diff options
-rw-r--r-- | schofield.wl | 84 |
1 files changed, 42 insertions, 42 deletions
diff --git a/schofield.wl b/schofield.wl index 1c750a9..eb0525c 100644 --- a/schofield.wl +++ b/schofield.wl @@ -187,7 +187,7 @@ eq[n_, g_][m_, p_, q_] := Flatten[Join[{ruleθ0[g], ruleAH[g], g'[0] θc - 1}, e eqAround[n_, g_][m_, p_, q_] := Flatten[Join[{ruleθ0[g], ruleAH[g]}, eqLow[n, g][#] & /@ Range[0, m],eqMid[RF[n], g][#] & /@ Range[0, p], eqHigh[n, g] /@ Range[2, q, 2]]] //. rules[g] -formResiduals[data_, functions_, δ_:0] := If[Head[#1]===Around, +formResiduals[data_, functions_, δ_:10^(-15)] := If[Head[#1]===Around, (#1["Value"] - #2) / Max[#1["Uncertainty"], δ], (#1 - #2) / δ] & @@@ Thread[{data, functions}] @@ -208,54 +208,54 @@ newSol[eqs_, oldSol_, newVars_, δ_:0, γ_:0, opts___] := FindRoot[ opts ] -levenburgMarquardt[r_, \[Beta]0_, \[Lambda]0_ : 1, \[Nu]_ : 2] := +levenbergMarquardtStep[M_, λ_, g_] := LinearSolve[M + λ DiagonalMatrix[Diagonal[M]], g] + +levenburgMarquardt[r_, β0_, λ0_ : 1, ν_ : 2] := Module[ - { - n, \[Beta], new\[Beta], rc, J, I, oldJ, newJ, oldr, newr, M, - g, \[Delta], newcost, \[Lambda], oldcost, temp + { + n = Length[β0], + β = β0, + λ = λ0, + newβ = β0, + x, rf, Jf, oldJ, oldr, newr, M, g, δ, oldC, newC }, - n = Length[\[Beta]0]; \[Lambda] = \[Lambda]0; \[Beta] = \[Beta]0; PrintTemporary["Compiling the Jacobian..."]; - rc = Compile[{{x, _Real, 1}}, - Evaluate[ - r /. Thread[Rule[First /@ \[Beta], Part[x, #] & /@ Range[n]]]]]; - J = Compile[{{x, _Real, 1}}, - Evaluate[ - D[r, {First /@ \[Beta]}] /. - Thread[Rule[First /@ \[Beta], Part[x, #] & /@ Range[n]]]]]; + rf = Compile[{{x, _Real, 1}}, + Evaluate[r /. Thread[Rule[First /@ β, Part[x, #] & /@ Range[n]]]] + ]; + Jf = Compile[{{x, _Real, 1}}, + Evaluate[D[r, {First /@ β}] /. Thread[Rule[First /@ β, Part[x, #] & /@ Range[n]]]] + ]; PrintTemporary["Beginning the algorithm."]; - oldJ = J[\[Beta][[All, 2]]]; - oldr = rc[\[Beta][[All, 2]]]; - oldcost = Re[Total[oldr^2]]; - new\[Beta] = \[Beta]; + oldr = rf[β[[All, 2]]]; + oldJ = Jf[β[[All, 2]]]; + oldC = Re[Total[oldr^2]]; g = Re[Transpose[oldJ] . oldr]; M = Re[Transpose[oldJ] . oldJ]; - \[Delta] = LinearSolve[M + \[Lambda] DiagonalMatrix[Diagonal[M]], g]; - PrintTemporary[Dynamic[oldcost]] - While[Norm[\[Delta]] > 10^-15, - \[Delta] = - LinearSolve[M + \[Lambda]/\[Nu] DiagonalMatrix[Diagonal[M]], g]; - new\[Beta][[All, 2]] -= \[Delta]; - newr = rc[new\[Beta][[All, 2]]]; - newcost = Re[Total[newr^2]]; - While[newcost > oldcost, - \[Delta] = - LinearSolve[M + \[Lambda] DiagonalMatrix[Diagonal[M]], g]; - new\[Beta] = \[Beta]; - new\[Beta][[All, 2]] -= \[Delta]; - newr = rc[new\[Beta][[All, 2]]]; - newcost = Re[Total[newr^2]]; - \[Lambda] *= \[Nu]; + δ = levenbergMarquardtStep[M, λ / ν, g]; + PrintTemporary[Dynamic[oldC]] + While[Norm[δ] > 10^-15, + newβ[[All, 2]] -= δ; + newr = rf[newβ[[All, 2]]]; + newC = Re[Total[newr^2]]; + While[newC > oldC, + δ = levenbergMarquardtStep[M, λ, g]; + newβ = β; + newβ[[All, 2]] -= δ; + newr = rf[newβ[[All, 2]]]; + newC = Re[Total[newr^2]]; + λ *= ν; ]; - \[Lambda] /= \[Nu]; - oldcost = newcost; - oldr = newr; - \[Beta] = new\[Beta]; - oldJ = J[\[Beta][[All, 2]]]; - g = Re[Transpose[oldJ] . oldr]; - M = Re[Transpose[oldJ] . oldJ]; - ]; - {newcost, \[Beta]} + λ /= ν; + oldC = newC; + oldr = newr; + β = newβ; + oldJ = Jf[β[[All, 2]]]; + g = Re[Transpose[oldJ] . oldr]; + M = Re[Transpose[oldJ] . oldJ]; + δ = levenbergMarquardtStep[M, λ / ν, g]; + ]; + {newC, β} ] EndPackage[] |