcFq9a9V2r2chD+awyjhgqxYvH6nxxlP/dDrG7qccstrJhs
+6UT01th+OFv4OXn3dlbs4dYj/vv8+qElfki/VoEVGz0n+vjTxjut1uloEpcB
+K7ZlzJc9xLsPSlbWjj6+zYp9dsnZ+iG0F+Jl/GKiJlgxwVcdx//r/wUW8U/G
+Hakb+gtXXxRl/wJRngyd/SusGNIwtW/y+QXPZtvH2ghsWGHhjtEy1l8Q/lVF
+W1SKDXvOGtZ5V64L/E2nhmOt2LC5AotH4UEUsAxy1kyuYsP+hL7zPH22E+JT
+N3Gu/GTDJo6xT/yW7QQKqiWbt7Fhllc0Z1JXOsCKoHhDoJcN4zy2s7s4tQPO
+PV34FLLMhn1jKfDYP90Otq9CVS/Js2NNLWL/9r5ogwtVmfs0otgxYcNi72bW
+JkgfObf2PI4dq7UeNkgvaoQBLr6mmZfs2LjW59KGi43gbHTVMyubHQvnf7kk
+W9cAF8kHcyUq2bFZ9d0fh6N/gttY/R7WJXbMO7fZEDtYB158U9IttgRstGa2
+ZfxHJUwFlhH4nAjYW/Oco1ZBleAx/mjU8BIB6xYOZxE4VAmXavbmVlwnYJU2
+h8UtiyrA+a6banEkAXPQoFYY5OJgszAAKT8IWOI200MdJt/B4HeXnYc0B4Yd
+MZNhyymGmpPZull7OTD9k/uimGrFoF96U2pYmQPTWDJmXvv+GY7GbRm21+LA
+zjk+DPnd+Qm0TS08z1hwYAQ/P6NHnEWgVtUaeCicA+tPXYjL4HgPO/Nq4zkn
+N/DLJ/Kixq/A4lXp1wYqB8ZyM+2v3tNUeByT2/NshQOTmtZoD2x9CYtBz6TF
+ODixtr+1GmM2idBgZPVhjxQnZuYw234vPBr8Z0dqTlhxYnjazZGd8z7QrMqx
+9LhyAz/Y/Xt5MRaxya2Imf7kxLDW46GsgfHokMTEEWIbJ7b/dZaBxWoCesPW
+HPKyd8P+kr+1m5mMAjpj+fPpG/40rORJvulI9oasbLMyF7ZXlP2qkGYmCirV
+Mxd6uYH3DB97/6IAqdm1UR1fc2F20YQOy4ECNLlu96wgiwvj3hEfl69SiGwN
+/X+e+cyF0cmDh9waC9ERSjbENnNhswuaxpvWixB9QWCfOAs3phuRyvPeuhj5
+q3QRZFy5Mf++/QV6bV+RcqfLm+ue3NiH5isBFzeXoVF/GlRf48bspPdGatuW
+IcsfvEGuwdxYOGr4LTlUhjSMdWhZCdzYeHnzdALtG1rweNO7r4EbS353gq+R
+9QfyyfQq0VThwfyVTqgm0XH0p1UyTlCTB1syR9dixCuQMaPh+qg2D2b8NuDb
+5SMVSMFIXjX+FA+2UkiSyAuqQMO0kbwlVx5MeUdlU9haBbLWcXz9OYUHG5fJ
+tsBXKpEu6UykGi8vVpNcU+dOrkb5f1k8eUV4sbwFCbkD89VIck/ByUExXmxy
+68qrQcEaRA8U5HqxmxeL4tG9NWBYg4p2Nt6jYbwYSf/7T9/SGrTbU/9mwU1e
+LCLOXpM9thbxsx10Vh7hxZz9zfyaDtSjrzfZzUeneLGQ91H0xyb1yG2mVS9t
+nhfbMtDRrnKpHuFd7rsFWfgwsXgrxr7EenT9Y/L4jAQfRtpla0yn16Nuu3/e
+7834sBOLp4nTxT9R9peaoH3lfNgxcZuf3DsakaXSC6/hSj4s/oPR8Xr1RsSW
+4WCf8pMPc7AeDr52shHZPVvR5f+PD9OjTD2759eIhFzl2aZpfJif4QdK8s9G
+5C/6NCJvDz/mbpysW3e1CR2/YhGnEMOPZf60G8vNb0Z+L76xXE3ixzZZhcU9
+3KiX336R9vr0ih8rz5FwN29rRmxstGPa+fxYh1c4Kl1oRnj8U6pxDT/2ufn7
+5vLDLegIXnv62go/Bibywp8rW5Ay8TBb6XkBzFFB8Ht3fSuyP5R+Zc1JAHvK
+HTr5rasVRdpz/cLcBbBIrW7dZ+OtaCqL/PGnnwC2f6n5NDuhDWVr+9r/fiqA
+iXyY7JCRaUMybnml/5AAtpLES+W70Ia2ft1+9bisIFYYetYxh9SG/l3MkhRR
+FMS4Zm7bnu1pQ8OCqvU9qoJYWH1r+sJQGypw0d/lB4JY5uN8lZ0LbchQ2LPz
+ja0gJmh1+LCkSDvyv1R6kCVaEONUSpl/f7odkTebs3z7u6GP0C+//q0dleE9
++eEEISz4+T44UNmO0j3dbM7yCWH1DJyFWt+OvCoCiya2CmFlLn/Pn6G0I8KV
+dJetGkIYzxXjA9XUdqRRPVN/w0MIK9ou4+Uj24Fe+EZE7/9PCKsI3swj8rAD
+MZvySyN6hbBPm7pV30R2IOc97X39Q0LY5hV5JeUXHUi9R1w5miqExZkJf9RM
+7UCTbyxH6ARh7FmuoTvvpw4UyT92z2aHMDYkYTmA93aglj6ebxJnhDEWsrzr
+Y5VOdDbcVCm1RBg778Fwf1DTiTJtqCe/fhXGxE5kR1B+diLGvmg3crkwxiV0
+8cvulk6U3tnxSqBKGEtV3WRWSulEM1JWosGtwpjCLd22D2OdKOKb3YrDuDAW
+yJUtOMxNQj+olyukJESw989th8JPkJBoNe8f7e0iWF/FoJ+zEQm5JuQxz0mJ
+YPScB3ePmJEQv+6MerScCPbjwjX+fmsSsnnik8mqLoJ9FKDbsl4iocXdN58M
+nhbBBLLsfF6FkpDC+VDLt3dEsKMdWnwO3zf410pECfdEMM/z6oriFSQU8XC8
+9WKoCBYmdfVFWzUJjXwyOiXzRATT03ylr9FEQun8m+FNogi2dvleYms3CW3+
+8W5v+icRTPqO1Mq5FRJi2VW3+nJCBDvi6Z7UrERGKgcZpavTIpjvHhnJrapk
+5GCs6H+eKoJFJLw2ctQgo2+BUVSJFRHsrdamxqEjZOTfYT2SRBDFvPMNHtcY
+ktHUg/GWhJ2imGKVXN7sBTKijPK8ibEUxWpV9V5NPSejWotHKV/PiWLN1OLD
+6TFkVFLJndB3XhRbqec/ejaejOLTuCIVnUWxwD8irz68JCNLKw7/Km9RLLO2
+kHQik4xINSynFh6KYm7HgJXjGxl1vF2hnS0TxXq+hjXnDpJRpejN6YDvolin
+frOwyAgZFYUsj6bhotifM4FsN8bI6IXd0u/JWlFMmPUD/cA0GZ3ZtFBzv1MU
+Kx2fdk1ZIqO2B7NJRdOiWMez+fE1LgpqcR45KrqTiBnwZzqIK1LQACGLHidN
+xL7Ec20PUKKgxUz3j+JyRIxH0wkjqVCQ+NTUtl1KRMyJHohCNSjI5fr8iooW
+Ecs/KTtQq0NBzAfr742tiRgvNeBruykFyb0Tl3gURcSotTuCRHwp6LDh7zb+
+GCIWL7uit8uPgowmUh4+jydiRnL7vyr7U9A1JamlhFQiNnpXovDYLQoqL5Zr
+y8wjYpQnJcKm9ynobK16eHUdEav87mC9Gk1Bru5L2icaidgRLp6e0RgKCuD9
+stDYQsSs0oKU2uIoKNXkiFMnmYhtvhipm5JEQeMUTHtwiIjVxReYSrzeiDeA
+bcF1jIiVvVz3WXxDQQKS1TkTk0Qs8cQj76a3FKTmaChGoxEx0+V+Dv9sCjrO
+ytPit0TE9jv5ZRjmUtC5jIZQOp2IhRs1y4rlU5DH8Uit22tETP/TzyfD7yno
+f//dsP/9d0P/BzbuEvo=
+ "]]},
+ Annotation[#, "Charting`Private`Tag$28367#1"]& ]}, {}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None,
+ "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ (Identity[#]& )[
+ Part[#, 1]],
+ (Identity[#]& )[
+ Part[#, 2]]}& )}},
+ PlotRange->{{-5, 5}, {-1.0940964161523357`, 1.0940959077164842`}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{{3.8171170262142076`*^9, 3.817117034051578*^9},
+ 3.817117468553701*^9, 3.817117526971801*^9, {3.817117557928603*^9,
+ 3.817117581532714*^9}, {3.817117683076977*^9, 3.8171176907835217`*^9}, {
+ 3.817118142969657*^9, 3.817118190961885*^9}},
+ CellLabel->"Out[63]=",ExpressionUUID->"16b2f1f1-4bda-4b9c-9a2d-c4721af32a8e"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"LogPlot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{"Det", "[",
+ RowBox[{"D", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"R",
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}],
+ RowBox[{"1", "+",
+ RowBox[{"2", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}]]}], ",",
+ RowBox[{
+ SuperscriptBox["R",
+ RowBox[{"15", "/", "8"}]],
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "/", "1.08"}], ")"}], "2"]}],
+ RowBox[{"1", "+",
+ RowBox[{
+ RowBox[{"1", "/", "20"}], " ",
+ RowBox[{
+ SuperscriptBox["\[Theta]", "3"], "/",
+ SuperscriptBox["1.08", "2"]}]}]}]], " ", "\[Theta]"}]}], "}"}],
+ ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"R", ",", "\[Theta]"}], "}"}], ",", "1"}], "}"}]}], "]"}],
+ "]"}], "/.",
+ RowBox[{"R", "\[Rule]",
+ SuperscriptBox["2",
+ RowBox[{"Range", "[",
+ RowBox[{
+ RowBox[{"-", "2"}], ",", "2"}], "]"}]]}]}], "]"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817115088249651*^9, 3.81711517985719*^9}, {
+ 3.817115793511944*^9, 3.8171158188557177`*^9}},
+ CellLabel->"In[47]:=",ExpressionUUID->"72bac293-cf66-40a9-809d-4d0874dae037"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwV13c81d8fB3A+93Pt7VJK1lUyCm1F56AykxlfmjKiEhUhTWWUlVKSrSQS
+iopKbxKFZO+yR/bO9vv8/rqP5+N+Pp977uec9/ucl7TteVN7goWFpYuVheX/
+nzHXbNlU7e7txY+4fh0rI6GoRsrQUsoJPZPfWHaU8kpxvq+UlBfqlBTaak2Z
+L/xdJlfjLfRdS2ebGeUYCJakSwUi1U+vFnUoK43ahaw4hqKgqLS8nZR/88Uu
+LzaEI9+FQzHSlGWTOXfML0SgLQ1OtSTlsxru5/5JPkFa9hlh7aUkvK1tfzal
+HY2MGR20bMrzZwxbxx3j0Cuu0RPXKMeztgb+25+AwjdIte6lvO/n/fUzDYko
+6MLutKkfJPRH6hRMOT1Daazp9DjKQXZLRyYXnqOv6z/KalBWUXk7Ox78AtWM
+pWhXfCehZuH0wzHJl0hxvD/OhLJHiYTKaFYqKhE18CouIWHNg9qyYe1XaOy1
+kpAS5fxjdx2H6tJRzcmXGTeLSbBVwLRBxwz0UPznk+JvJBAL3r+mfDJRc2Xx
+2vkiEmrbLdZN7c9C9eNrb6+l7PmKO3ei4Q36sa7RbH0hCfrhvWwT8W/Rkmm1
+M08BCeKeBebjTtlIsfRDyZ8vJIwcjU4c25KDWm42lj/NJwG0L4+NLuQgjfvC
+HVqfSQiXN907WvQOvSgTda35SIId/6agkeD3yGdn6IBhHgnsLZ1yw5K5aLVW
+zbXZdyQ0wmf3of5c5M5d/1A+h4TU5Mivg1l5yGqSGar5lgSjC0bHB7Q/oaLI
+JifZDBKkrOTT//J8RtUlDz1GXpEwoUEu9Nd9RhezEiAmlYRHnHmP+hy/oO+G
+nq9Tn5OQfVn/wsXVgJLKX2SzJ5EQPbBTbNIHkKqk7mfdeBJcKoUcJ/YXoAJl
+qUH3KBKEor8T4w2F6M+drMXLwSQs8L176ar+FYlNP98wFkhC980k47H4r+i9
+BZ+egR8J7xyvxY46FSE+s/1BqddIsN66bffIwjd086LEZX4XErSTpTvOnShG
+BfstIxKcqPUoxh8wXFSMWl7MZa2yJ2F5+W/dUHAJurphjCvLhoSE0ji3Qckf
+KHkwUihRh4SpyByFtqAfSL0+Q2VQk4QDjmVd1XM/0Je/SGqVOglDtH8WeTWl
+qK3glsYaFRJ2aRjtDvQvR3zcgtpdoiRUZiwScqO/kLWE2qpD7TQQQpzHeDdX
+IuH05hubmmiwZ8PD3f52lUjzv77ty1U0CJl6OeldVYm+LIV5XPlKg2336+xt
+06qQ27KHGmcyDa6XKumrHq9Bb7hHXeOcaZCS9X5DWkQNSm5K7cWnaFAdqUVb
+X16DrhVJHh2woYGso9Wn1Wq16HhQCrvNQRqU0m5vZhGuQ760unMtKjSYGuDj
+9tarQxqRhsvd8jRYV/2kb/J6HZpZrJtnZdLANT4jvm+oDu09mlF/RYQGohot
+Qr+K6xF7eMlIxAIBWNZhVHepHpUtX4ST0wQ4cY+XFW5tQOuMp2cNRgn41MR2
+5118A3IaKWq/0UVAL9w/qdLQgMa+1chV/CaAP0V8bypvI1I9NkCiRgJsPbb8
+i/FuRBoFMrfDfhIQdPRzzaqsRnTi1lT0xe8E5OzTzbzf14iMWyd3Xf9KAIfw
+Mac75k3Iio/rHSOPgC3z/ftX7jahjTLr/sbnEGDTcVHGq6AJybVs1rbOIuB1
+RmDL2c3NqN2oqtnqJQEDQgNB+iebEatv7J/fzwmQ89Dfu/FhM9KJlJ4NTiTA
+ril1lF7SjJYPGK84xREQr86d0DXXjLoPo+8XoglojTtjWqDUgkx5JJkvnxAg
+RiunxR1vQTMfd7XyPibgsINSjk94C/rqPfwx4SEB4T+CHKy/taC2thw/+3AC
+KpSGV+2abUFHK2SW/gsjgDvs4A8RxVb0TL2t5XoIAbqT6d6TR1uRx+ibloYg
+Am4f5lOqCmtFbyT8smzvEQC5Lr9ff21FbPP2fNJ3CVgS/xUSNNOKRmh344QD
+Cdh9Qxk7y/9GN9Ss+fYEEODRFTquc+Q3+rDkzhLpT8CbA2OJ60N/I+UvH1cp
+Uh59aWxOK/yNdh0ymZjyI0CJN4veMfUbve14pTBD+bSr4Pt8uT9IKD3WUpm6
+/lmN2+lo6z8Iy9jwJFDu2FEt5h38B2lk32k0oH5PImpLmSX8QRly6roq1His
+l8J9tk/+Qcm2Mt1G1HgfnZjcJLyhDanmuKimUP+n5qtZ25hVG4p8MJOlHkyA
+gFx2WMW9NqTycU83TygBhncZWq/y25D0Ry9tsfsEBAxfmgwcb0P+zW91bB9Q
+6yfFuXqrUDt6bvHVvj+CAJbmNWmJiu1Iecie/1UkAXHcZb6C+9vRyzzDt+lP
+CdirceXIjWPt6Ph/ip+HY6n5dFHcPnq5HV3cUxJxlpp/7/gW3mP321G9LnuS
+QjIBq6vv9ZantiPF1zTdjakEvKOpf9lT1I4+/BbpsX9NgPn2ocepv9vR4Kf+
+hq43BNyPNNQLEOhA9bfdNyZ+IkCldFH6n3wHOiufua2rgJr/hVfz9todqFW7
+YtK+hACu47yvtD060D+ayU/VGgJ811fwrbR0oD9pQtqDwwTIWF7rOzfdgS60
+kge1qHqDgM3QyteJ7Pq3Wv5eJGBxMMQtT7MTRcsGnmvnoYH7m0O17i86UdgM
+w1CaqndG98qrbuhEOm9V+OPUaPBGJPOOWXMn0uDnSbPVpsGIp8BOVd4ulDMw
+rfHJkgaOqOrJ0IUuZP9y9YF8XxqwJM7ktdzrQhGfA7q2hdIgkhRvLX3Whc6c
+ebd6LIoG3384SLys70LW1n7j297SYKP5YqL97m7E8Sr452IvDeCddJG5WTeS
+vzocGz1FAysxnR7ts93oZuIx3VsECQF/7svJxHYjhyGxT5KS1P59Wu7VH9Ye
+5CfQpPeC6s83ygx//lzTg8Zypli8z5CwevOFkU9be5AmcTv/wRWSqpdPKk/t
+e9CTu6+7o6NJeHnVNMfyB3X/yjoBrk4SnMOv5leG9SIDZvDnC950IKYT2768
+7EX6ON/6ewgdoiy/s2QU9qLAkOIgxyQ6lIoLawdP9aLn3fecfH/SQfFFSome
+VR+68y3LeMd6Nhj6WFNZKNmP2k/73n3XyQa3JebGs3b1I8WUR1afF9hA/KaE
+cIJJP/pttWqdoAg7GB5wsrju249UkizvxeuyQ3rlctOevn5UKXfS3OEtO7j0
+yHdlv/6LjquOZJU/5oD2Y00cBT/+Ip8UrQqTDxxg1hiw+Wf3X8R63HdqRxMH
+7Crr8+pZM4Bu5CoKMsU5gZb1XEDUfwCtebf3Q0gyJ0T6SO+9fHwQ9R3hMVld
+wQVcM5WnfL0HkdtV0bU1U1xw9fyNwNCIQXTweKrI9FpusLVtq31RNojGz7Pa
+uJ7hBiXdmDONO4fQOn1mxSF+HigQFnuiJjCMhvQnD7Oe4YVtwd/z9ysOo4pq
+wX02kbyQzObZbXJgGPlc5xKXLuaFoLl6ZWefYfRi1ZTrmAwfHG57WBzVP4yq
+0+T5nnTwwUCqwNQCjKAX2pt3HVITAC7p23Jtu8aQnePLT1GDgvBd/b7ytf1j
+aLXch2t1dCHws4rduc50DJnfZbESkxICIuyDjs2ZMdTs/uNVurkQzC8POTbE
+jCEjvVWHHnwWgg9r5s97pI6hypSNbYkNQuCxg91T5P0YuvnRvefRuBBMnJMO
+MKscQybH94kx1gvDYKtFyi9iHM28W1FODhSG1FnbTBf+cbQkMNsukSgMpxmu
+H3jFx9GWVIcwrTxh6Da4+91g+zhq1KvPdfwrDImOjysHNMcR06uo8TALA074
+PmsMNBpHTgJ7DcpFGdCal99f4jiOph/FJsloMSCqvmzM4dI4slbyPTh6mAFW
+E42z9JvjyF+8tV/sDANq5Sc59kWNo/qsXIfj9xkQvp9FsCt5HD2xO3fPPokB
+xid5xW69HUc2OZkH4rMZUB4pJw/l4yigpfjJvVoG3M3epnq8iXr+hqrZjV0M
+0K3UVFvuGUfHmCee1Y4xgG3ISDNmYhx1WCkw/JYYUMR+RE99ZRyVFW833c4p
+AreYTiYt3BPo/R0JvhZhEcDI4z/v1RMorcUtw3WdCCxb+54UWz+BkkULHcbW
+i8AnjzCnD6oT6OMXMQ2LTSLgHR7jZrl3ArVMeEk/3SoCu16nes3oT6Ctjaum
+8neJwMyP9zcjLCeQ1I7VofnqIpDdUxS4zW4CbQ+IKI9EInCBtfp+jesEol8v
+DzyoKQIq69qeXLg6gZpzbF78pjyyayhB8O4EilgTwWZAOd187mXmowm0E4/7
+/v/+s65sbw4lTSC+kW8jP6jnKwQJ541kTCCFJdflLur3+19IFQZ/mkBt53bs
+H6LGl/x1U6nSjwn0mlNc+i81fru23dVldRMo+pFIWscGEZBZ0Gl27pxAO2ya
+n/2WEIF2UYtOztEJdNz9i32PiAjEbrEdSFmYQH2OE8WsPCJwxOj8hA7HJLK/
+epZfnVUE1jj7zPcyJpFK0ERbzDQDHiU84lq/eRKd7mzvW2lhgPnnJKGi3ZNo
+feyOS4wKBgg1Za45pTOJjJEov9cXBoQIlCkknJhEsdc23LOJZ0DuznU5Ri6T
+SO/ta1v/EAZ0HzuPFq9MIgn2Q1jEhwF70oXNLR9PIt2Y80YBFgzo1ztylbdi
+Eg0G/1fFT2OAtu/wL689Uyi4ymPloIkwzE7zu5uKTqOnxzKvXOoXBOY625UV
+5jTKb7iO86sFwWhfdmC66jT6tWgmv/mzIDwPt4rlODiNzh703XYnXBBMlRNK
+8n2nEbt5wz0FJAjpp7esURyfRs++he/+FS8Ati3mX2jlM0hwKtdOmIcfuJ52
+nHNrmkGSay592THEB2+sXcTbemcQXeukaWo5H9Ca/b3yWP8hVRfZnddD+OBZ
+Y95Wt53/kNjeQLEyET7orZNK+ZP4D3GeDnDAW3ghJCL9sGHmP+Srk9/Bs4oX
+dljspud9/odMxZYurlvkAf9aM9uIxn8Ilaf/Zi/hgY01fuKGfLPo3hkugeHj
+POBcORSW6zWLVNT2HbOK4QahMC8k5z+L9rap2PL7cUPeIbaRhw9nUdXja1tX
+XLiB+5ekgWvGLDLS2pHmp8kNr36a0uV6ZlHyr1OWzL9cMFL6weuh8RwK/X7e
+kFeLC9y+3bY9LzePkm00lWpFOUGi+wDbzNZ5VLxfbS6LjRPKCM5UHzyP0BlT
+pzczHLAeB48H/jeP3oyP1Yo1cEBTXsSNZ/fmkQl5yM/rCQdoZibHNo1S1xeP
+btkuywEjFae1TizOo9Mfpk+LinLA02GF3l6OBbSXM2OfCAcHTCtkbJqSXkAh
+zsqVzkPs8PL5+0985gtI4eWvmHPv2EHw6fdm7Q8LaP0dN/7IQ+yQn3v3WmnR
+Ajr+hoNlmzY7nGk0lDGpWkB3pHN9/+5gh28iVU7HBhYQ9+cl63gJdvAKa5r1
+FF9E4dExfDtH2aDjzoDo6xuLKFp180DjQzbIcuUxW623hB6Hx6XdH6NDeZSw
+V/rhJcS383yPUi8deovWxGnZLaFIv/zFPy10WCMmP3j2+hIqPjv+z6+EDrcL
+9vsW5Cwhab/DGe1xdDgsdP2ts8wyKvn0/dp9czq4qvs1rSgvI609qNPXgA53
+HYJXHmoso/61mjvuatHhS95Tgy9Wy6jBaA97tQodNp760CUcuoyMnMTL9Pjo
+MP92XPjzwjK6Faiv/76cBMafWTVTzhX0tmi0t47K65s5WE70ia4gN61BOhuV
+t08d4XsluGUF9V1a0ohKJ6GcVNzncHoFCUyfrQoJJSHWwu4Sf90KCrOzDbp3
+mMqXV84MqFiy4FnOovnFURqoAOes/1EWLBuqmH5hgDofkSn0tlMseC3paDPV
+TYP24G6pYFcWnOYyb7W2mQYS8Uct/way4MzsE4nTRTSIKjpUlPCJBdfHfjMt
+jaaBAudI1WwhC846M+I985gGuQeD2g79YMFPPrI5b3pAg8b67/NLdSx4Y0y8
+xcdAKs/91VS1HmXBZ4z1L1tcpkE477ZYIRlWbM/gY79kTgMZ0+o0p42suGHW
+NHSfMQ2yHrnmwmZWLIf+VUkY0qBSMr3WZQ8rXlfMqztGnR/5tmzgLjNnxUIO
+dvr0bTS4e3i1p68/KzbcFZQ8QOXHW3GLJlNDrDh9dP9H3E6AscoHN8VJViz7
+NYZHncqDEgUX79vOsWIlpWg+1ExAXudAZSWdwC1/p2ZsagmYWN90KF2CwOxl
+jyXGqDxo+yrnoIMxgcv3Wql5vqXO1xpu52IOE1jpp8Xpv5kELP9UCq49QmBr
+t+6ok9T5PGo0qVzLicB3M1Z1OlD5r3pLuIHkLQLnSNxs/0rlO81cF73GtwSe
+Ji8wvlD5g09fwYk/j8D1Id/+PKXySWtzT8ABILCunozQdSrPeC4e+Z5dTuC/
+LE9Dre4QkIkMdO73ELh/yHng8FUCpIrl9uuvomHdG0xPLxcCRg532d1cR8N3
+Dn3M+HCWysd9sbc/MGk4WTvv25IzAVacokUbVGgYVamdfeJIQJghqU3To+Es
++/0FIiepPFPTjj950/CllEfJay2oPPg3P8H7Jg0vXXpQ8ciMAE6WGEItgIbX
+nnczWG1KgNCm/4pyImjYu1hSYvMhAtb7V+lkZNKwZ960zDM9AlJjMlLOvafh
+tgc7h411CdicHcyplE/Dnz0eF9J0CNjVoVeWUkbDJu/+OV/ZR4D+nkKjxF4a
+FhJ1+ZiFqPxiEp9xYpiGO11P9wXvJcDs9DUBySkavqEV2nheg4AjEburn7KS
+mDPKp3/fHgJcRt9YRIiTOPnQ09otO6n5pN9/Z8YksfdJa6S+g4DL4udXCSmQ
+uOxqh5LBdgJu6Ck2hewk8VKpiKvXVgIeJCUdCTAl8V+rsA+iKlQey7v5+cB/
+JPbhfGVtoExAdOVxCfoJEhPG3vjOZgKSl9a23zxHYvf68A8cmwhQYMxjfInE
+jMz0PaZKBGQoNCYse5PYREK8O16RgA+WD09dCSBxT9tq/4MKBKi7XChSCyXx
+bs2GC2nyBBTcNl4/G0GNT0rPgY9yaRZP36UkEn/hldPpkqPWB/cdZ5d8EvMu
+2Ml9X0/ACZlTZUrfSJykw+5/kHLPLk2lwTISt+bhnAZZaj3YLw07NpE4tebj
+yXkmARd9Wow2tJMY3VOrDqc8G56b0d1L4nMni6eVKbOCu9vJKRJnbJrb7SlD
+gF+9WbXkAokr2jYfYlLmGlbd+oeVjq8shy9USxMQShN4GM1Bxwe7/NT8KTPW
+jExZ89Pxril3AlOOVCm3EBOlY9XQukNLUgSs00l91yBOx9tmZNd+obzhkoOn
+uQIdW28qEDSmvGl3m1mcCh17KDubylDexmKlPLCDjjtkTBxmJQnYU1zJtV2D
+jtlFzXWrKWsF6fVe16ZjwFaTGZT1TAsLSvXoWPCfnu19ysar98SIGNOxYrR4
+mAdlyz9vPU8cpmPviNLLxykfe6ZknnaEjrs0LBiGlO2dnyvP2NLxqqaiE+qU
+z6pIcGs60THhv9FKhfLFmUe9987TsevOR9NylL0/8RfWu9PxmxiFbUzKN28F
+xEj70PFVWU5+GcoBuqxeZ2/RcWOHzU1ZyqF83ubvA+h40z0zPwXKj2onlIlQ
+Or7oJCe2jXJM1BnugxF0fOOgyHZNys9OdPc+fkrHTrdP1plQTttwtLAzgY75
+yw9P21N+M1QXsymFjnN1DoRdpZz7xsjL8zUd113yT4ikDJ4l5l+z6fiXpKfs
+e8ole7EK30c6Jv/zYTRRriBzuf8roOMqp+Wzy5TrSlX7kkrouOiHi7wc9f5b
+w1ILR37Scanwvv1mlLsOM2PVaun4xcL8x1uUB8SjvW430/FRbdHAHMrjnQyL
+X+10XJgpkTJIeTYlWGVNHx0r0JIY66n1QN9+vS9jko6dZy4XJVDmWfhXOD9H
+x2lPaCvdlIUKXGP3s7DhL0I33RWp9SZ10NaihYcNy59gpxdSlhNuUdkgzIZt
+3LxEhKj1urnJjMdNjA3X52cY21NWt9//lW0DG/70xmuHCLX+tRXzY02U2DB/
+dFKjG2X98R3e0VvYcOe2/IdVlK2ublTdgtiw1N3N+lFU/VyK4I47asWGE525
+dhpT9XbF5rZ3yjE2XN2csP0b5VvSSxaTdmz4arX/Jo2NVP9MH+EJdGPD5ZGm
+c9upen31rco7+y4b/rP7brg+Ve/d048Pc39mw55bNZ0Wqf6RqLn14u+vbPjn
+tuzJV1R/OR5cEZpRyoZj1jKzT6gS0CxL/2HWyIarKjSLqrYQUGV2YU/0JBsO
+zGSLb6L6VX6WodQmBXbcXnrOyEedAJ+lPvUVFXbszAaMY1Q/VNPz/a9qJztW
+PyL2Q4vql9ntueHu+9lxyZ/3AwxM9WN+OXr+CXbsq1Qc1aJNwONzrANGj9nx
+vcU6zlEDAsxzo9mkY9nxJvGg3CVDaj7ou5iTz9hxr85WEX4jAkKiXY48fkM9
+Pz0E1Iyp/aGspaLtJzu+9Xab92tzAlzl3711JTlwlNyMpNAx6n33OF8Nd+PA
+qzZan0+5QMCBq8xX+zw5sP4F5Ynli1T9irQ2z1zjwPUL+Y8t3QnYvf/gLpsg
+Dmxv4rCX35Pqp8+VJ5kvOLBvtULiY2q/47afOp3TyoETyncIc1H7Y3n3VfNG
+HU78nCndeSKBAKPuMEUJCS6sFBS+Rb2B+l6xu/aILBd+skqY7G0kwODizmtP
+FbiwsMug2H1q/9cl/lSu3smFh2QVuAep84GWlKKHsDEXnnvKUZneTcD2I9+A
+4xYX9gyJMzg3QYB47ZzFZA8XbrCKzyvho8HAV9sb39O58T2+KI8QfRpsFqxf
+p32cF98JF6MbNNCAC02fbJ3kw9lLWx7z2ZGgM2z9T8ZCAIe4eGhdIejQWGjH
+aq0kiH2UtMyr4+mQE1B0TGpaEJepvDYlt7OBA929vaJCCKu8Gf6RVssGpy5c
+yeGJEsZjVmptpY7soOyoWGF4koFPHolIeDjNDr+ElLjd1UQw1/Zavx1BHPDx
+9a2nSjRRbJcp/ilAhBOusCoYl/8WxT7npW+nJXMCV6u3rkv2KnzKxz72iCoX
+9CRLP4zzWY1v3DTXscrggocbxchcCzGc+KVG1nIbN4RFOZSclFqDN01E7VFI
+5wbrh0crePrWYPs+3/EIKR6Y3fd8Li5/LZ65oKcREsUDXT1anoX+4thw1SYt
+e05eSNRQXfvz5Dp8ttaOdukaL6TfcRd03CSB5e7UKP/r5wV/i1MGtGkJzOI3
+pNVhxAfbWxNe+v+UxLXsBp0f8/ggUv5p+k8DKXxsuy9zTpwfrkNwpEGuFE4Z
+2kr03+aHg2stnpfKSuP8Pw8Hr/fzg6ZLiY1goDS++2CMM0VaAOLEbWXLp6Ux
+p5nl2XITAZD9+uKRkY0MfjK443HhVQEI21SoUJ0vg9Fr++XZFwLgMElW/VBg
+YpfdyuVVtVS+zJqQCgxl4pzWHvlfSwJw9pbZov59JrbzmLO5vSwA7mbZDTwP
+mJgvXfma2ooABEy7h4Q9YuKNJXwPklgE4bXa3MLjGMqnupY9aIIwV7BSn5zG
+xAHfNDvWcApCWDVPcFEJE1uKh3QdZghCVNK5034/qOfVbZTkEhGEpEsV2rpl
+TGyTuMfgM+V3omHzZRVMfG6l5hJzlSC0Wgufrqlj4seaYnyjYoIg1yWm3dnF
+xA0/kY2vpCCoZHtLPOthYlXGo7jtUoKw+07LnH0fE/PsDqnto2woF5P5d4CJ
+bW+6CBjKCMKFM1IS4+NMvPf0zkrh9YLgo35z7s0kEweu7nnyjfId3s7aS9NM
+nGmqZ355gyBEZiTdm51lYoXX6GmznCAk3iAd8+aZ+NtEvVzQRkFIM7HX8llk
+4mJ25eca8oKQLVO8bu8yEx+8qi88Sjl/csPcygoTd3YqXohXEIT/Ach7H34=
+
+ "]]},
+ Annotation[#, "Charting`Private`Tag$6593#1"]& ],
+ TagBox[
+ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwVl3c8lt8bx/Es+xEaSshTCWU1jMY5klBCRkqDZJWISiENKaPIyPpaRYWK
+UEok5zYatoyy90o823yM3/376369X+d1X2d8Ptc517XJ8YqlswAfH98QPx/f
+/7+pdxzJmk6PD6jHCzeeq+WiqhYFU1uFi2Cu1PDHGZxXvpcFKSj4AZ/XMgk2
+OIvHfMoXbr8PACPoPyOcU7EIeZJCGJAYNFPRxHk7w+nJimsk+JFmmimBc494
+2vLinxjwySHOfbiGizZnCu1Z4MUByXXVHW9wvrzfx2NW/j+we5e1pSPOH1r7
+X3INUsDxmCIdIZwX3E27Wa7PgODdFnZqNRc95+8OmzVMB82fdv+Vw/lQffSW
+mT8Z4KfZpZBHP7loPNGonHvxJSB6mO/r+8FF4U5LZzi8V2D3R3f/DThraHyY
+Y0VkgRNHjT7v/85FLTy3WKb8a0Ay/eF16BsX3fghp8EoeAP2JTymqVVx0fqn
+rbVTBjkg6oeZzXwFF5Wde+Q62ZYLbHYYR70s5yJHFUj455oHfmdEOqlhXCTA
+82/kBuSDCyJBbnFlXNTab7ORa1gAzhzbodteykW+OSLF7D/vAXz1qv3fZy46
+EjNKZj//AF5Tk8gln7hI1rfcmnWxEFCWXbBzhVxEP5uSwdT6CJw9MmvaC7gI
+M7jJZPA+AuVwWc7WPC6KUbY8wKj6BJb4aKuMc7jIibojnB5RBLLbpch7X3MR
+pWtQaUq+GPROJavFZHBRO/bVZ3K8GPx3L92Om8ZFbzITK/8VlIDzFvvNNydz
+kdlVM/sJg1KgnZxNnIjhIoWTyrl/Rb8Cq3k5uTtPuIi9n8gbb/sK4ut03neH
+cVG8UEn8mCsCgDAaMXOXiwpvHrl6bR0GpgUMk/L9uShlQluGE4AByeyHb7V8
+uMizSdKVbVgOtKp3UyIucpFkyk8B1p8K4O5zUiXanIt44p9ee+2rBANW+ncC
+jbloOPCFBfN5JZBbLVmprc9Fn1zvpDEuVoF66j2TGU0ustu5S4/O+wYKLLTk
+MQkuMsjcNODh8B1oTb84PUzB/ShDDZ2q+g6ci8djm5Y5aHn5b9tkxA+Q/ant
+MGGSg9Jrnnn/k68Gi1DpxEglB3ETP6r0hVcDpTU2MTc/c9Bh19qh5vlqsGO/
+j3djDgdNEmZtSlpqgMfUwtu2WA7S2W+mFxZSB2ruri1ydeSgprxFASVGI7iQ
+6WoPptlIEgidE1NrAr8r32gtjrLR3q2xeiFOTUBTtioltZ2NnnBfc/x/NYEd
+zmvlEr+w0a7oNmfHt7/AU5ehFx/usdHdmu1HNO1bgFRgi2S/EBtlFxRtfRvX
+AniyR5cVeSzUnHiQsKWuBbxl7/rnM8lCm11Plq7TbQUe9w9D20YWqiE8UOOT
+agOfvJ6JnoxnIe6EuIi/SRtQSXqywz2UhTY2/zfGudsGUi6kb33lz0Jez/Oe
+j022ge2brXsT7Vlozf4uycbvv0FpxAPxelUWgptdGMZLv4Gha0+BkzwLXRRh
+1Vbs/AP+CvUr6kqxUGkH+eGn539A4OG77AweE41i0ec1/vwBkdMp9/YzmYia
+LXvgjVg7kNxaoyc/wkSON7RmU/3bgcqknm5FIxOFn/3asragHVzx7L0U+o2J
+Ph4yzo8eawfmij0Zz74wkaDUuYsPrTuAQ7BQak02E2ktjBuuPOoAK7nqhKFn
+THR64JqiX3kHWJa3KrJJYKJ3eWFdl9U6gTclcdQyhIkmJCfCj5zvBO+vaNHP
+3GMipRtHDmyL7QT7k3Q2ffVjIqeONwzSj06QMxun7nONiZ7vE0kfmu8EN9de
+Lw/2YKLuZ+6W5du7gPX9nTc5rkwkQ6gjPLPvAikDLn9LHZnohMv2jwExXWCP
+fVP28FkmiqkOd7H71gU8lM8fuHyKiRq2T63VmesCl8h7VW1smEgk6lj1atVu
+MD/4Yfz5cSYy5uT6c852gxTj0+MWZkz04IT49l9R3UA6iz/W5SgTYcWePe8q
+u0Hp2fJjQ8ZMtCTb+CR8phuEewt5/TzMRHr31OEl5R7wrvv1sbWGTHRjKJJl
+dKYHyDsPaP4yYKL3h5kZWyJ7AHX8ssPsQSZivLawJlTg44KJqx/jvF2sgDTA
+7QHSO8yDI3B281pVVKbUC1ortfpXcH7Z4u2WYtcL1N+9NRnC4w3saZbxj+gF
+ys18gzr4fHJJWrW2WC+gFnuU8xsxkd1STMBuTi9YVNObP2DCRPEOnB1SW/uA
+ZGvzUxa+n5ZKqz7myT7QGzUYu96ciSSUCqMaHveBVf2X50ssmcj0kfTBnLI+
+wO4bL2o5wUShU9c5Yaw+UCZ3FnM+jfsn+1LzTsl+MC8dsOjtwER8nevfZqj2
+A7GD5ebzzkz0TKQ2aJVhPxDoe5Kw6M5EB/bfOnPvXD/wkDV9G3AV19NTdTfj
+Zj+I6w8644/r7/+8S+xcdD84zSPcnMH9sa758Wjdm35A/L6IsUKZ6BNhH9pb
+1Q/kt2ziXY5mIuvdkwlvevpB8ND3frckJopONDUJlRgAZ6/1B47kMpFGzeKm
+WeUBEFpqk+T6Gdefl7PgbDAAXFjR6zwqmUjYXizH4MYASPNOqCV2MVHQlgbx
+la4BcLl8fdFNCRZStL0z5jE9AGIUV2q24PmGhaph3eKDwFfvbN9pNRZa/PfE
+u0R/EIy9p4g6mrGQz3vzVp+sQdB4Qr56KJaFpIdXcoaxQbC/6YR5XxYLvV+d
+/9CqcxAoh4qFuHxhIbqvhLam2BBYDwZyZIZZyBX8+m/y6hDwK936deM+NuLL
+mCnpejwEOobJc8JWbJRIlO2ueTkEQqCjY+AlNvpZ7SL3+vcQcJITkBZJZqNt
+1osZznrDoLxcoi5JgIOwT5uqrK2GAb9Tk2fnRg46KWM0YnB5GHx49778lS4H
+hfZGKymmDYOAg8qv+69y0LibUk4v/wgoe5RVxfjHQfdqTevr14+AqLZerTgR
+LlqndpVeunMEaHku5f5U5eL5UqqR7DwCBu9YLnR6cNHr25YfbatHwBc3zeMf
+57joUsztsqaoUXAon5oTrDyDBKYz+tDrUWAw4T2qaTmDkmx/8uVVjAIs+P4R
+r1szqEZWyiCCOwp4WmLE7MYZpJqV/cPk5Bgo5p5sFrs7iya/tDRVyI8Dz72L
+huILc+iB3DyrQGccUEoUBzdsn0eygXJS6cfHgduGze6V5+aR6eGLNneDxoFY
+/kujwW/zKLdpuWPv2DgwLy7q8EheQJ4jykOF7/4Cj7pfsXpOi6j/XIdgefVf
+kF3iX3/o1SKyag9Vqx/+Cz4oLcpQxxaRTu2Y38j6CZDfbWo1dnkJEQpeSawJ
+mQCjbVfTywKXUWLApgM37f+BslUhf93c+DDhmaYLQf7/gLFW9AdaJB92+8q9
+sMi4f4AmveWd4Sc+zNGxrzWr9h+o3hzAwUj82HbjVPd27UnAXU51ef6aHyuX
+kvlPV2IKVK14MI6TCNiuiJ9lhqpTIDMkvPutFgHLJPsOHz88BWx2PSz0diBg
+4fO/1S8FTIHAOk8h/a8E7ERf7Pek8SmQ5fAy8+8tIjbxRoLLw+hg274/ggxR
+Mia86YFSnw4TvAiqXxXsLYT93BetfseQCUQJ/+J4r4Sw4JNp2hstmeBu9S3j
+oE4hTCDqs9FpdyZ49FyM/dZAGFtYnnT9k8oE3kav99xcLYJ9Xr9w5cYbJvAj
+152INxHBbuyh+K4uYoI/qi4X7twWwdgem0KtmpjA5xqh1ndYBPvXbZPdKMAC
+FYr+cym5otibOcd8TyoLdP6+ZPekVxRzk/b6LCbLAgZCxsVt4mLY8NFHP4/u
+ZoEQYyVRBQ8xLMM1oWlCnwXWZRGOLCeJYQ5BL9vDzFigoG1G7e8PMay7pGz8
+hysLlA8W9cXJiWNJv2uZLtdZIF0scKe6sTh2kt0+Rwpk4fWZ1qUHXuJYqzJH
+8FASCzxZR3emfhXHYgz5Vg1lsoDIHZu8DQPimMV5MZn7H1jgrnz3lmgCFatL
+VFLG6lhg0l2wztWAij0q3KVp38EC0fwbH2U4UDHjJn3d5REWiOHpDczfomLk
+STP9VDYLJLk0YmfiqFgV5YzJvhUW8D04uu9LDhW7T7t4vEuEDU5hRYXkCioG
+wY1T/uvYYNvlc7OabVRs2S7ovMwWNlAeXHbWHKVipTeiLn7WZAPrXe8keVwq
+5h+T6m17gA1MjhV5VPJJYDrv3vjNHGGDVC0bOEaSwGaqiwLjbNkgPMqma1RI
+AiscqQrb5cQG2YPN68pFJbCr/M3RLV5s4Nsh9NtHXALT2Nj339XbeDyJ/zgk
+qgRG15lMX/WIDYg+zZbX8PFc6/nX+fFskJak1oTh/1/2Ir83f8EG/saEvWw8
+vkq4VAk9D5/f9t0RUbIENp6lUBFRygbHf16LluaXwDIrd9Rsr2YDlZ/vOxVn
+qJhTn15zbRsbKAy+okuNUzFFnlHnpUE2MHVXHxRpp2L9a2wGhRhskPJs/sKG
+71QsTctxIpvHBq8e2G+1fk/FzphdYRsJckBinlXRzxQqtv5SwMKoNAfo1duf
+DH9IxeLT44W3qHFAjt8+NwtLKmb99YVklR4HSLDG7vntoWKSHfnrLxhxwK2d
+WZ8OylCxJxK1KukOHCD//sc7Spc4Vqy98aOZJwe4bmg/a18kjg2fuwIWb3GA
+VOU6mVsx4tjeXClr2wQOcGec2n3eUBwbNzlzW6yBA/Kaduz1ei6GGQRNNfrt
+5QKOrVvC5D5RbG6a6mO5ZhpIXO2K1HUXwmgbHVdWaNPgnJO/TD0QwswOFYbl
+ak4Dv3eK/3KkhbBXMSfTBI9NgyLzQP7TSBCzVE//URY0DUbPKOe/WieI5bpp
+rVdlTQN5+FyM0UXGHLusEaFuBvzL3rV0IZOICScPeHh3zICFBrptSDARe2/n
+Kds3OgN6ZromFlyIGKEzxK+EfxaQac8aG7cRsZftJTu9tWcBm014vyGfgI22
+KWT3ZsyCAVnCSlSdAPYkLveEaf4sOLWo43+2QADbY6NHKvk6C1Qbbop6xgtg
+Ia1WjnHts2BN4LYbJ88LYNtagmVNxeeAi8LD7P0L/NilpsmoYr85IEQvm8nW
+5scko/yAUsgcWBv7dsFegR8rMSfTY2PnwBvT+VpzIX5MpFH+qFfeHNgym2/w
+p4sPy6m3JCmNzIG7D3oZ14L4MHrNZ79Yi3nQuNBa/eXzCvL+9sDxitICWFLw
+DTNxXEJyw4fJMzsXwN5pVxrp4BKqFRB6EwAXgDpMIpAVl9AWGMEKO7UApI79
+6WwdXEQdJXH3Xj5eAJZXn+6PdV1E+vmZaR2MBaA20xovcpuH6A1uBx0WF8Cd
+zn6BBgceSp5SGR0V5AHNAKuS2kM8NK2St4O7iQdqDlj/uiHGQ69fFZWKW/PA
+ypfYywHpC2hV8s9Og888sHCt3fxXyzwqK350p6aKB640kDWFvswj93ZTxeO/
+eKA0x1XnesY8+rb618VzEzxQP8QcHfCeR35RHXO+sougNUPDjCo1jwYeTqx5
+d28R0OuOk6zOzaECL1GrdSZLoOfJrtCq1bOoLknKL/fEEqj708Jb4JtFo1Xr
+nx10WgIDN66q2E/OoPUyyv8u310CwKBdIa9yBj0oNwwq/7gE2D4ZkY7XZ9AJ
+ybsfLikuAzAUrFbVM4289gV3rKgvg93916aza6fRI5eIldj9y+B++s3Uj8XT
+CJUkH0Unl8F5ymVgGD+Ntl34PCQVuQyO7lP7sev4NFr4wJL6ylsGHwMefaM2
+cJF075yupdAKWMdpXTbF+3c1QT6HsTUr4Cm9dl/uOy66cEY8Z5XWCrhlxcxp
+i+SiOqLqIRe3FdBg1dhSZsVFaTZO16ltK+CXVonJ5wG8v7zlPqFhywczbt/e
+mizNQRqY0FzIWT44F2L6OFgIr4+I2aS+C3xwzLtyLGyZjfojhhUivPigkNHE
+4J9xNpJ7ftb2bxgfFG/55BNexkZJVeZV6aV80C7r3u/dnmykIkT/NVfBByX1
+m7c+cWKj4mPhfebVfLC/X4C0aMdG7b9/Liy18UHiyz3da43ZaM1ffU07Bh8M
+Fn4kb0pjoxixXWmSivzwVswqENaD15uWzW8vbuOH508nm6u0sVBBvFcxpsYP
++ceHWnvrWKhJPrfVcy8/nJiWKA8sZSFxra0itdb8sGV32be3KSz06MQ636AQ
+fmjcKXbnhgML3X+2eJw7yQ+FTAKzFKeZyELjs7cqhx/OMTSOyDDwfqH8WrTj
+PD8UqdhhJv+XiUoGJ5qaSALw4v4+uVM9TMTe0mGeKycA0cpmz8DveL2f8/GY
+i4UANBl79SI6Ga+v93t7pJ4QgELEdP7r8Uy0XL89ovWMADxvWubihNfnSYwX
+dQcvCsCqn5unPfH+r1kr5qj8fQG4PmuWte06E+kXe5q0fxCAKdc6TslbMJH4
+EZWL1BIBeDbkHr0d70+6O0dCD2MC0GBR1+YZ3s/4Lp75WVgnAIPcVS0sARPl
+g6NG0SM4G9SSzNWZSOG7kuGRtQQILu3bFLuKiegnhpwCNxLgV8HLUZLiTFQ6
+lvbgM40AV5gXS1OEmeik0JqqrRoEuEP0olArgYmiTIkGBBMCpF3ic/1vioH4
+WvphqT8BavkYLuZ/ZaAHf8vS/QMJ0CZLJyW1iIGE+FIFdEMJsC4yP/JFAQNJ
+7jhV9TGOAM2nLnYuvGKgLSG/jPLy8fV8LZ9qjmSgN6l52R5FBNipWL0m+BED
+qRVGCG0vI8CT74wvH3/IQDoDJrXZtQSYkVMtpnGLgY7srTDLGCXATNUX5kJu
+DNRw/HmewxQBjseHr/hdYCArtzsS8lwCdOxRquK3Z6AzcXrNyfxE+GBvD+HE
+CQbyZLy3iZMlwvlVJwvFDjMQmxT9yYpGhEdPWdvvPMhAN2WvrJVUIcKHNV6r
+rxxgoHsmqh1PtInw+Iq+4jZtBnr64sWZUEsiJGhvP5SqzEDrSgK/Hj5FhNbz
+SXVXtjJQSpO9HMmBCC9LtV6wpTFQ5tKG/kAPItTZseeQ80YGUpFegPA6EX5+
+mm7xeD0D5am0py/7E+Fb09Psb2sZ6LNt7IVboURItzS74yvJQPs8r1bpRhKh
+UbvRDiaVgcofWGyZiyPCyBNU3i0xBqopEB27/oIIzwuH3GkUZKBukYeXPMuI
+8D90Z8WRj4EcFC/Ubv+Gx2NR7vgu09GIjv72f7VE2FQ2tSd9kY7ozktTrh1E
+SFLsHFedp6NrAV1mW/uJ0JHv15uIWTqaiynOGx4lQulTRF2BGTrix3y8z3OJ
+cMOjxmM0Dh0F/7ZqlucRYbJlZloji46EpzR39vKToFH9HosnTDqKJEjEpgiS
+YKID2dieQUfS6+lcOyoJwpcV7gfpdJSoUWcjs4YEt0nop2tP0dFGozef/siS
+oEbOnYYDk3S09bqLr7UKCdaHMrLvT9DRDr0+q2caJLg/+unb2r90tIvvpPrE
+HhIcPKfOo+G893uT8O79JOirujfo8TgdHQw3Gb1rQIKnfx9VF8DZxLKivMaE
+BF/lSf4LGaMji3V7U1dbkKDgobMZsjjb9n7wdThBgkeUV+tjo3R07uV267dn
+SJBRAz5cxdn50iv1GUcS/Ky9PLwT58saciL6F0nQnRFeQcD52kz86OMrJLih
+wEBncISO/EupFb99SFDxSJxWI86B90NTNwWQ4ElnaloNzqHG/H6X75PgNzs7
+11acI8X9rYtCSVCaT/fWJM7xrWx1gUgSVPcL/S6Jx09Nchc5FkeCDkJwjxHO
+Lx2GRxOSSZB/xKsoDOe3W89WDKaTYArhsHYnzu8n21J3ZJMgYBNe6OD7K35v
+5uf7jgQLMgXHX+KM+f6wriwk4frVcuTw8/lxAGqIfyFBb+3uD5k4NxCLRU6V
+k+Ab/+HV+/DzbavRHHvxgwS9Fl5R+nDujnpTQa8nwRBF3o1IXJ+hE7Q03VYS
+XC7/ffzYPzqakE3xe9BJgq39BsHrcD1Zg9I2jf0k6BbvLMDCeS47QmP9GAmK
+998o/I3rT9p9dyyPQ4KU3Jpr1bhfRHmzFQvzJCisN3/2N+4nyXKvNEM+MrST
+Y2gzcb8pHHO06RIlw2UrwRtHuHSkJNWlsVWKDKsTm4oeTdORWoeVqLcMGRY3
+vH75B/fvPmfDSvJWMrRJ+7U3Afe7gWpZ2vHtZJhi4FclxKOjI6w9/ilaZDiV
+OVQYiufHydvbNLUAGfbwXj56u0JH1+NEnp09SYYjt6UPBJEZ6NbpB/7Z58gw
+68BVHVs8/+5vWrLhOJHh8Y3C67SFGSgqly4a5k2G4Xt2G60XZ6Ccb7/8Cx+R
+YWeZVM7lNQw0PJ1wQuQrGRqnM8i78PskQ3/ntZ5KMnya+UVjRpWB7CMaIvNq
+yLBN/6bWNzUG6txMqrZqJ8N0cfbVsF0M9Mvq6t4UDhmGxpEGsyEDlRWYKuxQ
+ocDe5fTknacZKGBpbN+KBgWKT00UlpxjIF2ToFO/tCnQ5pBF8DFHBirsL47x
+MaRAX7Ma0fiL+H1MVSKVOVCg+0NCfb4vAyV48E+YJVBgyLeDYcuJDGRdnELe
+lEaBqw5tMNZNxe93kg6N85ICZ9hFn+6kM9CTFM8zCe8p0DJ0i5PyG/x9qO1q
+6KunwIvpX48sfmEgL+VPH7yIgvCbd+XAowH8Ph+5dDvGWxD2Fb+msmWY6PBt
+Ws4hX0F4yMx69TNZJjq4urtz5o4gPHf+moOFPBPpGR7TOR0uCP1FK3LRZiZS
+eaXOoWUJwiLxoz5N+Hsn4sx1+9gtCLkCF2w/HmaiuuHb1u1GQnAhX3va8SYT
+mQ1HqcrJCUOh++vjZYbwcdXh1jObheFg4gZdj1EmOnpN+06yijBsM6xzqsTf
+f2OB3iZcSPj4g4nRTSa+HgXVG1IWwjAjnfxrcYmJdp/5hgneF4bpwbt+3pJh
+IdnWeRvOiDA8u2FPpoYlC01UOt77mSsCfwQry5VVs5Daqt8bDezFYPGTbXu1
+h9hIGEyf7+aIQ2nn0/ZlixxkNGU3q2gjAesOD35M0J1G7RVO/HbbV8GsCr8O
+wxsz6GNo1TmF6VXQqPb479dps8iF5NPf0CAJpRuaquZ65tCFq7c+iiZJwZgN
+bow9xAWk7qraYHpeGl5VVLheI89DjZLbRXx0V8NvLakHxI8toi/v7idvJ6yB
+N2vUXr+3X0K3+FUs6nrWwCxjHd25wGUk3O1v7Fm4Fl53xDzsElbQSOam2GcB
+66Dtnsa+bBM+LHabDLHYRgb6XTf7mtXAh0Ulufw4r7AeUrJWt/ob8WN2sWcb
+RMfWw70py2GjJfzY3KFX88/KNsB6paq23l0C2NDIQd+KEFlIq8vq/PhCAMvY
+r7mh/vxGeDCsL7lqHQHLfeizynWHHOTTM/tpFETAQmwuHCVMy8E/eq5dmn8J
+2O7u9Nch9fIwp/Sbv6gNEUtUTs6tP6oA90wsfTEpImJ3sYjEo8UK8F76uyQd
+eRJ2bIPNq5rNm2D8U+qDpvskTN/zx+lVYZsgvet0zvMeEvZM1nFz3fQm+NdO
+2fvvfjK2uTIr3uy0IhQKH//eFkfGonZUqDSXKULbVYfjDk6QMRcO8Ve1Cg1+
+VO7Q4BpQMMcCtkJYJA0e8jw8SY+jYJfvWy0eiabBtHQPi1MJFMzHqvCP6FMa
+5Ih3xlYmUrDQaZ8nUfE0qGyQWJaQTMHe6c7zElJpUOWWfvyBdAo2X77yO/Mt
+Df4Dy3bBORQsqlk0ouoHDQZPxdsvV1CwpBcebsHVNDh9ru63UxUFe3G9wcC4
+lgYj5llqtd8o2Kc1UQu1DTRY8EHxfsJPCtZtJ+XW0kaDFJ3cQrUGCqY0JGMw
+OESDoRYLZrYdFEyj0F/u5QgN6vVk/vnSScH0HnbNO4/RIH1bgr5CNwUzVUrN
+/ztBgylFtsXjvRTsqruCHItFg9YP/+r4DlOwgH2B8+85NDgxcqiua4SCPRQb
+bL0+TYO6dmL6YIyCJea9eDw3R4PqqxYaSBMULOMe0bVkgQYdkraNu/2jYG+P
+Ox8MWKRBx6r2wdpJClao+H3jgWUa9MmjIjU6BSvjbJ1fWcHP0785IJpBwf4H
+K+euHg==
+ "]]},
+ Annotation[#, "Charting`Private`Tag$6593#2"]& ],
+ TagBox[
+ {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwVl3k8lN8XxzEz1ki0kWxTZNcikZwrIUsqSyhJkqVF9hCJFir7l0hRlkpF
+CBXhGUvJPjNmsmbfsw6yjOU3v+ef5/V+nXPvPfdznnPveaQcbpld5WBjYxtg
+Z2P7/zvlrgPnfsen2tMbrCeY7Vh1i6SJlaQr5OKr62S0SdobP8vvS0r6Q4/N
+l/a+W/3aAnFf8njbQoFRtfndI7VF7RRSpARB8jHsEpLsuEjlBMVpx6gN52ig
+Pe0PUnkiDH8EUtdXW+PgmpPTqT9J4rDnLc/hFWYCND2qUcm6KwM3jvncXJR4
+DoctdBueRatAAa03c173JYyvgepVGzVYuW7SNev8CqpCvT2q+LXgNXvX40W9
+NEgcZ75V3tCBE42xe/+1pkO5oRbHsXR9GE0yqJh3zQSKo1F7wqoxRDiu2c4x
+34CA64M7ZvxnQVW1YGk28h3cHVPgv/DAAlqYLvEzEu+BLifH7+9qDb414qrT
++R8gyniVmVNpC6L/0eondbNh5n7K7bk6eyi3e+I8Qc+B7nnKgyDvK+Agj3B/
+nXNhcGZ4gWbvBBzMgOb5wDzw79q2uTHOFWi9lrvn9fJhYzi2RIH/Jvhl8xUz
+Wj9D9uZZx3+enmAUN8zJeF0Ax989cv+V6Q1ifhUWs66FcMEwKUOA7TZMXXyZ
+PnOgCIT/7nPEP/IHku7tmWlmEYTK8k51qgdCnJyZ9nT1F7hskTBStj0YHDcr
+RUxFfoW5Frs7g1tCgKuzX3ZSohiCj1ion3F6AG2kMp+JURZ3PDmkqfYIPrxN
+qvqbXwJli+nDsDscTD1NL43rlgJ35JrqVc0IkLSWyxnbVAYed5t8rN2jgHEM
+zxyll4G/m+ehMPsYeMZT8mzEGQPx6j2Ggh1xUHjbyNNrJwlKfzvuj1SIh5fj
+6iJzgSQojD7ax/00AdzIQs4MvQowMzi44OGdBEIvf3HMtlbCSY1wRde5VGAK
+fHnvrlUF2Kl9Ih8uvIbBkIwzM6+rwERGMLjvRBp8cb6bOu1aDQ/IZ/IFlTLg
+/MFDmlPMH9BTwM2km78D3bdSfTftf8JvIu2G6a0sUBTZHD5Z/RPiU46eqIl9
+D+vrY/SJyBqYmX/B6fH3I6TVvfL4K1ELOpZqUYm382A+qUi+J6IWnnJY13sp
+54O+c/0AdbkWiHGW7Quj+TCBW7QsaamDvVErqnEuBXDkmKnm47AGMHPZH+wR
+/QXIuascstPNQFtXXvl3uQyEgMeOX5kML2TXfsjpl8NRmXjNMEcyDKY57xFW
+xCBq/v1cAIUMux4/D1O7S4JDsfSrDh8pMBGkYWNjWQnBdYpG+y+1wNj7b30L
+fD8hK/+rzMeEFvhYx3zYHfITqEnHcXsbWkB6d464weJP2ONsXbpTgwbCryR9
+tXproA73QJlNmA5kRRvhw1m1MD8uwBdgSAfZvh6+lB11sJv6fGQumA5vEgx1
+Gx/Wgfvr3NcjE3QgxhY8VLGrh+3HOoWaf/6G1BOq+KjVBkB7nKZPrv0GKz/X
+MfKlRnDlm62vPNgKB65YXFaqaITSds6HX163gs/d84PdQU0wTIq9rNraCgTO
+m1687U2wOUtM+wN/GyyF4NJX9zeDg++BxZSANlA5G/RpsKsZIi6WtezIb4NH
+r/JibHaQoejEybzYkTbAk4vyVrXJwC1s5/rQoh0qAf/rzBMyHFgZ1dt40g76
+addVpnPIcKHPS9q/oh0M2//Y7SGT4VPu484byh1w92hdmoogBcaFxiOMLneA
+f7L9fS5FCsj6Gmnvi+8AkxmDr4/0KeDY/mGaUNMBsQHUoLeXKPBaiy9tYLkD
+nJg2h+1vU6Dr1XWzCsVOmD9teyknkgIiuAbcq0udQKNGPQtLp8A5J8WiwLhO
+cO0aTRotokBcbYTT+R+dEFnw5nhdDQWaFCd3HFnqhOegHS3TRgG+mFO12xS6
+wKbx/PPFYQqcnMsJmLvYBZTDZcnq8xR4cE5AkRLTBfOlxIneDQqQit3+fKrq
+gjP9ewhTPFRYE2uOivjXBYL/4QNthKigeU8FXZP7A2HDoQRxESr4DkTPGtj+
+gYrqTO/D4lT4rD+Tvjf6D+CLfUtSpKgw/f6MBa6SZT9SN2RKpIIifz6hb/4P
+zGZOSuux2MV9y9dy2W5gGF76fofln9ni4fLyfDeEvb6zbWo3FfoOU0UCIrsh
+SVC2MHEnFcSTD9RbkbqB4ON12HsLFc6vxQWqzXXDmRQdq2BuKjyzn1MSlumB
+Ze6eicI1CrRUmffMWPfAz22vRwVnKcCaJqbpaQ9wtPuei+6ngMmTrcezy3vA
+r/2RrSKVAuGT3nOPZ3vAqLtIcxCjgEPWNepBoV64QNA0KmDVDVuH6Md0hV7g
+Pbt3LSGBAq/46u9v0esFzT9Tf8KDKKB97I7tPbteeDKyHBV+hZVPNwW16du9
+MPlbtC7WgAIBrzv57WJ7gXZd1D5NjgI7qU+HGz70wn4d9SOFPBT4gtPCjlb3
+QnX1m9M1I2SwUJtI/PCnF5TrBYpbq8gQm2RiGC7YB41Psw4N+ZBBtW5ValGu
+DySdW6hdxmRoYmavXNXtgzf/9bf/lCAD7yX+bF3fPojd+3wXObQZ7u9tEtjo
+7IM97+5iR1obQdrq7sjNhT4YTbkg+etyI5DClUldAv1Q3n0taMdoA6z+jfIo
+0ekHk107dg6P1IPP59M0n3f9sMG0UWkrqIWtgxvZg6R+iFdNXWPuqoXP2/Ie
+mnf0g6bHKFQG/4IpP0H1/fwDUFxstEVOswacgfJ8wnMAiprEo7kDqoEt/V9J
+59MB+PZ097fUyipIwot11WUOgPGn41f/clbBr1on8fe/B8AB021LCa2AfRar
+6Vc1B2HxZIoKiigF0hepagvzQRjfk4HTbysBaxGDId0bgzDgf5ces6sYwrtj
+ZaVTB+HEsW12/WFFMOoim93NPgQ3PS+b9E1+hHv1Jo2NokOwY6ffw4PL72Cn
+sudU6cEhyMK9kapmZLDqpVT1xdUh0O8kKC/YJ8L7ILMiq9oheKHmKqzz8RF2
+LS6onBwzDFqvzpKD+oswjoX0Huz9MKiCj+/+m9+wZKtfbLmVwyDKFfx1B/t3
+rE5MWDdyfhishrZmGUqTMIV3WTWG1iNgOucp6pfyA5v43kKulBgFv/ifnWUl
+ZOyB+PJs/pFRaIuyN5kPpWBiIeLCaWdHwX6rk3vcKSpmou9qGXx/FFacXPr5
+x1uwHPJ6+9GRUWCPKJTXQq2Y25DcQOGnMbjdJrbj1pVurNeunbuidgzOx5KW
+E517MPO2cOXGwTGokh5IsFfvxY7Uj/gPiY4DKeIB9xbdPgyX/0Zwe9g4yAST
+M7EbA1hSoJT27Ut/4YIoF/cw7yjG+4985X7AX7jzUkWV8mYUC7p173F0wl9Y
+IAaL2hwfwxwcemjv6v9CuFOniv69cUzxZMr1NvUJONTssFq1eRKrEBZ5riE4
+CYddKZv1YBY7FPmrXE9hEpb9BMaXns9ibzn9Bs/qT8JF6sbzBwuzWMTyb5Vr
+gZNQxNGiS8xlYOd64n8mj04CXkH7rrfiPDb+QXCeSZoCtv6M48Gmixiv1APZ
+niMzMOweY5GzYx37pRWrcldvBipu1dsm3VvHHlmnqu82m4H81YmKd2PrGEfM
+N4ML12eA9kFw2/L3DWxlfcK5NWUGDFeJzTW5bKRvoiu3fD/MgPl3/enhATaS
+72Euv21fWeN7e5lNO9hJjJtS4ebkGTDdd/dK7V120t8uy6xmjllIb52PmTTg
+IH1Ycshz2zwLn54OMbr9OEguW92/8YvNgnB55VmZ9xykQeMnv4zVZsF6LS3T
+nQtHSndOJI/rzALjwt1+UzUcyf5+Zttj01kIeeJRo+GAI3WVlI/WOM9CZuIB
+v+FvOFLy7/oZJ+9Z8K5k1gf340jWjLYlQsgsfE/P4aDz4kk0uTnuE8mzYNfo
+sn7JCk+K02PbMvB2FvoPkA1u3MGTzlzmFwktmAUn2rnyvhQ8qSFJVo7UMAuV
+kvcdv/3Bk54UHtp/qX0WbL8kSs+t4EknyToa60Ms/7wif6PtBBLnhKlOCmMW
+fHcZ2eSoEEjVXLaGWhuzcGrRns5nQCCFEl3PdvIxQMrnwCkrWwIJga9NwE4G
+8Ei1R4feIpDWz9+/LLKXAbPP/NdD7hFIpb4xrt/2M0BmbN9H42gCKSAuxcNK
+mwFep8e8Wl8QSEc+ffD/Z8QAMdG9IhJvCaR/tV9DEqwYMELfe1r8E4FUOFT9
++JAjA0QDJOuoBQSSJzs1tsWdAZXOUSe0vhJIqrt7nnsGMeA6PTvY9huBNHVk
+Im3LEwYMpUpoq7PsORbL7/OeMUBhvPXI/8ffcOf8fDqDAR16IQJqrPnlI4RL
+pnIZQHBsVXJlrT/6TrIyspQBPnoO3/1fEkhvq5TqFGsZsDVIycsrhkBy7NGk
+1tMZsPhMMswxlECSZhp0XOtnAFHyQ4CtJ4HUu92yn2eaAaEW3qvX7Qmk1AMO
+41lMBgRpdJRnmhBItqa3GAbcc+Dh2HRaRJ1AEr0WuDK8dQ52hnbMdEkQSM/S
+nvHuVZ6DUOWvbGkTeJJFWYZQteYcjLxxEKkj40lC7XmiVwzmwGhU6vR/BXhS
+lGC9fJr9HDCdjhtY++BJxeq7i0zd5kCHbPYv9yyeNGh3C1bvzMHf2//l1yvi
+SUdzhC2sEufgVCatMb8HRxo1tA3ib5qDqIdZLSRNHEn3/mSz/9F5aNw0oHKs
+lZ20tLDZx2z7ArScyj6zlW8dI+522NggLsCFA+NXjhauYaYnCh/n7F+Ajz81
+uZgX17A3cdap3KcWgIdn6aBVwSpmppJWU35/AR4ST8ZOXGViOS4HRBVmF2Bk
+TM0keGIJc+i0wHAN/+DBdzsF15B5jPdF302P9n+QwdXSm6szj30+7ybWM/wP
+XK1yOBM55jFcR5h/CfsifM89SEaP5rDMtpKDHuqLEHF6Lb4tnoEN0yWzutMX
+wTODqVzVOINFJeScM8lbBAcH5722iTPYYUtNQknZInBxDhkGXZ7BwmjmDglt
+i4C1RmhmTk1j+1oeiZkILMG4xQZOw2wKu0aeiCn2X4I7T4e1hg3+YkIx/iAb
+tgQk4nOTyvFxrOQ051R8/BLwcJJjQ6LGMb5mCWP33CVYyf3k/qptDMtuNCPI
+Di2BzZCjlNDtUWyq7pt//JllYK+NXyjuGMI8fjxwuCW7AlbbOr3pSn2Y+KA+
+57+DK9BSVpJlMtmL1XPwfAhEK1BhLuFqmtOL7UWRs49tViDw5vMdE8q9WHtJ
+wr3MpyvA7U4sobt3Yzp5b1Pbp1fgRrCcRMHPDmyqyeW4/eoK5AnaNJdadmAv
+JuWHh7mZcDuRmFMw1I4tyOcqzUsxgZEmw2PP3Y69f/O1VMCCCWXP9vn6Wrdi
+W1786tD9xoQ8X3VcnRQNKy9+creumgmPemfC3pe3YNfbTKTPUpjw0cb7jaVt
+C/ZjG8XVbpwJvWrPL21KpmL+Me1LfmKrwHcgabVCnIL1PRzf/uneKvQUanxO
+S2zA8t03me80XAOv6tO1SuaVWEOysH/OuTWo4zNy6suuwIarRV8dd1yDKDx0
+cnBXYKIicn9vBK9BalOHGOEhhj2o0LtfUbQGu1eCeLRiSrBzQsEF16TXgdFU
+vWgpk4+5az1q31BZhwOp8U7p+DzsiVPkRvyxdVBzSmtsr8vBsJIXxpj1OjRK
+KW9qsn2P7bvybUA4eh0+Y954rOQ1tlIwK1zGXAcO4YMbBWF62NbuJQ0zng0Q
+8tS//pp4DZS52exHtm8AKnunHZcfCFdsBbK3HNgACVcp/tjqSGjAK5xwctkA
+7jRy0/pICqRaOnpvpm/At1ubPpAP5UDanevjqlZsaOIJJVzzxndQJfEshV1k
+Q95DvUcf7Gb1R/gsQs8VNpSi7+lt2lgKvZGDkpHubOi/eXyl275yEH990Wrs
+MRtaF0mti3MiQXL16eq0UjaUdvt0tcFYJcjzTFGWKtlQ//tKnYeHq6D4VETP
+6Vo2dO3jsTPb71dB2+9fK2t0NuQR9+qZumg1bB/T2X9+mg2dtsMHJqAfEMd/
+KFVImh1liP8KznarAWkz6kfXfewopNWfmZFfA/nP3ItJyiz2VKNszNUAWSKH
+5naUHSnjGm+N+v4CgQMyfPUW7KgJd8UoyacWnpzb6Xc/jB1p9w6FHbeqh9BX
+q2fnJ9iR+jUjrb78Jjij+s1DYY4dVR5olFHsbwLxCq9Yh2V2JJc+zLm6pRlK
++sfJZAIHMqs5H6Lk3gyMve2nc8Q5kOn5Z/d9hMngkF10yukMBxIrjcs5hLH6
+62MeN1POcSApw7dqH1vIsN6oGEmz5UBFsvvTxlj9efJ0RsNxVw6kfDjRGdtM
+AeqBOGOJUA70u9TYu9WWAjrFboZtBRyo40k1bW2CAgJG8q6bSzgQ5ei+0B3r
+rP+DjqFwfRIHOuRyfGRNgAp+q7a/Chs4kPrHQOZ+VSrkgbFB7BAH0jZe2wPu
+VJD8KatntAOH9PKOfJUfocLUuQHHkN04ZHs4YEV1gQqlI6kPvhFx6GRCqBE3
+rgWsebZXy6jiUPi+R9sVxFsgxgSvizPEIcJDObeTZi3A1tKLSgNwqNvtla7I
+5xZ4MFaeFhCCQ7G8xThU3gI8bCkcGuE4VKxRK3aorgWElGyqixJwKPnuubCH
+fS2wN4xikJuHQ6Xdb+3p/DT4kJKbdfMrDkULJwnc2kkD5cJIHsVyHHq5mnSl
+TZoGR/oM67PqcYi58UxylzoNjI5WmqYP49AM++BLl4s0aDr7Otd+Eoe8FLYc
+C3OigbnLXUGJeRx6mNpRcPsWDWwTNKkv2PFIrf/WoeZ7NHCb/myZIIZHZmoB
+LZfSaMAgxH4xJ+JR4duQoK3vaXBb7NYOIXmWf/XJLSl5NLhnqNAepY5HKeff
+LspjNPgvI8M23AyPNP9SClAHDXaWhJTp2+DRc6f59Be9NHhJviROsMcj5wOh
+3g3DNHi7tqs35CYe0dfLCvIYNJDfuoKQNx617B9JdlyiQa58W9p6AB6NY15W
+02s0+GYVf+VOOB7ZF0TCE246aLl5VmtE49G3rOS+ZH46VDw4s3cpAY9ks/n0
+7wvRoS5/04h3Bh4FnhCDrl106OJ7eM2tHI92dCgeK1Kkg730lXrFH3jk6COK
+nqjSYeiIjuLfejxK7TRtOnKIDlNX1yad2/FIaZvvNeJROngFdprK9OLRI+vw
+4UvadFiKK84dHMaj7e+k6nx16MBO8vG4PI9HHHpPXx8yoMOj3+ZUCSYe8Rb+
+We80pAPv5P6D3ewElF1e+sLOhA7ROMH4l9wEtCNpd3apKR22ik7Nn99MQN8F
+3zj+O0OHJNUGS5HtBDR3JGuZz5wOuw0+fGkVI6AhNqVXaxZ0kPF28rOQJ6CP
+BsbjPtZ0UNLsMX+lSkCth3FDAzZ0OMRmrTJ+mIAevKjXO3iBDkd/knnVjhGQ
+GUehmqMtHY5HGA4H67Ls2XF/fC/SwdCssqLOkIAYy3in63Z0OLPzaMq2MwSk
+SLm1qHOJDlbdBX725wiogJOtZIXFdpmKFh9tCcil6gM9wZ4OV6+9UfnnQEDk
+MSVP4ct0uKEqzqfjSkC3AgS/erHY69+z4ae3CEhgMb3+C4sDSjdX/vZh7a96
+43cXi0NCw1OkAgnocRQf2zCLw0+y+98IJSBShs9NKoujBQIsvoYT0C6bb3rp
+LH5GY6hwRBPQuJNIriWLU5Kv851KIKBH+h+aJ1jxZNoPDie+ICAUfbLRmcUf
+ZS5W9qcREJdZauNPVvyfJ+gpSlkEVOwt/Y+HxcWfTf39PhFQN5/Ijf2s/ZP8
+aiyqCgmIu/A/i2MsfWq0karAdwKyHfegKbH0a8IX89lUENDslcuCOJa+9Lr9
+Ixk1BHTZsVuxjKV/V8yHyqlGAtLcesjUlpWfgXPEVA0aAWnRA5N6z9FhXOyl
+/4MOAnqemK5iZEmH2f6tls29BOSmeEn9OSvfS1mRqqIjBCT9XKul8SwdCGrB
+I7lzBHRwI95i9BQdNjEXK1eWCUhhSP1ekzEdhCrcU/XYOFG8mElDMut7kzzl
+YNm5iRMdzRc5M3yCDrLCnaoywpzovezjhqvH6aDcbr7JQ4QTNX3/zagHVj1d
+1avilOFE/4mFVZto0kFXoTz1rCIn4qKqFzir08Fo9nDAywOcyIvvCtWVVR/W
+Qfv2HwBOFHK5V2aPMh28E/heXbTmRD4X2UneknS4c+FBQJYdJ5rv1KtvEKND
+qNSa5ZwjJ3ouvn0TvwgdYnKmNj324ETECSxHfwsdsn9QAgqfcKLYTo7BNDY6
+DC4knuMr40Tl242VhTtpkK5z0OtPFSfatamgI4pOg0uRTdG5dZwomn60daaZ
+Bh17CLXmbZxo46j+OZdqGlDMPY++nONEasoSfnLZNCjPN5FUkudCoReG8Vtv
+0yBwbURrQ5UL7Q+2oBLcaaBheN+Gos6FUsmPVXpdaFDYWxzno8eFTpcmSJ8+
+zzqPN8sSyu250BVTYrqIFg0Sb7KPmyZyIdmmTLm7zBawKH7JKZXKhSQocx+5
+51jnO+EIcS6TC533KmkKGm+BqJdutomfudDrkz1e+9pZ90N9Z1NPIxcK2J77
+NrSoBdzlvhS447lRnk+G39VrLWA0dC0ozoMb/fK4v/b5BxX0g4jZJ/y4kZxk
++/B6CRWOb+vq+HeXGzW12JZo5FFBU+/UkQsR3OiMrPTDwGQqyL9RmSO+40bX
+xNedNNyowHd13qWoixvdPpXa/UaICg2DQRZtBjzIKsHYefo0BUwHYxTExXnR
+ifR7NXLHm6FBYZBmu4cX+fy9nRsh2wzGXup3X8jzovb7jLOdm5rhJEc3eac6
+Lzq0nUtbq7UJjksq+Aqf4UUObyRmNl9vAjXbHyTuUF50Myjv8M7oRhCjLVvO
+DfGijNYMfY/aehivcrj3K4cPmQRyhxH4f4Hylt+7dS/xozh/SW3/0HLghYXL
+XXMCKEh2eIGf9h4MJs8vSlsKonHxiSKNqBdYW6Uj+3nFLcjhB+Ot+6cSrCi8
+2k5yYQvKeKehaZ38E3Mi+PQ2NQkhgZ6drc5GZOyK552iTcnCCLfNN8R+gIap
+OCs0mVzeisJUz8V/OtuONQsp8vlobEO0BZPyMs5u7Pun0BeKuO3IyOVk4bt9
+fdgddvkzDX+2o/eOF2gHbg5gvF0BJ90KdyDjpOvHFhOHsKG3UvGvAneismzZ
+vqHoESx+nwi+2FIEGbzZY9WXMYbFJDvVXJYURbdv6XxWCvuLnY+/2LRpRBSZ
+nxh63GUxiS2deLP8qnwX+s+T+a1MaxobGDruVxkmhpbZ9YY3Bc5g6cf272q8
+vBupBRa6yDvNYjkPfbY4K4mj3D+xFapHGViY5RVj3II4suupGsFzzWFqXWnv
+wxolENfAPZmS7jksSe5FTqOxJNqpPZt1KGMeCyZFJhkXS6L8bDMnIa8F7NQu
+yzd1e6TQn5itGsc1/2E6bjUXtjyWQhFSOY/7p/9hr8Qc9jQsSKGHEieFvfMW
+sT1V756ZXpBG1SE/y03sl7AYpUp5ark0uhgRckGGZxlzmsNTauWJSLTsXdzj
+0mXMIZ8h+TiaiDT1Q3mC7VewG6Hmq0axRDSRTaaYX1nBfMwLWzf9R0T/hb0/
+v89pBQtf8ImKeUZEa9N7P5Gvr2CfNJaZiSlExGHvd1H89gq2XLHx++1HIno0
+NjucE7mCxVA3RVbXENH3E8SZlJIVLDnjpsujWiJ6JhvVfa1sBcvwbtI9WU9E
+dbastoW0gn3ZHrNS30REWyiaauQfK1jXeWGXFjoRYe2nk9fJK5jsgIhu/wAR
+lfOON50eWcFUCwPEM4eISHaPbu/O8RVM82Hn8tURIor4Tizsm1jBTGRT8sbG
+iWi0LTPDk7GCeV6XFJ+dJSJr71/psWsrWKBWyPLnOSK6rxZca83GxB7y99O8
+F4hIWlywQALHxJJyM54uLRGRQMRYUzY3E0u/h3cuWSEir1R9di8+Jvbx7NXj
+gatEFMB4+++IABMrlP65W3udiJJ+bc1dF2Ri5XMyyxsbLD3tkuWrhZnY/wBu
+CfZ7
+ "]]},
+ Annotation[#, "Charting`Private`Tag$6593#3"]& ],
+ TagBox[
+ {RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwV13k8FV8bAHBcV5YolOhnV3ZlKSrqOUJSkrJUUiFlqUQr0qJVRSFF1myF
+SAsVySCyb9mufd/Xu9+5knfev+bz/czMmTNzzvPM8yi5XTx8ho+Hh2eYl4fn
+/8eEW24Ceu5Pd/m9Em48WcuA8hZF6yOKXpB5sbHdhfDy7+J7iooBoHVvUcCT
+sFjk14/ClLvgujOC/xrhhJIwBbLiY4jY9/tyKGHtefdnyx7PoSusip1NuFcs
+8d/fjkiYrr2t30l4w1shQ+7iSwhbY10uUceA8zuvXmArvIbznJL9xwl/aR1I
+Y5jFg23siTN5hLnnrHuoHkkQk2P6XqGeAW94ex6zLZKh/mp/XiJh8/qIjayO
+FKD0ZkkZNDBgIsaylOGVBvFYhWsf4VD3JWf6Yjqcv56pktLIAF3dLxxq2DvY
+N1g/eruJAS2LnlELCpkQN3BAJ6CZAdcq5XXnP2WB+8vHgc//MGD9i9baWbNs
+kDjze295CwOKTz7xmGnLgf3LdaIybQxw00SkaY9cqH78YPvzdgbwLQY2MoI+
+wi6lyK3qFAa0DjjIMSw+gXn/uPtoJwP8s0UKaB2fweXRxYrmXgbsixwToL35
+AhzZG9GkAQbI+pfaU73yIHbTh96TQwyYOxGfsqCfD8aYT8vICANKzK4vzC/m
+w/U3nKxX4wyI1Di8a778K6Rq0UKvTjHAfZVO6FzYN+DY8cbcnWXAiu4htVmF
+AijdFXBRi8EASsnPqzMTBSCQfdmsms2ArLcxv6Y/FQL0dNi8XmSAzSWbU1Nm
+ReAdcf51C4kJikc1ciZX/oQDBqzbIMgE2k7+xYm2nyDs0jM9sJIJr4QKX417
+YOCisXl1pRQT8q7vu3RZugTeazSRRGWZED9lJEMPKoHn95/TnigxwadJwoNm
+UQoXTve/0tVhgkR8FR+1owwMvxVd1rZkwqLY10xfk19QTGlRMLFhwkhwqu3C
+m19wbx2p+4EDE7563Eqc9yqHVtmX9pXuTHAy2LJjbrEC5ruHbi09YILZW6XB
+Cy6/4aKR3+7OZ0zQllkVMlv+G0wuawvNRjPh37/JtpmwSuBchSOFWUxIrkny
+m1aohvTpWUvKHyYwYvI1+0OrIUCqRGRPHxP2eNQO/8Gr4dJ8kvbcJBNmSGyH
+wpYaMID1tHFeFmzbabPj8aM6aMteGnPYwoKm3L98avONsPNhzq5bySyQAKGT
+opuaoMbT+1xpLguMVaN2PHJvgourD/EqFrPgGSOTHtjcBJcrl25v7GbBloi2
+M27vm0Hstx5XSIoNt2u09+mdaoFn702f9oayIePTN9X3L1sgfVVNUmwcG/7E
+7CZtrGsBxvaBz5ZZbNjgcbRIensr6Gc1nDhbyYYa0v1NPJJtMP3jasQZHg4w
+psREAq3a4FrkQ9/DYhyQ+/N6nH67DcjVl69Ly3LA903um/GZNrgiWIptMOKA
+1M5uicbf7TCSGP58wZsDaMPZ+b1L7eBcYTRz9DoHvESotWUGHfBdeeuN+/c4
+UNQp8ODrmw5QGHv5fn0cB8ZKIlx1OzpA3Mhf7s5bDqzKkN2VJUqB5wL7Tyd+
+4oDbNX12QiAFrqEu98XfHAg98bNl3ScK6BUbGmxt5kC++d6PEeMUOCS8bVGu
+mwOCkie9Hth3gulbEV76LAf0uRMWy086IeXWaGwXiwPHBy8rB5QSXlk25rHM
+gQ+5j7vPb+oCvY03v3mvwmFKYip0n2sXzBcN5bpI4aB2bd8u9agucI/sCeKR
+w8G9M2ueXNkFjC23ffaq4PDGRCR5GO8CjbXJPYYaOPQknTtcqt0N1lmDqjWb
+cJAh1ZGSTnUD//4PeTxbcHA8q50fFNkN3vXmTMo2HCKrQ886VXSDASnv1KGd
+ODRoz67bxukGI9WuS56mOIiEH6heq9UD76xc82UtcNhLzwmkn+gB/pGC/PN7
+cbjvKKbdHN4DYQ8khY/sx6GkwKf3w68eGGmws+06gMOSbOOzUFYPrPkhsol5
+EIcddzYjb41eoB08Z/v2EA7Xhp9TLZ174U6lwfmZwzh83rOQsvF5L0SYZ+z8
+bYfDfKatPamsF4I33AzRt8dBW/QTeZDRC6HLFet0CXv6in8rVuuDBs+hnz+J
+69Na/Dzjnfrg0i0v+y5ivEHDPzKBYX1w3WlN0X3iefKx+rVHSvog8vK7nh/E
+fJyWIoO20vsgfakr7RYx31cudB1J1X4IO7pbuG4fDi2/7PoXjvZDaZy+UKol
+DqvV8sIbnvZDhHVGGp85DtZP1uzOLu6HD9baY5OAQ8jsFfpjaj8Mi37vPWKM
+g1uG9x8DiQF4u+518n5DHHi61r9P0RqAF1N2NuW6OCSJ1N4TtxiApAMPBUo1
+cdi184bznZMDYLC6moY2EOvpo7V1/voArLSOMDUj1j/wTbfoyYgB2KMnrla5
+FgfpP0/H6rIGIP6sdG+tKA5fSSaYcfkABK9gpNiScbDfOhOd1TsA/1nZ/LT/
+y4GIGGurkNWDYF6wRZYywQHdmr9KbI1BkPbFSI59HGhYzOaeMRuEHcb3Hti2
+cED4lGi22bVBIP24+ef7Dw7c29ggttw9CFvPcccsHnJA+cit8QvMQRAVlmqJ
+JuKtJGRTSY/YEKjTvhW7enLg7/Qzv0LTISgIEI08vpcDVz8fbL36bgga25it
+nbwcWDOynD1SMgSnnYtt+ubY8Hntxwd2XUPgn7Zi3ZFuNsz5rzbSEx2Gh7MG
+1NTPbPCA5tczl4ZBzXduIMmJDTwprMLup8NQZSn29rMZG2L4ZXtq0oZBZuaz
+sYk2G6qqz8pntg+DiZjkk8+LLFC3/5tyZscIDHjz/1GOYkHJV6Vye7sRSKoy
+3zzsz4KjMpajZudHYO6mW8+6EywI6YtQU04cgQ1T04weFRZMeKpl9/GOwkjy
+hc56Ij/fqbWur18/CuJHDM+pP2WC9KZLc0UGo+BTvG6B4c0k4qVIN+7MKBTn
+lKUOqTMh8+bh/CPVozD6a9haMJEB3pE3i5vCx8A5iEwzvEAHPmZKP5ZJeHfq
+t6fmdIg9UsWTWzYG/emRdgf+o0ONrKRZGGMM0vEVsWsraaD1LqPS6ug4jBkV
+1eauo8HMj5amMoUJ0KNKH82NX4D78jj107YJiLtE+5HsvQCywfKSyYcmYIc4
+VZ9rtADWe7wcbt+bAHV8IPtr8jzkNP3rNB6fgPSxwpAk1iz4jGoM532YBK+S
+hxICZ6Zg4GSnYGn1JMwPb0mmDk2CHSVkU/3IJPQK6QueODUJ22rHA0bXT8FQ
+UvjLbLsJIH1KXy31aAr8c8zxJY0xiAlS2nX91DTYSIi96ng6CMKsptP3Aqdh
+Y/johZmFAbh58c7j5y+n4Yvgq3vu9gPg5tbf+q52GvRDL/fMafeB9t6EcxSj
+GRgpdDeji3ZCqaTM6+2rZ6HLsxqvd6mDLWFVxRZas5A/NaC2+Wk1vBXwHzm0
+ZxZKFBwzmj/8hlC8fbN30CzwJRQd6xksAcf+qN+xE7Og4x0ms683FaayVjMW
+S+Zgx4maeJJMOSasdF+tf9sCbM0XEUmIGcKqTCI237JYgPbPwf9d9h7GHh5N
+NJI7vACFdeWjESYjGF/4d8vj5xagSX1l6JbBUYz7b8ajI2EBbpcHJrqqT2Lf
+13MvXstagE8lZIU+ziR2zXCF/9pvC7Dk4HPoVtUURrugFGLXtAAPrgzPe7jP
+YNM9DhmNfFQo1ytO54TMY1kct48+q6jAH1widUp1AfNc4/tdVJYKtaOBrbMP
+F7CR/U+q9m+lwnn37YF3zahYikd005QpFeKVaMxdSVTM5V4a5bENFVJvUbA1
+OBXrKSyeqPSgEv9pJyWftzQstr124ewVKsTOzVS9wWnYURqFQw6mgliureH+
+fXSsVYMuaB5LBX/+Sh3XYToWacEjPvyWCm6NL0sCtBiYrauozN0vxPMlUnPc
+fRlYXYyaRkkdFaTfL+LiCwzsSd4WvVOdxPXtG6490mRie5tMt/8bpYJPjcsG
+Q1cmJjBjY5pAo4Lfm8fDiy+YWPkKZyuTZSroH/3W/b2Mid1V8TrULUKDDjun
+2oOzTAzBtWOB0jT48P6d7VtJFvbP6Z6rzEYa+EVP6KRvZWFF18K9vuvRYNHY
+8tE2OxYWGJngd2QXDa4JVknbnmdh2z5kBbD20SAnAU7332FhrOpvwS+P0ODh
+WtPG3nAWljda/niLOw1oJwwr9sSzsEu8fyJafGmwtE2iUCaVhenK9b++dJMG
+HmsO6jqls7C5bTPJ4k9ocOndlpxVxPkcezzz4ysaMHemp1gQ95/3Ffh8MJUG
+ekz2AZEIFqYZKlk4l0uDTr200MvBLGzinWJZWBENghkF76IusLC3v3RqtKtp
+8Om07boQBxbm3r/jT20bDQKjDcF7OwtTXrTs8h6iQW+mlaqTDAsbkHIYEpqn
+QYZEn0YAk4kl6rtNZSzSILMn88NUPRNztrlIsxSkwy39yKaWFCa23juIO7aG
+DjkXsiSOX2Fir5JfCW/cRId3v0/rD4syMfufqRLlO+gQkV94ems7A5Po/Lj+
+tCUdNHZsb6yMY2DPVtdqJrvQ4bFRIHZIgYEVGMnl2/jQQU44To6XQsdGTl6E
+vzfoEHxMNmrbMzpmnCNpfySaDmqfE+v4GTRswsr5pmgDHTKu7KEoZ1Exs3uz
+jQHGDHAWuK5k9HsW4zBXXT1M1O1zPmakc7eHMBU5t+VlFaLON8I0CpoHMRvz
+vMc5ekxIdHHx3bZxEEuPPJooeIAJ0zX5LwaT+rHDm5Mri+8xoWALS9DIuwvL
+8dRfr0Vlwj6bHEbw/SbMrdseI9WxgJ3PmvK8GQnCcYMX/DpZENlO/d27NRk+
+O/nI9o8RdW/vOxFcOhNIXY8CCnnZsOTlM9t/KA/SKIUGfkZs4DP0btLLK4Wx
+NsWMvhQ2qEZf5+mdaYRnL3McrT+yobEx9K1wUxMYOuwgF/5kg4npqzUP3zXD
+o1Y7t5cUNlRkrq7Ut20B9ZaHstZE3XsrV2uL0ON28G6aCS8I4MDh3SfKPiT0
+gER4AKg94sCMOCeFdaQXCg8KzEVFcUD7wBNp/9V9INKosN83lwOOeJ2TSVA/
+ZNcfJquNcsDW8mPQe4VBmKv5HhBlS9RJp+9kkIqGwa/ivttFNS7YrtuhMeE5
+AfIjewRYBlyo93Fi+mZOQC2fUFYQ4sIwhbnl4uQEbERh1MfHuLAOu/Gw2WMS
+Ogtf3kl7yoWEK6TSwyenwPTj28TOeS5Mnr8j5m4wA3MNnrtd/nLBIs3TsP/c
+DMTNao6NCS7Cgsu9yuHUGWBq5uowlBbhfXfw6zCJWchM/1YkZr8IewZ5Tt+d
+mgXxuKous++L4OAXEE95MA/FBU9u1ZQvwpki2S7Pb/NwjmKtfKh5EWqXnWoj
+J+ahYm2z18mpRejcu+Fb94YFCAjv5PjL/oXGxyMHP9xbgMEHU1If7vyFb6d+
+xXhvo8In35V20lZLUJYwsBa/Q4O6WMmAHMcloNibppS9pMFY+fqk3e5LUJqf
+cvlkFg3Wy2hMn7+9BB6TJjfFWmhwv9TiXmn+Enz6eknsuDIdHCVuf/FW/gfu
+Vs8u4t/p4GvysHN58z+4YJ2csaaWDk/Ohi1H7fwHSk8TeAR76YAVxu3Hjv6D
+3RszT/rzMED99Pdhyef/wGFhrD3EggHcL1TJn4v/YD73CSWnigFr+jjbDwst
+w9PtKMmX6N83CfK4jEstw+pdVq6rJxhEHSWWLa6/DKqdG6jjAkyo49cyP+u5
+DG0Ui5p/u4k4cXC/sqptGZpwJ3tyPtFf3jg3pXuEB5Fyo68r32WBbokQ59EJ
+HpSZViVhFEbUR/wZ5P7TPKio8NBXgxgWDISNKIb58qDYUc0fozkskH9z4sjk
+Yx4Ufuykuh6FBbHlB8uTi3iQ5YOoykfqbNAUmmvmlPGg59O7r2/WZ0PBgdD+
+g9U8qHS/xOtSYzZQ2qu4S208KCWkrzTdhg1Sk6Z6TvM8SE756S2/y2yIFN2S
+KKHMi1RjSae2FLBB+fCf917qvMisOcDmRSkbPr3yLSjZxIuSzfWq+6rZ0KSQ
+0+pjzIu+GfL3GnexQUxfVaTWnhc1sBwp4lw2PHGU9r/3iBc5HV6haGnIgbtJ
+fw8xZnhRzPALVmwyESe63/206Lwoy2TELu0dB+RLL0e44bwo2nv8YGIOBwqH
+ppqayHzIeH7rbfcCDtA2dh7MkedDw9oLm02aiH4xO//AWVs+dNTiIldrkaiv
+d/pdSHDkQ7HqV+KteHD4V68d1urMh2DA0egYUZ/HzqfW7fbiQ72nFzJsiP7v
+j37kfoW7fOjRA7nsKGUcTAt8rChf+JBQgbF54h4cxPZpeq0q5ENm6VG5I0R/
+0tM1GrKnhA+d1O3eK0/0M/5/navy6viQcunkgXNHcPgI+y0jRvmQ0qRVjI8H
+Doq/1Sz2rSMh1zJKkMYDHOYch92D5UhoXCVT9H0IDkXjife/q5BQmvH7QcVQ
+HI4KSZWr6pKQn2J21GQkDuHW/GYkKxJ6wY6aWkgi+pmWAVQUSEJCl2gKo9+I
+fnCyODkwmIRYFE7jXCEOQjwJfNtDSKh4xKR9+icOEjrHyvNfktDS1gHdkl84
+bHzUbJn7kYR4bbaotTbgkJWQm3HhGwltifsYGdiMw6a8MCHtYhK63rYwvqYV
+h22DVrUZtSR02FE3emMnDvuMy2xSxkio/pUZ6/sQ0b8eepPrMktCOoM2iTyj
+ONh53lqtwCAhxk7eIpNxHJxf7vgTx8uPBp+pxkdO4+Az/9nhpSw/eqcy+esr
+HQcaOeKrnQo/Wlr2nktl4nBd9uI6CU1+5FLpLPmQjcMdK63OZ0b8iKPNCNVY
+xOFFaqpzyGF+pCC+vDjHywXpwuCfe47xI3Zu5bcHJC7EN52SJ7vwo2llrRlx
+MhfeLv03EHyBHwlKcReFBbmguYaL0BV+VO5WzrwuxIVcTUryv0B+ZPNwPK1L
+mAvfj0SdvhHCjzRJcyeDRblg4nOpfPtzfnQL+T2qEONC6X3bjZyX/MgpOOzN
+8iou1HxaOX4llR9dedfc5yDBhR6RB94+xfyos85BPlSKCy7Kp2u1K/hRloH4
+qeB1XBjdZqo9XcuPth9I5LsgzYW5M0uzHp38KPG/jEy19Vy4HNRtozpAjJed
+XcUizIksyB0Z40fSPC+Ci/7jAm/JVT9XBj+K8tBha8lx4WG73R+FRX7kSCpr
+aCMsPKtn0MdLRksV+NVr8lx4TlodFS9IRo5/xbmiClxYs36O4bSKjO50GXjG
+E47RrXOQkSKjZ2lX6pUUuSBnmfW1Q5aMnra3GSYSVr1y1t9ek4x2eSZYBSlx
+QWdHv12SLhmR3fdXdRDewnN085QhGenfvPlGS5kLxr+bhLfuJKOxV9d7rhPe
+HWo1dtuMjK6YXnxYRNjqcFlpjRUZNbU+zcAJ20obJ6y1JaOEJ2PWm1W4cKTv
+i7+LIzH/6Cc3TxA+maZt/96ZjDQsr5rfJ3zGO30zy42MKla/ep9K+LyuvIip
+FxnN5jUU/SB8mfVq7OlFMlpjTw+uIxxYtKqs/Srxfo9q+NsJB98NSVAKIiN2
+gOhBCuGQvbwB5++Skemyh3cL4edigfbfQsgoOtvfpZLwq1baZr7nZCSy0LQj
+j3BC7DmRAy/JiKrG5IslnOYyMhYdR0Yqhc5l/oTfq54oG0omo1bNS3dtCX+e
+aUvQySCjuwYvrJUIF3y2CfD/QEb7OldrThPvX+Jfaf8rj4wc7m3e8IFw5S6k
+K/aDjCZWq5l7E27gLxA5VkpG++eVXygQbqvRG0+tJKNzm3evbyC+f094Vtlc
+PRmdioseukp42FElcXsrGaXUajClCE/Jxgfc7yKjbSZ0p0/EelKH1jg0DpDR
+edchWQvCnIww3fXjZBRf1Gn2h9gP5K23x3PpZCTXvnmEQuyflYvsMi5OnH8u
+ffEwYYlS30QLHgF0NUHubgWx3xQPuDl0rxRAKXzip2NkuaAm2a2rKimAdg1o
+7+YQ+3VTp91KPxkBZGFRUnuIsMkZi18CqgLI/4Q2D02GC2ZaxYmHtAVQ0xPK
+j22E91ENA+P1BZDOsVSzACI+jt5U19MHAfT5QxllnIinKy9Fkk4cFUA5s8LL
+NyS5cOP4/cCMkwLogGgPbyQRf3eVlhzo7gKILbdaIkWcC+E5cysf+wmgYxGB
+gR+JeM2uaA7MeyKAthwQ2ftIhAsjzGhHkZ8C6N/xhFgVPi6kmBpc7v0lgByP
+fXtQxsOFU2ENz3NrBFDh007+48s4dG0gV9tRBJDNxvgR/784NNtdMo6nC6A+
+VwkdLxYOxZ+sFXU0VyA9HfMmlUkcgpbGTZZ1VyC5r0lmLkQ+3G5171iz0QoU
+IDzb9YrIl3kDBZFXLVagM+SP0bRBIh+vUiMXu6xAU14vjM504RB9gXfKJnoF
+6q2+fGxXDQ72BfECSokrUOyTFVzFKiK/k7ep0NNWIFWDgt3/KnB4Fu/jHP15
+BbruyTeTUUr8H2q7G/rrVyDq8a/+2HccfDW+fvHlF0TFlw10OOlEPh/1vhnp
+J4h+XTr3rDYIhz03VbLN/QXRib6SEPlAHHav7eli3RJE5rXJOy9cx2GHxYFt
+x0MFkbqi3cKSHw6a6ZvpKu8E0axcjfrsWRxEzjA883sE0QeNz3sEibq3buSm
+PcVSCL2/0ZvhpICDzUi4lry8MIrP4q5I+8KBOq2RVucNwqj4Be5u+5ED+y8b
+3YrTFEaNY3u3c7M5sJevr0naSBjJBNQ67nnLgd2KWtckbYURz1Ox+pIYDmx1
+rigRvEv47UCb6U0OyLbiDvRRYbRHvJ8das6BqV9ud6pyRFB3+vTt5To2bBJv
+lzM7JYomE2bcHn5hgTAwXXvoYuhpZcGu5ddMsJx1Yis7rEato/oTG08wgFLm
+zuukLY64XnHl1xXpkB9SflKRKY6cXX9VSnKocJZ8daChQQKFnzTvLP++AKcv
+3chfGSuJlJWdTohunIfNHloN1q5rkOuaKbux2RlolNAWubp9Lfr5aa745Isp
++PHhbpw2SQodLa+bXOszATd4NW3reqUQq7Kg+onGGAj3BO71yVuHnKMyXX7/
+G4bRt0pRSUHSaOr2bFGHwBBEqcvwFzjIoK9ig2HfR/shPPZspavieuQW+K5D
+QaEHnKJONKwcX4++NJ1SL7tHAY55Op5U/B9af8WgZvlLKwyP7vYveySLvA9J
+pVrubIaUnXr/1bvKob6mj/qpGrWQ8+CquIeOPNKtqDjnG1wOjxxO7ycx5ZHC
+xXNXEi2KYGtPcuajegWk4WUo/jIqB2I04nLq9ysiS9nslZJr78PtkrCY/QWK
+SKSOb/ISKw078J9Des0GJZSYkfTGcO4rZupTeVz8sRIqPbamTW5DKZYk67ah
+jqmEwq1mlLLUK7ENv969sjmujEKO99+8+K4OC9cp0/xTrIxUKd168uwm7Cyd
+v7laUwXJxF0Re1/egrl9oik+fq6CYrC+yTv27dj5u3Z/90WooPNO0iKtp9qx
+q3Z5HStfqKA1FTc2qZ5rx0KYV5+Fv1JBv85eCKoMbsc+bMcXoxNUULPqt+3/
+PrRjeOly+9v3KqjBOuGUiVAHFv5nZVh5pQp6W+B2/29RBxabesHzYbUKkrYQ
+26Vb1YGlXmkw21urgvpkjJfdWjqwr1Lh3NoGFcQzXRJTMdmB9ThJera0qaBM
+0bU6t6UomNqwjNnQsAqKbb65/OsiBdPNC5RPG1VBxkZD5hOBFGzHg278zLgK
+mo9yjxJ5SMGs1RI+Tk6poFPCXocPxlOwS+cU5alUFSThz7apraJgQSbB+Ge6
+CqoP+jM53kLBHogOtV5hqqDNClLhpH4KFpOb+pTDIcZrv7FsxKRgKXf4PQq5
+KihQcaHKlqcTe3/ozO6gvyoo2tcv0VOkE8tT/i23658KkqxWv3NbqhMrpqvi
+y8sqyEUZfF4qdWL/A/38Td4=
+ "]]},
+ Annotation[#, "Charting`Private`Tag$6593#4"]& ],
+ TagBox[
+ {RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6], Opacity[
+ 1.], LineBox[CompressedData["
+1:eJwV13c8Vf8fB3Dce861i6aS0Q1lpT1U7zdaVJKdlJFZEUohpaRvVEZSiRAi
+iagkhGtVNhllZo9kXXv7nd9f9/G853Hu/Zzz+bzfn89L0vyytiUXBwdHBycH
+x/8/w26Zk1ssHh4we8Zbca6EjgXVEscNJGxhnmugyoTy4vfsuxISrpDNT7t4
+nrJgYGoyb50n1P0ts71AOSzHV5yQ8AEHB5tIZ8ryQxZ+i9b+sCLQtuMe5WbB
+8IW534Gwbss3jpeUN8Ty7JyZfQr2eu+K0ihf2u9sNyn+As79sBRopvyppvX1
+mNpL0Fq9PYSnlI4zF483sa0jYExSej9QfsXZ5DN5KBIEyfHcW5QPlj2Wmvgd
+BSsyGkYKKfcGH8kds30NE7I2wWJldHxkMW88OhsDf0gj19uUlZQ+TbF930CZ
+8iWjIcrVszZBw+Jv4Zqy/MLFcjpe+yGmNPQhHhpWFG+YpLzmSU3JgFoCfLjZ
++/BxBR2zzz2w7q9NhPLii4PKlXQ0l0XaP+sk4F96lD5JmWvWrWLMPRl+nNH0
+zP9Jx5pWvXVjhz5A8d5pkagqOrok8KWP/P4IdYL7NYJr6KgR2E2OvPoEr+tV
+t32opaOoS64u2zYFnM2Nf/35RcfBsy+jhrd+hu/x+35K1tExR+368NDsZ7AI
+5cxyq6dj4CbtA0MFqTBjuqDQ10BHiyUKjwZ9v8CG8XufHJroyGhslxkQTwfv
+PhXxby10rMvJcu7vTQc5SeAJaqNjfGxw/r8PGXB0D1vQvYOOmk6aJn1qmdD8
+RHn7ix46ShhuSvzLnwXlFrdlKv7ScWQ/fba3NgsUblxpFu+n4zOejGc91iyo
+a3k5JMymY8p1Dacrq3NgwcTu7+dROr7s2yUy6p4DlwXKWq9O0NG+Uth65FAu
+tMyNfTwyR0fhl4Vc7N95kB97PvIQD4GzgqlvHfblw/1dl6+X8RPYeSdaa/hV
+Pvz9Reo5LSUw1fpW+JBtAQTWVwgtW02g0bbtewdnv4FE+oT0+40EqsVKttmZ
+fofW7ixuUQUC5UWWeA8UfIfvXmv7Y7YQuLDwt7bf9wdsIKWe8CsTGFkc4fhP
+vAhm0P3h2pMEjgV/lm15VAQW+pZ2VboEHrYu6aiaLoI21dqbsUYE9tMm9TKq
+iyH3QqBptBWBu/dr7vW5XwpPJOlnGjwIrEya45IZqoAjgk3/2acSKAw85wQU
+K8HXY++6gCwClaWD9t63qASTagUbVgGBfmNvR91+VkK7opeMajWB2x/XWpq/
++wmbFcMtUoYJ9CiW19hiUg1DEtIKYvIkxn34Iv3uaTXMal/44r6NxKpgVZpU
+aTWstxnH6r0kbrA2zFy9pwZUXl16Zq5OYjHNS5FjWS2s24RK7ZYkjvUJ8rmp
+14J5UGFE3SUS11W96Bn1qIV3myH66xUSHV4lverpp65XWP5QuUPiyv2NwhXf
+f0FIyIkkmVAScYPV0NH5X/BLIbL5TCSJtnzskrxtv8GrSTzG8Q2JmfXkvdRX
+v2H3Aa2sfZ9I7M55bKb0+zckW6lcG0ojcUmc6IF4gTq4XC774lY2iebXtk6G
+udXB+YsjIgpFJD46m1W96kMdqMRLcGqUk/j54NHkxz11oKUlaXmgmkTuZeds
+7+nWg7oYX29cE4lbZ3oPLT6oB1feqRTRNhLPtF1Z75pL+VS30fkuEt8n+TRe
+UmyAnGa1fIsBEvuE+x5pmDVAxNtrrJZhEmWuaRzYGNQAp4NGYzaPkWhRHz9E
+/GiAqK6CcJ1JEl/t44vsmG6ArNraWo0ZEpsiLmrnyjfCSYkJt+XzJIrQSmkR
+Jo0Q79CUm7RIor6V/Gf3wEZo/iDTvpaLgYFFj6yMvjVC3nGTVYZ0BpbLD6za
+PdUIB8+NvDpPMpAv4ETRCrkmmBvakbefm4FHRxPdRs82gex+87wuHgZ66QvK
+/wxogiEB/34jPgbmpNs3v89vgpCtSf4v+Rk4L1rh92iiCT5ufLjwVoCBe29v
+xgubmkFiNMPfU5CB1zr82UeMm6FXMSJMagkDPx4ejpLybwZHu9P/BVIeequl
+S8trBtvm/HeFlOUFPhBtY80wqGFz5QdlGwehL9kyf8DP49phP8qvqx1tXhr9
+ATPejMeilNt2Vom4+f6B8y7+3xyp/xML2VpikPMH2PR6PV9qPEbzge47Rv/A
+TNFIuj013memowrLpFvg8vXYSyuo56nO12kZNmwBnhdi/bep510qkxJQ/rAF
+HBzr05MZDDz+YLlqQnYLeDiGGr0mGOg9cHXUh90Ca7TN9M/QGGged6Fqm3Ar
+zP46tbuWg4EcDWveRcm1ghMm+QktkBjBV3JX6FArTDkW9i2ZJfHA/hvGt8+1
+gkr139YKan6b7OV2DF1vBUX2Ce5T1Py7vWoUOPe4FUo6BGYDqfWxuuphd2l8
+K1y7JaT/tJ/EVNo+lnJBK/zVXEwz6CVRd0f/8/jmVki9LP+9voPEx8HH1b2X
+tkHxmwjntQ0kKhXPSU5uaoPtNEvbhhoSy2cTZizV2uBb7+F4gwoSeU0EEtSu
+tcHbjQWVD/NJvCtVLrjY2AZ5t7nOVMWRuN7gVo/deBts1lp66gZVbzneijlN
+gu2w72Db4dYXJM7983PMUGkHgvuRUrMPic4fT9Y4v2mHpTs5tF9akbi8czGh
+M6cdTrt2+omdJfHjiuR7Og3tYLGOZ9RIh8RBl6W7tgh0wD8VcVNOINEafr7o
+d+qAfXfnDBaFSeSImshofNgB/JcfZXgzSAymizYVv+6AHbnn7pXNElhYZCX2
+9lcHHK7yS/DuIHCj7lyU5d5OCL59vzInicCcVMkCXZ1OuJ4ksygRRaChyJEu
+tUudIP4gVU85iEDvP49l1od3wl6cbQu7TmCvjUzCH84uWCO6T3cl1Z9vlxwv
+K1vTBcnXJMLU5Ahcreg0mLmtC0xkH7dsWktQ9ZKpFGrZBYwoq3SJGTq+van9
+2aCIul9h0vdTCh0vBN7MrgzoBn0e71YNUWp/Ho9qYb2l3K+vNs6gY4hBIUdS
+XjesDtcU0h+lYbHoMjXfsW6YOeKzfW8RDeXexP1QN+yBtdbnT9x3pGH/1+rK
+PPFeyM1/vIyRwoVeYtPsD7t7wdnr1iGOUC4UvSO2LPJULxRUz99OuMOFxw/b
+6nnc7QUHnyzhdZpcmFi5UK/c0wuV9BR1gw5OtO/a1JHy/i+ozEr3Dy9wYOu5
+eu7cor8g5VVVcfEPB+rUeSuWdf6FiLLHb//L4sDdJT2uXWv6QOLK30chbhxI
++xCzdOX9PhAYSCg527oIwe6SB66b/IMrEUIhGo/ngXei8vxdt39gem6eqFWb
+h5uXb/v4P/0H8SG1Sx+Pz4G5eUvNm5J/YOgq81+I/hzIHw27WLerH8hvHRGN
+grOQu0zkxZ6lA3AhX83PxWAKtvsWZh+SG4CYT2RKwdwkxJIunacOD4Ca0Qr6
+nshJeDT9a/MF9wHo36RqFNIzAfotQd9DegcggvO3uPqFceiLXzo2mzMIMRqO
+Zw4cHQFeSS+Zlt3DoHmd54nEQjcU7nu8+dahYfjg+sRTQ74b/jMM37VOexgG
+TbTS5Iy6gCsg7ciZi8OQSuMR9vncATML/da/w4ZBzCZk8Yx9K6Stmbl8LX4Y
+NtSJLWQrt8C1nQyXFV+GoSbhxItbL5thxE7SW6dyGKQdzhu/s2iAf016cRVc
+bLgxnjjss7YG4qfMk+2XsGFYd2PbwpMqsFnukCYgyobp3AN9+UI/ofPYg8Jj
+O9hA8/eJbT9QClHWzyv7VNhQHJNfuGBaBKZ3X9f5aLIhIzPAVSvwOzRlZPf+
+sGbDZJ+H3T2ZXAj5VTJsdZUNJW4NZq1rs8BwpG6KuMOGh07hD/cIpUHNplHu
+gyFsyN7ntDFlMQECD3EIdcSyIaIhuDxyLhq0zAREPD+xwX+09bR39jMoDZbZ
+lFPKBkmrBy5PT3uyHqRs32JSz4ZxMuD7puLnrKOVKnsWuthw6v73+L6MKBbZ
+r6kSNsIG4kSbf9Syt6wChrH6vkU2eO0Pfqry7z3Lk2l7qpFvBDY1zRYsEf/I
+Qrh22m31CNw0/Cni4pXCWjC6ayYiNQLyK1oHLF+nsjKvBdimbRmBZcbFd0Nv
+prHcAsMcDQ5Q9zN/hy5fksHa/T7edUJjBKZdtdR4DL+yJoq+3HlqMALWE9a0
+YYNMVkpXgc92i/9fzzT3EMxiOXFWPa52GIEEebfk9zeyWErrWl443RyBVx1H
+lqdGZLEGd/dHCj0YgYKlke0C1PVE3em3yc9G4Klr/B476v5LDuTHk9EjcHio
+dvCHUSZL9tGyjMGkEWhOe1F/zOwrq/eNRJ5v5gic7hp/cJaZwYrNVyiWLxqB
+9Dpjr6CoNJZFy96qktoR6vyfw/WlNZW1fvZIw4X2EbinzL7yuSWF1bpSr51n
+aAQ883clxkR+ZIVvNe+Lm6XGZzU2nbUxmWWseXnkCPcojD0cVXo1GM9ac8F9
+pnv5KBwdmrniLR7Dehb5jFdKcRROiB7/tToygKWbFS1csHcUGn0OmG5KtGQJ
+1yevOX9kFC5MJ/Z6lNwHv6UlspGm1PVavpHIOzGQvmvdZ037Ubh8m62QevE9
+dJ67DHM3RuFqScf781WfQDlxma7B81FQwmzpV85Z0KtufFOgfBQW+SRTW3iK
+QO3uQIWr8hhsO75vmj/yN0yNL3HWXjkOsVk/Q7RX9QBznfniInMc3Mf0rtK/
+9YDmwRSfxC3j0F+SonDPsRdiAg3DuU+Mw4oje2tKv/8F7c2RP7LvjsNu4RCR
+KLN+SLTZukaOPQ6fVFtOHaDq0LxRl0UrnQBJx1Qn3RXjwBvaZudYPwGklGqW
+gN44fDSyF23pngClWuvn0kHjQGu475rBOQm97m1l7ksn4HVdxjbHXZMg0LyK
+p4v6vrtWIu5P1CQo+ohcnimcAr+nifrHkycBihNdzBanYKfeXiIjaxKeSyvp
+4o5puF+jY/60bhKycspvX4yYho3V/4keF5wCKc8VopF2M3Chsj8g3XWKyguR
+HsUjsyAc4Aoy96cgP6TwurHkHGScJAeDgqYgdJNCrfvJOeCrED/mkDQF0TVZ
+XXbxc5BQpk3IdE3BRLq57/Yz8zBYnOYapDUN6ws1ok3fLoDjNy/zyzIzMFdZ
+7fjXgwPFOg+TE9tmoLG78TVfAAeWcPHEu+MMmOXmbed7xYFS6Mv2OT0DA3s3
+FEWzOLA+4+nt1w9nQHPj91UH5zlQJTk2vH5oBkytpC56O3HiYLmNquncDOy+
+Kr7jzW1ODB2Q7e7mngUTptXpOD9OHJdNUhiTpJ4rr6tMO54T38Z8yRTUnYVr
+dw9xaLVyolBoYYNa2iy4vYn2kzrChdnpD24VF8wCuvGH++hw4cW64+tP/ZyF
+NXzGa2pMuPDbip+25/pmIejyKrV1LlzoGlA/5SI6B0sCrvv/94YL2+71rXx/
+ew5os92fOjlp+MGBX2e1OrUPhTiPyMXSsDRkmWui/jwEjsekBSTTsLtgTYSq
+xTwwYvUj/2TQcI3Ipn+XPOahicWM3VlBQ6/cQ3dzP8+DR2z2YNMEDfWFPT5d
+WL8A9ZePi8ur0tFh33/1i5sX4By79uueY3R8YOW7GLR/Ab4srbHepktHVkbo
+MZbhAhQ21z/7Z0nHjefTOpb5L4B2/lTVFW86znxiL8uaXQDx6GIdspiOy/9M
+7dHmWYQBa6kvPVR+V+TmMO1ZuQib+zYFf6Hy9nljwQShrYuQ8WWVKZPKw6V0
+uYNWNosQsCuuVJFBYLiexdUltYuwpPCj0Fak8uWNi31KBhwYt/5UdE4sgUo5
+PFP3z3Kge9jfYY0E6nxEjyNaznPgvY3vVYs+ENjq2ynh68CBY1lrDkVlEij2
+6qzBXx8OHL6eMvvjJ4EhBScLIjOpdeN78tjoNIGyPIM/p/I4cDBHmvljgcD0
+E49aThZxIOkouD2ARmLdr8KZ+VoOvO5/9SiXAJXn/qpsMRriwJ1NxdI24iQG
+CmwPF17PiXtWM56rq1LnTe2qd7YbObFwW56g62ESPzxzSM9R5MRrA+tKwzVI
+rBRPrLFX5kRPK4Z+mTaJglul+Up0OdHve7JOmjmJD/RXu9y9z4m6Y96TVbdJ
+9IyYOzXWz4lj+yra3VNJ1FJKc5Qb5cQbttcf30knUSz3ymPzaU68wuHqfyuT
+xIz2vspKglpnqhJvzPJIHJGqP5koxoUvzG56lJVReTHh8wkrLS6sGci0OESd
+t5X2O9qF6XPhVRPWjhoq7y2UyfvWGHPh4a9KNGPqfB4yFF2qasuFK2/Of9Wn
+8l/V1sBj4p5c+E8gKGt6gkSVdHv1uk9cmCAT7bNA5S9BDVnbJRlcWBR2kiVJ
+5ZOmhi7vwzlcaNAx8vAAlWdc5owLU0q58Iucm6ClEAOT4diRx12UIf6TlQgD
+Jb7LHNJYRcPTCWypgxsZOKjfYXFnHQ3XNp8epMsyMLMn3CuNScOZXqM6lhwD
+DXlWFkgr0dDsTOOWDZsZGHCcrkZTpyH7e0XTmx1UnqluxUw3Gsp73ZqMVKHy
+4N/sSLc7NIz+cqdCWo2BPBxhXHu8aXg/K1o75iADhRVOF3x+SqNi+riH/xEG
+St3/eSSJqrONTuI3RE4wMD4sKc7uCw1zg5uTL2kyUDHFl0c+m4Ydn282pp9k
+4O429ZK4EhqevLZum6o2AzWU8zSjumnot/JNO58BlV9PvUoyHaBh1teE1M2G
+DNSxubVUfIyGEn33vp04zUDjp3urQjnp+Dww+LPLGQbaD33Ue0qdu2ebXIse
+mDBwhHicqsOko3RJxrk7pgy8Lnp5lbAsHX+93+boZMbA2+py9X676Bhttqhw
+8DwDn0RHG3tr0zGt2qsr1oqBqzPuZB0+TUcm01bNyZqBLytNxAhTOr5sCjm7
+24aBsfNrW+/Y0VFO37MrxZaBsstnEK/S8aG7tfnFCwxMkq2LXHCjo6bgdLro
+RQamGQSdv0H1gczjcysdLjFwn71TwR5/Olr92y8nbMfAXC8tqamndKzlK92V
+RLn4A3/P1Wg6tokN6jfYU+uD794F+2w6PtmSfG3cgYGm68+XyH+j41ynwCoH
+RwZ27VaR/1dCx2+ONb1dlAct5wesqT4yYXh6X74TA6+4N2pKt9LRNLKxRPYK
+A6cC05M6u+m4vUQzzpcyZ46zo9kYHYcX1p4/dJWB//3SqRKfpWPV8W7NEMq8
+A1u2/eEkUFrRM6qPsj9tadBLbgK11f0sdjozcPmawTGjJQTa7I4IvUk5WKlU
+T2QlgfZhoJlDed2R+NTfogTa7Rz2XKAsfdXKRVeWwMOLOo/srjFQYW+LToQS
+1Wfm44+FUt7OYbi5byfVt3gKdn2jrPy9knfHfgJfrMzV+0dZ9ZF6t4cagW3/
+MuMFrjNQXTsvt1idQP8dJcrylLVWK4et0CLwesCUwBHKBn8+uZjqU+N/riF9
+jvK51/K674wJzBxk+ThStrwQs3nCnMAHOlr771C+pCTGp2JLYFhM/yFfylcm
+nnU/vEzglvFbcU8pu2UuyfvlTOCgX59tCOU7nt5hku4EMrn5/UMpex/ldL3k
+SeAPjXTRF5T9Bd10v3gTeCUyd9UTys9qRjZz+ROokD/g5UM5LOQi34mnBEq0
+LNq4U35t2tn9PJTA3XGfCi9Sfid9Nq89ksAA0+w4A8of+2vDFOKoHNtZLoCU
+0z9qurq8J7Dki+/cBso5Lj9081MIrOIPcyUp/ziASoJfCXxZHezTSb2/cno6
+3+lcAivyVm5hUa4t3tIT/YPARvPYq88oNwXE5w2WEfh79U/DC5Q79Jnhe2oI
+nFRa076Xcp/oS1evBgLV/i4s56bMbl+uV9FKYMuNifGf1PxOxfkqrekh8Oom
+J59gysQOj56kUQJ37gyrX0uZf3Yyb4baV8YDhSLqqPUknOsQfoiDxHaRoI2B
+lCVOmOs18pN4vVTgxSy1PmWWNSpJLyPx4NdQ73eUFet1+B1FSCyyszxhSHmf
+5aF8Upq63zXUOo5a72py2eGn5EkMCHD8doyyBnun28utJGZN6vP0U/VheHPj
+lq1A4u2obh0m5atP+SLOGlJ9PZfX2u4yA2+c8XKLO0dSfeiKzRRVf56S83qj
+FiQyjXwdblMOSBzk93EkseZJ3uv7VL0mfPvplvKAxDz2A74rVL13jj/X58si
+UWa6ensu1U+iVLZdac4nsXrSNH4pZRPfcv+kYhK5hEb+GlsysGEDUaRTR2LF
+2er6f1Q/+qnjpPxylMQV7oILHVT/yv5wXEKB6us5Zm9Oqhgx0H2+Z9+iEgN3
+Suv5mFD9cI/63dM/dzHQvHK2xo3qlymt6YHOhxjYeOLspzh9qh8vkSGyqd9Z
+x3GS1k712+d2nH2azxm4UgmCyjUYqJv+kpQMp97DUp9Oljo1H8Ru5uhrBn7t
+bPN+f5SBfi/tjZ9/pOrE47/mu4ep/aGksbyljIFirq3MJaoMdNiU+smBzo0k
+IX7r3W7qfXdduBnoyI336V8VV2xg4OGbzISDLtyol9H1Lns9Vb8rmhombnFj
+sZI+aSXJwL2HTuw+84gblRvfm7wXo/ppzOZR5htuXGfUNytF7Xd8lmM2n5u4
+cdHkz4NP1P5Y2nlTt+4ID85xj301HidRszNATkyMF51feV68wyKxVK6zxngD
+L5IruEJ+U/Nw7MquW6GyvOiXvclLntr/j3L9qVy9ixc/Mf4FVqWRqCohd22Z
+Fi++CeAvX/KRxB3G33K4PXlRJtxZW+s1iaI103qjXbxYVH21Y/w+iX355rcL
+E/lwhdgNmc3HSVQU+rVOzUQA14XMBjuxCOSFcbOmUUEcVGwnk7YSeGTAaHK9
+3lIUzg4/oxpEx7o8C04jeSGU5qhW/zdOw8/eBeckxoWwZtbqWLoZDa0I59by
+cmG0d5OpEcrjwvNONz7zhyzD5OrG7BFFLtxsLVd+3Gw5QqXH3MZITqwQludz
+3rMCn0/iqvu8nPj1vWeoPG0lgvtU2/Y7HHiDU1artHklHnHr2bahdRF4m9yO
+2qeswhumJou5xQvQFSsZFOG+Gg/q30ksLp+HoI0i9HQ9EZyt9xwpLZiDgBCr
+H2YSa7Dz6liBdPUsGAWdLefvWYMuD9afPtk/A1MHY6Yjstei/pXnueempqGj
+S9Ul774oxslWfkleMw1R+7esLTNbhzbJpjueKE1B4j1nIWsFMWRr3m16dGYS
+7uudP0YbF0M4cSo1zX8CdjRFvr1fJo4h6kHXaWnjELwpNLHsmATeG2SOe4+O
+gUeOb/CxdAns98jb9Y45BifW6sUUb5DEglAOyxvGo6Bi/+OMkI8kLuezWd4Y
+OwIRouYbSsclUVSg7IF6Nxs25L95pnlmPf6J12xx2MmGAIU82ars9Xjo1RPV
+577DYDVK/1kky0T+loaVNilDYP5hRMLHn4mlpVKbbl4ahEueOnMaj5los+gd
+XG01CM46Kb/5nzBRWOP3f7Jmg+A97uwX8IyJyq5/Wur1BuH9nunZ52FM3PVi
+z50DMAjTuYu/Yt8xcfd/h+3FhQchoIrft+AHE0sqOs5A2gCERNvZ/FfExCW8
+gh4xHwcg+mq52tESJr6LuC7GnzgAqSsDZkrKmSj5JeVnQ+QANBkts6muZWJu
+zAPGrYcDINMhotbewcRiNf3wxnMDoJTiJva6i4njS1/fUD89AHvvNU5b9jBR
+qr29+ovOAByXCUv+28dE+zetY0+PDoDTRQkxNpuJAQ4vJgy2DoD7vjvTH0ep
+8Q/KvS2SH4B7Au01V8eZOC/K+0tZZgCCk6IfTk0xUU7FIFxSdACibtOtM2aY
+aCEatufpygF4d8pS1X2OiYZXmzR5hAYgZf33dQcWqPdVyPHnJt8AZI9KTy8u
+MtE2dLx7hBiA/wG+pPGR
+ "]]},
+ Annotation[#, "Charting`Private`Tag$6593#5"]& ]}, {}},
+ AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, -5.314322104427868},
+ CoordinatesToolOptions:>{"DisplayFunction" -> ({
+ Part[#, 1],
+ Exp[
+ Part[#, 2]]}& ), "CopiedValueFunction" -> ({
+ Part[#, 1],
+ Exp[
+ Part[#, 2]]}& )},
+ DisplayFunction->Identity,
+ Frame->{{False, False}, {False, False}},
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Quiet[
+ Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
+ Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
+ GridLines->{None, None},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ Method->{
+ "DefaultBoundaryStyle" -> Automatic,
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
+ AbsolutePointSize[6], "ScalingFunctions" -> None},
+ PlotRange->{{0, 10}, {-5.314322104427868, 2.9334021735712823`}},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.02],
+ Scaled[0.02]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->FrontEndValueCache[{Automatic, Quiet[
+ Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& }, {
+ Automatic, {{-4.605170185988091,
+ FormBox[
+ TagBox[
+ InterpretationBox[
+ StyleBox["\"0.01\"", ShowStringCharacters -> False], 0.01,
+ AutoDelete -> True], NumberForm[#, {
+ DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01,
+ 0.}}, {-2.3025850929940455`,
+ FormBox[
+ TagBox[
+ InterpretationBox[
+ StyleBox["\"0.10\"", ShowStringCharacters -> False], 0.1,
+ AutoDelete -> True], NumberForm[#, {
+ DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01, 0.}}, {0.,
+ FormBox["1", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
+ FormBox["10", TraditionalForm], {0.01, 0.}}, {-6.907755278982137,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-6.214608098422191,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-5.809142990314028,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-5.521460917862246,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-5.298317366548036,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-5.115995809754082,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-4.961845129926823,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-4.8283137373023015`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-4.710530701645918,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.912023005428146,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.506557897319982,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-3.2188758248682006`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-2.995732273553991,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-2.8134107167600364`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-2.659260036932778,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-2.5257286443082556`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-2.4079456086518722`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-1.6094379124341003`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-1.2039728043259361`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.916290731874155,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.6931471805599453,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.5108256237659907,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.35667494393873245`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.2231435513142097,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}, {-0.10536051565782628`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 0.6931471805599453,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.0986122886681098`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.3862943611198906`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.6094379124341003`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.791759469228055,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 1.9459101490553132`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 2.0794415416798357`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 2.1972245773362196`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 2.995732273553991,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 3.4011973816621555`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 3.6888794541139363`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 3.912023005428146,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.0943445622221,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.248495242049359,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.382026634673881,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.499809670330265,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 4.605170185988092,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 5.0106352940962555`,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 5.298317366548036,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
+ 5.521460917862246,
+ FormBox[
+ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
+ 0.}}}}]]], "Output",
+ CellChangeTimes->{{3.817115095977895*^9, 3.817115180281933*^9}, {
+ 3.8171157943248043`*^9, 3.817115819385768*^9}},
+ CellLabel->"Out[47]=",ExpressionUUID->"d758ff21-6281-4951-879d-9a8a224caf38"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"R",
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}],
+ RowBox[{"1", "+",
+ RowBox[{"0.5", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}]]}], ",",
+ RowBox[{
+ SuperscriptBox["R",
+ RowBox[{"15", "/", "8"}]],
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "/", "1.3"}], ")"}], "2"]}],
+ RowBox[{"1", "+",
+ RowBox[{
+ RowBox[{"1", "/", "0.4"}], " ",
+ RowBox[{
+ SuperscriptBox["\[Theta]", "3"], "/",
+ SuperscriptBox["1.3", "2"]}]}]}]], " ", "\[Theta]"}]}], "}"}], "/.",
+ RowBox[{"R", "\[Rule]",
+ RowBox[{"2", "^",
+ RowBox[{"Range", "[",
+ RowBox[{
+ RowBox[{"-", "2"}], ",", "2"}], "]"}]}]}]}], "]"}]], "Input",
+ CellLabel->"In[22]:=",ExpressionUUID->"41ea287c-9ee3-4b18-b17d-5dfc6a4e056d"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}],
+ RowBox[{"4", " ",
+ RowBox[{"(",
+ RowBox[{"1", "+",
+ RowBox[{"0.5`", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}], ")"}]}]], ",",
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}],
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"1", "+",
+ RowBox[{"0.5`", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}], ")"}]}]], ",",
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}],
+ RowBox[{"1", "+",
+ RowBox[{"0.5`", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}]], ",",
+ FractionBox[
+ RowBox[{"2", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}]}],
+ RowBox[{"1", "+",
+ RowBox[{"0.5`", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}]], ",",
+ FractionBox[
+ RowBox[{"4", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}]}],
+ RowBox[{"1", "+",
+ RowBox[{"0.5`", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}]]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ FractionBox[
+ RowBox[{"\[Theta]", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ RowBox[{"0.5917159763313609`", " ",
+ SuperscriptBox["\[Theta]", "2"]}]}], ")"}]}],
+ RowBox[{"8", " ",
+ SuperscriptBox["2",
+ RowBox[{"3", "/", "4"}]], " ",
+ RowBox[{"(",
+ RowBox[{"1", "+",
+ RowBox[{"1.4792899408284022`", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}], ")"}]}]], ",",
+ FractionBox[
+ RowBox[{"\[Theta]", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ RowBox[{"0.5917159763313609`", " ",
+ SuperscriptBox["\[Theta]", "2"]}]}], ")"}]}],
+ RowBox[{"2", " ",
+ SuperscriptBox["2",
+ RowBox[{"7", "/", "8"}]], " ",
+ RowBox[{"(",
+ RowBox[{"1", "+",
+ RowBox[{"1.4792899408284022`", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}], ")"}]}]], ",",
+ FractionBox[
+ RowBox[{"\[Theta]", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ RowBox[{"0.5917159763313609`", " ",
+ SuperscriptBox["\[Theta]", "2"]}]}], ")"}]}],
+ RowBox[{"1", "+",
+ RowBox[{"1.4792899408284022`", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}]], ",",
+ FractionBox[
+ RowBox[{"2", " ",
+ SuperscriptBox["2",
+ RowBox[{"7", "/", "8"}]], " ", "\[Theta]", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ RowBox[{"0.5917159763313609`", " ",
+ SuperscriptBox["\[Theta]", "2"]}]}], ")"}]}],
+ RowBox[{"1", "+",
+ RowBox[{"1.4792899408284022`", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}]], ",",
+ FractionBox[
+ RowBox[{"8", " ",
+ SuperscriptBox["2",
+ RowBox[{"3", "/", "4"}]], " ", "\[Theta]", " ",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ RowBox[{"0.5917159763313609`", " ",
+ SuperscriptBox["\[Theta]", "2"]}]}], ")"}]}],
+ RowBox[{"1", "+",
+ RowBox[{"1.4792899408284022`", " ",
+ SuperscriptBox["\[Theta]", "3"]}]}]]}], "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.817114937425263*^9},
+ CellLabel->"Out[22]=",ExpressionUUID->"7b8e54ff-34ea-444e-8e78-ad376945c6d8"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Series", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}], "/",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "/", "1.3"}], ")"}], "2"]}], ")"}], " ",
+ "\[Theta]"}], ")"}],
+ RowBox[{"8", "/", "15"}]]}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "\[Infinity]", ",", "1"}], "}"}]}],
+ "]"}]], "Input",
+ CellChangeTimes->{{3.8172026520938797`*^9, 3.81720270842931*^9}, {
+ 3.8172027470464478`*^9, 3.817202758542193*^9}},
+ CellLabel->
+ "In[167]:=",ExpressionUUID->"77ced036-93d3-4558-8eb2-1aeeb8345ed7"],
+
+Cell[BoxData[
+ InterpretationBox[
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"0.13828470304678664`", "\[VeryThinSpace]", "+",
+ RowBox[{"1.3156910632310723`", " ", "\[ImaginaryI]"}]}], ")"}], " ",
+ SuperscriptBox["\[Theta]",
+ RowBox[{"2", "/", "5"}]]}], "+",
+ InterpretationBox[
+ SuperscriptBox[
+ RowBox[{"O", "[",
+ FractionBox["1", "\[Theta]"], "]"}],
+ RowBox[{"6", "/", "5"}]],
+ SeriesData[$CellContext`\[Theta],
+ DirectedInfinity[1], {}, -2, 6, 5],
+ Editable->False]}],
+ SeriesData[$CellContext`\[Theta],
+ DirectedInfinity[1], {
+ Complex[0.13828470304678664`, 1.3156910632310723`]}, -2, 6, 5],
+ Editable->False]], "Output",
+ CellChangeTimes->{3.817202708548201*^9, 3.8172027589878483`*^9},
+ CellLabel->
+ "Out[167]=",ExpressionUUID->"49c3b3ed-cf01-4c58-acac-6b3b7b9cb822"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"ParametricPlot", "[",
+ RowBox[{
+ RowBox[{"Evaluate", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"#",
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}], ")"}]}], ",",
+ RowBox[{
+ SuperscriptBox["#",
+ RowBox[{"15", "/", "8"}]],
+ RowBox[{"(",
+ RowBox[{"1", "-",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"\[Theta]", "/", "1.3"}], ")"}], "2"]}], ")"}], " ",
+ "\[Theta]"}]}], "}"}], "&"}], "/@",
+ RowBox[{"(",
+ RowBox[{"2", "^",
+ RowBox[{"Range", "[",
+ RowBox[{
+ RowBox[{"-", "2"}], ",", "0", ",", "0.25"}], "]"}]}], ")"}]}], "]"}],
+ ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "0", ",", "1.8"}], "}"}], ",",
+ RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817114761613014*^9, 3.817114948608783*^9}, {
+ 3.8171149809613123`*^9, 3.817115008081002*^9}, {3.8171150682175503`*^9,
+ 3.8171150688968678`*^9}, {3.817202394207995*^9, 3.817202420024646*^9}, {
+ 3.81720249085142*^9, 3.81720252137018*^9}},
+ CellLabel->
+ "In[165]:=",ExpressionUUID->"1dc20dd2-2639-4b38-8eb3-e39481c6a15e"],
+
+Cell[BoxData[
+ GraphicsBox[{{{}, {},
+ TagBox[
+ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
+ 1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
+1:eJw11nk8VF/4B3BKSqFEIaRFFJKtVOhTspSECH1LhRaRsmSJZM0e2SNZ5iot
+lizZmWvsS4xKqSQmJZLSKlL9Tr/f6zf/zLxf99wz957znOd5Vto5m52YxcXF
+5cnNxfXv+/8+3fj/X0Y2ttZ//7JhF/elRDl4DpQCQ1x/E2seKZzYELwEt+2c
+ME1cHerKdWzVClTwLG3+TpwRd2tIMXgNbOyD5kwQq236b/v3IXlkRhb9HiF2
+y3d7cXiVMtzPZhcMEi8+9+QT/UgVnMUHxHqJ5Y9eurcieCPeerG3PiD+/qZg
+xF9tMwLS+ZbWEd/xuuTYP7QVxcG8d4uJvSPVebYkauOCfPOPbGKTXV46u1dt
+R1/crpkE4tt/JvrdfXbgUWV0VRDx4EpprcxHOgjZ8+8F2bBOmnz1KUgPO0rH
+dxsQ9x54+GVJnz6SBrTHlImznJn2W9V2gctT9gAXcfBFFWG/IUOIvWauHv7D
+xqN3w2LpmkZoFVx2u534ZZTg8qqEvfhwR6zvCnFjScTrHytNYSNWE+FCrMy3
+SGJWlymcDFZ9NiG+99FvFb/PPux6t+n9fOJl/XpnJB+ZYcn/Ljgba842XlcM
+ssAOxtZpA2LKse+HopIl5jwpk5MiTu/fwlR4YQkzv8m8hhk2dl2bOSajegBc
+z1JtuIlHE9+Wcr0+iLcmDmmdv9joO31J5mv0IdiF/4pJIS7LbMsY2mINac1T
+WfLEp+I8Q5hxh1Fw698Gs5Fk+9guf4UNjGR2neEmnjZ/LZXhaYMA2wnZ+ik2
+5o98zY9+YIMCqYhGELcXlKk7nLeFdHrfbYWfbMxqH1QR6raD2f8GCBu6DycT
+pP1PIHaq4YYT8XmxZZ5qL0+AtXakWIh4ep5viN6Wk+Ded3Sv1Tc2hOPe8h//
+ehLfWudd6P5C4m0s/U2E/SnkWO6q9PnERo+m+HtXk9OQ87LcxkfMkt3263je
+aVwPadNJ/shGtr12rQWfE447vWrLHWfDPrlIXbnBCfa2Dd2NYyT+LGnR1k1n
+oTHqzSp4x4b/OzcXZowLZkaeaq0h/iZsnb+61gWlT1M0rg2zUc7yvxQ25oI5
+vnty/d+S/fsx+tlwlytEP56O2jzERoyUq3Udtxt4XVKV7F6x4Skawmfnfg7C
+YzlcSY/ZeOWfGn3igCdaDi5mvXvERtCiU1OhwZ5Y36SguoXYalCQlVPgiYWR
+p2SfdbMReVfLisPjBdkePiveLjauDPnq6xR54a7D2LPVrWyg5t7pQj5vcF+T
+P3qsmsTHnf47cpUXMH7UYuPlKjZWvOF3FnxzAZdXKNWUVLKh18SW/yroi/64
+0b4/5Wy4jNh7lx33xRP18GMh90n85+ktk1l0EeK+xxPM89ngn9V7M+WkH74s
+TPX4ls5GHX3ryEh4AAxOlDr/vM7GO5ME0c70ADQ4h8r9SmPDxkr/ZmFxAJRu
+6HfPpJL35eLf4v4yAI8jwfs5iY1VSpZi4xsCYWkizJMezcYet1H7G08DYVCq
+YzDbl9x/U65v+epgnLn3ffKVD4nfq167+zSCUX3k8MlKbzbO5jyzTjYKRttL
+Q19HLzY+7+l1mucZjBLLjMu1bmzwrJs772VrMBp2yEHOgZzHXPV+nL2Ejm91
+Y/Ms2Eh79jr+U3kI9OsShLPM2Tg03XdPsysEu83W1m00Y8NW0Hgm5E0IhtqS
+b1mbkPOuxiW5RCgUTnMj7qXsZmPiotkOKcdQdFfXZ7dps7HZ7aj3Y4kwvOaL
+klq4ho0NXelG7RfDIa/pbLn2UxcSuBvHPDWj4LB/zmr/8S749XA6O0yioPvd
+8GbPWBciHjoVLT8ehe7ON+0XRroQJ3vNk3k5CpovzK5VcbrQuJO7621/FGxt
+xAynH3ehMNTb8pH/ZYys3D0eWN6FNIGeKdH6aAx779Ap9unCuwUr3P9Kx4Jn
+XvxI1PkuBI5PfSuXj8VmzS/zj3t2YaqjbaHzxlhwYjkNC926MHn40MLnhrHY
+NHWB18Khi8Tp/WXXPWIxUZvZlWzVhTP7qkL622NxUzTbcVK1C+yox6367nHg
+5099qPi2EwJZDpwL9fFg3Q3fW/S6EzHp/n3Ug3jI6UWbqw924sPVJrQ+jQfP
+mSe/N/Z1gh0ht1NwjDjCtkPuYSe0YtdLhAknQPLLKcOmmk48vpoAheMJKAhX
+f/YuvhM/F5v3bOJJxIEWpmrH1k5cYP3ilkMSqooi/nSEPsBAmuKNT55XoVXq
++ZTK60CV+XBUDDMVT/xMzY93tEPgYMyp6do0JGeGLT34og3tGqf03semI6/z
+WrPo0zbsEalbE5KSjvMp3r8fP2xDp96aPVJZ6VDiufbXoK0Nx4T32erdS4ek
++kmL5RVtOGhYl+XemY6p7woGl5La8KH4cooxXwZKuM/s3GjSBv32/7pH/TKg
+uqUpQ4HZimWfbl0Kt83EGZN9Zi8qW5F3Q0pz0j4Tum/O1YaVtiJQ3t/62NlM
+tEf4Vr3Ka4Wu47eXahcyodSYZnIxrRViQhvo0sRM2P0QGvY93wpOifRhrZZM
+uJj2N4SotMKN165bbkkWZPo+6TAzW/A7cOiuinsW5sbJLCu/1oJPc/SwzysL
+0uXnnQuSWjC2z17V2ScLE+b+iSlRLfBXn1bNCcjCku45rQe9WlDXlHeFKzoL
+bo8me5KNW9C+5vXukzezcPqvc+j4r2aM63pafunJgu10ocESs2ZsNgjz+qzE
+wPd72yebjZoRIvdTJ0WFgYnwMVUvg2bIdSsc0VZnYPnNeOPHWs14cmhWUNAW
+BoxCZUV95JrRGOrr9nMnAzwfjo8HzjTB2kf2SvwBBh7pahX43GxCvvmhC74B
+ZLy9Mud3ZhOczk7/9yGIAcV8ZPlfa0KvdYL3wRAGZLLv1ftdacKK5OfeKpEM
+jGo8STnt3YQTN1pc2xMYeMCjEfnXqAlr/XN7b+Uw8FnBInDR10a03b4OgQ4G
+bhtvF2oZbwRzseyG5Z0M8CqUHfYdaURgJ3/0ejYDZYt0FIf6G1Hl4hZv8JgB
+zpUXmYzWRigIrKg81cfA2cOCHE56I0yvCq06OsaA9cbADmeDRkxUldaLz6fw
++nLDh987GtH0c07j5AIKghmx7ZFajRiwLZXrEaBwcLy9OkulESqfi0TChSgw
+UedeK9EIz+xsn5diFGpK8rdXfWoA28RzlYYchZhnCdtZyQ1YGL9dp0iHgt84
+b1R+bAM8Iy81+OlSKIz7eSAlsgEecgtNDfUpDIRZ+Tv4NeDYHcGIvt3k/xR4
+fkydaMBpXfMzw6YUHhiLRT1Wb4BE/NOE9CMUkuYq7nd4WI/0Y0N/o89T6OVx
+FZTtqMdMBntGwoeCdZy6EaexHoGmpd9vXaCgdEDDzLyiHiouwc8r/Sh8vK4Q
+viazHkHiLYeaLlF4P4udFuRUj6Eu9oBPLIXO7dx20rz12HSdJ9o6h8LXdfsS
+l3HVY1zJnifhFgV6YtUFkWkWJJ+O57XcpqAranSS5yML87Y+v6KQS4G39X5x
+zxMW+rfrxfffo2BbMbBa4yYL07H/qb6voPDowt4MqUwWWpj7o2dXURiW1O6c
+lcpCiK2msEQ1hT+TjF1tl1n40K+VoVtLYUgoqFTfnYWdaetzAlkUInrS7Gfv
+ZJE+NV82u42Cjpuc/BMtFsq2lXNntlNgjKszbm5i4cibc9ypHRQMLz7J05Fn
+4XeY15mwTgrmXOu3nhFiQU+86cPeh+T+pI3rLw3UweWujUrgM/I+AgMaO57X
+IVjm09qjzymM2c2fnHlUB7eeyW2aLyisvTUc79JcB+6C0cbxPgpWCaXbd+XX
+oUDZab3WANn/6Tz3Sp86VFY9Fvd7S+GmnjHvi3N1KGo6W7l3mMJS04rFU051
+uKppLinxjsLs7OE01aN1qHj+e929EQqLduQ5J+ysA2niLWvGyPof7pPk56/D
+/eyRcMfPFKiMeYdE5tRBL6925dIvFCy1f8ttmqHBPfzZgyaOr4z4YDBII+TI
+ReMF3yi4UO4/9W/TyPfTLw77QeJ1Y7xEiQaNVrNHTxb/IutD8XyOX0eDVaM9
+mkocEz2vxlmCxorlywuXz1BQHGxUXfGXCWrzTsuVvyl0eSzMtm5mIvOd7o/5
+fyl86xVYI1PBRLmc31V/4u6K9Osjd5iw0NEY+Uyc9cPV6VQ0E4XnlZLZXNmg
+7D7E7NzPRDuP1VLnWdmwqfKs/aLHxA+10jUPiZ/GxnMyNJhoXpExqDybuNJv
+/sdlTAzcWGI1SmzDb7Iwjp+JiW85Qjo8ZL7+Qj6VP7VQd2/1SCHeOrN2wJ5T
+iyFX1uZtc7IRvxtVfx7VYumdtORo4owl7yLjG2uxIHDB9RfE3evG+Itu1aLj
+UlHaGd5sJOs0JbSdqUXoDy0br7nZeLlHio46Wov1PKLPiok/OkrNGO6rJefY
+ju8D8fn3S3Lr1GvxtfVsstU8ct1QUMpLthZzWfgcQazKKsiSF6sF9YSaXUUs
++endy/BfNVj0GXuF+bLRmBOQpDZegy36kcFaxJvcWUf7XtUgfn+Y8zFiT6u7
+mgHdNdi5k14UThxkqrluVX0NLmypOnmX+OBR97WskhrYHOFybSf+E2yx5fDN
+Gkg+F98wQuzCfHXoR3IN+rtjsmbPz0ae4KLYy+E1aHd61yhJfN999Im0D3me
+ntw0NeLICcf1hadr8Hz9cZldxPJBicnah2uwl5Fy5CBxyrqTQq3GNUixeLjb
+kbh7eCDdZHsN3romv/Wa/2+/uLV6VGpwRMpFJZj4NtUxZrG6Bkr+w4qXifUZ
+2vk9IjXwYwb2xhMXlloFmPLWwHtWu/JV4uEB8RNtk9UwdDPYnEo8In3pEEar
+Ib4xaDyFuMwj+Vjxi2oscZtlmkxsxjG9uOpBNY6bmh6NI66wK7l9pbYaqpNf
+l0USv5+qfTtVUI070R5BAf+c46Jum1WN71sPJ7n/m8+hI7EprhqQVTM/SWyk
+08UrF1yNQk//aot/z6fsHRniXg1P8/ZOHeJB9QfSnBPVqBhKi1hP/NK4pXmL
+VTWyjX0/LiG+4efof2VXNWyqv/76RdY/RfrOGlWFakxtahVkETfH6gr7S1ZD
+PnGjcBYxUzR8cZtANZ5dOcj0JRaxn6u/f6IKJn/HeDf8278NO32SOFU4wzqV
+zUN8TUCu7vGjKhQxa9/0kngyW/AuwKC0CuZzhfZ7EQ/KN/zyzanCHIZ04E7i
+rTYG4feuViF0sdw+gX/j+Xc9XeBThQzxHc9SSfwuCm68uvF0FaJ+H4uxJr62
+cNTR2roKExZZbyWJRRzl9RnbqvCAK9QjmZwPns0GxvSGKqQykG9CzJTgP/Vi
+RRXCzNUu8RJfk4npnju7CufCRgXOkPP1RvOcB1oqoXTeI1iKnE/TB0lWBpWV
+uBUXVN9GzvNPr8I8o9xKLBAO+nCOWHBl1z2TK5WoEnn8l0Xywaaqu+IaVpXw
+CxET1+PORpZMTIL8bjKfqcjNQZJPdt11CJDQrMRcoZ9iPsQH5/KVfF9eiX1a
+X8pySP45P2/0QtRwBQRy+VnDJH8NGkVHOz6rQHdKdqArcWjeusUG7RX4MV9M
+bprku/haQ/ef+RWI3CkiPYf4tqzSdS2PClBepRXc0xQaRXx8DGdXYI6Pp3bS
+dwqyAlnVXN/L4TF79/I/JN82rmA63x8uB2v9m/7jxK2pr5VF2svBrfhpUuEr
+qeePHiwtjS3Hr+0ll7MmKDTbyLr6SpXD6BB7aBXJ9zICXRy+heXoNrgS7PCe
+Qn3PmaZErnJQn2fN5I+S/F2a9JYaKoOFboCHMqkXBczQiKw7ZaCtlAIkSL0J
++DB+dOXGMog3qWVGvKLw5tzgX8M1ZRid2D9zrZ/CDEMpy3VJGcw9NrffeUlh
+65d+Tun3UhiftyyjSX37ZhfusKysFA5Th+sfPKXgHsIfab6pFCG+otqnuyjc
+6Hq4MFT9PkLXiv9XRur1YsUt1SYy92Hdo/3KndRzReWZk0tF7uPeoRuNypUU
+PBWT6GtfS6Ayrl+SVUbB7PtiD//iEkgX7JtvW0T6rVbtzxUbSvBec1r1GOk3
+il1NlT7IFSNone98xxgKP5665zqLFWPWqkn2x8sUcg44RU3MK8YljR1wjaKw
+rajn3PvRIgxPF4g7h1OwKY8cZuYWwTpvuNg4iIKd6GXz90pFWMfjsTzdg1yX
+fbNnj1ohxnr9Rd0Pknol5rT6wupCPBMxNs8/QOaXazl8W7gQh733Kr6xJPV+
+4/j37+/uIXh6z31DcwoVdz0KuB2Ic7SFfu2hYKRdpLTcsQAHPjFyRrQoHOd6
+fPr0qTzwJA36fpOk0JNsvbp5Vx6iPqwSHltGYV5ySo/Eujwoz2w2GyD944Mu
+OZmK0Vx49B5rqxOhkLcu2+u+Yy68w/bG2fOTeLokMFF9+i5uiW9R1/1F+tfu
+Qllex9t4eapEUaOXAbFaldwwqxswaTRY9imMgf0rqzhP1G5ASkD3tjDpv7cn
+2SstX3QDR2Yv+m8j6c+356nMT2/NBq+OykoXXwZqkoM6zLeQOsa/b1uDCwN1
+h0U9bopTcJpu2jFA+v0Ke/HW4txMHDkSKjEmy0A41167ud7J2HHCMVKjKgtc
+J9fY/t52DnulPdghGZng2nnAZ41UDK12kJn4DOlYNDO8QzGHQetUJnG4Q68h
+/ET/6x7HXHqRp2JsyPWrSHT5VaK2oYTeUvZFzYgvEbHXN9d3e1bQiXOyJG33
+xOKGtm+y4oNa+u+XNectzofjY3Z1kheHRU+8S+iKCr6I84Lbbo4zG+lfIRfn
+8+0+BpnejEPrP7fQd/ffldGsOE1rGb62mZzVQbuG2POnPg+i9ZeyAirFu2hP
+xkLTN25XaGaFP9eqpm6aaTWg8l7kKj3PYHQW7fiI1jT1khZyz6C3HTpSthc9
+9N6dmjb9Adn067xE5ZWiT+nCRXbaTX9ukaFXBbuf99JBKfP1pdzz6GVyApZ/
+Op/TXqWWN5Q7CmmXxbH5Dbl9tLHOUircooRurLOQ0Yvsp49+OXDw1I9S2tOn
+O7Hh+gCd/uCbzYufFfTqlwIVmzoG6Rb2mzchH6vpqZ/ulrnsQdomrENTeKaa
+5vibHFrRM0hrCrlfzuaroQc7jqQs6B+kWdskJTtlauhs6+GB4Y+D9G4v3Zmd
+h2rojbapNwoXc+hmwe5fda01dNiPGJ64gxw61Lro6dTNWtre4pjr4qMcOtXu
+8PvhklracnmubuIxDr16/wGuXlYtffJj4vJUJw5dd91Iva6/lt4d9jDzlh+H
+1tx6t6FsCZOWuP6xt5fi0O2WS2rUQ5n0n7Sp3KO3ODRHlSVilsikP885P/wu
+l0MLhs1yd6OYNJ8YO2bqPhm/1cqghsmkZ9SH81a2cOhRvcZd7pNM2jbk8v28
+Dg5dduBq/505NN2LnFWbuzn0yLrVF14L0/TXL2qqps859LW7ng+tlWk6dezW
+45f9HPqeQktkxjaaNjW+0ufwmkMbC77eO2RE06IS73dPDnNoveoFEgqHaPrD
+vorlIWPkelr4Fw8Hmv4f5buVLQ==
+ "]]},
+ Annotation[#, "Charting`Private`Tag$15353#1"]& ],
+ TagBox[
+ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
+ 1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
+1:eJwt13k4VP8XB3BbZQ+lJJTK0oJWInonoSyRLUQRabEvoShK0iLKEpEo28xo
+kSVluzMYW9axlC2RXWmzpfC73+f5zT/zvJ6Zufecz/2ccz4jfdrd5AwHGxub
+Lzsb23/vogU7eBeWtoDt/6/YqmHKPGm+SysCfJgCWPmHJ/Qf6ZwVXS7eTElE
+6cc/mSO9uqkHomayECKipmZIH736Z5c7UwH3TP/cniQ9tp0V6pC4E7w8dSd+
+kF7c2LdO0EwZN3t5ncdJCwQlbirgVwP7h/yCQdKEvLfxSaYGAr/XafaS/sz5
+7RU7cQDT8sY8H0nbsD9dZpp4EB4hEGwivTk4QiDV7xBGFxKMq0g/9p5I/mmq
+A/vE000lpHka/zzev/0wOiwf3sslXRk62n+bXw9Vygfpj0kHs6zKxJmG0Dhe
+uOc+aXkjAzG7p0bIiX8ycp202mXO+OZSYyRezVrqRHqTVregcKIJBDe2elqQ
+Lnou9FHxtimujZwT1yFtJJy4X9/PDGfa2zduJL0yZ2NKkKkF2hde3RAiHddn
+fSlO8zh0D09tmF/SAsYvq+cvlCwhu79idSvp5ynS3a181ujO9+73J3370uRt
+/gpbHB56oWhHupPrlqVozknkqZi91SG9AVV/1qacwm2NwRBh0qmmtnuFS+2w
+rU3sXxJXCzT1arbyJJxGtEDeriDSUt7GPzmFHTDnVEQ5RXqddbLNfJgDKgMF
+9aVIj5vXc3y96Ajz3ZUeUZwt+Jk1m1JwzAlvfcqiXUkbuRpQMqqdsKZ9y6Qu
+6astHcIxOIuuv3Cd42jBk2udo+cVzuF4S8ABC9Ja/BwMNp4L2JGj6jzK1oJM
+0VOUFsIV1lPu6nmkI6q4DVMPuMFt7bT8VdIl9gxnD4YbbIV+mS4nLXrX/CtH
+uTsMkig/ZRdZ2Jl1eojziwcuagkZbJ1noXbOqKl80Av2+YdYw/9YyEy8/W2l
+rDfUeGu8U0l/li/wdHTyxisbBrcYaU/Z848WhrzxMs3j8vQcCwHBNxulRnww
+Ta8JvDXLgrxWrDTvmC8y7P8VKJM+qRQgjy1+ODh4VXBghkXuN80DXhf8cCDW
+W0CddIjrWDhrzA+G8WtN+6ZYyD7CxxUw7o+8LU7zbL9ZmErwy3P6ehnZwYP1
+MV9ZgKr7xZCvV6G/eKRWgTRD0K52l3wQrEINFpnjLIz1d3X0OQShMXPriskx
+Fnx6vq9S6QqCmI5Jv84oC4n7fKr6HYOhMHJAqmqQha/37hqrmF6DdVkq/85P
+LDyPWG86qhgCfaUaiZweMv8quZF4gxBkp4af2UHao8N+pe6FEDQ/+5ai0M1C
++fbnm5PTQ+A1t5qQ6GRB9uQR3v0SN6C8XPBRWxsLAhs3vtvNEwpGQ1D56zoW
+NBpxabrvJnKrJkbWkm5ZHZ38eeEmLicXHg19zwL/pga5mrVhuDF+rsu8loUt
+sYXmseZheDC17s+3KhaeqWV8W1MThpDmGe25MhYSHkaD9eoWWihHZULesuCd
+KzX3I+AOLAKtLNoKyPglp2xT4+/glSKjSpa0RmFWn2n+HXQrZTpX5bNw86H/
+gVcTd6CYVl+wmMPCd41aaSP7u3hpdsPe4AULWw3E0nfohGNlW/yc+VMWpMMK
+1L0FI3C/wdE5KIWFqgM29KMKEQifyZ7LTGYh/N1GhpxBBBY+1PhMJ7HQ2ftA
+iXU7Ai2s+fZbCSxcLN/qy70kEvuz3UxDollQXmpjMzsXCTFen22NN8j1KnKP
+OP/rPrpVBU6VObJw58c/vx8fouApk3SX6cCC9RI3To6hKGyTYP6uOs3Cg+5o
+BZHJKIhu7fGttWNhV1a+laJQNHIbFA5X2rBAFFj+Nj8cDQmFY6sfmbFwncNM
+3f5tNFJ1Us5mabFQx9GVYRcXg5tfTzVdX0fm17jsa6XxQzR+7InaJ8VCv/Ve
+4aRTD2Gol+32W4LMx39Mx9PtIQaLTbzsxMn8Ne0+rQh/iNuf71GVRFlYPuAc
+p1n1EBnSPR+e8bKw7SiLbb9GHLbf7d3VPdkMmQ8mcq/l4nHtr/doQmUzGrO7
+fHdPP8Jv/W3c0sxm8J5uVNbkSoC5beThjPJm5LjKMfVFEjBSZq74kt6Mk7bd
+utaKCdB59OVebmEzaiQPMGycEjDsxZkU87IZi+s2Oky3JaC4w/Tvq9hmeIjM
+2HjnJuLlRZW3+vbNePG7bUr/bBLEpZ27D003YfXnRe8w9RSUbv5HD/dpwjv2
+NIOTTU+R2HupXb2nEX7fzr3BzlR0e1kejyttgMDa3E1WF9Og1/az6Oa7BtxK
+0NV/fDkNazfPnvLJa4DBpr0RPUFp6EvTd9KjNcDk+n0n6ztp4Pkm4NIX24CB
+R61HNZLTQBCLJ4pcGmBffsI5szoNdLf4eqk1DZi2/6XJLZ6OTb+TZlJd6iHd
+m9r84U065A/V3r52th5+zmu09YvS8Yh5Ptb2dD0E5dZ9LybSwbTiWCNsWY8C
+VtFAQnU6NKoeNZ/Rqgf33ZO6mp3pKH1jz125ph78s67eKvPpmBk2D7dn1oE3
+7OMrpmYGEN34jUusDt3RcxwGzAwYcnaq8YrUYSaxJuJJTQaeyrCXCPDXQYx9
+S8dEfQYkr6XbLWerg0XXWMat9gxciNaRmR9+j86k4BVPhzNgJTOWer3gPY7X
+JTxy5MlE4MIb3z3m72FndeXJDv1M9IWe9VK7W4vi0LickqpMLDpqS4/fqEWK
+YuKq8+8zETfzWTThai0YZR6bRBozoaJyrOmXZy1Cxzn22bZnQmb9qjuRlrWg
+TndpfhjIxIf4HcK+MrUQypaVs2anwFfmletMSQ1iYwzaH+6loNZbq9WjoAY/
+lp9Tmd5HwcOLscEj2TUYcelVMAUFKdFeNFZqDa7ymn5cokOBo6qwVtTtGrTd
+dRI+akoBsfVzWKlZDT46cIWed6UgJ6vi1PvRapw9emS2KpmCS1nbu659qYaP
+ueRs6jMKePgn25R7qnHugWTdlXQKgr8HH3ncVA2ViMiJLVkUVCBX3rygGh+G
+cgWd31CQu+Ry1dUb1XBwb9K9XkeBrNz9m68lq/GiYPwv9wwFPRj5qrK6Gl7d
+S4Kf/KHA+l0cq1ioGu/O5lbt+EfBi4Z/a8s4q7EQl598jJ0K2vXejMLRKnTQ
+mhx8+ajgE1qW5JBfhYXJXdWm66hwoH/ijdWvwvIpTTtrbSpWRzv9tT5UhTR/
+imCHLhXDZ9zk1mlUoYhNnNtcj4ouvoUdzxSrEH/Fv+OQERX8VpLC0cJVUKlI
+/MJpRcXD2RMz6z5UwtniAPuiMxVqBh0OQ3aV8FwjTx+IpMJ2g32Ft1UlhrTz
+w/iiqHg8e85u8VgldnusD1WKocItfVZPWKsSwZLjUu7xVBxnExtbJ1MJrou1
+RXUpVBgXWRiPjDAhPXpxKftrMh7t1mIZdyYCPTI0jjRSkf1zz9n5s0y86Z0c
+nG6iQm7aLqzFjgmLrfkCz1hU/OFesTnAhIkmM8eOH21UyFsM/yzYw8SDLmcT
+j27y9xHGj4b/VmB8eZzJ9AgVcRW6KRmTFfAc93gdMEaFhCm3pOO3CljFrQ9b
+GKdC4PKgX+enCujYdsb8m6DC//vy3DxGBRLCM7Z0TlIR6C+DdWEVeN0kViXO
+RoPn3pxnzKAKCFqWmPix08B9jDvwgn8FylITDZo5aFgVLnT/1fkKqIZ+unVl
+CY3sRw805AwqcPCEy8oCXho0OE1f1glVwD5r3eKLlTQcMLzoZs1TAUmpBoU+
+URoGv9ulDbFXYMsR8TLh1TSsRIzn3K9yqDEd1zivoeEvl/OD5W3lkDzw2ntB
+kobfih1D3+PLcSc++WSmLA0Bf3ujyu+XQ6E7M7dSjgaGCJ9H7K1y6DLEf/TL
+03BNuqFkl385Is+FSIhspaGHWJZpfbwcUbO7t+sr0cDFdiT7mGg5ft0kqHIq
+NJzwj3HjFihH8jL9jaJ7aXDfx3WyhKscGfyGlxZJNzw1bpKeLMOVxzMFtWo0
+nPv+mKONVQanlCKXffvJ9YngfDIQWYaXT9PFQw/RoJgT7XY1rAyMe148B7Rp
+EJE+7LEqqAyr+hg1M6SX90ou03Qrg9qbLcW2ujQMdwVeDzYoQ9jwHzNOPTJf
+c6VuvkNlyOl8WZxGmhBfejZ2XxmiZF1+HNSnIfzGeqHULWWQYRx8d9GABvYO
+7mwKdxmyG3aX5B2lYYrSEyXDVoY7Zuxe6kY0UMvbM1JmGLi3yeYbnbR2x57T
+D4YYIBIXd9ONaVBoTeRZ9okBPWJ0Ue0YDW1rZPsvtzGQL5MekUPaMjRT1raC
+geFc1mScCQ17sp5EvS9igNdyqHaJKQ1NawuV9uYyUKkieNqDtHqP7TzfM9LP
+epr2mdHw7bPlUFIQA+O/jZKyzGm4PeW6QtaPgU3G9NF50s191tefuzHwcfrv
+ckMLGs5qFsvk2TJAzdcY7iOdm7fdeo85Ge+q2Ydyx2l4uRjYlGfAgK7ZkOQF
+0pkSSddf7mPg2XTly0HSGRMepfK7GHBPcy2QsqThWLyE+tMtDKTRs2PMSFPX
+pPxdvYGBYvcx7TDSL7z+/gtfw4Bqu0/tG9InUxUPsAkzECtGk/5CuihLlenJ
+zYDhiQE9fisaKu9KhPct0tFXdkV7J+lArQ8xRjN01Hk3CZmT/sQ631s0Qcfd
+KOXnPqQnVFudZYfoSNHiXf2ANNV/lVpkDx0hWenGNNIikdv1plvpyJ84bUkn
+LXtlw+MTdXTk7His0EJ6+OBXJaKcjpn4rMZ+0maf7y2RLqKD68i4xnfSbubL
+JK/l0GHmlO83S3rPM0vfXiodZ0QdAxdIZ1ZeE1Z/Sseby8f02a3J+MuuTzyM
+p4NR+OELG+mohycEfkTSsWzOWHue/D7fQX433TDy+rar3adJKzFjhJKu0rGb
+O9TuK+nFdVOTPy7SIbZ+UqyX9BUThbVarnRsrSmNa/jvfjYaIdGOdIzJobvw
+v8/3yyj0n6Cjxa5xMJU02+yAmJIpGV98Te7t/65/O1Dnsh4dEr/DtF3+u/+v
+8fxyTTp8Yx0T9ElH79x1lk+Vjp+p717LkaaoHYmMlaNDNW6PTDv5fJQ5xJZ+
+lKJjKVMomELa42lpqdgqOoZ/1CX4kR51ip6K4SKfV6uxAD9pI/GQ4ZQZAlNt
+dQ7N5H6RWxV5duUQgVVno/yiSfetffPrRxkBz/enWwVIV8g0z1u9JpA+LC1R
+Se7HxU+J4UQygU6ZaKkA0kGnDuwJDiSglTBp3EXu5wpZcaOuCwQ81jwKukna
+Pin1604rAjEGlk6KpKnxzJwPewi8tYu08iHrw0zyZNemTQTy7hQ5ivznYxlh
+biIEkuYuyLwg68mxStt5ZqIUivuLKz6S9fdqnH6yN7MUbCZc57nJ+rzP6Z1y
+MK4Ud7hfBMeQ9WxuGdHx7GYpqDtT30iSTnnLttP6TCky9tkGyJH1L2HWGpC2
+oRRPHhpaiRnSoGna5P9duBR1pzLN7pH9xCByj6sKeykijddcWCT7zfrSfeql
+vSVo5Nja10n2o6xpZe/MxyWQX6//0+0wDaI9gVs775ZgLDHrZR3ZzxzZtnXx
+BJRA4/fENTnSxDxzvZ1VCWIjOM+1kv3vRMvIoRHREnBNUDfyadEgPzb6wymi
+GLGLq76Mq9Mglly+7vyVYmjSQwlx0l/vL9U551KMgAoXqs4+Go5vrfa31SvG
+/Z+3UmNVyfmxT81v49JiaJhhg5AyDZsqOz5IXimC7Xhji68iDY+P6F757lyE
+TI/Uw74KNCzwSImXWhfB7+mNMq9tNPhrLlMz2VuErFPm5ae3kOt3t1rE4nch
+bCoujkmR8+bpnaXydecK8ehTj+Uych6ZqknSps0LEXA1UaxkLQ3rdI4lSmoV
+AjX3DN3FaZj0FH5vJ1mIi5/sV9aQ8+2J+K9Txc3v8DaYg9NEhAaO7N2nqlXf
+4YHrn/q3S8n9Pl6au2vZWzhstznf9pUKH8lra77+LkBzjnyIGDm/v2fZTaR8
+LoD2x/x/x0ep2NrjN7j4rgA6dx346wapeHF/KU+0SwGaeHXv3vpExbt96TKC
+zW/Qv5fD04Q8b/A/G847HpePgfjhLTIvqUgz+L7y2418XNP2shJ7ToWZioJV
+kFc+burLGHDTqJio049IMMzHy7S2gE/pVEj+WZGVxZmPtmNiUw5JVJw0b3q5
+1z0PCrXjray7VLhI/vk0r5WLh9X//NSdqEiurWYq7ciFr8iERJUDFf0FDfdP
+SuXiX/EDn6P2ZLwmV1pyZnPQ68NQNbWhQvX2GT7lFzk4qxzAv8eECqU5e+1M
+0RxI7pKystIg4x3n7d89kA06xbRkvTAVlRz1rQ7N2chxSpE1EiTXZ6qgNrI0
+G4Ox70wuk+dHGw9u+qf4bJxsPPizcgkVifnRTZaG2aDY66uqzlGgx5kpEuD8
+Crse816/1k9BJ37kRHG/gJHihE1SNgVhY7SR1u0U/J545Tp4kAKHvVzbTy+l
+ICT7zraf+ykI/7XCfaQrE54ZhZOzahSMZlm09t7MxBzb5Sf/dlKQsPP8vsvd
+GRjdKqrduoGCv5FlAbY30+GzM1e/gjzvJ93RYfa0PkPVe/WMZ8WZ8FqQnbnz
+LgFLA//V75LNRPu5hFXKX3zxzfByCF9fOla8fVzdP/yAGPd1uHlAIw1UPTEx
+vvk0YvONb4L21s8QwjBd7WKYTWjFvHG4bZGC2D9ZOe5Nb4gq7lrLwMJEZNvl
+9VevLiHeMH/KNpH/f90W24xKChjEBXUzztSJ++jrMr8YocUkrvbV/xZzuQEj
+kfAd77OqiXAxc9/z2RfgvoXu2e1fRwQsa6RqK3oTo38FP1OXNxGbG5P0dqy6
+QyxwcXzrGGwm2pZdetdZFksITV5/4PKzhdjf6Nl+9mcyseLEBe3GoTZib9GT
+0Zsi6cRkfHjQkpUfCeVpnorn8zQime7YIqXdSexZ5aQSmpBN+I+YeKyw7SaE
+Pv510s3OJUKdZP8NvPpEbLEJ5n6tUUCI/fq+nNvnMyGQwTqXzygkjqT7Xbl3
+v4+wG7evH3YsJfhULgT8e99P5PkUTN3XZRAK5vUtmbNfiLEmtj/tpuWE73H7
+g5PzX4if1uceqdiWExkK77docg4Qp4ZHDyc4lRPZ5uvPdwsMEMmnZtvOXCon
+gmKaEsU2DhA+Kh4vRJPLiem6wx2ZhgPE92blgI9j5YTB5vg86dQBIkvqcs94
+SAWxmTJke4UyQGzK/Vgcca+CGJ3jvdbxYoD4waf+eldcBSEm0bY7+u0AQT/d
+0BFCqyC2Gbqb8DcMEBOCRkoazRXE9gtFZ0T/DBCSr7aKrlzHJMzlzj73Xxgg
+BD4vPfFRnknYvh1x6eYcJHSVu98+2ckkpCxcT6QLDhI9tJ0lO3SYhEVw4IT6
+pkFir1TxNw9XJpHc3c6ZtnmQ2PUldlbbj0nU8y+L5lMaJKavDEhIXmMS7SMj
+Ut2qg4TQvaSc5hgm8TomYa02BonQF06bXj1hEl4rN0S9PDRILPy1z46gMInV
+54Kui+kNEpENpRYeOUwiKTLn63WjQUI94Plqs2Im8T9jY5FS
+ "]]},
+ Annotation[#, "Charting`Private`Tag$15353#2"]& ],
+ TagBox[
+ {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
+ 1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
+1:eJwt13k0Vd/7B3AVDWhEFGVIKZQUqaR3pIEy9RFSUjJUhpIhQxGSknnIkKFE
+IcO9l0TkcO81u6bcWwl9hKISlRS+8tuftX7nn7Nea59hnb2f59nPkbW5dMxu
+Lh8fn+ccPr7/zhxNf/u0Bzzw/f/x+3Pzj1RiHmulWHGSKDz+PEtIIR5uk7Qs
+SpLHYdvdx5OJBS1Ltt/9uAWXtlgqJRBvF9jqQktSw2czsdWxxMG/I5pXVe1C
+WY+jbARxSKiPecDHvehmWmnfJj6b8cLCbb4OTOd/8Q4gtuLdqMxM0oVMtkiT
+N7GfvElBp/Ih7Mt+reZKLNTmNDm3Sg/F8zWeOxAflBJzVfnnKK6zVI9ZEbsf
+vfvxxEdDJPfWCRwjHjG5LVZdYQwhi8n2A8Tvt/1cYDr/GIbtthQrEgtIsmc9
+kkxhPqXaKPnf++wcefz9x7FqpO2PEHGV40vpGGVzJI38mz6czoP8toG8J9QJ
+WEybSLwmvqM+Va2y6CQcHU7nsIjhq/X12bFTCLfUE0smVjJtkasYPI2UPoWx
+IGKT+C18aeJnwFf3sN+JeGqA03iq4gzYeQ6ie4jfunPZPAEbYEAztTWNh6zN
+7fzlibYYs/q1h0GsFCtz97KWHX6p6/+K/W/8XGOk/Ac7zPDVFpoSs267DIYo
+OWB27vyjTak8BL6o9tldeQEml5Jpj4lTDPPzPthcxOSuxs0BxOqdHrO3FzhC
+9/O063biTb9737QaO4FT8kQ2PIXMj1uXyIF+FzDFxI+cJf7fBU+BnpBLEHwl
+G65G7P91p9WulZeRdH7RyTf3eVBRHUhvenEZObMya8WIq66dLu2bdwVxPa7a
+55J4kPMSWNUa746FJzLnyhNHWDZWj31zx9eqvqL+RB42tiU+XXbYAwJm1z9a
+E7/ODpU/MuUBr3iNsCMJPNT7HnmXc/oqbC+Uvh2N40FKIPzNAgUfdD1Nup9O
+3LU1QFTwhg+quoINDIljKevVgm990DPjF5Ady0P/LlH7eXd9YXFifJNxDA/Z
+iweUu75dg6ndl2tOkTxMRFwcX17ij2YXXwgR293gZHsuuIEi25U/siN4KDrW
+xNe//QY6xZwV+sJ5uNwjkvY87AbMw1M7dMN4OKydut54bwBs2gWV3t7m4e9Y
+yQbNh4GIyl85oB7Ag6bd9g+9dsGgL2mwKb/Bg3DYIRXlyGBoTliPg9hQhv/z
+1dJghFpoGh/0J/F61jxFUOgWllzM/nzoOg8Sf++mS9FuoaTqZO5ab7JeOie9
+xyZDcHOPwvHVl3nYuX12v05YKF5cvLg18BIPJ6XnO5g/C4WldMzaYRcy33/L
+713sDUW7ZOT2YmceuPZiy+5uvYvcs9gHRzJ/sZlixZ13MSXjPbDRnofJ+TY1
+j6TCscrFxEL/JKkPYbU3BnIjsebHoXWJljyIMrQvDHVE4u1fC8HBEzxwZnNF
+P09FwpfRqHzNgtSPP86mbuujcCbwKzP9OA8V689q2nhEoYi9Sa3CiORn9zXR
+hWLR8H0Vqqi/n4fIIyPjF/6JQbBLh5evDolfr55/DjjE4FCMWv9TbR62acTZ
+S/vGYNztsLDgPh6unUh/2JoRg7H0gsLyPeR5lOpBmR8xcE121xxX5yE52G1R
+QFQs4ld9sn+hwEONX4v3juY4HB4XRfkGHjLXuMRH9cVB3FdCqHw9D4MeO8eH
+JuKwIPyB3/N1PFRLzHOPk43HNmbxq0fSPHjFntfjecaD5jqiri9OvrdMo2ie
+7D2YDKZ3cQR4eEGbU/3HLQHrpRdl0d5z4XhdsmRQJBnq/p7TQb1cdPGefbVS
+SIZ4wrHzZj1cfBmw2d25OxnHvpkF/+niYsH6hWLlZ5PxaHdUsyqPi1PW/Gmu
+hcko1K+J9Grm4tuSEcYN/fu4cHjXsFkpFwlfG+5I+afg0ovDQ2bhXFjumj/x
+uy8Nhq6aVe13uTDw8Nx3YyINic97go+EcuGfu6VHQCgdzj+2dmmGcCG+66vA
+IrV0rJZd8WRpABcWV9refwtOx00bqj3InYui15dD7os+wD2Pmotpllw0rMgS
+4ZU8QF63/9OUdVx8rJfnvp94CC0vnv47WS6uvBFJT+TLQE9BbZ+EDBdZDg4D
+RoIZ0B1xm4iS4iLuem5P2ZoMlBbMKXcX46LmVZarr24Gtut+pgku4OJW6H3z
+4ugMuJeNGl0e7sRVRV73hOIjKHCaLOWedqLJV+Z1mEUmfuUMXnqn1ImQO+xZ
+Ha/H+L0vd21i9CvUReSErnuSDam1U1HHfnSgYKNRzr9RuZC5/ja371AHgnSv
+JfIb56FuRruoV7cDcQv0vx01z8PSTd9pXdodcNhW9zjmdB4C/deFtWp2oGb9
+tj0rnfMwqfSmOk+lA8nGvu9n7uRBMShAUV28AxkyZ7UMWXkIU+wcuz7YDpvJ
+/Lkj2/NhY+VtMurXDuMFn0THhAtgpCRc3efbDtXM3CkJkQJILbA//MqrHW4y
+Zx2wqgBmQy5pRVfaIVJT0nFzfQH0TLgOF+zb8Ufao/u7VgHUXo5fyjFox9CG
+anFTlwKIzVw/7ivZjkROwSI1TgEWrHnhYV/chlTpR+U7gwphN/L36BtaG0wF
+OsXV7hSCL/C8iF5+Gz4/+2SqHFmIr79znBUet8GRNekscr8QmSs/mr9OaMP3
+h4lzKhiFiJDeP4/ftw2Ff7V7PPoKccg66lnUvjb87ls3orOWhnTl0WWjUa24
+/ePhAVd3GlKEcta63GnF0KIKvWlPGgaHrqz9EtCK33u/FgZ502CbtmO890or
+Yn40PIj0o+Hv+PU/+abk+hXiC+Nu01BlLGw7LN6Kze3ddwxTaDjDVKjjprRg
+3mJN7RAmDYsd+1aKxLeAa5KV182mYf6KpxaG4S34ojHjuLWOhgFLF0bl9Rac
+eEMb6GiiYd+b4spbp1tgO8Oiz+PSEBigvbtYugX6rn7mop9okI848fLmAw7Q
+cL702yI6dv7vJk0wiYNNJ6U0h4XoiF2xrysimoOsi2paHxbTIbvTrj06kIOP
+gXKVrcvpiLR3NAy05cBH6nN24io6aowdghZv5MBUhNXet5GOOMs1b5vzm3FY
+6PqI4UE6Itq10lY9boZyfGWuxGE6WsdGkmzTmiH7cOjdv3p0bNw4o/YrohnN
+1K1EJwM6Nvu8nuS73IyVKb2XXU3piH7qW8lUbcbQaKLBVhs6Xu4P3D5a1ET6
+tVVqN66R8cvpEuZPm9C0y1Z+tx8dP7vT+isymvC4fKv6D386LrnrKgVGN2Fz
+sVfJqSA6FNIUA366NKFj3w9FyVA6nnbbHHLd1IRRwSl3rQQ6RgSCtN6mNMLb
+s8VClEZHs/xQ70xsIzgR8p7RdDr2BKnYy9xthGynaZZwER2cv7YbrL0bYTP3
+ksbMMzoKxy46s443Iu3Z8zV15XQEUx/EFJY04lrZwrCZWjo8FwW2WV5vAFdf
+svz7Ozr8hZY3vnZvgFPcq4WSPXQove/4dsypAbmpRvd1euk4P/2tbP/JBjzO
+FgsP+5fcv+CO2dJdDdApckoSGqTjjbNujuF4PSy3vp9TMkLHzB0+s4Iv9VDY
+tv4S6xsd1VdHNwv316Po7S7J1lE6VOvtrJnt9Yh6ZbKl7zsdGXuK6yUK67E4
+uFV97BcdbW5vip0v1OOIe7Jn2Qwdi3OrRWln6lEbKZWZ+5fMD70nfcy8HhIa
+XoLJs2R9dxRoOB2sR+OHvTfc5jBwToTubLCuHvzVKQLLBRiwlNz783l3HRS3
+bJefEGKA5mg6v+dVHZrZ6YxGYQaehKfq8jXV4RRnzC11MQPXD9braJfVoW2E
+Ga61lIGyu/4H8uPrkO/3QuT8Cga8bT1sNxvWwdcjUsxegowvPbHFQ7cOXpYl
+n5RXMWAcxml/sbsO0Zku8d+Jr02ez4JCHe7/UxDgLsnA20cX/FX46nAnfEPU
+mbUMZOyM+fuEXouW8Z7V7esY2DMZeJbzpBaJbB1nD3kGlO/yp42l1sL/SWas
++HoGFq978WhraC3kYnwsj29goFNutO+eTS10HJVYJRsZcLa5sel/K2rRR7t5
+b9lmBs7u9Fs/u7AWHkc+jEYT570Xnp79W4MNT7LFlm9hQCeje9v05xqcDg9l
+L1RhwPX3Ae5rZg2ygq0zerYysMKiMbWhtAZpSZSJgSoDgqHvUVZQg6IDlQ0v
+iKfOViyLSSY2YSyP3MZATx8GN12pwZ0c1XEpNQYUOfo+gudrMPBN550Pcfud
+j0NDVuR9jzaG8Iglr7YdS9erwfoDYUoh6gxUPllreBU12JYtvq6buDxnRs5A
+vQY9djE9W3YwwJB1OfFDpga3ui8ncYjzE2ZfVK+swUGhD0mrNBiY7ZWdiBCu
+gdwNq5PniDP7JCbl/rBRqBAhPUY8VtKmqtrKRlJvTPq3nQw0Lf69XbqGjdRv
+09EKuxjoKgtdJ1TORrXhHbPTxPHLpxq7H7OxafSAaQ3xvpfcQGYKG3pPIsN+
+EctUrt34OIaNg+nb4tftJvFB/dnt4MdGxN4yMW/icepOtq47G8+snoc9IH4o
+dnuezEU2PPL2d9QQ36z6eWTSmo0X9l8Gh4iTq5oD2o6z4VavWbdIk4EBMZGs
+rCNsRC5memwktqmqfealzca0q9B3XWKxqk9Fehps5Kpm7bQmnhb1TJfYzMbN
+21JHrxKLUq5eg3Js+DH+Kob/d39l116aBBn/8qbzAXH/CvoPryXEl3bqMYiT
+KsZjwc+Gi09uSDVxQHmWHP8UCyqHKyJbiNOXstNqR1koFZ0+85Z4rNRoYcgg
+C78lx6f6iD2eH7Y+8I6Ft0lqVkPEW4QKH81pZ8GwUS/kK7FkcSC3vJaFA8NV
+Xt+INRmscbcKFvK2Kaj+5yiBK3MUGSxc+bCI9oV4VUH4dM8TFm6pTYx/JOY+
+XdkfmcoCz9Z79j0x+69wKWJZMC6UaeURDz++7DNym4UBI+9zTcQ6mdqKSX4s
+BAYuq3hJzJnwr9NxZ0E0yO1NPnF4mtKxzxdYCA9XKb3/3/fe122MtGahq6fd
+MoQ4Z6RRZftxFr4UfqIuE/PHVwZ26rOQj78fzYnN+kfGlu1gge+2jbc0sVHo
+JuE8JRYulTb2z/4XD7c6RA/IsqB/7/ySXmJHP6dvl4XJ9fo+GbHEqj5W1Ly5
+ZD4TFgo5Eis3lV+P+81EQuCcbfuIK52qmIUfmLglfb6sn8Sb6Ut7vd1vmLii
+NybBIF57zuclk8ME+CTU/YgNC4adOaVM7OH3fbiUuPifA7lGBUwcamgb6yTx
+bmC4pLP1ERPfBKenEojX7B8abYhgouXnnL3ixP9oTfbtv8kkcTHp8YrkS0XY
+1epybyaM0ibtw4mVlCoOZ9kyMTR85MoUyT8vezsv691MbP/wRLaM5Oszfrla
+v61MmKeUj5wnpjtLHkzZwESw7snylcTf09nd7SuYiHnccMKJ5H9Q8Jitwpdq
+XHismjRL6keTd6zuzr5q8GrcHNKJO3e6mR16XY1LNhZqWsRK4sPLzrCqUWQZ
+V3+F1J9h04J/fe9Xw2XP47YaUr/2pGsc84uuxvrdTXeOExsXz/zyC6nGBt2c
+vf2k3r3cu6/Tx60ayWzJ5D+kHmZ3pn05daQaak45i4WUGaD4mcGNU1XIn+mN
+b1FgYOO0uCRtrAqjcp96tYiNK3I/xH6swssr3DVPSf39nHZroVlHFULejvr6
+k/qsMiheyM6pQn3p54KlpJ5PeTxwOGJRBW+7y2mcNQz4SLBkRA2roH1v82op
+4opgOeF3+6vwaunf4PNSDARWJXifU6nCoLyt8vRqUl+enyw8Pb8K9CaR3AVk
+v9EwiRWecaBwushL/OVyBqLf/TqSYEKh2/BJzJtlDPwxqjDYrElB9Jd18ney
+f/VMuCceXUJBzDLOQGoJAwu14vUtiishaSK8w1SQgTlPo2UzZ19CWs/oicFc
+sv8t9kleHFuB9cs6m86N0TH25sQGmWsVOPmP8g8Vsn/bR6S6b7GrgJPtjnuT
+ZL93f25ssVejAoFDN48Hf6Hj7xz7PUrvyrFn/5JMv4905HodvbpLrhzMxCGJ
+P6TfuPV1YalCfhn03Vzk5tXQkZCRv1g7oQwzNgPTCSw6ZmcmaGYBZVgzFpyo
+yCT9Q+bVfz2Pl2GuTsMqPYoOZcbW/tCZUmw+U6nqWEZHaHPA1TkGpfh8rtVm
+fz4dDrPp7zYOl+CG10957Vg6eNZvB5s6SqCjn5AdHk36Q7vnWo4VJYgtNul/
+HUnH8rNneWmRJdjPCLlmF0bHJ3Hnp2/VS3B/xG67XTAdYsHnBlIDnkFMx+L0
+hCfp96yao8+sLMZzE19+Kws6fLd9keDjK8ZZ1sizC2Z0aB+9tiJluAgrV97f
+5E76R0fDX6caKoqwS2S3WaAxHXLhOkaTNkUIPxX7Ioj0ozLjejkFBSRP8+ae
+Wb2TjtPnhbdf2k+HgYHxgzgxOtJfUbsj2XkQ+hAimNNAQ4bNtSuiMXlY5Wlw
+/2st+R9oMTSIts7DqNMf582kPy/QUv/qOvWUrM/m148rSX9+dWFri8pTrMs6
+medVREPXqfqNvxNzYF4t+L8E0u9zhvKV59qR/7i5lXOZTjSoLZf5Orc+HU4p
+HK1cfhpYKYWdbRq+kBwZdDQ/VIDulb2RW4/EU6ncvU02c/Nw7LS6Uc6vbGpJ
+QoOMnH0OyrcVaS47V0RptGVP70t5DL97wYuuy5ZTP9O+LuWqPMIJtinD52g1
+tcVRMWGxejpeHPwpMLq8hgqpW7OecknAvjrW2pt6DVR5Xqymxv4w7Muccm4w
+41A5nKSHpVevYFrtUPz0SBs1pP2hxvquD5V+KDclbdUrqlWuWXbu4hhKaq2n
+Qs1hLnXsq7F35Jo06oR7x+rzz19Tn40ZLnarH1MCyzVcsoW6qE0TtYKhm/Ip
+H4dnZkczuqmgFQ/4VfIZ1PdVqQ8itd5TLMsMI7OpEkqgYpOiZ8+/lIO8UZE+
+yqlpvXsR8vhAvQsbkv4iWkXJ3HU5NhXVT2nt1IyhBTEpYXV+qeP9A9Qz3/wd
+ixbWUHM8/VhXLD9SKR+/bmofrqMuTcdlzKn6RI3MbNlvRTVSxt8LSgxrP1Fj
+1+yDzJsbqSvL806mNH+izi0QTTV920i5thlZ7Hr7iWIcem1l/rORctDTkvL5
+8YmKLdko5a/QRK1ToLWsXD9EnTPRqzGPaqJeR//qqQgdoq7eXx6nYttM3W91
+XyIVPUSp/J0ICHZtplI0Xrf6JgxRAiWBJr1+zZTVrQMCWplDlNGW2HuJSc3U
+q7X1u2tfDlGsACal0tpMRWratf0cG6J0SvPqhnZzKO014ktP/R6i3APyvjkd
+5lDbNuX1smeGqIfsi9M/j3OoV5T/1kTBYUqZubFO0JVDLRpqTjsgP0y5dXVu
+OfmEQxVLJtoyFIcpoeIfoRPFHCrN+2C5tOowtWT1u5Y4JodSKT4q+T+tYSos
+bvnSrh4OxYvKlHfUHaYe5n8QCvjCoSoS3ld26Q9TFqduflec5FB99TPD+ibD
+1IzczqrX81soHfnZrHLzYepdELxCRFuo/wOMZq5O
+ "]]},
+ Annotation[#, "Charting`Private`Tag$15353#3"]& ],
+ TagBox[
+ {RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
+ 1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
+1:eJwt13lYTN/jB/DysWRp74NSWlAkZSkV8ZaUlCiRhBZrK4lWRYrk075JltKG
+0EKZuSO6aZumTU3TNpRWhYokSsnvfJ/nd/+Z5/Wcueeee5b3OVfx2Nl9J2cI
+CAh4CQoI/O83u9EmKWWAD4H/v9qCy0T/5+KiS1H7g2RhEy94/h5x3IbCcMsg
+NayfJVF6m5gxvujUawct2DeP/b1J3Dk7+8reID30zcleFUtsfbm9+myDPt4k
+aW8LJ94l7B7HcDDE97AEg2vEPibtzZMjxrjYUbEhgHjh/gsHELQbh2KqxS4Q
+5yzbfnrbXHNEZaTznYiLFHIE7BssILN4b4wtcUtuptWlJEtMfanV3Eccb1dv
+fMfhALQUFMp3EEcUNTEYqw6itMBw+0bio4ePBtaPWKN3et4/C4kHQ2Mypq8c
+gVfBY6OZxF0bI4okTGxhVyXnPdLPR3jO/kMSc+2xYdGl5Epi6wffGhUaHCC/
+xyXhOXGGtLKm8otjONa32vcOseHHl9tUk47js6bKHGfiokcWS9UdTkJjyOHZ
+XmL1NZN1awxPoXqWu7EmsepKyy+rV53GHOvZW35/5ONH8lHlZSOOCAtcss2X
+eOeR2V2Tga4I3jxibkXs72CmOnTCDY1Wt/esJ85Y1HX0vfEZeOacEuvv42MG
+P1nRRsgd7K7+bAPiole/FZbXn8P5FOsVi4kdPp0Ml9zuAe/Xd2986eUjP8zo
+qWCBBwJlUhZHEU/Rop/aEs8jxTrcnNPDx6laqwu+dp74u/iWegIxM2JG6tEG
+T7zQ9Z6wIx7q9NDfZuCFFXdzD3zv5iOlzvi1gIo3JPuEVs4j3pttW+Q27AOl
+60c1Z3eS8cxq437z94c9vWL65Qc+jHqPOZqM+8N/4dWrZ4hZ1UfjUs8HwEzx
+H3ZDBx/bJs8FGjtfwsGsectutPNRmGVSXbg6EHODoV3I5+NunVPLo8VBUM5y
+qjpM/Ec6tAdWQVAYXiUz2cbHr68jp5vigpDHc/2qRVw0sKB8UiQYOlJT7ndb
++BioVNimNesquo9sq1fj8bFgaQXTauQaOtxr1FiNfOjYOHVw1UNApQ8b7iBW
+bfqsauYagtmnxrKtuKQ/NYcU9PpDMPfoggOu9Xx4WuZ9m9F+HdlS9n9tasj8
+G9a6p1F5A86Pk8sMS/kIcXGT6bobgU9Dof8WlPChsNE2aW5zBOZ/99utSOza
+GfhFQzQSunperuPFpH93J4x7XonE1lbOhaQiPvY0hm/rPxmFr+p9Dx6w+Mi9
+svzMmsRo9FsNRg/l8PE0t+x8gW0sGnPq0nSIO/YZNStejMUJNnU7KJsPDY7R
+h4jEWJzdlKEn+ZSPW1/s3zvUx0J9ZauxShYf9uoGxhP6cbBQKgiSSeeD6hYS
+710eD40YPf81N/mofd1N3f6UgN5hu6hDCXwcLgidbzrrJi5uvBx3NZ4Ps6aM
+hgmFmzAPfnamJZYPFV3rvH3WNxEj2efuHsXHkqmDgSMVN+EhEppxNpQP33ny
+eV3piWC5va5M8+XDY/mA76UjSciZYzv51IePUmw/PeGdhJCw30sZ3nzk3WkJ
+9YhLwjtzFd1yT5IXVI29XVUS5Lh7Wc3nyPv8DFdbpnMbM3LfD1Q48dG2guNj
+IXkHZty+me+t+ahbaSa6ufIu/GRlbj49yMfv6EVZ7L67sB05NXDRio/xf43e
+WfxzD8abTeoX7ucDFdS07dZ7eLxXO3vLXj4ahg9MHi64h1S/J3f2GpL6m31u
+dqQkw65t0uTqWj6OHbGy8tt0H4te6o2u/YfkzeaECJf5aXig73uqWpCPlVbn
+TvcuTkP42tHSEwJ8BD+fGj6snAb7HSlb4v+0YWbQnH926qdBYUfr6o+/2tDx
+UldJ2DsNghm1owcG27DrhsdB6+40mPSVrzvJa0O7gaF7DzMdP9wGT25PbYPQ
+9cHRWNtMHKkzuXs+pQ0ZykzxStdMBLDPhaffa8Nb7VkHJv0yMRgsfftvUhse
+PBk1OpKYiQsr6p0fxbZBozQmf059JrTn87teBbchTCA27B/9B4hwsFceOdGG
+AdV7UiGKD+Gsqz33+rI23Pr+zM/t/SPUN81Lc1dsg9buJa+7Pj3CkNk5gUPy
+bfDyoPosfz3CvoafwspL2iDQf693nUQWSpb3ujyTIO2lg714O7OgM71zQ4Rg
+G0JT1zQ/f56FwIua36w7WiHUF9FZHfIYgSn3lfTjW3F6wdLpVSuf4qbVtt19
+Uy0IUvp9/+7iXDy11xs5Z9iCdcy14rNFnyHunFjR3NBm9BV/vPfR4Tlehxqt
+PfS6Ccac6R1mifkYL9l/qIzVhNb8dXsO3s2H88H1huqMJmzt0g+1S83Hj8jD
+J6dzmuAQ5hvu/CQf6Tqn2FH3m1BRU1LqTOfDyeuIhHdwE6KC0hwk+/MRdaem
+9KBxE85kl0wIaBXAIrww3qGOh3N3+uJVqwuw+tzjZcVVPGiH6rPc3hZAaJN7
+shybhwjPWJXcxgLUegcebKJ56Bac36n2vgAB6fkt2s94kH8m+1xyiLjwhBgn
+jkfy+5tjpMgLjA+NHJO15iH+VX2spvkLNB+hwkPaG6FcJXxcpe4F4koT1Xe3
+NcKvum+mKfcF3sVPhok1NYJ5uCrAtfkFRL3NfRNqGlHqo/T9UccL0h6NpdGF
+jZjD+8qd8/UFtr0sjjZOakR6iFDvEVEG6PQN0hWWjfh+M+CV3R4GpmUOMUfL
+uDDYxBPKKGdgy7Li4IBiLlrUZJNUOAysLXJbNPsVF8musYOPahjQfXo3XjKf
+i9+8m/yMRgbKHXd9lE/l4qwF/82VLgZ4xzs+/vEn3rJc8+0UA6UOP4+83cDF
+nxkhtgXrmHhQrCGxXoOLV+t7l3/VZELveW5knCoXzqzW2yo6TISZBbfvU+SC
+XSMeF7OViYwTvtwSES7EpVLSd5kyUSOVKu34qQHznKYLd51gYti/Q7byXgPy
+zWIDr8Uz0cyY8Y9VUgO8+Une2xOZkDFe2dYd34An5rY2f5KYoNy9D0yENeDz
+ccUu1xQmjPgrIqX9GhAu+qhv/WMmGCKlf5WtGrCb43XYhmbi/dR0j6dwA8lF
+qUDJASbMlfZUdQk1ICHMfjz8MxPyKcn3d89sgNPSa7tnDjHRlGwgJz9Zj9en
+bUIGR5iIZdyzYg7U45OH2fr0SSbsd8ZyCkrroceSmnokQmHHsH9ej089bngq
+tUtsoCC6nH2Zfb4eGs0x3l5aFBbIyIg+PlOPVcZufi3aFJKN+G4uJ+rxxfcD
+I0aPgnRa6eoPe+uRzPk+/tGQgsexTVn/KddjyZtuSSlrCubi7gd6Mt/ijOkB
+rQt+FJxuaP60ufMWew7/Sgv2p9B/Zd6i+ui32GladCL6Enn+j8+tzy++hVXf
+uu7UIArC7QFHbSzeoo0x8jzjPwp1b744rZuqQ71Xl9yq2xSON/dH/d1bh8jM
+4ayVTApN1RPoNKyDwPigTBlFoU83rKRocx3aL1xTPvqSAu+yGjxV6mCw03N+
+6GsKI88dF1ZO16KmuPtPcSkFOQZbb1Z2LQQSQ8XptxT0tBqkStNqITx///CG
+Bgqjajb0pVu1gOjFow+4FDaEfA77GlyLAMWab8FNFL59mPkP06YW5z8saFd8
+R+HkWgWn9jm1cLO4az3QR2G1rqKTz58asLabym3spxDxMnWz+GgNelYtcr0y
+QJ6vomit11GDHRt+Zop9oeD/UPqsT0ENtDKO+4t/o7DRcEQq1L4GUlFR2+5O
+UMho+aQnYFUD/UM6TiW/KWR3O2h7mdZA6DIt+XGSQsyx+vTDG2vQsPHQ4Ipp
+CglzH9osWFCDvZzd967PYCH2x6Zts5jVWDuv8j/uPBbGfWK3eT2phm2q3rO+
++SzQjgee96ZUQ1uT0Tm2gAXX/+Q+s0KrYTa92FpYlAWzZsZjQ5tqPPujf3Ox
+JAvK0cLu3VNVuO5l/DpFhtRfteS66kgVqmMcVgQvYcHePUHUva8KODMj/Lgs
+C3LTVRdGa6uwUFZv35KlLMgqIfpdchVWrdDMO6XIwtpw0/nrtlVB/OVReVcV
+FjL8xXTNNavw8NlORfmVLFxs3dbqurIKoxp6i94SG3F7nJPFqjDDI/P9ClUW
+Ttat7+ru5IDRJ1eYo8bCe2nL20M8DiIHBUx3rWGBUd9RNlbJwbv3uZxO4v8C
+dc5M53GwcTU3erYGKR/4IT4SyEGsde2GNetYWBflbtV/gQPqaoFKLrFY6sEF
+7xw5WPRn5Sz19Sx8me1Y89KcA36wjJ/SBhb6bWKaH+zgYOjzTrFbxMYyyvui
+dThI2ns8Yp4m6a93MfcOK3CwpLRM9yPxg/eOblukOEhVLTy9V4uF67ue5MgK
+caCgL+D3gtj5pMe1xq+VcFJrMfbZyMKLzLlXlehK1DQdCWjVZoH7fZRemV8J
+5/sxu1V0WPiuNXBV7WElKj/Ri84T6yUPZ6lFVWL3k4gUQV3SP6UC81YFV+KF
+/1ebHcSxHbKjSt7k/stvRa8Sj/30sBe1q4RmdeTx38RqP572ClpWItptreC6
+TSyc6P82MmJUiaJRXsIJ4tT6raEfNlXC/r92hQTirtybD6vUKyFj+yS1hHj5
+tfG9+UqViLiTsmiI2Nn8xJWkhZU4fHZJkNRm8j7i/M0B8yqhMjuwU4dYkHPo
+su00G7Hh6uttiM29eky3fGcDGqFePsQZ0t6p0h/ZaJQZfhpHPPFcKnC0jY3B
+i294T4gtt7/qr6plQ/3y8aFi4hy2W2vKGzY2W2j95BKLGqza5/GCDWrpreEu
+Yo+C4f3bs9jYITXUNETcuqSoU/QeG8G2CU9+Euv7Jo7xo9lYqPr9zNT/6qvx
+i0u/ysb99BPyf4nlFjq+dPJho/SX2atp4qgDds5rXNlYZilqOEk8J8w+fdiO
+DYfuuawfxJcZLiezLdlYyk1e9IV4siUwz2knG9N7NOw7iC9+Tbm6bDMbGddk
+Y+uIp6cqu/jqbDxLYz8tJA4WmGJHKbFRwY3JzSQW/q2jvX0hG6Hb3yeFEyd9
+uqzxfS4biUuFXNyJV72tz0v5U4FbcV5KFsSFj1cXmoxUQK0ulFYn/mzw1zmp
+tQKxRnKPOsn4XBf0EdtSU4Gn7Q7fC4iVX/ze2kFXoGuwTj6E+Oy0nLb0wwqs
+VH6oKE+8ML5IIP92BS5l8X58JPOlVN7J0iSyAhcP5j56Qqws/T7unGcFBvu+
+5a4mfh+ScUXQqQIP5GVm9JP5mfDZazzySAUiN3quTyEWi9e9kmZQAY8cw9Wz
+ibltq+JWalegwDHgewGZ74n/Lld/qkra99wlwZ5Y7ezGv0/EK2D26JtLDlkf
+U+F7tFbOqsDm7F3J5sS1991/pI6Xw/FHe9ZXsp4CHnOFIz+UQ3xKz2Q5saCR
+SLZxdjksuJ7Jp8l6TRQ1Cr2RWg57CcX742R9y2w5srUyoRx1zvYfQoh/lS7b
+jEvlmJWQKHWH5MF4oLy35N5yPFSoNU0j+SHhbLLKwKAcTp7Tq+WIZZmWDHft
+ciwweGWYoM7CjABBh3L5cqzxbVsWQPJHiuKM7/9Whri0y/6rV7OQX9x/5Xxv
+GeaK/ZaJJnmmv6a3L6q1DHyrieGRVSQf1/tsLSkuQ/P9IK1skn8HvixYLxxT
+hmHvTPUZyiwwZT4p6a0rw3/FVvYrFFiwPTZ0SGdFGcxcnsoclSf5IFzvsl66
+DG553jNiSf6ORq9VUBAsg8AmF+tRks96RrbVXfWl0L77RDRemoUBN9fV02dL
+UaX6apOZBAu3fliJtR4vBVtpIuqgOAs6H+Trcw+WQsHr7jw7MRZMO3d3WpOv
+Lzk7iTMnRUh7YiQNYkRKsTj8/oe9ZL959MxS4s7TEgx9cJ+6LUjGx0SydFdK
+CZ7lx7+yFWDB8K/58FhMCSKW2y2W/0th+UujAiPvEsR7W91PmKKQ5r1kmqNf
+gvnSTR8O/aLwVNz5xsHmN9g1aRCxdZDCzzd3LkX+KcYNjueyC40UlMuXXh78
+WoyKd3+lq8h+ntYj/3tndzH2H85MlK0n+6XHXbtfFcVw0Xu2gllDQav10oB2
+dDFeveL6lZRTuFYyMAKlYnicPuO7jpw3cpXTKlpCi1A7krDLNZHCnMUyJjVn
+iuA6Zkh5JpDyCRXHV/uLMHpYW8Q/jkJbxKwLUQpFmGPAdrscRYGaYFcJUK+x
+X+L3oP11CuEfnC6IfXyFkYD7XpFeZL/uUaR6thaituamSPQ+ClYdByNNlxfi
+q7DxMS1zCkc5y/7mzC3Efr2g8BYzUu4ekOfIe4k1+/yOSeyiwBHU2ffQ6SU2
+TrbMOgYK9PqqGIs4FubP3/rCcTUFodpjgjY9TOw/eVhETJBC5n77x68rmZgd
+4CV6dJoJD1FKWi6HiaC3134+IOfHnKVepm99mNCdDr2w7icT0elqkwIiTBy5
+YK2k+IWJv0bBYUnaDCy2aGx25jFx40fz2ZTrBWjXHVubkcGE4edFO6dlnuHJ
+htpFcZuZUHnkYv17Kg8KETpvONpMqMYUu4905EHv3Z/kqQ1MPO11Y9Sn5SHh
+gcSYlRoTvjHNCZaqeWhaVz3RLsvEo5nFu5rcc6D0LqtV8w+DnCcfzHmV+hjW
+AU+uCRYycPG413/5fWmIX7bWaVSVgQc+K24s1AhEtL6GXvxoAW6X6P9I3JdE
+HxW6dinBIR8bxyx9U3Oy6TO9Y5/V454hbN6vLbIiTHrWPvaoi0kuojZE9r9V
+LKZ/q5heCY14jNregXkOsWX0oPNEnNitTCw05cpcEeHQPrmPy99vvA//Uf2x
+QxJ19G290xfPRcZB7Y8x59u5Bvpfiybv15G+WFtqVyOgxKP36Za8XGQbRMsa
+n9IpZzTTp11DFEQnb9HygfGHmHvbaJsQEfknzRn0jLH4sZWa7+nKCfrDi5s5
+dEh5wRfdiQ56TLJjYcOaAvrjklWSKbO7aH539rqXrSz6nlYPzz6um/50S6Mz
+pYam9wnzlh8W6aV958WfuckvoavcF9T+eN5HH+wtfX5Ov4K+c57exdjRT78R
+OpBrlsKhi5JO/vq3ZYDuX9diNGtJLR1y0FRuTcJnWk/z4tVZ4fW0XsYnoeNb
+B+ktdgOm4kFcuj6j0KLLcJDuSfq1fEEYl9Zk8Y3szQbpZZ/YP4XiufQxOYGN
+9kcG6ZiFDteEHnBpu8Z+FUe/QfpCn7OlfBWXbhxTtbnFGKQN/w3hP5FopO9L
+BY77agzRbTUrufqZjXRH5I8qYe0h2mlwzRL/nEZ6QJaxK23rED2VlXyMYjbS
+Jy8o7K41G6KPmPsMbaxqpP+IxZ5Y7TpE6wQJjpt+baQfCXzqmZM1RDvo/SvU
+rMujKab6xQd5QzQ5LputNeDRCUFvigypIdpqhWVc+G4ezbKsMwlhk/9/3rXc
+1I5HJ/dc9RL9OEQrxC442nmVRy/W3eCePzRE7z4+55lJJI92SFNfaD02RIez
+sucwE3m0dd6C0+kzh2k/o+evEx7z6DkHvoqbLBimi1a4yAkV8OirwvJOI5LD
+9I53VwP9X/PourY7rklLhmnrQrX+7xU8uot1Unb7smF6u0y0hUs9j/4/Q6u6
+xg==
+ "]]},
+ Annotation[#, "Charting`Private`Tag$15353#4"]& ],
+ TagBox[
+ {RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6], Opacity[
+ 1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
+1:eJw11nk4lF/YB3BKokQ7pchShFTSRvoiZUkRKT+RpY2oVEgoWpSllLW0WBKR
+JUvK/szYwgwGY18mKpEso5Qtvaf3vd75Z+ZznWfOc859zrnPLWV3weTULB4e
+HjdeHp5/3//3+Yj//2VoY2v59y8HGsa/olfnyUD5hu/FP8SSpX3fV+VtQaKd
+EyaJe3Tz49Y/0kAO3/LyMeKE0Mw1K/P2wObMzTkjxBKOToJRiXqIDsj400e8
+/+RtlTWPDsDlfFzaR+Kgjp1SLO1D6F5sLtZMXFzXOiycZ4ovV2rVmMQ5acfN
+DTcfgc9zweU0YseFc5T9Es2ReYv/dSZxQ6igTrHkMXgqlP+KI+5rTDw3GWGF
+9mC96VDiulwRiM21QX3u/bybxNN8ZrKZ2rbw3f9vghxsrnJT6sk9Aa3sQX1d
+YpXuB9LuYycRztEY2ER8WVnpmdDm0+BxW2fOQxwff4a2KdEeYj1FMr0zZPxO
+e3bTPjmgQnhlYhXxqzjx3gOSjvieJNb+gNj6mZrFiYhzsBEr8Hcm/jlZOPGt
+7jycdKW5RsSNN9pVc/idofd127d5xO8S6JvUtC9i2f8GnIPB5G8SG3MvQytW
+bVKX2P+g4u++Iy6Y0/hObjXxWp41x2N/usDk+u+UkmkOjm2wS16wyQ08LZE2
+vMR+k1zBhgR3fDFyeFo9ReZv7Snho3MVdn5TQY+JbYVV7BV7rkJS3T5GgXiq
+58R5r9WeSHv1b4E5UH93Q2hu2DUYyuqd4yUWSlsd/HLzdfjYjqwrnuCALm/D
+Re11pK32LwXx19h5Qjvm+EDyeXui4jgHzze42Flo3oDJ/24QDjgqeX12727h
+4UTJSyfivtpEpcL5t0k/fZmLiKukw0qX2d4G7yHrA0d/cnDmaEcDfb4vflYI
+eLJGOfg7HpLIZ3sHCUf0cj2GOeifEzmoPN8fcleO7BYk3llbucLRxh/PfCu1
+I4Y4CJz9RS4+2x8nnboqkwc5uL7ySPVimwCcsS1hlQ5w8HrmpmvD20Bs779K
+T/vKwRG/uTOfrIIw3de0ay3xZZYZdzIzCNlNj7c/6eWgcIfXYRGBB5jjtT/Z
++wsHos3MA5syH0B0yDFwxycS37jz0utvPQS/c6SyXRcHxhc7Zws0B2PJQAJP
+eAMHLyRUvWKuheGDxWL613oOgrNMbm2ID8OGMkWVncQz9+UFc5lhEAmwX9fC
+4iDJ5bgvQzwc69iCR/lrODiemTHUmRuO1w4DLTIVHGjvGJjMHosA7xMF6xP5
+5Ly+O5wk4RSJQWuzrffyOBheNfXVNTQS99YoF2Tlkv3a4KnHyItEZ3B/+8x7
+Er9g5xPOgk/QqOp3wvctB5umv7yJS3iCFV4nQ01TOZjNGhNL+fgUoyKRrj+f
+c8BbaNq+0TQKuqeyL4w/I+tlP+xy42oUSi7ckZt6ysHI0rJ+VnQUlF/uY01H
+knjsU7Zw+B6FhgDwc8M5oM2cFvTxjcYRoyV8z+9zsCLYRSL2WAx0s7V1Z3tx
+sDdjzOHWvVicezP2u8uDjIdfTedudCzyj1udzr1Kzk+hxUf/zFhUdhh4nb3C
+gal2rnlgSyyyjkTdK7zEAWvpCxlv2Rco0ZKDnAPZ36Fdw/IFL8D4SRsQMOOg
+PPBjree3OOyjhS6JMeWgXqRMaWgmDvom8rStJhyIm6Zzji95iU+VEa8sjTio
+nY7WVN/1Ek5z/d881ufgjTR/Eef+S7Dyi+MqNTiY/PpXsmlTPHoEA1eLrOUg
+rVFN38k1AQrqF47ID3fBYK2Fa8d4IhwOz5HxHuzCdRHvYzfmJ0FnzCCePdAF
+G92L52QlksCq/lzl2deFjl8LRU7tSYJ6m8mTvO4uiGbdlmLdT4KtjZjBZEMX
+DoW57zWUfo0+Kf3BG++7IP7I4Wm9fjJ6r2ppZ3qQ9/ltEK4ISQWfQEhfoHsX
+/htd630xIRU71EfnnXQj7Q3u1mJ5qeh+2F0icqkL8sJjp493p2LbhCe/mUMX
+OGM5xxkb0zBSGF0TcbQLf/5MWsox0xAvGnf2t0oXfPJPuZ/jTYeQUGSd0pdO
+bJawSvmyJQP0134HMno6USq5dFRVIwNye++bqn7sxPozSSU392WA71zjn63t
+neCfmj135X/E/rYMubpO3Ii5/2vb9QysGrU3KCvoxKcNEbnrKzKQ5qfa8jWk
+E7WpEezvFpkw/1CkwlDrxNBq+bu5nlnIy/CfYdzpwLoWQU+729nYle3W9CKl
+HVpfvLYHP32PxuvGpicZbWiMdB4McM5FRPTd5RZtrfBl8TJzV+UjpfpJuWhT
+K1jCMqJZMvlwf3z1T0NdK/LkDncnKeRDme/JX93KVvTfvzD8YEc+VqmeNpPI
+acWR5INtGofzMTGmqHs7vBU6clXyawLzkcV7bs9Wo1bsmhcROf4rHyo7y6IU
+i1ownOlzqKK8AOeMDpm05bag+JGxZRqzADqfLxfezW6B0o5vAiH1Bajy98rr
+SmnBzyevdUy6CqBc+tTo2tMWxF16o/JurAB2vxb1erm3YFPh3v3zZQvhbNxZ
+4ru5BSsO37355XohZNuHtYuimyGrcjlRZUMR5gbLrnz/pBn3A4dEB1WKIPne
+/UJaeDOcBzYEvNxRhBFT77DHgc3ofHni8jydIixjzamwuNKMRQaPkGlRhEv1
+v9kRB5vhkX/jl/PdIjj+vXBncKoJQ+vcIl92FcF2Ml13mUkTMn1d7mXeojD2
+RvN3uWETLFrT3B74URjxG1C5otuEAl1lPYf7FCTiQw427GrCDtrj50seUTC8
+s07UQ64JXZvsJrVfU+D7fnLwxnQjFB/9LpzPolCvsyvNI74Rq8zMqWghGgzP
+bOr+E90ISbfYpnZhGpRSEeP9pBGJJjOmyxfRIBv3pvj6g0YsO6nlfWcZDf3b
+Gx87Xm0EbUTknqkEDUy+7QF/DRvh+bNXMmYjDVxFsxsLf7BRWLR7J88hGhIP
+ai76MMjG1LiP9hcTGvgV31l59bExe4Fbe8VhGt4t1Fb61MlGXLNYfqA5Dd0P
+2qJjK9jICIyV47Gh4byVcHf3czaclpTax52nwXLrDcYFXTb0Sy/J1AXQ0HOv
+5PsfLTa415+4371Hg3DUw6qAXWzIFrqa7AqiwWKwKj9mMxsOrb0hscE0FIHm
+UijOxvjapRoWj2koyErVzBtuwK2s6P5b8TQEtYRq0iMaoF8Srf6uiIbrg/yB
+qQ8bsN/R6IIVjYb04HHzxwENSA1nN88qpoFz96i3w/UG6F6I2qtXRt6nyPdr
+4lQDvq7tv1vIIPE5KBbYoNoAAynpvYdaaAifq3TYoa4ehw8ff7hyhIZmvovC
+6xj1aNug5XuXS+YXrGrYXVoP/yvcmNFRGpTNt5uY5tRj2X8TBiVjNAw9U/Rb
+G12PHzrWVgenaPg2q/bpTad67Nfcv2I+Px3Vmrx2kvz1WF7JaRdfSceP9YfC
+VvLUIyGhKmiHOB3UiLTn0sk6WI7uiTRdRYeOqOFpvqE6cN+7ZN2WoIO/4m0m
+u7EOJVsbRuul6bDN4chsj6/Dbmb8AUlFOuo9D0Stjq5DhnraQSklOnpXaVTP
+iqyDfOLDWKkNdMz8jtWrvFeHtmNu6qs30vFp0c3sfS51MLev3MqzhQ5/9tMz
+s/fUoffLm58uanRoX5JTaNxVB9nGoL5j6nTEDqrGxm+rw17jUHmtXXQYXGtM
+0VaoQ391dCD/bjpMeTaonVtUh/drGA1eWuT/4Vs33OawEPvz3ipRPTKfBZzt
+Wq0shB+aetVDPGA37/d0PQsGlW1XU/TpkH/VG+JczkLGd+9htf10HA3N1tRL
+ZcFN44zYnoN0BE2muOR6sMDfzFjIc5iO+L0H+dsus8AOE3AtIl5unLN4womF
+y/KiTA8zOmbH9T5VsWbB80Cr8eAROhZqpVwI3cPC2jGNxNz/SPyt2lcJCbGg
+NjQgP3ycjhdRAseWzmHB9WnTrXvWdBzR+CO3bboWn0UOVcnZ0BGS6/9d92Mt
+Mqtkxcxt6XB+4TK+L7EWPkOhr6NP0FGwNUQ8a3stdkj/1Kk6Q+Lzgo8bsr4W
+PI2O0vvsyfjvCxRcEK/Fcc3NnylipY+lKmv+1mBzIXtxqgMdNa4icZblNYjO
+rhI570jHz+YFa2VzauAZOj2rlZiV8/xZX1INnkq3N2k50RHz66KT/f0aCNRV
+Syw4R8Zv9z1oz+Ea/GA3Sgecp8Mmz61wdG8N7ONyhT8TNz0M6Y7aXoNG8aRm
+9QvEudfnDa2swbc7bTOfiW2EjESChWpQtF3Vcpsz6a8zXXDzTDU+CVeG+RKr
+TctzznRX41JKQ/jqiyQe+sibqa+G4GZbq9PEUcu+BoSUVkPP/L+ZFGLW+gGh
+jFfVWD4/t2rLJToitMtCK89Vw8L+po/cZTo69q+mAq2rMcRqFjhOPHR29bTB
+oWpw9MY9Qojdvy1LpqlWQ6i6Z+XYv3YD4dVX1lXDTqhOV8aFDhV6WoyCWDUM
+6PWWRsSrhr92+E0x8ZdrrhFLXJrgE75lkIm+GF6BD8TbXOjW7V1MRCjy534j
+djv6Wt2HRZw8biTkSsdNY/X10sVMuKk5MhWJLaxd5OlZTBRzhzfoE8/cMttp
+Fc8E/4CYy0li56KuY78imKiHe9Q14hThhQ/v+TGRLhiTEkb81qW/UdKDCWU7
+6agk4oCRsxvSHZlotwu+VECscDMsQsOKCa213uuriR+vP72o4iATQ8XXituJ
+Wb2c50aaTFwwk9Toc/23Xry72JuZMPk19niUOPEFY8BMhgkZKrRxknhfrEYq
+eyl5vjJglMeNjvTsoz7G/EyUKp8b5iPu5aw4VfmbgTSBagY/cZ/k7WPoZyDP
+edfdf37nGnEis40BN58DUv+eN+k2vibNZOD8oZDIv6T/HLusxAeFDGz882x4
+nPjbROGXiTQG9j3/Kz3yzwnOqrYxDGjvN9zyhfidAyOsLJiB1DXL1rQQG2rX
+8MvdYmDZ9u99FcTpm64G+LowIJh44v574o+qTMnuUwwsub9gwUvijoMfynce
+ZYD+1/NMEPHL62e9H+gxELtC65nbv3hJJq1VUWRgfZJoqCZx+UOdJd6rGPh+
+6MBhaeIiUb/FlQtIfwLSQ7zES8/M3Xd4pArls7hJeWT9nTfu8QjvroKjhwgj
+lPjJAjlaQ30Vkk8tKzlLbDL/q49udhUU/khuW0z8UaFkyiuhCrc69NJ7yH5U
+s9H1e/OoCq/DY/+mE5sI6TXN96hC2JTCKl3ihbdKH211rMKldu8+YeInIv1n
+LS2rYDxl6Mcm52HpWYV9sbursM/2seZ/xHw7dA9SG6vg3qZmLkZcJC5k37am
+Cl0Tz7UayXl6IhvEmju7Cj7BQ3f1iD+rX3bFh0rcHM5qWkrOpzEz/KhubiV8
+JXUEK8h5Hr+SnmKYXAkFDz7Tq8TCUjVvjB5UAqXpCk0kH2zLe71i+9FK/NIY
+++hO8keMbFCogn4lLM10SlYR67128BFXr4QqfSK3iOQbi7mCWWMSlZBKVvk0
+TfKRu0C/Z2BvBfZYrBS3O0viY3j//tmWCtx71Rrxi+SzOynrF+tWVUD08lZZ
+f+KQQgOX8dQKtERaXUok+S9xnfKzXa4VsMlJra89Tc7rUg8Pg9kV0GfuNKPb
+0bFuQUw+z9gHsJ0HaduIS9cUXXjb+wFaX5N2vCb5tyKyZ9PSqg9ION5iEEjy
+M7OeuTz74QdwBfVHtpJ8Xm6z7qLX6g849OUUV4nke9kFNd2CIh8gLt7w46Y5
+HcXsc2VhPB9wyi17uukoyd/Z4V9efCrHiUyXNVfJfZFWdMc/JqkctvUrE+JN
+6fD5PmgttbUcy/aOHos+QOJ/+eNfg7Xl6JtjfbfUkI7pWOWYi8vKYcUz8t9X
+cn+pjXZ2Z4+V4b+i96NrDUg+t/NzWPmuDK9kzvfe2UeHi69QgOm2MhgV/LzU
+TO7PlzV1IndUS7HQ0YIvndzXi5V25hvJluLi7PHt/uQ+V9o0fXr50lJkvLvJ
+Z0PuezelcOrJjxJM+j8+zb+e7L+xxa7emSUoTDTT3iZL1rtCg5uzsQRJw6E/
+pUi9kXnRWPm7XDHO9S2SX8dHx68ml+QLYsVYWMZ7pmoWHQnmToEjAsUo9zp9
+w4mXjt0Z7Mvf+ukQ1Vql+3qGBpv3Ab1FyXQIXVkhJDRBg53oPdNvynTMP22l
+aD9I2td93r9/Cw3tRVLbfdg0sMScZDxlaHhcdnQzp56GBLkPVolLaKgpdZ5S
+r6NBfuvg2NhXCqbOrX+GqmnIee2axutA4WbjqQy1D6T+1chQljhbhC0J527a
+59JwkqfB0dG+AKdrjXTEn9HAjrCUKdcrgNQcPimNJzQIRDxmi68vwKmgfS2W
+pH5k1sjJ5vTnY07xisbwMBpS1sddeXs2H0vzz88Mknq09PaCkXzHPCRb3yrZ
+do3Ud6z0dfxnc7C8uu2tnCUNYoWbk+8efQul+VZrXMi4D0vldTdueQud+qMn
+GhfSoBl+Rlli4Vv8NZqeo0rqc82UzfOeV2RBSNDXvl+A1K8RNxmmO7NAGdQq
+OUxToFmJusavyET5fn77x6TezzmzoiIz+Q1mPDSbJl0o+PEcsJt7NQGGvNlt
+UalF4Dm91vbP7luY9FYvy54pAM8ec4+1q6Mo7ohOmF19HhZO92opJWRQMNNt
+dDPJgd+pzh722XyK/vZ0fWtCNsKcp7K2bCyhzlye2BxhnYmHz3YUs9wqqDs9
+q78f7UnFSw2vCCVmNTUeLX/C0TkBQ3H54Ve666inLnJ2VxY+hbvw7vjBIjb1
+Wt6UX+/NDcg2Rx3bwG2m2BLuZXsd/aldBj02v2e1U+yh64Wi+rHUvuV0n9wV
+XVQPvXh/VlMKVZTjzSNd9pEa8jZO91bIpgR0+2dRZ3soSe5PS/7BfGr3sePv
+DuAzJZ9hKufRQ6d6UsI2SYn2Uo9a6maN8pRTZ+sfCbNav1JbtwX9eCBaRa2U
+W3BkprqfspmQrKGYNZTz4oepJckDlL+74cKivDqqlGYmuzdgkJIQNdEqk2FT
+bh6ssJJnw9S8G96v9vY2UTIdC3K2MUYozQKnKeHnrdTEuMuR5NoRKvjkSVuv
+pFaq29vo2Br2CGXY8vnG9+xW6iPj+OP5nSOUpIjnD3ZNKxVn2cvpHRqh4re1
+RpfztFFbbSNfpi/mUmwjzcMbTrVRd38F8QVbcKmHtJYewU3t1BmzExcXW3Op
+g7kuS2p3tVNHJJJ1wk5wqcleZ/5H+u3U6aEwiUgnLmVQc1t144l2Sv9uXfSr
+61xqnf7v9z4R7ZT4s6Hm5hdcKqT+W0jin3Zq5ulEsvUrLtX7hcv/ZF4HxZ3j
+3vs1mUt979HRChLtoATFaoMm3nKp3XcrBb03d1DTqr0pUh+4lMnYeu6NUx2U
+re+9tykMLhVY7xTlf6mDakaC9A4Wl2q5zF0S5t1B/RjdomLcyqU4w3nmGZEd
+VOTAq4aOTi61UeuafGlCB2V88EG7Qw+XKt/jRW/N6qBExb/p/+7lUoOZv2RG
+aR3U90M5Er4DXOqbvqLxgpoO6n8AQJjpng==
+ "]]},
+ Annotation[#, "Charting`Private`Tag$15353#5"]& ],
+ TagBox[
+ {RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6], Opacity[
+ 1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
+1:eJwt13k4VO/7B3AhlC2VUpZWKoU+FRXVu40KfYhUkkRFIkWSsqWkjyiypaSU
+7GVLKHKEmTPJMmPfNSOiLJWxRPg93+v6zT/nel3znJn7us9z3+d+ltlcNDkr
+KCAg4DZDQOB/V9ncf2ZPiXRC4P8/EfS3pEnizQsCM78ZrsX8P7Nu/yU+LFn0
+rttQB6EGUU/Hibk7QutSr+3FHCp0eJSY0RvWzDM0wD3TPwF84osfp0fF5xzC
+7FnlFj//t7541DD+2mH4d8x2+EE8qQX17Z1HMaPhbW4X8V2LTssaQwt4Dpbv
+6iD+1+lXjF3OSYysNp7VSBxwRKfxr7Q1Lt2CFJuYrVqUWlpqg96px8Y0cVv1
+PdXAa2dgHW3D/kAc0Z+iaaxui6ZjkffeEDcvUkqb12kHWmt30RPimOXLHCIM
+HbD96HvNkP/Ft63Q2XTGBWRFPe25Sbz762d76RwnRHunitgSD6WsMS+SdobU
+ilrnI8Rj6hd4i787w7fn3GI9YpPNbiqupS44W1+/YgVx5dzu2OXXXFE/le43
+h7jGzzTvqukV7Ns/vHxyZif4eWGGn9XcoLKjdGEtsXH8o9cXeFfR+vYyz534
+xw652BgDD+zvfq1+inivi3vfV2VPZG8+nKf3P3cytqoKeCFge9ctGWKpAs1H
+adneWFcn9zdGuBORf3knKqV8ESaZvdGHWPnsiFqvhy/GbfOTrIiNU+59FOz1
+BdNTykCJ+IT9vzIbSm7CbBPzUqhQJx7M3Xf9xlU/5LkWh10g1s5L9A/56odF
+9ar8fcT73B8tfHboNlomcGFcsBNO3VpJuWv9cbTGY+cR4jU1d1LrOu7gn6yt
+Dr0CnViewb9cuC8Qx4cvbssmnhGyf2fbh0A4yY+s9ib2jd9X8GdjECzn/DaV
+Jr4vz45eu/QeDGOSfqlM87C0hfnVeew+ruyZY7h2kgcpZ7kpHH4A67d7q7/9
+5eGVyNMH2sEPoD370+U4YtfA2Wkbyx4g/cRHMTniZ7mtF5btDEXay0vXR8Z5
+GOvf4/N9bRhGij55/jfGQ/7FOVHqQhFIsP6bq0Vc8FPkvPSOCOzu8pb6OsqD
+7tvhKwPuEdgZcVlyG/GMkwKrEwcicDBK3pQ7zEOJb9J5weZIZKvaTgoM8eCd
+rrXoREYUMm50VYT38VAY2BF6zeIJDKYPlKkRf6td8UYz9AnMbxtOM37woG+k
+WTjIeoKqxLXz+N958D+d7mepFQM5PROeXi8Pgy1BNktknkKtZ6cS3cXDpxjT
+9i3MZzheHCexoZ2HjqsvTpg+fA4DjU8KWW089N2J1gzKeo6MuKCz/xAHWL0r
+Kal4Ds6L/li1Vh5M1lqMqgu/gMv4QkqhmQc8nbw1fOkFtKSlHtXV8TBf+9el
+Xfpx+FjpU5JZzgPzvlogc+Il3tADPfLE3rkHjukviMf1Z+//vf2ZB4Wu1OTy
+9fHw+3GuxayMxP8+g1N+Nh4Phpf86ad5uLTj44z8qnjc4ozqjhfz4KemrH0w
+LgE1Sf8q38rjIYvaVKFzIAlHPM2P1OWSfIbfcw86nYR09Y+0CnF42TOHFq8k
+tGokOtBveegqObnMNSsJ6i8rcqezeMhpM4gMkU9G2mE/a8PXJF/rZ09d7k/G
+/LqocbPnPNQ7mvo3BKcipPKMg08sD7Gue+1XvEpF0GjGeOIzHtKU30w5slIx
+1fDJdSSGB4bJqc1/BF6hpnqy/r/HJD+3zJ8MO7/Cjgwn01thPDiElC70NH0N
+udmu66r8yP8P2fWlzU9H61ZJq+IzPLgYKdiG7suEs3JMIOM0yc+DJNFrhzOx
+ToExRNvwEDRj29mT1pmQXdvmVnaKh5hdgcbKHpl4U6m2n3mC5EvQqDwuLRMK
+aocWPjrMQ3JCgKeNbBbi9GLtUveQeK8WfOngZsG/z4p9cwmpD/VYKs4tG1WN
+baE6SjzI3fqYvMMvGwf1M5yGFHjoXuVX0fAgG10FJi6nFvNwQnCgQPh1NgK+
+3EvWkOXhx+ljcgc6s5GwrK3hxWyyf1akJl83eov1gR0bW/lcFPTaXHVXyYHv
+xOXex0wuOpQG6KjKXAwZrBNbxuCCcmgT8mjJhZll8P6EEi407lZss+jJRU+x
+mXpaERfWD4djZQXzoPeo896b91yEuerLuGjm4ZuLUEx4GheL9DYGsKLzUNBk
+OpEewcXUS+vgTtt3SLuyOc/AmovNBzcVBY+8x+JlDq17R77gauT+BHn6AwrX
+/C0Kcv0C84K5xl/MihDdca1+W1sHHH+U1ts8/ohWl2NHHxa2Yz6VeTq1uBj6
+db/y/d+1g69kn+9NF0N+zZiVa3Y7PC/EHjUuLwb3pYGtfko7ivzWWAzUFWNW
+v6QjN6Idn62+eMn2FoOipi3yHdvxuisnVVq6BEVOURVKi9qxQynvarp5CVYO
+xYzGObYhJT1Uz6O3BKv3lgX42rXBUXL16pD+Ejxi2EdY2rRBjtprG/erBAxz
+wUUyx9pwvm3ZSOmfEmynH3HO7mnDo52fj/BnlaIwx1qMuagNOm6taUKqpRj9
+ZhZkzWiF8j5RE+65UiCsql9YrhX+pUMrvbilOCjUrD17biuCnwk1X+4qxXPl
+GR8kJVoh4P/A61xvKRR9409JC7TCve3VPYNfpTgfpqc8+a0F1g/uFI0JMGCu
+/D3uZm4LargTXQNLGPCcynHTNGuB7ucjTbonGODetnPRDmzG3593X3tUMjB9
+RnfZD79m7Fe3WNzEYeDh6BfZx97N0Gt6YbOpjoHNmw+xfzs3I0Vq562vLQwo
+L11wN/hYM4Lm7eOr9jLQEPWPjJtyM5Tt1881FmLCTTn9wuiHJthY5S4f1WSi
+7PKe2ku5TahTftEitZWJyCsRN3oymlAkscty5TYmYsNcUqrjmnCsenfe/t1M
+nNkqsyc0oAl/j/0ocPuXCWrtlzuFh5sQsvmal50tE1mppVafextx16yq6GE4
+E9dS17f4djai5WPHtNZDJmZJ8Ou02hpRI7pjV+0jJm4M3jjwhN0IVflJltgz
+JkrxZrVZbiO4WzZ1mCcz8WbmddrbrxEH5Sfzoz8wobIqxD9TsRGONem8x1+Z
+aENP3+aFjRihw33+dDNx/N3D6oI5jfhrHyx9pJeJ15V/5YuFGjGR0S4ya4CJ
+lJsdCe97G7B8ZbjukVEmxOeIxpx+24Ahe07UvVk0The1z44waEBvmcFux3U0
+FobZThzf24ALAUkDb9VpfDvrtGrJ9gb8uBO2ZHI9jRbxqX9eqDfAl5sg4adJ
+Q8JcUSZMpgFrjBmCrjtoRI5ZjC5pqIfy6aH6FiMa2oZNp7tP1WPj04QO5iUa
+lsutSy+b16N3T9VPyoXGk7Fzp6YP1WOftPzlHFcaTvFj+jJ76vHmTRor2p3G
+UQG570uU66HtyUrYd4OGcf4R456eOnw1bUxYEUzi0a0tUL5YB6ETE249KTQy
+fmnaTdrVoU7Rys3lFY1VI6fu1JyqQ1XkSdXx1zT+iM1b42FSh0jbzWmCmTRW
+H/n2K1ezDgl3fBaO5ZD77xs/+jZRC+Yy3gzXYhoPS/fFJvBr0ThYJt1UQkPB
+VEzxTH8tLI+cL9Nh0JC83nW1ub0W0vE1e8ZpGu6D0m+yP9bisKnPVosKGp7u
+ylhypxYGum8+vmqg4bwl6wXDpxbym6qs+hppiB0S8zzvXouXTwperGmmsSBo
+Tki6fS20w+bKxrTSpB892L7KsBZPlzbH2HFpbBcyTSufUwtdKWPO3e80dh68
+4nR8Vi2MNhz0ffmDRtfgqZfdM2phnqlVmd9HYz7Cncd/14DpXretc4DGhLDD
+A+m6GlJHzlayQzSG1Ju6B6NqcK70kYHIBA2PiY7QkpAaOB/LoiX/0vg4V/xS
+xH810AqadJw7ScN3WeWHje5k/XjS+nnTNNoo0cTjR2sQPbPo7m9BFoQFDmQc
+kq2BrbvR5KrZLFi4hzuJSdYgP3HbxxniLFzUET75QZisn3/oZSNx5XNj9jJ+
+NRwrHRlekiycG3wiWFddDa/6Fuv4OSyI3Rd6+jW4GlFNY272C1hQzwpz8r5T
+jfm+wrz5C1mYu2z/pQU+1egRWmfzgVi6Q1F0l1M1JEoMns1cxMK3Fs+bNwyr
+YaujPeEiz8KQmUar+N5qfOKETIoosEAtFrGL0KnG+dBJ6SjiIL+lc+JUq9Hy
+LtImU5GFGU1iGUli1Xj+duProiUsDCe1hSoLVEMxK1Fp+1IWkkvqE2JHOShZ
+tS46h1i3SdPmQTcHA/GdWbHLWFCrjZ4l2s6B+u46Q5nlLNQtUuFdr+NA1Ofw
+oDfxsduJKpalHIzNuGZwaAULmqlPQz/nc/CppVUoh5gt/15jyxsOErwMiheu
+ZGFbm+Wk+Auyfifz32ri/i/HumN8OFjeHBO+QoWFgOEL81SucmBZe0XiIjGH
+e/zmKycOCvwFn+cS2+0qUM625KDobZPizlUsvMlef1zTjANjIb7wDeK0aU92
+tiEHLSk2Ih+IExVibqbpcJCV3GqmvpqFhIFLhas3ctDHyX1hQ3woSmHbc1UO
+hof9RcOJkxfFTixczsGuqcxbxcSvXSb+Bi3iYH9N7IIB4pNx6jsFZDjwtsyn
+FqxhIT91K8NZjIOjt+29txEzAxWCuNNs6G+cZ2JF7LmnIdxolI0yo6XaPsTt
+1fYd+QNsGJeMaT4hHtha66DSzca/bsK6OcTJ7gu0g9vY2HIo1baCeG7wev2R
+Wjb8t5k95hKreC1/YlHOxuul5zt+E3/b3adBlbCxrPuQ5gxVFg5/uTdzWT4b
+R6+4RksQO5mJKvpmscHM2SojS6z54phbRzIb3NBZkYuJE5m+Mtues7H0t8Ea
+RWJm8c2ByCg2+AXnyhSIQyMtJH8Gs1HfQrsvIhbfLeG07w4bWzdzNs4j1mCE
+z4nxZiM8t298FvH0kmH+zytsHNe9WTFJ4vMyUZPfc4ENwU9/UgaIE09svxV2
+hg2Btfmhrf/7foeyGs+C5MdU3Y8mFhj7Kqdhykbt2nzvdGKNAE+96/rk96M/
++YYTi//+8bZkFxs3Aj8GuRGHbdhoJ76VDamvs5+ZESdpHwiOWMVG86V/GmYT
+awnKiTQqsSHq1j7xhTy/S88LC+UWsJF821M5m7jXNmw4XJiNJbZrbx8iNlp8
+61vsaBXaRCXeyxOvWhBsN7+7Cj1mXr94ZD9x5XN+/yyuwuuozLPniEuVOZPm
+mVUwObn3uQrxdHt0EPWsCnIuom1csl99rHZq3vCsAlu50MSIuFRlsVHL+Sqk
+R/oGziC2jonr22BehZuj84szlMnzj2JkNWhWoVbVQEWE+LDiyZaVK6uws/KD
+yStSL4cPJdxxmluFy0Kx142Iz9C6DqMDlZjJMHkfROot/UfRyY7ESqTJVPXw
+SP2GCF2O3f2wEmfGVJ65E5sdu9/0wr8SyatEMsWJY/MENhw/W4lAJ8euNaT+
+FQ7XerxcXgkN4aO39JRY2GXKdh+UqURPhJ0YTfqJYbDmhc0zKuFxb0XXXuKl
+hTrbCjsqUFuQHreF9J/UEa3LiU8qkHfz4SqBxSzItnmubQ4kTvY94UD62RmB
+dS2zPCrQYKrTVSNH+tckY+kp8woo7NT4+YT0P4uanr09shXY3vGwXUqWhdXf
+e3/a3i9HsoNVprM0C3LPSpbYe5Wj18OqN1OKhb4QEb1zjuVoPnD1wiDpv0fX
+stwt9cvhrCZwzEaChfk62ldXiJSj79pw0qpZLKxkNjUoen3GTwvrSg3S758c
+2Oc16PAZ56fG7+2dwcLULKXFhcc/Y+Uj/oMjAiy47xLVNtnyGaOMRWddpmiY
+BbLmHhkqQ/LpFNWAcRrP74qsLj9XhkleA3PDbxqm2oopI2ZlCHA8Pyj0i8YS
+vUPRinvKsHWXayNnkAbfWebzKcUyqOm6957up/F08W+rAs4nnBQVHznVQ0Mw
+Y5MVa+snMPnxGoVtNMR/FL7ZKMrCPZeZDQJMGq6Kvov6yHtvtVR427lSGoOp
+pwZiv9AQKewPqSDv+7VtV7um39HIqQmaCKJovA4RmRXmSKNdZU9VZx6Ndzrx
+ylIcJmT7mrt/knlD4sW37KMPGVjxa3aAXxCNl4aD8/v9GIisO6UXd5fG4c1q
+5j4uDFRohUtQ/9EYKDe4//ggA0pzwjL7/Wgo/pmXmirEgOHNAaNVXjROmrHT
+tlwsxVc/USfxCzQcFf+0T+4hc7+QfHqYPo1nZSyGxj8l2Ljvd7DJfhq83MqQ
+k0oleCjx0l5Kj8Rr4lWTNVaM8fzImV67aGwNOCuu9boYWjI5HM0tNDTGrXUT
+ZYtx5S2tL6tM4v0xm7fpaxEOdgXjv79MMAUrak9zimB5wino9x8mBodzy4IL
+iyC8/8cXczI/nrgkVtQeVQSDnLanS34zEf02jH3sYBEMfZyt73xjQl8oca6H
+AwWdfe8e0iRPzfiZFSr2AeXsfg/Rl0zc+Z7SU7s+D+eaxAvOg4nTW4TX24jk
+YePlbd5lOkwE/Z53sYec+840j8WobGGiN/VIbYd/LixevRqqWc/E4w32Otdb
+c+D+VPmb4HImJoKLPSz930Lhvb9dJpn3Y+7qMdpqs8g8Y/bQsJQBlymV0bvv
+UiDJTpg012ag/tzjBVqd/rDXy/hXfU4p5uU9YfG+Pac2nfz5Uju4GMn6cnLi
+k9lUOnOk2Km2CLc+mi50PFhELdettagc+YCIP6lZF9lM6mhKqczRC++QcSqb
+x1pYQVEF4mczyfnXabrO6EMuh+LPcdArlkwHt8Xsyv09dRT7diql8f4FjOYG
+/fM5tZESOvrF2fzaf7ioWuTc6t5KjX1+tv9D5AOqd0LqS7L0F6r468ho/49E
+akpYsL+pi0tJ3Jn6481/Q83h33zg+KuT0n0U8ClH/wM1z+K8blV3FxUeujKy
+wqSE4kcF+cyc30M1/7FX3ljEop4VnalR0v1OmRzdqOR1uZJy7zG5NM+yj3Is
+aGHwJaup27Yqf7+mD1DWVkbKX43qKLnfg9Jirj+pwFP9nZoBjdSB+Kte90J+
+UYLLV6st6WihxDef9/j7+TeVviF+U0tGB6VmVlGTODZE7VLUOLv+HZdyO2q9
+mz85RF04EEx/+silEtQ+q+4S4lNNq/Ulz5ZxqQyzpfatknwq9oXXnuctXMon
+nB0tt4JPpXx/bLV+ikuNlO9vSjzIpzbNTfFM3sOjDNdEZS+L41OBP/jXxNg8
+ak1St6VXEp8iB9/o9kYe1Ts+27fpNZ9SFD6ZkMPlUXIKdZvC8vhUTFaYm+MQ
+j1p38KKJRCWfOtTCER1c0EmtP59/VvYPn1r5PHye8clOymyV3Sv3KT5VL6Jd
+v9euk7LM63FsFRqmUtMs/XQudVJKRy5YxEsNUwK2FXHqNzupIzc8B7atHKam
+WyT5axM6qWet9UIv1wxTPvlnFq5P76QqJETDxDWGqdglEau08jqp+p4epdat
+ZP2C9dL7yzqpzPDH8roYppqv/+o2remkXOYvD03bO0xFCGu/sm7tpBae87kp
+pz9MeSpoWjl3dVIxwVl9N42GqRZVKYFbA53U/wGVyt8l
+ "]]},
+ Annotation[#, "Charting`Private`Tag$15353#6"]& ],
+ TagBox[
+ {RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6], Opacity[
+ 1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
+1:eJwt13c41e//B3Aq1UdTJakI6SNU0rY+T8qIipKVFmWUokIhK7TtJCOjQqFs
+kqi3lezz5hx7j3MyS0VW+N3f6/qdf871uLjv67rH63m/juiFa7rm87i4uG5x
+c3H977tKwd0i6gUHXP//GR+o/BVJ7Gbe2cPduws3J7JCIoh/77U6wN17EIfN
+5PXDiVc1j0twGRzFtR3G0iHEpQ6Bj2d7dDFgwL8+iNg2Rj5xOsIQOW1XRP2I
+DxkpCo3rn0Fr4VmVh8Ty1LC64wMT6C0cdPIg3uS+g/m75wJE4ldXOBF/7/Bc
+bKNsDuX4hj03iEv0l+VxIiyRuXB/tiXxF72RwrOTl+FaJKt7lpjnhPavWv2r
+CG//yqNL/Oaz5ib1dBssMZqsUSPueejpf/rBdfSb78iUInaIeDVW2mMLwynZ
+8g3E4bcXpc3w2UNwmJ5YQpy9m49LVvkmwoY7o/ujORDYZDQ/KMIBRtMn1jUQ
+O33J9ikod8QVy3MJRcTLZbj1vk84wddYkz+ceOWeZ+oH9V0Q0SUx4kUcdmiB
+xmUvV3B9fdlzlTho9oWMX5obit9ZrlEkvp9Sl9Z3/w7QqxDJiOKgic/OXajH
+EyNnxxTTibeO6ttL3PbC2F6tsSBiizXBi3by3cUMV0mKHnGjp1a7Iu5hbt7C
+oxWRHBireomoPn+AE9fCU18TLzok16qy6yEm5cq3exB3WAZ0KpU9hOrA9I3d
+xHtCVUN3jj9C1fs3or4RHCjkZ4XM6fqgkF/giCnxeiGLq9/7fcDLFPXdQ2zy
+8O/ulju+CLv0z+nG5+R8Z2euJyf7IWFORJifeJWWmILQvQA8bbuhcjGM/P+3
+zNfXOp9g8anYeeLEfXscH0nvCsJQfldGTygHbclna9leQeAxcOWcJw5ar+ys
+L/EUjsH7fY6EcJBoK2clYhMMs8sfmn48JeuXzSg6Nx2C5rdhz6OJy1L162aO
+hiK/+d4xbeLwf9s7wqNC0Tbj5hEfxMG8vhPF1SphMDo1Knn8CQeWF58vEXoY
+Dj3zQZer/hx4HL4SfmxNJCptnLGEOCFMclGZeSQyzNb+ivfj4L+3gXMq2ZFg
+8VtLdPmS85i30nGbcRQMfSNrVX04uCsSUdodHY0LNbzSTQ85eBl80sGS/yUC
+ktb27vUg9/vqukL56BikLS+7kHuHg8LGyLvrv8RA4c/5URBvwc76iYEYPDZS
+OK7uzoG44bkNaftisdwqfkDDlYMctZWdK6pj8T7/dKKwE6mPRJ1er79xuKso
+ob/+Ogc35pua7TKKx0crq52e1zgQk5Z+3e4aD+NNT4T7bThQVuQXfhQTj5oN
+/rszrcl8jtJxjd/jkWgKZVzhwHQooND0XgKmRJx6t1pwIHO0uEIwPRGCNieM
+tE5zkHT6Z8wy3iQI/dLYHGrMwWcfByNqRxKaZo142ac4uNTjPGdzMgnO6eXb
+XIw4YAXeW18akQQTz6HCaH0OJNlaCqYyycgoltyTp0Pq4c/Stm16KXBmPpbS
+OsRBStzN10uqU3HPptbR+SAH13h3bVLpTIXGkz09b1U4kC3SsLz5KxWjdoeX
+8ipz0Ox40KR5bRpGopNTchU5aB2uoIPPp+FGuL3C6F4OFn7l3K8ZSUOw4DeL
+jxIcnHKa2nhyVQYOj65B7r/k/EUs/L5tyYCA87oluVs4ONnyzfK2XAYW+b5w
+y97MQcQ+t6PPTTKwqzCTGbOJgzkJ6aSy5Ayk3hjeqyXAwT5haYMGrUycYEc3
+V/Fw8DdsKCjRIwtbNv0Tl9rBhnILJcHsz8Ze91vTXu1saHn8Sk+azoZAiO4l
+gzY2glZVut5f9gG63w3uTTSzIda7oGqX7AfEyAdUytazYUV5Sd9y/IAUrS/+
+jpVsiMtZfXi9MAeXD8v1G3xgo/yok3+c6Edc+3i4z8CXjcDA0E3VJ/KgfUMh
+v8abjbrZaslXZnkIzW67d+QxG0IN+yg7hzxY/9rZrPCAzK+cendFZB7Wi656
+s8KDjVCFTk3JvjzcvUDVeNmz0c/9Ta7X9ROe3fxiFWXMxjoF0WdX3nzGu1b3
+txGb2Xjf3Z8l45QPJcd6rRZRNryfxowIeuaTOi7pWifChtudeV/needDddju
+T8BGNpacsDpER+TjQzJ3rj0/Gz9aJy8a5+djt+pAKu8iNrZ3NfpILSqAfc4P
+nev9vaiOCy3KDCqARFWFsdjbXhy3lRk7GF+IsQT2tRbpXlw8YMluDC/GuHKi
+cGhgD74Ec80ZPC/BRuGpAN1f3Vj+9dwbmzOlEHFtSuzS6Mas1Jl9t/6U4euM
+Ska7aje8xTPozTNlWCH5M7VZpRu2Nuo8jPnl8HTf7MNQ6MZv6Ro5Yb5yTEo3
+FryT6YZKs0pOtHQ5pLw8pPYKdMP6Uq/hDpNy+EixRlzZXThpXaNu/7UcF846
+nfjh1oUd28zu2PtVQEd6aUGXcxf2e7bfW/+0AhsXWRxmOnYhT6xe/XNYBQz6
+bKIybLuQkeM9MRtbAc0TdZaXLbrwxGXvYvPcCuz5NHot4VgXFJWTVIq+VYB/
+xlXfeUMX/q5wtSj6rxKLhD7etMjsxBHDdYXv2JUwH5492pjaCYV5D3kkByvB
+5XlptWZSJ6r2b7/6aqQSQ+MJ1hKvO9HNmxjtM12J2LUcw4aQTkiVXX7wH18V
+/DYdmr/AuRPDl9hhAopV0DgfkBWg3Am9I4Nlof5ViN72Y+WPgA6IHxXTebO9
+GhFLEoRtHnWAVgq/obOrGuw+W+FBjw7kKPyOGN1XDbOofaPtth1wvvHPkn3K
+1ZgddZ1I0uuA/qnlO4J1q5F/fKlZv0AHZKn3TUW3qmFSKPG1LqIdk/9YCrbl
+VWPZla61q4Pbcb/i/hfxgmosXPXWSNu3HeKHAkwuf6lGr7FN+mfXdlRdFjXp
+r6qGcmPm5/vn2nFZ8q5NcXs1PD1U5DM3tePp2oerOHPVEPc79enuizaIMmzK
+asDAgb93U3nD2jAgvy/X9hCD1KVys19gG4yFogZXajAgesC8JtCzDSkaSTxq
+2gz4W1zR9jRrw3Kl00t9zjDw5bil17KtbbDgvk8/dWTgqbFQU2VSKzReh4X6
+JDPgV6MUJfi6Fc9eTwiw0hhgjAyHmUW14rtkX/66LAa2bp3ZM+bXCuTW+4Tl
+MrD9dsMk13UyfvXdKcdSBgLfOn8ulG1F7I+UsOQuBj4d8tz9I6MFKQ++bZlY
+TCPwevQ6w7ctWNZjeMmXl8bv1qievFctSDfg/y2ylMY1e1Vpz8AW9PqWdRxc
+QUMiSsrjt00LTKz1eW35abxtvaBxQ7IFHi5Daq6iNIZ5vJSaIpqRLhdroXqA
+RqV4X/tMUDNMeO26X8rRUPSSsRDxbkaX9KawGXkaVbNm/553asblS6ZZKUo0
+UkasrIv0m7FysiJy9iCNe1Q3v8TyZrgskKbVj9G49Y8nbezaBCGxyHJXExru
+S/jKG+ybMNX+8IqfKQ3pjtrvulebcLOI+1bkBRqXpr/nHDrdhBxTpZL3ZmT8
+okcGK+SaUPLwqFb9JRqN1qoJ2qON4JHWeVp6ncbMIy6D5MFGZNmtiaNu0Chw
++LF9aU8jus6OCGbZ0pAtNT9fWNMI4Zt+O57b03ilmFm6LqURLqqsyZOONGi7
+xkzry42oXrmk0sGdxrLEgjWpJo0Q91IZ07tD9ietLXrEsBG1K9e57vSg4bcv
+ef9V9UYktWq86fakcXF1mvWxzY2IrhA7s/s+DeMN//3Obm1AYKrW9D0fGqlX
+9Ba2MRtwbuAR+7AvjTe+kapcFQ04n/NrK68fDVf10oMqOQ1wutmT88CfRo63
+u1pScAM0ptOmbJ7QcDK7abZduwFm3x68HQ4hf19xasdN1Qa4+BjOxITSOO5T
+VfNRvgEj65WMjMJouExeioNEA1pEfSVyw2k0xVx2l+FqQKaggMjlSLL+A09m
+36TVQyb/roDFK3K+k56mVW/qcfjck5K/xNu8F0SNRNbjdWShQ2AM2Y/NH2N2
+Pq6H1I7q9sxYGiyxH13PLtRjZ6NlRs9rGtYX7kj+XVWPFecN+bsSaZgecNsy
+t7geLHubdMO3NN51LJ2em61DaU+mViXxwVetu6YH6qA4vepKyjsaN8bV6hoK
+6yCmO3DubDKNVUblkWUf6qBsp1tWRMz7mGRLch08NK9Lb02hMWWat/JJeB2s
+D62sGyBu6wJb0rYOJcnZaYZpNKSqtG7zXqpDz8eYqiTimkecvr6zdRBqrGjj
+TqexwYHWjdasQ6Pd6qYY4s9vhLUdUAfDR3pFP4lzE2bEju2tw1DbmhdKGTTS
+RW1O/RKpg7atgQyDOClk7mPB2jqs15zsXJNJY65d9I/f0jqM+ZzzMiKO7Vo3
+KTbBQv2jjNAm4pH3tKwsgwWB8LOThVk0KpaN7970hYWQVKbsOHFzzuPNS3JZ
+EO3+aCX5nkYw31R562sW8qP3tz4gVv5U51kYwYJv6tTqTGKRz8JbXz9hgcl+
+pNVO7ERNyFu6saDw1TJ9WzaNUepRvKo9C2smerqPE7/kfzhfxIqFBoMHK+2I
+7+b/PjJ5noX2uD75IOLw/EoPWp+F+2+iTNOIe/lXx8UdYUFaWPluFfGF/JIs
+RxUWJCsvvvpGzJ//LUNzPwutdi9y54in19yKXredhagGHwb/BxprqBuObDEW
+qnKoNkniC5+b/0tdx0JJK4OtQNyzKu2X43IWuubpfTtCHJY3GoQFLLh97+46
+ReyRGye2YIqJcdPVdebE0SuKo0p+MBG/ySX/GvHIB53FD9hMDPdnxDgQ38w+
+fF6thYnNXifcXIl3LEmJ4a5hIi5pUMeDeEOmZ11uCRPV0oLrvIgV0otG7fKY
+mKau13sSB/DYckulM/Fo26PHd4gFk32n294wUbt7crcLcd3btT3+kUzsDjWs
+vUlcPLv0A4KYWLxRwdyauP/19dvDD5l45yE/dIH4YKyKVJgbE67eQxYGxFV/
+3L8etGeCNf2NpUHsGyWtO3CZiRXBRXv3/2+9z1XL/c8z8Vhw7SNx4oThcpnd
++ky8OHKregXxguDPniwtJpKHb/NMkv026BkeWbmPCSHvSvUvxDqPJZe+k2ZC
+bonG8Xhip/u1a9REmfi4oEDzEfEVt6vfry9lwsx6+RI1YtnbZ6n585g4aLqi
+dhPxtopc16fjtZhosHowQe7T56v5hSndtTAy9MmNIdb7ZKEp31iLj73ucreI
+hS/e/lRYVYuLs1tj1Ym1k/utqz6Q8R1/lLrIfc48qZaok1yLyG2aV98SH9Ne
+zmLE1GJ8+bt7dsRCh/p+lPnVQjlq1mGG1MdJpcmuQ3drwWFsOE4R5/k4FOQ6
+1SL1RSyfO7G0dN7hOLNaSEvq6UyQ+nO0MHc8L1+L9wLxCTWkXrMWiJW47axF
+U1ul0EPiNOsN6hH/1qJPouWTIvHP6OLWmlW18HY7d+cFyQOveyNmEoM1WJ31
+hkc3ldSjU5Dqga4aVAjmMyZJnrAO2BloNNRg6NraomhiaYH+lSZFNdgiISHO
+IXnUr5fc6fy8Bs+V75ScSSL5Gb1f1y2wBsUpMjVjJM+OZ86MuT0gnYbrjXm+
+xJ/+U2bdtquBjrVBQxbJv3hW1OCZIzXYIHhM5WcCDWpB4b3yKZKbkZIVy0me
+bp0W2JA6QmPM7Ofax3FkvrzE7iAODXOLUa/5xANR9xcb1JJ7dMwgf4Tkswxb
+IKWYzHNgm2xO5kuSjzdfWB4xonFV3N2kO4LG7XVFImu0ybp+D4WAOO+e2NKW
+QyTXG/8bDH9OwzM/xOmiDI1EfrneI+S9EMk+nXJuIekDenesDSHvzf4TQUtn
+LElfVHlapjaQ9B8tY0dCTjBwV6HjJRfxhE7ese0KDLw34qrbFkDy+I996NHl
+DHRzX3J2I+/bYqVgLaPMasSwevIWetPgfhsoGjtXheOvD2UkepH3b9nt8GVB
+lQjU1rdTsiP13XjqXxGXSiz29f93M3m/Lfwi7XeYV2IsptxnIXnf7bOPG/23
+vxL38/2vl9jQmOW2UJRuqQDL6eojKSuyDsejDnJiFXgl8O9LL9Jv3B9a/EEi
+qQxqekdsbh2hEfIqaZlKSBk28IVfkdQi+T3zJ9XAowwOOtGnmw+T/iHWofOW
+fhlYJVar9qmT+kjf2fN4phSOzSdrWMo0Hld6OHAfK8X2S53qKXtpWM5Ft2zt
+L8GHjBuxdUI06s83sStqS5DJqDuqvpHGU/NspSt5JYgWam3NXE+Dz9S0Psq/
+BFpfrqZ7C9D4JmD9tmlvCQzdhiRF+Ei+3rvYG+nxBUutGv72zCf7fbYy0GRt
+MV65ML0TGAw47xpcx8VVDOEpeZq/kgGVoy6rIvqLkD2uP+FK+scr2mNnyvKK
+kK/H+1OlgAEx34M6kxeK8C5fwjY0nQGRUc2E5ORCPMtYLur+lIFzl5buvnao
+AKtjDV/s0GcgmknJ+xfnweil1POfZdV4dcHFds2TPDz0HuIaLq5GdLX2scDz
+eTC4uOB8D1WNZKW9QzemcvGA2clVkEX6c4fFjGqZXJxymSzCy2o0nyndOh6a
+gxqRlb5aDtWo6kvaNs/8PRSVFhj4b6rGHj6RoXmlKajgebrxjUkViiJSWPR+
+b1xQrBiZV1yB1rXt/juPxFH5L9a2qKWUQffcXp2EsQ+UjHHAA2etr8jdlaGw
+8mIRdaxecGtzbjHcnt37x1W0gjIoyHkoHVqAU8V66beP1lA7XBNvzpLfvx/V
+f/P84Kujavmk/na4ZEH5a5HwXc0mKtjOoeXDQAKUY6esywzaKHag5zeDHwGY
+3qMRPD3cSTnPeqdfMAylojUSI6IEe6gvg5yPzr6p1EbhWxJfDrOp0ohX79Mj
+c6lT9rXrL2V/owpM0lK+qBZTPHz7beKXDFAbLw7NDH8qp25bZhkcfTVEifoZ
+m5wVqaF+Cka+8Ff6QQVEj7qLrKqjePIkpW61jVD74Td47m8jNa35zE8cv6gk
+Rc89t9zaKBFvG92pgN+Un2y2z/GpTmrp3gUb9XtGqUwRifIdmj0U9y23Ilvj
+P1SbRbpo7jCbujb99BV3/jhlpxLiu+JBH3X8Z/J77ZJxqtVuxao/T/ooW753
+pyMqx6lFrba7O6L6SAutYyTXNE5phQwey3nfR1lqKm28/Wucqv+0r8+H00dt
+lkitXrtlgkoeKuKkqfdTDYFjbXmPJyjVDvnU0cUD1HOG/fKNgRNUmIerugz/
+ABWxv4HhHDJBRb/Z7nFVdIA6e1+NRyl2gvIsLen9LjdAMYVL5Us+TVBMU5sr
+q68MUP4K5vTvkQnq+prNb1uqBigVIYEVZ8YnKLVnFrHKzQPULsl37cUzE9SX
+wka1eA4ZT7nvDOWdpALN5Tzd5waof/oqo9TEJym3etdvx2QHqcwNoWbpUpPU
+WFrp1lKlQSrKST13k+wkFVYhtkZNa5CSyTy64a/SJCU6f6xf/eIgVR8QK35F
+dZLqVWOzKq4NUnkhHZ+btcj8K+usTroMUl2lM/1aJ8j4m1zv2h4OUgfF5+Jy
+DScp0wcxoVbBg9T/AbiRJZk=
+ "]]},
+ Annotation[#, "Charting`Private`Tag$15353#7"]& ],
+ TagBox[
+ {RGBColor[1, 0.75, 0], AbsoluteThickness[1.6], Opacity[1.], FaceForm[
+ Opacity[0.3]], LineBox[CompressedData["
+1:eJwt1nc41e0fB3A8FYoQycxIqBRNKXprkIwimSkaCi2hKA0eiuIxikqytYQi
+WaWv7P2Ic77Hyl7nFGWFQr/7ua7f+edcr+u+vvf9HZ+lcPzCQUceLi6uy9xc
+XP/9pzXaRsUNcsD1/1+zX4nQf9aV3rw+SmkbbCO43WOID/39dfcjJUNsmL+k
++DHxg8RDCy9Gm8OBnvjzgDh+eWlIhJIt+njTVt0jdtpkJtNq6YBPUZq6wcTW
+LUkVLtEnMBoUufsWcZ8Un8h0xyl4t5dtvE7cGLom/5aSC2zCq4U9iAca3gcK
+O59DaHJSizPx2I638TWWrpCSOBB+lNg48ixDaPoiZr7WbjpIfDSv85NZtDs2
+y8uX7iEW9DpldE/nEoqz9HZtIdaOPWT+ueMyeucW/iX+3/0eKj1tqHQVl7NS
+9OcRR92Y2Opf5g37KlnPkQEOYnazRT44XcfGZTdiK4iVnLdn3rP0gdz+M5GZ
+xM1S9mavVHxxvG/Nlej/vHFJXtGULzibVHhdiL02M54NPfaD+tCxjAPE0xwt
+Ie6z/qie72qwifhuQts8UZ1b4LVeoPOrn5z/6rbdho7bCPKR1r1C3HhabfmR
+FXfht33E1JJY1VbL7MT4XTRaPt6/gVjEt/3x6dIgXEo/JTzQx4H7grgtLqf/
+QXnXQNpu4h4Ru6kUizC4x1mvlCB+Mpn4ZOXHMHgWPLnztZeDU+E9wnHK4fCR
+ipMIJV6c/sIoZDIccdbBppU9HLSvTNx2JOo+/kg8WhdJbKIvHlrLHYF3Wp7T
+9sRhWeu9tF0isPLJa4vRbg68977jLN0eCdE+PtWFxAJd+32z2x5AMeDIpgWd
+HMRlVUw+l3sMB2rlXH4HB8omNwtKwh7jmri//3lic545ow7uaJgo/FX+uZ2D
+ydLAGMHeaFi9XLjizhcOqEr9hftfxIDfD5rvWziYT811r34UD+WXzlWHif0V
+t1g8rY+H/PAqqd/NHPBEb3dYzp+AN4yz3zcTPzWuXitwNQFbxWZcn7A42Lwj
+R5E+nIhuO916NQZ5Xzn/mMnJJaPdtUYtr5EDq5hPkr5WychNGtbbQ+wZu1a9
+KzQZC05NpFk2kHi7VLHuCddT8B8RsDhbz4Efd/HMTNdTpIk5/LGt4eDWj4cZ
+jsnP4ZISW6JXzEGgmNK5TJVXYA8FLs0q4sDlyri3jN0rLBq9aqxAHLRqbbB/
+2CtoaV8+O1XIwdKDlxL2T7/CjqZKj6iPHJSJZG6sqkrF93V9z57lcfA153TU
+4XPpGLD8FjaUzsFnn0U41fQGjel1iVuJU7ZtSfIcfYOT5bmP/04j8ZMVXBUg
+kIEL25K1RVNJPjYvOpysm4F1qk0GKi852Hff26TuRQbMFLP+lkoi3/e3Y2WP
+VybUw7WvrX3AwdD+sOe8ElnoHbYPtYnk4J3bl9Qz67PgveXmff8IDkpm7+jX
+GWbB1C/jPOseBw0tn9RDr2chXLTP1TWUg4gXP5796c6C2+LA5AuB5HnNXO5F
+pb1D3rmCisQrHOjXV6cn78xBOu/R36leHAipGhewbHNwO+jX8mxPDmRcNZT5
+PXLQaqqiVXqJA4njfX9OPcuBbMOBPPoiBzdK98QvXpQLntdtg2XOpH4YTM8t
+YuTCpKFvXps1B1pamrcyT+bjqozUg1QrUr/ENxpW38zH0ZFTg96WHCzpSWnp
+epwPg+2G9eKHOPAZqz3E9zkfKQc003QOcMAfJXdum857JFx9FX1Aj1y/tl1l
+/dIPsG/+beivwcHBDRsirYsLsCxfe0zjLxLfqTv7FgQX4tnOK6equTkYHLrp
+e+xRIYI1xopPcnGgFus7kJ9cCIc9cToRs2ww8wUEXQoKIb+naU3/JBufp74n
+5Q0Xgju5dsziGxv1qofXyZp9gmFf6XpHBhsRJ/YpfBcrwvi5b467EtgojEpr
+vfOoGHZ1hk/c49holaqUDn9ajOvlF4OTYthIc6988SCzGN/8JB//iWLDP+h1
+8pOaYnisrHd5cY8NnAvnieAqgeailq4PfmycKU41VHcqwT/HHJRHTrKhs9gg
+VWhLKVy0NPkDVrDxNn/3u001ZahnLkx0VWCTeI+RDmoqw5DJRS4bOTZO+NdF
+dPSW4eDnn4LK0mykXlrz/u/ZMhQp9Z7JWMLGSUOF3Ix15dg6t3fjP9xs1Eqf
+uJQRVg4f700/rNsHccfGTVjDvAI+cfGKOyMGMSVhdZzzuRIPLHWN+2YGkBBZ
+X8n2q0Gqg/bIRb0B7K1PUVTd9y/uXxT+yB/Yj7zvL30PtdajIFBfw6agD8HN
+FeaCk58xVXTIpiSvDykxiUapvz/DxWqD3rrsPvxqr3y8j6sB4yGHHefS+yAb
++E77Jn8DkraeKg+N74OIzugNWroBzpftlnj69eH25YBrm3QbEBpdU2xl0IfN
++82tUwIaYBb8PuJYXS82lXJ7HBFpxJqLKSsKq3ox2TLIp7+0EXzbXGNly3uR
+vEBeYK1kI2o9fayYVC/KbiQc/infiOtJb1maGb24v6hP5LIG8fuTwpX3e6F1
+XMh91YFGTA2NHJex7oXa4ckSu6BG0Ha5wbe/9MBcc29o61wj7hc/XGfc3AN3
+GxU852GgNeJ3kDCzB3PhU2OuCxgQ8jS9ElnTA70Hi13mBBnkftSXh73vgZX0
+GU9uWQZ08wvDDKJ6wB85Gf58GwNU0kbJMvMeqG7kxF7wYGBOyiZnrKQbsjci
+22q7GNBZUeh3vbAbyk7txQv6GND4eG7Zgg/dcDbsjNEZZEAr9UmE6NtuhPLU
+qzwdZqDUaV+/XEI3pEOe+R3+zQDjRHv/7LVuKHi5fDkpxkTxsZ92/27shlG5
+/Jr+PUw8K1RfskG9GwzeheZte5nQznwdcn91NwwfZR2uN2QiyMTvy0GFbvx4
+u1gw05SJ5JNXGooWd2NEcXnnYTsmasQSJJ3YXUjW6600cGdi+Fq7TEVMFzbX
+dhb4xTFBZ/P8ZRnVhavRAQELEpmQMlBt7o7ogu5eCeeAZCZyXT0tpoO6kMNS
+cvN7yYR+y8oQyatdEMfq0JNvmcheXPxH2bILHJ2ukKoyJtpm5nouCXbBOr3J
+Q/EbE6aK+6u6+Lqg1s6wOT3MhFxcbLzxvC5kDqsYpPxgghm7W1budyc2H+TC
+6gkm7mXHWOYMdoJzKy9wyRwTDnvvVWYVd+JotoGyvxCNPcPX3vR4daJ5KNNm
+UIOGkFL5zXL3TsgUn1kvuZGGgJSUUMr5TqSnJb3Yu5lGrH7LuTMnO5GRo+Me
+o0VDMrF4TceBTsgfZDqp7aLhdnzby7vKnQjRdDJnHaRhKuJq0fO0A5uuVYod
+caPhfGfTT9voDhQlr/mg60FjwHfhsvqwDnje9fihcJmcP85pyvTugOnfp2fb
+rtAQ/HL9iK1ZBx7RwY82+9Ko+/TVef1MO66+SDFzDaVxgh4I/XOgHYIvOwp4
+U2gwq6fRqdeOjf/M8Pm+otGnFVT0cXs7Vro/UZhKpcG4qYZLKu2gnXzzOl7T
+GMl0Eq+Y+wKjX8mXI97RkM0u156fRpx69cP9Qhramz+LFSd+wcUR0efsTzTG
+1GypG4++YF5VvJVOMY2NtzlB3/2+oMkmg6+9lMaPjnl/5dh+gdyYW8y8ahqO
+GvLOX3i/oJUnXqWfQWONloKz12wbFhV/3CpB0/gnP2G7yFgb9r3YyWfAIuer
+KFhrt7fBekFYZ3wzjWvPJS94ZbXhgZCYs2Y7jS16I2KBDm1wNOm6MNlPI5nF
+1uaybENKYsi6+YM00rqPaV42akNsunCyMJtG+PH6pMNb2jC9+HWG/FcakfzP
+bQUE2mD7Q9Jw5Xca98a36c7PacU/avXzC3/SmPK6p3v5VSvk7VdZfpikQTlZ
+ZPbGtaIy8tbwuykaZ+/KcvICW8Hx7BiP/0XDhM5O0bNtRcPX3Xst52gohwm6
+ds+0oMhD+ZrOfBbuVUkHrB5pwdzq4HmLF7Dg4Bop5NrXgtIAy+pWYtm5Ko+x
+2haExGSIXOBjQUYRYa2xLXAST3X1WMSCRrDRovW6LaiQ4x+ZFmYh+Zqwlumm
+Fqj7Ri6LFWHBu0m36axqCx6tGXTDEhb0G3pcYoVbIFziVXpFlAXHug1d3Z3N
++NpxsbJmKQttkuaPhxjNyHM8fMtWnIXs+vaSiYpmlMzXvthHfNdn6/m5N83Q
+nL1Kjy4j64PjIiM+zWA9lSr7KsnC+lBXywEPsl/zwI/jUiwIJ1gJtDo1w3u6
+TZ9F/HWBU02+aTNSTrAu5kizMGAbTj/b04yH3S/0VsiwYCClfDBsazNi3m3b
+FUys3Boec1i+GeGFmm8tZFl41uZ0TkesGf+qXVDOJg7Y9ypdho/cn8UfSnQ5
+Cy6ObrcavzfBVb/oRBnxu6f8/opUE1bcnLXjl2ehYXSMUn3bhMgTHxLMiEc3
+D/qrPW+C8nSA4kNi7djhl2qhTfBOnmNKKpD3U8y1cJVfE+Jdb/NaEd9rlxlT
+9GxCli3DLZx44qebg5B9ExwnvMdnidXGU3u5zZvgbJfJr6HIwsmBHyMj+uT8
+/U6W9sQJ9TsCO7Y1oWSlQEsQcdfrB8+r1jXBZ4dAxDtipVtTB94qNuHuGO3X
+RuxietI3SrwJIvEtL7hWkOcRadl+fWETjONu8SgSc1fa3Dw6x4KTsX6YLrHp
+5R4jnVEWYniCzOyIkyU9EyT7WZCSLdK7RDydKeYz1syC6KTN2SBi810fBqpq
+Wcj9WlgSS5xefq4p7hMLOpaO+18TC+1eddDtHQus8Hd8BcRuWcOHdr1kIWta
+bqycuEn6Y6dQDAuL2EsE64l3Xnk40RLGAv/7GQvmf/vVXL2f5M9Cf5VRLYtY
+Vtwp39mLhX/dz7v951ALe5e1Z1n4Ldy4h0HMG+SQNGzPwpPZgd11xDezzzim
+mbPQGSF9oZT4N8vnjfNeFubWt5XmEXt/j/NfsZ0FFY1He18Rz81UdLWsI/ty
+CsaiiP24ZspDyXs88eF95S1iwV9bNXeROG7l4qo8TxzFvqk+ys/CKtHpH4eI
+V/1b/yZultSV/Ut3biV+n7LmveEIjUWLi3MliDm7/7hENdGIvh0s85nsG8Dt
+JaxTQ2PeT3/el8TK737taKdoXLSsWHaD+MKcrKbkcxrSVuyncsTiER+53j4m
+dSMtSfEbiZdiOWdzwxAaGsePF70jVpZsu3/xEo3dZs+cdInbbif7cjvTMNzF
+d56bOJJzeSrEjkb/rEoEReJVOELLN3E3jdc7bXU3/hffzavuq2rS2OGzr3RQ
+joWHS5XWpa6mof7ztVM0sdqFLX9eidD4NR7NN0XyYyZ4/2bV+TS2bZr7K5G4
+Nt51PGGK9PVl4dL7iK+nNAiGdDBBafLEhJB849ZfnGaQxsQTekXzT5K/D4X0
+A+8kMHH0+FKRcGIpHbsdFZFMPLLU/qRKPFm8YjtuMKHsZRZoSvJ/ykfOU/QA
+E24xL5N9JVhY4mK4avduJgpdrMJ5iWVyzLNdNZnojQscvUvqC8917mOlckzY
+7HwifJd8N7HcyqlDPxjIPBqV7izGwtvCAV/3XgZOO7lvaCX1bOfa3r7QJgaM
+m5erGBJrbPDaUVTIgPUP4WPypP5ZfBXYIBjOgNKI28J0IRZypNiK2usZeLwm
+u9pkIYs8x5DN1pUMpMRuXfmAxMWoYP2ZDZIMJHqqDraS+jsWpiEvz83AuK3n
+C3teUi/0j1Z31Teitbd7vsE8FgbPnV0zd6ERWWNeNdEkjh6NWwo3nWhEwPsT
+t/JnaGztkKt/bdWInwNW8fRvGkadxp3WaITteb9fC0i/yAkX3R2+uBGj66Y2
+GJB+8yLDfEl0agOOnOs0Nh6mUWsoWrwvrgG/Qg8brx6ioffHdHgivAGXJELV
+53+joZSvn6Xv2YBi/5LYDNLfEj2l5yp3NoDr+zehvl4aqSIud6zoz2hdY5H3
+roXGz0/RN0Jm68GyCOb/Rfq1cunym9++16PzrJidexG5vkfu197uenzSvHGT
+Tfp9uNsT+8myetQuebKlpoDG5qYbg5ph9TDguWVxJofGraLBESjWI3xQrUGI
+zBuvlRPLWIF1OND15flQMA1eCSnDmvN1EDR5WCMfRNanVZw+HKqDye0jUmZ3
+aDT/M98jVL4OE/kr1V/eopE7XV7FlVsLx/htGpo3aAR3OHsI99cgalJhZdV5
+0q97FHJ7dlTDMHv3zQoTGpbtViFGStVI1hlmxRnROFK54k86fzUS7E0NPfaR
+ddfrb5wYVVCoNb0qpkejknvrwefOVXj/iTW9Xpvk5YaqcLP7lVBPe7moaxUN
+vtrj3LY95RA9my8n8BeNp4ccUgoqyiGk4Hj1HheZ54RyJWXTy8Gl+HVmKZkf
+05dfNvrXqxy1ufmeYtNMhCWp/eZaXI47IiWa38k8+kffLyhKswxfVx+9Jt3C
+xJ1x+kJcQAlMm58OG6UzocdZtndO6hNmeDaoj5kwofLijPWvmULYCsgYXyXz
+9+rwQteR9kK0x80bntVnIrX3XHZ9YiEaFf0+/gITV8LpSPPVhUgqE/m7aj0T
+L+YV7mO6fkTtpOWSIjLvD/g+4/2QkI/o0OD9giRPvE9cvvu2LxMsIe7hMXMG
+nnmtvCOuHkbmgZBLZ7c04nHRzvGHB19Squzq3qrSz9gyYX4lIb2AYu7KHiqR
+rUfQwkkdmcXllERWRu2DjBqEbgwZ+FehnuLtEw05YlOB2t7BhcfuMag7z9t+
+7awthrhRg5Tv4mZqv/An8ZwPBbg2tnPCZkk7dVq2+tPQcAbUZg0qf1zsoh7u
+VZfMvfAQGsX2NVyKvRSVxwmgWfGUjMGpraXZ/dTvpV0BRoPZlJxPhE3OATZ1
+Kj4xmi1dTPFMREyobvpG9dtvWFQtUEPdLs36qjU9TIUlnl8l6ttA9UuvEo1b
+MEJNSC5rCHvLomI29zAc7o9Ses69B2ZUv1AHBRlKhxePUzoKCyW4DLuoKleB
+2vHMCUrJxt0kwqmXinan9mXvmaQSNUZPDt4YoD5GOU4uZU1RPK5Tb2PecKjb
+VkayayN/UfGl/Mw+62FKO5nNd2LHDBUqnFvQOPWDqk9+b9alN0PdH9KuFuIe
+oTblteg7mMxQZxxin5vwj1DHZbm2ONjNUHuMY2rrJEco+8YBFaerMxRLdllj
+/7YRqnFite2j7BlqMMNm8Nz1ESpezGfqivospcVeYt/81yjVHjJeJag5S/2s
+fvvogMAoNSiTvS9xxyx11uXEs3KxUcrRQ9641mSWMpSL3FGwcpSaFb53cs3Z
+WWpoX92pj3tHqRdc7B7el2Q99We+RPAolZuzzvvZm1nqq/Ufg9SIUSry708f
+9XJnKW3G67SdMaNUnnmd4e3yWSrDO/33xfRRKrbH/7JQ/yzFdyE9fbB+lJLQ
+2uj6dmiWOurm+/Nu8yh1LHGduPXELNVZayCu3j1KWb8ROJ00b45SbrBtvzY2
+SvFafBcxFJijDGKmbivPjFL+gnLOI6JzlPn89XwN88aouubos1HSc5Rn9Nrj
+NwXHqK48R5ldK+ao9h/LIteJj1H/Azq5+3M=
+ "]]},
+ Annotation[#, "Charting`Private`Tag$15353#8"]& ],
+ TagBox[
+ {RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6], Opacity[
+ 1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
+1:eJw11nk8VF/cB3AkUZI2rQiVUCpJqz6holKkhV+SpZKtqISkaCWkkiSpSCgk
+kWzljiWRpbEzZuYau5gZKVmSntPzvJ755877de89y/ee7/ccJTtXsxNiIiIi
+HqIiIv+u//frx///M7axPfL3rxDjYlvHR+T0oXnlxpk/xLFlModH5Mzw0s4F
+o8TTVB+7uCtbIktcrniQeK1gZ+kvOTvYnLw6sZ9Yg9U2My3KHs8C3/7pJs7L
+FStyVnaG++nYlBZiDN32V3npCt4Mi7kNxL5eOjf75M6iw/PrxnLihJsGIsX/
+ucPviZQcg9igkSf5NMoDadckEtOIvRUnerrTXrioXvwrlthDJkZpp/JFNN8z
+GrtPbGP+il5w4hKqs2/nXP3n5OkBfQm+uLH73wSFiIvpvlAodxV6GfydhsSF
+P/21lq2/hge0bu+qf+NL2xIS9N91iHgstRAhfs5sYu+Juom5rXkqneNCpLW9
+jU/+6I8SmfkvvxCf/RSQL0UHoO/V3OY7xBb/zY/IUwqCzdwPt9yIYz+WqMsZ
+BMPFUPm7CfGPA1YfnI/fhlGXzrfJxN/8FgXKJtzB7P8NOOl/x1sjRblQ6MVs
+HDUkvqOyW5AfH4qJde9V5YnfXobesXX3YXZ5KLlwTIjHNhrFMRZhEGl8ZCNK
+LJ+WvXzq43B0mDg+rvgthJpVlfwLjYewC/gdEkF8+Ju604YPD6G4ySFandjc
+6mHvUU4EUhL+fWAhONf/nglTfAzjxUanRIl1FjHl5VMfw8+2f2nBiBBSYl+q
+Y7dGIUX+VhGIsXvFyiTbJ1B80vxSY1gI2RrL0OjYZzD73wVC5t9Ycy1k5nPc
+HSl84ULMnti/u8b2OfKXdadNJzZqDQmSS30O0X3We8x/kvZFNc0jjGPxs0Ty
+InNAiINb2xwCbrxA/CGjbG+hEBfnZHycNRQPVc9DW6SIV95z5+tuT0DUjVL9
+cAF5fsHC5SfuJ+C4C7c0iU/Glz2W+3rlS5y0LWQW9QpB3Rg8vdThFdb1XMhP
+6RKiOs3UMbUxCWPd9ZuXEDcGS3lmLk1GRn3EushOIUIap2l8cE/GRJ/dSb4d
+QpjIc53zZF9jjsA5aH2bENbFZx/FGaVAwu2Rph2XjP/nBI8xy1TM7I0XeVAj
+xL7RJ3X6X9Lw+fCM/K5qIUw1om/6C9Kw4pOG1gZiAbW//suMdEwLdFjayBRC
+f4664R7LdCytlTKXqBQiM0x2sV5fOhIdextVSoTwufzao3VqBkQj1a2P5QqR
+kujCHTbJBN/64NrgHCGucVJ1pd0zEbxI80N6Nlm/ty93ykdkgnOvp3k8U4if
+DtMnb27JRJ12wLEb74SwVQ7de8wtC/N8jt/f/1qIP/u7vSzvZmNg2qPzP58I
+cclkRRpdmQvDExmuw1FCVEaHqEwYyEWh603V34+FuJeZ8WTx7A/QfLGDOfZI
+CNp9z3Nbyw+oCYTE9wdCPP3mEl/Y9QGHTGaKP7lN4v0822GJSB4MM/QNJ/gI
+ER07ppIwh4FTbwaHuN5kvYmo/ZZTYyD3qJV99gUh9HQfpdzYyEApe5ePk6cQ
+J7z04qytGEg/9DT441khvjMfpEyMZaBQTxWqjkKs/u0+d55mPsp+MnolDwrR
++27b1QMGBdjBuD8zer8QGRvq3WYdKsBOs2WMtWZCHFcpbax2KEBbaXjCERMh
+7KxcZHaHFMBl0q03ETvJ9//R2LasqQDM3ILYUl0h5nRWMiNOF6JVKkh+2hKS
+P19NfLdEFEF9k+uhZUIBCqZm3DHsLIbjgYkqvnwBTtVuOmAzVIxtg7viansF
+2J3m7Owp+RnMivYvF7sFGIoMDY5W/4xNLLPIHJ4Af8/ePc89/Rm2NnN3jdYI
+wK3rzJs09BndSjv5VzIFWKJaM3OSRCk6L+jpp3kLsHDUhO+qUAZxydDuIC8B
+nsQIojxXlWH9poHJxz0EOON7csBHvwy8u7zCaWcFOGBvFOBnXwadkYsSBx0F
+KIp0Wu2cUob+j88qw80FcHPZK1GhW464ObFOQ1oCaCy+qpJ5uALS0o+qlnfw
+SR2feq4k+CvyEwP2vG3lo0665Vjzk69Q3X57v3YLH79vayf2pnyF+Km6P2ub
++ThXp7BavIr4lm2ZahUfCTzpy4GTmVg44LDr0wc+Zr9vmnl4LxMpAdqNXaF8
+zEO7QFDLhMXnPK2yjXz8FJl0vZBThZy3t8bLbvbB9JK2hE5uDTZneNQ/T+4F
+k30wfySuDnWXTfcfL/uG6t+mapMONCD8mb/cYVYPpDIi3JLZjUiuiCyeU9+D
+P/de3pne1giviAt/aqp6kLRj1M69pxGa4pF/DUt7oOSio7LmVyMWatsfVMjq
+AXde44+waU0YGdQwvP6gBzPDfqr06DUhXfSUwVqTHqg901xd+aIJWhs+PdXI
+60YwPyj46DEWTpnsM2NldyPpQJDBZwcWtrWf++if0Y1bMS8qV5xm4cstnxxu
+cjcGnt49+tOLBc2ixyaXHndDS2rr/pMhLNj9mt7p49WN1pigv21ZLLiZcgpv
+rO7G4jl7W9ZIN2Nxs1A/71kXrifqxUslN2PSvcXzMyO7SA642ux62wzFTC/X
+lAddUJNrPxLwvhn9+33DIoK6oIj/5o0xmjGbObHksGcXSrvO3Sqoa8bZ6qHa
+8L1d8HU+F/JlvBnOf11v8n93YmyI55y/lw3b0VTD2Wad8BVN91jYycbgm61D
+xcadcNA3kAn9xkZ/QK+Wp2En4rPbKsWFbCjEhe6t2dwJKnJDCW+IDeObS+d4
+q3aCe8DzxgUpDsT7jvOvjHXAd9ZyH8XlHFRv25ziHdeB9woS3+DKgfHJVbw/
+zzow6+Ma5f/OcbD8NaJ9IzvAkQlzcvXkYHHsm4LLdzpgvrBq2X1fDnrW1UU4
+X+jAMemL2zPvcFAuvi7wr3EHriT77jvzhoPvGgevyP5ox+ZdDQYJfRy83Lt1
++md+O/4MG9Qs6udAQuO9lU93O+r566mHPzh4L6u/vI3TjntbdBIvjXLAu8N6
+FlPSjsTbjTlqklyctpLh8Z60Q/908AYxFS6OrL1S5mrYjqiHaw1SD3HRGlzY
+90evHerzp2jU/seFzNO7XwI3t2P6LV3LwSNcHOZ/yY1e3Y5UxprQlce4yAPD
+/eOCdmS8pIyuuXLxIf311hxhGxK6luxO8OeSfej+1vzwNhT5pm7iZHBxmS8R
+9PpuGwZKgo91ZHGRem/YIiKwDTrNu/W+5XJB+5v7Ol5uw13uxgXf8kl/GuK/
+Rk60gTlirlVQwUX53rlBNdpt6NntvKGmnYsHk5YfcKxqhUEiW+qcLI0G8TMy
+S8tasaB2tbXsTBpH7mkb84pawWx7bZo4m4amxTqz/VmtcFrfJl47n4YgSiNg
+ybNWXDfJezy+mMY3sa+Pr7q0omZ8xtc362lUbBW1U5RoxaPXC5N8rGj8UNsX
+Nl+kFS41w5U3rWlQ/coXZ43y8GahffdtWxrb5hjbiwt4GLx4aCT0BA2Jkndp
+tXU8HFfAFa9TNGyzaJV1cTyMX8gIT/WhUX1xz1P5ZzxYWGt8unWZRudC3Qqx
+RzyUfc/lWvvRGB+KMSoN5sHe7w5T7DqNtulXM3a482AzmBqlEkTjVu3jkxMM
+ePD7ZLeNGUFD/6yqet1mHjjiU+o9I2nE8LVj4nR4+O1tbrQwisauS3XJ+uo8
+dJ5CueUzGvtFVmw8NZ30rzi2JSOOvP9g7YrrdAt461J0q96S+Uyl1+k1tSDP
+WSloRzqNXrvJQ2PVLZhgU5CS9Y7GsoTOULfiFmj3Cc/fz6Rhfj9jq9HrFszY
+lvhd+SONkNFk92zvFrR5KUm/+kwjbvteCda5FvTlKGyUKKUhZ5o1Y8SlBZee
+972w/kJjQmznYy3rFgjPx6+YVEFDVi/Z9b5BC9Zn7fi5rJrE36p5obR0C5R/
+cx6/b6bx/Kmk5ayJLbjeMW1NA5vGId0/qjpjNCyKCkZ+cGiEZt/qM2yhMe2c
++QxlcnV77j684yWNRoXvFqbtND6sDV2Qvo5GmEjglZ+9JD7Pxb+HqpF5XhlM
+bugj478t+cF1AY1nO0JH3/NpLG8p0lr0l4u611NGHIU0Ks9Piz1SzMWdS2nO
+MQM0fjZMXbKYrGtO7JF7J37QYGY9iep+xcWY9t3qJT9pRP864+Jwm4uTSXgR
+OUjGb9cXYnCAiwnn3E8dHKZhk+PxcWA7F/wLChajxPV3Q3lP13GhODPR/PEI
+cfblyYL5XEjLzgitGiXPS5tMuyfNxYtL28rsf5P2OKlSq8c52HxPXG6YeOPY
+MvokjwPVvCa2zB8Sj53IGa/mwJy3zTyM+OnsrsDQIg708nro2eNkvGq90m8T
+OBDJDp479S+NcP1P90tPcbBA4dcke5EWsHfLU0HWHERUvpCKIBY4yY/t2sfB
+f7XuSiXEXt9mJzG0OZAt6LinLEru75KR91zKwboFH3uMibXyU6LV53IwKVn5
+0HnihcIudsBvNkTNJzoziIvi/R6s4bNxtDVrRhuxjnu+dTOXjWL/kxUTxFrg
+YZ64yY/JRrVvcqQy8VXTTWrKBWwsmKDiDeLD1u7L8tPZ2LDL3vkw8fi1gxus
+4tgouj399Dlitzyu5a9wNswlGFcCiZNlZO8GB7Dh3ycd/4z4nXtPnaI32Re8
+7rPSiAP7nVakOrOh3i5QKCJWvxoWrmvFRrl9ztka4gg1++klZJ9x23CvroWY
+2Uk/MdnKxpswGcM+4vps0c21q9lQeltRPEj88nlZ70EVMr/Pjgf+EO+I0X1d
+O4vMX/ayUGxCC1IzzP1MJdh4Vhj3UIK4k553onSoGbXzfYwlibsVr1uipxnr
+9kZN/ef358OPpbGaYRcew5pIbMYzvaRc3gy+hmq6KHGWXfrLOx+b4WpYEv6b
+9Pdt5GPHSEozriotuvHjn+PdtG2jm8EYKL3UQ/zesSzs0z3iHzZ+HGJj/UoJ
+1WvNmG/lF/yVOHXVhcAb7s1wPFkYQxG3aJcr8k40Y9vuT9RrYvbez8UbzIn1
+lDofEb+47OR7x6gZYlfPzrr+L16Kr5ZoaTRjbrGtvxlx8d1tM30XNuPFRp0y
+HeK8OQEzSqc2w4TtMnse8ayTk3Yc6GfB8dap3AayHtxWGng/4LEgKXFa7h1x
+5FRVRk01C8tDdT1CiM2mdPkZZrBwNPe9vi5xi3rhb594Fp6UhqdMJ95oYxjw
+5iELhaVp8u1kvZpJG9VP8WZB+eoU8WvEsteKHq51ZuF20mVvE+LIaT1OR46w
+sPVV5MA84llO6jtitrBQMMm9fB/JD/H1hnuplSxMeNGVzyL5k7dA2oG1iIWH
+r29mWhNHLg5hTprAwq2KRdFWJN/aN507j89N4Mdkm6qR/DQtf2BumN2EWdmX
+zkeRfB72TE02TmpCVcqnedLEMkqVb0zuNCH/qRm3hdQDnZzEeevMm6B9ynu7
+zS9STxaH3Fff2YSag54HMkk9MUp09FuwqQn2AhZnMvHhSVLpgwpNkIkwtEog
+9chLsudiUGcjFBKZYxn9NFqMb992amyEhHBhRT+pZzeT1WYYfmnE+oy0GcuI
+Qz/uch9+3Yjlmst/B5H693KpZtTm842QfOO2Uu0bjaJZ3t67JjTCrFomPKuV
+xtKp0bkigw1Qd9M9ncMj9xflub7rbICY1sW3WaT+ljxqXTXrSwPMAx94JHJp
+lFeXy2XcJXay7rFj0Si2WXrGR74B5yvkWpdW0Vg8tZInNa0BrsIrCsKvNApq
+T30KE2nAvMb83PRKUr8zHnQ8b6uHhv1qOa1yGil5N29Fv6rHZLOe9RPIfuPX
+x7dWWlsPt71B8b9ySfzPtfzdtaQejdqWpidyaIzFaEafmV0PvROrkr9mkXo5
+wOFlDNbhzNGXHg8zSD23C3Cc/74O37+M40cKDfcb0oH7depgs6+Yz4qm8aKy
+atpN7Vpc3FQseuIKjRnLN+SaLK6F4cslFka+ZL9YNWYvN6sWslpeO1Qv0fBY
+/oCK/FGDP4fedTV40TAbnHHeN60GnPGsJeJu5HuX6H7PWlmDyCD3Jn9y3kg7
+Y6rZp1qNh4wcZ521NH7Vuye5zq3GMoMpsVlaNOItXIL6Jashp7e/T2cVjS1v
+a89966nCiiTlNFUNsj9kBnbmJVVBTl5zuGkRDbs5wfu/aVbB4enpJr8p5P7S
+9t271zBJXTcxruFwwZzronJRhYlGi1cX6llcxKt+tno5k4klBQWxdQ1cLFvL
+Hxzs+oqyuODez1VcZCWeTxF1/Arl8F4dn09cGOu+1VRwqsRNvT3LVJK5OC5S
+4+zsUI7RIYuqEx5c1IYfUSk2Kke55/vu4bNcSIZH1C5QK4f4y+OyAeT8WF6p
+ujirpwyRe9eERDpwkawW6/nOqQyrVBdo3T3MRdH1qf25zl8wM2rRnY+65PzK
+TF0q4VQCox3WWxaKcjH34+okf/MiFKrecy++yMEBpRxe3ZoiXC2pMx324GDr
+g5OaCrJF6JsleWTJWeLk1ZOflBSit1p8zM2Bgw/hV8v2byhEabWkceUBDhhW
+c87HzStAkGXghWhy3s86Oa8kLYnCdiuh+5NGNgJE9thNuvAer64q6lUosSFi
+v8T2z5b7UCuhMxLCWRAxsPBeIp9C/fG68MEvohGyY516y+Pzqc2XW63e7qlH
+wAlOa61TGRXraCFbxapBmNvv9DUrayhuScfWtU1M3I1aX8D0aKRkPDrMT5ws
+wwtdn/Dl5Rzqmt257oT7RRDE5j7w5PEo9tYrfqersuAlsyWOn9dO6XbZSd1a
+F43FDU8tV3zvotSeVo2uNkmgNu9qtRkS66Wmf3HoTEinqB1y+X7Z8wTUPLXO
+fUNnvlB5Wb4iyp/6qQdrhyVLHWooScMeMcppgDINsDR687iJ2mJ59P0e/KSO
+GfEdLtq3UK3JYauU5vyimobyxF1XtFNO1Q9lmE1D1JWyMzdX8ruo+apTD41X
+jFCB/jeYFlv6KLcZd18XJv2mLAeEd6bo91NFjIOLtwf+ob4bhHxmew5QHt7M
+sMKov5RY1Er1nL8/KRX21CydMhEG83jOsSafIWpk2P1Q0lcRRvbC2LwtAUMU
+z9fEclGtCKO7bX5k/P0hqqXsaMQUjgijLPtJzaXEISr2SCfdKRBhTF+/yXxX
+4xC11vbRi9QZogwLJY0aS+1hyv9XiPi9w6KM7R+DVtkJhqmTB4+dmWEtyljR
++EV67ugwdUghaVvYMVHGOWapG3PiCGUvCFN45CLK4J3lM43kR6id/lXPEi6L
+MiLWyA2bG49QC6IEDQ3PSXuGBrP6E0eo8ccjSdYJoozJup7+le9HqO8TvTq7
+kkQZmz0n3HxTMEJJzf0aMvJOlJFaPXnpBdYINabdmaz0WZShzFIcVp88Stne
+CH6XXCbKSEmwKZeXG6UaEK+8ninKWMX/tGKm8ij1Y2CNlmmTKKNhpC1i4sZR
+6lFvQg2bI8rgVEyLFdsxSpnuvdPs2CrKiFqzY5OY2Sg1Z8G3nUOdoowbbxm2
+4kdHqb59WQo3ekUZYpVZclJOo9T/AIuHFQ8=
+ "]]},
+ Annotation[#, "Charting`Private`Tag$15353#9"]& ]}, {}},
+ Axes->{True, True},
+ AxesLabel->{None, None},
+ AxesOrigin->{0, 0},
+ DisplayFunction->Identity,
+ FrameLabel->{{None, None}, {None, None}},
+ FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
+ GridLinesStyle->Directive[
+ GrayLevel[0.5, 0.4]],
+ ImagePadding->All,
+ ImageSize->{589.6281721494024, Automatic},
+ Method->{
+ "DefaultGraphicsInteraction" -> {
+ "Version" -> 1.2, "TrackMousePosition" -> {True, False},
+ "Effects" -> {
+ "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
+ "Droplines" -> {
+ "freeformCursorMode" -> True,
+ "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" ->
+ None},
+ PlotRange->{All, All},
+ PlotRangeClipping->True,
+ PlotRangePadding->{{
+ Scaled[0.05],
+ Scaled[0.05]}, {
+ Scaled[0.05],
+ Scaled[0.05]}},
+ Ticks->{Automatic, Automatic}]], "Output",
+ CellChangeTimes->{{3.8171148487629232`*^9, 3.817114867569581*^9}, {
+ 3.8171149189239483`*^9, 3.817114948818074*^9}, {3.817114983494927*^9,
+ 3.8171150086165953`*^9}, 3.817115069160568*^9, {3.8172023951745663`*^9,
+ 3.8172024205532*^9}, {3.817202505823051*^9, 3.817202522608831*^9}},
+ CellLabel->
+ "Out[165]=",ExpressionUUID->"ae6c01c8-9abd-4358-a6f9-fb8f033a8ba4"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Series", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"(",
+ RowBox[{"h0", " ",
+ RowBox[{"g", "[", "\[Theta]", "]"}]}], ")"}], "/",
+ SuperscriptBox[
+ RowBox[{"(",
+ FractionBox[
+ RowBox[{"1", "-",
+ SuperscriptBox["\[Theta]", "2"]}],
+ RowBox[{"1", "+",
+ RowBox[{
+ RowBox[{"1", "/", "t\[Infinity]"}], " ",
+ SuperscriptBox["\[Theta]", "3"]}]}]], ")"}], "\[Beta]\[Delta]"]}],
+ ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.817113144203745*^9, 3.8171131899556923`*^9}, {
+ 3.8171133354068203`*^9, 3.817113365430565*^9}, {3.817114104893573*^9,
+ 3.817114104973675*^9}, {3.817114181711667*^9, 3.81711419022359*^9}, {
+ 3.817114245144809*^9, 3.817114245640547*^9}, {3.8171147067876053`*^9,
+ 3.817114712355151*^9}, {3.81711550929183*^9, 3.817115509403614*^9}, {
+ 3.817115653438582*^9, 3.817115691197918*^9}},
+ CellLabel->"In[42]:=",ExpressionUUID->"25d7aa57-46b2-4829-8aad-b00b9ab2ecff"],
+
+Cell[BoxData[
+ InterpretationBox[
+ RowBox[{
+ RowBox[{"h0", " ",
+ RowBox[{"g", "[", "0", "]"}]}], "+",
+ RowBox[{"h0", " ",
+ RowBox[{
+ SuperscriptBox["g", "\[Prime]",
+ MultilineFunction->None], "[", "0", "]"}], " ", "\[Theta]"}], "+",
+ RowBox[{"h0", " ",
+ RowBox[{"(",
+ RowBox[{
+ RowBox[{"\[Beta]\[Delta]", " ",
+ RowBox[{"g", "[", "0", "]"}]}], "+",
+ FractionBox[
+ RowBox[{
+ SuperscriptBox["g", "\[Prime]\[Prime]",
+ MultilineFunction->None], "[", "0", "]"}], "2"]}], ")"}], " ",
+ SuperscriptBox["\[Theta]", "2"]}], "+",
+ InterpretationBox[
+ SuperscriptBox[
+ RowBox[{"O", "[", "\[Theta]", "]"}], "3"],
+ SeriesData[$CellContext`\[Theta], 0, {}, 0, 3, 1],
+ Editable->False]}],
+ SeriesData[$CellContext`\[Theta],
+ 0, {$CellContext`h0 $CellContext`g[0], $CellContext`h0
+ Derivative[1][$CellContext`g][
+ 0], $CellContext`h0 ($CellContext`\[Beta]\[Delta] $CellContext`g[0] +
+ Rational[1, 2] Derivative[2][$CellContext`g][0])}, 0, 3, 1],
+ Editable->False]], "Output",
+ CellChangeTimes->{
+ 3.817114105560233*^9, {3.817114187226123*^9, 3.817114190364789*^9},
+ 3.817114245974049*^9, {3.8171147071829653`*^9, 3.817114712610158*^9},
+ 3.8171154633593493`*^9, 3.817115509593433*^9, 3.817115693533884*^9},
+ CellLabel->"Out[42]=",ExpressionUUID->"5f0c650e-d3ec-4a10-aad2-c391b45db45f"]
+}, Open ]]
+}, Open ]]
+},
+WindowSize->{1917, 1062},
+WindowMargins->{{1.5, Automatic}, {1.5, Automatic}},
+FrontEndVersion->"12.1 for Linux x86 (64-bit) (June 19, 2020)",
+StyleDefinitions->"Default.nb",
+ExpressionUUID->"6f6c570c-dfc0-4320-bdc7-0f1de62bb24c"
+]
+(* End of Notebook Content *)
+
+(* Internal cache information *)
+(*CellTagsOutline
+CellTagsIndex->{}
+*)
+(*CellTagsIndex
+CellTagsIndex->{}
+*)
+(*NotebookFileOutline
+Notebook[{
+Cell[CellGroupData[{
+Cell[580, 22, 156, 3, 50, "Section",ExpressionUUID->"bb531fce-8a9d-4a5f-8d6a-ec66b9fbf698"],
+Cell[739, 27, 1285, 33, 104, "Input",ExpressionUUID->"fafcf491-a81f-4f91-b9fe-4d27770e7577"],
+Cell[2027, 62, 1177, 24, 22, "Input",ExpressionUUID->"395191f4-75f5-4aa3-87f6-ccf9cbedf73f"],
+Cell[3207, 88, 862, 20, 40, "Input",ExpressionUUID->"3e69b8b0-cd07-4524-a460-17b8352b5902"],
+Cell[4072, 110, 1226, 37, 38, "Input",ExpressionUUID->"daded195-b1a7-448b-87f6-d258f2dcf5e8"],
+Cell[5301, 149, 1188, 28, 54, "Input",ExpressionUUID->"f27ba651-c22d-460a-a64d-186282c0ce66"],
+Cell[6492, 179, 2420, 56, 40, "Input",ExpressionUUID->"e32b7309-d4a7-469a-ab41-1800db7276a7"],
+Cell[8915, 237, 195, 4, 22, "Input",ExpressionUUID->"a67825a5-1532-4e67-9c19-5eea914713e3"],
+Cell[9113, 243, 7655, 193, 343, "Input",ExpressionUUID->"77a88da0-5b31-458a-9ed8-0b34545e511d"],
+Cell[16771, 438, 4883, 137, 108, "Input",ExpressionUUID->"1f309ab1-20a0-46cc-93fe-35aed54ccb3d"],
+Cell[CellGroupData[{
+Cell[21679, 579, 1187, 27, 40, "Input",ExpressionUUID->"2f5b927d-f164-4051-b8ca-bad9a5ba3b97"],
+Cell[22869, 608, 207, 4, 25, "Output",ExpressionUUID->"b3ae6262-2369-4579-8f11-16e2dd721349"]
+}, Open ]],
+Cell[23091, 615, 647, 18, 24, "Input",ExpressionUUID->"527153da-c467-45ab-a51a-b1545d520630"],
+Cell[CellGroupData[{
+Cell[23763, 637, 3094, 57, 24, "Input",ExpressionUUID->"630fc9c9-229c-4372-8a16-eac1f2d98690"],
+Cell[26860, 696, 12459, 182, 150, "Message",ExpressionUUID->"ef961c10-8104-4e4d-b207-a87b03b3d39a"],
+Cell[39322, 880, 2753, 42, 25, "Output",ExpressionUUID->"15e91b3c-4864-4488-8f91-7c413ccb268c"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[42112, 927, 709, 20, 22, "Input",ExpressionUUID->"2a7b9f00-b942-4f1e-89df-1d3081b1fc6a"],
+Cell[42824, 949, 6591, 128, 183, "Output",ExpressionUUID->"e1e88a87-be5f-441c-a4ca-2f1bdaae916d"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[49452, 1082, 491, 13, 22, "Input",ExpressionUUID->"8dd8c18b-504b-469d-8072-a9fb0cc417df"],
+Cell[49946, 1097, 539, 12, 19, "Message",ExpressionUUID->"a55da929-28cd-4032-aea8-5daec85d020a"],
+Cell[50488, 1111, 539, 12, 19, "Message",ExpressionUUID->"d9f18df2-5058-4626-9d48-5486b1743e96"],
+Cell[51030, 1125, 2243, 56, 62, "Output",ExpressionUUID->"7ce119a6-a1c0-48cc-9d86-6e7b6a1eafe3"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[53310, 1186, 561, 16, 22, "Input",ExpressionUUID->"b0a27cf9-de55-4cf4-9b19-ff7b3add442a"],
+Cell[53874, 1204, 913, 27, 63, "Output",ExpressionUUID->"d3fcf7af-82f3-49c4-81c0-3bf29938e0d1"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[54824, 1236, 681, 19, 44, "Input",ExpressionUUID->"f49c10e4-6ea3-40fb-85e8-436bcc73196f"],
+Cell[55508, 1257, 4071, 86, 176, "Output",ExpressionUUID->"0ede64a7-b62f-453c-b5e6-06e4c6ab27af"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[59616, 1348, 486, 13, 22, "Input",ExpressionUUID->"67bd5207-9130-427b-afb3-21bda9c7e82e"],
+Cell[60105, 1363, 200, 4, 25, "Output",ExpressionUUID->"39e5dba9-9c25-42e4-8876-75a530e46ee5"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[60342, 1372, 783, 22, 22, "Input",ExpressionUUID->"6db9bdd5-3bc4-4993-85d9-2bb9c2d0db38"],
+Cell[61128, 1396, 3496, 77, 187, "Output",ExpressionUUID->"028520eb-aee9-483d-9152-2416a8a91977"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[64661, 1478, 1223, 33, 24, "Input",ExpressionUUID->"aab225ac-8e68-4d46-a4da-600fe6364133"],
+Cell[65887, 1513, 10880, 231, 176, "Output",ExpressionUUID->"6e880d59-ffe1-440b-af8b-754c17269f6e"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[76804, 1749, 2115, 52, 66, "Input",ExpressionUUID->"f01a72f1-91c7-4454-9040-b54a61c9cd07"],
+Cell[78922, 1803, 615, 13, 19, "Message",ExpressionUUID->"46cbf58a-9f1b-42bc-8a11-616c84d0e1d7"],
+Cell[79540, 1818, 613, 13, 19, "Message",ExpressionUUID->"c25c6435-fc6d-4b46-b41c-a3d203aa09da"],
+Cell[80156, 1833, 613, 13, 19, "Message",ExpressionUUID->"3a09025b-666f-454b-9a32-9f324e354788"],
+Cell[80772, 1848, 580, 12, 19, "Message",ExpressionUUID->"5b1f7808-f0a6-4257-b7ed-4acdc8c4ac95"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[81389, 1865, 536, 10, 24, "Input",ExpressionUUID->"1dfbee5f-7e33-4446-bc10-991ba8838497"],
+Cell[81928, 1877, 93071, 1628, 177, "Output",ExpressionUUID->"e57fa90a-27ff-4013-8fad-ca7e3c98d348"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[175036, 3510, 314, 8, 22, "Input",ExpressionUUID->"8499af31-a50c-4059-afac-b628095fc761"],
+Cell[175353, 3520, 368, 8, 25, "Output",ExpressionUUID->"9aaf347d-0fae-4cb5-8920-f15fee437a9e"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[175758, 3533, 577, 17, 24, "Input",ExpressionUUID->"fecf4a67-c7e8-40b5-8e36-582a0bab9fe6"],
+Cell[176338, 3552, 753, 23, 48, "Output",ExpressionUUID->"742a0341-4af8-4ba4-a799-e15a1e847a9c"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[177128, 3580, 438, 11, 24, "Input",ExpressionUUID->"9884f3ff-ff57-4cf7-b122-2aebcb709801"],
+Cell[177569, 3593, 947, 26, 45, "Output",ExpressionUUID->"5f69419d-b0c1-4cd5-9616-460f429c823a"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[178553, 3624, 549, 13, 24, "Input",ExpressionUUID->"c18d621f-7e5f-48db-8ae7-0fda0221c79c"],
+Cell[179105, 3639, 599, 17, 45, "Output",ExpressionUUID->"b45884b0-ccdc-4e99-ac15-83498ea86eff"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[179741, 3661, 338, 7, 22, "Input",ExpressionUUID->"8e16b08d-33f5-4a51-9850-75f98a0e6a08"],
+Cell[180082, 3670, 2269, 65, 61, "Output",ExpressionUUID->"21b799e5-0965-4692-b4ba-6083041c0cdd"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[182388, 3740, 237, 5, 22, "Input",ExpressionUUID->"4c8cb259-b56a-423e-957f-9a65ba700a16"],
+Cell[182628, 3747, 2063, 59, 109, "Output",ExpressionUUID->"312f09f3-55f8-4f9d-a42c-05ca1c4aea27"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[184728, 3811, 564, 14, 24, "Input",ExpressionUUID->"069edadd-116a-4ccf-831d-0fe6e07540fe"],
+Cell[185295, 3827, 1113, 29, 52, "Output",ExpressionUUID->"e6426e3c-3d4d-49f1-becd-dfef45704088"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[186445, 3861, 522, 13, 24, "Input",ExpressionUUID->"3cd180b6-0e22-4832-af2b-e9ecec7e0a49"],
+Cell[186970, 3876, 5586, 138, 258, "Output",ExpressionUUID->"45f19748-f63a-49e1-8ced-a4f5c5dda272"]
+}, Open ]],
+Cell[192571, 4017, 366, 10, 22, "Input",ExpressionUUID->"3ffc56f5-fc40-4c69-bdce-f91a4aab1c67"],
+Cell[CellGroupData[{
+Cell[192962, 4031, 838, 23, 42, "Input",ExpressionUUID->"e131ab87-4ef6-4852-9ddd-e4499b39559a"],
+Cell[193803, 4056, 597, 16, 51, "Output",ExpressionUUID->"86a22957-07a1-48ab-90d1-d142a27afe22"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[194437, 4077, 921, 23, 42, "Input",ExpressionUUID->"22a30e99-2bd5-43a5-9353-3a3be14232a6"],
+Cell[195361, 4102, 2812, 74, 80, "Output",ExpressionUUID->"470e97c2-b944-4611-8c77-75e5a0915c04"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[198210, 4181, 824, 23, 42, "Input",ExpressionUUID->"3752e4d8-bc7c-475c-b88c-a0d99559d99c"],
+Cell[199037, 4206, 2580, 68, 78, "Output",ExpressionUUID->"db6b4f65-90c7-4c37-9945-5690d8472368"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[201654, 4279, 463, 12, 40, "Input",ExpressionUUID->"6a34969c-5bbf-4acb-a54f-a9bfbf2c9f87"],
+Cell[202120, 4293, 8623, 160, 171, "Output",ExpressionUUID->"70cff46d-010d-4a9a-8cf5-3901b2a30edf"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[210780, 4458, 595, 17, 24, "Input",ExpressionUUID->"6afc45fb-65bc-47fe-b120-408f15ede40b"],
+Cell[211378, 4477, 470, 13, 50, "Output",ExpressionUUID->"4cdf78f8-6821-4e67-9385-8a091cc9cf9d"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[211885, 4495, 236, 6, 22, "Input",ExpressionUUID->"b66a0012-a40b-4041-8ea9-a9cad40db85f"],
+Cell[212124, 4503, 301, 8, 39, "Output",ExpressionUUID->"9744135b-7d1f-4023-b02d-1bdf3b29d60f"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[212462, 4516, 419, 12, 24, "Input",ExpressionUUID->"7ceb4bac-ce7b-4adc-aeb9-95a215777744"],
+Cell[212884, 4530, 720, 22, 40, "Output",ExpressionUUID->"9c7df971-6bfc-41f8-a68e-fb9921c0b017"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[213641, 4557, 492, 13, 24, "Input",ExpressionUUID->"07932986-b2e1-477a-9d99-1b9701e3af0c"],
+Cell[214136, 4572, 510, 11, 19, "Message",ExpressionUUID->"f0c4d2f9-9d6d-48c0-b78e-b8f84a7f6bb2"],
+Cell[214649, 4585, 5864, 115, 182, "Output",ExpressionUUID->"82bf5b22-f54c-4da8-bea6-61b7c42c3450"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[220550, 4705, 804, 22, 54, "Input",ExpressionUUID->"13e1541b-4ad9-4a40-89f2-be40a0e4d6fd"],
+Cell[221357, 4729, 479, 13, 51, "Output",ExpressionUUID->"dff49a57-ddf5-4e9d-aa0a-55006221f3c2"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[221873, 4747, 650, 19, 24, "Input",ExpressionUUID->"6def2df0-3761-4f37-b66f-ba9071b93625"],
+Cell[222526, 4768, 534, 15, 42, "Output",ExpressionUUID->"175a2c7c-fa54-45c3-bf4f-c4ed89dad110"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[223097, 4788, 302, 7, 24, "Input",ExpressionUUID->"657e079b-66fb-4614-816e-af41b7fabf10"],
+Cell[223402, 4797, 454, 11, 19, "Message",ExpressionUUID->"f6532f4e-d02f-402b-985e-f8964b91f90e"],
+Cell[223859, 4810, 1129, 29, 32, "Output",ExpressionUUID->"5f2bc73c-3ef7-4874-86b3-dd3ac3e99858"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[225025, 4844, 325, 7, 24, "Input",ExpressionUUID->"49f74264-7484-4d5a-b52f-d0892384e631"],
+Cell[225353, 4853, 4933, 99, 175, "Output",ExpressionUUID->"26e2807e-1336-4751-8e74-d4414f081679"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[230323, 4957, 1059, 26, 48, "Input",ExpressionUUID->"3bd71288-3233-4171-a393-57251fb3dc52"],
+Cell[231385, 4985, 6890, 131, 180, "Output",ExpressionUUID->"203873a1-0dd1-4567-8d12-97eeeed127f7"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[238312, 5121, 1358, 35, 48, "Input",ExpressionUUID->"39644cf7-65fa-4952-a674-714ff8619dd6"],
+Cell[239673, 5158, 15118, 266, 179, "Output",ExpressionUUID->"16b2f1f1-4bda-4b9c-9a2d-c4721af32a8e"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[254828, 5429, 1607, 46, 65, "Input",ExpressionUUID->"72bac293-cf66-40a9-809d-4d0874dae037"],
+Cell[256438, 5477, 59065, 1048, 175, "Output",ExpressionUUID->"d758ff21-6281-4951-879d-9a8a224caf38"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[315540, 6530, 1002, 31, 42, "Input",ExpressionUUID->"41ea287c-9ee3-4b18-b17d-5dfc6a4e056d"],
+Cell[316545, 6563, 3476, 103, 125, "Output",ExpressionUUID->"7b8e54ff-34ea-444e-8e78-ad376945c6d8"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[320058, 6671, 753, 23, 24, "Input",ExpressionUUID->"77ced036-93d3-4558-8eb2-1aeeb8345ed7"],
+Cell[320814, 6696, 840, 23, 40, "Output",ExpressionUUID->"49c3b3ed-cf01-4c58-acac-6b3b7b9cb822"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[321691, 6724, 1262, 35, 41, "Input",ExpressionUUID->"1dc20dd2-2639-4b38-8eb3-e39481c6a15e"],
+Cell[322956, 6761, 71734, 1205, 306, "Output",ExpressionUUID->"ae6c01c8-9abd-4358-a6f9-fb8f033a8ba4"]
+}, Open ]],
+Cell[CellGroupData[{
+Cell[394727, 7971, 1045, 25, 40, "Input",ExpressionUUID->"25d7aa57-46b2-4829-8aad-b00b9ab2ecff"],
+Cell[395775, 7998, 1385, 34, 41, "Output",ExpressionUUID->"5f0c650e-d3ec-4a10-aad2-c391b45db45f"]
+}, Open ]]
+}, Open ]]
+}
+]
+*)
+