1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
|
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 42611, 1158]
NotebookOptionsPosition[ 39591, 1098]
NotebookOutlinePosition[ 39990, 1114]
CellTagsIndexPosition[ 39947, 1111]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["x",
RowBox[{
RowBox[{"-", "7"}], "/", "3"}]],
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "1"}], "/",
SuperscriptBox["x", "2"]}], "]"}]}],
RowBox[{"(",
RowBox[{"x", "+", "y"}], ")"}]], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "->",
RowBox[{"{",
RowBox[{
RowBox[{"x", ">", "0"}], ",",
RowBox[{"y", ">", "0"}], ",",
RowBox[{"yc", ">", "0"}]}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{3.8371541989870367`*^9},
CellLabel->"In[48]:=",ExpressionUUID->"fababbb8-381a-4687-8bb1-07b91e8a5e30"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["y", "2"]]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["7", "6"], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["y", "2"]]}]}], "]"}]}], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}]}], "+",
RowBox[{"4", " ", "y", " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["5", "3"], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["y", "2"]]}]}], "]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}]}], ")"}]}],
RowBox[{"12", " ",
SuperscriptBox["y", "2"]}]]], "Output",
CellChangeTimes->{3.837154204903788*^9},
CellLabel->"Out[48]=",ExpressionUUID->"18ce2878-724a-4922-9798-030bcc1e0186"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"i1", "=",
RowBox[{
FractionBox[
SuperscriptBox["\[Theta]", "2"], "\[Pi]"],
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["x",
RowBox[{
RowBox[{"-", "7"}], "/", "3"}]],
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "1"}], "/",
SuperscriptBox["x", "2"]}], "]"}]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "+", "yc"}], ")"}], "2"],
RowBox[{"(",
RowBox[{"x", "+", "y"}], ")"}]}]], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "->",
RowBox[{"{",
RowBox[{
RowBox[{"x", ">", "0"}], ",",
RowBox[{"y", ">", "0"}], ",",
RowBox[{"yc", ">", "0"}]}], "}"}]}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.837152286872525*^9, 3.8371524292104893`*^9}, {
3.837152588581934*^9, 3.8371525930135*^9}, {3.8371526561032867`*^9,
3.8371526576627903`*^9}, {3.837152833506393*^9, 3.837152859458221*^9}, {
3.8371530145983763`*^9, 3.83715307324615*^9}, {3.8371531339360533`*^9,
3.837153158839828*^9}, {3.83715327430684*^9, 3.837153280810217*^9}, {
3.837153503855143*^9, 3.837153504046052*^9}},
CellLabel->"In[37]:=",ExpressionUUID->"bf6da1af-2ff5-46b6-a7be-85f3bdd44d14"],
Cell[BoxData[
RowBox[{
FractionBox["1",
RowBox[{"36", " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"y", "-", "yc"}], ")"}], "2"]}]],
RowBox[{
SuperscriptBox["\[Theta]", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["1",
SuperscriptBox["y",
RowBox[{"7", "/", "3"}]]],
RowBox[{"3", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["y", "2"]]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"8", " ",
SqrtBox["3"], " ", "\[Pi]"}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"1", "/", "6"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"-",
FractionBox["1", "6"]}], "]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}]}], "-",
RowBox[{"4", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"-",
FractionBox["2", "3"]}], "]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}], "+",
RowBox[{"4", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"-",
FractionBox["2", "3"]}], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["y", "2"]]}]}], "]"}]}], "-",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"1", "/", "6"}]], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"-",
FractionBox["1", "6"]}], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["y", "2"]]}]}], "]"}]}]}], ")"}]}]}], "-",
RowBox[{
FractionBox["1",
SuperscriptBox["yc",
RowBox[{"7", "/", "3"}]]],
RowBox[{"3", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["yc", "2"]]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"8", " ",
SqrtBox["3"], " ", "\[Pi]"}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"1", "/", "6"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"-",
FractionBox["1", "6"]}], "]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}]}], "-",
RowBox[{"4", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"-",
FractionBox["2", "3"]}], "]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}], "+",
RowBox[{"4", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"-",
FractionBox["2", "3"]}], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["yc", "2"]]}]}], "]"}]}], "-",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"1", "/", "6"}]], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"-",
FractionBox["1", "6"]}], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["yc", "2"]]}]}], "]"}]}]}], ")"}]}]}], "+",
RowBox[{
FractionBox["1",
SuperscriptBox["yc",
RowBox[{"16", "/", "3"}]]],
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["yc", "2"]]}]], " ",
RowBox[{"(",
RowBox[{"y", "-", "yc"}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "48"}], " ",
SqrtBox["3"], " ", "\[Pi]"}], "+",
RowBox[{"56", " ",
SqrtBox["3"], " ", "\[Pi]", " ",
SuperscriptBox["yc", "2"]}], "+",
RowBox[{"6", " ",
SuperscriptBox["\[ExponentialE]",
FractionBox["1",
SuperscriptBox["yc", "2"]]], " ",
SuperscriptBox["yc",
RowBox[{"7", "/", "3"}]], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}]}], "-",
RowBox[{"6", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"1", "/", "6"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"-",
FractionBox["1", "6"]}], "]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}]}], "+",
RowBox[{"7", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"1", "/", "6"}]], " ",
SuperscriptBox["yc", "2"], " ",
RowBox[{"Gamma", "[",
RowBox[{"-",
FractionBox["1", "6"]}], "]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}]}], "-",
RowBox[{"36", " ",
SuperscriptBox["\[ExponentialE]",
FractionBox["1",
SuperscriptBox["yc", "2"]]], " ",
SuperscriptBox["yc",
RowBox[{"4", "/", "3"}]], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}], "-",
RowBox[{"12", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
SuperscriptBox["yc", "2"], " ",
RowBox[{"Gamma", "[",
RowBox[{"-",
FractionBox["2", "3"]}], "]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}], "-",
RowBox[{"36", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "3"], "]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}], "+",
RowBox[{"24", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
SuperscriptBox["yc", "2"], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "3"], "]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}], "+",
RowBox[{"12", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
SuperscriptBox["yc", "2"], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"-",
FractionBox["2", "3"]}], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["yc", "2"]]}]}], "]"}]}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"1", "/", "6"}]], " ",
RowBox[{"(",
RowBox[{"6", "-",
RowBox[{"7", " ",
SuperscriptBox["yc", "2"]}]}], ")"}], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}], " ",
RowBox[{"Gamma", "[",
RowBox[{
RowBox[{"-",
FractionBox["1", "6"]}], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["yc", "2"]]}]}], "]"}]}], "+",
RowBox[{"36", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}], " ",
RowBox[{"Gamma", "[",
RowBox[{
FractionBox["1", "3"], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["yc", "2"]]}]}], "]"}]}], "-",
RowBox[{"24", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "3"}]], " ",
SuperscriptBox["yc", "2"], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}], " ",
RowBox[{"Gamma", "[",
RowBox[{
FractionBox["1", "3"], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox["yc", "2"]]}]}], "]"}]}]}], ")"}]}]}]}],
")"}]}]}]], "Output",
CellChangeTimes->{
3.83715241847911*^9, 3.837152473882375*^9, 3.837152648741281*^9,
3.837152714070775*^9, 3.8371529158052588`*^9, 3.8371530773164387`*^9, {
3.837153147250849*^9, 3.8371531813231363`*^9}, {3.8371532786171103`*^9,
3.83715328927947*^9}, 3.837153512224599*^9},
CellLabel->"Out[37]=",ExpressionUUID->"efae8b97-cac0-4dfb-b6a6-403456514c4f"]
}, Open ]],
Cell[BoxData[
RowBox[{"i2", "=",
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"i1", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"y", "->",
RowBox[{"b",
RowBox[{"(",
RowBox[{"\[Theta]c", "-", "\[Theta]"}], ")"}]}]}], ",",
RowBox[{"yc", "->",
RowBox[{"b", " ", "\[Theta]c"}]}]}], "}"}]}], ")"}], "+",
RowBox[{"(",
RowBox[{"i1", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"y", "->",
RowBox[{"b",
RowBox[{"(",
RowBox[{"\[Theta]c", "+", "\[Theta]"}], ")"}]}]}], ",",
RowBox[{"yc", "->",
RowBox[{"b", " ", "\[Theta]c"}]}]}], "}"}]}], ")"}]}], ",",
RowBox[{"Assumptions", "->",
RowBox[{"{",
RowBox[{
RowBox[{"b", ">", "0"}], ",",
RowBox[{"\[Theta]c", ">", "0"}], ",",
RowBox[{"\[Theta]", "<", "\[Theta]c"}], ",",
RowBox[{"\[Theta]", ">",
RowBox[{"-", "\[Theta]c"}]}]}], "}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.837153261498691*^9, 3.8371533873000507`*^9}, {
3.837153547543831*^9, 3.837153576103598*^9}, 3.8371549111209583`*^9},
CellLabel->"In[52]:=",ExpressionUUID->"c8a865bb-cad1-450c-8187-a809f109c3c8"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"iSing", "=",
RowBox[{
RowBox[{"-",
FractionBox["1",
RowBox[{"12", " ", "\[Pi]"}]]}],
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]}]]}]], " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["7", "6"], ",",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]}]]}]}],
"]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]], "+",
FractionBox[
RowBox[{"4", " ", "b", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]}]]}]], " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["5", "3"], ",",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]}]]}]}],
"]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}],
RowBox[{"\[Theta]", "-", "\[Theta]c"}]]}], ")"}]}]}]], "Input",
CellChangeTimes->{{3.837159003786721*^9, 3.837159023124399*^9}},
CellLabel->"In[56]:=",ExpressionUUID->"bd0a8b22-65f5-4df7-b577-0bf969c52194"],
Cell[BoxData[
RowBox[{"-",
FractionBox[
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]}]]}]], " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["7", "6"], ",",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]}]]}]}],
"]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]], "+",
FractionBox[
RowBox[{"4", " ", "b", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]}]]}]], " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["5", "3"], ",",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]}]]}]}],
"]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}],
RowBox[{"\[Theta]", "-", "\[Theta]c"}]]}],
RowBox[{"12", " ", "\[Pi]"}]]}]], "Output",
CellChangeTimes->{{3.837159019621305*^9, 3.837159023641695*^9}},
CellLabel->"Out[56]=",ExpressionUUID->"3576d1fd-5496-4abf-b6de-d73b330829ac"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"SeriesCoefficient", "[",
RowBox[{"iSing", ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Theta]c", ",", "1"}], "}"}], ",",
RowBox[{"Assumptions", "->",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]c", ">", "0"}], ",",
RowBox[{"\[Theta]", "<", "\[Theta]c"}], ",",
RowBox[{"b", ">", "0"}]}], "}"}]}]}], "]"}], "//", "N"}]], "Input",
CellChangeTimes->{{3.837159089333461*^9, 3.8371591098128653`*^9}, {
3.837159228863208*^9, 3.8371592353512363`*^9}, {3.837159280672409*^9,
3.837159285872224*^9}, {3.837159400090641*^9, 3.83715940032231*^9}, {
3.8371594403473797`*^9, 3.837159450811274*^9}},
CellLabel->"In[81]:=",ExpressionUUID->"430dc047-855a-4d97-9e15-6a1b8ed47326"],
Cell[BoxData[
RowBox[{"0.14367637572608224`", " ",
SuperscriptBox["b", "3"]}]], "Output",
CellChangeTimes->{
3.837159110237748*^9, {3.837159229380753*^9, 3.837159235660652*^9}, {
3.837159281262404*^9, 3.837159286279546*^9}, 3.8371594008606462`*^9, {
3.837159440963653*^9, 3.837159451210906*^9}},
CellLabel->"Out[81]=",ExpressionUUID->"4c7ac351-a724-4419-9c0c-ec0428c101c7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"t1", "=",
RowBox[{
FractionBox["1", "\[Pi]"],
RowBox[{"Integrate", "[",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["x",
RowBox[{
RowBox[{"-", "7"}], "/", "3"}]],
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-", "1"}], "/",
SuperscriptBox["x", "2"]}], "]"}]}],
SuperscriptBox["x",
RowBox[{"n", "+", "1"}]]], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "->",
RowBox[{"{",
RowBox[{
RowBox[{"x", ">", "0"}], ",",
RowBox[{"y", ">", "0"}], ",",
RowBox[{"yc", ">", "0"}], ",",
RowBox[{"n", ">", "0"}], ",",
RowBox[{"n", "\[Element]", "Integers"}]}], "}"}]}]}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.837159052820043*^9, 3.837159080308568*^9}, {
3.837159125069777*^9, 3.837159126237418*^9}, {3.837159159774912*^9,
3.837159167254078*^9}, {3.837159215647285*^9, 3.8371592157911263`*^9}, {
3.8371592706725616`*^9, 3.8371592715678377`*^9}},
CellLabel->"In[71]:=",ExpressionUUID->"608d5852-49d9-45d7-9763-cb10da65d830"],
Cell[BoxData[
FractionBox[
RowBox[{"Gamma", "[",
RowBox[{
FractionBox["7", "6"], "+",
FractionBox["n", "2"]}], "]"}],
RowBox[{"2", " ", "\[Pi]"}]]], "Output",
CellChangeTimes->{{3.837159072418518*^9, 3.83715908203614*^9},
3.837159127950366*^9, 3.837159168943486*^9, 3.837159217563138*^9,
3.837159273575577*^9},
CellLabel->"Out[71]=",ExpressionUUID->"6e748a34-f946-4d43-8801-0833c28048e5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"t1", "/.",
RowBox[{"n", "->", "0"}]}], "//", "N"}]], "Input",
CellChangeTimes->{{3.837159127206106*^9, 3.837159130805312*^9}, {
3.837159222143116*^9, 3.837159238231101*^9}, {3.8371592776402197`*^9,
3.837159288088141*^9}, {3.837159404642499*^9, 3.8371594052183743`*^9}},
CellLabel->"In[78]:=",ExpressionUUID->"5fe4ff16-26ea-47b3-a961-9c776acf99bb"],
Cell[BoxData["0.14765111774913997`"], "Output",
CellChangeTimes->{
3.837159131124867*^9, 3.8371591696139517`*^9, {3.837159218839643*^9,
3.8371592385873203`*^9}, {3.837159274439986*^9, 3.837159288334805*^9},
3.837159405552266*^9},
CellLabel->"Out[78]=",ExpressionUUID->"cffc2fe3-b3b9-420d-ae4c-5559b2e114bb"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox[
RowBox[{"4", " ", "b", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]}]]}]], " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["5", "3"], ",",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "\[Theta]c"}], ")"}], "2"]}]]}]}], "]"}],
" ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}],
RowBox[{"\[Theta]", "-", "\[Theta]c"}]], "+",
RowBox[{
RowBox[{"(",
RowBox[{"-",
FractionBox[
RowBox[{"4", " ", "b", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "+", "\[Theta]c"}], ")"}], "2"]}]]}]], " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["5", "3"], ",",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "+", "\[Theta]c"}], ")"}], "2"]}]]}]}],
"]"}]}],
RowBox[{"\[Theta]", "+", "\[Theta]c"}]]}], ")"}], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}]}], "/.",
RowBox[{"\[Theta]", "->", "0"}]}]], "Input",
CellChangeTimes->{{3.837156673000149*^9, 3.837156678457199*^9}},
CellLabel->"In[54]:=",ExpressionUUID->"c1119876-e977-4ca0-8963-ee017dea27fd"],
Cell[BoxData[
RowBox[{"-",
FractionBox[
RowBox[{"8", " ", "b", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox["\[Theta]c", "2"]}]]}]], " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["5", "3"], ",",
RowBox[{"-",
FractionBox["1",
RowBox[{
SuperscriptBox["b", "2"], " ",
SuperscriptBox["\[Theta]c", "2"]}]]}]}], "]"}], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}], "\[Theta]c"]}]], "Output",
CellChangeTimes->{{3.837156674332121*^9, 3.837156679177827*^9}},
CellLabel->"Out[54]=",ExpressionUUID->"af9d10e0-c1b2-44e5-b2ed-d286376e73b8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"i2", "/.",
RowBox[{"\[Theta]", "->", "0"}]}]], "Input",
CellChangeTimes->{{3.837153471782505*^9, 3.837153475437471*^9}},
CellLabel->"In[39]:=",ExpressionUUID->"54955d9a-a1b8-49ea-8b22-6f8c2c06fec5"],
Cell[BoxData["0"], "Output",
CellChangeTimes->{3.837153475703751*^9, 3.837153517514927*^9},
CellLabel->"Out[39]=",ExpressionUUID->"06308438-871f-452c-aef0-07985232fef7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"i3", "=",
RowBox[{"Simplify", "[",
RowBox[{"i2", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"b", "->", "1"}], ",",
RowBox[{"\[Theta]c", "->", "1"}]}], "}"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.8371541718671207`*^9, 3.837154174051682*^9}},
CellLabel->"In[46]:=",ExpressionUUID->"3b3622a7-fadc-4e42-a347-8de6c9595dd3"],
Cell[BoxData[
RowBox[{"-",
RowBox[{
FractionBox["1",
RowBox[{"12", " ", "\[Pi]"}]],
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[Theta]"}], ")"}], "2"]]}]], " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["7", "6"], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[Theta]"}], ")"}], "2"]]}]}], "]"}],
" ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[Theta]"}], ")"}], "2"]], "+",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"2", " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["7", "6"], ",",
RowBox[{"-", "1"}]}], "]"}]}], "\[ExponentialE]"]}], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "\[Theta]"}], ")"}], "2"]]}]], " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["7", "6"], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "\[Theta]"}], ")"}], "2"]]}]}], "]"}]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "\[Theta]"}], ")"}], "2"]]}], ")"}], " ",
RowBox[{"Gamma", "[",
FractionBox["1", "6"], "]"}]}], "+",
FractionBox[
RowBox[{"4", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[Theta]"}], ")"}], "2"]]}]], " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["5", "3"], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "\[Theta]"}], ")"}], "2"]]}]}], "]"}],
" ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}],
RowBox[{
RowBox[{"-", "1"}], "+", "\[Theta]"}]], "+",
RowBox[{
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"8", " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["5", "3"], ",",
RowBox[{"-", "1"}]}], "]"}]}], "\[ExponentialE]"], "-",
FractionBox[
RowBox[{"4", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "\[Theta]"}], ")"}], "2"]]}]], " ",
RowBox[{"ExpIntegralE", "[",
RowBox[{
FractionBox["5", "3"], ",",
RowBox[{"-",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "\[Theta]"}], ")"}], "2"]]}]}], "]"}]}],
RowBox[{"1", "+", "\[Theta]"}]]}], ")"}], " ",
RowBox[{"Gamma", "[",
FractionBox["2", "3"], "]"}]}]}], ")"}]}]}]], "Output",
CellChangeTimes->{3.8371541745414057`*^9},
CellLabel->"Out[46]=",ExpressionUUID->"caca42d0-5916-43b6-84ea-cc91bc115d17"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{"i3", ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "1.2"}], ",", "1.2"}], "}"}], ",",
RowBox[{"PlotRange", "->", "All"}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "20"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8371534184294147`*^9, 3.837153465381342*^9}, {
3.8371538031322393`*^9, 3.8371538039795713`*^9}, {3.837154155242539*^9,
3.8371541836983547`*^9}, {3.837154249916608*^9, 3.837154260835929*^9}},
CellLabel->"In[50]:=",ExpressionUUID->"bdc138d2-dd1c-49d9-b891-f23d7c6a21a1"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwBsQFO/iFib1JlAgAAABoAAAACAAAAaHXmkTf68r9xFzYS7cGzPwE+EGPq
+fK/KsnCecvAsz8oFLKO5vbyvxbpET+AtbM/T+pTuuLz8r+ZTc+TPaqzP3bA
9eXe8PK/IZNObAOfsz/FbDk91+ryv3OiaHqoiLM/7ELbaNPn8r8z6zCZh32z
PxQZfZTP5PK/zFEVDm9ysz9ixcDrx97yv+hAqs1WXLM//h1ImrjS8r/WfMBx
iDCzPyX06cW0z/K/D8JvDqklsz9MyovxsMzyv81nqarRGrM/mnbPSKnG8r9b
AjW4OgWzPzfPVveZuvK/vTzkCWvasj9wgGVUe6LyvzxQ5d87hrI/4eKCDj5y
8r9jRgUuXeOxP+4mFE75bvK/xfNMTZXYsT/6aqWNtGvyv3oqu3jVzbE/FPPH
DCtl8r9GwSTLbbixP0gDDQsYWPK/AaR4RP2NsT+vI5cH8j3yv+h88P2OOrE/
fWSrAKYJ8r8gmrMQPZmwPxnm0/INofG/qJL99evVrj95ptylut3wv0k0rqP3
6ao/bg2pNjwe8L83VmndGJSnPw5HTHsiA/C/3y4hdDUkpz9INuaO
"]],
LineBox[CompressedData["
1:eJw1l2k01XvcxUkpGZIoFGWWcEyJ6P9FMpXMbmTMVGYu4RSFrplrCsmQ4WQo
4hii8DMex+zIFFH3yCFDhjJU4ulZ63le7LVf7Jd7rb0+W+CWl7HTPjo6uq9/
9L8+6+PC9PbHClr+3cOYc7gIOo7bX7rGs4zsoqybT47mQYfm2OIp/0WkLJM9
RarPgTU0bJY+/gX9+/eh4e9emeBeo27d89c86meTEL39KQ26s52somtpqFT0
UmSYVwoE0P3YppOdRa5W8/wjyYlgWHHMSLBqBp0spmOYPR0HLCazz/o4qWi9
dPJWwZVIOOEtmiCX/AmZNxt5+aiHAyvdJZrG9BSaFzzHt/QuBC6/URHzK5pA
g768XJ5YIJy4w1PAXTyGrmbGxB+Z84Wq345sFJdhRA1E18cm3WC86HdD2c1h
dIVsKjRU7wY7RmluMQbDaGHwMH4m3Q20nneSL18YRudqmrN0Td1g4rpEeC3j
MOJmd1IT6neFfc9Wtp4S3qFH84dMD5HugKEG/j/nmSGkZuW2cZ/kAssR/1bv
2FDQKULFpgKTI5TMzxJHjCjIfFA93WDBAZz0VCvLNSmosQcfGt7jAFOsX8rs
JCioxA8ncCHBAfpSNYraNwYRJveEo4/TAcryN57ExQ2iCs+E9Veit2Di/utd
Jb8BZJ02KaxgbQfGao6/FiwGkPLF91Ve6nbQzXB0OwsGkP7NVMZ2ETt4E+O6
Rsc8gJ6pCQx4TNlCZgbfZ3JePyLtKpjFMNiCZXV4142BPsR04DuRzsIaJhcN
UgMlepFMUWViubgliArXSBLYe9G2lX+/1LYFeFvxdlA2e5D14A3aZKcFMPZ9
3pBo60FTeIeYdhcLkCkP+mvqZg9Soeh+JZXcgAjvAl6N+G5Udn8lKUbxL5Db
2HzGvEpGzU+8Oai+phAsZaWsNEpGam6rXjI6pkB2aqE4NpARtals5iWfKViP
xu5riiIjr2WRLVyXCUS9PuPoLUBGw312MjaCJjAdpCc2YtyJut1kOc2njCB6
N7ssp6YDyTMP+ZxavA6B0hMfI7I7kIBAwAG+59fhts1xDq9/OtAM/uALd/vr
oNOUcBfMOpAi9RLLj3F9YAx5AJ++tyOjeeerHT3X4NFvO4qAQjuyd1XbE27W
g5AdoY1CYitCGFzpm9ECT0k7sfjMVnTw3MW/84q1wMYqy8I/rBVJLs50tnlo
waUGzqYrxq0IL2rSvb59BXbuHYikrbUgdn3OoB8cVyDoF41bXLYFbf6HIxeY
XYa57yZB5rYIbf+TbK/GpQaC8m2nuM8hNCScf0IfAdj4yDW/32xCLGcLzQZM
AUaX2Q9aJzShLCF9s41QDEi0vlSHxkbE26w10fFZFQrHtSu8TzYgwWCDAx69
yvDp+GsTubm3qFnZHp/krgynzES3vhHfoqqELDo3VmVIoezHAvTeIon1KdZL
RkoQ1t3SExz0BuW2HOu/+Z8i2DeozMWM1aFwVmu9ICEFyPpZGnOtoA4VJ+M4
v/TLw7gSrzSbVx3yPhuLY70nD4Y1235JjHVos8ZA2ndEDtTKa/ZlnH+NJMQe
8ZQnywL/Mxw/IaUGxc84tpOtpWEyXMgMGRCRhSNNhPmDCNhVqklu8xNRipVn
PtNtEaBNWzPIfq1Et650OKhtCMO6ckZlflwlatLffGB+TBgOrbKwRXRVINPq
7SohG0Fwr1uKfxJRjti5SFaeVvwQeExMlVmkHPm7RJ6+/ZQPwj3tF+63lSFp
9+jZwQ+nIFN4VMuOrgwVe+QLrTifhM5EtCeKf4G2LmEcVhncIHgn2afaoxgZ
qfVvznodA+n23tOiLMUoJI2mShrhAOXTB/vTS4uQqKCmDifGAYYj9yTuzT1H
bu0Sd35wHYVgdacZdXsCcmDt3urpYIWorNykqr1C5Lc+KexUxwKpW+9BJKcQ
RduEDY+/YobSsutZhyYLUEuhioZBGROM8yj96T0fLajEifhTD8BnP18G9W95
yNUsVPbjr/2wMvCykpiUhyTqfk4K8u4HxggBtrT+Z8hX9jhB0WkfOH/mSqhP
zEGrw2xFvG67WHBmzEJWXzbaz5GmGL64g6Ua7mk9PJyNXh96EZbt/wtraZjf
03r0FD1HIQTa823s1OO3PsMBGeiIpl0RKfgbRl779iKuLh1JHgm1LjBax/yv
S9I0f6ShlfHyM4PSa1j/wWzLGvxjJC0nky13+CuGdxxJ9Xibioboz2+77ixi
oi2sAyI7KSjfwytQg34Be4APuZwWnIyo9VcP92vQMMmx2uDrTUko22GrMvTB
Z2xcfuU1414i+od3qfRdPxWzn0A3vtL9izoMxp8X6H3E3qTI9NmExSPi2U3j
Xzc+YBz6eeoDDHHIEKpVEuLeY+0oTKKCMRq5Y64xjg7DGF/Qt5wzUZHouKOF
TRHjEHZXzvFYElME4jpd/lgnZwDrXxyOpI99hF7rGgvWBvVgYoQrOz4s4eiq
rPNyWm4n9tCm1psaH4qW3yxGLxxpx8ZPiM0aH3mI+AmnUyq6m7Fb+biqCIFg
1DawfoOS+xbj5Dqa5SKMR23S5gwiUIuRItcf6YgFoLBkjfibf1diAT/feZyV
8EPs68zT84GlmLhHjflhKR+kz066Na1QgFUjqQejtu6oLedyrdT5TOwEYdUw
w8kZVYUvKQiZJmL4mCpBSzc7xMTLYqoUH4q9+bg0f4Fqig620u81OrpjdGaz
3AGT6khtzsvkZasmNmim+pBRURyK5UrEmzmPYfMPGCzwm/ogxhb7yErZGpPe
+BVVv2IJGr/liLdyAjAFrrfrvL4OwBLwslklJwqj4LbPWLjfAZ6VUW7Rw48x
T73zBunOXtCZGyVqwfIMi5Crb3Kt8IVr2NKEfeNzbBiNjUSX+UNc3jxNKqMc
E9TfXCouDQTdYCtO2/4qzGeCcz+56B5UUpoHomfrsGYX+ZNzhSEwdaG4Jj2p
CYv8Kc7DQHkIJzS0qzTvtGLS6nWFyQZhIGVK7MINd2Cjkdoygv3h0ORPDomP
7sKEuZy11XsiIFvDT4nyZRDrubkxNKgbBdIZcE1K4R3mm//Ixo4cDe/+Wn7S
VjCCteAK/B90xIFKT+vP3PUJ7PZdOfojmgnAaM1fSKNMYeyNLXE5rf+CjiDV
QsHtE4YTWaVM2ybBqvUgLrFoBgsjv04XPZ0MypRgixf2s9io2wNrz+lkUJjx
W3aUnsNCiGxfflulQvBTZsHqvQWsF6To+CzTQdl/9vbn5jWs/A5Pd+7ZDHiZ
HSq6Sv8NS0w5kCr4IwPaNQmda/rfMZO5KTHxjEyYVe+4Nca4hU0kJBjIj2aD
dMF5dtmdHayhDs9TS8iBjqNT31ZTd7FsqvOMkn8unOC/yW96ig5knuaqnI55
Bj8Zd5dCBunh+9eAAeGz+bBY4NdDwB+AWQZPBVpiPuwc4A6g+TLCKLfjk6Lt
fLgWtNxW4H0QXmsYOkiQCyD24HFS6n0mwKeJb+FcCCBxblTRdJQV6LH3/CqE
YjhDVGuoJh+DdeOB8B2WErihq1vQ6s0JVJeO+Ua/EuhZvsGWeJIL2pMqiWqa
peDN87vrTtBxiJqN1tKaeQHS+inWJ815gC3+oqeRwCsoDWk0j0s5Dbt5Mu84
ol+Ba4b8h375M7BSK6o0vPoK9lPHjivlnoHb3kyh5+wqwNx+xF4SLwB6mRt6
5bhKmL5UT81WEwK2r33TVf1E4Ptl0FV5RAxUmZ5a8+0R4XCRk6NMpBi4Cd/+
EIGrgud4+zHqnhiQLfdNWCRWAYfHufsz38UhrFNxZM+oGs70luiZLUvA1rPc
nqsjNXDTba3hIDcORBvc9WoO1EIq7eXj7nwcmI4pd/Er1sJEkB+P/QkZILIO
k9bSamHgvt9vMYIMuOMPtabfeA1DO+Ht3zpl4ZOJT93MZB2kLpSXxEgoAJsX
dkGfpR4oNyJOpwUpwKUY5tpa1XrgedL9QLVLATKbCVXR2fVAteUVtnQ9D6ZS
E+U42zdQ9GfI31cpQhfjZcI96lvQv3v9r+8OykCs50w+9qUJeC4e2DehBPBo
c4ESy4dAdFd/L7sAwFy+5eh+YwR7Pbi3cQfV4NdLj6TvbxDYVNJHnPT7wyOG
DmRXrWYgoE2lSCN1cL3c0HmVuwWYFp9XZPNdhp9nPUmsDa1QMLbPa/enFjjo
WNB0R1vB+cnW0TkVbeh11mSMWG2FoZfrvpLB2pBTwKu1K9wG2tcik/vodECD
r7Pja3wbSEh/uOzKogux7Gc6BmzbQcyZJ5Dr/FU4tUVpS2IgQd2QhPjdXgMg
PtuvY8JHAqrSzn4KsyHo6l3o5bxAAgf9x6qpsoZwNztrON2VBOxD4yn5wYYw
cNllNptCAhURqtfHE0YQlrjDWJrbCbhgktW0qTHMnRXTa1Xpgu6XHYbH10yB
aHV/cP3vXqgn+18sr7KEQrbxN9uxvXDMTjjO9z9LeNwsT9gt+JMbaIfbHrkJ
gcKLQYeHewGlBgZUud2ES0sWQoIKfVDPlXxEU9QKyPcu3DX63gcT9uKDLAXW
MJ25frLCbwBCcWW8xD88/497dVXtRQrE1L1/qVrtALR4YYtGbQoIqErNlgw5
gM6r1N02Uwp45/+aw6392eF1P12KJwVuMevYREg7QnLA+Y+L+RR4bHMh0rrU
EXLCag8LMA+BVo1lYd1zJ6jLqLOPnRwC7Q8cFepEF1hobzhid38YfiZKU0q4
3KFSnCaTFjEGkT//Fix55QsC63STgaETUPmekKi4GQDdI2WPtRunwOfeVk5f
bAi4URtjKHaf4KnkdVIZKQxY55aN/RmoUEpPHqFyRoKdT3mwbcwMjPP6JU/n
xEJU+dxSLtMszCvrM1/QT4Te7TuO5iU0YMfXrBmbpUAL+T5mIjUPe/jfVZOh
aTBEGD9DonwBZQYhyXmbTKg7X6b9r+ciXNtZWNQsygGDqxyUnJUl4KVfXc5K
yYN9ns23hJO+Qt6D9rws80L4vz8L//9n/wfRPlcP
"]], LineBox[CompressedData["
1:eJwVj30s1HEAhy+vvSwrtqgtRUkxjqQXL32iKw1/SJj3RM0ppeby0q3GGkUl
L9fy0o5ydpSd391XI+uISridsoR1xo2Rl2vu903NyyL98ezZ8+djE58SfMmA
w+HYr/HfZn6BQltDPUadbQTue6XoParxy+vRo36+m2/6+CUWkqP438pYnHkj
qd4kk6G/4IWd5hkL4+/CuNetMjDM9Ji2kkXqW/ZC0mcZ+PPpMboaFt7kfpRe
L8OQUBRsqGDhblHqLzzUgOZ8tZdrDwtRUWV4gbIBmbXY+miJxZZZ7eXlKwzC
enJ7i/+y6Jj8aLkqYHBQp35QyqFYyDapWH+HwQw32kRiQvHqp9TbqZBBZFPG
cos5Rd9VhxplIwOPTvnElAOFqmGlgbPKYGl8TwsviqKNu7sNpXL05n1NlcRS
OMZsOMmtlqOae9fJKJ6i9nzCXnuZHIHCsar3fApGus/R5YMcYvPn93zTKHhn
vbNq9XL4+liHniiiME3UnvMKUGDbD7VZlYhi80jUuqYwBWYf3u5afUoRH5DW
6RGvgGho2LNNTBF6rbE7JlOByZQK2+P1FGLV+HaLWgXyxVZ6z08UfPuR66dN
CWJ5XXUVPRRJzYVN4RYEbjPpCctqCnliik6wi2DYfXCgpZ8iP2ggUnWEgNHk
Fu4YWuv9KrkxjyAn+7D/LQ1FyI1OV/8gAmf1E+WxMQplns80yycwSD2VXjZB
MVcSgdCbBINWv10WpygEjXXLHdkE9a2SmXAdhV201smzgCDrYoikeY4iI6V/
QllOELLRKNbq19qvLsctQEpwgCGWGX8oIoqt7ccJwUpoQt/gIkV5Cf2S844g
jrS7OC9R7EzuHu1uJ/gH5cBJxg==
"]]},
Annotation[#, "Charting`Private`Tag$591217#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8371534327807703`*^9, 3.8371534661081553`*^9},
3.8371535186967163`*^9, {3.837153795719611*^9, 3.837153804720337*^9}, {
3.837154159258175*^9, 3.8371541842464027`*^9}, {3.837154252931675*^9,
3.8371542615178967`*^9}},
CellLabel->"Out[50]=",ExpressionUUID->"7dab72fd-cd30-44be-b73a-d23ec16b745a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"FullSimplify", "[", "i1", "]"}]], "Input",
CellChangeTimes->{{3.837153188209074*^9, 3.837153192208252*^9}},
CellLabel->"In[27]:=",ExpressionUUID->"acd277d9-1867-4c72-bd06-edff0291a14e"],
Cell[BoxData["$Aborted"], "Output",
CellChangeTimes->{3.837153204428977*^9},
CellLabel->"Out[27]=",ExpressionUUID->"a786f1b5-8e89-47a1-ba0e-8efd965ebaa9"]
}, Open ]],
Cell[BoxData[
RowBox[{"i1", "/.",
RowBox[{"y", "->"}]}]], "Input",
CellChangeTimes->{{3.837153084295353*^9,
3.837153086518475*^9}},ExpressionUUID->"b3b0287b-1e22-4b15-a4f5-\
10695aa5f35c"],
Cell[BoxData[" "], "Input",
CellChangeTimes->{
3.837152869906995*^9},ExpressionUUID->"072b5925-5f74-49be-9a73-\
34916c763d7c"]
},
WindowSize->{636., 350.25},
WindowMargins->{{Automatic, 2.25}, {357.75, Automatic}},
FrontEndVersion->"12.3 for Linux x86 (64-bit) (May 11, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"72b00315-9f0b-4e16-a7c6-aa74d14cd275"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 747, 23, 41, "Input",ExpressionUUID->"fababbb8-381a-4687-8bb1-07b91e8a5e30"],
Cell[1330, 47, 989, 31, 61, "Output",ExpressionUUID->"18ce2878-724a-4922-9798-030bcc1e0186"]
}, Open ]],
Cell[CellGroupData[{
Cell[2356, 83, 1367, 36, 42, "Input",ExpressionUUID->"bf6da1af-2ff5-46b6-a7be-85f3bdd44d14"],
Cell[3726, 121, 9857, 285, 381, "Output",ExpressionUUID->"efae8b97-cac0-4dfb-b6a6-403456514c4f"]
}, Open ]],
Cell[13598, 409, 1282, 35, 41, "Input",ExpressionUUID->"c8a865bb-cad1-450c-8187-a809f109c3c8"],
Cell[CellGroupData[{
Cell[14905, 448, 1994, 59, 171, InheritFromParent,ExpressionUUID->"bd0a8b22-65f5-4df7-b577-0bf969c52194"],
Cell[16902, 509, 1870, 56, 70, "Output",ExpressionUUID->"3576d1fd-5496-4abf-b6de-d73b330829ac"]
}, Open ]],
Cell[CellGroupData[{
Cell[18809, 570, 757, 16, 24, "Input",ExpressionUUID->"430dc047-855a-4d97-9e15-6a1b8ed47326"],
Cell[19569, 588, 387, 7, 25, "Output",ExpressionUUID->"4c7ac351-a724-4419-9c0c-ec0428c101c7"]
}, Open ]],
Cell[CellGroupData[{
Cell[19993, 600, 1177, 32, 57, "Input",ExpressionUUID->"608d5852-49d9-45d7-9763-cb10da65d830"],
Cell[21173, 634, 417, 10, 47, "Output",ExpressionUUID->"6e748a34-f946-4d43-8801-0833c28048e5"]
}, Open ]],
Cell[CellGroupData[{
Cell[21627, 649, 393, 7, 22, "Input",ExpressionUUID->"5fe4ff16-26ea-47b3-a961-9c776acf99bb"],
Cell[22023, 658, 319, 5, 25, "Output",ExpressionUUID->"cffc2fe3-b3b9-420d-ae4c-5559b2e114bb"]
}, Open ]],
Cell[CellGroupData[{
Cell[22379, 668, 1903, 57, 129, "Input",ExpressionUUID->"c1119876-e977-4ca0-8963-ee017dea27fd"],
Cell[24285, 727, 752, 21, 55, "Output",ExpressionUUID->"af9d10e0-c1b2-44e5-b2ed-d286376e73b8"]
}, Open ]],
Cell[CellGroupData[{
Cell[25074, 753, 227, 4, 22, "Input",ExpressionUUID->"54955d9a-a1b8-49ea-8b22-6f8c2c06fec5"],
Cell[25304, 759, 171, 2, 25, "Output",ExpressionUUID->"06308438-871f-452c-aef0-07985232fef7"]
}, Open ]],
Cell[CellGroupData[{
Cell[25512, 766, 373, 9, 24, "Input",ExpressionUUID->"3b3622a7-fadc-4e42-a347-8de6c9595dd3"],
Cell[25888, 777, 3799, 115, 282, "Output",ExpressionUUID->"caca42d0-5916-43b6-84ea-cc91bc115d17"]
}, Open ]],
Cell[CellGroupData[{
Cell[29724, 897, 570, 11, 24, "Input",ExpressionUUID->"bdc138d2-dd1c-49d9-b891-f23d7c6a21a1"],
Cell[30297, 910, 8540, 161, 184, "Output",ExpressionUUID->"7dab72fd-cd30-44be-b73a-d23ec16b745a"]
}, Open ]],
Cell[CellGroupData[{
Cell[38874, 1076, 211, 3, 24, "Input",ExpressionUUID->"acd277d9-1867-4c72-bd06-edff0291a14e"],
Cell[39088, 1081, 156, 2, 25, "Output",ExpressionUUID->"a786f1b5-8e89-47a1-ba0e-8efd965ebaa9"]
}, Open ]],
Cell[39259, 1086, 196, 5, 22, "Input",ExpressionUUID->"b3b0287b-1e22-4b15-a4f5-10695aa5f35c"],
Cell[39458, 1093, 129, 3, 22, "Input",ExpressionUUID->"072b5925-5f74-49be-9a73-34916c763d7c"]
}
]
*)
(* End of internal cache information *)
|