summaryrefslogtreecommitdiff
path: root/analyticity.nb
blob: ecfa8d219991e670ed810ea5f49ec9ba786c3a41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 11.3' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[    518635,      12743]
NotebookOptionsPosition[    486624,      12222]
NotebookOutlinePosition[    486958,      12237]
CellTagsIndexPosition[    486915,      12234]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
 RowBox[{"ClearAll", "[", "b", "]"}]], "Input",
 CellChangeTimes->{{3.755903284717009*^9, 3.7559032872318897`*^9}},
 CellLabel->"In[28]:=",ExpressionUUID->"478e8578-6729-440b-8da8-b832148e0b8c"],

Cell[BoxData[
 RowBox[{
  RowBox[{"b", "[", "d_", "]"}], ":=", 
  RowBox[{"Piecewise", "[", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"7", "/", "3"}], ",", 
       RowBox[{"d", "\[Equal]", "3"}]}], "}"}], "}"}], ",", 
    RowBox[{
     RowBox[{"(", 
      RowBox[{"d", "-", "3"}], ")"}], 
     RowBox[{"d", "/", "2"}]}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.75587796566929*^9, 3.755878043438149*^9}},
 CellLabel->"In[26]:=",ExpressionUUID->"9c5d2ef8-d44a-4a91-867a-85038c55da40"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"\[ScriptCapitalH]", "[", "d_", "]"}], "[", "X_", "]"}], ":=", 
  RowBox[{
   SuperscriptBox["X", 
    RowBox[{"-", 
     RowBox[{"b", "[", "d", "]"}]}]], 
   RowBox[{"Exp", "[", 
    RowBox[{"-", 
     RowBox[{"Sum", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"A", "[", "i", "]"}], "/", 
        SuperscriptBox["X", "i"]}], ",", 
       RowBox[{"{", 
        RowBox[{"i", ",", "1", ",", 
         RowBox[{"d", "-", "1"}]}], "}"}]}], "]"}]}], "]"}], 
   RowBox[{"f", "[", "X", "]"}]}]}]], "Input",
 CellChangeTimes->{{3.755875422421934*^9, 3.7558754760427647`*^9}, 
   3.7558759233177357`*^9, 3.7558763059407988`*^9, {3.755877345324197*^9, 
   3.755877349122547*^9}, 3.7558774030593557`*^9, {3.7558777815396137`*^9, 
   3.755877788841797*^9}, {3.755878100913015*^9, 3.755878108543408*^9}, {
   3.755889382041131*^9, 3.7558893825297613`*^9}, {3.755889525110273*^9, 
   3.755889525444117*^9}, {3.756057072667481*^9, 3.756057088962357*^9}},
 CellLabel->"In[59]:=",ExpressionUUID->"f115e671-e364-4c17-8cd5-0e618136d51f"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Series", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{
      SuperscriptBox["X", 
       RowBox[{"-", 
        RowBox[{"b", "[", "d", "]"}]}]], 
      RowBox[{"Exp", "[", 
       RowBox[{
        RowBox[{"-", "A"}], "/", 
        SuperscriptBox["X", 
         RowBox[{"d", "-", "1"}]]}], "]"}], 
      RowBox[{
       RowBox[{"f", "[", "0", "]"}], "/", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"Exp", "[", 
          RowBox[{
           RowBox[{"-", "A"}], "/", 
           SuperscriptBox["Y", 
            RowBox[{"d", "-", "1"}]]}], "]"}], 
         SuperscriptBox["Y", 
          RowBox[{"-", 
           RowBox[{"b", "[", "d", "]"}]}]]}], ")"}]}]}], "/.", 
     RowBox[{"X", "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{"Sum", "[", 
        RowBox[{
         RowBox[{
          SubscriptBox["a", "n"], 
          SuperscriptBox["Y", "n"]}], ",", 
         RowBox[{"{", 
          RowBox[{"n", ",", 
           RowBox[{"d", "+", "1"}], ",", 
           RowBox[{"d", "+", "100"}]}], "}"}]}], "]"}]}]}]}], "/.", 
    RowBox[{"d", "\[Rule]", "3"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"Y", ",", "0", ",", "3"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.755953425332271*^9, 3.755953597896872*^9}, {
   3.755953645115286*^9, 3.755953645178322*^9}, {3.755953795712057*^9, 
   3.7559538048771133`*^9}, 3.755954148531365*^9, {3.755954187092915*^9, 
   3.7559541942559958`*^9}, {3.755961563503296*^9, 3.755961573592606*^9}},
 CellLabel->
  "In[149]:=",ExpressionUUID->"388f6f91-566d-4160-a250-0df41602b59f"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   RowBox[{"f", "[", "0", "]"}], "+", 
   RowBox[{"2", " ", "A", " ", 
    RowBox[{"f", "[", "0", "]"}], " ", 
    SubscriptBox["a", "4"], " ", "Y"}], "+", 
   RowBox[{
    RowBox[{"(", 
     RowBox[{
      RowBox[{"2", " ", 
       SuperscriptBox["A", "2"], " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       SubsuperscriptBox["a", "4", "2"]}], "+", 
      RowBox[{"2", " ", "A", " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       SubscriptBox["a", "5"]}]}], ")"}], " ", 
    SuperscriptBox["Y", "2"]}], "+", 
   RowBox[{
    RowBox[{"(", 
     RowBox[{
      RowBox[{
       RowBox[{"-", 
        RowBox[{"b", "[", "3", "]"}]}], " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       SubscriptBox["a", "4"]}], "+", 
      RowBox[{
       FractionBox["4", "3"], " ", 
       SuperscriptBox["A", "3"], " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       SubsuperscriptBox["a", "4", "3"]}], "+", 
      RowBox[{"4", " ", 
       SuperscriptBox["A", "2"], " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       SubscriptBox["a", "4"], " ", 
       SubscriptBox["a", "5"]}], "+", 
      RowBox[{"2", " ", "A", " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       SubscriptBox["a", "6"]}]}], ")"}], " ", 
    SuperscriptBox["Y", "3"]}], "+", 
   InterpretationBox[
    SuperscriptBox[
     RowBox[{"O", "[", "Y", "]"}], "4"],
    SeriesData[$CellContext`Y, 0, {}, 0, 4, 1],
    Editable->False]}],
  SeriesData[$CellContext`Y, 0, {
    $CellContext`f[0], ((2 $CellContext`A) $CellContext`f[0]) 
    Subscript[$CellContext`a, 4], ((2 $CellContext`A^2) $CellContext`f[0]) 
     Subscript[$CellContext`a, 4]^2 + ((2 $CellContext`A) $CellContext`f[0]) 
     Subscript[$CellContext`a, 5], ((-$CellContext`b[3]) $CellContext`f[0]) 
     Subscript[$CellContext`a, 4] + ((
       Rational[4, 3] $CellContext`A^3) $CellContext`f[0]) 
     Subscript[$CellContext`a, 4]^3 + (((4 $CellContext`A^2) $CellContext`f[
        0]) Subscript[$CellContext`a, 4]) 
     Subscript[$CellContext`a, 5] + ((2 $CellContext`A) $CellContext`f[0]) 
     Subscript[$CellContext`a, 6]}, 0, 4, 1],
  Editable->False]], "Output",
 CellChangeTimes->{{3.755953579986732*^9, 3.755953602136208*^9}, 
   3.755953645477916*^9, {3.755953799375855*^9, 3.7559538050840693`*^9}, 
   3.755954148935199*^9, {3.7559541889348087`*^9, 3.755954194700406*^9}, {
   3.755961563871533*^9, 3.7559615739086723`*^9}},
 CellLabel->
  "Out[149]=",ExpressionUUID->"9f0187ae-fa3c-485d-92a2-a51c3d5728fd"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Series", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"1", "/", 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{"x", "+", 
        RowBox[{"Sum", "[", 
         RowBox[{
          RowBox[{
           SubscriptBox["X", "n"], 
           SuperscriptBox["x", "n"]}], ",", 
          RowBox[{"{", 
           RowBox[{"n", ",", 
            RowBox[{"d", "+", "1"}], ",", "20"}], "}"}]}], "]"}]}], ")"}], 
      RowBox[{"d", "-", "1"}]]}], "/.", 
    RowBox[{"d", "\[Rule]", "3"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "0", ",", "10"}], "}"}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"d", "\[GreaterEqual]", "2"}], ",", 
      RowBox[{"d", "\[Element]", "Integers"}]}], "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.755953904246234*^9, 3.755954134043172*^9}, {
  3.75595421826197*^9, 3.755954218384008*^9}},
 CellLabel->
  "In[133]:=",ExpressionUUID->"59e89fd5-4d33-42d5-bad6-f528bcc2bb10"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   FractionBox["1", 
    SuperscriptBox["x", "2"]], "-", 
   RowBox[{"2", " ", 
    SubscriptBox["X", "4"], " ", "x"}], "-", 
   RowBox[{"2", " ", 
    SubscriptBox["X", "5"], " ", 
    SuperscriptBox["x", "2"]}], "-", 
   RowBox[{"2", " ", 
    SubscriptBox["X", "6"], " ", 
    SuperscriptBox["x", "3"]}], "+", 
   RowBox[{
    FractionBox["1", "6"], " ", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"18", " ", 
       SubsuperscriptBox["X", "4", "2"]}], "-", 
      RowBox[{"12", " ", 
       SubscriptBox["X", "7"]}]}], ")"}], " ", 
    SuperscriptBox["x", "4"]}], "+", 
   RowBox[{
    FractionBox["1", "7"], " ", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"42", " ", 
       SubscriptBox["X", "4"], " ", 
       SubscriptBox["X", "5"]}], "-", 
      RowBox[{"14", " ", 
       SubscriptBox["X", "8"]}]}], ")"}], " ", 
    SuperscriptBox["x", "5"]}], "+", 
   RowBox[{
    FractionBox["1", "8"], " ", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"24", " ", 
       SubsuperscriptBox["X", "5", "2"]}], "+", 
      RowBox[{"48", " ", 
       SubscriptBox["X", "4"], " ", 
       SubscriptBox["X", "6"]}], "-", 
      RowBox[{"16", " ", 
       SubscriptBox["X", "9"]}]}], ")"}], " ", 
    SuperscriptBox["x", "6"]}], "+", 
   RowBox[{
    FractionBox["1", "9"], " ", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"54", " ", 
       SubscriptBox["X", "5"], " ", 
       SubscriptBox["X", "6"]}], "-", 
      RowBox[{"2", " ", 
       SubscriptBox["X", "4"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"18", " ", 
          SubsuperscriptBox["X", "4", "2"]}], "-", 
         RowBox[{"12", " ", 
          SubscriptBox["X", "7"]}]}], ")"}]}], "+", 
      RowBox[{"30", " ", 
       SubscriptBox["X", "4"], " ", 
       SubscriptBox["X", "7"]}], "-", 
      RowBox[{"18", " ", 
       SubscriptBox["X", "10"]}]}], ")"}], " ", 
    SuperscriptBox["x", "7"]}], "+", 
   RowBox[{
    FractionBox["1", "10"], " ", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"30", " ", 
       SubsuperscriptBox["X", "6", "2"]}], "-", 
      RowBox[{
       FractionBox["7", "3"], " ", 
       SubscriptBox["X", "5"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"18", " ", 
          SubsuperscriptBox["X", "4", "2"]}], "-", 
         RowBox[{"12", " ", 
          SubscriptBox["X", "7"]}]}], ")"}]}], "+", 
      RowBox[{"32", " ", 
       SubscriptBox["X", "5"], " ", 
       SubscriptBox["X", "7"]}], "-", 
      RowBox[{
       FractionBox["13", "7"], " ", 
       SubscriptBox["X", "4"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"42", " ", 
          SubscriptBox["X", "4"], " ", 
          SubscriptBox["X", "5"]}], "-", 
         RowBox[{"14", " ", 
          SubscriptBox["X", "8"]}]}], ")"}]}], "+", 
      RowBox[{"34", " ", 
       SubscriptBox["X", "4"], " ", 
       SubscriptBox["X", "8"]}], "-", 
      RowBox[{"20", " ", 
       SubscriptBox["X", "11"]}]}], ")"}], " ", 
    SuperscriptBox["x", "8"]}], "+", 
   RowBox[{
    FractionBox["1", "11"], " ", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{
       RowBox[{"-", 
        FractionBox["8", "3"]}], " ", 
       SubscriptBox["X", "6"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"18", " ", 
          SubsuperscriptBox["X", "4", "2"]}], "-", 
         RowBox[{"12", " ", 
          SubscriptBox["X", "7"]}]}], ")"}]}], "+", 
      RowBox[{"34", " ", 
       SubscriptBox["X", "6"], " ", 
       SubscriptBox["X", "7"]}], "-", 
      RowBox[{
       FractionBox["15", "7"], " ", 
       SubscriptBox["X", "5"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"42", " ", 
          SubscriptBox["X", "4"], " ", 
          SubscriptBox["X", "5"]}], "-", 
         RowBox[{"14", " ", 
          SubscriptBox["X", "8"]}]}], ")"}]}], "+", 
      RowBox[{"36", " ", 
       SubscriptBox["X", "5"], " ", 
       SubscriptBox["X", "8"]}], "-", 
      RowBox[{
       FractionBox["7", "4"], " ", 
       SubscriptBox["X", "4"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"24", " ", 
          SubsuperscriptBox["X", "5", "2"]}], "+", 
         RowBox[{"48", " ", 
          SubscriptBox["X", "4"], " ", 
          SubscriptBox["X", "6"]}], "-", 
         RowBox[{"16", " ", 
          SubscriptBox["X", "9"]}]}], ")"}]}], "+", 
      RowBox[{"38", " ", 
       SubscriptBox["X", "4"], " ", 
       SubscriptBox["X", "9"]}], "-", 
      RowBox[{"22", " ", 
       SubscriptBox["X", "12"]}]}], ")"}], " ", 
    SuperscriptBox["x", "9"]}], "+", 
   RowBox[{
    FractionBox["1", "12"], " ", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{
       RowBox[{"-", "3"}], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"18", " ", 
          SubsuperscriptBox["X", "4", "2"]}], "-", 
         RowBox[{"12", " ", 
          SubscriptBox["X", "7"]}]}], ")"}], " ", 
       SubscriptBox["X", "7"]}], "-", 
      RowBox[{
       FractionBox["17", "7"], " ", 
       SubscriptBox["X", "6"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"42", " ", 
          SubscriptBox["X", "4"], " ", 
          SubscriptBox["X", "5"]}], "-", 
         RowBox[{"14", " ", 
          SubscriptBox["X", "8"]}]}], ")"}]}], "+", 
      RowBox[{"38", " ", 
       SubscriptBox["X", "6"], " ", 
       SubscriptBox["X", "8"]}], "-", 
      RowBox[{"2", " ", 
       SubscriptBox["X", "5"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"24", " ", 
          SubsuperscriptBox["X", "5", "2"]}], "+", 
         RowBox[{"48", " ", 
          SubscriptBox["X", "4"], " ", 
          SubscriptBox["X", "6"]}], "-", 
         RowBox[{"16", " ", 
          SubscriptBox["X", "9"]}]}], ")"}]}], "+", 
      RowBox[{"40", " ", 
       SubscriptBox["X", "5"], " ", 
       SubscriptBox["X", "9"]}], "-", 
      RowBox[{
       FractionBox["5", "3"], " ", 
       SubscriptBox["X", "4"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"54", " ", 
          SubscriptBox["X", "5"], " ", 
          SubscriptBox["X", "6"]}], "-", 
         RowBox[{"2", " ", 
          SubscriptBox["X", "4"], " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"18", " ", 
             SubsuperscriptBox["X", "4", "2"]}], "-", 
            RowBox[{"12", " ", 
             SubscriptBox["X", "7"]}]}], ")"}]}], "+", 
         RowBox[{"30", " ", 
          SubscriptBox["X", "4"], " ", 
          SubscriptBox["X", "7"]}], "-", 
         RowBox[{"18", " ", 
          SubscriptBox["X", "10"]}]}], ")"}]}], "+", 
      RowBox[{"42", " ", 
       SubscriptBox["X", "4"], " ", 
       SubscriptBox["X", "10"]}], "-", 
      RowBox[{"24", " ", 
       SubscriptBox["X", "13"]}]}], ")"}], " ", 
    SuperscriptBox["x", "10"]}], "+", 
   InterpretationBox[
    SuperscriptBox[
     RowBox[{"O", "[", "x", "]"}], "11"],
    SeriesData[$CellContext`x, 0, {}, -2, 11, 1],
    Editable->False]}],
  SeriesData[$CellContext`x, 0, {
   1, 0, 0, (-2) Subscript[$CellContext`X, 4], (-2) 
    Subscript[$CellContext`X, 5], (-2) Subscript[$CellContext`X, 6], 
    Rational[1, 6] (18 Subscript[$CellContext`X, 4]^2 - 12 
     Subscript[$CellContext`X, 7]), 
    Rational[1, 7] ((42 Subscript[$CellContext`X, 4]) 
      Subscript[$CellContext`X, 5] - 14 Subscript[$CellContext`X, 8]), 
    Rational[1, 8] (
     24 Subscript[$CellContext`X, 5]^2 + (48 Subscript[$CellContext`X, 4]) 
      Subscript[$CellContext`X, 6] - 16 Subscript[$CellContext`X, 9]), 
    Rational[1, 9] ((54 Subscript[$CellContext`X, 5]) 
      Subscript[$CellContext`X, 6] - (2 Subscript[$CellContext`X, 4]) (
      18 Subscript[$CellContext`X, 4]^2 - 12 
      Subscript[$CellContext`X, 7]) + (30 Subscript[$CellContext`X, 4]) 
      Subscript[$CellContext`X, 7] - 18 Subscript[$CellContext`X, 10]), 
    Rational[1, 10] (
     30 Subscript[$CellContext`X, 6]^2 + (Rational[-7, 3] 
       Subscript[$CellContext`X, 5]) (18 Subscript[$CellContext`X, 4]^2 - 12 
       Subscript[$CellContext`X, 7]) + (32 Subscript[$CellContext`X, 5]) 
      Subscript[$CellContext`X, 7] + (Rational[-13, 7] 
       Subscript[$CellContext`X, 4]) ((42 Subscript[$CellContext`X, 4]) 
        Subscript[$CellContext`X, 5] - 14 Subscript[$CellContext`X, 8]) + (34 
       Subscript[$CellContext`X, 4]) Subscript[$CellContext`X, 8] - 20 
     Subscript[$CellContext`X, 11]), 
    Rational[1, 
      11] ((Rational[-8, 3] Subscript[$CellContext`X, 6]) (
       18 Subscript[$CellContext`X, 4]^2 - 12 
       Subscript[$CellContext`X, 7]) + (34 Subscript[$CellContext`X, 6]) 
      Subscript[$CellContext`X, 7] + (Rational[-15, 7] 
       Subscript[$CellContext`X, 5]) ((42 Subscript[$CellContext`X, 4]) 
        Subscript[$CellContext`X, 5] - 14 Subscript[$CellContext`X, 8]) + (36 
       Subscript[$CellContext`X, 5]) 
      Subscript[$CellContext`X, 8] + (Rational[-7, 4] 
       Subscript[$CellContext`X, 4]) (
       24 Subscript[$CellContext`X, 5]^2 + (48 Subscript[$CellContext`X, 4]) 
        Subscript[$CellContext`X, 6] - 16 Subscript[$CellContext`X, 9]) + (38 
       Subscript[$CellContext`X, 4]) Subscript[$CellContext`X, 9] - 22 
     Subscript[$CellContext`X, 12]), 
    Rational[1, 
      12] (((-3) (18 Subscript[$CellContext`X, 4]^2 - 12 
        Subscript[$CellContext`X, 7])) 
      Subscript[$CellContext`X, 7] + (Rational[-17, 7] 
       Subscript[$CellContext`X, 6]) ((42 Subscript[$CellContext`X, 4]) 
        Subscript[$CellContext`X, 5] - 14 Subscript[$CellContext`X, 8]) + (38 
       Subscript[$CellContext`X, 6]) Subscript[$CellContext`X, 8] - (2 
      Subscript[$CellContext`X, 5]) (
      24 Subscript[$CellContext`X, 5]^2 + (48 Subscript[$CellContext`X, 4]) 
       Subscript[$CellContext`X, 6] - 16 
      Subscript[$CellContext`X, 9]) + (40 Subscript[$CellContext`X, 5]) 
      Subscript[$CellContext`X, 9] + (Rational[-5, 3] 
       Subscript[$CellContext`X, 4]) ((54 Subscript[$CellContext`X, 5]) 
        Subscript[$CellContext`X, 6] - (2 Subscript[$CellContext`X, 4]) (
        18 Subscript[$CellContext`X, 4]^2 - 12 
        Subscript[$CellContext`X, 7]) + (30 Subscript[$CellContext`X, 4]) 
        Subscript[$CellContext`X, 7] - 18 Subscript[$CellContext`X, 10]) + (
       42 Subscript[$CellContext`X, 4]) Subscript[$CellContext`X, 10] - 24 
     Subscript[$CellContext`X, 13])}, -2, 11, 1],
  Editable->False]], "Output",
 CellChangeTimes->{{3.7559539532618103`*^9, 3.755954134797855*^9}, 
   3.755954218732521*^9},
 CellLabel->
  "Out[133]=",ExpressionUUID->"c27f63f4-167f-427f-a08d-8a0e66d88379"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"SeriesCoefficient", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{"\[ScriptCapitalH]", "[", "d", "]"}], "[", 
       RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
      RowBox[{"Exp", "[", 
       RowBox[{
        RowBox[{"-", "A"}], "/", 
        SuperscriptBox["Y", 
         RowBox[{"d", "-", "1"}]]}], "]"}]}], 
     SuperscriptBox["Y", 
      RowBox[{"b", "[", "d", "]"}]]}], "/.", 
    RowBox[{
     RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
     RowBox[{"Y", "+", 
      RowBox[{"Sum", "[", 
       RowBox[{
        RowBox[{
         SubscriptBox["a", "n"], 
         SuperscriptBox["Y", "n"]}], ",", 
        RowBox[{"{", 
         RowBox[{"n", ",", 
          RowBox[{"d", "+", "1"}], ",", "\[Infinity]"}], "}"}]}], "]"}]}]}]}],
    ",", 
   RowBox[{"{", 
    RowBox[{"Y", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.755907189847061*^9, 3.755907230651229*^9}, {
  3.755907313711525*^9, 3.755907337528027*^9}},
 CellLabel->"In[83]:=",ExpressionUUID->"8e569068-d7aa-4cc0-aca2-99cde3babe9e"],

Cell[BoxData[
 RowBox[{"SeriesCoefficient", "[", 
  RowBox[{
   RowBox[{
    SuperscriptBox["\[ExponentialE]", 
     RowBox[{
      RowBox[{"A", " ", 
       SuperscriptBox["Y", 
        RowBox[{"1", "-", "d"}]]}], "-", 
      RowBox[{"A", " ", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"Y", "+", 
          RowBox[{
           UnderoverscriptBox["\[Sum]", 
            RowBox[{"n", "=", 
             RowBox[{"1", "+", "d"}]}], "\[Infinity]"], 
           RowBox[{
            SuperscriptBox["Y", "n"], " ", 
            SubscriptBox["a", "n"]}]}]}], ")"}], 
        RowBox[{"1", "-", "d"}]]}]}]], " ", 
    SuperscriptBox["Y", 
     RowBox[{"b", "[", "d", "]"}]], " ", 
    RowBox[{"f", "[", 
     RowBox[{"Y", "+", 
      RowBox[{
       UnderoverscriptBox["\[Sum]", 
        RowBox[{"n", "=", 
         RowBox[{"1", "+", "d"}]}], "\[Infinity]"], 
       RowBox[{
        SuperscriptBox["Y", "n"], " ", 
        SubscriptBox["a", "n"]}]}]}], "]"}], " ", 
    SuperscriptBox[
     RowBox[{"(", 
      RowBox[{"Y", "+", 
       RowBox[{
        UnderoverscriptBox["\[Sum]", 
         RowBox[{"n", "=", 
          RowBox[{"1", "+", "d"}]}], "\[Infinity]"], 
        RowBox[{
         SuperscriptBox["Y", "n"], " ", 
         SubscriptBox["a", "n"]}]}]}], ")"}], 
     RowBox[{"-", 
      RowBox[{"b", "[", "d", "]"}]}]]}], ",", 
   RowBox[{"{", 
    RowBox[{"Y", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Output",
 CellChangeTimes->{3.75590734464149*^9},
 CellLabel->"Out[83]=",ExpressionUUID->"16ed5cb0-22c1-4624-aca9-f9f9f8ac9e92"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"D", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"\[ScriptCapitalH]", "[", "d", "]"}], "[", 
         RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
        RowBox[{"Exp", "[", 
         RowBox[{
          RowBox[{"-", "A"}], "/", 
          SuperscriptBox["Y", 
           RowBox[{"d", "-", "1"}]]}], "]"}]}], 
       SuperscriptBox["Y", 
        RowBox[{"b", "[", "d", "]"}]]}], "/.", 
      RowBox[{
       RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
       RowBox[{"Y", "+", 
        RowBox[{"Sum", "[", 
         RowBox[{
          RowBox[{
           SubscriptBox["a", "n"], 
           SuperscriptBox["Y", "n"]}], ",", 
          RowBox[{"{", 
           RowBox[{"n", ",", 
            RowBox[{"d", "+", "1"}], ",", "\[Infinity]"}], "}"}]}], 
         "]"}]}]}]}], ",", 
     RowBox[{"{", 
      RowBox[{"Y", ",", "0"}], "}"}]}], "]"}], "/.", 
   RowBox[{"{", 
    RowBox[{"Y", "\[Rule]", "0"}], "}"}]}], "//.", " ", 
  RowBox[{
   SuperscriptBox["0", "_"], "\[RuleDelayed]", "0"}]}]], "Input",
 CellChangeTimes->{{3.755907562837792*^9, 3.7559076889949503`*^9}, {
  3.7559077347472143`*^9, 3.755907734886273*^9}, {3.755907944504138*^9, 
  3.75590797581347*^9}},ExpressionUUID->"56748b37-be24-40c9-a42e-\
474a26341196"],

Cell[BoxData[
 TemplateBox[{
  "Power","infy",
   "\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \
SuperscriptBox[\\\"0\\\", \\\"2\\\"]]\\) encountered.\"",2,97,6,
   33107046524824295200,"Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.755907946882984*^9, 3.7559079548401403`*^9}},
 CellLabel->
  "During evaluation of \
In[97]:=",ExpressionUUID->"b3bc7fbc-cbd4-4bcc-bc4a-adb9210cc190"],

Cell[BoxData[
 TemplateBox[{
  "Power","infy",
   "\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \
SuperscriptBox[\\\"0\\\", \\\"2\\\"]]\\) encountered.\"",2,97,7,
   33107046524824295200,"Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.755907946882984*^9, 3.7559079549567957`*^9}},
 CellLabel->
  "During evaluation of \
In[97]:=",ExpressionUUID->"728a828f-4b58-4ceb-9a3b-94e3273f35f5"],

Cell[BoxData[
 TemplateBox[{
  "Infinity","indet",
   "\"Indeterminate expression \\!\\(\\*RowBox[{\\\"ComplexInfinity\\\", \
\\\"+\\\", \\\"ComplexInfinity\\\"}]\\) encountered.\"",2,97,8,
   33107046524824295200,"Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.755907946882984*^9, 3.755907954977296*^9}},
 CellLabel->
  "During evaluation of \
In[97]:=",ExpressionUUID->"20ebb82e-5bed-4909-bd77-9784075468d3"],

Cell[BoxData["Indeterminate"], "Output",
 CellChangeTimes->{{3.755907574609667*^9, 3.755907617659193*^9}, {
   3.755907649001555*^9, 3.755907691211156*^9}, 3.755907735191292*^9, {
   3.755907946926383*^9, 3.755907954981471*^9}},
 CellLabel->"Out[97]=",ExpressionUUID->"d56615c4-7037-49e2-b0ed-a315bc8e03f2"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Binomial", "[", 
  RowBox[{
   RowBox[{"d", "-", "1"}], ",", "1"}], "]"}]], "Input",
 CellChangeTimes->{{3.7560626582890387`*^9, 3.756062663198044*^9}},
 CellLabel->"In[94]:=",ExpressionUUID->"1abe97fb-164b-4eec-bc51-c0649a7677e9"],

Cell[BoxData[
 RowBox[{
  RowBox[{"-", "1"}], "+", "d"}]], "Output",
 CellChangeTimes->{3.756062663417444*^9},
 CellLabel->"Out[94]=",ExpressionUUID->"7f1bee79-e79b-453d-8db9-609c611a3fb3"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Binomial", "[", 
  RowBox[{"d", ",", "2"}], "]"}]], "Input",
 CellChangeTimes->{{3.7560635889430447`*^9, 3.7560635924451227`*^9}},
 CellLabel->"In[95]:=",ExpressionUUID->"a53dc90c-5ecd-4d46-8c78-a740d38cb7bf"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "2"], " ", 
  RowBox[{"(", 
   RowBox[{
    RowBox[{"-", "1"}], "+", "d"}], ")"}], " ", "d"}]], "Output",
 CellChangeTimes->{3.756063592647056*^9},
 CellLabel->"Out[95]=",ExpressionUUID->"868fd8a8-175e-45fa-b37e-78173abf56d2"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Multinomial", "[", "2", "]"}]], "Input",
 CellChangeTimes->{{3.7560636632721977`*^9, 3.756063671805909*^9}},
 CellLabel->"In[96]:=",ExpressionUUID->"cc94bd4f-8593-4972-9f23-ccdbd2ed0e37"],

Cell[BoxData["1"], "Output",
 CellChangeTimes->{3.756063672024707*^9},
 CellLabel->"Out[96]=",ExpressionUUID->"b771bb4b-6dbe-48e3-8464-a5ac18d62228"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c12", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"\[ScriptCapitalH]", "[", "d", "]"}], "[", 
         RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
        RowBox[{"Exp", "[", 
         RowBox[{
          RowBox[{"-", 
           RowBox[{"A", "[", "1", "]"}]}], "/", 
          SuperscriptBox["Y", 
           RowBox[{"d", "-", "1"}]]}], "]"}]}], 
       SuperscriptBox["Y", 
        RowBox[{"b", "[", "d", "]"}]]}], "/.", 
      RowBox[{
       RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
       RowBox[{"Y", "+", 
        RowBox[{
         SubscriptBox["a", "2"], 
         SuperscriptBox["Y", "2"]}], "+", 
        RowBox[{"Sum", "[", 
         RowBox[{
          RowBox[{
           SubscriptBox["a", "i"], 
           SuperscriptBox["Y", "i"]}], ",", 
          RowBox[{"{", 
           RowBox[{"i", ",", "3", ",", 
            RowBox[{"d", "+", "3"}]}], "}"}]}], "]"}]}]}]}], "/.", 
     RowBox[{"d", "\[Rule]", "2"}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "1"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755875482189352*^9, 3.755875530092328*^9}, {
   3.75587557737519*^9, 3.755875582869075*^9}, {3.755875659000474*^9, 
   3.7558757932595663`*^9}, {3.7558758838282022`*^9, 3.755875934803454*^9}, {
   3.755876010959289*^9, 3.755876015261304*^9}, {3.755876053803957*^9, 
   3.755876107622567*^9}, {3.7558761543853607`*^9, 3.755876178799548*^9}, 
   3.755876310973308*^9, {3.755876584531127*^9, 3.755876594814355*^9}, {
   3.7558767303875237`*^9, 3.75587673352853*^9}, {3.7558773548291273`*^9, 
   3.755877365678813*^9}, 3.755877409075362*^9, {3.755893419231349*^9, 
   3.755893466780015*^9}, {3.75590395814953*^9, 3.755903961810142*^9}, {
   3.756056766118331*^9, 3.7560568550641212`*^9}, {3.7560569217586613`*^9, 
   3.756056923150683*^9}, {3.75605699323568*^9, 3.756056993280702*^9}, {
   3.756057110277623*^9, 3.756057158025619*^9}, {3.7560574123480043`*^9, 
   3.7560574345523863`*^9}, {3.7560576959099903`*^9, 3.756057713627797*^9}},
 CellLabel->"In[70]:=",ExpressionUUID->"04e2ca53-78cc-46c7-9cb4-df7379c535c9"],

Cell[BoxData[
 RowBox[{
  RowBox[{"-", 
   SuperscriptBox["\[ExponentialE]", 
    RowBox[{
     RowBox[{"A", "[", "1", "]"}], " ", 
     SubscriptBox["a", "2"]}]]}], " ", 
  RowBox[{"(", 
   RowBox[{
    RowBox[{
     RowBox[{"b", "[", "2", "]"}], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "2"]}], "+", 
    RowBox[{
     RowBox[{"A", "[", "1", "]"}], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubsuperscriptBox["a", "2", "2"]}], "-", 
    RowBox[{
     RowBox[{"A", "[", "1", "]"}], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "3"]}], "-", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], ")"}]}]], "Output",
 CellChangeTimes->{{3.755875517854062*^9, 3.7558755304725246`*^9}, 
   3.755875579391144*^9, 3.75587562026398*^9, 3.75587567334341*^9, {
   3.755875752815339*^9, 3.755875793423603*^9}, {3.7558758883202267`*^9, 
   3.755875935009924*^9}, 3.755876015688389*^9, {3.755876054859782*^9, 
   3.755876107943524*^9}, {3.755876159601807*^9, 3.755876179026613*^9}, 
   3.75587623887215*^9, {3.755876308110261*^9, 3.7558763113450747`*^9}, {
   3.755876591091544*^9, 3.755876595069475*^9}, {3.755876730682897*^9, 
   3.755876733772119*^9}, {3.755877363436366*^9, 3.755877366546823*^9}, {
   3.755877407288651*^9, 3.755877410122324*^9}, 3.755877790467352*^9, {
   3.755893415387486*^9, 3.755893467042817*^9}, {3.7559032949738617`*^9, 
   3.755903315560001*^9}, 3.755903962242793*^9, 3.755904583639076*^9, 
   3.75590628152354*^9, 3.7559063496048594`*^9, {3.756056814910684*^9, 
   3.75605685605124*^9}, 3.756056924143176*^9, 3.756056994609556*^9, {
   3.7560570982534447`*^9, 3.7560571599296703`*^9}, 3.75605743513109*^9, {
   3.756057706383161*^9, 3.756057713950056*^9}},
 CellLabel->"Out[70]=",ExpressionUUID->"0fc9a45b-a383-40e9-921d-5da3efd4e3c6"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c12", "=", 
  RowBox[{
   RowBox[{"SeriesCoefficient", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{
          RowBox[{"\[ScriptCapitalH]", "[", "d", "]"}], "[", 
          RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
         RowBox[{"Exp", "[", 
          RowBox[{
           RowBox[{"-", 
            RowBox[{"A", "[", "2", "]"}]}], "/", 
           SuperscriptBox["Y", 
            RowBox[{"d", "-", "1"}]]}], "]"}]}], 
        SuperscriptBox["Y", 
         RowBox[{"b", "[", "d", "]"}]]}], "/.", 
       RowBox[{
        RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
        RowBox[{"Y", "+", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            RowBox[{"A", "[", "1", "]"}], "/", 
            RowBox[{"(", 
             RowBox[{"2", 
              RowBox[{"A", "[", "2", "]"}]}], ")"}]}], ")"}], 
          SuperscriptBox["Y", "2"]}], "+", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            SuperscriptBox[
             RowBox[{"A", "[", "1", "]"}], "2"], "/", 
            RowBox[{"(", 
             RowBox[{"8", 
              SuperscriptBox[
               RowBox[{"A", "[", "2", "]"}], "2"]}], ")"}]}], ")"}], 
          SuperscriptBox["Y", "3"]}], "+", 
         RowBox[{"Sum", "[", 
          RowBox[{
           RowBox[{
            SubscriptBox["a", "i"], 
            SuperscriptBox["Y", "i"]}], ",", 
           RowBox[{"{", 
            RowBox[{"i", ",", "4", ",", 
             RowBox[{"d", "+", "3"}]}], "}"}]}], "]"}]}]}]}], "/.", 
      RowBox[{"d", "\[Rule]", "3"}]}], ",", 
     RowBox[{"{", 
      RowBox[{"Y", ",", "0", ",", "3"}], "}"}]}], "]"}], "//", 
   "Expand"}]}]], "Input",
 CellChangeTimes->{{3.755875482189352*^9, 3.755875530092328*^9}, {
   3.75587557737519*^9, 3.755875582869075*^9}, {3.755875659000474*^9, 
   3.7558757932595663`*^9}, {3.7558758838282022`*^9, 3.755875934803454*^9}, {
   3.755876010959289*^9, 3.755876015261304*^9}, {3.755876053803957*^9, 
   3.755876107622567*^9}, {3.7558761543853607`*^9, 3.755876178799548*^9}, 
   3.755876310973308*^9, {3.755876584531127*^9, 3.755876594814355*^9}, {
   3.7558767303875237`*^9, 3.75587673352853*^9}, {3.7558773548291273`*^9, 
   3.755877365678813*^9}, 3.755877409075362*^9, {3.755893419231349*^9, 
   3.755893466780015*^9}, {3.75590395814953*^9, 3.755903961810142*^9}, {
   3.756056766118331*^9, 3.7560568550641212`*^9}, {3.7560569217586613`*^9, 
   3.756056923150683*^9}, {3.75605699323568*^9, 3.756056993280702*^9}, {
   3.756057110277623*^9, 3.756057158025619*^9}, {3.7560574123480043`*^9, 
   3.7560574345523863`*^9}, {3.756058159914452*^9, 3.756058242733674*^9}, {
   3.756058283261827*^9, 3.756058311318864*^9}},
 CellLabel->"In[81]:=",ExpressionUUID->"5a4623ed-04ee-47d4-b390-2c1d11b5f787"],

Cell[BoxData[
 RowBox[{
  RowBox[{"-", 
   FractionBox[
    RowBox[{
     SuperscriptBox[
      RowBox[{"A", "[", "1", "]"}], "5"], " ", 
     RowBox[{"f", "[", "0", "]"}]}], 
    RowBox[{"64", " ", 
     SuperscriptBox[
      RowBox[{"A", "[", "2", "]"}], "4"]}]]}], "-", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "5"], " ", 
    RowBox[{"b", "[", "3", "]"}], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"128", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "4"]}]], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "3"], " ", 
    RowBox[{"b", "[", "3", "]"}], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"48", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "3"]}]], "-", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "3"], " ", 
    SuperscriptBox[
     RowBox[{"b", "[", "3", "]"}], "3"], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"48", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "3"]}]], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "4"], " ", 
    RowBox[{"f", "[", "0", "]"}], " ", 
    SubscriptBox["a", "4"]}], 
   RowBox[{"32", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "2"]}]], "+", 
  FractionBox[
   RowBox[{"5", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "2"], " ", 
    RowBox[{"f", "[", "0", "]"}], " ", 
    SubscriptBox["a", "4"]}], 
   RowBox[{"4", " ", 
    RowBox[{"A", "[", "2", "]"}]}]], "-", 
  RowBox[{
   RowBox[{"b", "[", "3", "]"}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "4"]}], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "2"], " ", 
    RowBox[{"b", "[", "3", "]"}], " ", 
    RowBox[{"f", "[", "0", "]"}], " ", 
    SubscriptBox["a", "4"]}], 
   RowBox[{"A", "[", "2", "]"}]], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "2"], " ", 
    SuperscriptBox[
     RowBox[{"b", "[", "3", "]"}], "2"], " ", 
    RowBox[{"f", "[", "0", "]"}], " ", 
    SubscriptBox["a", "4"]}], 
   RowBox[{"4", " ", 
    RowBox[{"A", "[", "2", "]"}]}]], "-", 
  RowBox[{"4", " ", 
   RowBox[{"A", "[", "1", "]"}], " ", 
   RowBox[{"A", "[", "2", "]"}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubsuperscriptBox["a", "4", "2"]}], "-", 
  RowBox[{
   RowBox[{"A", "[", "1", "]"}], " ", 
   RowBox[{"A", "[", "2", "]"}], " ", 
   RowBox[{"b", "[", "3", "]"}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubsuperscriptBox["a", "4", "2"]}], "+", 
  RowBox[{
   FractionBox["4", "3"], " ", 
   SuperscriptBox[
    RowBox[{"A", "[", "2", "]"}], "3"], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubsuperscriptBox["a", "4", "3"]}], "-", 
  RowBox[{"2", " ", 
   RowBox[{"A", "[", "1", "]"}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "5"]}], "-", 
  RowBox[{
   RowBox[{"A", "[", "1", "]"}], " ", 
   RowBox[{"b", "[", "3", "]"}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "5"]}], "+", 
  RowBox[{"4", " ", 
   SuperscriptBox[
    RowBox[{"A", "[", "2", "]"}], "2"], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "4"], " ", 
   SubscriptBox["a", "5"]}], "+", 
  RowBox[{"2", " ", 
   RowBox[{"A", "[", "2", "]"}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "6"]}], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "4"], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], 
   RowBox[{"64", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "3"]}]], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "2"], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], 
   RowBox[{"8", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "2"]}]], "-", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "2"], " ", 
    RowBox[{"b", "[", "3", "]"}], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], 
   RowBox[{"4", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "2"]}]], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "2"], " ", 
    SuperscriptBox[
     RowBox[{"b", "[", "3", "]"}], "2"], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], 
   RowBox[{"8", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "2"]}]], "-", 
  RowBox[{
   RowBox[{"A", "[", "1", "]"}], " ", 
   SubscriptBox["a", "4"], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "-", 
  RowBox[{
   RowBox[{"A", "[", "1", "]"}], " ", 
   RowBox[{"b", "[", "3", "]"}], " ", 
   SubscriptBox["a", "4"], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{"2", " ", 
   SuperscriptBox[
    RowBox[{"A", "[", "2", "]"}], "2"], " ", 
   SubsuperscriptBox["a", "4", "2"], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{"2", " ", 
   RowBox[{"A", "[", "2", "]"}], " ", 
   SubscriptBox["a", "5"], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  FractionBox[
   RowBox[{
    RowBox[{"A", "[", "1", "]"}], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], 
   RowBox[{"2", " ", 
    RowBox[{"A", "[", "2", "]"}]}]], "-", 
  FractionBox[
   RowBox[{
    RowBox[{"A", "[", "1", "]"}], " ", 
    RowBox[{"b", "[", "3", "]"}], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], 
   RowBox[{"4", " ", 
    RowBox[{"A", "[", "2", "]"}]}]], "+", 
  RowBox[{
   RowBox[{"A", "[", "2", "]"}], " ", 
   SubscriptBox["a", "4"], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{
   FractionBox["1", "6"], " ", 
   RowBox[{
    SuperscriptBox["f", 
     TagBox[
      RowBox[{"(", "3", ")"}],
      Derivative],
     MultilineFunction->None], "[", "0", "]"}]}]}]], "Output",
 CellChangeTimes->{{3.755875517854062*^9, 3.7558755304725246`*^9}, 
   3.755875579391144*^9, 3.75587562026398*^9, 3.75587567334341*^9, {
   3.755875752815339*^9, 3.755875793423603*^9}, {3.7558758883202267`*^9, 
   3.755875935009924*^9}, 3.755876015688389*^9, {3.755876054859782*^9, 
   3.755876107943524*^9}, {3.755876159601807*^9, 3.755876179026613*^9}, 
   3.75587623887215*^9, {3.755876308110261*^9, 3.7558763113450747`*^9}, {
   3.755876591091544*^9, 3.755876595069475*^9}, {3.755876730682897*^9, 
   3.755876733772119*^9}, {3.755877363436366*^9, 3.755877366546823*^9}, {
   3.755877407288651*^9, 3.755877410122324*^9}, 3.755877790467352*^9, {
   3.755893415387486*^9, 3.755893467042817*^9}, {3.7559032949738617`*^9, 
   3.755903315560001*^9}, 3.755903962242793*^9, 3.755904583639076*^9, 
   3.75590628152354*^9, 3.7559063496048594`*^9, {3.756056814910684*^9, 
   3.75605685605124*^9}, 3.756056924143176*^9, 3.756056994609556*^9, {
   3.7560570982534447`*^9, 3.7560571599296703`*^9}, 3.75605743513109*^9, {
   3.7560581782568207`*^9, 3.756058243075766*^9}, {3.7560582837541523`*^9, 
   3.756058311748951*^9}},
 CellLabel->"Out[81]=",ExpressionUUID->"5ae19b60-ab4a-4c65-82cd-6412b5ed59e7"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c12", "=", 
  RowBox[{
   RowBox[{"SeriesCoefficient", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{
          RowBox[{"\[ScriptCapitalH]", "[", "d", "]"}], "[", 
          RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
         RowBox[{"Exp", "[", 
          RowBox[{
           RowBox[{"-", 
            RowBox[{"A", "[", "3", "]"}]}], "/", 
           SuperscriptBox["Y", 
            RowBox[{"d", "-", "1"}]]}], "]"}]}], 
        SuperscriptBox["Y", 
         RowBox[{"b", "[", "d", "]"}]]}], "/.", 
       RowBox[{
        RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
        RowBox[{"Y", "+", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            RowBox[{"A", "[", "2", "]"}], "/", 
            RowBox[{"(", 
             RowBox[{"3", 
              RowBox[{"A", "[", "3", "]"}]}], ")"}]}], ")"}], 
          SuperscriptBox["Y", "2"]}], "+", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{
            RowBox[{"A", "[", "1", "]"}], "/", 
            RowBox[{"(", 
             RowBox[{"3", 
              RowBox[{"A", "[", "3", "]"}]}], ")"}]}], ")"}], 
          SuperscriptBox["Y", "3"]}], "-", 
         RowBox[{
          RowBox[{
           RowBox[{"(", 
            RowBox[{
             FractionBox[
              SuperscriptBox[
               RowBox[{"A", "[", "2", "]"}], "3"], 
              RowBox[{"27", " ", 
               SuperscriptBox[
                RowBox[{"A", "[", "3", "]"}], "2"]}]], "-", 
             FractionBox[
              RowBox[{
               RowBox[{"A", "[", "1", "]"}], " ", 
               RowBox[{"A", "[", "2", "]"}]}], 
              RowBox[{"3", " ", 
               RowBox[{"A", "[", "3", "]"}]}]]}], ")"}], "/", 
           RowBox[{"(", 
            RowBox[{"3", " ", 
             RowBox[{"A", "[", "3", "]"}]}], ")"}]}], 
          SuperscriptBox["Y", "4"]}], "+", 
         RowBox[{"Sum", "[", 
          RowBox[{
           RowBox[{
            SubscriptBox["a", "i"], 
            SuperscriptBox["Y", "i"]}], ",", 
           RowBox[{"{", 
            RowBox[{"i", ",", "5", ",", 
             RowBox[{"d", "+", "3"}]}], "}"}]}], "]"}]}]}]}], "/.", 
      RowBox[{"d", "\[Rule]", "4"}]}], ",", 
     RowBox[{"{", 
      RowBox[{"Y", ",", "0", ",", "2"}], "}"}]}], "]"}], "//", 
   "Expand"}]}]], "Input",
 CellChangeTimes->{{3.755875482189352*^9, 3.755875530092328*^9}, {
   3.75587557737519*^9, 3.755875582869075*^9}, {3.755875659000474*^9, 
   3.7558757932595663`*^9}, {3.7558758838282022`*^9, 3.755875934803454*^9}, {
   3.755876010959289*^9, 3.755876015261304*^9}, {3.755876053803957*^9, 
   3.755876107622567*^9}, {3.7558761543853607`*^9, 3.755876178799548*^9}, 
   3.755876310973308*^9, {3.755876584531127*^9, 3.755876594814355*^9}, {
   3.7558767303875237`*^9, 3.75587673352853*^9}, {3.7558773548291273`*^9, 
   3.755877365678813*^9}, 3.755877409075362*^9, {3.755893419231349*^9, 
   3.755893466780015*^9}, {3.75590395814953*^9, 3.755903961810142*^9}, {
   3.756056766118331*^9, 3.7560568550641212`*^9}, {3.7560569217586613`*^9, 
   3.756056923150683*^9}, {3.75605699323568*^9, 3.756056993280702*^9}, {
   3.756057110277623*^9, 3.756057158025619*^9}, {3.7560574123480043`*^9, 
   3.7560574345523863`*^9}, {3.756058159914452*^9, 3.756058242733674*^9}, {
   3.756058283261827*^9, 3.756058389227251*^9}, {3.756058428316916*^9, 
   3.756058437705331*^9}, {3.756058478820581*^9, 3.7560585475377207`*^9}},
 CellLabel->"In[93]:=",ExpressionUUID->"b164c883-bb64-4996-acce-0bbca33952db"],

Cell[BoxData[
 RowBox[{
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "8"], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"13122", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "6"]}]], "-", 
  FractionBox[
   RowBox[{
    RowBox[{"A", "[", "1", "]"}], " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "6"], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"729", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "5"]}]], "+", 
  FractionBox[
   RowBox[{"5", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "2"], " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "4"], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"486", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "4"]}]], "+", 
  FractionBox[
   RowBox[{"2", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "5"], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"243", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "4"]}]], "-", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "3"], " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "2"], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"27", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "3"]}]], "-", 
  FractionBox[
   RowBox[{"2", " ", 
    RowBox[{"A", "[", "1", "]"}], " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "3"], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"27", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "3"]}]], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "4"], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"18", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "2"]}]], "+", 
  FractionBox[
   RowBox[{"2", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "2"], " ", 
    RowBox[{"A", "[", "2", "]"}], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"9", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "2"]}]], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "5"], " ", 
    RowBox[{"b", "[", "4", "]"}], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"243", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "4"]}]], "-", 
  FractionBox[
   RowBox[{
    RowBox[{"A", "[", "1", "]"}], " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "3"], " ", 
    RowBox[{"b", "[", "4", "]"}], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"27", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "3"]}]], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "2"], " ", 
    RowBox[{"A", "[", "2", "]"}], " ", 
    RowBox[{"b", "[", "4", "]"}], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"9", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "2"]}]], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "2"], " ", 
    RowBox[{"b", "[", "4", "]"}], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"18", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "2"]}]], "-", 
  FractionBox[
   RowBox[{
    RowBox[{"A", "[", "1", "]"}], " ", 
    RowBox[{"b", "[", "4", "]"}], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"3", " ", 
    RowBox[{"A", "[", "3", "]"}]}]], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "2"], " ", 
    SuperscriptBox[
     RowBox[{"b", "[", "4", "]"}], "2"], " ", 
    RowBox[{"f", "[", "0", "]"}]}], 
   RowBox[{"18", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "2"]}]], "-", 
  RowBox[{
   SuperscriptBox[
    RowBox[{"A", "[", "1", "]"}], "2"], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "5"]}], "-", 
  RowBox[{"2", " ", 
   RowBox[{"A", "[", "2", "]"}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "5"]}], "-", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "4"], " ", 
    RowBox[{"f", "[", "0", "]"}], " ", 
    SubscriptBox["a", "5"]}], 
   RowBox[{"27", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "2"]}]], "+", 
  FractionBox[
   RowBox[{
    RowBox[{"A", "[", "1", "]"}], " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "2"], " ", 
    RowBox[{"f", "[", "0", "]"}], " ", 
    SubscriptBox["a", "5"]}], 
   RowBox[{"3", " ", 
    RowBox[{"A", "[", "3", "]"}]}]], "-", 
  RowBox[{
   RowBox[{"A", "[", "2", "]"}], " ", 
   RowBox[{"b", "[", "4", "]"}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "5"]}], "+", 
  RowBox[{
   FractionBox["9", "2"], " ", 
   SuperscriptBox[
    RowBox[{"A", "[", "3", "]"}], "2"], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubsuperscriptBox["a", "5", "2"]}], "+", 
  RowBox[{"3", " ", 
   RowBox[{"A", "[", "3", "]"}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "6"]}], "-", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "4"], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], 
   RowBox[{"81", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "3"]}]], "+", 
  FractionBox[
   RowBox[{
    RowBox[{"A", "[", "1", "]"}], " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "2", "]"}], "2"], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], 
   RowBox[{"9", " ", 
    SuperscriptBox[
     RowBox[{"A", "[", "3", "]"}], "2"]}]], "-", 
  FractionBox[
   RowBox[{
    SuperscriptBox[
     RowBox[{"A", "[", "1", "]"}], "2"], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], 
   RowBox[{"3", " ", 
    RowBox[{"A", "[", "3", "]"}]}]], "+", 
  FractionBox[
   RowBox[{
    RowBox[{"A", "[", "2", "]"}], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], 
   RowBox[{"3", " ", 
    RowBox[{"A", "[", "3", "]"}]}]], "-", 
  FractionBox[
   RowBox[{
    RowBox[{"A", "[", "2", "]"}], " ", 
    RowBox[{"b", "[", "4", "]"}], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], 
   RowBox[{"3", " ", 
    RowBox[{"A", "[", "3", "]"}]}]], "+", 
  RowBox[{"3", " ", 
   RowBox[{"A", "[", "3", "]"}], " ", 
   SubscriptBox["a", "5"], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox["f", "\[Prime]\[Prime]",
     MultilineFunction->None], "[", "0", "]"}], "2"]}]], "Output",
 CellChangeTimes->{{3.755875517854062*^9, 3.7558755304725246`*^9}, 
   3.755875579391144*^9, 3.75587562026398*^9, 3.75587567334341*^9, {
   3.755875752815339*^9, 3.755875793423603*^9}, {3.7558758883202267`*^9, 
   3.755875935009924*^9}, 3.755876015688389*^9, {3.755876054859782*^9, 
   3.755876107943524*^9}, {3.755876159601807*^9, 3.755876179026613*^9}, 
   3.75587623887215*^9, {3.755876308110261*^9, 3.7558763113450747`*^9}, {
   3.755876591091544*^9, 3.755876595069475*^9}, {3.755876730682897*^9, 
   3.755876733772119*^9}, {3.755877363436366*^9, 3.755877366546823*^9}, {
   3.755877407288651*^9, 3.755877410122324*^9}, 3.755877790467352*^9, {
   3.755893415387486*^9, 3.755893467042817*^9}, {3.7559032949738617`*^9, 
   3.755903315560001*^9}, 3.755903962242793*^9, 3.755904583639076*^9, 
   3.75590628152354*^9, 3.7559063496048594`*^9, {3.756056814910684*^9, 
   3.75605685605124*^9}, 3.756056924143176*^9, 3.756056994609556*^9, {
   3.7560570982534447`*^9, 3.7560571599296703`*^9}, 3.75605743513109*^9, {
   3.7560581782568207`*^9, 3.756058243075766*^9}, {3.7560582837541523`*^9, 
   3.756058345450099*^9}, {3.756058383658382*^9, 3.75605839171288*^9}, 
   3.756058441676079*^9, {3.756058492331149*^9, 3.756058547978654*^9}},
 CellLabel->"Out[93]=",ExpressionUUID->"df1478bc-00d3-449a-9c73-bdeb93252e49"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Series", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     FractionBox[
      RowBox[{"A", "[", "3", "]"}], 
      SuperscriptBox["Y", "3"]], "-", 
     FractionBox[
      RowBox[{"A", "[", "3", "]"}], 
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{"Y", "+", 
         RowBox[{
          SuperscriptBox["Y", "2"], " ", 
          SubscriptBox["a", "2"]}], "+", 
         RowBox[{
          SuperscriptBox["Y", "3"], " ", 
          SubscriptBox["a", "3"]}], "+", 
         RowBox[{
          SuperscriptBox["Y", "4"], " ", 
          SubscriptBox["a", "4"]}], "+", 
         RowBox[{
          SuperscriptBox["Y", "5"], " ", 
          SubscriptBox["a", "5"]}], "+", 
         RowBox[{
          SuperscriptBox["Y", "6"], " ", 
          SubscriptBox["a", "6"]}], "+", 
         RowBox[{
          SuperscriptBox["Y", "7"], " ", 
          SubscriptBox["a", "7"]}]}], ")"}], "3"]], "-", 
     FractionBox[
      RowBox[{"A", "[", "2", "]"}], 
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{"Y", "+", 
         RowBox[{
          SuperscriptBox["Y", "2"], " ", 
          SubscriptBox["a", "2"]}], "+", 
         RowBox[{
          SuperscriptBox["Y", "3"], " ", 
          SubscriptBox["a", "3"]}], "+", 
         RowBox[{
          SuperscriptBox["Y", "4"], " ", 
          SubscriptBox["a", "4"]}], "+", 
         RowBox[{
          SuperscriptBox["Y", "5"], " ", 
          SubscriptBox["a", "5"]}], "+", 
         RowBox[{
          SuperscriptBox["Y", "6"], " ", 
          SubscriptBox["a", "6"]}], "+", 
         RowBox[{
          SuperscriptBox["Y", "7"], " ", 
          SubscriptBox["a", "7"]}]}], ")"}], "2"]], "-", 
     FractionBox[
      RowBox[{"A", "[", "1", "]"}], 
      RowBox[{"Y", "+", 
       RowBox[{
        SuperscriptBox["Y", "2"], " ", 
        SubscriptBox["a", "2"]}], "+", 
       RowBox[{
        SuperscriptBox["Y", "3"], " ", 
        SubscriptBox["a", "3"]}], "+", 
       RowBox[{
        SuperscriptBox["Y", "4"], " ", 
        SubscriptBox["a", "4"]}], "+", 
       RowBox[{
        SuperscriptBox["Y", "5"], " ", 
        SubscriptBox["a", "5"]}], "+", 
       RowBox[{
        SuperscriptBox["Y", "6"], " ", 
        SubscriptBox["a", "6"]}], "+", 
       RowBox[{
        SuperscriptBox["Y", "7"], " ", 
        SubscriptBox["a", "7"]}]}]]}], "/.", 
    RowBox[{
     SubscriptBox["a", "2"], "\[Rule]", 
     RowBox[{
      RowBox[{"A", "[", "2", "]"}], "/", 
      RowBox[{"(", 
       RowBox[{"3", 
        RowBox[{"A", "[", "3", "]"}]}], ")"}]}]}]}], ",", 
   RowBox[{"{", 
    RowBox[{"Y", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.756056872680354*^9, 3.7560568893904333`*^9}, {
  3.7560569299662933`*^9, 3.756056930943475*^9}, {3.7560569987063*^9, 
  3.7560570055043097`*^9}, {3.7560572115029488`*^9, 3.756057219641644*^9}, {
  3.7560573463776627`*^9, 3.756057347159141*^9}, {3.756058400804391*^9, 
  3.756058416281137*^9}, {3.756058456260038*^9, 3.756058467186824*^9}},
 CellLabel->"In[89]:=",ExpressionUUID->"cab0a3f1-46ff-4ae3-a5d6-96d42fec30af"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   FractionBox[
    RowBox[{
     RowBox[{"-", 
      RowBox[{"A", "[", "1", "]"}]}], "+", 
     RowBox[{"3", " ", 
      RowBox[{"A", "[", "3", "]"}], " ", 
      SubscriptBox["a", "3"]}]}], "Y"], "+", 
   FractionBox[
    RowBox[{
     SuperscriptBox[
      RowBox[{"A", "[", "2", "]"}], "3"], "+", 
     RowBox[{"9", " ", 
      RowBox[{"A", "[", "1", "]"}], " ", 
      RowBox[{"A", "[", "2", "]"}], " ", 
      RowBox[{"A", "[", "3", "]"}]}], "-", 
     RowBox[{"54", " ", 
      RowBox[{"A", "[", "2", "]"}], " ", 
      SuperscriptBox[
       RowBox[{"A", "[", "3", "]"}], "2"], " ", 
      SubscriptBox["a", "3"]}], "+", 
     RowBox[{"81", " ", 
      SuperscriptBox[
       RowBox[{"A", "[", "3", "]"}], "3"], " ", 
      SubscriptBox["a", "4"]}]}], 
    RowBox[{"27", " ", 
     SuperscriptBox[
      RowBox[{"A", "[", "3", "]"}], "2"]}]], "+", 
   FractionBox[
    RowBox[{
     RowBox[{"(", 
      RowBox[{
       RowBox[{"-", 
        SuperscriptBox[
         RowBox[{"A", "[", "2", "]"}], "4"]}], "-", 
       RowBox[{"3", " ", 
        RowBox[{"A", "[", "1", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "2", "]"}], "2"], " ", 
        RowBox[{"A", "[", "3", "]"}]}], "+", 
       RowBox[{"36", " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "2", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "2"], " ", 
        SubscriptBox["a", "3"]}], "+", 
       RowBox[{"27", " ", 
        RowBox[{"A", "[", "1", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "3"], " ", 
        SubscriptBox["a", "3"]}], "-", 
       RowBox[{"162", " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "4"], " ", 
        SubsuperscriptBox["a", "3", "2"]}], "-", 
       RowBox[{"54", " ", 
        RowBox[{"A", "[", "2", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "3"], " ", 
        SubscriptBox["a", "4"]}], "+", 
       RowBox[{"81", " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "4"], " ", 
        SubscriptBox["a", "5"]}]}], ")"}], " ", "Y"}], 
    RowBox[{"27", " ", 
     SuperscriptBox[
      RowBox[{"A", "[", "3", "]"}], "3"]}]], "+", 
   RowBox[{
    FractionBox["1", 
     RowBox[{"81", " ", 
      SuperscriptBox[
       RowBox[{"A", "[", "3", "]"}], "4"]}]], 
    RowBox[{
     RowBox[{"(", 
      RowBox[{
       RowBox[{"2", " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "2", "]"}], "5"]}], "+", 
       RowBox[{"3", " ", 
        RowBox[{"A", "[", "1", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "2", "]"}], "3"], " ", 
        RowBox[{"A", "[", "3", "]"}]}], "-", 
       RowBox[{"72", " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "2", "]"}], "3"], " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "2"], " ", 
        SubscriptBox["a", "3"]}], "-", 
       RowBox[{"54", " ", 
        RowBox[{"A", "[", "1", "]"}], " ", 
        RowBox[{"A", "[", "2", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "3"], " ", 
        SubscriptBox["a", "3"]}], "+", 
       RowBox[{"567", " ", 
        RowBox[{"A", "[", "2", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "4"], " ", 
        SubsuperscriptBox["a", "3", "2"]}], "+", 
       RowBox[{"108", " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "2", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "3"], " ", 
        SubscriptBox["a", "4"]}], "+", 
       RowBox[{"81", " ", 
        RowBox[{"A", "[", "1", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "4"], " ", 
        SubscriptBox["a", "4"]}], "-", 
       RowBox[{"972", " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "5"], " ", 
        SubscriptBox["a", "3"], " ", 
        SubscriptBox["a", "4"]}], "-", 
       RowBox[{"162", " ", 
        RowBox[{"A", "[", "2", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "4"], " ", 
        SubscriptBox["a", "5"]}], "+", 
       RowBox[{"243", " ", 
        SuperscriptBox[
         RowBox[{"A", "[", "3", "]"}], "5"], " ", 
        SubscriptBox["a", "6"]}]}], ")"}], " ", 
     SuperscriptBox["Y", "2"]}]}], "+", 
   InterpretationBox[
    SuperscriptBox[
     RowBox[{"O", "[", "Y", "]"}], "3"],
    SeriesData[$CellContext`Y, 0, {}, -1, 3, 1],
    Editable->False]}],
  SeriesData[$CellContext`Y, 
   0, {-$CellContext`A[1] + 3 $CellContext`A[3] Subscript[$CellContext`a, 3], 
    Rational[1, 27] $CellContext`A[3]^(-2) ($CellContext`A[2]^3 + 
     9 $CellContext`A[1] $CellContext`A[2] $CellContext`A[3] - 
     54 $CellContext`A[2] $CellContext`A[3]^2 Subscript[$CellContext`a, 3] + 
     81 $CellContext`A[3]^3 Subscript[$CellContext`a, 4]), 
    Rational[1, 27] $CellContext`A[3]^(-3) (-$CellContext`A[2]^4 - 
     3 $CellContext`A[1] $CellContext`A[2]^2 $CellContext`A[3] + 
     36 $CellContext`A[2]^2 $CellContext`A[3]^2 Subscript[$CellContext`a, 3] + 
     27 $CellContext`A[1] $CellContext`A[3]^3 Subscript[$CellContext`a, 3] - 
     162 $CellContext`A[3]^4 Subscript[$CellContext`a, 3]^2 - 
     54 $CellContext`A[2] $CellContext`A[3]^3 Subscript[$CellContext`a, 4] + 
     81 $CellContext`A[3]^4 Subscript[$CellContext`a, 5]), 
    Rational[1, 81] $CellContext`A[3]^(-4) (2 $CellContext`A[2]^5 + 
     3 $CellContext`A[1] $CellContext`A[2]^3 $CellContext`A[3] - 
     72 $CellContext`A[2]^3 $CellContext`A[3]^2 Subscript[$CellContext`a, 3] - 
     54 $CellContext`A[1] $CellContext`A[2] $CellContext`A[3]^3 
     Subscript[$CellContext`a, 3] + 
     567 $CellContext`A[2] $CellContext`A[3]^4 Subscript[$CellContext`a, 3]^2 + 
     108 $CellContext`A[2]^2 $CellContext`A[3]^3 Subscript[$CellContext`a, 4] + 
     81 $CellContext`A[1] $CellContext`A[3]^4 Subscript[$CellContext`a, 4] - 
     972 $CellContext`A[3]^5 Subscript[$CellContext`a, 3] 
     Subscript[$CellContext`a, 4] - 162 $CellContext`A[2] $CellContext`A[3]^4 
     Subscript[$CellContext`a, 5] + 
     243 $CellContext`A[3]^5 Subscript[$CellContext`a, 6])}, -1, 3, 1],
  Editable->False]], "Output",
 CellChangeTimes->{
  3.756056889813308*^9, {3.7560569244495783`*^9, 3.756056931478859*^9}, 
   3.75605700589386*^9, 3.7560572200645113`*^9, 3.756057347494473*^9, 
   3.756058416729932*^9, 3.756058467509244*^9},
 CellLabel->"Out[89]=",ExpressionUUID->"3f58ba3e-72ca-4dd5-b9ab-8fd3df361bb7"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"s12", "=", 
  RowBox[{"Solve", "[", 
   RowBox[{
    RowBox[{"c12", "\[Equal]", "0"}], ",", 
    SubscriptBox["a", "3"]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755893471542695*^9, 3.755893493019618*^9}, {
  3.7559039639188967`*^9, 3.755903968646435*^9}},
 CellLabel->"In[76]:=",ExpressionUUID->"b2b56ad6-73a4-4b5c-a74c-a5e583a79d30"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "3"], "\[Rule]", 
    RowBox[{"-", 
     FractionBox[
      RowBox[{
       SuperscriptBox["f", "\[Prime]",
        MultilineFunction->None], "[", "0", "]"}], 
      RowBox[{"A", " ", 
       RowBox[{"f", "[", "0", "]"}]}]]}]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{
  3.7558934933838663`*^9, {3.755903295304267*^9, 3.7559033181950893`*^9}, {
   3.755903964245771*^9, 3.755903968959626*^9}, {3.7559045816238623`*^9, 
   3.755904584195568*^9}, 3.755906350301443*^9},
 CellLabel->"Out[76]=",ExpressionUUID->"43ea4ae2-6743-48ee-908e-53a613bb567d"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c22", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"\[ScriptCapitalH]", "[", "2", "]"}], "[", 
        RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", "Y"}], "]"}]}], 
      SuperscriptBox["Y", 
       RowBox[{"b", "[", "2", "]"}]]}], "/.", 
     RowBox[{
      RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{
        SubscriptBox["a", "3"], 
        SuperscriptBox["Y", "3"]}], "+", 
       RowBox[{
        SubscriptBox["a", "4"], 
        SuperscriptBox["Y", "4"]}]}]}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "2"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755875482189352*^9, 3.755875530092328*^9}, {
   3.75587557737519*^9, 3.755875582869075*^9}, {3.755875659000474*^9, 
   3.7558757932595663`*^9}, {3.7558758838282022`*^9, 3.755875934803454*^9}, {
   3.755876010959289*^9, 3.755876015261304*^9}, {3.755876053803957*^9, 
   3.755876107622567*^9}, {3.7558761543853607`*^9, 3.755876195399214*^9}, {
   3.7558763915255527`*^9, 3.7558764140748167`*^9}, {3.755876624743107*^9, 
   3.755876631359199*^9}, {3.755877421574501*^9, 3.755877425211659*^9}, {
   3.755893502541963*^9, 3.755893514052718*^9}, 3.755903971602705*^9},
 CellLabel->"In[81]:=",ExpressionUUID->"fe287598-6d85-418b-ad70-75bd3a04b97a"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "2"], " ", 
  RowBox[{"(", 
   RowBox[{
    RowBox[{
     RowBox[{"-", "2"}], " ", 
     RowBox[{"b", "[", "2", "]"}], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "3"]}], "+", 
    RowBox[{
     SuperscriptBox["A", "2"], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubsuperscriptBox["a", "3", "2"]}], "+", 
    RowBox[{"2", " ", "A", " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "4"]}], "+", 
    RowBox[{"2", " ", "A", " ", 
     SubscriptBox["a", "3"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], ")"}]}]], "Output",
 CellChangeTimes->{{3.755875517854062*^9, 3.7558755304725246`*^9}, 
   3.755875579391144*^9, 3.75587562026398*^9, 3.75587567334341*^9, {
   3.755875752815339*^9, 3.755875793423603*^9}, {3.7558758883202267`*^9, 
   3.755875935009924*^9}, 3.755876015688389*^9, {3.755876054859782*^9, 
   3.755876107943524*^9}, {3.755876159601807*^9, 3.755876195856427*^9}, {
   3.7558763930016537`*^9, 3.755876414633679*^9}, {3.755876627837193*^9, 
   3.755876631667873*^9}, {3.7558774166766787`*^9, 3.75587742589657*^9}, {
   3.755893511058223*^9, 3.755893514277576*^9}, 3.755903319864244*^9, 
   3.75590398146966*^9, 3.755904584932953*^9, {3.755906369650753*^9, 
   3.755906413755725*^9}},
 CellLabel->"Out[81]=",ExpressionUUID->"b8168584-10da-4532-8a3f-886261464832"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"s22", "=", 
  RowBox[{"Solve", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"c22", "\[Equal]", "0"}], "/.", 
     RowBox[{"s12", "[", 
      RowBox[{"[", "1", "]"}], "]"}]}], ",", 
    SubscriptBox["a", "4"]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7558764018445044`*^9, 3.7558764331795263`*^9}, {
   3.755876472054039*^9, 3.755876481635989*^9}, 3.7558766354497633`*^9, {
   3.755893524735218*^9, 3.7558935286849737`*^9}, {3.755903984680045*^9, 
   3.755903987847043*^9}, {3.755904563699418*^9, 3.755904565289103*^9}},
 CellLabel->"In[82]:=",ExpressionUUID->"6c566026-c1ce-44ba-a694-f37333911a8c"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "4"], "\[Rule]", 
    FractionBox[
     RowBox[{
      RowBox[{
       RowBox[{"-", "2"}], " ", 
       RowBox[{"b", "[", "2", "]"}], " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}], "+", 
      RowBox[{"A", " ", 
       SuperscriptBox[
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
      RowBox[{"A", " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}]}], 
     RowBox[{"2", " ", 
      SuperscriptBox["A", "2"], " ", 
      SuperscriptBox[
       RowBox[{"f", "[", "0", "]"}], "2"]}]]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{{3.7558764244066896`*^9, 3.755876433550189*^9}, {
   3.755876473748312*^9, 3.755876481964292*^9}, 3.755876636091487*^9, 
   3.755893528969228*^9, 3.755903324101378*^9, 3.7559039881323547`*^9, {
   3.755904571741036*^9, 3.755904585719964*^9}, 3.755906374157235*^9, 
   3.755906415668818*^9},
 CellLabel->"Out[82]=",ExpressionUUID->"487b6fbc-791e-4edc-8cd3-06510e74d100"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c32", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"\[ScriptCapitalH]", "[", "2", "]"}], "[", 
        RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", "Y"}], "]"}]}], 
      SuperscriptBox["Y", 
       RowBox[{"b", "[", "2", "]"}]]}], "/.", 
     RowBox[{
      RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{
        SubscriptBox["a", "3"], 
        SuperscriptBox["Y", "3"]}], "+", 
       RowBox[{
        SubscriptBox["a", "4"], 
        SuperscriptBox["Y", "4"]}], "+", 
       RowBox[{
        SubscriptBox["a", "5"], 
        SuperscriptBox["Y", "5"]}], "+", 
       RowBox[{
        SubscriptBox["a", "6"], 
        SuperscriptBox["Y", "6"]}], "+", 
       RowBox[{
        SubscriptBox["a", "7"], 
        SuperscriptBox["Y", "7"]}]}]}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "3"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7558764986142683`*^9, 3.755876516773336*^9}, {
   3.755876642186904*^9, 3.755876647479589*^9}, {3.755893546112706*^9, 
   3.755893585281641*^9}, 3.7558936684688377`*^9, 3.755903990236388*^9},
 CellLabel->"In[33]:=",ExpressionUUID->"0b5017ee-0ae5-428f-ab5a-c913a4e3ff13"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"-", 
    RowBox[{"b", "[", "2", "]"}]}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "4"]}], "+", 
  RowBox[{
   FractionBox["1", "6"], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      RowBox[{"-", "6"}], " ", "A", " ", 
      SubsuperscriptBox["a", "3", "2"]}], "+", 
     RowBox[{
      SuperscriptBox["A", "3"], " ", 
      SubsuperscriptBox["a", "3", "3"]}], "+", 
     RowBox[{"6", " ", 
      SuperscriptBox["A", "2"], " ", 
      SubscriptBox["a", "3"], " ", 
      SubscriptBox["a", "4"]}], "+", 
     RowBox[{"6", " ", "A", " ", 
      SubscriptBox["a", "5"]}]}], ")"}]}], "+", 
  RowBox[{
   SubscriptBox["a", "3"], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{
   FractionBox["1", "2"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      SuperscriptBox["A", "2"], " ", 
      SubsuperscriptBox["a", "3", "2"]}], "+", 
     RowBox[{"2", " ", "A", " ", 
      SubscriptBox["a", "4"]}]}], ")"}], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "-", 
  RowBox[{
   RowBox[{"b", "[", "2", "]"}], " ", 
   SubscriptBox["a", "3"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"A", " ", 
      RowBox[{"f", "[", "0", "]"}], " ", 
      SubscriptBox["a", "3"]}], "+", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], ")"}]}], "+", 
  RowBox[{
   FractionBox["1", "2"], " ", "A", " ", 
   SubscriptBox["a", "3"], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{
   FractionBox["1", "6"], " ", 
   RowBox[{
    SuperscriptBox["f", 
     TagBox[
      RowBox[{"(", "3", ")"}],
      Derivative],
     MultilineFunction->None], "[", "0", "]"}]}]}]], "Output",
 CellChangeTimes->{
  3.755876517077086*^9, 3.755876648127837*^9, {3.755893561636825*^9, 
   3.7558935855799427`*^9}, 3.755893669543519*^9, 3.755903330199628*^9, 
   3.755903993809931*^9},
 CellLabel->"Out[33]=",ExpressionUUID->"c9c989af-e89b-44ae-98f9-a973b6c654cf"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"s32", "=", 
  RowBox[{"Solve", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"c32", "\[Equal]", "0"}], "/.", 
      RowBox[{"s12", "[", 
       RowBox[{"[", "1", "]"}], "]"}]}], "/.", 
     RowBox[{"s22", "[", 
      RowBox[{"[", "1", "]"}], "]"}]}], ",", 
    SubscriptBox["a", "5"]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755876520710517*^9, 3.7558765466133347`*^9}, {
  3.755876660775591*^9, 3.755876661526739*^9}, {3.755876760850528*^9, 
  3.755876761288683*^9}, {3.755893600448748*^9, 3.755893609169582*^9}, {
  3.755903996243135*^9, 3.755904001017695*^9}},
 CellLabel->"In[34]:=",ExpressionUUID->"73ce0861-86ca-42e2-a377-0c0a1aa6f379"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "5"], "\[Rule]", 
    RowBox[{
     FractionBox["1", 
      RowBox[{"6", " ", 
       SuperscriptBox["A", "3"], " ", 
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "3"]}]], 
     RowBox[{"(", 
      RowBox[{
       RowBox[{
        RowBox[{"-", "6"}], " ", 
        SuperscriptBox[
         RowBox[{"b", "[", "2", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"12", " ", "A", " ", 
        RowBox[{"f", "[", "0", "]"}], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
       RowBox[{"3", " ", "A", " ", 
        RowBox[{"b", "[", "2", "]"}], " ", 
        RowBox[{"f", "[", "0", "]"}], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
       RowBox[{"2", " ", 
        SuperscriptBox["A", "2"], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "3"]}], "-", 
       RowBox[{"3", " ", "A", " ", 
        RowBox[{"b", "[", "2", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"3", " ", 
        SuperscriptBox["A", "2"], " ", 
        RowBox[{"f", "[", "0", "]"}], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "-", 
       RowBox[{
        SuperscriptBox["A", "2"], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", 
          TagBox[
           RowBox[{"(", "3", ")"}],
           Derivative],
          MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}]}], "}"}], 
  "}"}]], "Output",
 CellChangeTimes->{{3.755876532932132*^9, 3.7558765506123*^9}, 
   3.7558766618805532`*^9, 3.755876761481163*^9, {3.755893605095592*^9, 
   3.7558936098420773`*^9}, 3.755893670380773*^9, 3.755903331560048*^9, 
   3.755904001380454*^9},
 CellLabel->"Out[34]=",ExpressionUUID->"e9d3a0b0-9eee-46d0-9632-40fa31d4feee"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c42", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"\[ScriptCapitalH]", "[", "2", "]"}], "[", 
        RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", "Y"}], "]"}]}], 
      SuperscriptBox["Y", 
       RowBox[{"b", "[", "2", "]"}]]}], "/.", 
     RowBox[{
      RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{
        SubscriptBox["a", "3"], 
        SuperscriptBox["Y", "3"]}], "+", 
       RowBox[{
        SubscriptBox["a", "4"], 
        SuperscriptBox["Y", "4"]}], "+", 
       RowBox[{
        SubscriptBox["a", "5"], 
        SuperscriptBox["Y", "5"]}], "+", 
       RowBox[{
        SubscriptBox["a", "6"], 
        SuperscriptBox["Y", "6"]}], "+", 
       RowBox[{
        SubscriptBox["a", "7"], 
        SuperscriptBox["Y", "7"]}]}]}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "4"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7558764986142683`*^9, 3.755876516773336*^9}, {
  3.755876642186904*^9, 3.755876647479589*^9}, {3.75587668189727*^9, 
  3.755876703823423*^9}, {3.7558936399690037`*^9, 3.75589365575041*^9}, {
  3.755904003442932*^9, 3.75590400525378*^9}},
 CellLabel->"In[35]:=",ExpressionUUID->"9113eae8-9995-4066-b8cd-a03b38806f54"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "24"], " ", 
  RowBox[{"(", 
   RowBox[{
    RowBox[{"12", " ", 
     RowBox[{"b", "[", "2", "]"}], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubsuperscriptBox["a", "3", "2"]}], "+", 
    RowBox[{"12", " ", 
     SuperscriptBox[
      RowBox[{"b", "[", "2", "]"}], "2"], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubsuperscriptBox["a", "3", "2"]}], "-", 
    RowBox[{"24", " ", 
     SuperscriptBox["A", "2"], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubsuperscriptBox["a", "3", "3"]}], "-", 
    RowBox[{"12", " ", 
     SuperscriptBox["A", "2"], " ", 
     RowBox[{"b", "[", "2", "]"}], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubsuperscriptBox["a", "3", "3"]}], "+", 
    RowBox[{
     SuperscriptBox["A", "4"], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubsuperscriptBox["a", "3", "4"]}], "-", 
    RowBox[{"48", " ", "A", " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "3"], " ", 
     SubscriptBox["a", "4"]}], "-", 
    RowBox[{"48", " ", "A", " ", 
     RowBox[{"b", "[", "2", "]"}], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "3"], " ", 
     SubscriptBox["a", "4"]}], "+", 
    RowBox[{"12", " ", 
     SuperscriptBox["A", "3"], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubsuperscriptBox["a", "3", "2"], " ", 
     SubscriptBox["a", "4"]}], "+", 
    RowBox[{"12", " ", 
     SuperscriptBox["A", "2"], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubsuperscriptBox["a", "4", "2"]}], "-", 
    RowBox[{"24", " ", 
     RowBox[{"b", "[", "2", "]"}], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "5"]}], "+", 
    RowBox[{"24", " ", 
     SuperscriptBox["A", "2"], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "3"], " ", 
     SubscriptBox["a", "5"]}], "+", 
    RowBox[{"24", " ", "A", " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "6"]}], "-", 
    RowBox[{"24", " ", "A", " ", 
     RowBox[{"b", "[", "2", "]"}], " ", 
     SubsuperscriptBox["a", "3", "2"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{"4", " ", 
     SuperscriptBox["A", "3"], " ", 
     SubsuperscriptBox["a", "3", "3"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{"24", " ", 
     SubscriptBox["a", "4"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "-", 
    RowBox[{"24", " ", 
     RowBox[{"b", "[", "2", "]"}], " ", 
     SubscriptBox["a", "4"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{"24", " ", 
     SuperscriptBox["A", "2"], " ", 
     SubscriptBox["a", "3"], " ", 
     SubscriptBox["a", "4"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{"24", " ", "A", " ", 
     SubscriptBox["a", "5"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{"24", " ", 
     SubscriptBox["a", "3"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "-", 
    RowBox[{"12", " ", 
     RowBox[{"b", "[", "2", "]"}], " ", 
     SubscriptBox["a", "3"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{"6", " ", 
     SuperscriptBox["A", "2"], " ", 
     SubsuperscriptBox["a", "3", "2"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{"12", " ", "A", " ", 
     SubscriptBox["a", "4"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{"4", " ", "A", " ", 
     SubscriptBox["a", "3"], " ", 
     RowBox[{
      SuperscriptBox["f", 
       TagBox[
        RowBox[{"(", "3", ")"}],
        Derivative],
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{
     SuperscriptBox["f", 
      TagBox[
       RowBox[{"(", "4", ")"}],
       Derivative],
      MultilineFunction->None], "[", "0", "]"}]}], ")"}]}]], "Output",
 CellChangeTimes->{
  3.755876517077086*^9, 3.755876648127837*^9, {3.755876686584494*^9, 
   3.755876704176655*^9}, 3.755893673157879*^9, 3.7559033326416607`*^9, 
   3.755904007190686*^9},
 CellLabel->"Out[35]=",ExpressionUUID->"310b5372-fe11-4011-8dd5-0d8904e26b68"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Solve", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"c42", "\[Equal]", "0"}], "/.", 
      RowBox[{"s12", "[", 
       RowBox[{"[", "1", "]"}], "]"}]}], "/.", 
     RowBox[{"s22", "[", 
      RowBox[{"[", "1", "]"}], "]"}]}], "/.", 
    RowBox[{"s32", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}], ",", 
   SubscriptBox["a", "6"]}], "]"}]], "Input",
 CellChangeTimes->{{3.755876520710517*^9, 3.7558765466133347`*^9}, {
  3.755876660775591*^9, 3.755876661526739*^9}, {3.7558767552577753`*^9, 
  3.755876768744478*^9}, {3.7558936810155973`*^9, 3.755893687423382*^9}, {
  3.755904010805686*^9, 3.7559040170918427`*^9}},
 CellLabel->"In[36]:=",ExpressionUUID->"70b899c3-e437-421a-8895-987392ee433a"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "6"], "\[Rule]", 
    RowBox[{
     FractionBox["1", 
      RowBox[{"24", " ", 
       SuperscriptBox["A", "4"], " ", 
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "4"]}]], 
     RowBox[{"(", 
      RowBox[{
       RowBox[{
        RowBox[{"-", "24"}], " ", 
        SuperscriptBox[
         RowBox[{"b", "[", "2", "]"}], "3"], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "3"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"108", " ", "A", " ", 
        RowBox[{"b", "[", "2", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
       RowBox[{"12", " ", "A", " ", 
        SuperscriptBox[
         RowBox[{"b", "[", "2", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
       RowBox[{"60", " ", 
        SuperscriptBox["A", "2"], " ", 
        RowBox[{"f", "[", "0", "]"}], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "3"]}], "-", 
       RowBox[{"8", " ", 
        SuperscriptBox["A", "2"], " ", 
        RowBox[{"b", "[", "2", "]"}], " ", 
        RowBox[{"f", "[", "0", "]"}], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "3"]}], "+", 
       RowBox[{"6", " ", 
        SuperscriptBox["A", "3"], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "4"]}], "-", 
       RowBox[{"12", " ", "A", " ", 
        SuperscriptBox[
         RowBox[{"b", "[", "2", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "3"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"60", " ", 
        SuperscriptBox["A", "2"], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"12", " ", 
        SuperscriptBox["A", "2"], " ", 
        RowBox[{"b", "[", "2", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "-", 
       RowBox[{"12", " ", 
        SuperscriptBox["A", "3"], " ", 
        RowBox[{"f", "[", "0", "]"}], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"3", " ", 
        SuperscriptBox["A", "3"], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
       RowBox[{"4", " ", 
        SuperscriptBox["A", "2"], " ", 
        RowBox[{"b", "[", "2", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "3"], " ", 
        RowBox[{
         SuperscriptBox["f", 
          TagBox[
           RowBox[{"(", "3", ")"}],
           Derivative],
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"4", " ", 
        SuperscriptBox["A", "3"], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], " ", 
        RowBox[{
         SuperscriptBox["f", 
          TagBox[
           RowBox[{"(", "3", ")"}],
           Derivative],
          MultilineFunction->None], "[", "0", "]"}]}], "-", 
       RowBox[{
        SuperscriptBox["A", "3"], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "3"], " ", 
        RowBox[{
         SuperscriptBox["f", 
          TagBox[
           RowBox[{"(", "4", ")"}],
           Derivative],
          MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}]}], "}"}], 
  "}"}]], "Output",
 CellChangeTimes->{{3.755876532932132*^9, 3.7558765506123*^9}, 
   3.7558766618805532`*^9, 3.755876769240903*^9, 3.755893688726388*^9, 
   3.755903335008829*^9, 3.755904017522241*^9},
 CellLabel->"Out[36]=",ExpressionUUID->"0632b902-dc0d-404b-ae51-3a79bbd9ad48"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c13", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"\[ScriptCapitalH]", "[", "3", "]"}], "[", 
        RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", 
         SuperscriptBox["Y", "2"]}], "]"}]}], 
      SuperscriptBox["Y", 
       RowBox[{"b", "[", "3", "]"}]]}], "/.", 
     RowBox[{
      RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{
        SubscriptBox["a", "4"], 
        SuperscriptBox["Y", "4"]}], "+", 
       RowBox[{
        SubscriptBox["a", "5"], 
        SuperscriptBox["Y", "5"]}], "+", 
       RowBox[{
        SubscriptBox["a", "6"], 
        SuperscriptBox["Y", "6"]}], "+", 
       RowBox[{
        SubscriptBox["a", "7"], 
        SuperscriptBox["Y", "7"]}]}]}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "1"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755875482189352*^9, 3.755875530092328*^9}, {
   3.75587557737519*^9, 3.755875582869075*^9}, {3.755875659000474*^9, 
   3.7558757932595663`*^9}, {3.7558758838282022`*^9, 3.755875934803454*^9}, {
   3.755876010959289*^9, 3.755876015261304*^9}, {3.755876053803957*^9, 
   3.755876107622567*^9}, {3.7558761543853607`*^9, 3.755876178799548*^9}, 
   3.755876310973308*^9, {3.755876584531127*^9, 3.755876594814355*^9}, {
   3.7558767303875237`*^9, 3.75587673352853*^9}, {3.7558773548291273`*^9, 
   3.755877365678813*^9}, 3.755877409075362*^9, {3.755893419231349*^9, 
   3.755893466780015*^9}, {3.7558940325678177`*^9, 3.755894064452505*^9}, {
   3.755904020536221*^9, 3.7559040321239367`*^9}},
 CellLabel->"In[39]:=",ExpressionUUID->"3f2a6676-1a4a-41b9-8975-78da98c9db4c"],

Cell[BoxData[
 RowBox[{
  RowBox[{"2", " ", "A", " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "4"]}], "+", 
  RowBox[{
   SuperscriptBox["f", "\[Prime]",
    MultilineFunction->None], "[", "0", "]"}]}]], "Output",
 CellChangeTimes->{{3.755875517854062*^9, 3.7558755304725246`*^9}, 
   3.755875579391144*^9, 3.75587562026398*^9, 3.75587567334341*^9, {
   3.755875752815339*^9, 3.755875793423603*^9}, {3.7558758883202267`*^9, 
   3.755875935009924*^9}, 3.755876015688389*^9, {3.755876054859782*^9, 
   3.755876107943524*^9}, {3.755876159601807*^9, 3.755876179026613*^9}, 
   3.75587623887215*^9, {3.755876308110261*^9, 3.7558763113450747`*^9}, {
   3.755876591091544*^9, 3.755876595069475*^9}, {3.755876730682897*^9, 
   3.755876733772119*^9}, {3.755877363436366*^9, 3.755877366546823*^9}, {
   3.755877407288651*^9, 3.755877410122324*^9}, 3.755877790467352*^9, {
   3.755893415387486*^9, 3.755893467042817*^9}, {3.755894041177959*^9, 
   3.755894069411105*^9}, 3.7559033361164703`*^9, {3.755904023806081*^9, 
   3.755904033250235*^9}},
 CellLabel->"Out[39]=",ExpressionUUID->"bb6921ee-3572-4a1e-9715-426663da2003"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"s13", "=", 
  RowBox[{"Solve", "[", 
   RowBox[{
    RowBox[{"c13", "\[Equal]", "0"}], ",", 
    SubscriptBox["a", "4"]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755893471542695*^9, 3.755893493019618*^9}, {
  3.755894073391698*^9, 3.755894073478023*^9}, {3.755904025990951*^9, 
  3.755904037441411*^9}},
 CellLabel->"In[40]:=",ExpressionUUID->"026dbff9-6345-40c7-846b-ff24dc2b45da"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "4"], "\[Rule]", 
    RowBox[{"-", 
     FractionBox[
      RowBox[{
       SuperscriptBox["f", "\[Prime]",
        MultilineFunction->None], "[", "0", "]"}], 
      RowBox[{"2", " ", "A", " ", 
       RowBox[{"f", "[", "0", "]"}]}]]}]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{
  3.7558934933838663`*^9, 3.755894074138431*^9, 3.755903337456862*^9, {
   3.755904028174037*^9, 3.7559040377099867`*^9}},
 CellLabel->"Out[40]=",ExpressionUUID->"bfa005b0-cfce-4912-abe1-27728b8a57d9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c23", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"\[ScriptCapitalH]", "[", "3", "]"}], "[", 
        RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", 
         SuperscriptBox["Y", "2"]}], "]"}]}], 
      SuperscriptBox["Y", 
       RowBox[{"b", "[", "3", "]"}]]}], "/.", 
     RowBox[{
      RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{
        SubscriptBox["a", "4"], 
        SuperscriptBox["Y", "4"]}], "+", 
       RowBox[{
        SubscriptBox["a", "5"], 
        SuperscriptBox["Y", "5"]}], "+", 
       RowBox[{
        SubscriptBox["a", "6"], 
        SuperscriptBox["Y", "6"]}], "+", 
       RowBox[{
        SubscriptBox["a", "7"], 
        SuperscriptBox["Y", "7"]}]}]}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "2"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755875482189352*^9, 3.755875530092328*^9}, {
  3.75587557737519*^9, 3.755875582869075*^9}, {3.755875659000474*^9, 
  3.7558757932595663`*^9}, {3.7558758838282022`*^9, 3.755875934803454*^9}, {
  3.755876010959289*^9, 3.755876015261304*^9}, {3.755876053803957*^9, 
  3.755876107622567*^9}, {3.7558761543853607`*^9, 3.755876195399214*^9}, {
  3.7558763915255527`*^9, 3.7558764140748167`*^9}, {3.755876624743107*^9, 
  3.755876631359199*^9}, {3.755877421574501*^9, 3.755877425211659*^9}, {
  3.755893502541963*^9, 3.755893514052718*^9}, {3.755894067187777*^9, 
  3.755894094231802*^9}, {3.7559040401529903`*^9, 3.755904048538026*^9}},
 CellLabel->"In[42]:=",ExpressionUUID->"a12fb9de-9cdf-4485-b025-f9f3c4e7bfc3"],

Cell[BoxData[
 RowBox[{
  RowBox[{"2", " ", 
   SuperscriptBox["A", "2"], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubsuperscriptBox["a", "4", "2"]}], "+", 
  RowBox[{"2", " ", "A", " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "5"]}], "+", 
  RowBox[{"2", " ", "A", " ", 
   SubscriptBox["a", "4"], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  FractionBox[
   RowBox[{
    SuperscriptBox["f", "\[Prime]\[Prime]",
     MultilineFunction->None], "[", "0", "]"}], "2"]}]], "Output",
 CellChangeTimes->{{3.755875517854062*^9, 3.7558755304725246`*^9}, 
   3.755875579391144*^9, 3.75587562026398*^9, 3.75587567334341*^9, {
   3.755875752815339*^9, 3.755875793423603*^9}, {3.7558758883202267`*^9, 
   3.755875935009924*^9}, 3.755876015688389*^9, {3.755876054859782*^9, 
   3.755876107943524*^9}, {3.755876159601807*^9, 3.755876195856427*^9}, {
   3.7558763930016537`*^9, 3.755876414633679*^9}, {3.755876627837193*^9, 
   3.755876631667873*^9}, {3.7558774166766787`*^9, 3.75587742589657*^9}, {
   3.755893511058223*^9, 3.755893514277576*^9}, {3.75589408982563*^9, 
   3.755894094549667*^9}, 3.7559033389881773`*^9, {3.7559040418957863`*^9, 
   3.755904048938102*^9}},
 CellLabel->"Out[42]=",ExpressionUUID->"199bdc71-89b8-4e78-9a5f-e432ddc48931"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"s23", "=", 
  RowBox[{"Solve", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"c23", "\[Equal]", "0"}], "/.", 
     RowBox[{"s13", "[", 
      RowBox[{"[", "1", "]"}], "]"}]}], ",", 
    SubscriptBox["a", "5"]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7558764018445044`*^9, 3.7558764331795263`*^9}, {
   3.755876472054039*^9, 3.755876481635989*^9}, 3.7558766354497633`*^9, {
   3.755893524735218*^9, 3.7558935286849737`*^9}, {3.755894100311884*^9, 
   3.755894101318531*^9}, {3.75590405099885*^9, 3.7559040546341476`*^9}},
 CellLabel->"In[43]:=",ExpressionUUID->"690bf8a4-9971-4d09-b95c-65cbb97b53dd"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "5"], "\[Rule]", 
    FractionBox[
     RowBox[{
      SuperscriptBox[
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}], "2"], "-", 
      RowBox[{
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}]}], 
     RowBox[{"4", " ", "A", " ", 
      SuperscriptBox[
       RowBox[{"f", "[", "0", "]"}], "2"]}]]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{{3.7558764244066896`*^9, 3.755876433550189*^9}, {
   3.755876473748312*^9, 3.755876481964292*^9}, 3.755876636091487*^9, 
   3.755893528969228*^9, 3.7558941016963797`*^9, 3.75590335110741*^9, 
   3.755904055081406*^9},
 CellLabel->"Out[43]=",ExpressionUUID->"2c6a5a50-cb3b-4072-b847-336729e161bf"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c33", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"\[ScriptCapitalH]", "[", "3", "]"}], "[", 
        RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", 
         SuperscriptBox["Y", "2"]}], "]"}]}], 
      SuperscriptBox["Y", 
       RowBox[{"b", "[", "3", "]"}]]}], "/.", 
     RowBox[{
      RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{
        SubscriptBox["a", "4"], 
        SuperscriptBox["Y", "4"]}], "+", 
       RowBox[{
        SubscriptBox["a", "5"], 
        SuperscriptBox["Y", "5"]}], "+", 
       RowBox[{
        SubscriptBox["a", "6"], 
        SuperscriptBox["Y", "6"]}], "+", 
       RowBox[{
        SubscriptBox["a", "7"], 
        SuperscriptBox["Y", "7"]}]}]}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "3"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7558764986142683`*^9, 3.755876516773336*^9}, {
   3.755876642186904*^9, 3.755876647479589*^9}, {3.755893546112706*^9, 
   3.755893585281641*^9}, 3.7558936684688377`*^9, {3.755894129137804*^9, 
   3.755894139384581*^9}, 3.7559040570635023`*^9},
 CellLabel->"In[44]:=",ExpressionUUID->"65446e1d-ab32-48e7-83fc-d6a5eaf55a6b"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"-", 
    RowBox[{"b", "[", "3", "]"}]}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "4"]}], "+", 
  RowBox[{
   FractionBox["2", "3"], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"2", " ", 
      SuperscriptBox["A", "3"], " ", 
      SubsuperscriptBox["a", "4", "3"]}], "+", 
     RowBox[{"6", " ", 
      SuperscriptBox["A", "2"], " ", 
      SubscriptBox["a", "4"], " ", 
      SubscriptBox["a", "5"]}], "+", 
     RowBox[{"3", " ", "A", " ", 
      SubscriptBox["a", "6"]}]}], ")"}]}], "+", 
  RowBox[{"2", " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      SuperscriptBox["A", "2"], " ", 
      SubsuperscriptBox["a", "4", "2"]}], "+", 
     RowBox[{"A", " ", 
      SubscriptBox["a", "5"]}]}], ")"}], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{"A", " ", 
   SubscriptBox["a", "4"], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{
   FractionBox["1", "6"], " ", 
   RowBox[{
    SuperscriptBox["f", 
     TagBox[
      RowBox[{"(", "3", ")"}],
      Derivative],
     MultilineFunction->None], "[", "0", "]"}]}]}]], "Output",
 CellChangeTimes->{
  3.755876517077086*^9, 3.755876648127837*^9, {3.755893561636825*^9, 
   3.7558935855799427`*^9}, 3.755893669543519*^9, 3.75589413988035*^9, 
   3.755903353224431*^9, 3.755904058406502*^9},
 CellLabel->"Out[44]=",ExpressionUUID->"e93135e8-3f38-495e-87eb-bec996b0d556"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"s33", "=", 
  RowBox[{"Solve", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"c33", "\[Equal]", "0"}], "/.", 
      RowBox[{"s13", "[", 
       RowBox[{"[", "1", "]"}], "]"}]}], "/.", 
     RowBox[{"s23", "[", 
      RowBox[{"[", "1", "]"}], "]"}]}], ",", 
    SubscriptBox["a", "6"]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755876520710517*^9, 3.7558765466133347`*^9}, {
  3.755876660775591*^9, 3.755876661526739*^9}, {3.755876760850528*^9, 
  3.755876761288683*^9}, {3.755893600448748*^9, 3.755893609169582*^9}, {
  3.755894145225738*^9, 3.755894146703067*^9}, {3.755904060876693*^9, 
  3.755904066956912*^9}},
 CellLabel->"In[45]:=",ExpressionUUID->"8f20dd13-db42-4729-b167-f229aa4a3b7e"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "6"], "\[Rule]", 
    FractionBox[
     RowBox[{
      RowBox[{
       RowBox[{"-", "3"}], " ", 
       RowBox[{"b", "[", "3", "]"}], " ", 
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "2"], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}], "-", 
      RowBox[{"2", " ", "A", " ", 
       SuperscriptBox[
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], "3"]}], "+", 
      RowBox[{"3", " ", "A", " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}], "-", 
      RowBox[{"A", " ", 
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "2"], " ", 
       RowBox[{
        SuperscriptBox["f", 
         TagBox[
          RowBox[{"(", "3", ")"}],
          Derivative],
         MultilineFunction->None], "[", "0", "]"}]}]}], 
     RowBox[{"12", " ", 
      SuperscriptBox["A", "2"], " ", 
      SuperscriptBox[
       RowBox[{"f", "[", "0", "]"}], "3"]}]]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{{3.755876532932132*^9, 3.7558765506123*^9}, 
   3.7558766618805532`*^9, 3.755876761481163*^9, {3.755893605095592*^9, 
   3.7558936098420773`*^9}, 3.755893670380773*^9, 3.7558941471807833`*^9, 
   3.755903354622189*^9, 3.755904067253439*^9},
 CellLabel->"Out[45]=",ExpressionUUID->"3bb7f71d-e257-46ba-9dea-7b580e6ba6ad"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c43", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"\[ScriptCapitalH]", "[", "3", "]"}], "[", 
        RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", 
         SuperscriptBox["Y", "2"]}], "]"}]}], 
      SuperscriptBox["Y", 
       RowBox[{"b", "[", "3", "]"}]]}], "/.", 
     RowBox[{
      RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{
        SubscriptBox["a", "4"], 
        SuperscriptBox["Y", "4"]}], "+", 
       RowBox[{
        SubscriptBox["a", "5"], 
        SuperscriptBox["Y", "5"]}], "+", 
       RowBox[{
        SubscriptBox["a", "6"], 
        SuperscriptBox["Y", "6"]}], "+", 
       RowBox[{
        SubscriptBox["a", "7"], 
        SuperscriptBox["Y", "7"]}]}]}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "4"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7558764986142683`*^9, 3.755876516773336*^9}, {
   3.755876642186904*^9, 3.755876647479589*^9}, {3.75587668189727*^9, 
   3.755876703823423*^9}, {3.7558936399690037`*^9, 3.75589365575041*^9}, {
   3.755894159906083*^9, 3.7558941703931007`*^9}, 3.755904069487954*^9},
 CellLabel->"In[46]:=",ExpressionUUID->"94bea634-1ea8-450c-8712-a08a30280741"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"-", 
    RowBox[{"b", "[", "3", "]"}]}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "5"]}], "+", 
  RowBox[{
   FractionBox["1", "3"], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      RowBox[{"-", "9"}], " ", "A", " ", 
      SubsuperscriptBox["a", "4", "2"]}], "+", 
     RowBox[{"2", " ", 
      SuperscriptBox["A", "4"], " ", 
      SubsuperscriptBox["a", "4", "4"]}], "+", 
     RowBox[{"12", " ", 
      SuperscriptBox["A", "3"], " ", 
      SubsuperscriptBox["a", "4", "2"], " ", 
      SubscriptBox["a", "5"]}], "+", 
     RowBox[{"6", " ", 
      SuperscriptBox["A", "2"], " ", 
      SubsuperscriptBox["a", "5", "2"]}], "+", 
     RowBox[{"12", " ", 
      SuperscriptBox["A", "2"], " ", 
      SubscriptBox["a", "4"], " ", 
      SubscriptBox["a", "6"]}], "+", 
     RowBox[{"6", " ", "A", " ", 
      SubscriptBox["a", "7"]}]}], ")"}]}], "+", 
  RowBox[{
   SubscriptBox["a", "4"], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{
   FractionBox["2", "3"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"2", " ", 
      SuperscriptBox["A", "3"], " ", 
      SubsuperscriptBox["a", "4", "3"]}], "+", 
     RowBox[{"6", " ", 
      SuperscriptBox["A", "2"], " ", 
      SubscriptBox["a", "4"], " ", 
      SubscriptBox["a", "5"]}], "+", 
     RowBox[{"3", " ", "A", " ", 
      SubscriptBox["a", "6"]}]}], ")"}], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "-", 
  RowBox[{
   RowBox[{"b", "[", "3", "]"}], " ", 
   SubscriptBox["a", "4"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"2", " ", "A", " ", 
      RowBox[{"f", "[", "0", "]"}], " ", 
      SubscriptBox["a", "4"]}], "+", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], ")"}]}], "+", 
  RowBox[{
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      SuperscriptBox["A", "2"], " ", 
      SubsuperscriptBox["a", "4", "2"]}], "+", 
     RowBox[{"A", " ", 
      SubscriptBox["a", "5"]}]}], ")"}], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{
   FractionBox["1", "3"], " ", "A", " ", 
   SubscriptBox["a", "4"], " ", 
   RowBox[{
    SuperscriptBox["f", 
     TagBox[
      RowBox[{"(", "3", ")"}],
      Derivative],
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{
   FractionBox["1", "24"], " ", 
   RowBox[{
    SuperscriptBox["f", 
     TagBox[
      RowBox[{"(", "4", ")"}],
      Derivative],
     MultilineFunction->None], "[", "0", "]"}]}]}]], "Output",
 CellChangeTimes->{
  3.755876517077086*^9, 3.755876648127837*^9, {3.755876686584494*^9, 
   3.755876704176655*^9}, 3.755893673157879*^9, 3.755894170907789*^9, 
   3.755903356540062*^9, 3.755904071167697*^9},
 CellLabel->"Out[46]=",ExpressionUUID->"5946d9da-f73a-4616-b6ba-3468fb7fc8b8"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Solve", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"c43", "\[Equal]", "0"}], "/.", 
      RowBox[{"s13", "[", 
       RowBox[{"[", "1", "]"}], "]"}]}], "/.", 
     RowBox[{"s23", "[", 
      RowBox[{"[", "1", "]"}], "]"}]}], "/.", 
    RowBox[{"s33", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}], ",", 
   SubscriptBox["a", "7"]}], "]"}]], "Input",
 CellChangeTimes->{{3.755876520710517*^9, 3.7558765466133347`*^9}, {
  3.755876660775591*^9, 3.755876661526739*^9}, {3.7558767552577753`*^9, 
  3.755876768744478*^9}, {3.7558936810155973`*^9, 3.755893687423382*^9}, {
  3.7558941753311872`*^9, 3.755894176111874*^9}, {3.755904072808035*^9, 
  3.7559040817175083`*^9}},
 CellLabel->"In[47]:=",ExpressionUUID->"8d95964c-d1b9-4ea7-ad4d-3310eab145be"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "7"], "\[Rule]", 
    RowBox[{
     FractionBox["1", 
      RowBox[{"48", " ", 
       SuperscriptBox["A", "2"], " ", 
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "4"]}]], 
     RowBox[{"(", 
      RowBox[{
       RowBox[{"30", " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
       RowBox[{"6", " ", 
        RowBox[{"b", "[", "3", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
       RowBox[{"6", " ", "A", " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "4"]}], "-", 
       RowBox[{"6", " ", 
        RowBox[{"b", "[", "3", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "3"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "-", 
       RowBox[{"12", " ", "A", " ", 
        RowBox[{"f", "[", "0", "]"}], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"3", " ", "A", " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
       RowBox[{"4", " ", "A", " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], " ", 
        RowBox[{
         SuperscriptBox["f", 
          TagBox[
           RowBox[{"(", "3", ")"}],
           Derivative],
          MultilineFunction->None], "[", "0", "]"}]}], "-", 
       RowBox[{"A", " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "3"], " ", 
        RowBox[{
         SuperscriptBox["f", 
          TagBox[
           RowBox[{"(", "4", ")"}],
           Derivative],
          MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}]}], "}"}], 
  "}"}]], "Output",
 CellChangeTimes->{{3.755876532932132*^9, 3.7558765506123*^9}, 
   3.7558766618805532`*^9, 3.755876769240903*^9, 3.755893688726388*^9, {
   3.755894171724524*^9, 3.7558941764918137`*^9}, 3.755903357703167*^9, 
   3.755904082091606*^9},
 CellLabel->"Out[47]=",ExpressionUUID->"e5602d2f-bb91-4401-82d4-83d97e78675b"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c14", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"\[ScriptCapitalH]", "[", "4", "]"}], "[", 
        RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", 
         SuperscriptBox["Y", "3"]}], "]"}]}], 
      SuperscriptBox["Y", 
       RowBox[{"b", "[", "4", "]"}]]}], "/.", 
     RowBox[{
      RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{
        SubscriptBox["a", "5"], 
        SuperscriptBox["Y", "5"]}], "+", 
       RowBox[{
        SubscriptBox["a", "6"], 
        SuperscriptBox["Y", "6"]}], "+", 
       RowBox[{
        SubscriptBox["a", "7"], 
        SuperscriptBox["Y", "7"]}], "+", 
       RowBox[{
        SubscriptBox["a", "8"], 
        SuperscriptBox["Y", "8"]}]}]}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "1"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755875482189352*^9, 3.755875530092328*^9}, {
   3.75587557737519*^9, 3.755875582869075*^9}, {3.755875659000474*^9, 
   3.7558757932595663`*^9}, {3.7558758838282022`*^9, 3.755875934803454*^9}, {
   3.755876010959289*^9, 3.755876015261304*^9}, {3.755876053803957*^9, 
   3.755876107622567*^9}, {3.7558761543853607`*^9, 3.755876178799548*^9}, 
   3.755876310973308*^9, {3.755876584531127*^9, 3.755876594814355*^9}, {
   3.7558767303875237`*^9, 3.75587673352853*^9}, {3.7558773548291273`*^9, 
   3.755877365678813*^9}, 3.755877409075362*^9, {3.755893419231349*^9, 
   3.755893466780015*^9}, {3.7558940325678177`*^9, 3.755894064452505*^9}, {
   3.755894244032991*^9, 3.755894259161158*^9}, 3.7559040850816793`*^9},
 CellLabel->"In[48]:=",ExpressionUUID->"64e531df-0654-4956-866a-23d26adf4575"],

Cell[BoxData[
 RowBox[{
  RowBox[{"3", " ", "A", " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "5"]}], "+", 
  RowBox[{
   SuperscriptBox["f", "\[Prime]",
    MultilineFunction->None], "[", "0", "]"}]}]], "Output",
 CellChangeTimes->{{3.755875517854062*^9, 3.7558755304725246`*^9}, 
   3.755875579391144*^9, 3.75587562026398*^9, 3.75587567334341*^9, {
   3.755875752815339*^9, 3.755875793423603*^9}, {3.7558758883202267`*^9, 
   3.755875935009924*^9}, 3.755876015688389*^9, {3.755876054859782*^9, 
   3.755876107943524*^9}, {3.755876159601807*^9, 3.755876179026613*^9}, 
   3.75587623887215*^9, {3.755876308110261*^9, 3.7558763113450747`*^9}, {
   3.755876591091544*^9, 3.755876595069475*^9}, {3.755876730682897*^9, 
   3.755876733772119*^9}, {3.755877363436366*^9, 3.755877366546823*^9}, {
   3.755877407288651*^9, 3.755877410122324*^9}, 3.755877790467352*^9, {
   3.755893415387486*^9, 3.755893467042817*^9}, {3.755894041177959*^9, 
   3.755894069411105*^9}, 3.755894259781522*^9, 3.7559033587669*^9, 
   3.755904087314369*^9},
 CellLabel->"Out[48]=",ExpressionUUID->"371093d6-a8fa-4711-bf1e-983097d52f76"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"s14", "=", 
  RowBox[{"Solve", "[", 
   RowBox[{
    RowBox[{"c14", "\[Equal]", "0"}], ",", 
    SubscriptBox["a", "5"]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755893471542695*^9, 3.755893493019618*^9}, {
  3.755894073391698*^9, 3.755894073478023*^9}, {3.7558942754442177`*^9, 
  3.7558942755214567`*^9}, {3.7559040890719137`*^9, 3.755904091284842*^9}},
 CellLabel->"In[49]:=",ExpressionUUID->"3137ad4c-13ef-4a23-886b-c9e98bd71cf6"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "5"], "\[Rule]", 
    RowBox[{"-", 
     FractionBox[
      RowBox[{
       SuperscriptBox["f", "\[Prime]",
        MultilineFunction->None], "[", "0", "]"}], 
      RowBox[{"3", " ", "A", " ", 
       RowBox[{"f", "[", "0", "]"}]}]]}]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{
  3.7558934933838663`*^9, 3.755894074138431*^9, {3.755894271772336*^9, 
   3.75589427592701*^9}, 3.755903360017503*^9, 3.755904091682774*^9},
 CellLabel->"Out[49]=",ExpressionUUID->"16c00e93-00b9-4fad-ba98-739421b88a09"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c24", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"\[ScriptCapitalH]", "[", "4", "]"}], "[", 
        RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", 
         SuperscriptBox["Y", "3"]}], "]"}]}], 
      SuperscriptBox["Y", 
       RowBox[{"b", "[", "4", "]"}]]}], "/.", 
     RowBox[{
      RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{
        SubscriptBox["a", "5"], 
        SuperscriptBox["Y", "5"]}], "+", 
       RowBox[{
        SubscriptBox["a", "6"], 
        SuperscriptBox["Y", "6"]}], "+", 
       RowBox[{
        SubscriptBox["a", "7"], 
        SuperscriptBox["Y", "7"]}], "+", 
       RowBox[{
        SubscriptBox["a", "8"], 
        SuperscriptBox["Y", "8"]}]}]}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "2"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755875482189352*^9, 3.755875530092328*^9}, {
   3.75587557737519*^9, 3.755875582869075*^9}, {3.755875659000474*^9, 
   3.7558757932595663`*^9}, {3.7558758838282022`*^9, 3.755875934803454*^9}, {
   3.755876010959289*^9, 3.755876015261304*^9}, {3.755876053803957*^9, 
   3.755876107622567*^9}, {3.7558761543853607`*^9, 3.755876195399214*^9}, {
   3.7558763915255527`*^9, 3.7558764140748167`*^9}, {3.755876624743107*^9, 
   3.755876631359199*^9}, {3.755877421574501*^9, 3.755877425211659*^9}, {
   3.755893502541963*^9, 3.755893514052718*^9}, {3.755894067187777*^9, 
   3.755894094231802*^9}, {3.755894281606381*^9, 3.755894295291101*^9}, 
   3.755904094958068*^9},
 CellLabel->"In[50]:=",ExpressionUUID->"163dac58-ced3-454e-8740-032104b4d6c5"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "2"], " ", 
  RowBox[{"(", 
   RowBox[{
    RowBox[{"9", " ", 
     SuperscriptBox["A", "2"], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubsuperscriptBox["a", "5", "2"]}], "+", 
    RowBox[{"6", " ", "A", " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "6"]}], "+", 
    RowBox[{"6", " ", "A", " ", 
     SubscriptBox["a", "5"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]\[Prime]",
      MultilineFunction->None], "[", "0", "]"}]}], ")"}]}]], "Output",
 CellChangeTimes->{{3.755875517854062*^9, 3.7558755304725246`*^9}, 
   3.755875579391144*^9, 3.75587562026398*^9, 3.75587567334341*^9, {
   3.755875752815339*^9, 3.755875793423603*^9}, {3.7558758883202267`*^9, 
   3.755875935009924*^9}, 3.755876015688389*^9, {3.755876054859782*^9, 
   3.755876107943524*^9}, {3.755876159601807*^9, 3.755876195856427*^9}, {
   3.7558763930016537`*^9, 3.755876414633679*^9}, {3.755876627837193*^9, 
   3.755876631667873*^9}, {3.7558774166766787`*^9, 3.75587742589657*^9}, {
   3.755893511058223*^9, 3.755893514277576*^9}, {3.75589408982563*^9, 
   3.755894094549667*^9}, {3.755894289479043*^9, 3.755894295682423*^9}, 
   3.755903361342042*^9, 3.755904096488941*^9},
 CellLabel->"Out[50]=",ExpressionUUID->"423991ec-5677-4978-bbf0-cdd14ef9b3eb"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"s24", "=", 
  RowBox[{"Solve", "[", 
   RowBox[{
    RowBox[{
     RowBox[{"c24", "\[Equal]", "0"}], "/.", 
     RowBox[{"s14", "[", 
      RowBox[{"[", "1", "]"}], "]"}]}], ",", 
    SubscriptBox["a", "6"]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7558764018445044`*^9, 3.7558764331795263`*^9}, {
   3.755876472054039*^9, 3.755876481635989*^9}, 3.7558766354497633`*^9, {
   3.755893524735218*^9, 3.7558935286849737`*^9}, {3.755894100311884*^9, 
   3.755894101318531*^9}, 3.755894299861044*^9, {3.7559040996656017`*^9, 
   3.7559041150284224`*^9}},
 CellLabel->"In[53]:=",ExpressionUUID->"ad688161-f1fe-4e6d-a202-570a1b3c4a0a"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "6"], "\[Rule]", 
    FractionBox[
     RowBox[{
      SuperscriptBox[
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}], "2"], "-", 
      RowBox[{
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}]}], 
     RowBox[{"6", " ", "A", " ", 
      SuperscriptBox[
       RowBox[{"f", "[", "0", "]"}], "2"]}]]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{{3.7558764244066896`*^9, 3.755876433550189*^9}, {
   3.755876473748312*^9, 3.755876481964292*^9}, 3.755876636091487*^9, 
   3.755893528969228*^9, 3.7558941016963797`*^9, {3.755894297035943*^9, 
   3.7558943005027637`*^9}, 3.755903362564868*^9, {3.755904101634859*^9, 
   3.755904115397173*^9}},
 CellLabel->"Out[53]=",ExpressionUUID->"f1a3af1d-6c9d-42a5-ae23-22e9ced916c4"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c34", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"\[ScriptCapitalH]", "[", "4", "]"}], "[", 
        RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", 
         SuperscriptBox["Y", "3"]}], "]"}]}], 
      SuperscriptBox["Y", 
       RowBox[{"b", "[", "4", "]"}]]}], "/.", 
     RowBox[{
      RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{
        SubscriptBox["a", "5"], 
        SuperscriptBox["Y", "5"]}], "+", 
       RowBox[{
        SubscriptBox["a", "6"], 
        SuperscriptBox["Y", "6"]}], "+", 
       RowBox[{
        SubscriptBox["a", "7"], 
        SuperscriptBox["Y", "7"]}], "+", 
       RowBox[{
        SubscriptBox["a", "8"], 
        SuperscriptBox["Y", "8"]}]}]}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "3"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7558764986142683`*^9, 3.755876516773336*^9}, {
   3.755876642186904*^9, 3.755876647479589*^9}, {3.755893546112706*^9, 
   3.755893585281641*^9}, 3.7558936684688377`*^9, {3.755894129137804*^9, 
   3.755894139384581*^9}, {3.7558943292605667`*^9, 3.755894342382369*^9}, 
   3.755904104539754*^9},
 CellLabel->"In[52]:=",ExpressionUUID->"903f4b9d-b6bf-4bb2-94da-c185fe9001cd"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "6"], " ", 
  RowBox[{"(", 
   RowBox[{
    RowBox[{"27", " ", 
     SuperscriptBox["A", "3"], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubsuperscriptBox["a", "5", "3"]}], "+", 
    RowBox[{"54", " ", 
     SuperscriptBox["A", "2"], " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "5"], " ", 
     SubscriptBox["a", "6"]}], "+", 
    RowBox[{"18", " ", "A", " ", 
     RowBox[{"f", "[", "0", "]"}], " ", 
     SubscriptBox["a", "7"]}], "+", 
    RowBox[{"27", " ", 
     SuperscriptBox["A", "2"], " ", 
     SubsuperscriptBox["a", "5", "2"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{"18", " ", "A", " ", 
     SubscriptBox["a", "6"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{"9", " ", "A", " ", 
     SubscriptBox["a", "5"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{
     SuperscriptBox["f", 
      TagBox[
       RowBox[{"(", "3", ")"}],
       Derivative],
      MultilineFunction->None], "[", "0", "]"}]}], ")"}]}]], "Output",
 CellChangeTimes->{
  3.755876517077086*^9, 3.755876648127837*^9, {3.755893561636825*^9, 
   3.7558935855799427`*^9}, 3.755893669543519*^9, 3.75589413988035*^9, 
   3.7558943452771597`*^9, 3.755903365898841*^9, 3.7559041064717407`*^9},
 CellLabel->"Out[52]=",ExpressionUUID->"e16ebc0b-a0f4-4bca-8ce0-efa71a9faaee"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"s34", "=", 
  RowBox[{"Solve", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"c34", "\[Equal]", "0"}], "/.", 
      RowBox[{"s14", "[", 
       RowBox[{"[", "1", "]"}], "]"}]}], "/.", 
     RowBox[{"s24", "[", 
      RowBox[{"[", "1", "]"}], "]"}]}], ",", 
    SubscriptBox["a", "7"]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755876520710517*^9, 3.7558765466133347`*^9}, {
  3.755876660775591*^9, 3.755876661526739*^9}, {3.755876760850528*^9, 
  3.755876761288683*^9}, {3.755893600448748*^9, 3.755893609169582*^9}, {
  3.755894145225738*^9, 3.755894146703067*^9}, {3.755894348956132*^9, 
  3.755894349234551*^9}, {3.755904109191625*^9, 3.755904136222446*^9}},
 CellLabel->"In[54]:=",ExpressionUUID->"6dbd5634-089d-4b95-be3c-9e5cc68c1e20"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "7"], "\[Rule]", 
    FractionBox[
     RowBox[{
      RowBox[{
       RowBox[{"-", "2"}], " ", 
       SuperscriptBox[
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], "3"]}], "+", 
      RowBox[{"3", " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}], "-", 
      RowBox[{
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "2"], " ", 
       RowBox[{
        SuperscriptBox["f", 
         TagBox[
          RowBox[{"(", "3", ")"}],
          Derivative],
         MultilineFunction->None], "[", "0", "]"}]}]}], 
     RowBox[{"18", " ", "A", " ", 
      SuperscriptBox[
       RowBox[{"f", "[", "0", "]"}], "3"]}]]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{{3.755876532932132*^9, 3.7558765506123*^9}, 
   3.7558766618805532`*^9, 3.755876761481163*^9, {3.755893605095592*^9, 
   3.7558936098420773`*^9}, 3.755893670380773*^9, 3.7558941471807833`*^9, 
   3.755894349614087*^9, 3.755903369927774*^9, 3.7559041365593433`*^9},
 CellLabel->"Out[54]=",ExpressionUUID->"2fd182c2-a6a7-45fb-9411-33dd39630122"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"c44", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"\[ScriptCapitalH]", "[", "4", "]"}], "[", 
        RowBox[{"X", "[", "Y", "]"}], "]"}], "/", 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", 
         SuperscriptBox["Y", "3"]}], "]"}]}], 
      SuperscriptBox["Y", 
       RowBox[{"b", "[", "4", "]"}]]}], "/.", 
     RowBox[{
      RowBox[{"X", "[", "Y", "]"}], "\[Rule]", 
      RowBox[{"Y", "+", 
       RowBox[{
        SubscriptBox["a", "5"], 
        SuperscriptBox["Y", "5"]}], "+", 
       RowBox[{
        SubscriptBox["a", "6"], 
        SuperscriptBox["Y", "6"]}], "+", 
       RowBox[{
        SubscriptBox["a", "7"], 
        SuperscriptBox["Y", "7"]}], "+", 
       RowBox[{
        SubscriptBox["a", "8"], 
        SuperscriptBox["Y", "8"]}]}]}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "4"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7558764986142683`*^9, 3.755876516773336*^9}, {
   3.755876642186904*^9, 3.755876647479589*^9}, {3.75587668189727*^9, 
   3.755876703823423*^9}, {3.7558936399690037`*^9, 3.75589365575041*^9}, {
   3.755894159906083*^9, 3.7558941703931007`*^9}, {3.755894361549576*^9, 
   3.755894373471024*^9}, 3.755904138361915*^9},
 CellLabel->"In[55]:=",ExpressionUUID->"69b81d41-cdeb-4afc-9f3b-2bd7ffa8083d"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"-", 
    RowBox[{"b", "[", "4", "]"}]}], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   SubscriptBox["a", "5"]}], "+", 
  RowBox[{
   FractionBox["3", "8"], " ", 
   RowBox[{"f", "[", "0", "]"}], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"9", " ", 
      SuperscriptBox["A", "4"], " ", 
      SubsuperscriptBox["a", "5", "4"]}], "+", 
     RowBox[{"36", " ", 
      SuperscriptBox["A", "3"], " ", 
      SubsuperscriptBox["a", "5", "2"], " ", 
      SubscriptBox["a", "6"]}], "+", 
     RowBox[{"12", " ", 
      SuperscriptBox["A", "2"], " ", 
      SubsuperscriptBox["a", "6", "2"]}], "+", 
     RowBox[{"24", " ", 
      SuperscriptBox["A", "2"], " ", 
      SubscriptBox["a", "5"], " ", 
      SubscriptBox["a", "7"]}], "+", 
     RowBox[{"8", " ", "A", " ", 
      SubscriptBox["a", "8"]}]}], ")"}]}], "+", 
  RowBox[{
   FractionBox["3", "2"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"3", " ", 
      SuperscriptBox["A", "3"], " ", 
      SubsuperscriptBox["a", "5", "3"]}], "+", 
     RowBox[{"6", " ", 
      SuperscriptBox["A", "2"], " ", 
      SubscriptBox["a", "5"], " ", 
      SubscriptBox["a", "6"]}], "+", 
     RowBox[{"2", " ", "A", " ", 
      SubscriptBox["a", "7"]}]}], ")"}], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{
   FractionBox["1", "4"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"9", " ", 
      SuperscriptBox["A", "2"], " ", 
      SubsuperscriptBox["a", "5", "2"]}], "+", 
     RowBox[{"6", " ", "A", " ", 
      SubscriptBox["a", "6"]}]}], ")"}], " ", 
   RowBox[{
    SuperscriptBox["f", "\[Prime]\[Prime]",
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{
   FractionBox["1", "2"], " ", "A", " ", 
   SubscriptBox["a", "5"], " ", 
   RowBox[{
    SuperscriptBox["f", 
     TagBox[
      RowBox[{"(", "3", ")"}],
      Derivative],
     MultilineFunction->None], "[", "0", "]"}]}], "+", 
  RowBox[{
   FractionBox["1", "24"], " ", 
   RowBox[{
    SuperscriptBox["f", 
     TagBox[
      RowBox[{"(", "4", ")"}],
      Derivative],
     MultilineFunction->None], "[", "0", "]"}]}]}]], "Output",
 CellChangeTimes->{
  3.755876517077086*^9, 3.755876648127837*^9, {3.755876686584494*^9, 
   3.755876704176655*^9}, 3.755893673157879*^9, 3.755894170907789*^9, 
   3.7558943740218477`*^9, 3.755903378759363*^9, 3.755904140108447*^9},
 CellLabel->"Out[55]=",ExpressionUUID->"8eb46dea-5969-4ac6-80e6-17a50c8ef9da"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Solve", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"c44", "\[Equal]", "0"}], "/.", 
      RowBox[{"s14", "[", 
       RowBox[{"[", "1", "]"}], "]"}]}], "/.", 
     RowBox[{"s24", "[", 
      RowBox[{"[", "1", "]"}], "]"}]}], "/.", 
    RowBox[{"s34", "[", 
     RowBox[{"[", "1", "]"}], "]"}]}], ",", 
   SubscriptBox["a", "8"]}], "]"}]], "Input",
 CellChangeTimes->{{3.755876520710517*^9, 3.7558765466133347`*^9}, {
  3.755876660775591*^9, 3.755876661526739*^9}, {3.7558767552577753`*^9, 
  3.755876768744478*^9}, {3.7558936810155973`*^9, 3.755893687423382*^9}, {
  3.7558941753311872`*^9, 3.755894176111874*^9}, {3.755894382044684*^9, 
  3.755894383234964*^9}, {3.755904143036865*^9, 3.755904149095078*^9}},
 CellLabel->"In[56]:=",ExpressionUUID->"eabad33c-1826-460a-a365-2831dcfa10d6"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "8"], "\[Rule]", 
    RowBox[{
     FractionBox["1", 
      RowBox[{"72", " ", 
       SuperscriptBox["A", "2"], " ", 
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "4"]}]], 
     RowBox[{"(", 
      RowBox[{
       RowBox[{
        RowBox[{"-", "8"}], " ", 
        RowBox[{"b", "[", "4", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "3"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"6", " ", "A", " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "4"]}], "-", 
       RowBox[{"12", " ", "A", " ", 
        RowBox[{"f", "[", "0", "]"}], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"3", " ", "A", " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
       RowBox[{"4", " ", "A", " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], " ", 
        RowBox[{
         SuperscriptBox["f", 
          TagBox[
           RowBox[{"(", "3", ")"}],
           Derivative],
          MultilineFunction->None], "[", "0", "]"}]}], "-", 
       RowBox[{"A", " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "3"], " ", 
        RowBox[{
         SuperscriptBox["f", 
          TagBox[
           RowBox[{"(", "4", ")"}],
           Derivative],
          MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}]}], "}"}], 
  "}"}]], "Output",
 CellChangeTimes->{{3.755876532932132*^9, 3.7558765506123*^9}, 
   3.7558766618805532`*^9, 3.755876769240903*^9, 3.755893688726388*^9, {
   3.755894171724524*^9, 3.7558941764918137`*^9}, 3.755894383588084*^9, 
   3.755903379691135*^9, 3.755904149888774*^9},
 CellLabel->"Out[56]=",ExpressionUUID->"69364d62-3113-439e-9388-f80165831e4a"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData["s22"], "Input",
 CellChangeTimes->{{3.7559039258694887`*^9, 3.7559039281386337`*^9}, {
  3.7559041538289623`*^9, 3.755904172253008*^9}},
 CellLabel->"In[60]:=",ExpressionUUID->"2e2e9a4a-fb1b-44f2-a3a9-873febe3e54b"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "4"], "\[Rule]", 
    FractionBox[
     RowBox[{
      RowBox[{
       RowBox[{"-", "2"}], " ", 
       RowBox[{"b", "[", "2", "]"}], " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}], "+", 
      RowBox[{"A", " ", 
       SuperscriptBox[
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
      RowBox[{"A", " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}]}], 
     RowBox[{"2", " ", 
      SuperscriptBox["A", "2"], " ", 
      SuperscriptBox[
       RowBox[{"f", "[", "0", "]"}], "2"]}]]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{
  3.755903928527741*^9, {3.755904159075391*^9, 3.75590417245934*^9}},
 CellLabel->"Out[60]=",ExpressionUUID->"329abf2f-b123-47c3-8b67-68d3640afbb2"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData["s23"], "Input",
 CellChangeTimes->{{3.755903929017992*^9, 3.7559039291223307`*^9}, {
  3.755904174073635*^9, 3.755904174302741*^9}},
 CellLabel->"In[61]:=",ExpressionUUID->"279e6e6a-61f7-4705-b216-c68f0acd02d5"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "5"], "\[Rule]", 
    FractionBox[
     RowBox[{
      SuperscriptBox[
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}], "2"], "-", 
      RowBox[{
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}]}], 
     RowBox[{"4", " ", "A", " ", 
      SuperscriptBox[
       RowBox[{"f", "[", "0", "]"}], "2"]}]]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{3.755903929751033*^9, 3.755904174662732*^9},
 CellLabel->"Out[61]=",ExpressionUUID->"7d467daa-471b-4edb-8247-656f34b04a23"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData["s24"], "Input",
 CellChangeTimes->{{3.755904176197721*^9, 3.755904177138619*^9}},
 CellLabel->"In[62]:=",ExpressionUUID->"41d9dd4b-34b6-4473-844b-78edea0ce037"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "6"], "\[Rule]", 
    FractionBox[
     RowBox[{
      SuperscriptBox[
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}], "2"], "-", 
      RowBox[{
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}]}], 
     RowBox[{"6", " ", "A", " ", 
      SuperscriptBox[
       RowBox[{"f", "[", "0", "]"}], "2"]}]]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{3.75590417736556*^9},
 CellLabel->"Out[62]=",ExpressionUUID->"7273c921-8a88-499f-93b8-05ab516bd5be"]
}, Open  ]],

Cell[BoxData[""], "Input",
 CellChangeTimes->{{3.755903930287178*^9, 
  3.755903931777089*^9}},ExpressionUUID->"53b25dfc-8878-4e86-832d-\
43564600a3dd"],

Cell[CellGroupData[{

Cell[BoxData["s32"], "Input",
 CellChangeTimes->{{3.7559042558282146`*^9, 3.755904256779546*^9}},
 CellLabel->"In[63]:=",ExpressionUUID->"72adc0a8-b70a-484c-ba2f-6d63c2ab7ba7"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "5"], "\[Rule]", 
    RowBox[{
     FractionBox["1", 
      RowBox[{"6", " ", 
       SuperscriptBox["A", "3"], " ", 
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "3"]}]], 
     RowBox[{"(", 
      RowBox[{
       RowBox[{
        RowBox[{"-", "6"}], " ", 
        SuperscriptBox[
         RowBox[{"b", "[", "2", "]"}], "2"], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"12", " ", "A", " ", 
        RowBox[{"f", "[", "0", "]"}], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
       RowBox[{"3", " ", "A", " ", 
        RowBox[{"b", "[", "2", "]"}], " ", 
        RowBox[{"f", "[", "0", "]"}], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
       RowBox[{"2", " ", 
        SuperscriptBox["A", "2"], " ", 
        SuperscriptBox[
         RowBox[{
          SuperscriptBox["f", "\[Prime]",
           MultilineFunction->None], "[", "0", "]"}], "3"]}], "-", 
       RowBox[{"3", " ", "A", " ", 
        RowBox[{"b", "[", "2", "]"}], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "+", 
       RowBox[{"3", " ", 
        SuperscriptBox["A", "2"], " ", 
        RowBox[{"f", "[", "0", "]"}], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "-", 
       RowBox[{
        SuperscriptBox["A", "2"], " ", 
        SuperscriptBox[
         RowBox[{"f", "[", "0", "]"}], "2"], " ", 
        RowBox[{
         SuperscriptBox["f", 
          TagBox[
           RowBox[{"(", "3", ")"}],
           Derivative],
          MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}]}], "}"}], 
  "}"}]], "Output",
 CellChangeTimes->{3.755904257190454*^9},
 CellLabel->"Out[63]=",ExpressionUUID->"25a6e489-fbe4-41fa-bda5-024df0c209d1"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData["s33"], "Input",
 CellChangeTimes->{{3.755904258257402*^9, 3.755904264528098*^9}},
 CellLabel->"In[64]:=",ExpressionUUID->"8785a319-0a8b-4e48-a4da-1b52ce2f7f17"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "6"], "\[Rule]", 
    FractionBox[
     RowBox[{
      RowBox[{
       RowBox[{"-", "3"}], " ", 
       RowBox[{"b", "[", "3", "]"}], " ", 
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "2"], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}], "-", 
      RowBox[{"2", " ", "A", " ", 
       SuperscriptBox[
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], "3"]}], "+", 
      RowBox[{"3", " ", "A", " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}], "-", 
      RowBox[{"A", " ", 
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "2"], " ", 
       RowBox[{
        SuperscriptBox["f", 
         TagBox[
          RowBox[{"(", "3", ")"}],
          Derivative],
         MultilineFunction->None], "[", "0", "]"}]}]}], 
     RowBox[{"12", " ", 
      SuperscriptBox["A", "2"], " ", 
      SuperscriptBox[
       RowBox[{"f", "[", "0", "]"}], "3"]}]]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{3.755904264808003*^9},
 CellLabel->"Out[64]=",ExpressionUUID->"080c2169-e2b4-47b6-b952-0af9ed1677c5"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData["s34"], "Input",
 CellChangeTimes->{{3.7559042652598047`*^9, 3.755904266454829*^9}},
 CellLabel->"In[65]:=",ExpressionUUID->"750b159f-254d-4227-b07f-a39ae3575a1f"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{
    SubscriptBox["a", "7"], "\[Rule]", 
    FractionBox[
     RowBox[{
      RowBox[{
       RowBox[{"-", "2"}], " ", 
       SuperscriptBox[
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], "3"]}], "+", 
      RowBox[{"3", " ", 
       RowBox[{"f", "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]",
         MultilineFunction->None], "[", "0", "]"}], " ", 
       RowBox[{
        SuperscriptBox["f", "\[Prime]\[Prime]",
         MultilineFunction->None], "[", "0", "]"}]}], "-", 
      RowBox[{
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "2"], " ", 
       RowBox[{
        SuperscriptBox["f", 
         TagBox[
          RowBox[{"(", "3", ")"}],
          Derivative],
         MultilineFunction->None], "[", "0", "]"}]}]}], 
     RowBox[{"18", " ", "A", " ", 
      SuperscriptBox[
       RowBox[{"f", "[", "0", "]"}], "3"]}]]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{3.755904266729335*^9},
 CellLabel->"Out[65]=",ExpressionUUID->"6f1d7a29-fa8d-427f-8986-93f1a78e133b"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"Binomial", "[", 
    RowBox[{"k", ",", "n"}], "]"}], 
   RowBox[{"Binomial", "[", 
    RowBox[{"n", ",", "j"}], "]"}]}], "//", "FullSimplify"}]], "Input",
 CellChangeTimes->{{3.7559604241797*^9, 3.75596044390387*^9}},
 CellLabel->
  "In[136]:=",ExpressionUUID->"bb086641-9b17-4e3d-bc50-a30ebbec12f9"],

Cell[BoxData[
 RowBox[{
  RowBox[{"Binomial", "[", 
   RowBox[{"k", ",", "n"}], "]"}], " ", 
  RowBox[{"Binomial", "[", 
   RowBox[{"n", ",", "j"}], "]"}]}]], "Output",
 CellChangeTimes->{{3.755960436277548*^9, 3.755960444128693*^9}},
 CellLabel->
  "Out[136]=",ExpressionUUID->"a64d2464-0fd4-40a6-83d6-0f7b93ae65b5"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Binomial", "[", 
  RowBox[{"2", ",", "1"}], "]"}]], "Input",
 CellChangeTimes->{{3.755960534635902*^9, 3.755960549482841*^9}},
 CellLabel->
  "In[138]:=",ExpressionUUID->"2664ca36-c2c9-4955-86c1-d1c956205970"],

Cell[BoxData["2"], "Output",
 CellChangeTimes->{{3.755960546595029*^9, 3.755960549658386*^9}},
 CellLabel->
  "Out[138]=",ExpressionUUID->"a6985493-6cfb-48ea-94d5-dfab7dc2f677"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"SeriesCoefficient", "[", 
  RowBox[{
   RowBox[{"Exp", "[", 
    RowBox[{"f", "[", "x", "]"}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "0", ",", "4"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.755960933757991*^9, 3.755960958051968*^9}, {
  3.7559614343489027`*^9, 3.7559614345402822`*^9}},
 CellLabel->
  "In[143]:=",ExpressionUUID->"25b44ff7-a2e3-45e0-adbc-bcf926e782d7"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "24"], " ", 
  SuperscriptBox["\[ExponentialE]", 
   RowBox[{"f", "[", "0", "]"}]], " ", 
  RowBox[{"(", 
   RowBox[{
    SuperscriptBox[
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}], "4"], "+", 
    RowBox[{"6", " ", 
     SuperscriptBox[
      RowBox[{
       SuperscriptBox["f", "\[Prime]",
        MultilineFunction->None], "[", "0", "]"}], "2"], " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]\[Prime]",
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{"3", " ", 
     SuperscriptBox[
      RowBox[{
       SuperscriptBox["f", "\[Prime]\[Prime]",
        MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
    RowBox[{"4", " ", 
     RowBox[{
      SuperscriptBox["f", "\[Prime]",
       MultilineFunction->None], "[", "0", "]"}], " ", 
     RowBox[{
      SuperscriptBox["f", 
       TagBox[
        RowBox[{"(", "3", ")"}],
        Derivative],
       MultilineFunction->None], "[", "0", "]"}]}], "+", 
    RowBox[{
     SuperscriptBox["f", 
      TagBox[
       RowBox[{"(", "4", ")"}],
       Derivative],
      MultilineFunction->None], "[", "0", "]"}]}], ")"}]}]], "Output",
 CellChangeTimes->{{3.755960943984256*^9, 3.755960958275618*^9}},
 CellLabel->
  "Out[143]=",ExpressionUUID->"c517e23c-d502-4980-a3c5-c6ef05504e65"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"Binomial", "[", 
   RowBox[{
    RowBox[{"d", "-", "2", "+", "1"}], ",", "1"}], "]"}], 
  SuperscriptBox[
   RowBox[{"(", 
    RowBox[{"-", "1"}], ")"}], "1"], 
  RowBox[{"Multinomial", "[", 
   RowBox[{"1", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0"}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.755961436709155*^9, 3.7559615220299597`*^9}},
 CellLabel->
  "In[147]:=",ExpressionUUID->"5a6b8954-3b00-46bf-9079-86481926ba1d"],

Cell[BoxData[
 RowBox[{"1", "-", "d"}]], "Output",
 CellChangeTimes->{
  3.755961446335869*^9, {3.755961482818041*^9, 3.7559615222224693`*^9}},
 CellLabel->
  "Out[147]=",ExpressionUUID->"5d179864-e60e-4392-ac88-4e71e6d58dcd"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"Series", "[", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{"x", " ", 
         RowBox[{"f", "[", "x", "]"}]}], ")"}], 
       RowBox[{
        RowBox[{"-", "7"}], "/", "3"}]], "/", 
      SuperscriptBox[
       RowBox[{"(", "x", ")"}], 
       RowBox[{
        RowBox[{"-", "7"}], "/", "3"}]]}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "0", ",", "2"}], "}"}]}], "]"}], "/.", 
   RowBox[{
    RowBox[{"f", "[", "0", "]"}], "\[Rule]", "1"}]}], "//", 
  "Simplify"}]], "Input",
 CellChangeTimes->{{3.7559645913429623`*^9, 3.755964698836399*^9}, {
  3.755964868748763*^9, 3.755964872277699*^9}, {3.7559649100450783`*^9, 
  3.755964915740727*^9}},
 CellLabel->
  "In[164]:=",ExpressionUUID->"f1c7e4a9-74d2-40be-91c6-951654a8fd02"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{"1", "-", 
   RowBox[{
    FractionBox["7", "3"], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}], " ", "x"}], "+", 
   RowBox[{
    RowBox[{"(", 
     RowBox[{
      RowBox[{
       FractionBox["35", "9"], " ", 
       SuperscriptBox[
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
      FractionBox[
       RowBox[{"7", " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "6"]}], ")"}], " ", 
    SuperscriptBox["x", "2"]}], "+", 
   InterpretationBox[
    SuperscriptBox[
     RowBox[{"O", "[", "x", "]"}], "3"],
    SeriesData[$CellContext`x, 0, {}, 0, 9, 3],
    Editable->False]}],
  SeriesData[$CellContext`x, 0, {
   1, 0, 0, Rational[-7, 3] Derivative[1][$CellContext`f][0], 0, 0, 
    Rational[35, 9] Derivative[1][$CellContext`f][0]^2 + 
    Rational[-7, 6] Derivative[2][$CellContext`f][0]}, 0, 9, 3],
  Editable->False]], "Output",
 CellChangeTimes->{{3.75596459985271*^9, 3.755964699024963*^9}, 
   3.7559648727024117`*^9, 3.755964915969935*^9},
 CellLabel->
  "Out[164]=",ExpressionUUID->"eb0f5485-f16d-4d6f-a29e-5e5fc9aecd22"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{
    RowBox[{"Series", "[", 
     RowBox[{
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"x", " ", 
          RowBox[{"f", "[", "x", "]"}]}], ")"}], 
        RowBox[{"-", "b"}]], "/", 
       SuperscriptBox[
        RowBox[{"(", "x", ")"}], 
        RowBox[{"-", "b"}]]}], ",", 
      RowBox[{"{", 
       RowBox[{"x", ",", "0", ",", "2"}], "}"}]}], "]"}], "/.", 
    RowBox[{
     RowBox[{"f", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.", 
   RowBox[{"b", "\[Rule]", 
    RowBox[{"7", "/", "3"}]}]}], "//", "Simplify"}]], "Input",
 CellChangeTimes->{{3.7559645913429623`*^9, 3.755964698836399*^9}, {
  3.755964868748763*^9, 3.755964901387702*^9}},
 CellLabel->
  "In[163]:=",ExpressionUUID->"8071adea-9d0e-4c01-8a88-fb9f88973209"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{"1", "-", 
   RowBox[{
    FractionBox["7", "3"], " ", 
    RowBox[{
     SuperscriptBox["f", "\[Prime]",
      MultilineFunction->None], "[", "0", "]"}], " ", "x"}], "+", 
   RowBox[{
    RowBox[{"(", 
     RowBox[{
      RowBox[{
       FractionBox["35", "9"], " ", 
       SuperscriptBox[
        RowBox[{
         SuperscriptBox["f", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
      FractionBox[
       RowBox[{"7", " ", 
        RowBox[{
         SuperscriptBox["f", "\[Prime]\[Prime]",
          MultilineFunction->None], "[", "0", "]"}]}], "6"]}], ")"}], " ", 
    SuperscriptBox["x", "2"]}], "+", 
   InterpretationBox[
    SuperscriptBox[
     RowBox[{"O", "[", "x", "]"}], "3"],
    SeriesData[$CellContext`x, 0, {}, 0, 3, 1],
    Editable->False]}],
  SeriesData[$CellContext`x, 0, {
   1, Rational[-7, 3] Derivative[1][$CellContext`f][0], 
    Rational[35, 9] Derivative[1][$CellContext`f][0]^2 + 
    Rational[-7, 6] Derivative[2][$CellContext`f][0]}, 0, 3, 1],
  Editable->False]], "Output",
 CellChangeTimes->{{3.75596459985271*^9, 3.755964699024963*^9}, {
  3.7559648727024117`*^9, 3.7559649068294497`*^9}},
 CellLabel->
  "Out[163]=",ExpressionUUID->"73a4137d-b379-4558-8b05-09c618fee25d"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Binomial", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"-", "7"}], "/", "3"}], ",", "1"}], "]"}]], "Input",
 CellChangeTimes->{{3.755965329365877*^9, 3.7559653499223843`*^9}, 
   3.755969564977599*^9},
 CellLabel->
  "In[172]:=",ExpressionUUID->"279f48f3-7e5f-42c6-9ac3-f1b0fa2b0a88"],

Cell[BoxData[
 RowBox[{"-", 
  FractionBox["7", "3"]}]], "Output",
 CellChangeTimes->{{3.7559653313723087`*^9, 3.755965350125386*^9}, 
   3.7559695652092752`*^9},
 CellLabel->
  "Out[172]=",ExpressionUUID->"606cbbf8-c6a9-4e0d-811d-c12420b759e6"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"f", "@@", 
  RowBox[{"Range", "[", "3", "]"}]}]], "Input",
 CellChangeTimes->{{3.7559782814243193`*^9, 3.755978282918523*^9}},
 CellLabel->
  "In[192]:=",ExpressionUUID->"d23f7910-15b0-40ac-a96c-152fbf9bfcfa"],

Cell[BoxData[
 RowBox[{"f", "[", 
  RowBox[{"1", ",", "2", ",", "3"}], "]"}]], "Output",
 CellChangeTimes->{3.7559782831367693`*^9},
 CellLabel->
  "Out[192]=",ExpressionUUID->"14b9fe2b-11e7-4f19-ab6f-60cbaac06aed"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"y", "[", "d_", "]"}], "[", "m_", "]"}], ":=", 
  RowBox[{"With", "[", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"js", "=", 
      RowBox[{"Tally", "/@", 
       RowBox[{"IntegerPartitions", "[", 
        RowBox[{"m", ",", "All", ",", 
         RowBox[{"Range", "[", "m", "]"}]}], "]"}]}]}], "}"}], ",", 
    "\[IndentingNewLine]", 
    RowBox[{"Total", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"With", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"k", "=", 
           RowBox[{"Total", "[", 
            RowBox[{"#", "[", 
             RowBox[{"[", 
              RowBox[{"All", ",", "2"}], "]"}], "]"}], "]"}]}], "}"}], ",", 
         "\[IndentingNewLine]", 
         RowBox[{
          RowBox[{"Binomial", "[", 
           RowBox[{
            RowBox[{"d", "-", "2", "+", "k"}], ",", "k"}], "]"}], 
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{"-", "1"}], ")"}], "k"], 
          RowBox[{"Multinomial", "@@", 
           RowBox[{"#", "[", 
            RowBox[{"[", 
             RowBox[{"All", ",", "2"}], "]"}], "]"}]}], 
          RowBox[{"Times", "@@", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{
              SuperscriptBox[
               SubscriptBox["a", 
                RowBox[{"#1", "+", "1"}]], "#2"], "&"}], "@@@", "#"}], 
            ")"}]}]}]}], "\[IndentingNewLine]", "]"}], "&"}], "/@", "js"}], 
     "]"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",
 CellChangeTimes->{{3.755977877105351*^9, 3.755978043602326*^9}, {
  3.7559780856982718`*^9, 3.755978089143147*^9}, {3.755978121507155*^9, 
  3.75597843653721*^9}, {3.755978561666039*^9, 3.755978601959921*^9}, {
  3.755978720337151*^9, 3.7559787205071287`*^9}, {3.756069534691251*^9, 
  3.75606955668981*^9}},
 CellLabel->
  "In[113]:=",ExpressionUUID->"bf97e302-d420-4600-b2ed-8de6bbfed674"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"z", "[", "d_", "]"}], "[", "n_", "]"}], ":=", 
  RowBox[{"With", "[", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"js", "=", 
      RowBox[{"Tally", "/@", 
       RowBox[{"IntegerPartitions", "[", 
        RowBox[{"n", ",", "All", ",", 
         RowBox[{"Range", "[", "n", "]"}]}], "]"}]}]}], "}"}], ",", 
    "\[IndentingNewLine]", " ", 
    RowBox[{"Total", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"With", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"k", "=", 
           RowBox[{"Total", "[", 
            RowBox[{"#", "[", 
             RowBox[{"[", 
              RowBox[{"All", ",", "2"}], "]"}], "]"}], "]"}]}], "}"}], ",", 
         "\[IndentingNewLine]", 
         RowBox[{
          FractionBox[
           SuperscriptBox[
            RowBox[{"(", 
             RowBox[{"-", 
              SubscriptBox["A", 
               RowBox[{"d", "-", "1"}]]}], ")"}], "k"], 
           RowBox[{"k", "!"}]], 
          RowBox[{"Multinomial", "@@", 
           RowBox[{"#", "[", 
            RowBox[{"[", 
             RowBox[{"All", ",", "2"}], "]"}], "]"}]}], 
          RowBox[{"Times", "@@", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{
              SuperscriptBox[
               RowBox[{
                RowBox[{"y", "[", "d", "]"}], "[", 
                RowBox[{"#1", "+", "d", "-", "1"}], "]"}], "#2"], "&"}], "@@@",
              "#"}], ")"}]}]}]}], "\[IndentingNewLine]", "]"}], "&"}], "/@", 
      "js"}], "]"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",
 CellChangeTimes->{{3.755978846826869*^9, 3.755978990666059*^9}, {
  3.75597903173485*^9, 3.755979041423291*^9}, {3.755979145035912*^9, 
  3.7559791452292023`*^9}, {3.755979217306438*^9, 3.755979219064712*^9}, {
  3.755986256890113*^9, 3.7559862574001713`*^9}, {3.75606961690014*^9, 
  3.756069629778964*^9}},
 CellLabel->
  "In[117]:=",ExpressionUUID->"90960e42-55d9-4f2a-889a-34d281b6a743"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"w", "[", "d_", "]"}], "[", "m_", "]"}], ":=", 
  RowBox[{"With", "[", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"js", "=", 
      RowBox[{"Tally", "/@", 
       RowBox[{"IntegerPartitions", "[", 
        RowBox[{"m", ",", "All", ",", 
         RowBox[{"Range", "[", "m", "]"}]}], "]"}]}]}], "}"}], ",", 
    "\[IndentingNewLine]", 
    RowBox[{"Total", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"With", "[", 
        RowBox[{
         RowBox[{"{", 
          RowBox[{"k", "=", 
           RowBox[{"Total", "[", 
            RowBox[{"#", "[", 
             RowBox[{"[", 
              RowBox[{"All", ",", "2"}], "]"}], "]"}], "]"}]}], "}"}], ",", 
         "\[IndentingNewLine]", 
         RowBox[{
          RowBox[{"Binomial", "[", 
           RowBox[{
            RowBox[{"-", 
             RowBox[{"b", "[", "d", "]"}]}], ",", "k"}], "]"}], 
          RowBox[{"Multinomial", "@@", 
           RowBox[{"#", "[", 
            RowBox[{"[", 
             RowBox[{"All", ",", "2"}], "]"}], "]"}]}], 
          RowBox[{"Times", "@@", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{
              SuperscriptBox[
               SubscriptBox["a", 
                RowBox[{"#1", "+", "1"}]], "#2"], "&"}], "@@@", "#"}], 
            ")"}]}]}]}], "\[IndentingNewLine]", "]"}], "&"}], "/@", "js"}], 
     "]"}]}], "\[IndentingNewLine]", "]"}]}]], "Input",
 CellChangeTimes->{{3.755979707706539*^9, 3.7559797809475527`*^9}, {
  3.75606964587702*^9, 3.756069646323217*^9}},
 CellLabel->
  "In[118]:=",ExpressionUUID->"2b8c364c-0d48-4e6d-9dfd-5989133c72e8"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"v", "[", "d_", "]"}], "[", "m_", "]"}], ":=", 
  RowBox[{"Sum", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"z", "[", "d", "]"}], "[", "i", "]"}], 
     RowBox[{
      RowBox[{"w", "[", "d", "]"}], "[", 
      RowBox[{"m", "-", "i"}], "]"}]}], ",", 
    RowBox[{"{", 
     RowBox[{"i", ",", "0", ",", "m"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7559836304817743`*^9, 3.755983714992811*^9}, {
  3.756069668741102*^9, 3.7560696920417433`*^9}},
 CellLabel->
  "In[119]:=",ExpressionUUID->"2efd5a3e-bf9a-4095-91b1-b411c8cf6683"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"v", "[", "2", "]"}], "[", "1", "]"}]], "Input",
 CellChangeTimes->{{3.75606969880529*^9, 3.7560697101384897`*^9}},
 CellLabel->
  "In[122]:=",ExpressionUUID->"b6947363-4ad3-429e-a2e4-ebcaa803d1c9"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"-", 
    RowBox[{"b", "[", "2", "]"}]}], " ", 
   SubscriptBox["a", "2"]}], "-", 
  RowBox[{
   RowBox[{"(", 
    RowBox[{
     SubsuperscriptBox["a", "2", "2"], "-", 
     SubscriptBox["a", "3"]}], ")"}], " ", 
   SubscriptBox["A", "1"]}]}]], "Output",
 CellChangeTimes->{{3.756069700289723*^9, 3.7560697105001783`*^9}},
 CellLabel->
  "Out[122]=",ExpressionUUID->"bab73b33-0cec-490d-819a-4c2c68de2098"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ReleaseHold", "[", 
  RowBox[{
   RowBox[{"Hold", "[", 
    RowBox[{"Sum", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"z", "[", "d", "]"}], "[", 
        RowBox[{"m", "-", "i"}], "]"}], 
       RowBox[{
        RowBox[{"w", "[", "d", "]"}], "[", "i", "]"}]}], ",", 
      RowBox[{"{", 
       RowBox[{"i", ",", "d", ",", "m"}], "}"}]}], "]"}], "]"}], "/.", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"d", "\[Rule]", "3"}], ",", 
     RowBox[{"m", "\[Rule]", "3"}]}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.755984626181632*^9, 3.755984688218689*^9}},
 CellLabel->"In[5]:=",ExpressionUUID->"2c77d2c3-1722-4a99-a9e9-0ce2959d84aa"],

Cell[BoxData[
 RowBox[{
  RowBox[{"-", 
   RowBox[{"b", "[", "3", "]"}]}], " ", 
  SubscriptBox["a", "4"]}]], "Output",
 CellChangeTimes->{{3.755984641768325*^9, 3.755984688443892*^9}, 
   3.755986262458828*^9, 3.756045858315523*^9},
 CellLabel->"Out[5]=",ExpressionUUID->"bb05cb9b-6f44-4197-bf9e-2d78726fc1c4"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"w", "[", "3", "]"}], "[", "3", "]"}]], "Input",
 CellChangeTimes->{{3.7559847103021317`*^9, 3.755984713781591*^9}},
 CellLabel->"In[6]:=",ExpressionUUID->"e8109cfb-3bf2-49c8-bd8e-a127954efef5"],

Cell[BoxData[
 RowBox[{
  RowBox[{"-", 
   RowBox[{"b", "[", "3", "]"}]}], " ", 
  SubscriptBox["a", "4"]}]], "Output",
 CellChangeTimes->{3.755984714041144*^9, 3.755986265042262*^9, 
  3.756045859843993*^9},
 CellLabel->"Out[6]=",ExpressionUUID->"9022701d-0b6a-4ced-a62b-2c41bcd9a2bc"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"v", "[", "3", "]"}], "[", "3", "]"}]], "Input",
 CellChangeTimes->{{3.755983719791654*^9, 3.7559837219603233`*^9}, {
  3.755983752976677*^9, 3.755983799383815*^9}, {3.7559838452274637`*^9, 
  3.7559838467523203`*^9}, {3.7559845901616096`*^9, 3.755984624036901*^9}, {
  3.755984663724381*^9, 3.755984692630135*^9}},
 CellLabel->"In[7]:=",ExpressionUUID->"0dcbcc28-dc5c-4e60-91a4-1edcaf2fe4fb"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"-", 
    RowBox[{"b", "[", "3", "]"}]}], " ", 
   SubscriptBox["a", "4"]}], "+", 
  RowBox[{
   FractionBox["4", "3"], " ", 
   SuperscriptBox["A", "3"], " ", 
   SubsuperscriptBox["a", "4", "3"]}], "+", 
  RowBox[{"4", " ", 
   SuperscriptBox["A", "2"], " ", 
   SubscriptBox["a", "4"], " ", 
   SubscriptBox["a", "5"]}], "+", 
  RowBox[{"2", " ", "A", " ", 
   SubscriptBox["a", "6"]}]}]], "Output",
 CellChangeTimes->{
  3.755984624391871*^9, {3.755984661787785*^9, 3.755984692884714*^9}, 
   3.75598626572145*^9, 3.756045864269354*^9},
 CellLabel->"Out[7]=",ExpressionUUID->"d571957a-4183-44de-82a8-829e8646f463"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"ClearAll", "[", "r", "]"}]], "Input",
 CellChangeTimes->{{3.7560699312332373`*^9, 3.756069936910516*^9}},
 CellLabel->
  "In[126]:=",ExpressionUUID->"fd4325c7-04cb-4f7b-96ea-d9c5f77c6017"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"r", "[", "d_", "]"}], "[", "k_", "]"}], ":=", 
  RowBox[{
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{"0", "\[Equal]", 
       RowBox[{
        RowBox[{"y", "[", "d", "]"}], "[", 
        RowBox[{"d", "-", "1"}], "]"}]}], ",", 
      SubscriptBox["a", "d"]}], "]"}]}], "/;", 
   RowBox[{"k", "\[Equal]", 
    RowBox[{"d", "-", "1"}]}]}]}]], "Input",
 CellChangeTimes->{{3.75606982093225*^9, 3.756069844757066*^9}, {
  3.756069876333453*^9, 3.756069908206272*^9}, {3.756069939857479*^9, 
  3.756069948722959*^9}},
 CellLabel->
  "In[127]:=",ExpressionUUID->"833fa001-f505-4ad7-b3ff-aebd9fe9ac82"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"r", "[", "4", "]"}], "[", "1", "]"}], "//", "Simplify"}]], "Input",\

 CellChangeTimes->{{3.756069911030686*^9, 3.75606991983003*^9}, {
  3.756069951209445*^9, 3.7560699513668413`*^9}, {3.756070081419346*^9, 
  3.7560700815206547`*^9}, {3.756070334191494*^9, 3.756070355613378*^9}},
 CellLabel->
  "In[147]:=",ExpressionUUID->"99843a25-5fc9-4908-9f2a-7dff30d0d370"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{
    SubscriptBox["a", "2"], "\[Rule]", 
    RowBox[{"-", 
     FractionBox[
      SubscriptBox["A", "2"], 
      RowBox[{"3", " ", 
       SubscriptBox["A", "3"]}]]}]}], ",", 
   RowBox[{
    SubscriptBox["a", "3"], "\[Rule]", 
    FractionBox[
     RowBox[{
      RowBox[{"2", " ", 
       SubsuperscriptBox["A", "2", "2"]}], "-", 
      RowBox[{"3", " ", 
       SubscriptBox["A", "1"], " ", 
       SubscriptBox["A", "3"]}]}], 
     RowBox[{"9", " ", 
      SubsuperscriptBox["A", "3", "2"]}]]}], ",", 
   RowBox[{
    SubscriptBox["a", "4"], "\[Rule]", 
    FractionBox[
     RowBox[{"2", " ", 
      RowBox[{"(", 
       RowBox[{
        RowBox[{
         RowBox[{"-", "7"}], " ", 
         SubsuperscriptBox["A", "2", "3"]}], "+", 
        RowBox[{"18", " ", 
         SubscriptBox["A", "1"], " ", 
         SubscriptBox["A", "2"], " ", 
         SubscriptBox["A", "3"]}]}], ")"}]}], 
     RowBox[{"81", " ", 
      SubsuperscriptBox["A", "3", "3"]}]]}]}], "}"}]], "Output",
 CellChangeTimes->{{3.756069913298991*^9, 3.75606992012185*^9}, 
   3.756069951585792*^9, {3.7560700786416063`*^9, 3.756070081817371*^9}, 
   3.75607016711383*^9, 3.756070214502339*^9, {3.756070251189437*^9, 
   3.756070298486103*^9}, {3.756070330370308*^9, 3.756070355824041*^9}},
 CellLabel->
  "Out[147]=",ExpressionUUID->"c2350950-99a3-4a63-935e-b30184369e38"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"r", "[", "d_", "]"}], "[", "k_", "]"}], ":=", 
  RowBox[{
   RowBox[{
    RowBox[{"Thread", "[", 
     RowBox[{"Rule", "[", 
      RowBox[{
       RowBox[{"#", "[", 
        RowBox[{"[", 
         RowBox[{"All", ",", "1"}], "]"}], "]"}], ",", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"#", "[", 
          RowBox[{"[", 
           RowBox[{"All", ",", "2"}], "]"}], "]"}], "/.", "#"}], ")"}]}], 
      "]"}], "]"}], "&"}], "@", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      RowBox[{"Join", "[", 
       RowBox[{
        RowBox[{"First", "@", 
         RowBox[{"Solve", "[", 
          RowBox[{
           RowBox[{
            RowBox[{
             SubscriptBox["A", 
              RowBox[{"d", "-", "1", "-", "k"}]], "/", 
             SubscriptBox["A", 
              RowBox[{"d", "-", "1"}]]}], "\[Equal]", 
            RowBox[{
             RowBox[{"y", "[", "d", "]"}], "[", "k", "]"}]}], ",", 
           SubscriptBox["a", 
            RowBox[{"1", "+", "k"}]]}], "]"}]}], ",", "#"}], "]"}], "&"}], 
     "@", 
     RowBox[{
      RowBox[{"r", "[", "d", "]"}], "[", 
      RowBox[{"k", "+", "1"}], "]"}]}], ")"}]}]}]], "Input",
 CellChangeTimes->{{3.7560697721417637`*^9, 3.756069814974059*^9}, {
  3.7560699593752823`*^9, 3.756070037689073*^9}, {3.756070073129727*^9, 
  3.7560700738818083`*^9}, {3.756070161562011*^9, 3.756070164587282*^9}, {
  3.756070197837528*^9, 3.756070328014134*^9}},
 CellLabel->
  "In[144]:=",ExpressionUUID->"fdf466b2-7782-4013-b18c-65d28449fd80"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"s", "[", "d_", "]"}], "[", "0", "]"}], ":=", 
  RowBox[{
   RowBox[{"r", "[", "d", "]"}], "[", "1", "]"}]}]], "Input",
 CellChangeTimes->{{3.756043925880432*^9, 3.756043931754118*^9}, {
  3.756070434992779*^9, 3.7560704551111403`*^9}},
 CellLabel->
  "In[152]:=",ExpressionUUID->"8c10c55b-bc30-4973-8fd1-b6265a896d3c"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"s", "[", "d_", "]"}], "[", "k_", "]"}], ":=", 
  RowBox[{
   RowBox[{
    RowBox[{"Join", "[", 
     RowBox[{
      RowBox[{"First", "@", 
       RowBox[{"Solve", "[", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{
            RowBox[{"v", "[", "d", "]"}], "[", "k", "]"}], "\[Equal]", 
           SubscriptBox["B", "k"]}], "/.", "#"}], ",", 
         SubscriptBox["a", 
          RowBox[{"d", "+", "k"}]]}], "]"}]}], ",", "#"}], "]"}], "&"}], "@", 
   
   RowBox[{
    RowBox[{"s", "[", "d", "]"}], "[", 
    RowBox[{"k", "-", "1"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.756042985771059*^9, 3.756043122429172*^9}, {
  3.7560431674635563`*^9, 3.756043171167472*^9}, {3.7560439019501543`*^9, 
  3.7560439395022697`*^9}, {3.756070401961018*^9, 3.7560704039351883`*^9}, {
  3.756070441447977*^9, 3.756070442543042*^9}},
 CellLabel->
  "In[153]:=",ExpressionUUID->"cad6feb2-2d32-476e-82c5-16259329f218"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"s", "[", "2", "]"}], "[", "4", "]"}], "//", "Simplify"}]], "Input",\

 CellChangeTimes->{{3.7560704435145397`*^9, 3.756070498795183*^9}, {
   3.7560705320107718`*^9, 3.756070551219037*^9}, 3.756073314937757*^9},
 CellLabel->
  "In[186]:=",ExpressionUUID->"3e5411bd-cf39-498b-bccb-2a6902ad309f"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{
    SubscriptBox["a", "6"], "\[Rule]", 
    RowBox[{"-", 
     FractionBox[
      RowBox[{
       RowBox[{"16", " ", 
        SubsuperscriptBox["A", "1", "2"], " ", 
        SubsuperscriptBox["B", "1", "3"]}], "+", 
       RowBox[{"3", " ", 
        SubsuperscriptBox["A", "1", "3"], " ", 
        SubsuperscriptBox["B", "1", "4"]}], "-", 
       RowBox[{"12", " ", 
        SubscriptBox["A", "1"], " ", 
        SubsuperscriptBox["B", "1", "2"], " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"-", "3"}], "+", 
          RowBox[{
           SubsuperscriptBox["A", "1", "2"], " ", 
           SubscriptBox["B", "2"]}]}], ")"}]}], "+", 
       RowBox[{"12", " ", 
        SubscriptBox["B", "1"], " ", 
        RowBox[{"(", 
         RowBox[{"1", "-", 
          RowBox[{"3", " ", 
           SubsuperscriptBox["A", "1", "2"], " ", 
           SubscriptBox["B", "2"]}], "+", 
          RowBox[{
           SubsuperscriptBox["A", "1", "3"], " ", 
           SubscriptBox["B", "3"]}]}], ")"}]}], "+", 
       RowBox[{"6", " ", 
        SubscriptBox["A", "1"], " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           RowBox[{"-", "2"}], " ", 
           SubscriptBox["B", "2"]}], "+", 
          RowBox[{
           SubsuperscriptBox["A", "1", "2"], " ", 
           SubsuperscriptBox["B", "2", "2"]}], "+", 
          RowBox[{"2", " ", 
           SubscriptBox["A", "1"], " ", 
           RowBox[{"(", 
            RowBox[{
             SubscriptBox["B", "3"], "-", 
             RowBox[{
              SubscriptBox["A", "1"], " ", 
              SubscriptBox["B", "4"]}]}], ")"}]}]}], ")"}]}]}], 
      RowBox[{"12", " ", 
       SubsuperscriptBox["A", "1", "4"]}]]}]}], ",", 
   RowBox[{
    SubscriptBox["a", "5"], "\[Rule]", 
    FractionBox[
     RowBox[{
      RowBox[{"9", " ", 
       SubscriptBox["A", "1"], " ", 
       SubsuperscriptBox["B", "1", "2"]}], "+", 
      RowBox[{"2", " ", 
       SubsuperscriptBox["A", "1", "2"], " ", 
       SubsuperscriptBox["B", "1", "3"]}], "+", 
      RowBox[{
       SubscriptBox["B", "1"], " ", 
       RowBox[{"(", 
        RowBox[{"6", "-", 
         RowBox[{"6", " ", 
          SubsuperscriptBox["A", "1", "2"], " ", 
          SubscriptBox["B", "2"]}]}], ")"}]}], "+", 
      RowBox[{"6", " ", 
       SubscriptBox["A", "1"], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"-", 
          SubscriptBox["B", "2"]}], "+", 
         RowBox[{
          SubscriptBox["A", "1"], " ", 
          SubscriptBox["B", "3"]}]}], ")"}]}]}], 
     RowBox[{"6", " ", 
      SubsuperscriptBox["A", "1", "3"]}]]}], ",", 
   RowBox[{
    SubscriptBox["a", "4"], "\[Rule]", 
    RowBox[{"-", 
     FractionBox[
      RowBox[{
       RowBox[{"2", " ", 
        SubscriptBox["B", "1"]}], "+", 
       RowBox[{
        SubscriptBox["A", "1"], " ", 
        SubsuperscriptBox["B", "1", "2"]}], "-", 
       RowBox[{"2", " ", 
        SubscriptBox["A", "1"], " ", 
        SubscriptBox["B", "2"]}]}], 
      RowBox[{"2", " ", 
       SubsuperscriptBox["A", "1", "2"]}]]}]}], ",", 
   RowBox[{
    SubscriptBox["a", "3"], "\[Rule]", 
    FractionBox[
     SubscriptBox["B", "1"], 
     SubscriptBox["A", "1"]]}], ",", 
   RowBox[{
    SubscriptBox["a", "2"], "\[Rule]", "0"}]}], "}"}]], "Output",
 CellChangeTimes->{{3.756070444487845*^9, 3.756070499112976*^9}, {
   3.756070532755418*^9, 3.7560705517828617`*^9}, 3.756073316005653*^9},
 CellLabel->
  "Out[186]=",ExpressionUUID->"8f17414f-c38b-4592-bfed-69e9325df181"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"test", "=", 
   RowBox[{"With", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"ss", "=", 
       RowBox[{
        RowBox[{"s", "[", "2", "]"}], "[", "10", "]"}]}], "}"}], ",", 
     RowBox[{
      RowBox[{
       RowBox[{"(", 
        RowBox[{
         RowBox[{
          RowBox[{
           SubscriptBox["a", 
            RowBox[{"1", "+", "#"}]], "/.", "ss"}], "/.", 
          RowBox[{
           SubscriptBox["B", "j_"], "\[RuleDelayed]", 
           SuperscriptBox["c", 
            RowBox[{"j", "+", "1"}]]}]}], "/.", 
         RowBox[{
          SubscriptBox["A", "_"], ":>", 
          RowBox[{"1", "/", "c"}]}]}], ")"}], "&"}], "/@", 
      RowBox[{"Range", "[", "10", "]"}]}]}], "]"}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756047291186379*^9, 3.756047344324526*^9}, {
   3.756047434334147*^9, 3.7560474475390043`*^9}, {3.756070578097666*^9, 
   3.756070600634191*^9}, {3.756070654050292*^9, 3.756070696588372*^9}, {
   3.756070922270885*^9, 3.7560709545586157`*^9}, {3.756071477747998*^9, 
   3.756071499393449*^9}, 3.7560732064399137`*^9},
 CellLabel->
  "In[183]:=",ExpressionUUID->"3290d682-9201-4813-bdfa-777ffc301378"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", 
  RowBox[{
   RowBox[{"ListLogPlot", "[", 
    RowBox[{"Abs", "[", 
     RowBox[{"test", "/.", 
      RowBox[{"c", "\[Rule]", "10"}]}], "]"}], "]"}], ",", 
   RowBox[{"LogPlot", "[", " ", 
    RowBox[{
     SuperscriptBox["10", 
      RowBox[{"2", "k"}]], ",", 
     RowBox[{"{", 
      RowBox[{"k", ",", "0", ",", "20"}], "}"}]}], "]"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.756047348344548*^9, 3.7560474228616047`*^9}, {
  3.756047488285391*^9, 3.756047493843354*^9}, {3.756055752351158*^9, 
  3.756055806516362*^9}, {3.7560706264687347`*^9, 3.7560706589459343`*^9}, {
  3.756073216704916*^9, 3.756073219309371*^9}},
 CellLabel->
  "In[185]:=",ExpressionUUID->"47f5f503-5c21-4f53-b03c-7df66970460e"],

Cell[BoxData[
 GraphicsBox[{{{}, {{}, 
     {RGBColor[0.368417, 0.506779, 0.709798], PointSize[
      0.012833333333333334`], AbsoluteThickness[1.6], 
      PointBox[{{2., 6.907755278982137}, {3., 10.819778284410283`}, {4., 
       15.184997800767784`}, {5., 19.51372198757102}, {6., 
       23.887051695496652`}, {7., 28.280129327494546`}, {8., 
       32.689436036057735`}, {9., 37.11089353105344}, {10., 
       41.541902043804875`}}]}, {}}, {}, {}, {}, {}}, {{{}, {}, 
     TagBox[
      {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], 
       Opacity[1.], LineBox[CompressedData["
1:eJwV0Hk4lAkAx3FnPQnL6rLCGBMZQ8Nbu5Lm/UUHhglj3intsjO5qjE2GUk6
KMm2WpXkWInpeCpDtWqzRaIcOUoK+9DmISWZLjvMYNn2j+/z+f9rI44NitDR
0tLy/9L/Fu4Xz3IJL+DIzt6Pn59xj/Ogg+YnpO0hyw9N56UofyNn6qsP0WgZ
JCO/I91TWUoW1mRa69PySMmS6mm68i4pWS2LGbe+TJrsINzNlC1kx2R09kfr
SrLP6L1wrrKXnN3Tb6+0biI3hDVHzlaOkMWPina+s/6LnJztLtVXTpFl5Rk9
EudhsqrgRt0uhjGiyPa8kbhR0tjoeb1r+AJIBx0GKso05Gaeh+22E5YwsDls
/9JNC6ULPbMdFXQcN2lmFv+oi2cpnHr6RjuIe4Lv6bbMwvNVV1tUHCZ2Pjws
jrU3wKtbrcejFjvj+k+G/EU+RmgTMGpKe9go3rtjmC00wUK1udzsiStSi6YC
/xkxxYquO4Xu8uXQ6ujD3SQzdOe4jbFjvoVdfGRiMHM+tu1Xus0PdcMr1Rlq
btUCtJbwTlU6ucN3cPu+kzsXwerDmy4uwwO8V1mOVlbfYNzi+ySFKQfDdeKD
jQoLyNOSlz9+QcLZtNPSK8wSZ49tl8QOAQakStQ7aoVnnyW+wvY12KAMGacL
aNCWHrO81eqJ7tpw7RCWDeI2nylKfuiFm0cfhNJUNvDbusdJXroWkfqyvrY2
OixTdl/DpXXYGrf3pmG+LTZVcUnOifVYFuXY5idioHOb0T55wgY8/po1V7Zy
CbjMd+UHYr1xpyy1gKVrB4c5Re/vCH2wV5sZ0PLCDtOTUnos3xcGvUne0gp7
LAxj6f/sy8XgRZvsouSlyOu7N6rn4ofspeZ6lQIHmCXEdo0x/ZGVH9kgojEx
5qCq957HQ0j2D22Gb5iw5EVH6Gh4UK+9oCmqdoT7kXG166eNGBj0TKxNZ0Ek
dW4RSQJQstrFolXkhHO2sTmDbwOgSJOZRjk5Y95QfqR5WCDSBVu5uipnXAlf
baz9NBAreosvp7cuw6p3MezzvCDkOhQoWrls6KRkbBqvDcKBmsxcbiUbdTRi
Un8NH/4WgguPGC64mMiXNd7lY420YYtphguqXoaq3NnBKFosZrSoXPAkQP0h
WhEMRt2lHN4WV5i3J39cTxcgy6mW+bTaFYfmJDZ2ZwsQOarX3sQkMMTVtrAz
pSC+/pmW8SuB1ELZLts0CpJU/pTvCQLFja6hDukUZPyKLsNTBKpHP3gvy6Bw
VCU7npVDYMJnu9WqTAplKzWTZwoJxI2FNgWdpqC5P9N58SoB0UZv69QLFLKe
GmY+aCAAbYvmvocU8uUx0UeaCISyum++bqAgj2/z8m4mkCw8fW6kicKtBVkT
zW0Ebiu+SlC3UugNMYvueE6AHaJnY9JJwX7A3Kt/gID178oE8jUFdkWS1flB
Ah5/XxGtG6LgntajiXhDYMucaD/uMAU/+8Jrb4cJnA7rtxG+pxC3g2b16RMB
I8OuFukYhWSPFM2NUQKs77L/iFdTSDPqfxavIuAjDixJmqCQWy4/plYTSLvd
vPvINIWSg3pRf04QOD9wVPyLlhBXAyM8k6cI3Dde739SR4gKer0lZ5rAy5W6
brl6wi/f7DQzMwT+Da+hn50lxH/6mSaG
        "]]},
      Annotation[#, "Charting`Private`Tag$8025#1"]& ]}, {}, {}}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0., 4.393986562180487},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{
     Charting`ScaledTicks[{Log, Exp}], 
     Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->{483., Automatic},
  Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Exp[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Exp[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0., 10}, {4.983636014269762, 41.541902043804875`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.05]}},
  Ticks->FrontEndValueCache[{Automatic, 
     Charting`ScaledTicks[{Log, Exp}]}, {Automatic, {{6.907755278982137, 
       FormBox["1000", TraditionalForm], {0.01, 0.}, {
        AbsoluteThickness[0.1]}}, {16.11809565095832, 
       FormBox[
        TemplateBox[{"10", "7"}, "Superscript", SyntaxForm -> SuperscriptBox],
         TraditionalForm], {0.01, 0.}, {
        AbsoluteThickness[0.1]}}, {25.328436022934504`, 
       FormBox[
        TemplateBox[{"10", "11"}, "Superscript", SyntaxForm -> 
         SuperscriptBox], TraditionalForm], {0.01, 0.}, {
        AbsoluteThickness[0.1]}}, {34.538776394910684`, 
       FormBox[
        TemplateBox[{"10", "15"}, "Superscript", SyntaxForm -> 
         SuperscriptBox], TraditionalForm], {0.01, 0.}, {
        AbsoluteThickness[0.1]}}, {9.210340371976184, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {11.512925464970229`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {13.815510557964274`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {18.420680743952367`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {20.72326583694641, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {23.025850929940457`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {27.631021115928547`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {29.933606208922594`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {32.23619130191664, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {36.841361487904734`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {39.14394658089878, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {41.44653167389282, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {43.74911676688687, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {44.44226394744681, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {44.84772905555498, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {45.13541112800676, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {45.35855467932097, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {45.540876236114926`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {45.69502691594218, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}}}]]], "Output",
 CellChangeTimes->{{3.7560473502106247`*^9, 3.7560473767131968`*^9}, {
   3.75604740714773*^9, 3.756047440536327*^9}, {3.7560474789105883`*^9, 
   3.756047494537959*^9}, {3.756055754363693*^9, 3.7560558071271067`*^9}, {
   3.756070604554096*^9, 3.7560706798597393`*^9}, {3.756070934500585*^9, 
   3.75607096320077*^9}, 3.7560715403882303`*^9, {3.756073207499793*^9, 
   3.756073219675445*^9}},
 CellLabel->
  "Out[185]=",ExpressionUUID->"d0abd33e-d67c-4105-91c2-0840fec737bb"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"coeff", "[", "d_", "]"}], "[", "k_", "]"}], ":=", 
  RowBox[{"With", "[", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"ss", "=", 
      RowBox[{
       RowBox[{"s", "[", "d", "]"}], "[", "k", "]"}]}], "}"}], ",", 
    RowBox[{
     RowBox[{
      RowBox[{"CoefficientList", "[", 
       RowBox[{
        RowBox[{
         RowBox[{
          RowBox[{
           SubscriptBox["a", 
            RowBox[{"d", "+", "#"}]], "/.", "ss"}], "/.", 
          RowBox[{
           SubscriptBox["B", "j_"], "\[RuleDelayed]", 
           SuperscriptBox["c", 
            RowBox[{"j", "+", "1"}]]}]}], "/.", 
         RowBox[{"A", "->", 
          RowBox[{"1", "/", "c"}]}]}], ",", 
        RowBox[{"{", "c", "}"}]}], "]"}], "&"}], "/@", 
     RowBox[{"Range", "[", "k", "]"}]}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.756043634767688*^9, 3.7560436568795633`*^9}, {
  3.756044016899808*^9, 3.756044059551148*^9}},
 CellLabel->"In[10]:=",ExpressionUUID->"75fce757-ae3e-44f4-a573-646fcf6e4852"],

Cell[BoxData[
 RowBox[{
  RowBox[{"cc", "=", 
   RowBox[{
    RowBox[{"coeff", "[", "2", "]"}], "[", "14", "]"}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756044061912179*^9, 3.756044082348341*^9}, {
  3.756044184311449*^9, 3.756044184930992*^9}, {3.756044218928982*^9, 
  3.756044221782112*^9}, {3.756044296192256*^9, 3.75604429635876*^9}, {
  3.7560449241942873`*^9, 3.756044924664535*^9}},
 CellLabel->"In[11]:=",ExpressionUUID->"4e43644a-65dd-4e4e-b6b4-e59e7aacde51"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ListPlot", "[", 
  RowBox[{"Max", "/@", 
   RowBox[{"(", 
    RowBox[{"cc", "/.", 
     RowBox[{
      RowBox[{"b", "[", "2", "]"}], "\[Rule]", 
      RowBox[{"-", "1"}]}]}], ")"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.7560448086660213`*^9, 3.756044823839981*^9}, {
  3.756044856476042*^9, 3.7560448685658073`*^9}, {3.756044901524192*^9, 
  3.756044901834292*^9}},
 CellLabel->"In[12]:=",ExpressionUUID->"05684c40-35c5-4c43-9cb7-360252747ab2"],

Cell[BoxData[
 GraphicsBox[{{}, {{}, 
    {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`],
      AbsoluteThickness[1.6], 
     PointBox[{{1., 1.}, {2., 0.}, {3., 1.}, {4., 0.}, {5., 
      1.8333333333333333`}, {6., 0.}, {7., 6.333333333333333}, {8., 
      0.15714285714285714`}, {9., 16.666666666666668`}, {10., 
      0.2849206349206349}, {11., 53.99166666666667}, {12., 
      2.5795855379188715`}, {13., 214.2}, {14., 
      5.7338263588263585`}}]}, {}}, {}, {}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0., 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0., 14.}, {0, 41.66666666666667}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.756044824214217*^9, {3.75604486041496*^9, 3.756044868906663*^9}, 
   3.75604490211598*^9, 3.756046019873962*^9},
 CellLabel->"Out[12]=",ExpressionUUID->"53328a90-5baf-4e81-a2c6-0728ff9a5853"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"data", "=", 
   RowBox[{
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"2", "+", "#1"}], ",", 
       RowBox[{"Length", "[", "#2", "]"}]}], "}"}], "&"}], "@@@", 
    RowBox[{"Thread", "[", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"Range", "[", 
        RowBox[{"Length", "[", "cc", "]"}], "]"}], ",", "cc"}], "}"}], 
     "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756043671982542*^9, 3.756043708832818*^9}, {
  3.756043974965466*^9, 3.756043984600878*^9}, {3.756044227706231*^9, 
  3.756044275441964*^9}},
 CellLabel->"In[14]:=",ExpressionUUID->"1b97a152-c9db-4582-89ac-fe86460cd647"],

Cell[BoxData[""], "Input",
 CellChangeTimes->{{3.756046091925165*^9, 
  3.7560460928667173`*^9}},ExpressionUUID->"0cc0ba07-a5ae-4566-b4cf-\
5c08d95a344a"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", 
  RowBox[{
   RowBox[{"ListPlot", "[", "data", "]"}], ",", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"2", "x"}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "0", ",", "16"}], "}"}]}], "]"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.7560436979867773`*^9, 3.7560436996165667`*^9}, {
  3.756044544079154*^9, 3.756044561720997*^9}},
 CellLabel->"In[15]:=",ExpressionUUID->"1a4c5d8c-b72f-47cf-9b12-bae7177839bb"],

Cell[BoxData[
 GraphicsBox[{{{}, {{}, 
     {RGBColor[0.368417, 0.506779, 0.709798], PointSize[
      0.012833333333333334`], AbsoluteThickness[1.6], 
      PointBox[{{3., 4.}, {4., 6.}, {5., 8.}, {6., 10.}, {7., 12.}, {8., 
       14.}, {9., 16.}, {10., 18.}, {11., 20.}, {12., 22.}, {13., 24.}, {14., 
       26.}, {15., 28.}, {16., 30.}}]}, {}}, {}, {}, {}, {}}, {{{}, {}, 
     TagBox[
      {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], 
       Opacity[1.], LineBox[CompressedData["
1:eJw9xX1MFHQcB2DAa6AU70nyfsfxdhz8CBF5/36KFgZSA23kQmSkZvSmxma2
ml3jzFSCNTIKUBS0jMlpHK7FWU5vbjlfInDohkfRzWGg6AYybHHV+HR/PHu0
NW+Xb/Ly8PAo/dd/F28aHzh7+/OChY8WaArDto4uq5OF62X5oZa2XvfNUnJ5
+Lt2911SsXH2zGfurXJTfVzY4N4uHY+/sHuv+yEx+fQmfOLeKS+tO2y5d///
p8XXZaosipriLokruzt+ft8012DHlWxpmZ6ThRcj1Bro8PR0ycL+OD1WeOlq
nhcPwrna9vB1kxoegpn4fP8Tb3rzUHjNdQeExy3hYch0VZ9e0/Moj8Cl+owr
Fwz+PBrRTRNzx+8G8BhMzI46rqUFcR26/uy/6PdpMI+FX+TXU05nCNdj/2t9
mzv0S3k8HqDbuWVXKE9AXbrduvT8EzwRoz32fQPaMG7AX7VDrUnvhfNkJD/l
Pb+5P4IbUXRE++qp0Cieih2RG3S/V0ZzBePki77DpTE8DcH+93zsD2N4GjQ/
tVpi27T8Sbye0X9jcYmOp6P7uZqOHx/oeDpmJsICbh2I5cvRt6ZoUfMzep6B
XavMh6y39DwD2pvF1zvNcXwFclbWNy9Lj+eZqIy6Ouc5GM8zMXOxYWyrKYGv
RIumqq5cn8izEOzoO+JlT+RZeOQD09rsbUk8Gx7HqyxjQQaeg+1fWRqCzhl4
Ds4k7/EJfCuZ5yKweLvxIz8jz8NIyi+DO21GnoeTB0XvrErh+VhvyQyMnE/h
+fjQfNg08m0qL8CJ8chWv9WKC/a0m6sdzysu2Fh+J66nTHFBhM12srRCccHe
xpcv7K9RXLAl88v7S3YqLtDVh6zyPqa4YD7r/ceGv1FccOPOH78e61Zc0FTR
u/7ZU4oLXIbyd8w2xQUjA40HFw0qLvh+9+wrg9cUFzTnbkjqvK64oORoqvVp
h+KCH969/LPptuKCAykrGssmFRdsG2tbq51SXJC4+o3Rs9OKCzSeQ11Ns4oL
fuvLra1+qLjAVtup0v5WXPBFtO+My6W44B89jSMW
        "]]},
      Annotation[#, "Charting`Private`Tag$2387#1"]& ]}, {}, {}}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{2.7968750000000004`, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{3., 16.}, {0, 30.}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.756043700216913*^9, 3.756044240545435*^9, 3.756044276785468*^9, 
   3.756044425066293*^9, {3.7560445528869667`*^9, 3.756044562021286*^9}, 
   3.756046095102582*^9},
 CellLabel->"Out[15]=",ExpressionUUID->"9d403b3d-7438-4d62-95c5-d7f386c91678"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"cc3", "=", 
   RowBox[{
    RowBox[{"coeff", "[", "3", "]"}], "[", "13", "]"}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756044061912179*^9, 3.756044082348341*^9}, {
  3.756044184311449*^9, 3.756044184930992*^9}, {3.756044218928982*^9, 
  3.756044221782112*^9}, {3.756044296192256*^9, 3.75604429635876*^9}, {
  3.756044595044525*^9, 3.756044596625977*^9}},
 CellLabel->
  "In[159]:=",ExpressionUUID->"1560eb7d-4dfa-4579-bec8-49ba80245127"],

Cell[BoxData[
 RowBox[{"cc3", "/"}]], "Input",
 CellChangeTimes->{{3.7560446399113207`*^9, 
  3.756044666840147*^9}},ExpressionUUID->"2413e870-0807-4641-9e85-\
c92b8b36361b"],

Cell[BoxData[
 RowBox[{
  RowBox[{"data", "=", 
   RowBox[{
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"3", "+", "#1"}], ",", 
       RowBox[{"Length", "[", "#2", "]"}]}], "}"}], "&"}], "@@@", 
    RowBox[{"Thread", "[", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"Range", "[", 
        RowBox[{"Length", "[", "cc3", "]"}], "]"}], ",", "cc3"}], "}"}], 
     "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756043671982542*^9, 3.756043708832818*^9}, {
  3.756043974965466*^9, 3.756043984600878*^9}, {3.756044227706231*^9, 
  3.756044275441964*^9}, {3.756044601416918*^9, 3.756044605288805*^9}},
 CellLabel->
  "In[160]:=",ExpressionUUID->"4031f3cb-9ab3-4501-9ecc-5dcee1471df4"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", 
  RowBox[{
   RowBox[{"ListPlot", "[", "data", "]"}], ",", 
   RowBox[{"Plot", "[", 
    RowBox[{
     RowBox[{"2", "x"}], ",", 
     RowBox[{"{", 
      RowBox[{"x", ",", "0", ",", "16"}], "}"}]}], "]"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.7560436979867773`*^9, 3.7560436996165667`*^9}, {
  3.756044544079154*^9, 3.756044561720997*^9}},
 CellLabel->
  "In[161]:=",ExpressionUUID->"3e641a6f-a31b-4a0a-b0ad-b1b88af26d0b"],

Cell[BoxData[
 GraphicsBox[{{{}, {{}, 
     {RGBColor[0.368417, 0.506779, 0.709798], PointSize[
      0.012833333333333334`], AbsoluteThickness[1.6], 
      PointBox[{{4., 4.}, {5., 6.}, {6., 8.}, {7., 10.}, {8., 12.}, {9., 
       14.}, {10., 16.}, {11., 18.}, {12., 20.}, {13., 22.}, {14., 24.}, {15.,
        26.}, {16., 28.}}]}, {}}, {}, {}, {}, {}}, {{{}, {}, 
     TagBox[
      {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], 
       Opacity[1.], LineBox[CompressedData["
1:eJw9xX1MFHQcB2DAa6AU70nyfsfxdhz8CBF5/36KFgZSA23kQmSkZvSmxma2
ml3jzFSCNTIKUBS0jMlpHK7FWU5vbjlfInDohkfRzWGg6AYybHHV+HR/PHu0
NW+Xb/Ly8PAo/dd/F28aHzh7+/OChY8WaArDto4uq5OF62X5oZa2XvfNUnJ5
+Lt2911SsXH2zGfurXJTfVzY4N4uHY+/sHuv+yEx+fQmfOLeKS+tO2y5d///
p8XXZaosipriLokruzt+ft8012DHlWxpmZ6ThRcj1Bro8PR0ycL+OD1WeOlq
nhcPwrna9vB1kxoegpn4fP8Tb3rzUHjNdQeExy3hYch0VZ9e0/Moj8Cl+owr
Fwz+PBrRTRNzx+8G8BhMzI46rqUFcR26/uy/6PdpMI+FX+TXU05nCNdj/2t9
mzv0S3k8HqDbuWVXKE9AXbrduvT8EzwRoz32fQPaMG7AX7VDrUnvhfNkJD/l
Pb+5P4IbUXRE++qp0Cieih2RG3S/V0ZzBePki77DpTE8DcH+93zsD2N4GjQ/
tVpi27T8Sbye0X9jcYmOp6P7uZqOHx/oeDpmJsICbh2I5cvRt6ZoUfMzep6B
XavMh6y39DwD2pvF1zvNcXwFclbWNy9Lj+eZqIy6Ouc5GM8zMXOxYWyrKYGv
RIumqq5cn8izEOzoO+JlT+RZeOQD09rsbUk8Gx7HqyxjQQaeg+1fWRqCzhl4
Ds4k7/EJfCuZ5yKweLvxIz8jz8NIyi+DO21GnoeTB0XvrErh+VhvyQyMnE/h
+fjQfNg08m0qL8CJ8chWv9WKC/a0m6sdzysu2Fh+J66nTHFBhM12srRCccHe
xpcv7K9RXLAl88v7S3YqLtDVh6zyPqa4YD7r/ceGv1FccOPOH78e61Zc0FTR
u/7ZU4oLXIbyd8w2xQUjA40HFw0qLvh+9+wrg9cUFzTnbkjqvK64oORoqvVp
h+KCH969/LPptuKCAykrGssmFRdsG2tbq51SXJC4+o3Rs9OKCzSeQ11Ns4oL
fuvLra1+qLjAVtup0v5WXPBFtO+My6W44B89jSMW
        "]]},
      Annotation[#, "Charting`Private`Tag$33293#1"]& ]}, {}, {}}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{3.8125000000000004`, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{4., 16.}, {0, 28.}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.756043700216913*^9, 3.756044240545435*^9, 3.756044276785468*^9, 
   3.756044425066293*^9, {3.7560445528869667`*^9, 3.756044562021286*^9}, 
   3.756044607123878*^9},
 CellLabel->
  "Out[161]=",ExpressionUUID->"1753f01a-1e37-45cf-8c3f-b827e2793d8d"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"coeff", "[", "3", "]"}], "[", "8", "]"}]], "Input",
 CellChangeTimes->{{3.7560436590203247`*^9, 3.756043664006461*^9}},
 CellLabel->
  "In[130]:=",ExpressionUUID->"df2d3f0c-5184-4f8d-8e87-e954e5488a63"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
  "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", "0", ",", 
   FractionBox[
    SuperscriptBox[
     RowBox[{"b", "[", "3", "]"}], "3"], "16"], ",", 
   RowBox[{
    FractionBox[
     RowBox[{"21", " ", 
      SuperscriptBox[
       RowBox[{"b", "[", "3", "]"}], "2"]}], "32"], "+", 
    RowBox[{
     FractionBox["1", "16"], " ", 
     RowBox[{"(", 
      RowBox[{
       RowBox[{"-", "1"}], "-", 
       RowBox[{"b", "[", "3", "]"}]}], ")"}], " ", 
     SuperscriptBox[
      RowBox[{"b", "[", "3", "]"}], "2"]}], "+", 
    FractionBox[
     SuperscriptBox[
      RowBox[{"b", "[", "3", "]"}], "3"], "32"]}], ",", 
   RowBox[{
    FractionBox[
     RowBox[{"31", " ", 
      RowBox[{"b", "[", "3", "]"}]}], "16"], "+", 
    RowBox[{
     FractionBox["3", "16"], " ", 
     RowBox[{"(", 
      RowBox[{
       RowBox[{"-", "1"}], "-", 
       RowBox[{"b", "[", "3", "]"}]}], ")"}], " ", 
     RowBox[{"b", "[", "3", "]"}]}]}], ",", 
   RowBox[{
    FractionBox["53", "16"], "-", 
    FractionBox[
     RowBox[{"17", " ", 
      RowBox[{"b", "[", "3", "]"}]}], "8"], "+", 
    FractionBox[
     SuperscriptBox[
      RowBox[{"b", "[", "3", "]"}], "2"], "8"]}], ",", 
   RowBox[{
    RowBox[{"-", 
     FractionBox["191", "32"]}], "+", 
    FractionBox[
     RowBox[{"247", " ", 
      RowBox[{"b", "[", "3", "]"}]}], "192"], "-", 
    FractionBox[
     RowBox[{"7", " ", 
      SuperscriptBox[
       RowBox[{"b", "[", "3", "]"}], "2"]}], "192"], "+", 
    RowBox[{
     FractionBox["1", "192"], " ", 
     RowBox[{"b", "[", "3", "]"}], " ", 
     RowBox[{"(", 
      RowBox[{"1", "+", 
       RowBox[{"b", "[", "3", "]"}]}], ")"}]}]}], ",", 
   RowBox[{
    FractionBox["111", "16"], "-", 
    FractionBox[
     RowBox[{"5", " ", 
      RowBox[{"b", "[", "3", "]"}]}], "8"]}], ",", 
   RowBox[{
    RowBox[{"-", 
     FractionBox["95", "16"]}], "+", 
    FractionBox[
     RowBox[{"b", "[", "3", "]"}], "4"]}], ",", 
   RowBox[{
    FractionBox["1817", "480"], "-", 
    FractionBox[
     RowBox[{"b", "[", "3", "]"}], "24"]}], ",", 
   RowBox[{"-", 
    FractionBox["7", "4"]}], ",", 
   FractionBox["1", "2"], ",", 
   RowBox[{"-", 
    FractionBox["1", "16"]}]}], "}"}]], "Output",
 CellChangeTimes->{3.756043664589617*^9},
 CellLabel->
  "Out[130]=",ExpressionUUID->"13439632-f5a9-46e1-9c97-b5f30d8be1f3"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"g", "[", "d_", "]"}], "[", "n_", "]"}], ":=", 
  RowBox[{
   RowBox[{
    RowBox[{"v", "[", "d", "]"}], "[", "n", "]"}], "-", 
   RowBox[{"A", 
    RowBox[{"(", 
     RowBox[{"d", "-", "1"}], ")"}], 
    SubscriptBox["a", 
     RowBox[{"d", "+", "n"}]]}]}]}]], "Input",
 CellChangeTimes->{{3.755995321919333*^9, 3.755995345431901*^9}},
 CellLabel->"In[16]:=",ExpressionUUID->"daa5ca2d-fa0c-4401-9a60-391d8e6dca68"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{
    RowBox[{"g", "[", "2", "]"}], "[", "5", "]"}], "/.", 
   RowBox[{
    RowBox[{"b", "[", "2", "]"}], "\[Rule]", 
    RowBox[{"-", "1"}]}]}], "//", "Simplify"}]], "Input",
 CellChangeTimes->{{3.7559953504886312`*^9, 3.7559953758552103`*^9}, {
  3.755995451221616*^9, 3.755995458572054*^9}, {3.756042468806717*^9, 
  3.756042494249666*^9}, {3.7560428849178343`*^9, 3.756042896639387*^9}, {
  3.756046323695932*^9, 3.7560463363196077`*^9}},
 CellLabel->"In[21]:=",ExpressionUUID->"f3030bd6-e5b6-40dc-8a6d-e2472c4b836e"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"-", 
    FractionBox["1", "3"]}], " ", 
   SuperscriptBox["A", "3"], " ", 
   SubsuperscriptBox["a", "3", "4"]}], "+", 
  RowBox[{
   FractionBox["1", "120"], " ", 
   SuperscriptBox["A", "5"], " ", 
   SubsuperscriptBox["a", "3", "5"]}], "+", 
  RowBox[{
   FractionBox["1", "6"], " ", 
   SuperscriptBox["A", "4"], " ", 
   SubsuperscriptBox["a", "3", "3"], " ", 
   SubscriptBox["a", "4"]}], "+", 
  RowBox[{
   SuperscriptBox["A", "2"], " ", 
   SubscriptBox["a", "4"], " ", 
   SubscriptBox["a", "5"]}], "+", 
  RowBox[{
   FractionBox["1", "2"], " ", 
   SuperscriptBox["A", "2"], " ", 
   SubsuperscriptBox["a", "3", "2"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      RowBox[{"-", "3"}], " ", 
      SubscriptBox["a", "4"]}], "+", 
     RowBox[{"A", " ", 
      SubscriptBox["a", "5"]}]}], ")"}]}], "+", 
  SubscriptBox["a", "6"], "+", 
  RowBox[{
   FractionBox["1", "2"], " ", 
   SuperscriptBox["A", "2"], " ", 
   SubscriptBox["a", "3"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"A", " ", 
      SubsuperscriptBox["a", "4", "2"]}], "+", 
     RowBox[{"2", " ", 
      SubscriptBox["a", "6"]}]}], ")"}]}]}]], "Output",
 CellChangeTimes->{{3.755995353876137*^9, 3.755995376100444*^9}, {
  3.755995452751554*^9, 3.7559954589491*^9}, {3.756042471107218*^9, 
  3.756042494601718*^9}, {3.7560428857186127`*^9, 3.756042897096599*^9}, {
  3.756046315213716*^9, 3.756046336602889*^9}},
 CellLabel->"Out[21]=",ExpressionUUID->"67e8ec8f-369d-4c59-95b0-58b9a783afa2"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"t1", "=", 
  RowBox[{
   RowBox[{
    RowBox[{"v", "[", "3", "]"}], "[", "8", "]"}], "//", 
   "Simplify"}]}]], "Input",
 CellChangeTimes->{{3.755983719791654*^9, 3.7559837219603233`*^9}, {
  3.755983752976677*^9, 3.755983799383815*^9}, {3.7559838452274637`*^9, 
  3.7559838467523203`*^9}, {3.755986245663477*^9, 3.755986246683507*^9}},
 CellLabel->"In[9]:=",ExpressionUUID->"da24f07f-294f-40bb-8afa-b87c0b00f28d"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   FractionBox["2", "315"], " ", 
   SuperscriptBox["A", "8"], " ", 
   SubsuperscriptBox["a", "4", "8"]}], "-", 
  RowBox[{"2", " ", 
   SuperscriptBox["A", "2"], " ", 
   RowBox[{"(", 
    RowBox[{"3", "+", 
     RowBox[{"b", "[", "3", "]"}]}], ")"}], " ", 
   SubsuperscriptBox["a", "5", "3"]}], "+", 
  RowBox[{
   FractionBox["2", "3"], " ", 
   SuperscriptBox["A", "4"], " ", 
   SubsuperscriptBox["a", "5", "4"]}], "+", 
  RowBox[{
   FractionBox["2", "45"], " ", 
   SuperscriptBox["A", "5"], " ", 
   SubsuperscriptBox["a", "4", "6"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"-", "45"}], "-", 
     RowBox[{"6", " ", 
      RowBox[{"b", "[", "3", "]"}]}], "+", 
     RowBox[{"4", " ", 
      SuperscriptBox["A", "2"], " ", 
      SubscriptBox["a", "5"]}]}], ")"}]}], "+", 
  RowBox[{
   FractionBox["8", "15"], " ", 
   SuperscriptBox["A", "6"], " ", 
   SubsuperscriptBox["a", "4", "5"], " ", 
   SubscriptBox["a", "6"]}], "-", 
  RowBox[{"3", " ", "A", " ", 
   SubsuperscriptBox["a", "6", "2"]}], "-", 
  RowBox[{"2", " ", "A", " ", 
   RowBox[{"b", "[", "3", "]"}], " ", 
   SubsuperscriptBox["a", "6", "2"]}], "+", 
  RowBox[{"2", " ", 
   SuperscriptBox["A", "2"], " ", 
   SubsuperscriptBox["a", "7", "2"]}], "+", 
  RowBox[{
   FractionBox["1", "2"], " ", 
   SubsuperscriptBox["a", "5", "2"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"b", "[", "3", "]"}], "+", 
     SuperscriptBox[
      RowBox[{"b", "[", "3", "]"}], "2"], "+", 
     RowBox[{"8", " ", 
      SuperscriptBox["A", "3"], " ", 
      SubscriptBox["a", "7"]}]}], ")"}]}], "+", 
  RowBox[{
   FractionBox["1", "6"], " ", 
   SuperscriptBox["A", "2"], " ", 
   SubsuperscriptBox["a", "4", "4"], " ", 
   RowBox[{"(", 
    RowBox[{"75", "+", 
     RowBox[{"42", " ", 
      RowBox[{"b", "[", "3", "]"}]}], "+", 
     RowBox[{"6", " ", 
      SuperscriptBox[
       RowBox[{"b", "[", "3", "]"}], "2"]}], "-", 
     RowBox[{"20", " ", 
      SuperscriptBox["A", "2"], " ", 
      RowBox[{"(", 
       RowBox[{"6", "+", 
        RowBox[{"b", "[", "3", "]"}]}], ")"}], " ", 
      SubscriptBox["a", "5"]}], "+", 
     RowBox[{"8", " ", 
      SuperscriptBox["A", "4"], " ", 
      SubsuperscriptBox["a", "5", "2"]}], "+", 
     RowBox[{"8", " ", 
      SuperscriptBox["A", "3"], " ", 
      SubscriptBox["a", "7"]}]}], ")"}]}], "+", 
  RowBox[{"4", " ", 
   SuperscriptBox["A", "2"], " ", 
   SubscriptBox["a", "6"], " ", 
   SubscriptBox["a", "8"]}], "+", 
  RowBox[{
   FractionBox["8", "3"], " ", 
   SuperscriptBox["A", "3"], " ", 
   SubsuperscriptBox["a", "4", "3"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      RowBox[{"(", 
       RowBox[{
        RowBox[{"-", "9"}], "-", 
        RowBox[{"2", " ", 
         RowBox[{"b", "[", "3", "]"}]}], "+", 
        RowBox[{"2", " ", 
         SuperscriptBox["A", "2"], " ", 
         SubscriptBox["a", "5"]}]}], ")"}], " ", 
      SubscriptBox["a", "6"]}], "+", 
     RowBox[{"A", " ", 
      SubscriptBox["a", "8"]}]}], ")"}]}], "-", 
  RowBox[{
   RowBox[{"b", "[", "3", "]"}], " ", 
   SubscriptBox["a", "9"]}], "+", 
  RowBox[{"2", " ", "A", " ", 
   SubscriptBox["a", "5"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"2", " ", 
      SuperscriptBox["A", "2"], " ", 
      SubsuperscriptBox["a", "6", "2"]}], "-", 
     RowBox[{
      RowBox[{"(", 
       RowBox[{"3", "+", 
        RowBox[{"2", " ", 
         RowBox[{"b", "[", "3", "]"}]}]}], ")"}], " ", 
      SubscriptBox["a", "7"]}], "+", 
     RowBox[{"2", " ", "A", " ", 
      SubscriptBox["a", "9"]}]}], ")"}]}], "+", 
  RowBox[{
   FractionBox["1", "3"], " ", "A", " ", 
   SubsuperscriptBox["a", "4", "2"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      RowBox[{"-", "12"}], " ", 
      SuperscriptBox["A", "2"], " ", 
      RowBox[{"(", 
       RowBox[{"9", "+", 
        RowBox[{"2", " ", 
         RowBox[{"b", "[", "3", "]"}]}]}], ")"}], " ", 
      SubsuperscriptBox["a", "5", "2"]}], "+", 
     RowBox[{"8", " ", 
      SuperscriptBox["A", "4"], " ", 
      SubsuperscriptBox["a", "5", "3"]}], "+", 
     RowBox[{"3", " ", 
      SubscriptBox["a", "5"], " ", 
      RowBox[{"(", 
       RowBox[{
        RowBox[{"3", " ", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{"2", "+", 
            RowBox[{"b", "[", "3", "]"}]}], ")"}], "2"]}], "+", 
        RowBox[{"8", " ", 
         SuperscriptBox["A", "3"], " ", 
         SubscriptBox["a", "7"]}]}], ")"}]}], "+", 
     RowBox[{"6", " ", "A", " ", 
      RowBox[{"(", 
       RowBox[{
        RowBox[{"2", " ", 
         SuperscriptBox["A", "2"], " ", 
         SubsuperscriptBox["a", "6", "2"]}], "-", 
        RowBox[{"3", " ", 
         RowBox[{"(", 
          RowBox[{"3", "+", 
           RowBox[{"b", "[", "3", "]"}]}], ")"}], " ", 
         SubscriptBox["a", "7"]}], "+", 
        RowBox[{"2", " ", "A", " ", 
         SubscriptBox["a", "9"]}]}], ")"}]}]}], ")"}]}], "+", 
  RowBox[{
   SubscriptBox["a", "4"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      SubscriptBox["a", "6"], " ", 
      RowBox[{"(", 
       RowBox[{
        RowBox[{"b", "[", "3", "]"}], "+", 
        SuperscriptBox[
         RowBox[{"b", "[", "3", "]"}], "2"], "-", 
        RowBox[{"12", " ", 
         SuperscriptBox["A", "2"], " ", 
         RowBox[{"(", 
          RowBox[{"3", "+", 
           RowBox[{"b", "[", "3", "]"}]}], ")"}], " ", 
         SubscriptBox["a", "5"]}], "+", 
        RowBox[{"8", " ", 
         SuperscriptBox["A", "4"], " ", 
         SubsuperscriptBox["a", "5", "2"]}], "+", 
        RowBox[{"8", " ", 
         SuperscriptBox["A", "3"], " ", 
         SubscriptBox["a", "7"]}]}], ")"}]}], "+", 
     RowBox[{"2", " ", "A", " ", 
      RowBox[{"(", 
       RowBox[{
        RowBox[{
         RowBox[{"(", 
          RowBox[{
           RowBox[{"-", "3"}], "-", 
           RowBox[{"2", " ", 
            RowBox[{"b", "[", "3", "]"}]}], "+", 
           RowBox[{"4", " ", 
            SuperscriptBox["A", "2"], " ", 
            SubscriptBox["a", "5"]}]}], ")"}], " ", 
         SubscriptBox["a", "8"]}], "+", 
        RowBox[{"2", " ", "A", " ", 
         SubscriptBox["a", "10"]}]}], ")"}]}]}], ")"}]}], "+", 
  RowBox[{"2", " ", "A", " ", 
   SubscriptBox["a", "11"]}]}]], "Output",
 CellChangeTimes->{
  3.755983722175646*^9, {3.7559837532809887`*^9, 3.755983808965115*^9}, 
   3.755983847096236*^9, {3.755986247150073*^9, 3.7559862667355347`*^9}},
 CellLabel->"Out[9]=",ExpressionUUID->"226117a7-858e-4561-8b04-253742f8c5e4"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"D", "[", 
    RowBox[{
     RowBox[{
      RowBox[{"Y", "+", 
       RowBox[{"Sum", "[", 
        RowBox[{
         RowBox[{
          SubscriptBox["a", "n"], 
          SuperscriptBox["Y", "n"]}], ",", 
         RowBox[{"{", 
          RowBox[{"n", ",", 
           RowBox[{"d", "+", "1"}], ",", 
           RowBox[{"d", "+", "100"}]}], "}"}]}], "]"}]}], "/.", 
      RowBox[{"d", "\[Rule]", "2"}]}], ",", 
     RowBox[{"{", 
      RowBox[{"Y", ",", "4"}], "}"}]}], "]"}], "/", 
   RowBox[{"4", "!"}]}], "/.", 
  RowBox[{"Y", "->", "0"}]}]], "Input",
 CellChangeTimes->{{3.755989774725753*^9, 3.7559898095132008`*^9}},
 CellLabel->"In[42]:=",ExpressionUUID->"7a2c7d58-8792-4fe7-9fc8-1b8c5bfed781"],

Cell[BoxData[
 SubscriptBox["a", "4"]], "Output",
 CellChangeTimes->{{3.755989784745599*^9, 3.7559898097959347`*^9}},
 CellLabel->"Out[42]=",ExpressionUUID->"974a6c06-b7cd-4aa6-9657-ad9563df6b29"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"t2", "=", 
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{
       SuperscriptBox["X", 
        RowBox[{"-", 
         RowBox[{"b", "[", "d", "]"}]}]], 
       RowBox[{
        RowBox[{"Exp", "[", 
         RowBox[{
          RowBox[{"-", 
           SubscriptBox["A", 
            RowBox[{"d", "-", "1"}]]}], "/", 
          SuperscriptBox["X", 
           RowBox[{"d", "-", "1"}]]}], "]"}], "/", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{"Exp", "[", 
           RowBox[{"-", 
            RowBox[{"Sum", "[", 
             RowBox[{
              RowBox[{
               SubscriptBox["A", "i"], "/", 
               SuperscriptBox["Y", "i"]}], ",", 
              RowBox[{"{", 
               RowBox[{"i", ",", "1", ",", 
                RowBox[{"d", "-", "1"}]}], "}"}]}], "]"}]}], "]"}], 
          SuperscriptBox["Y", 
           RowBox[{"-", 
            RowBox[{"b", "[", "d", "]"}]}]]}], ")"}]}]}], "/.", 
      RowBox[{"X", "\[Rule]", 
       RowBox[{"Y", "-", 
        RowBox[{
         RowBox[{
          SubscriptBox["A", "1"], "/", 
          RowBox[{"(", 
           RowBox[{"2", " ", 
            SubscriptBox["A", "2"]}], ")"}]}], 
         SuperscriptBox["Y", "2"]}], "+", 
        RowBox[{
         FractionBox["3", "8"], 
         FractionBox[
          SuperscriptBox[
           SubscriptBox["A", "1"], "2"], 
          SuperscriptBox[
           SubscriptBox["A", "2"], "2"]], 
         SuperscriptBox["Y", "3"]}], "+", 
        RowBox[{"Sum", "[", 
         RowBox[{
          RowBox[{
           SubscriptBox["a", "n"], 
           SuperscriptBox["Y", "n"]}], ",", 
          RowBox[{"{", 
           RowBox[{"n", ",", "4", ",", 
            RowBox[{"d", "+", "5"}]}], "}"}]}], "]"}]}]}]}], "/.", 
     RowBox[{"d", "\[Rule]", "3"}]}], ",", 
    RowBox[{"{", 
     RowBox[{"Y", ",", "0", ",", "1"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.755953425332271*^9, 3.755953597896872*^9}, {
   3.755953645115286*^9, 3.755953645178322*^9}, {3.755953795712057*^9, 
   3.7559538048771133`*^9}, 3.755954148531365*^9, {3.755954187092915*^9, 
   3.7559541942559958`*^9}, {3.755961563503296*^9, 3.755961573592606*^9}, {
   3.7559784567339153`*^9, 3.755978456816216*^9}, {3.755983737426729*^9, 
   3.755983803397403*^9}, {3.75598384943009*^9, 3.7559838551858664`*^9}, {
   3.755984542780919*^9, 3.755984543024828*^9}, {3.75606627642898*^9, 
   3.756066365784556*^9}, {3.7560664015211353`*^9, 3.7560664488083897`*^9}, {
   3.75606649524175*^9, 3.7560664965516148`*^9}, {3.756066538586203*^9, 
   3.756066566913178*^9}},
 CellLabel->
  "In[109]:=",ExpressionUUID->"58776c0d-ed85-4f55-865c-1da528d38732"],

Cell[BoxData[
 RowBox[{
  FractionBox[
   RowBox[{"5", " ", 
    SubsuperscriptBox["A", "1", "3"]}], 
   RowBox[{"8", " ", 
    SubsuperscriptBox["A", "2", "2"]}]], "+", 
  FractionBox[
   RowBox[{
    RowBox[{"b", "[", "3", "]"}], " ", 
    SubscriptBox["A", "1"]}], 
   RowBox[{"2", " ", 
    SubscriptBox["A", "2"]}]], "+", 
  RowBox[{"2", " ", 
   SubscriptBox["a", "4"], " ", 
   SubscriptBox["A", "2"]}]}]], "Output",
 CellChangeTimes->{{3.755953579986732*^9, 3.755953602136208*^9}, 
   3.755953645477916*^9, {3.755953799375855*^9, 3.7559538050840693`*^9}, 
   3.755954148935199*^9, {3.7559541889348087`*^9, 3.755954194700406*^9}, {
   3.755961563871533*^9, 3.7559615739086723`*^9}, {3.755983737870796*^9, 
   3.7559838052338133`*^9}, 3.755983855597596*^9, 3.755984543877799*^9, 
   3.755986272441601*^9, {3.756066300035973*^9, 3.756066366803513*^9}, {
   3.7560664318842*^9, 3.756066450625702*^9}, 3.756066496856854*^9, 
   3.756066567272808*^9},
 CellLabel->
  "Out[109]=",ExpressionUUID->"7529d7ab-9e56-4bc2-9cb9-39916068dcfc"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Binomial", "[", 
  RowBox[{
   RowBox[{"d", "+", "1"}], ",", "3"}], "]"}]], "Input",
 CellChangeTimes->{{3.756068262469352*^9, 3.756068267490964*^9}, {
  3.756068342724084*^9, 3.756068346388097*^9}},
 CellLabel->
  "In[112]:=",ExpressionUUID->"8212b325-0c78-4677-88ea-cdb29cbb0048"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "6"], " ", 
  RowBox[{"(", 
   RowBox[{
    RowBox[{"-", "1"}], "+", "d"}], ")"}], " ", "d", " ", 
  RowBox[{"(", 
   RowBox[{"1", "+", "d"}], ")"}]}]], "Output",
 CellChangeTimes->{3.756068267752173*^9, 3.756068346658709*^9},
 CellLabel->
  "Out[112]=",ExpressionUUID->"fa677f31-4770-454c-8b44-9b5a36061a28"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Multinomial", "[", 
  RowBox[{"1", ",", "1"}], "]"}]], "Input",
 CellChangeTimes->{{3.7560682817326736`*^9, 3.756068284693227*^9}},
 CellLabel->
  "In[111]:=",ExpressionUUID->"df551726-5857-4a47-a581-12f69f25ecb7"],

Cell[BoxData["2"], "Output",
 CellChangeTimes->{3.756068284986973*^9},
 CellLabel->
  "Out[111]=",ExpressionUUID->"0d9af583-264c-4807-ae2f-d797c0ea6bf5"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Series", "[", 
  RowBox[{
   RowBox[{
    FractionBox[
     SubscriptBox["A", "2"], 
     SuperscriptBox["Y", "2"]], "-", 
    FractionBox[
     SubscriptBox["A", "2"], 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{"Y", "+", 
        RowBox[{
         SuperscriptBox["Y", "2"], " ", 
         RowBox[{"(", 
          RowBox[{
           RowBox[{"-", 
            SubscriptBox["A", "1"]}], "/", 
           RowBox[{"(", 
            RowBox[{"2", " ", 
             SubscriptBox["A", "2"]}], ")"}]}], ")"}]}], "+", 
        RowBox[{
         SuperscriptBox["Y", "3"], " ", 
         SubscriptBox["a", "3"]}], "+", 
        RowBox[{
         SuperscriptBox["Y", "4"], " ", 
         SubscriptBox["a", "4"]}], "+", 
        RowBox[{
         SuperscriptBox["Y", "5"], " ", 
         SubscriptBox["a", "5"]}], "+", 
        RowBox[{
         SuperscriptBox["Y", "6"], " ", 
         SubscriptBox["a", "6"]}], "+", 
        RowBox[{
         SuperscriptBox["Y", "7"], " ", 
         SubscriptBox["a", "7"]}], "+", 
        RowBox[{
         SuperscriptBox["Y", "8"], " ", 
         SubscriptBox["a", "8"]}]}], ")"}], "2"]]}], ",", 
   RowBox[{"{", 
    RowBox[{"Y", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.756066378446228*^9, 3.75606638380457*^9}, {
  3.756066523449925*^9, 3.756066525936351*^9}},
 CellLabel->
  "In[108]:=",ExpressionUUID->"5d367f3b-6f2b-4125-8342-21d218b7f254"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   RowBox[{"-", 
    FractionBox[
     SubscriptBox["A", "1"], "Y"]}], "+", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"-", 
      FractionBox[
       RowBox[{"3", " ", 
        SubsuperscriptBox["A", "1", "2"]}], 
       RowBox[{"4", " ", 
        SubscriptBox["A", "2"]}]]}], "+", 
     RowBox[{"2", " ", 
      SubscriptBox["a", "3"], " ", 
      SubscriptBox["A", "2"]}]}], ")"}], "+", 
   RowBox[{
    RowBox[{"(", 
     RowBox[{
      RowBox[{"3", " ", 
       SubscriptBox["a", "3"], " ", 
       SubscriptBox["A", "1"]}], "-", 
      FractionBox[
       SubsuperscriptBox["A", "1", "3"], 
       RowBox[{"2", " ", 
        SubsuperscriptBox["A", "2", "2"]}]], "+", 
      RowBox[{"2", " ", 
       SubscriptBox["a", "4"], " ", 
       SubscriptBox["A", "2"]}]}], ")"}], " ", "Y"}], "+", 
   InterpretationBox[
    SuperscriptBox[
     RowBox[{"O", "[", "Y", "]"}], "2"],
    SeriesData[$CellContext`Y, 0, {}, -1, 2, 1],
    Editable->False]}],
  SeriesData[$CellContext`Y, 
   0, {-Subscript[$CellContext`A, 1], 
    Rational[-3, 4] Subscript[$CellContext`A, 1]^2/
     Subscript[$CellContext`A, 2] + 
    2 Subscript[$CellContext`a, 3] Subscript[$CellContext`A, 2], 
    3 Subscript[$CellContext`a, 3] Subscript[$CellContext`A, 1] + 
    Rational[-1, 2] Subscript[$CellContext`A, 1]^3 
     Subscript[$CellContext`A, 2]^(-2) + 
    2 Subscript[$CellContext`a, 4] Subscript[$CellContext`A, 2]}, -1, 2, 1],
  Editable->False]], "Output",
 CellChangeTimes->{3.756066384289703*^9, 3.7560665262673683`*^9},
 CellLabel->
  "Out[108]=",ExpressionUUID->"ee99f0c2-e439-4a4d-8fe4-274d91a8d394"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"t1", "\[Equal]", "t2"}]], "Input",
 CellChangeTimes->{{3.7559838574788094`*^9, 3.755983858170805*^9}},
 CellLabel->"In[11]:=",ExpressionUUID->"7c3544b6-f791-402f-b763-8ab9eac5b7b9"],

Cell[BoxData["True"], "Output",
 CellChangeTimes->{3.755983858436735*^9, 3.755986273379781*^9},
 CellLabel->"Out[11]=",ExpressionUUID->"247f7916-6198-4764-ae25-025257e0bfe1"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"y", "[", "d_", "]"}], "[", "m_", "]"}], ":="}]], "Input",
 CellChangeTimes->{{3.755977778250719*^9, 
  3.755977784168833*^9}},ExpressionUUID->"101be1fd-bb0e-4747-9643-\
3921da67ae3f"],

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
    RowBox[{
    "Constants", " ", "fixed", " ", "for", " ", "the", " ", "2", "D", " ", 
     "square"}], "-", 
    RowBox[{"lattice", " ", "Ising", " ", "model"}]}], " ", "*)"}], 
  "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"\[CapitalDelta]", ":=", 
    RowBox[{"15", "/", "8"}]}], "\[IndentingNewLine]", 
   RowBox[{"\[Gamma]", ":=", 
    RowBox[{"7", "/", "4"}]}], "\[IndentingNewLine]", 
   RowBox[{"\[Beta]", ":=", 
    RowBox[{"1", "/", "8"}]}], "\[IndentingNewLine]", 
   RowBox[{"\[ScriptCapitalM]0", ":=", 
    SuperscriptBox[
     RowBox[{"(", 
      RowBox[{
       SuperscriptBox["2", 
        RowBox[{"5", "/", "2"}]], 
       RowBox[{"ArcSinh", "[", "1", "]"}]}], ")"}], "\[Beta]"]}], 
   "\[IndentingNewLine]", 
   RowBox[{"Tc", ":=", 
    RowBox[{"2", "/", 
     RowBox[{"Log", "[", 
      RowBox[{"1", "+", 
       RowBox[{"Sqrt", "[", "2", "]"}]}], "]"}]}]}], "\[IndentingNewLine]", 
   RowBox[{
    SubscriptBox["A", "1"], ":=", 
    RowBox[{
     SuperscriptBox["Tc", "2"], 
     RowBox[{
      RowBox[{"\[ScriptCapitalM]0", "/", 
       RowBox[{"(", 
        RowBox[{"16", " ", "\[Pi]"}], ")"}]}], "/", 
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{"2", 
            RowBox[{"ArcSinh", "[", "1", "]"}]}], ")"}], "2"], 
         RowBox[{"(", 
          RowBox[{"Ch", " ", 
           SuperscriptBox[
            RowBox[{"(", 
             RowBox[{"2", 
              RowBox[{"ArcSinh", "[", "1", "]"}]}], ")"}], 
            RowBox[{"-", "\[CapitalDelta]"}]]}], ")"}]}], ")"}], 
       RowBox[{"-", "1"}]]}]}]}]}]}]], "Input",
 CellChangeTimes->{{3.7138208469838247`*^9, 3.713820849646833*^9}, {
  3.71383052920462*^9, 3.7138305296005993`*^9}, {3.7142151732571373`*^9, 
  3.7142152150054703`*^9}, {3.7561470279524097`*^9, 3.756147036758465*^9}, {
  3.7561473995021544`*^9, 3.7561474038927937`*^9}, {3.7561492378522882`*^9, 
  3.7561492430752296`*^9}, {3.756149551762288*^9, 3.756149552647532*^9}},
 CellLabel->"In[67]:=",ExpressionUUID->"b9bdff2c-d0c6-47fd-8a10-904aab671281"],

Cell[BoxData[
 RowBox[{"ClearAll", "[", "Subscript", "]"}]], "Input",
 CellChangeTimes->{{3.756316289717658*^9, 3.75631629159007*^9}, {
  3.756316356729248*^9, 3.75631637077739*^9}},
 CellLabel->"In[82]:=",ExpressionUUID->"064b90dd-8bd7-4836-9e8f-25f5de9ccf79"],

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{"Constants", " ", "from", " ", "Mangazeev", " ", "et", " ", "al"}],
    " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{"Ch", ":=", "0.838677624411"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"Ghs", "=", 
     RowBox[{"{", 
      RowBox[{"0", ",", "0", ",", 
       RowBox[{"-", "1.8452280782328"}], ",", "0", ",", "8.333711750", ",", 
       "0", ",", 
       RowBox[{"-", "95.16896"}], ",", "0", ",", "1457.62", ",", "0", ",", 
       RowBox[{"-", "25891"}]}], "}"}]}], ";"}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"Gls", ":=", 
     RowBox[{"{", 
      RowBox[{"0", ",", 
       RowBox[{"-", "1.3578383417066"}], ",", 
       RowBox[{"-", "0.048953289720"}], ",", "0.038863932", ",", 
       RowBox[{"-", "0.068362119"}], ",", "0.18388370", ",", 
       RowBox[{"-", "0.6591714"}], ",", "2.937665", ",", 
       RowBox[{"-", "15.61"}], ",", "96.76", ",", 
       RowBox[{
        RowBox[{"-", "6.79"}], " ", 
        SuperscriptBox["10", "2"]}], ",", 
       RowBox[{"5.34", " ", 
        SuperscriptBox["10", "3"]}], ",", 
       RowBox[{
        RowBox[{"-", "4.66"}], " ", 
        SuperscriptBox["10", "4"]}], ",", 
       RowBox[{"4.46", " ", 
        SuperscriptBox["10", "5"]}], ",", 
       RowBox[{
        RowBox[{"-", "4.66"}], " ", 
        SuperscriptBox["10", "6"]}]}], "}"}]}], ";"}], "\[IndentingNewLine]", 
   
   RowBox[{
    RowBox[{"\[CapitalPhi]s", ":=", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"-", "1.197733383797993"}], ",", 
       RowBox[{"-", "0.318810124891"}], ",", "0.110886196683", ",", 
       "0.01642689465", ",", 
       RowBox[{
        RowBox[{"-", "2.639978"}], " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "4"}]]}], ",", 
       RowBox[{
        RowBox[{"-", "5.140526"}], " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "4"}]]}], ",", 
       RowBox[{"2.08856", " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "4"}]]}], ",", 
       RowBox[{
        RowBox[{"-", "4.4819"}], " ", 
        SuperscriptBox["10", 
         RowBox[{"-", "5"}]]}]}], "}"}]}], ";"}]}]}]], "Input",
 CellChangeTimes->{{3.75614689958223*^9, 3.756146955989298*^9}},
 CellLabel->"In[7]:=",ExpressionUUID->"754eb2ca-63de-438d-baee-8894c7d76dee"],

Cell[BoxData[
 RowBox[{
  RowBox[{"(*", " ", 
   RowBox[{
   "Translation", " ", "between", " ", "the", " ", "variables", " ", "of", 
    " ", "Mangazeev", " ", "et", " ", "al", " ", "and", " ", "our", " ", 
    "own"}], " ", "*)"}], "\[IndentingNewLine]", 
  RowBox[{
   RowBox[{
    RowBox[{"G2C", "[", 
     RowBox[{"G_", ",", "n_"}], "]"}], ":=", 
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{"2", 
        RowBox[{"ArcSinh", "[", "1", "]"}]}], ")"}], "2"], 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{"Ch", " ", 
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{"2", 
           RowBox[{"ArcSinh", "[", "1", "]"}]}], ")"}], 
         RowBox[{"-", "\[CapitalDelta]"}]]}], ")"}], "n"], "G"}]}], 
   "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"Gs2Cs", "[", "Gs_", "]"}], ":=", 
    RowBox[{"MapIndexed", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"G2C", "[", 
        RowBox[{"#1", ",", 
         RowBox[{
          RowBox[{"#2", "[", 
           RowBox[{"[", "1", "]"}], "]"}], "-", "1"}]}], "]"}], "&"}], ",", 
      "Gs"}], "]"}]}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"\[CapitalPhi]2C", "[", 
     RowBox[{"\[CapitalPhi]_", ",", "n_"}], "]"}], ":=", 
    RowBox[{
     SuperscriptBox["Ch", 
      RowBox[{"2", "/", "\[CapitalDelta]"}]], 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{
        RowBox[{"-", "2"}], 
        RowBox[{"ArcSinh", "[", "1", "]"}], 
        SuperscriptBox["Ch", 
         RowBox[{
          RowBox[{"-", "1"}], "/", "\[CapitalDelta]"}]]}], ")"}], "n"], 
     "\[CapitalPhi]"}]}], "\[IndentingNewLine]", 
   RowBox[{
    RowBox[{"\[CapitalPhi]s2Cs", "[", "Gs_", "]"}], ":=", 
    RowBox[{"MapIndexed", "[", 
     RowBox[{
      RowBox[{
       RowBox[{"\[CapitalPhi]2C", "[", 
        RowBox[{"#1", ",", 
         RowBox[{
          RowBox[{"#2", "[", 
           RowBox[{"[", "1", "]"}], "]"}], "-", "1"}]}], "]"}], "&"}], ",", 
      "Gs"}], "]"}]}]}]}]], "Input",
 CellLabel->"In[11]:=",ExpressionUUID->"20480ec1-2852-4039-beb5-39084353bc4a"],

Cell[BoxData[
 RowBox[{"ClearAll", "[", "B", "]"}]], "Input",
 CellChangeTimes->{{3.756147042416091*^9, 3.7561470444622707`*^9}},
 CellLabel->"In[15]:=",ExpressionUUID->"0adfbc83-67d5-482f-a14c-4995d005a937"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"cs", "=", "Gls"}]], "Input",
 CellChangeTimes->{{3.756146785977566*^9, 3.756146855215311*^9}, {
  3.7561482951809893`*^9, 3.756148297994709*^9}},
 CellLabel->"In[16]:=",ExpressionUUID->"c3768c23-2c6f-43d3-ae10-ea36ad104537"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"0", ",", 
   RowBox[{"-", "1.3578383417066`"}], ",", 
   RowBox[{"-", "0.04895328972`"}], ",", "0.038863932`", ",", 
   RowBox[{"-", "0.068362119`"}], ",", "0.1838837`", ",", 
   RowBox[{"-", "0.6591714`"}], ",", "2.937665`", ",", 
   RowBox[{"-", "15.61`"}], ",", "96.76`", ",", 
   RowBox[{"-", "679.`"}], ",", "5340.`", ",", 
   RowBox[{"-", "46600.`"}], ",", "446000.`", ",", 
   RowBox[{"-", "4.66`*^6"}]}], "}"}]], "Output",
 CellChangeTimes->{
  3.756146793251371*^9, {3.756146827437461*^9, 3.7561468556535892`*^9}, 
   3.756146973591395*^9, 3.7561482982131243`*^9, 3.7563162812329407`*^9},
 CellLabel->"Out[16]=",ExpressionUUID->"4b177b6a-d29b-4f5b-b4ea-a0a979f07414"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"\[ScriptCapitalF]series", "[", "d_", "]"}], "[", "n_", "]"}], ":=", 
  RowBox[{
   FractionBox[
    RowBox[{
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{"-", "1"}], ")"}], 
      RowBox[{"1", "+", "n"}]], " ", 
     SuperscriptBox[
      SubscriptBox["A", 
       RowBox[{"d", "-", "1"}]], 
      RowBox[{"-", 
       FractionBox[
        RowBox[{"n", "+", 
         RowBox[{"b", "[", "d", "]"}]}], 
        RowBox[{"d", "-", "1"}]]}]], " ", 
     RowBox[{"Gamma", "[", 
      FractionBox[
       RowBox[{"n", "+", 
        RowBox[{"b", "[", "d", "]"}]}], 
       RowBox[{"d", "-", "1"}]], "]"}], " ", 
     SubscriptBox["B", "0"]}], 
    RowBox[{
     RowBox[{"(", 
      RowBox[{"d", "-", "1"}], ")"}], " ", "\[Pi]"}]], "/;", 
   RowBox[{
    RowBox[{"n", "+", 
     RowBox[{"b", "[", "d", "]"}]}], ">", "0"}]}]}]], "Input",
 CellChangeTimes->{{3.7561465625186462`*^9, 3.756146599982173*^9}, {
  3.75614663644077*^9, 3.756146658169519*^9}, {3.756147060547866*^9, 
  3.7561470773207817`*^9}},
 CellLabel->"In[25]:=",ExpressionUUID->"fdff31f6-3614-477c-b49c-b02646eabd5a"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Show", "[", 
  RowBox[{"ListLogPlot", "[", 
   RowBox[{"Abs", "@", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{
       RowBox[{"cs", "-", 
        RowBox[{
         RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "/@", 
         RowBox[{"(", 
          RowBox[{
           RowBox[{"Range", "[", "15", "]"}], "-", "1"}], ")"}]}]}], "/.", 
       "s1"}], "/.", 
      RowBox[{
       SubscriptBox["A", "1"], "\[Rule]", "1.15"}]}], "}"}]}], "]"}], 
  "]"}]], "Input",
 CellChangeTimes->{{3.756316883897736*^9, 3.756316995842103*^9}, {
  3.756317029565057*^9, 3.7563170888037243`*^9}, {3.756317119871421*^9, 
  3.7563171857041473`*^9}},
 CellLabel->
  "In[103]:=",ExpressionUUID->"759425ae-77fd-4d49-8004-d1c7dcbd9e9f"],

Cell[BoxData[
 GraphicsBox[{{}, {{}, 
    {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`],
      AbsoluteThickness[1.6], 
     PointBox[{{4., -5.598302541433281}, {5., -5.172685916164882}, {
      6., -4.684019069020701}, {7., -4.376485637051542}, {
      8., -4.071453286896929}, {9., -0.9888017511100617}, {10., 
      1.3880657032553942`}, {11., 3.519347066498723}, {12., 
      5.670963964788034}, {13., 7.897180908354783}, {14., 
      10.165402908623431`}, {15., 
      12.532745383828553`}}]}, {}}, {}, {}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0., -6.914265697299061},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{
     Charting`ScaledTicks[{Log, Exp}], 
     Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  ImageSize->{428., Automatic},
  Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Exp[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Exp[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0., 15.}, {-6.605582981725605, 12.532745383828553`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.05]}},
  Ticks->FrontEndValueCache[{Automatic, 
     Charting`ScaledTicks[{Log, Exp}]}, {Automatic, {{-6.907755278982137, 
       FormBox["0.001`", TraditionalForm], {0.01, 0.}, {
        AbsoluteThickness[0.1]}}, {0., 
       FormBox["1", TraditionalForm], {0.01, 0.}, {
        AbsoluteThickness[0.1]}}, {6.907755278982137, 
       FormBox["1000", TraditionalForm], {0.01, 0.}, {
        AbsoluteThickness[0.1]}}, {-4.605170185988091, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {-2.3025850929940455`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {2.302585092994046, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {4.605170185988092, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {9.210340371976184, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {11.512925464970229`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {13.815510557964274`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {14.508657738524219`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {14.914122846632385`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {15.201804919084164`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {15.424948470398375`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {15.60727002719233, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {15.761420707019587`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}}}]]], "Output",
 CellChangeTimes->{{3.756316984964592*^9, 3.756316995989621*^9}, {
  3.756317032412005*^9, 3.756317042641144*^9}, {3.756317073874555*^9, 
  3.7563170892784653`*^9}, {3.756317121742775*^9, 3.756317186157452*^9}},
 CellLabel->
  "Out[103]=",ExpressionUUID->"cd0afb62-3d8f-45cf-bdc5-9ed9b1b85bf8"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{"x", 
      RowBox[{"(", 
       RowBox[{"1", "+", 
        RowBox[{
         RowBox[{"LaguerreL", "[", 
          RowBox[{"#", ",", "x"}], "]"}], 
         RowBox[{"Exp", "[", 
          RowBox[{
           RowBox[{"-", "x"}], "/", "2"}], "]"}]}]}], ")"}]}], "&"}], "/@", 
    RowBox[{"Range", "[", "10", "]"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "0", ",", "5"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.7563176823602123`*^9, 3.75631775910286*^9}, {
   3.75631779045487*^9, 3.7563178080241623`*^9}, 3.756317908252989*^9},
 CellLabel->
  "In[112]:=",ExpressionUUID->"87a49bcf-31a6-4239-834b-5abc1a20391b"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwVjXk01AkcwF0z8jMy/HrKEqO1TY6UbXfTSt9v7OsiTzFpWMXkyjFizStp
OkhST6tSlNU8KWlDuXaxkuTILVcHFo1xDWKmqTE0tv3j8z7v89fHjBOxP0BN
RUWF/ZX/nXmaQ7X1j92mT9ss3Oh/eVttF8PFk8GGWr+IOMmqo7BUXxXPYByF
2sNVGWy9GMisTjalMGLAZ2jA7pxaEoQ58MI/myYB1S2VayBKh66F4NRZ01vg
8WYp4OWfuaDZ9545bfoQ4lOvayo3l0FWkyBSbFoOIaXK+SB2AxQ8TuoLs2kC
1+LugnZ+LwTBq1tTUV3QLikTOKwYBK7IQlhS8Bb2GYk0y82EQJidZw7aDcFT
nbxKCncUrtCbLbN8hUDPKyr7gToB5ZtXl7pyhXA8UJ6YSJ+AkUMRsBgrhLFt
x0c6v5kA+3zSwzNNCJ3q3Wz3DRMwvvtXvk7b13bg1S94ToBT/HR7jP0IHDyw
99sPDyZALtPl7TcQwaqADla84yRw+jyeqbeMQlpRXRXviBiIjOHwyLej8JRr
rCsOFUORF9d4cHQU2o2/9/WKFoP6u8SYCtUxWEgxN2AmiOHem4pNkZvHQIcR
5xyTI4bRHkbuv3fHYMSmMldjXAwhHVMp5THjoKF6xaYncAoi685zIpiT4Ff/
ibXTYxoKj9HcV+2ehs49h5UX+2YgKzZ0cqPnLMithxurzWYhTrC47+PUHFB6
K9MvFc6CStcQVp6Ugogh735uPQdrowNPeFjKoPmPM9cTsudgRJZ2QPvpJ7DJ
O30japkE9ohC+Nci5XCc3jTHjJCA60iKlYmJAvjNAz5vOiQw+YJz9mX+AoTr
G4wqrKRgo9e72unwF/g0ZEW9dFUKBMj8+qVK8E7r3UCRSWHntNfnNSwV3CF9
7qkM+ghvavxVvaxVkWX0k9nE8EcovVh7iCFTxST34lodHxkEUnhDbW1qmCrI
dNSckcGRqNhS2m11VKxgjy8/9wk2BFm1ufhpYGzFhzNdxp+hXd9am7eFgnns
tSvDuj7DPwVxGdbqVOQbjI2oX5ZDrKqlW8sAFVMp+uWlvvNA9J/cxS3RRJfu
blb6dgWIcsxSBaeW4WzAKcE4YwFS1xlqlLO0cL9DjaLfbBFSbgc2+DEIjMxt
9k4w/QJeqT5ttDEC+UYxwXJzJch/uT8vqNJGLyo3t851CYQixxM1iTQUuPMk
rXYqeNfB1qjVTwcjrjZ+9B5QwfwEnl7Q+uWocJMePcBXxUTWEWd12XJcbG+/
NWOqhj/2Zz1MbNXFQWImNrFXDdMtMvJbnek4VOVDpF9QxzPVyenO5XSks4Lf
7nXWwL1GrPtN5nqoYiEustSn4HZug7dekh4mVL8rvNZBQYExx7xFpof8dznD
jHtUNH/x4Kartz5ayy+X23I1MWV9jWVnlT52JL9uOGi3DAOlGq8aLUncc59S
p1iphZxCCSPpdxLHepQmsVNaGBbnvrjnKolnO9mE3awW8txLXtOuk/j+BNVe
JtXCizLelZSbJMavoIUdW9DCgi3zC2mZJN6htRAhBIHzz5d6cx6RaHUHrELW
EZjSSUuubSCRedcxJtOfwNvZ4cEXGklMNi8Tc4IJzI5uc9rVTCKdvzVrXRiB
fxmkKJrbSNQrtegp+Y3Afi8yuKuHRNviO4c64ghkCg2d3gtJ9NtnP05mEbix
5KTJPRGJl1ps4wfuEfhzQt98wBiJxX0rfR/kEujCzHwyMUlii2HooP0TAqNC
GSZzcySGfbdFEvSMwFNbz80XSb/+d/x9e9MLAhN03ndHy0gkJm+cX6onMP1x
9mW5nESh23rj9DYC757VCKpQkKjNqWn07yTw0b4Ax1OLJBpeP1Zm20tgyZr6
1duUJBrprh1XviWwSrp2fmmJxBy1VwdbBgj8D0bRocA=
       "]], 
      LineBox[CompressedData["
1:eJwVkGk8FPoChu2VVJgWU0QnS9ni3DaR91+OhNKClETI0kJRSGhDFE6SZdLi
orIlKgqVCiHE2IlpVgZRMUZGyu1+eH/Pl+fD83tXuJ3c6yEhJiaW9Wf/593z
bjKGR0JMG95U1RsciTGtalXb4aB2AJ8P36qRXngUM9Xl4WpqRxGhkqYfMSsY
d9/GqUqrBSNkTDDZ9zUaJzYH+PxQvYpMasJ/VcppaP3pnfhd9Ray1t9yrj+U
jVk9HK0R1RyE2ug716a/QNfb1wHDAzlQPJ0ZM7K3BLkPaZVfnuRCOS9952HJ
Utj427gMmT3Cu8XGVQZuZUieU5bM9yrAq+S/mbFLXkPxTq3EaOdTpH+f+NVu
8A7pdWl+X1RLce+klvt942qM04q1mbGleJyosXFFfDW2edVzW0SlCEvaYA1e
NYYlf9iXtZZB/ZB82OGYGmzcbLPpatQr5KQlgLTXgl4wLaH17Q3mx9ZolDvU
40KdrpWhSyXYnfbxk3J0ZD95oZmXVAm1/SmfUw3paKFtldRoqMT+gYt9ivvo
UPfa/0rJqAqxu6PLIu7RUScZoS9GeQ+jHu0Pp/WasXhzj2JTdTWYK3/5pJu1
4HHB1Z4T+nXYrs75bb63DUOKQ7FWrnVY+WTnrpaTbdAKtDJdlVgHj9UefZvj
2vBfk7npXFEdxiXeH3hW04aED7Geju/rYZMsnrHUuB2B3OujFk4fsVq/zW98
WQfS5taHK5jTsT7TojetuhOmm0OcLjrTwR2WObWT1YleX51134LoOK7wgscQ
dUKpJaa/IZeO9mtbWFm6XbhB22EZLd8M5d4Fq7jxXQjXaJw/09OMnWy3OQvs
uuGF5lvD/q1YwdwSKHr/CWIZE2U9Ma0QDJhE1vZ8Ak1Kubfufitc9b+2nB/9
hNoPnstzOloRmuoSm67cg1V20xkem9rQKzf7rwq/Hgx4az36LN6OtMt/i0cu
6cWxhLByenwHygsMVpbsYUBCmMF8k9OB5n+Gw+4eYSDVoVasoKID+bcL5/kE
MVCnTDGLG+/ASZdXWvV3GNDJyq6x3N+JU9zJish+BoZfttIrVLsQUh9oPzvw
M3z7VnOLHncjKCzM4XMkEyzn7tnvPnQjTaPWOSWFCduuaP2PvG60pQkkN+Uw
sbGeH9y39BMe6D1ONGlgQvLJA/nFUZ9gdyiPc2c2C7TQFaZBLj3wW2I4kmTN
wjsK9ZaRPAN02NJaP7CwNq623FyHgcbZScXuzSw8lDnL27ONAb0H68yHuliI
FXWsORbKwOwK/sgnPgv7mInVqQMM1CtlVVpLszGUKz/+8+1n+Ic+Pxhoyobs
iggt5kYWbFWsL/+Ty0atyY01581ZEH8jlbSjkI0r++9tUNnLwnZG58Odz9mQ
iC+xOHichT2Vt0c2VbAx9XvYq/MuC0sUlRZUdrPxpdc+u0mCDc0FYfU3ZnHQ
QNNa/baBDfF1NLujzhxcK1pr6PLHO5fC+TvTnYPt9C1Gv/vY2OhlvrbTm4Oq
WU6WJjNsJDp7V+qd5uBVYPzREkMOrA9cmZUcxUG+nSinMJkDSyGjxLGAg3/l
67XTD3NxV1HH+PsUB6UbVIptfLmo3rgonjXDAc/5JKZDuFiz+wupl+LCOJ9i
55DCRVxGIfP6fC4GLJ3C5jVy4X/zlGHnCi7Mwkeago15CBbkzfOy4GJSuCBg
7+I+SJmGXm7+lwu3Hrs3kg39MJ+TtXtIngfZ22wfv+5+bF8/d/DRQh6eOvoq
M/v7Ua14wemEEg+Sn6KCy8T52LztkpCtysP9rrL/+G3g4/Qv1fZsfR7629Wy
P2fwYe+R7/rImodj9OH40uABlKYOk4pwHvzeR7id1BrCgblyWa0jPDw5JWer
ZDmCnx4dK8Oy+5AecnzIwOE7fKIa480D+3E5bXrP+PAockoMurCDj90GJX46
glHs0y+RqN7Fx/J3p2+4iUbxRuymk40tH2WcITpdegzjItdcD0c+xjS6d+Uv
H8Mak0KJAm8+3B4V7/TcPYbUqFmkIJKPLaW+ll3PxrChaZnRuXd8iLWyyKtz
AnipHPVpIwOIGCxPP3dJgKozVrYO5gOYI3ZXwihagJrW4FsMywEo6h2oKk4S
QCpcw3Z87wA0opotCgoFyGoqarbyGICVcYVNRr8Audtvpd+7NoCbmZlO0XvH
kUHUlk50DkDzjOdZO20h8ix9ZWbCBqG3iWmbZiAEIuyWUsIHsVZs/5qh9UII
MnKfa0cPYmusZf8FMyGeydnFH0kYhPN9Xbs8JyH0pPqnJbIGkdw2tkbiuhDy
5TTnYfogpNdd4BcIhHiwa+FE2J/fecKUfXNfTyBbfjj8J3MIVn3HwhL8JmEm
TwsUzxqGDS9eZ/nyKTRUl4zmPfuKoUq3i7X5P3Ee7/eLn/4OfYUOFTOXX8hf
VKjZ3jAKWQhdewW/od39YsB6vQAWI44//rIXI9qWfbnd/HF0VRwRd9QVJ1Yz
IUzKywkUR1c5qwnFSTTzi99UwiQ8pQNYjY0SZNlL9VGHkim4+4cUy6VKkoOH
WhhiPdNY46XTuMNVioSryFTVys+gSVF3boCRNHnW1Ln7a50Yefn48m1dSRnS
bnosLE5agoSIa+9uYMgQ3/V7Tuh6SxLZ3nPbfYtmkSPEaEMXXYr0PVyRmBY6
m1yyl5+3Q0eGJK6iSpXazyHGN7M+vnw0i8Sneta4qsmSb5bX/a8pzyGOiYca
5fiy5DZ3q+hmjCyZ/OeBKK18LqmRbXKZUpUj3L6tZyui5IgPu6NY+t48krHZ
cNlH13nEVnhv2oQsIPmRAQpeevPJyEiCVcMReRJl724tKZxPGFhSE6GpQNb1
pudEfVxArODiZihSILTVt/M/WsuTL05BnsOvFcmFt3E061J5IuY2YfcxgUJ2
LrN/UKeuQLjfYi0WuS8kW3xrDipcVSCXg85GeaovImnKbuoNQgXylRu48N74
IqJemZVsc1CR2HOKHhwtXkzi9Sq0W8oViZ6F7PzHp5YQT4FU8wdtCknodnyf
Y6RE3J6MqV29TiFJ12r7v48pkROXbaetblCIncc2geaEEgmwLeqUu0khg6PB
dCeREokWBvwbn0wh+atqpmtmlMhjI9HPlLsUsnrMedkdOSoRvZvpeJhHIRSj
KndjTSqJb5GLq6qhENOgH6/sD1BJaqaP95UPFHIuWacq0olKMs80mm2vpxB3
3R2pxS5U8nxx/FR9I4U4X1/2bKEnlfQ6Urxb2ylE/rZ/Et2fSrS4VDMOl0IU
7yxSQCyVGBSdW36/70+PS47YietUsimyR+TBpxAzy93ltAQq2aF1t3BwiEJK
TTMyR2lU4n9cbfnoKIWkq3MXpj+gklCTS6KnAgp5ZX/ndEM2lUTO47SdEVLI
osbfaT/yqIRWkBkzOUkhlwxjXHc+pZKMi1JeZVMUEvErdSKomEry9nhsDZ2m
kJQW1QMZJVRS9Fe1iulvCrn1TO5qw0sqKRdoimZmKKQy1+7KRDmV/A/HoB6O

       "]], LineBox[CompressedData["
1:eJwVj3k4FXgDhW2ZCllucWtkaUiINJmJJp1fSSSEXBVFJGtJJhOlSLKMlEpl
GRQzhRZtwg0hW/Yly110F9d27Vui7ev74zznef95n3PU3U/aHxMTEREp+JH/
d9oFd8mNHue2pf5p/9LAI25bZbua1X61gxBPs5FYJeuD79Wll9TUfFBeuDf9
+ddgpJXFqy5SC0HDyBd1J1YMjpsEnZhTjYXODR9N9ztJaP/snTihmoxvhvHq
5fLZ+InF1xpVzYE+1UDZUrYA3WUlQSODOXgjWh0ZXlCA3PtJb4ef5SLEaVVm
tUshbAJtXIWmj+C2WbAmKrcIt5fQbw945cFiWldv/PdiKPxTKzbZ9RznZNL2
at0ow726jFPDqkU407zYV2N9FWaS8nU4V4ogO/9aTTG4Cru86nvb5otwo240
MP5tFUbE52j0djryjaUPyB6shpGJzZbY6GJ8iEqWPXWhBi15X8S0xt9AwntY
5tcX7xBWt95yo+tb2Bdnvy+vbUT2s4K1D2+9BTNIbTZOsgltSTvENRve4uD2
Issx0yZoeB0ophpXIsPgQv35kibUiUfqi1CqEEddGt31sBmKJiyF5upq2EbL
t83RW/AkL5Z1XL8OjOWtzvlubRAqCK9YutWhwZd99GtwG7T+sty2LrEOtJau
aNWENtzdKnWvd74OsuG9M1Mlbbjx7oqnU1U9rni0UdhK7fir99qk+aFGaHhc
Oy6obEeGVP0lebMWfFi3eYX+og5sMzl3KNylBdZS/A3K1A6w/XV/Gz/TArql
Wo5QpwPUtrj+htwWbD4s/5e2bQeuJ1ntjpFrhRFHOmdTcgcuaTYt+85qhZom
NSRLsxNeaE0eCWyHTWtc6UbtLohkfqSz4toR+Ff3ayOjLiRJKLPr/m3H6p6y
+rXmXah956mS09kO/12N1YUeXVjn8CXz2Jb3OK4xllKY3oVBb61HH0Q7UDh1
nmO5rBu+N86XtiR04uCkXHUDuxtis5mcNzmdGCJzX8WGupGyv1Ykr6IT3fXf
tTVnu1GnTDGNn+mExurBKT0ZBnQfZNfsPvDDu5ZhS9vKwMjr9pYK1W4oSVho
/nyHAf8+7d6XTxho7rbICgUTXBfG4vJ3DAgSP8zZWDKxrztGv1HAgL2+yPgy
GhNG9QMhfauY6MwLCDjgy4T4s//kFKOZcL51z1sxkYmkUPVtZ1xZEPglzrsL
mCinrEw2lutBntHQucMhLBjG15aa6fZgjY1dhGEEC/clgwV2u3pgkTi1/dvf
LFyZ79zgG9qDJ1FHo3z/YcGRk1idMtiDUG+RvbmlLAhz5WY+l32A+/yZ6gER
NpaqR2pxjLjYWXH9jtN5Nmq3Xt9wwYyLX323+9lFshF1IH3zansubBwVMkkc
G2IJhebOflxoKTlmL05mY+HbiFdXGhfaWZXKO16yMcymZTeL8bAjdjA8cIiN
hiQt7bIGHo69WGFwaW8PrsrV69w70ourHup9A7I/drAc3og39KOz3XDlmVwO
lqbyTpxi9MPKm3Na8RkHz538lTn9/XgdsM+EXsCBODM6hC46gNWGBcdkqzj4
t5u+6dTmAdwUmplPcTjo71DL/pA5gLM+jAaaFBe+LSMJRSGDSPsQ/YvxTi4U
EkKgFT0I07EH/nxzLuh7JccSEwfRG+Wgem0PF1LNqnsC8gZhU+jyfurH70eN
9ou0+gYRL2MULnDjYqyuMCTRdggRIs8cgsO5OFUV6X5SS4hfGDUXU8u4UBHs
kvy4SQgXU6re2Uou6sWW5IYSIe7H++QdquVCk8RPxh4U4siIh51eCxcM+q3w
f+OE6A668OIrh4vtT++nM8aFuFJprXJEhAf51FqmaeEwbs99urxvJw+lRX9f
qKschkt7mH2hBQ9+3VZr7FqH4Tkm+VDdmoeqFa0+LsJhzCvylos58hCSwPgU
rDwC4asu5wUvHniXhYpPwkcwbGWt3niFh2cB0vuou0eh6BgWsZrJQ0MKJeSx
4yicml/dieXw0F+5KmOHxyisztTQPwt4WLVSe/h42CiGRGrJ1DgPkeVml8rz
RxHY97B/nSQfjgphL3zXjOEf5xV25Zv4WHgxSSn5PIZb5/dmVNzkY/mHT8b2
S8ZhFybIWEjmQ3+xyJEBxXGsU+XbGt/l4+ihZY/kfx3HQqpZZ90jPhokdHd6
eo+Dtt1oZFs1H+k0j9OyHeM4fT1Y6eQCH/fO+QkN9k9gc53/CWnvXhiULfkU
fXgCXOmyiRz/XpRJZC/iHP3BFoRuHdQLbrxALT5gArq7o3WzI3qhcvfw/qHY
CTjEynVnp/UipXJv5b3iCdyvtW1ive/FDRnDdIU1k9hwlVG+ykKAiIwvdjMj
k/DhfAwM39EHW4PCU7rTk/j7vjA92bIPKuV/Xnefn0SUD8u1yL4PdL6wpWXR
FNZHSTyQPtqHKU3G3scqU7BxKgkSi+yD+6N8a0/bKWjscXBbX9OH7UX+u7tf
TEHfvvVrhH0/RNq5pPjsNMTOb3p69vwAIodK7529OI21MjYbqTEDWCKSJmYc
M42UZpfKkhsDUNA7WJl/axpC64u/qGcPQDO61Tzv6TSCQq8xLdoHYPlHhU1m
/zSS/bZVKOsO4mZW1qEY+xlsmkg1ZHIHsfa0Z7CDziz8yt6X0D2EEMzecZQq
+QjaQfOCnddGYdnne/7GqU+4mS7X6FoyARtBgq6KygKKXbeMbu2fgvCte3jt
48/w8B5UpCjPQl++c7Wp61fQjG7m1L+Yw1LMurGnv6GzeOKO2e4FmI86za2h
iZDHo2MBZSZf0V3hIeq0XpQccn2iq/WLCMmPqXRRmxUlrDTm6YxkUeK5KIjb
1CRGLJmXrHqMxcnRwHP50iniJCC9ymNPlQTZ4KXbZOUmQZQj6I7vrCRJs8J6
qSDjReR7ufCC3NxP5PWTiNT14pKkc/a59tilJeScqI5tQ48kEX8hveuSvhRZ
yj5r4f/yJ1JXb3X9cL006buvnpgRupigKIdmZLaMJK5bKVFEW0LCTg57b+mQ
JQkpnjVuakvJ874HPh8z5IhT4uEm6YGlpE76s4OilTz5tPO/+YxSKfKG/XiL
8Ls86e3bEVwRLU1u6y3EPL2rQDJNNv7c6CZD/ExuveHtopDHl4PkvfSWkbGW
hudqTAqJph3dIz67jKQXHc9pdF9OfmPfy4lulCVuGvIs07HlJEk79XHjHjmi
5Lzlspz3ChJWFp+0p0iOzKhE/izgryDWP9P+q9OQJ7lCG5axvSLZ7l/jLB8r
T4zzTWUFzxRJhrK7RsOsPJF52cZrlVMiGm8f3LZxViCy6Qk1B92USIJehU5b
qQIJyH61fzBbiXhOS7S+06EQj7sz1lFjSsT92ZRa7DUK8Xp+kvbHOio5HrHv
i+V1CtnS9ipWT5tKgva97JK+SSEPmZuMVHWoJGY26GrCbQpxmDaSEF1PJU+M
5z/fSaOQUyb2zqUbqGS+/Hvn/YcUInVyRlltM5UktEnHV9ZQSOJ+khNuRiUp
WSe8o95RiE0Ff7/7LirJOt1kalFPIbYGKyJNzanklWLCQn0ThRSfvEOT2E0l
bCeKd3sHhcykyXHDrKhEq3elKb+XQk7UDuS67KMSg5dnVf7to5A1Bb4wcqCS
LZdZ88cGKKTr4u/75GlUYqWV9nRISCFhA0rz5Y5UEuinpjI5SSGrDJdtX+1E
JaFbL84/n6aQ/bKCtqkffFmG//70LIVIf+UJapypJCkvK+7TJwppM6yODThM
JZnhEl70BQqxyBIo73Shkod2x3aEfqGQ6eOpBkquVPJyTfXqbd8ohJEvWTX0
g0un185//04hK3J2MF8foZL/AbaxkWc=
       "]], LineBox[CompressedData["
1:eJwV1nc8Vu8bB3AjJfOc5yn9GnYhREYD5bpKIYXKVvIluxKKEhWhkpQkoTSk
oiWSIkRk772y98heJf3u/npe79frnPs+5zzXdd0fUevTh23ZWFhYTrOysPz7
jb5kvVTBxkv9omT7w802Qeq51SIHTETMYDbBebs8lyP8zcv0ExFxhErD0oHu
yfMQnRUszCHiCVnlva9/5F+HkzvdT80KB0Kacn16l0sEVP92CBsTjoQ9qzwT
X+a9hGXNnZIjwvEQE8V8esYnBRqyMtyH++OB5/rWAabIJ3j1IiJnKPEV+I/4
GAVlfgI9Nz3LQY03EFM2smfp3GcIX54W3mefAJzh0w3mFl+A8bCAbbw+CYw/
aPONTHyFp0WPXYeEU6GdSyr8tHQuTEV8lG67mQq1GWf0A5xzQdO+uKtqPhX2
Gj86w5WUC8Pss0Zp1WngWmheYrftO2zfqacaeC0ddh5/qnZFLQ8qEhbYJEe/
QpH0/5aulC4ABiw/xiuXBZxt0SN3bAtATSJM9ZpNFiQUjq4KflIAt6biJy9U
ZsGko3oJ68pCUL5Ta2v9OhtS25Rf/JkthMtFsjoKljnwMzWsj/1lMcQlfpJ4
fS8HPjzxGytrKoaqiN3sG0pywMHMZasEXwmstzdN/59KLrBct23yPlMCRez+
cizM7+Ae47XQsb0UBHY2M8rz8mBybnvBnoQyeJcQ2HxSrggOf+J6xBFXAYOM
wZs6VkVw4qMcbk6rAEkPHXWpsCJwNpz0UyqpgCc7uJ92zRfBdzNzye+jFRBa
eNPO/HsxzE046gluqQSPrtvjWkdLgafNMbnrcyUkaY7FbLhdCjq6n3TSCyph
NP6gIfu3UvC/ErLTraESHFzoT5mSZdCUVGpxbrYSzP+Eem+ZLAP980ZeP5Wq
4DF3sR+9twIOtQ83l72oAvWdXkd9jlXAOdfahUfJVdDiLLNl9FwFZNiq/jz4
rQr+VxXUW/KqAnxSOI2P/KiCOxEH9l2nKqHGt/IDzagGvw1lfH+bK2H27+2H
4FEN9lAZOexWDUIWCypOMjXAEjOT1hxUDb3BazBrSw1ELFnXUhRbDXdenOFn
xRooKLQTiq+rBt6Mmp8ahjUgZbgQY6taA/UrknprvGqg30HyTStrLRSFZScZ
5teAU+jFzIqQOmgbOPJL61AtsE3HtH2Nr4PrD4d6rcxqIcqkgCXhWx08TIw1
O2VF7lvH1AieqgOnob4oM9dakHkZl7/PtB5slnmwBYfUwvCX6opvwg1wKaHb
/kZJLTj3bOxKftcI0XUHeDbtqIP2Y42c2YWNIF8we9FWow4MGq7LlXY3wp3z
0613depge3GfZ8+aJlJ3BvrVpnXAnvicErjWBOatLX86z9ZBhLeo+jnLZoj5
yGfu/roOspmrI1WoH6BYNz1cx6wHLlF/ybbt7dCSdYRXs6UeCnbckb+0tx26
sPWGSGc9XDV9tE3wcDvQJzyLFvrqgS3ks9aRE+1wNih+xZfJevi1OGxfH90O
Q5ohJw9zN8BQi1FcOVsH6NuOHuNUa4CSCMmNWSUdcEBhZ4hTdAPcSFZWsGzs
gBKHg0FpzxpAu2KXymJPB+QfWSJCvWqA3GVH9+342wE35luvlqQ0QLpHiONn
hU44EzVlFFzRAG8N5+Pfh3eCncFsoyZHI9yiiqWf/tcFQju/NB082wip2wQ/
6jl3wSkl4yox70boPnYaFry6QGtGXe6vXyOovWUamtzvAq6p2hv1dxuhf9/R
i7xlXeDyJIbJldwIGn4j5Z5q3aDjb/Xm9kwjzE3zux8W6IHoVds///BvAnFB
679/xXvAOiuuUvFWE+jtSQ58q9ADT649+njvfhM8DzV9xKnbA+yOIuoBr5rg
sPzT/Ey/HhhZu2uUt7IJ3joorpEZ74HZz4rKTSLNYN1s+JW9pBdSCwWK54qb
getBxynXxl5ItC24uljXDEnmzuvaenvhToeb7IrOZmBvuuaZxtoH88dEL52e
a4bYhjQl1219sDjHkOvf0AK9tSJxrTF9MDa9q2fMrwWcKoZDUj37oVCX+3Pl
gR/ACPEEyWv9cHpKS2Ha7Aek6S/9GRbWD8Lpsfek7X8Ad7nwfpeEfvhtKGhS
7PsD3pQe5pDs6Qcn3yiV3k8/4GfRZ8+wgwMQpcc7f1OyFVy/+1uflhwEm8Cu
7skVbSDUrbl0RmkQJqtpJ2vxNihmW/7KGweB1eRrdYdCG2zA4PFAs0FIzFBy
Z+q3QWPaPZ/YoEGY5eWo2H2jDXa9f/GocXQQMoS8dIdZSd09KGjS+DwEfjXy
E5xX2iEz9calotwhUHk4Fml0ox1ONBwQO1Q5BAY7DMVeh7bD95WVjscGh2Cf
7cZ2l2ft4BnSOHd+3TCEq44fsf/eDh0BgwLvfIZBO/D5XTbuDkh04TH4374R
aOdhX8EWTeoyiun51ngEdL3Nr6q97IDe3DWPd9uMgGFke/rlxA5Ys3rj0MnL
I9CkX3BJKq8D/LP3+mV/HIGJU2HBv0c7wJhx+YOT2E9o3td8Mn5vJ/z6MM7M
+P0TLBxv+cnNd8JTrxODm03GQG2Nyjse327YnLV87prFGAgcYRaKB3dD1pI4
jrbjY4AOSc57IruhPbhbJNhlDJ4tnjCNSewGoScWJgOBY8Dg97tf0dkNUbn6
uU/Tx+CVmr3ajGYPhPIqP2KIjUO/ZvaZ/wR64crjhUNTw+PQuk8pwrmyD1iq
2zH9wiSotfjM4ZMhkDhrd95QehpEIU7gqswYdE/fN+bOmAGd96KcO6InQKfH
6WKo6xy8TVfo57g0DXrdITJCQr/A5YO/+jPfORjMsfYpePsbVi30/Sfv9hvk
6DpBDcs/4C/RKS75ZRG4YNqqZXIRZOP54x4Ps6DWiPmsmBELapwzF8t7xIYN
32xYzWVZ8eLw7/iEvUvw4/XcYyLTrJisGBnMKORAOw739rIyNgzckaG71WoZ
Hnfz+sgTxY5nk0Mrass5Ud5epuyA1RK0tM0rpiS5sJwhy+2uwoHrjR3MK65y
45d3Vx7Isi9F59aJ2IZUHvRilT5Y8mMpfrlo8ezHCC9ytVzQdk5ehr80NvEw
2fix54Vo2GNvTmwbCap+P8SPYVKrl6QaLcfhOx5sOvYUhkTZ5VuJcOGY5N2N
FbkUmodZlPH0caGnGWfpypU0zu15Pv84kxt7f4XE5VjS6P3lsV9uNjdqt6lf
/PYfjSyKUbwDudxoYDUdm2VF4zLh26KKxdxYe35uJO04jQLz5/fl1nPju+Fs
x5f2NCq9PRDZP8aNTSHL1/93mkbnlVPbFcR50OBNeMChSzR29ew+/+0aD97z
emuuFkXj7sdlMdJBPDg76Fwi+oDGJ6bmpaG3eDBVpM972UMajxW7ih2/x4O/
LD5FVUTT2PT+SQn7Mx5Mmf1TZvaUxiqvRZG9mTz45EiqhnYcjd/otML8KR4U
1Dr5PvwjjaLFe6fk53iQ9fW0kW0KjT7+lUIRv3lQmdJGpU80qs/2n3Fg40Vl
a7q75DONaS2rhJZTvHg4PPPU7Bcak166u+nI8OK7WMGUjd9ojNmpsLbUiheN
tQQClpSR/fS4/H7b8CLL+dvs74k7LbsGNzrw4jIT127zchrFr9xLu+rMiyvC
BMveVdAYmzdvhl68uBc79upX0/hc/1vEhzBelJR4MOLWQGOclYFAVD4vStl9
MtLspLHATfZSQREvLsoJnmsl7vfj6J0p5cWdd31ZPLpolHrx6aNBDS9me/3Z
/6ybxvjBtUa8HbyoH1VQNNNL46sz3Xd9fvHiV77VIb5DNL4NcKftN/Fh9tnj
PpJTNA7vsLgSsJkPf6rKWL4ilp3aM/lMiQ87SjwSZafJ/dYrattV+JCO1k2U
nyHPBx8izDX5UGNxUEx+jrzP/JiwniUfmmRFTTMXaIw6dVJuyx0+LNPVivRg
Z2DTesPHBmF8mEm1YT/x6hY1yu0+Hw5VpliZLWFghA73xLtosp9GB78qBwPv
Sb76KPWKD/ea7hKfXsrAkI6+Hety+PBWxGH9w1wMvGZ0fD/7NB/e/J855yuK
gTH6LUdt5/hwdbyVA5NmYPo+I+f833y4jb11szfxxE6tO0GkT/IPyizsZzDw
qIRMPZPix59m9Ve6mQxUnJ2wXi/Dj2dtH1+dF2Bga8SVC3ut+HGl5IF1H9cx
cD70d9BLG360XKnHziPIwBXBZ6OXO/CjL8tdc2vifb52WaXOZD3tLnNeIQYm
O+osNfbmR4WJW/FHhRl4Q5URanefHw+7FaS0izJwS8vT+Gul/HhiI/OQjwQD
KTmHuYQKfmw7sk04m3j4spxWQzU/tv4ROscqycBY8S/dUk38uJjI/d2HeMWJ
GuGiXn60ey3W5inFwF/e7PuXslCoefqpqrE0A/uf27lFsVJ4S7sk4zZxXVlh
pBw7heqTXGUFxEkiIf3GSyk8ORsRriLDQKfcdVdf8lDYvaKsdKUsAxu5t2Zr
r6bwwm5H9tRNDMxTjuxvWUNhn0OryxBxssUCv+s6Cg0bvjoLypH/J+HbsUhh
CuPSHq3zIdY20F8Y2EDhzO73mijPwM9RDtuCFClMfm/C/mYzA1/kFB8TVqbw
q2B9SD1x2LDc1Q9bKPzxUSyJTYGBLurTNc3bKTxgMPvehFiq09dNFii8I3v1
+QJxxMYHb0v3UxgsWh6pqMTAqUnN5366FHat7r1lTqyfOfFQRZ+8z9oxzivE
Sw10bj4/TOEfk8mb5cTu3vNOF80oXAkGLTbKDDxcbiK1icxJp/Zztee3MPBd
JLtIlwOFjwLsVSOJl9skrIp0ItfrvJBKJc6aW7qMw5nC+b0bY2aJ5cVSelrO
UuiuOkqd3spAHvcVz25eoXCTbPca7W0MdICsqN3+FBpvfbnFijhn+cnQuQAK
VcbXtXoSX3iU42sTSGHxAdXGeOKBfLf/doRQqFc6cXnJdgbuCRUynbhD4UYr
VmoN8ZOjRfpxdymsmJiRlyc2HReFFfcpNHmTKGJKnLemUnA4msL7tGhpLLFY
j/fKmMcUsrOJd6cQX0yQ4jV9SuFszq7gAmLlPT4LObEUUivGwweJY07JNz94
TeFDn/rbG1UYuLituerQW/I9XXxgO7EZ27WiZQlkP5eLfprE1P3W1DNJ5Hme
3C60Ir6cFRyxP5VCSbYmo7vEgz+ywubTKFTY0OX1iNj492TIy3QKzydq7ogn
lt1qHsieRWGspXRwBvF9g+CAxGwKrVQUhPKJ2VyzfC1zSD0NPdapIG54LXHh
Sx6F2he+eXQQaxSaeTgWUJgp/8djgPhd7023VUUU2rm+ZY4Tr1mS5fy9mNRT
ioDuHHGA6KTTmVIKvT29xf8Sj6lL2IuWUzimInafQ5XMh6Nmx8srKLx6YX8c
N7Hi/a9HZGoo/BS1NVaAODp5wqSxlkL67uXba4k5qzYYXqsn9+8wXy1CfHbU
9OCWRgr7N3HtXk/cxnPzQFcThRJ/q5ZLEetIf9W+00KeT3fORYY4RWtiD7RS
2PY545wcsajthl0jbaRfe+yEFIhvXjHd+aCDwkjPbbZKxLOPg1T2dVFoIXLm
wBZi64zMLbPdpP+vWdRsJS5rGld43kuhkaXqn23EKnPr5Qz6Kcw4qpu/nTh2
pak06yCFLVubFFWIKaUgiYQhUq9x6/GfvQ5milmMkP2dXUb/Xd97alyIe5TU
wz7WXf98KGj92tQxCqv/rNnyb/30OJNV9hMUmh1iLfn3PFJ5N5grpyi8zDvH
oUx8tyuDP2eaQrfF3V3/3meRZZzbdZZCsckNNvLETkLrOYXnKVTN6L4uS1yr
ZrKk9BeFqxRyDm0kRrMbLF4LFKZu4Pi6gfi1R8aC1CKFKWd/VogSC4SNzdX9
pXDzr2/XBImvJIpP+7PSWBiW1/U/4pEy43FFdhrDNuzsYRKbDgeOtC+hkS/E
6SYfce7yjIFbS2nkSQtt5CSO2iPeObicxjOjnXYLpD44rI1bI7hp7KsMfTlN
7HI5sEmTl8ZWUd3bP4m10karYiga6YoxwzbipHqx8oMMGo0FrJXqiYWmjYoX
mTQyo0ZSy4in5NNzzFf9O0ePZ6UTW+qOfuVcTSOnWS1+IC5yEktPWUNj8yNX
p3/98eT59WSGEI0BSdvTwoh11xo9L1pPY72jq4E9cUS3XNYRCRo1jPPnjhB3
v+VsHpak8WS7teFBYm9Mp/hlaJT+piX/r3/f2Ip7GyjQeOpJtecS4jm5P+Hd
ijTKm1rVz/ybN3N1ie7KNI69+zncT9x840bf/W00Buv0YAkx1/vxwy07yfrN
uqG3iY09i0+dAhp9Jbo/Xv43P3Y/v76INFJ7le+eJlapNc0U2UPjTbE2Lz1i
h19fN9rqkO/pd4J7OXH+nlssP41pXH0g28CVzD8Gn8Pay6Y0jq5pl7UgPla/
aytlTuP7y5ty/s3TGcfpE4oWJCfuVpASJpa4fbTeg+TQSqWBxgIyf/0bpd/9
JblTIPISD0W8yzn/CB1Iru/SUzhN5v2vhgHN3Bs0Hrp/Le0gcbIGj+K5mzR2
Nxj/USCWWH2I88dtGnd8rXo/Sc4Lntym5LhwGmfbJ+vOEDes/smLsTTe6ztr
Ya9I6uH7iiznrzTqmXeCIDnPpDdvey2aTWOq9h7/GXL+dUWZhdeQ3DiptSyo
nNjY5dFJ1TwaPbcVtvsQ71grtXppKcmNFwaS28n5yemq5hbdROMds9kd98h5
+3id9foSksM0GwJSqsn5raokI2c9S6PaUFlLHHHNvqltcySHebD8rblIzHnu
6v71JIf1HpxVkyR2qXzl5s1GcsGXi4PnNpJ+ujqZJctP5qKM72+K5IfOUX+L
YPJryfjgKb6BgetzXobrHSF9ZBOws47kmZBN36SrMkmfdgXmC5E8ZTe5pLJQ
mokdKivn/rCQ+ZM4IRJ4m4lX/DxOPhsndXHFYEHnDhPjBh54WBK7GyTX89xl
omKaVdBa4uvT7rdCwplY799Ze3eMxncq87/vRzNRzWTXjP8ojfPZf+tevGai
On3rieMIjSFVPMG5+WT9FX6e6gMkXz475XC1kIltd22OLvTT+OxsmYZ2MRNf
Fpw8nEacIhDyq7iMie2Ri+e3EreYMx2qa5m4vdz3k3wfjZJdqzU6u5g4Nhqn
LNFD4+bkC0KxPUx89tzesYfkZ9WA5nnbPiYu++n1MZb4gGT0+4FBJo4sTQgT
J3Y7ISI0Ps5ElmkfDzGSv713+M4nTTJxjbrcqU6SzwN4O2vOTjNRYb/GxRji
iIRnQXNzTMxPfzMoRhzjs8Q+7RcTLdgDtLs6aHx9yHa39wITV1WVZD0jThbL
E1RfZKLWzHcDG+LMSYn5v3+ZOCiXxLqB+P8Qh0Z2
       "]], LineBox[CompressedData["
1:eJwV13c8lW8UAHCy7n3ve7nvvZWMjBQlWQ0Nv55DkaQloyRxK4QGWaGoRGUk
yaoopaUUyU72XiGyimzJTJHk9/iHz/d+7n3Hc85zznlkuWcMTyzg4eERx3/m
/9+/yBVUO+651bn11FXV4wFbC+tlDExlDqG3G5qP6QicRHPFOVdkZE6i9h2L
WBKD7uh+bpC0gMx5tKQkLvhsyjXk8J/Lqd/S19HB6TL5OP1IVD9jGzYqHYUM
eCUWXvB6ilxLpFRHkqIRbDcTd2h+hsRvN1T82HYPyZXabTRc+wJxFYHvu00s
SpAvO77ky0vk/pKRMd4Uh1RUnP4yaUlIqPWbwg/p5+hGst+F9ZPv0Ofc9y5D
/c9RU82MfnhgKnrxJLLge9IL9Fo3uSJ6WRra47Tn6OC2l2hHrURkpH46Cqdn
hvfZvEZXfti8eHEjE7HvlS4Ya0pGH/WHhLdU5aCH5bGO36UzULBKgA1rQwH6
GflO8WtgBlL35+wbcypAujYVXXXTGUiYLXRJ9XUBGuL7bZxZn4nUVjDka1YU
oo3/7dl83T8bXdkhSbxlFKHa138XKIx8QFTzwjuaWcWIjegWTOVcxPIX1ng4
XIy2yIdt9j+ei8Z2zS46L1uCgn8+n/D4iD1ZGep/tQStu/XpBDchD42UJJzS
3lGKvMuV9NWOFqD0Z9J82sll6FlSmnzCnQIkujPT7HR7GaqL1OZbUVmA+NOe
nJCllaPlNgezl2wqRHycpyBjXo7K+XyVeThF6GBsqd3Df+Vo8X+t7JriYqTn
LDD9WrkSwXLrEb3ZYtQ6LpdUa1iJTjLGKvLXliAjJ6GVN1wrUXaz4NXUByXo
4Onl8RXZlYjrqv77vkcpcoummp5sr0KJr6+3OiiXo9wXH+88165Gg+zBQH2r
chRX2UN9tqhGCq76W1eGlaMjina0LI9q9ECT8bBruhwp8xx+8jCpGoWWBVqb
FVWgtXwCW2iSNci16+bYDvMqpN81s2eoqwYl647GrbhZhSZUc+TzZ2rQyPN9
Rnz5VWjxa+trL+m1yPYslZajUI1ocd4hvTK1yGw21Gv9RDWaUd55a2x3LYpl
VFyhdGqR9lGvu+/iatHW/zzNfSxqUWWjluunl7Wo7fTq9SNu+HODmdetqbVo
SV1Ab+WLWnQpRv7JvfJadCvSYOc11kd0I3J295/RWnRlRbXwXOtH5PVhy5Oz
mz4iG/QxasipHgkw3ZaEZX1EPHG/MlsD6pGi7aKtc/kfUSS/ZFv543qUFa6a
cbj8Iyots5Z63liPHMV+Vw98/ohWGv2NO7G5AfWYyWzlTn5E/bYKL7/wfkLn
V71V4FWqQ3ahF3JqQxpR31HXwMpbdeh0z6qulMRm9Kfx4YaVu+tRh0UzLa+s
GXkrGpVyD9SjA5+vKVd1N6N4ubeiMYfq0caKvvM94i2o6uDicVHresSXFM9a
7N+COF9mQqS961Gkl+xWt6OtaPUeA953SfUojyMWtYnVjnSczPZHijegdUGl
OTqr25H3jumDlrIN6Imge/d+3XY06jjipLqyAQVON6rYebWjP3cWvR5Y34BM
voYVR/e3I22vs0NF+xvQ4AvWz5ncL6jZaO/Z/QENiJD1Vfi6sQP9Tn0zzCv0
CZVq3lK5qNOBuO0j7FjhT8jvYIzGUsMONFwcc0hv8Se0ICR9x2H7DkSFtTZ8
WPEJ/fk3ZNN0vwPF6crJ6ep8Qt/bjJ/VLOhEX4oyTSv9PqHKSIVVuZWd6HjB
k9thCxvRjZR1akebO5Guq13a+NJGpFertelfTydC56w/WCo0okIh852ac51o
GVeyx2FzI8p2DTmZrvYN0RbMmulZNaJXRtPP34R/Q7mW+5plkxtRMKtC8aFl
FypdzHbls2pCGRpL3+053YUywp+vuXqqCXVbnEF/PbElv/+U9GhCW15xjEwj
utDuzfmLb95uQv07zS8wq7uQUJSFqU9JE9p25UfN+S3d6Fyn+pmEtZ/R1KSI
i+HiHhRc5lKetbQZyS3lzs3J9SDSNHzz6jXNaM/2lOuv1HqQ/43rVm81cZxD
D8bQdvegE8HRS4TNm5GhysOSnCs9yPWoy9zw3Wb0ylZdfPVYD/L8UBjqINOC
uK1GH/gqe1FtnYl5pmYrIu52nnJs7kVGR+PcBPe2omSz05Jfe3vR8Cc5EQer
VsTX4n8+k7cP+V+sa77i14oef85c66jRh+ITGrp7P7ai3k8yz77E9aE+2Rdn
L59qQ3a1QyEZ5/tRKm/j4m3p7Ygdch4p+Pej0GOfoLqqHWXuFRwOC+tHFtSq
snNd7YhRI73r7Ot+RCRXCwiLfEEvqwwFFHr60cuJLfe9bb6g4fL082H7BlBA
f4G62dKvyLHIl3tGYRD98mvcfHFPB5Lq1hX8tXYQpdg0LF5s1oEqFtBfeMEg
ktW54ZdxogOtgKCx64cG0cFFljJyFzpQc+Ydn8cBg+j74KP1l152IK03T2Ka
RwbRB/+HnrbMTkTdLW3Zlv4dra46HtDe1ImSzpIHluz8gXit3Z8ybnahymjO
+VcmP9A5c7InLaYL9RaKx2of/4EeP7y2zTGxC4mLrfru4P0DddLqDzBwnH3z
dK7kvfuB2kp5DrQxu5EJ2/ut3bJh5KwqrzR8sxv9eTvGeT8zjNT9ZvOT7veg
h572g6qmo+jkatdn4V/60OXYv/t/Do2h82dTrWNuDiGe+g7I9phABhWml5o/
jyJ5Z2t3I8VJZLkk41vJlwnUPRlhwnj/C0nKiKfdbfmF9HvsLoQ6TiHaPVOu
uvoftKc7ZLWU1B+00zQ+O8Z3Fg0WcH1KX83gPNiwBhnwgDLVuHTb0Vm05rKT
j/MPXiDQpFXbxD9kl+8kGHGMD3b8MPu9zJgH6nT/pRV+44fP+cd5zZR4IdWA
qO1HgvDuWqGFzCQvKGgsoRvYCYG1gEtHdfUCCDv8TC40iAbHnDzfkdF8cPXM
vuSWC3RQsVldbWDFD2OcejHFXQR8OSl95tVxfnAyut3G3UNAoAOHJWzLD2H8
5g5R+wkYcJzZX3OaHy7aB03MmRLwyKvi034vfjjup/84+TgBoqH27SYR/JAs
c+VN4gUC5rIThiyr+EHL1/jJgkQCathKDJdNAvAuSFhInsaAradODdzVFIDz
22n18QQDEksSS/KRAOx2Ec+TYzIg2EvNl6UrALf3B/KLsxlg0LthNsFQAIp/
fVEZlWBAeYbWyDd7AYhe8fbANhUGFFma1u+LEYCCXFqxnxED1mVFJrk9FICQ
rlvmFSYMeLyo5WbMYwG406UnJXyIAb7l5gZDLwSAKeC7PPgIA7TXcYv80wTg
9e5lOu7WDMgVOpWWUysAXGKVzKQbA7ISL99V4hMEwckNsbejGCBoYCweISgI
RRPL/5TdZcD+AYUoXkIQfvcZbfl3nwF9clXhjSxB0JbkOlnGMYATJRrqIyUI
Bo1PcxkJDLC/8vJawyZBEFoWvOtfFgMkDja6eJ0VBH6u81OTNgZYTz772XtO
EO5eEsnX/8KApFDPc/vdBCHwlX69ZgcDdlTJOMpfFITsN/Wt4t0MOKdt71Ab
IAglR5LCcr4zoEKJ59jyp4Kw9IizXPwfBnjyKu6rbBeE6pozueOLSejdzvgs
3ykIB7LCPscsIWHftaGjl7oFwUx2BblTnITlIq/PbPguCEEO7SURS0molFx3
88GUILi2iMVJLSdBauPWameOEKS4ZljXqZKQf9rQYOlOIThld/Rsox4JSslr
G9wMhEAwplt6hz4J4ZMLzev2CkFB/JF/73aRYO/VZO9vIgRm4xn6wXtIWHjD
PGDsmBDUPxBfu8qIBOt46/Kii0JgbttUTztKAtHmoXc6RQjWG+VPnjtHwga3
58ybaULwqnNhW7gzCVbsz3WvM4UgM0YH0l1ISNdbf2QsVwgkuy76/nLD13s3
4uhcJQQtFkzSyouEvODjdz16haBk3dnwYV8S3LX2DPstocGR1Gf3R8JIeNzm
9fapBA365T6Ydd0hocYtwb1UigarKPlnn8JJkE+k8REraJCbo/PrXSQJ9eIF
okFqNCiQvHD2xD0SlH9qaN3WpwGfgcIxn0ck9DyRDYv1okGk5b5LL96QMOTb
Oc3nQ4PKdjm1y0kkjHMfHrW9QgPzGv8dB5NJ4JGWXa12gwZa1aoJc29JEI+Q
yc+PoEEzv83xLWk4Xv7Soz3JNDDysDa0eU+C6YmvxvqpNDgpfrFiRQ4JFtti
sxIzaJA9Rkv/hm0/J+XvlkuD395Zw6a5JPi5SUnRq2kwtcBzQKWAhGybpQZK
AzSIXhxYGV5KQoFOe1LIEA2GE/d91SwjoVzuvujkCA1od1OdOrGbvkp2vf+F
3y8jS0q+Aj+/qaTHXn46zCmLPLpfRcJKPYlnTtJ0OD7eskS3jgQV+VZm0zI6
FDyH6AbsDfx3z22Rp8NEQNZzq3oStuWKI/41dPAsMXF1a8DPv1G88c5mOhjn
/Gm/1UhC2Eox/gxjOoSGXX5yuYUEcwv5p10H6XD3jeiVcezlYWv1hc3pwE3Y
uMqqlYSUud0hx7h0aNMebtjcRkJD42VJ4TN02Fve+f5rOwmcq0Prjl2jw5/V
O5xHO0hoyZxuCgqgw2Zx4627O0mIGxX0TA+mg1+EdvszbHVz2TzmHTqIDoTf
M/9GguFak93pD+nQxV25PrWLhNDODyeYWXQ4fC/wtHovCWaiVbSNOXQYaLja
5oW9bHdLAjePDjWrWhWLsZPTf46lldBhif9Fe+M+EupurrrIbaDDioThEOt+
EqKLNsgGNdHB1lx48TNs7sy2wrQWOnyLMrnUjz1ubUEwO+mQG7WTaT1AArX1
dnjaDzocPSMtYjRIwudzDzZ9G6VD1q7+5kDsB89ftZE/6eA4lRhSiK26qHQZ
9w8dGgeXFal+x/k09DeRFCIg5upKi7/YS5YRhhoEAYP63PtKQyR0mIpOWjEJ
mPV1qz6MfbZAbUsahwDdoBX0NOyQaOsSKxkCpv5TmbT8QYKb6+VzXnIElM4e
oq5hWxjGSEfIE1BvF6KSiK1ENLpVKhGgdX7A+Tc2p3dMrk+FAMvJs/fFh0n4
k8es5V1LwMf6qnJN7LLzOis1NhFQe6duw0XsN8ZWDfs1CehR7HC9jx2pdsHH
AREw4huck4VtPZDy+aEOAf1EtM0k9oJDy6+ThgScDKGvOzJCwsA6WK9gTIB1
SUahM3Yty7xT6yABty2ecAOwY0tvb3KzIEDbiL/sHbbf49c9t6wIeJzfHlqG
fdqn4tZL3Pci3hQ4tGFrbuQb7LQjYFTV78ActtxC6fC/pwgoC6mwEhnF9Wt0
s7aoIwFJxMhlKeyxCpNhNWcChFF8mhL256dO0QZuBPD0xPFsxv5wJVjXxoMA
1fJ7FrrYT46+GL+E++q9uh11+7GDtxTH3PMh4NjUQXNzbBfRb/ppVwiI3XV1
9gS2+cTsr49+BKwYv5R6Gnt7jdijoesEHFHgv+aKvTph/V6hIAIozTynC9hs
//0zsiEEbAw/7XYFe5p76qnmbQLy3+SFX8Pu2Hr9gGk4AU4SZz8GYpeIx885
RuE5wENlZQh24q/chMB7BEj6v7sbin2nrs30aSwB7cx0pTBsr8Qpvvw4vD4j
Q63zPn5j4Zu2eAI2LCNezHuXtar572cEaL4qiriNra5tQGO/JID31af4W9ji
UrYpSq/xHLFvtCEYm/fPFcsdyQTwt1asCMDu/xRLct/heD+QivLDrknKSvdK
J8CZiFW5hJ0a1HQ8IosApVC+QQ/s+ycnWMk5BPQVLig7h+2rI/K+Mo+AOK0D
VfbY9rKrT/YVErAvI+E3F9twVnfRglICXgzn6x3Cln138ZRGNYHnARp3Gzbt
VrSY4UcCnsfFr9bAHnVILXJoIKC5uE1KETtn+fDSuBYCMnp/+TKx43mI8ux2
Agp19KZncb4Etq1wbeogILWTFf0D2yzsSDXZR4Djzp5j5diSbwkJ+0ECJAzs
Bufz8evHNJuyHwRkte31fIB9XITN6/cTvy+r74MTtrzyh93dv3F8JU+7mM3n
u4FDtPYMAcv9eDZpzefvjeK1c7wMCJSf+MHAVn1+zueIAAMarFd1juD9MlEi
U5WF57SuJaK9ddjuAp7W7iIMIDKLVoZjX/ZRiRqTZMAJI+UECnt7bFvPXhkG
WM216wzj/SyUc109UY4B5kUPpsuwA2e6KuwUGXCkQPjNRexw18h/XRoM6OEz
c2rH9eO5A+/xRkMG5FgbSDji+uMQkPhmHZ7bvFUa3iFs5ReHZ0Pn57ZAdXcm
dnLfu/C9lvh+ZSvcn+B6ls21Kys9xYDDlpUXq3E9rD1Yr5x1jQGHnp1x/Y3r
a6ibj6dYIAPKMu1n07GNw9eUut1kwJ+rwlnnsVvq/a3WhTNgZ/xs+xSuz917
NMNePWJAtcX5th89JExtj5+OzWHAe3ZGwFtc772yYq8U5jFA4Gzv2ClsHvVo
5kAhnsO4Ce8UsIWkb8qqVzDgNpfnUBTuF4un3XcWNjGgcXZSzgX3k7WvDKL6
RxnQpks5i3zF8Vj0c6OaHO6TLpY6Dc24vgcM5xvLk/DsVV6DJ7bLggEDj1X4
d4odzcuwvUbaLQtUcJyDD+md+UxCQFnJNWNNEuh1Ryp4m/DvLtz9fN6YhNkN
D9nCuJ929Wi75/uTsFt5aKgU92ft2Oo4xQASXgQpdppiPzhoVhUaTIJJmene
3kpcrysclx3Dc08ew+g+L3bLmweVfHiOGR2KF1cvx/3K85+MDp4rlpVIOHoW
4/mPyiwr+UmCkYnk1lT8edx/ahJVVkxQyl3ykjeRhFdXXSibNcKwb9J3NxVI
gr/xsV18k8LwlVu9sfQkCevbHj73rxKBqIoLbq90SWAp2069rhUBN7GJF+rY
Q97KOz7Xi0Cu/LBiug6ez+Syule2iMCLI2Kcwu14frRvkC7vFYGIwNTwr9q4
f3jx7RLkYUHPUvF/KxAJzYwNeXpiLNB0jGj/qUFC8bqo/jZxFni4ruj1xU45
8lfEUZIFuUeIfYuwQ17nW0RJsyCdaauvsYEEvQN7/w6sYIHSVqPv3uvwfBlt
qxGgzoJSl1MOy9Vw/1l191XVLhaIaiU05iiS8HNCN/7KbhYEahwmjLD35ozf
27SXBXXchaUDOI6CB/QD4w1ZoLK+tHsxtovXtN2FQyww1FbLcFPA9abGdOUa
GxYM8S25YITn7cQoPpkuWxZcUdF/PY7zhH78tWiUHQtWpvG438LOnRIUEjjN
gnVCVG3tMpxHy1J72pxZYP9z1xsTWRJIl4WPAi+zYO5wQZu3FAm2KDda25cF
Cir76hWwC+gOoVNXWSDNuO9Qi+d9j5iCS8evswAmvW7IYQ+UOFlqhrBA9pfj
tY8SeP3EPy4dus/CfU1z/W4xErxzgyJ3ZbCg9qHy1dKFJAy254ZNZ+L7mW8/
749tMjMR8jSbBTHlTNkd2EobzK7z5bJAoMU9uJSD+1+CvEdWMQt0iqsm6tm4
/kd8OLy6Ab/Pr1AfJoXrdcq4afMnFpihG7yfWbje1q0w8m9igeIUqfUI+ysZ
aNDVguM7ZvVvC3bg5YP/3e1kwazPlK+rCD7vnBqTYoywYPyduwlLmIT9Acsl
MkZZcMh4WKSPievHM1NRm3EWyFH+oTnYt7veixRMsqB5KGfyDDYcusHj+ZcF
1gev6raRJCS4vv+78h8LqosMD2dgLw4bnWqcY4FfhevWCOwf1SZj6nwUfLlk
6mSMHb1d7tsgnQIdG++4VgYJAlyTL5EMClaoCGl+wD7rfb1Fl0nBo8e054+w
d2SO1MWxKOBsFeA5g53ctKxmH5sCBxHd78bYUpPGFf84FCwaCHj5H/ZPlewC
M1EKNDRevxXBPrp75ANNjIKnurV/pgk8v9sty04Vp2Br2AXxHuwH8ddS2FIU
cLfz9r7HZhRkvcmVpuDNGrHbCdiuHcMvT8tScJ0LEtHYuyWM48uXU3Dti+aH
89iR3cq5h+UpyJY89Mkeu/sVrXVIgYJCEY2XFtiqbt8mL6yioKDVdLshthdk
s0RWU7DSSTNGF7uUHr76gRIFkbdOZG7BXlh/RldNmYKBogNRatiW93Za5atQ
IGbrv2Ul9ssTcl4H1CjYFuPzUBp7Snk2vFudgrDDHypEsbdPNSa5rKNA37Ig
k4UdkvemUnADBTGbyDMEduuNG30RGhSUaYkN8GPLGx1fsGoTBcOxJ1fxYDst
3bo0czMF4npeqn/puF/3im7cpYnXc6bm3xQ28WbMsO0/Cvh3dIX9wjY5X3Hq
FKKA6bdu4id2nHb8tX9AwYOvWuLzHmZ4P7qpjddjx3Vi3ps+HcyR2U7Beu9r
hfP2jVFvTtKhwJTzXm/+erU25E/tHRQoWzyOmL+fpFqvcIMeBSZ+WUkz2LZ/
Pqw6oU/BzEXviDnslIKo7b92UVAjdGrn/PvwBJ076r8bP98rnlI6toHJbo8l
eymAklTO/HpESivceb6PgihPxpr59eru53mz2RDHM8tj4fx6qia3lFccoKB3
u0+5wny8PFN6zI0p6HgYsXc+HiXbg3mGTSgYXan5eD5ebGFbCe+DFDT87S+d
j6dFk9YGlhnOF1IsZz7ev05O2qsfwe8X+UPiFLb22hq/AgsK9o34XfXEDv77
7KGRJQWVGkF5N+bjcdO8yfUYBapLSpPn88/p4IZxoRMUPPk+YjufnzmyLGaU
NQXPFewnarCNUwq0s05SoLcQ/H9j+zYrJs6doeDfrztp+3D+18bxl4U4UrAk
OXDpSWxJhy9dsufw/uOJPnwZ++2/W2LbXXE8GI1Wadjf5KZ9r3lRMGXx+dFq
vF+Vf9TFil2koOvR9SZ9bI/Ul5kvvCmwvyPUZ4fN3mk5WnmZAr6ncPcVttbp
ksPUdQoGl1088R+uF38+D+gW3qCgZLNhkTV2yjZS3S0Q5zP5ffUtbHmx/bT2
mxRs+JUpMoBNFrakPAunIC/5p1Y8rk/FyrOxhyMpOG5B9Tdie0dJBwhHU9AY
EhBFx/Vs/PRxK+f7FNT6fpVxwv4sNsyExzi/fXpr9+L6F+rLmh6Pp2DV5rrO
69i7RtS7459S4DP3cEERdk6hWyYjgQIb79WuW3F9fXyG16YpCa/XjN+6rbj+
ni1amHv6AwWhKeduOOJ6raiqkSCbR4GLk25bNnZX9KHwhnwKzq6q16Uvwvvh
bIzD5mIK0vp1bOOxNSVWiglW4Xq28833wcW4XjtucbrfQkH5zTiHBNwv8luP
HNnXRoF75K0bNHESPHV99Pi+UHDycXGZNfawRJHUyU4Kph9JJMrjftNQvKdi
XT8FC0RElqZI4vOZJHd55STef4WLaIIyJGxeu1qZ+5uC1C0L6aexG3b+1Jia
wvkge5TZhE1z89u1/C+OL+Ej+xL3w7MfXzh5LWBDeaTdFS7un+A3kaskwoaR
B8R1Htx/W+5ll+ez2FDXVzriju389mrDQTYbnOX2W45jP+sQ7fddxIaTC00t
+1fi8/cWTZF2CTZcfra/rwP3+28jvkeCVrJhKT/zJD+e07wE99jIKbJh8kv6
3SDsxUtFHTNW4+vrn/siqkqCvv5z3x5lNjxRvX9HBc8TyY+rEv5bz8bnVI9P
9mtJuHJo8Z8fWmxQydAZFd1IwvKCp+F7DrNBMad6jRaed6qVph63mbNhNC8i
fQDbPVzvrZ0FGzrK/zO6vY2EipMDNX5WbDgf6/5hAM9LTqzV9A82bJh+ynfm
0Q583jyS6KnizIa1umFe+rvx+WMqxZIVxAZLj+GIk4dI4OcKnIkJZsPu4O8d
68zwPFJhfEEphA2R1lI6vIfxeSz2V5TebTaQj7iW983x+uhsrPeJYgPtrOD3
b0dJmAzN0hmLZwM1tPjOI2tcn9fkK9blsOHN26NGs874+xsP0y/nsqHeK/YP
jyt+nm0/+9Ty2XC3+/y0gBvOh0Py8beK2BBb7bhg4Xmcz343pPdXsqE733cX
XMDz1FfDhbXNbOBbMEtvuYrzKaRrtuonGzLZ9k8XRuL9cNer7cIvNuimOIhs
j8Jz75NFWWum2CD8WrTVORrvn+wd7kEzbEh3So9puUfChoGEcYMFHLCP0uxI
fYjnXi3nvgoRDggukgxLTiDBeoL/Y5kiB7J1MofTc3H9e7G92lyJA5esw0T+
5eH9YOVbMbKGA0Lx2ae3F5CgW8NXvEiNA+Gyg/0NRXj/JyzIstLggMPLvfX8
FST0cHnip7dxwFJPN+XBJ3yeq5txX3UEf78lc0s5Pu9wk8Zlrt/kgM1CNeNR
CSY4XD7wV/8WB6rTj0mnLmWCy4GUJvI2B4aSRP0vSDPh2qRLcEg4B7bfoqtS
ckxI3DQ9E3GfA/uPKo3sUmTCdN5c45MEDviXLjET2cSEkDoyqLCEAxeyB4Jr
TJkQ/eiUrV8ZB2Lu0S+XHWLCI+fqbXoV+H1vaooXHWZC6uKQPxXV+PnN0zfn
HWVCmxnHtv4TB87Y/dOqsmGCQpfYtm9dHHi5+0zkOncmqKZ4SD3u4UDr3YlJ
PQ8mbL7aOn2ijwMa6Z9nLLyYYKBw/83AIAdsXwTxhvgwwcleRmpsjAN7vhF/
BK4zwUvz0nTyBAe+7+B5oBDAhKvMbw3Okxx49vXLiH4QEyJfPwqYmuLAgqZF
weG3mBDnw2+T+YcD965WtuXcZkLC/hPaXn85cIp/VWP/HSakLCteuvUfB04n
HfJYGMmEnAn56bk5DiyMDizTimbC/xDljMI=
       "]], LineBox[CompressedData["
1:eJwV13c8lV8cB3Bc9z6Xey/XSL9KRpSSCKWSOl8NUUaIlBLKiqyMrFKKJBkp
I1sKRQtZSWTvPcueKQlZye/0D6/3y+N5znOec76f7xE1tdMxY2NhYeHHP/79
jrluSpG95HHwetDylZ2XAg5+bhZRPy1yBp1pvOJ7jsUKrZYV+oiIWKH29ZuZ
en3XUExRoDBZxA2Nb91czJtwF9kccL4yL+yP5HdfFIsRj0DNy5ZhP4UjUT+h
qYPknyOXcqGdU2+iUOv2bxRRvxS0/mFL9ffD0eiF5H8iN9pTkakkkL5ZxKFw
14jpmisv0bWXtNxf7Ymo89d+ybyc14joHpD4LpyK+mJ/OHpfyUIdRR+cJ8dS
EXVbl9PvP1ko7VlEybc3aWjxg25a/71spOmoeWHi8EskHnmjXzzxPXrMkfd4
1OIV2vPM9E9uYS7ija5gm25/i+S2lzV8f/sBLXNlp9orvUN57jFpitsL0dDN
pJM/498hsuu7LJnEQpRtcT12yioThbh8CBe6/xGdld+l+GM5C91qNhSRSylC
CVVxDt+Ec5HcaOGxMM1iNBuRJdl7PxclPmPp6L1djFQsqgebFnMRiXdUySuv
GE2S5vXymvNQlkVKVqZYCdp7QFPR368AaTxbklH9UYIaXv1hk5j6iF55B77y
MytFvIjDiCFdhCibq/eWhJSi/VvCFP0uFaF12Q/B5kMpejCbOuPeWIReKVea
MvjK0K6QVjPTF59QuHNBcO77MnSjSuq47IUS/B27WIXHylHKm/dbXjwqQdnb
Kk1maBWoKeIQaXNNCXpQFxWqKVOBxC0MCv7b9xnlL363iXOqQFWk29IsfKUo
+hdHZstiBRI40M1bX1aGRoxPzjRPVSIQN59SXSlDpqWTkaX0KmRFm64uli9H
ofr3ZPS2VaGCTsqd7PhyZPnRJlnXpAqZusjNx7hXoPZBiZyZmiqU8cq/20a6
Cp0Mevp2/GE1muCduH8cX2fNvXCzPrUaSbgcP7g1rArtLmb85/ixGsUr0RIG
F6tQ6CeZ1OnxahRaed/8bGk14s7pvPl7fw1yGQyaPnauFtW2BZ2faalBb1V+
Jm4OqkV9f+b9BUdr0FTqyVOk4lp00a9zLe9iDbK053lfKFGHmk6xMswFa9HZ
lVDP3TN1qOCOBFu1cS2Ko1X78BxtQEvXij5r99eigwc8znkbNSCFzEzz9J+1
qMd2++4p1wakL/c6bnC1Fv3XFDBSk9aAFiI1dg9urEMhEepqd5mNaK3iGiUV
gzrks7mOa7W7EbHoPBjWLq9DFqgxctKxGRUWeHBOPaxHLIm/87oDmlHZ/Bz/
RFw9imAX7Kl62ozOsf8o6nhRjyoqzYVS25qRtGTYo4cl9WjrqT+JZootqCog
XzjkVz0as5R4+ZW1FW1IG+h8ItGALod6FTYEt6EQw1LzDJ8GxDaX2PsxtQ1N
v37E4+XfgKJOV7C8Km5DfY/EZjSDGlCVIN/hwNk2ZJ+6zXwlqgFtf55SrmbQ
jnaxmh++/7YBTeY3NxQLd6D2on5m2kADsh3eNpiZ0Yk2ZZgOBKk2oj6jTuqn
yk5kVyz2tV6rEel23JWuHepEbJt73AVPN6K91aNuw+u7EGlx49Mes0ZEepPM
FPDrQh9GTv5c9WlEEZ6iB10vdCPlQ9ZWnCWNiPN3w0Uf927k4OFWI1fdiLzs
vP2DHuG/2y0VWzc3IlPT3pbn1d0oXPSjLnOoEUmpxlh37OlBdB4nVUlKE/rE
ty5yH/MLumkuM9qo0YR2BVYUHt3+Bd16z1O68XQTeka5NqSt8gXF+NrEeRk3
ofuLbTKXPb8g2o5fPO5Xm5B+b1hZ1NgX5CRopGEd1YQm0pizy0VfkXt8ppfB
ZBPiFL0t0bu3D70KtfkRlNCMKpRCZK4f7UN5knrygy+bka9B7J6NOn1IJjfQ
Xz2nGbEF5xwztO5DqixLPSb1zWjp76RFe0wfKmCyykf9bUbfevRS6tn60W/Z
P5JnTFpQTYTEtqKafvTL7WVgwd5WdC9zl+yFzn7k4vGjmnSsFak2KO/7O9yP
nkf8Eryk14o+E+fUlFb70ffz7w/bO7aiApdgqxzZASQW0PciJ70VpZ9aTH39
eAA9FdA9uG5bG3rArJZMMB5EW/727vGVb0e5ezZmadoOolgj/c67Ku1oyMgO
/fEYRHEeVuIvzrSj/el8p06HDyJi4vwPTe92NKZ2zotRN4jG9s995K9vR4d9
vte77R9C0YnuH5McO9DCHLezjsAwOtsWRedt6kRiG01XV8WG0SPzFX+h8U6k
eSTTP112GE3OdDacYOlCyaEGsVSNYeRkYVBNlelCOjIJ5YU+w8h88WYb/UEX
SreUW799ehhtMiO8kE43Mu0+9ZFUM4IE1HV26c70IM4n/VccOkfQ6uzd/D+M
L+jtWVvB3pER5K0i0l+69Qsidfm55bGOooroRwvZRl/Q0448eYc9o4hffXiI
r+YLGmkVSfmaOIpSwjZbZb78ii43TAbnuo2h92988t4c6kMOpbdN7SQmULr9
qZADagNIaEiF8lt+ArEIZWnBmQFUzcaR5gkT6LZqfLmW1QDaDIHT/mcmUNyT
HTVh/gOoM++R99OACZRPGvPKrhpAyq+fxXZOTaC3s58IXa1BxPOkoutwzjd0
wL9No9hkCL2xp+v+p/Ydbbhy/3Z/6ghK8LCe2Hn6J6oyPJx0U2oS3Yr7oz07
OY1c3kyp/p76iVia+6DAfQaZ/xB27h6bQVuczK+dkpxD/pkCpw4dmEdDc+H6
tA+/UbMjt8eac0vo+PBlr1CHBTSrXMl0fLGCNIeCtwsJLaGSveQv10xZYKLE
1LsifRkFFe0ZWlPACtI8bRsPX1hBoosvykR4ScCJ5kx6Zv6iz5WjC3bS7HBN
eSs1e+kv6rDNvDctxw4jhw0zglhX0d/dbXb2e9ihWPXT0iHuVfTgeJesObCD
u07gw1TJVfSJK+SOrA47fDPbXOpisoqMlpZ/qzizQ819va089auoxHklxyqX
HY59Pzu/SY8F6rqVJd33kSGW36f5hgELpPZqXN1/gAyz+1+86jFkgdr/xniX
gAzx95YtHuP3aKxV0bNTJcOSRHQHhz0LnFK4MbjvNBlemn7J/XmPBWRrT/No
OZGB2XHBs7CIBda0mJ1ze0mGjuJLrGelWKHXrL2wnp8CP5W71nvJsIKZcXPc
m7UUID5p7YqXY4Wx2QS5kPUUUPioaDGylxVipp1t1UQoEJbPrHU8ygrKry8f
id1OAa3MgogAI1awGT4T0alMgbJk/p0fglkhdm/SvQgbCnwVv6fW95AVjJd3
r5G1o8Bc0qopKZwVaIVOZ8odKCCeOPFILYYVHvyRZX53ocCt2KLl1lRW4J26
iTbepMDBcJvyH8WsUNS4b4r5iAJZdz8bicyxwkgN8KjmUyDlePV/fgv4fdxd
jlR9oEAUvanp+zIrIOe2DrUiCngH96rks7FBLI+ShHIpBdQjlqT1mWwwavDT
illPgYHnO1cDtrPB3jQXstwABbjKo+PmTdhAP39N2R0KAaz+SWeMzNhAPigS
ZVEJmD2exldqyQa2pJwdA5wEdNa99wu1Y4OZiuuXd3ET8LStyW6HFxvcHPV1
y1tLgOIIFS5G4OdzpQRobCXAnOzcV1fHBvctJFPDjhGwXriyfbmRDdSzS0xO
qRFQt3dj/dZWNhhsUJ7nOUGAgk3ph1vdbBC+FJzvq0kApXnNE4UxNmCX3Fyg
r0dAcny2XiwrCTaKjOwKMSVgaP9C1ZVdJDjFLjzu5EFAhJ56cdQeEliO/3w4
7UmAul18brkiCajnd8rZXCcgM1E1RVSZBGrHFk4Y3iTgNkfknVYNEtx0auEQ
9SNAvH0fHLAgwRqq/NkToQRcdPTIokeRQKzwcbXIczw+ua9Z22JI8M1zWfZ0
CgGcvyBbJZ4E2QGuOQGpBLx2oLz3fkaCdqJ969QLAv7Yh+TMviUBR55Setxr
Ah7bPc/vqSZBW1f+7+e5BFTaNH96uUICC3LoPsMqAqKlFIorWdjh95ezsqer
CbCfjCgeIbEDm4XGRe0aAgRsjEpEONnB3I3fDeoIMLUe/xwmwA6N76m3OZrw
86xWyz1l8D605O041kmAjMX2OnUTdvDdVvXIY4SAr1bCdumX2GGDQvgm7VEC
7tvwMbks2SFc0yRPfIyAcYdl7Xpbdnj0N5C7bJyAJM/qVm1PdhiktthPTxKw
NtT6i344O/RTdNZM/iKgLOzC9fdR7PDkM9fXxBkCnMJ1hf+LZYc0y5DPp2cJ
aIzeb9L5lB2izDKm8ucICHhOGzZ8yw4yNfW9VxYIWC14MWlcyw62d97vdlsh
IONjXOCnBnaIAXFr3r8EnCt+KL2phR1Ojr5sTMXOLfewH+xih32JiwrNqwRc
bToxazbGDo/tf91mslFhdPTb8mUSGTbuvndYgUKFxxO90dUUMpTE9gm9wz7y
vfmAFCcZvI9KImmCCgm/8m98Z5KhPT1GV5hKBcOVAJK9EBl2Mk5MTXJQoZ5X
iuaM69SbUnPGHgYVDl65Mv5EiQwaYXOnQrEzyjPKixEZeDmPS01iP/CUvc1U
IUNgrd2DJ1xUUB9RWHmhQwYP9ZkD49xUKIBr3U16ZNiRNS2yj0kFqSe5uYsG
ZNAOWhPth007qeRy7AIeP5AuiPBQoSpXeWrAmgxtmX93KfNSQZHfp5bDjgyf
MzJ+38FOs/38YqcjGS5T5w0qsf3Fjllev0aGF5VBJHU+KqgGqvevu0OGhOxU
LmV+KuSMBn6Eu2RQ6B/45Y4tcag+xiKADDHe+7zfYVPmtc9mhZDhXqtvlMga
KpQan24+GUsG/fRn3yawd+VHvHFNIEOjXZ3CegEqPF3TFRT7lAw2Y6nyqti3
q86pT6aRYWy1WiUee1Y8VpIvgwwM5f0XqrAv3uilKr4hw4THqx0z2Id2mZb6
vSeDS9fST1hLhbcPkpIy8sjgE/5n1Ax70/jQzdYPuK57G0T6Y7PGWhwU+0wG
9xQXmVps+4UUwePlZLhuZSbwHbtPZ2LJvooMJqeJAtp/VCgirrwvbCCDnFrR
saPYO00zHg0341x4Rt5pjB1fMHWV3k6Gr4Nnu92wbzg47jz7hQwFEmE3UrF/
VL/jutlHhjztFPeP2EZb5iafD5LBPl7qQAv2wW7X1LlxMjTpjQkuYWfszvUT
/E6G1UhtJdo6KmwMXjI7/JMMcwUPJDZg35/Yf+TyDBmm5HN7t2H/OeK1KeQ3
GTalTpjtwbaJK2TJWSTDvmWl/MPYPYurX7/+IcOkUlWfJrb6KeUPZBZc5zNf
thtg52fceiJFwrnU/TfeBJuirrc+nEKBS86Pm62wtcclIlk5KaAd8eyZPXa0
79JaGwYF1//wDS7Yo2K1j9uYFNig1yTvji33KW6NMs5JUd+PPz2xvYwcw17g
nBy1qdC9jl2xfIRPYAMFWt31jf6ZL3JtqLcQBaxMm3m8sI0UJpjfRCkQKpBq
9+9+qc0FQXqbKfCrUtnt3/Nm7YO4irZSYN8PYqcDNuIyDZSUooC7vPmjy9j3
XuyiP5KhgL1feZopdqsqEbAqR4F+/nCHM9giI50clxUo0HsIvv2bD2ufl3db
9lFgW6b0un/zlS1yg0AHKOCmUvdnNzZrobZvKlCgmScgXOLf/BmKk/mP4Jy2
aJxYix2+8Nvn+jEK7GlmLFCwBx5Vso0fp0C5QHrRLP6eO+Sjb+pqUoB7h6BK
P3bJFeUbW/UoMF0rFJiNzUXj/xtqQIHk84HacdhnUkY8Vwxx7lfc7PDFnhoI
cG8ypYCRd6a8Drait9GikjkFuq7Wcypg39koe+25FQVMg7el/Ye9waDN2dOe
Aj9y9Y914fVsPpcyO3IVz8cyoZqL/SbU46q2KwUSajMFwrGP1Yo4bLlOgYzH
H8W0sK8esrZpCKAA+UuH+Bu8vwp7D3xTDMLjcX36wRebw4t5OTkUz8+67zKG
2HHvsyzcI3EfZJz7jAW7WorlovhzCpwzTyQfxPtdoKqp/0EaBf665oZyYptY
JBsvplOgxa2TvQ3Xi/mE40Z1mRSoWLMSY4UttvbRmWvFFFAbPF3jg+uPB6vk
yZovFNix9Ov8HVzPRo7QOrb0U8DPOGX7IeyTdycv3ByiwCnRhb8ruP6Jc7+y
U/iG+6pdo/mO2DWCu4LiF/D6M7qfdRLXT6G9B+uc+HAO7PPu6aVT4a6HsH69
AAG/k/5LDcT+Vcjyddt6Atp2nA5RxC4/WvL9qwjuC9ap54XQcL3QVWWoSRPQ
21UYtpuTCsW2OuobcR8SQ0IJp3AeSL2Vb3FVJ+CM+WLt7L/8mOM/16RFgFuA
s1QYtrVnu7WfPgGe5/bfbiBTgf/euYDpiwQoy+SUInb8vZLNq0pxn3Hox/my
RRYqcPa4q9pmYnu0XhlexP2Dayoj6D0BIHXO1wXbhLej6VUeAbtPDvEQ2Dmq
u89PFxEgH+jsuwXno3nWlINTLQEqV9nIF34T8OnBpSfuOMcP93zReY/z95qy
5o9/6wxpbKQyvhEw/Ew0LM6TCnvzjhoGdBEQtnUde64eB2QMrRVKf0dAcJR5
uYkIJ7w9ahb0MIgAV5dbVz3FOGFHQoM5HdtIJ1Y4fAsnJEat873zgAApzjbX
GilOcK7ZHX8tEPcrbke37tnHCfreYkamAQSwnRH3p+twQoCcdc8R3D85rx04
/t6HE7x5rd6q38D5PbPyu9GXE8RzW6wa8LwcqV+XNOnPCZxRO++ewub1014W
DeYEvqP3Vs574fz/XfTifjQniDLshp1xPzfWGkc3zeKEtSM21/NcCTgbdr6O
PsoJZY5Ol2PsCRB8x7nBeoIT1Pm6fbdg9za+t6j8zgln+UbRazsCLnHzsvrO
csLO+MT7pbYE2N4rk19lpcHUO7c38zYE3PKWiZwWpMGhweEdHlZ4fHE9w1oi
NJDKbY3nwiYK/eUyxGjwYTtnSaIl7peWB6svS9Lg/K2udbUWuJ9zifg7uIcG
N0R3y0qaE5Bqw3qpTYcGD4f0KQReFzYBGa936dPgs1jW72Tcr0qnGa6EnqHB
lr0PUo5ivx3NeqxlTAP9HBk9PxMCCkwvV1ZcoUHBxuBpPmMCGgyapfPv0vA8
G+3UPU9AqKu3x7r7NIiWvlT49xwBeo93VLgG0eCuWYbwC+yuZj+TXY9pwCN5
1ZiCPaSpFJaeRIO+ZsPFsrMELBxJXowrpMHAXXFPBwO8jvPjfD5/ouHoHXWR
wWaRi2KMf6ZB5/mYvT9O4/cXDhKVq6aBTK8Rvy22wOI1tc/tNLilcfWoK94H
UXZXm8e6aEBd4A/ej71x5Mp5xlcaHJMPS2HBFm82ddAfooF3RqRKIO7f5dPV
I8d+0oAr7I3m61MEZIsdE2PM0uAep7yIB7ZilHK67DwNXN6YlalgH/JT+OS+
QgO1YuWwPl0CTpqIjNM56TD80lVDCNt2zexeWTE6CM9VTBdrE/Ar4Eex3hY6
eM0duvoE25ltXN19Gx10eJvanLA9p74Yl8jQQVLO85gkdkBl+V09JTr8nCON
xJ0kgAuKed0RHRSP7Ai6gR2aXRAde4gO6MayiDF2VNKb16OqdMioK2cVx07x
etLhpkeHV4LNddm4TkjNPjKNNaBDalxncwz268vBk8WGdOCrXSm/g/3+9B0W
uikdDsW3eBtgK9bduLfTjA4q60SPHcYuPOLOr2dJh8WBwlVp7DJZu62xtnTY
wCl0ggP7eIrV22IHOpA0XXrn8fmoVuiS0qgTHc690rAaxT75yKiMdo0OD7Jt
x9uxW2hnTu70oMN4YJJxJbbBLd2uU9fp4MOaXZ+P3bOgccntJh1Eb9jteYVt
bKf6I+Y2HYQEIiOSsAeHD10r9qODtuvyTAT2obi6RMkAOrxVHLvzADve4Gxt
6AM6cBnWojvYqzwj80shdDhOS93khW1U7bDp4iM67Fy+JuOC/eH2inp1BB00
Tyta2GMLHvR3lY+mQ1nFeJU1tsc8f+KTODrsdvYxtMTueh1fQ0qiw72/bOvN
sfddlpq3fkaH3lsXCTPsCLEc0ZZUOuhFx4n/83zPYXWldDrMGr9x/He9/uN6
l6ev6eBnGvrr3/2ytAwT6Jl0cMjYn2yDzc8xWu30ng4Pa5MDHLCvFjv+7smj
g/jnimeu2E0ef0WOFtIhhCd6/jq27O57J9I/4ee9Frjhhx38Y43LmlI69KyR
ORiCPfU8Id6rgg4mct27o7E1TXZUD1fT4bM90yIFO3197pxGPR2cs0uasrDp
LUdEspvooHZx3O0zdpXKOWffTjqMtZy9Poy9jWUs7kcPXo8F97/8+953c69W
6ffR4ZrWigcNrwcVqQBhiVE6cC8buytgJw8LHA+aoAOdXaFHA5s9LtFp/jsd
/kQybppjF/PkVZbP4vm+fSv8CbZo9dFZmQU6WIStcOZge99uFIpYxuN5plDa
in1wfuyqJRsDal0jeNbg9R7z2im2gcwAt5yoZIWT/86bLJV7ORiwf4Vx+wx2
Xs9aIQ4mA858mhVLwl73OEnVgY8BB28fGK3EvqYlc7VTgAH8TQkL09gKxSoV
qRsZ0FNgwqGC9+Pb586Ox7cz4Gih6J8VbB4T1pi30gww9k5Xk9HB5+H1geXr
5RiwTSN40gRbOvCp4Le9DHgX92N3NXaaY3NZgAoDknUWp9JxfeCQujA9o8aA
ezpSrBPYlsMTG85pMIAjut5WAteXLQZsDlKnGODvNG76DDvxgOyGWhMG5I30
lGXielWsyemzfIkBejWO/PPYAxcGJ7ZZMiBobW+4Iq5vYrce5fnaMkDTjXq4
FPtp2eIZ8GCAaNCWg+O4XiZrFUe8C2NAgZ6LqQ2uv2XGT1gGwhlQM/3KuBh7
xMHJkvmEAVpXy+LWGeLxhG3ZeyWBAYdVDgxWYz/ruNe+JYMBfYUioQjX/xQT
XYGocgZMJbeKX8L5UOEodb2iigEuUX+967DHfMgjv2sZYBsdv1UR58nWZ++z
dFsYIC0/dm4NzpvUiQ16jH4GPBaMtO7G+ZR2deih9xIDhJoKXj/DeZZ+x5nH
YgcX9PZVHziI83RS6fytOzu5IECwVLfB/l99OzKTJM8FOUN38i864P835W/t
28cFMZYxtx444vGhdxFnVbhgn13l3xknPB+LP4U1L3BBZ+Cc5Kobrp9XbKR3
h3BBguGq4Po7eH+Ln4rTDeOCvzXbPNqx1/XsZzqGc+Fzk77SY1+8v4/TfmXE
cIEW6fP42rsEPJJIy9qaxgX04/Kr23H/Edw/qiRYwgXZ/x24Ex5CgJ/exROk
OS74pMOwvxGHv6dWzzmzBS64NOuz9no8zlc1PdvyZS5odN909XoCzosDx0IC
2Lgh7OQutdtJuF/Zsr2dj8kNryT/u/n0OQFy879Mxbdzg22KZ8Ke1wR8jbjl
ftSEG1o+tYS9LCZgMXQ54PklbvhIInoGSnA9CXSK4bDkBraYg+PrSwlQu2le
VGvLDbsbW04HlxOQaXWcou/JDYKewmHBNQTcU+QNNQ/nhggZp+WRNtwH9iSk
+tVyQ8GWJ0s/JglgSlsuvGrghmvcsSYqP/D3uCF9rKOZGwx7C0zipvD8iuUP
be3ihtBbFdL6uB/kt24RrhrhBo92A0r7PAFLnqQTFBYmaPDS/mwmUaGTpvBJ
dR0T5ke9HJbXU3GfHTnWs54JiVIOL3wFqZB5/g+3gyATLqf7+/MJUSH4VbFR
pDATXpPt5eVEqaCqq/VnfDMTxh4OqPhIUCEnynJPgBwTltIC3jjtokLEtifp
tSeYIBMylPpYC5/3ZlSSfTSY0Cp1NcxTmwpahb+i92kxQe2Bs+slXXxe1T1+
P1mHCRdNZbcqnqaCs+fiZa8zTDA7OXZgxYgKOvWnt+6wYAL5crjPgC0V6M78
SfdvMUH7wuzT7cH4vF4UGHEilwnWi/SO8g4qTHwpClvMY0JmNdufTd1U0F+e
CX5ewATnpBUB7y+4v1c4608qYoLWkzI5GKBCx4st7vllTDihNErp+IbPv+Ef
Dbe34OslatXMV/F55cq0EG2KCVXqthf/SnCAxga95CpxHrhGEn0ofoMDlG3L
DXn8ecDE7N3b9Xs4IU7QVLxmjgdmzaKCCCEaiJc8f6xpyAtzVmKLbbx0CN5R
LNlUyAu33+1Pi8B1z3yGvbFSkg9qJZZ+fzfkAtM3v0T8g/jwuXQ4oTOWG2xu
6f45HsIHGyqX17x9yg3Oupnt9Id8INN/3eh+GjfcnXN+EPyYD1K3xl9WyeaG
jH2Ly+ExfNDYTzJuwOto8dNq27MXfPCJ9u3w/hVuCG6iB34u54NdVzRvZUoz
cT9zxdK3kg8iqefcPsgyIcmp7rBqNR/olcdrl+9iQrZA8FJ1HR903El++kWR
CT1n+SybW/nAJMGmhv8YEyQG1x0eGOSDUt7lvpcXmLAz013o6TAfiBxVqigx
ZYLine5Fs1E+kFtdCug2Y4K6RMzr8Qk+6Ar/8JxhwwRHaxGh6Wl8f/VRCc9r
TPBUurn4doYPBDOSJyI9mHCHMdDiNMcHBwhXv5zrTIh4lRSwsMAHdq/Xay7c
xuvWm90ib4kP3F6ddF13lwkvtM0Oef7hg7vsJm77A/A62FS28eBfPuiXXtE1
esCEwpkti6urfJB+r41yK4QJ/wPQR2wH
       "]], LineBox[CompressedData["
1:eJwV13c81d8fB3D3fj7ce61wfUuyCSGRSiTnXZpSaShKZCs7o5IkiuwVkWQ1
kFKiMrM32SOyqUTDyorf+f3D4+l+7sfnvs857/frips6nLSgsrCwcOMf//8d
72nKpmx+QzNey/+MknmgZnmrmM5ZMQO0S5Iz0WXJGq1WFvmIiV1CLv6L3yI6
rqH44mBRVrHrKMbFQrM8+B6y3e1q91fUHy24z11pW3mAWpes7/8WjUXL+9mu
TYw/Q25VIkq/3jxEGpKny35uT0WCkW11k1qPkK/tDTTvkYZM5YD4YZWAWM6c
2nhg9QW6lsGRO9WZjDwvMxS/XX6NaD1DMpOiaWityuSV/d+zUVdxoevEtzTk
MfrxkqRTDkp/FlP24006mh2T6NL5m4OOXTlmPK6VgTjBSyNy5R2KZuRFf7XK
RHwry3nmCx8Q36Nq6p/OLLRx/MfX/JQCtMT9Ls1R4y3ayeP78wBfIRq5naL7
O/EtyjN8vs/4ViF6Z+X5+NelbBSbYB94UK8InVPZpv5zKQcF2DUsmf7+iJJq
E5x+iOaiiPUbbgQ6l6CZmBy5/qBcxP9sIac7pQQdsKobblnIRQ4RXE+dWkvQ
BPFXL681D3k1+eT5KZWinbuPqfv7FaC/SY5vAodKUSCH+bTHTAHSV70fbclV
hvq6r2c4mhQi/jsctHjVMnTH7amI/q4ipMTqqLwxoAw1ZS5TZX59ROdi9W70
yZQjPsQw4lIsRk5CuinNR8vRLun76n7mxai6zVdb2bkchcykTbs3F6PVmK5j
mgXlaFt4u4XpixKU4PFvoepgBbpVq6CtbFyGqMUNynoHKlHqm/fSL6LKULD2
xYlVs0rUErOX2FhfhvZoC/jsuF2JpKz0CwTUytGntcNpx/IqUS1xR5GFWYEU
F7omL8hUobW7e/g+VVaiUYvIaN+fVQikLH8d+leJ5NPtL1WyVqNLHH/qSlWq
EOmTsfeVUDUq6Ga7+y6xChlNmaZ6HK5Gpm5b/8a7V6OH2vTlPQnV6FWmf4+t
Yi0K1O5gtmrUoHG+8SBtk1qUtazEK3SsBsm4aWvK3q9FSbufqCsa16BEDY6k
4YVaNNh4cyjLqwZF1ARZnquoQ1ZuBRVGJTXIbTj0z0HDBvRBcX7tPvValMBR
58O7vwlVN6n5z/LWIc3dNwy9jJrQqmNzUYRIHeq1l9/+62oT+mwGLRvk65BA
S+BYfXoTSnS/aj2rVYfCY3QO3+NpRgaHLSoGXOqQz8ZG7tWeZtRk4Ldo0Yb/
L2qOnbjSir5L7c7SCKtHLMlzeT2BrSgnWce2La4exZBCvbVPWtGMkBe/8/N6
VF1jKZLW0Yo0l+6vVhXVI9nTy8kW6m2ohLmYODxZj75Zy2T0UdrRw4xV02vH
GpBXnU5Dg2A7kjqwzr7pXAMSULzys0ClHX2V/ExVt2pAh6YLlOIs2pGlsR/a
59WA0m6ezDlb0456W+dn9r9tQJcjbhY1hXWgtAfI4bZwI6LOJvd/TOtAvzxO
yqnJN6KHZ6tZMks7UMx4/0sOtUZUK8TUCp7pQOo5PUqEXiOSf55adVi/EyVO
6DZrhzSiifzWplLRLjT270fVS7ZPyH5003D2q26U66NA0hhNaMCom15S042O
Mawf1/M1oVNd9xQbRrqR9D30Nl2oCe2s+3p9VPAzWiOSefiNUhMi3jzlWev3
GW1Y8hj/adCEYjzENa8a9yDNvujHxm+aEPtck5mPew86mCFLrSloQjcdvPxD
o3oQ68i7W8eqm5CpaX/b87oeFHz0+4NX/U1I4VC8TZdqL7pp41JcvaYZ13V9
rBrPF2Tgqtkf4tqMtgVXF+2X/4K+5OeWN3k3o2ds10ZOHPiC6l9eeasc1oyC
Fjq2XPbA15s2nDjxohmd6b9f+fDbF2Q7mDDNMdyMxtN5ZpaK+xDDza0jVL8F
sYvfkenfOYCkQ/Rv5Bu2omqN8C2e+wdQ7TxfxbxtK/LVf6wqfHIAzQXGxp6+
2YqoYR8OnrcZQCZHKYrWj1vR4sqEVWf8AAr8yrrEMtSKfvTqpX6iDqLeMXos
zaEN1cfIbCquH0SO71RWqhPbUUD2NmXj7kEku9+6YSa7HR1q2qO2MjqI0n7f
qwG87uU0w8Maq4NIj2FuoTbVjgrcwi59UB5Cf7Mkhl/u70AvTy+kvY4eQjI6
s89TpzpQCE+dXNLFYSSptViyaN6FclWFc47ZDyO9iJhxjVtdaMTIAS3fGEYB
xK1dT2O70K6XzNNnHwyjKX1V7W+NXejbYcObXI3D6Jaf/lvVXd1Iy2fy0/Vd
I6hw9u3Bv3id52fXuJ5cO4peGXCtL5/rQaY9pz8S9WOo+KmFqRP3AGKPG7Rz
6h5DJQ+PyfSJDqCsc/ZC/WNj6ONO/5LzygOI+Ox3PY/yFUX5Nen4nx5AT7ry
VJxUv6LUbVMxGXEDaKxdLLUv+Sv64Dh5l33zILrcNBGWe/0bsv6ak9lyfgg5
VdwxdZAZR07rL5tUjI2gN46cpwQOT6LdYn1+9UrjKOmGzbjS2d9o5YOt/8u9
v5F3wvKJmYk/yKJMlNXJeBqxtA5Agfs08g66TL5znUPSLpbXTsvNIma90xXl
ggU0MvvgDEfhHNq9oJgpmbSMtEcv34xwmkfaLtJrM26vomMjYfIiIovIfRk8
U1goUC8/0mYotYhC33A8myMpcMRZ1TNObhFdyF275yCDAoeofU0Cqosoidnf
MMBLgb1i8m5M3UV0wnrf5lkJCmw3rCimey+is/VWpsn7KCDUtqA3PbqIHt8S
orP7UmC8zNSr+uUSev73desvFiqIhnddDsnGHt5rPE5S4bTRMb3T+UtIL/F5
2SCdCkXzanID1UvINtnnvyoeKkRs5m37O7yEeK/qtNmIUWHXg48yMoLL6G9R
nocwokLQZaFPd32X0Wqjx5SoOxVKVCNyjwQvI/Zxzg05N6kwR9Kf8N5fRqw8
fGsP3qbCxYTpa/G4LgYhej4m96iwra1WIqdgGR35qqnuGE2FL7uvu41MLSPT
STPh2TdUUOTtENYy/oeybQ6fih+jwljwmHeUxT/0dzs1Nfo7FeLZ/379avMP
/ajqUQ+eoAInKZAVdO0fUrtWvuHKFBXG5wwOdIT/QyIfw5sEV6jwtPeL/aXy
f6jzTavGN34ChFJHP4ZuWkFG5zg2uwIBbVJzUkNbVlCRdHPdWi0CApPYArbt
WEG7Mm9m5ewnYPGhzOnuvSvojqGSwQ9tArqCL32TMFxB1ryf1+3QIyDSeZLn
XcgKMlTVKTp8iQB2NGvSO72CIl4kitmFEnBtjyz93eIKSjeKSfweTsCY1vlX
oZRVxKqznWp2n4DSQyWLe9esoov77e10YglwPxkcmSa3ijYOvV9YSCbgh8XG
CjeTVZR9cfZxcQ4B9UF6sryfVtEN/lB5ajcB6qH3GsfbV9HSAVMvoR4CUsPz
Xcp7V5FuPLVV5QsBd6LFS66Or6KyUxmuBoMEiDTNKfyiskCjMLPB6zsBHd2l
FXoiLPBI0uklLBBwcPLcXwk9FlBS5+4OWkvCY36f1lv6LEDZmf0dBEiY2fUi
s/c8CxyR+7d9aj0JiQFLVtGmLJAqscZXR5iERZlHXQxHFnixNVVqQJKEDNMv
ub8DWOBTtYD5HSUSqAGs0UdD8P23pOdzbiVB/83mK+nhLNBvPGwSoUICK4un
nHkMC0RMoYSoHSQYxYvEdT5lAZNPESweGiTwdBl7FBWzQMzN+Os1B0mwXPXT
31DOAtfNp0/KHCahQPr1tmtV+P4FBqHe2iRccmWZVG5kgYwTiTuUj5JQypd0
4WkPC1SrGJg7nCTB5eiQZtAcC0R3lV92NCShq9Scck6BAlpnnnaE2JPwe89n
wZtbKCD393OJvwMJtJLj2xK3UoDnUHKwtyMJOz6qW43tpMCuzxl1dldIuJ/P
03BlPwXOj+kS8m4kHM8uiAk0osBX1zuOe27i51XZmvXKhAIP9vfMCnqS4Jn1
vK7ZnAIJPzQdprAzXkesrLOhwL0nMlpxXiSwv7Q2f3IVX//GN6LNh4TKp/xK
hWEUaHurMT7mT0KfVMDhgUgKrAgZH0wMIGE2ZdWUeECBKtuWjLOBJEglj0cd
jsfP/6EjqjiIBO/HxUvtabgPtaaTN0JJ0HxgW/WzlAI/j7u5R94n4czaoQHe
SgqknpVe2BxFgl3U2cVtNRS4ayMVVYn9KHLv5hufKHCwyURuKhqvd6hAJK2X
AtX9Vr+2xpKQc6/cSGyWAjt2/uI1jCchVbtOwG+eAoUmOVeHsR9ytrRMLlFA
wzn1o/VjErzC+g/kU6ngZ7Pun20CCToxi4pncB/aaK9nbJhEAjpH+V7ApMKd
D7m0VuytQvQUyXVUiD1mnngwmYR1if+t+yNMheHdqWlyKSQMPVdaDZSnAmtR
99GuJyS0X1LNnVKkwk97g3TNpyRUy2s6G2ylQqCiDWsK9svMI1+l1ahwk3m9
yOIZCdfeW34qOUAFe3q7fetzEmyu2/nLauM+dNdtalMq3o+7XLRCj+K+aLHR
xxNb6+Pt94anqbDj6lyLeBoJ3FWPEv6aUOFHwUPjE+kkUPxTDIwsqHBEsdMz
BntGO51ZYU0FKeGa3C/Y3Y3v/SIcqJCoohhg+oKE+rCiPQtXqDB/7pRkMnbR
yYolYzcquC+H9/djP+locdiM+6xudmW1XgYJD2K6N933okJ2v/NCMHbAuYHh
RR/sjNTT5dgOfZNnqwOo0C4mEiH/kgT1MTqYxVDh/WzQhRHszalrFmvicP3O
V63lfkWC2OW12UoJVNDs8mbswGb9KSm78pQKSiNkihf2fKbckHkaFV5XhB1N
wR53Un5Ul4HraSSrVo7dNKvJE/uWCsdcOHpYMkkoe7+/dvUdXr8MsSgh7HfX
de5Y5uH14Wl/sAM7ddcpzYZCKrS0cI8ew477ZzCvUkIFx8xsTwvskI8Xsx6W
U+Hl6EtLd2yv21a2lGoqgNrQ42BsZy17aes6Kvj8VtuUgG3J6jrQ2EgFgdZ4
Wia2oGhN51IzFSpNxs4WYDfuFP4k206FfgmDHdXY3iedKvW6qICYd5+0YO+w
rSj07qGCRMhCSg/2+N31OZl9eG7qHNgxjP04wS6jd5AKCmZLht+xT+aWpDBG
cb210tb/xGZr/S9uxzcqZOQO2P3Bzpu4FGH2gwofxreen8a2ZyvyD/uJ76en
PPx/S4jx3S78QwWeJjva/92hZnltfIYKd++51/zGDjiV57BuHn8+6rjcJLam
HbfVviUqCK47vvkb9pSvqZETnnMF0xotg9hPE9/pPaYQoLP+4IbP2Pp57Efr
SAI0z1PYm7E524z2zdMISO9bTajELp7M2rWRgwDr9Z19edguNJrKSW4C5Jo3
VL/ElhU/L3eLF885QbML/69vr3qmeAaeoyf09yaGYu+zP8vDtoEApwLR7bbY
834vaCoiBJhKawfoY2ckra4YixNAsFtEamHztz+fzJUhQGC2quo/7OqfSyNj
cgTUBmnOLeP940HX7WUqEjBQQO0fwh7ZNV9rt42AA2vaRtOxY/R0Sh+qEiA2
xUsLxtZxSMytUifg1cTKNzvs7ORDqeJ7CKgI1J6Vx7YueJRwbB8BM2SvBANb
qON39I2DBFju9l43ivf/HUbs3fajBCTouhrGYu+UnPSgniBAYX4u0wl7QmOP
y5bTBFTPzTUdwj7t+N3U/xwB+TJ9t6fx+ZLqVIPdVgS81jpSr47d9TtY9fJl
AiS/ffzAwA5iH1J8YEfAMmv4rU58fmd2Bwj/cSYgpzY/2QG7/MnnxSdeBDRZ
mdtG4H5gduVGDudDAjTyZa6m4P6yY2tfzqZ4AlhMaMKm2OxT8O5AIgH/bPxK
RLFfO7G993pGQBjTjzMG96tlx/APM1kEXP91sd0D97Noh+f5vXUE+CrU+Qvg
fnhpC3vBQiMBMhV3mqtwv9T4ZVuwtoUAvkJLJTfsYfuthbpdBPDG1ag14f6q
ZF9YVD5CQEuFwLPruP/W2LaWZPwjwGBbyO4U3L8fKeworWHB55Bq/XoftuNE
TOkYgc9VFPupUdzv19oalYmxk6BysW2zFLapzffy+zhX2Jo/NY+Jw897abXK
YwsJim5ZSoYxJGyxkm/UMSFh4IbsGsNwPN8uiTq8NCeh4ZynW28Yrqctk4fb
Gu+jTjZJQ+zvTksnPuE5bZMaesoAz7MUj7r2Ex4knAuMP3wkGM+HCJsvZx6Q
QESf3bsGz8vVghcTFxvwXIFu6Y14vn7iU+BwVWOFa1PzOnO2JOS/8o5TINhg
b8ghX3WcL9h09AQfsLGB8ZpCp5gDJJz4LhNLYWcDK7Pj4XP7Sfgq2RDdwYNf
f3bZ5e0+Epix6yK8RNjgrFvG6pa9+Ll8Mu61qbHBTMSBlu27Sdig3+Hq4cgG
DloXgm7jvGM5mzoz5swG/WJKyd9xHnoTccP5xFU26AjllT2JfbBBzEnakw3+
Kp0LlFLGdd5rY9sUyAY9y/rDjYok1CmwmEk9ZwNSusdplxwJNyhyuvVf2EC8
W/O1lzgJY/s4uqQH2aBr+2rRshgJuvcmjG+PsEG42Qmn69hSazIddvxgA+fc
M1Uuonj+CG0LTZxnA1cTFytnnOdEdmo2ujBpcOGo23g4znv3boie+bSWBhxZ
CgsC2FNFLH2bBGkg6dZbkYjzYdX+ssk+MRo8OpORkLUO74dTh7gOK9Jg8pmf
d/9/OH/Zn9QRPkyDgpJRe2M+EhSyVNqu6tBAzNhYdJoX79dZfsOW4zQo+y/2
uR+2jUenjd8ZGuwufb7/LQ9e9wDDwD9mNAjK9B/hX4Pr99SytsKTBnmff3AR
nHj+fDt4UsybBr1er/4+4cDzTmHTZ/e7NPjlebzlIPaatz++bwmiQZe+4cUw
vC8/FDsyHsbSoKakhn0zA5+vXvdD9tk0MP40+SuKDZ+/q2lcoe/x/fP29Opg
m/B1tWTm0eB1i04mif3h0PYLf4ppQEu4xH2VFT9Pzi8nlwYaJP+rbLEkSYjQ
FVGNaqJBoMXg2o3YhT90lnNaaTDLbXVkBJ8Tfol037/dNPjZ7hNggV0SYh7n
PkaDU5oR3s5U3H82RV6M+06DuZBYGzVsgYqSjQUTNBjYEn+MBdt+SeT1vyka
+FuepYVTcH+z7i73WqXBw4B08yJ8Lg8R9IAkKh38JF5oBv3/nD7ecbyUlQ7K
Qf8JnceubYvsJjjpIPmjdXRp9f/fV4799BWgw+/awPbD2E96Pd4+30CH/W3O
P0SxP119ca1ahA4J4mu4/64QIP2KTrBvpEOD08LNVOwTh1Wr5WTpQC5FNnhj
e4xYBB+Rp0NY2zVFI+xWwbJ1wcp0iNiWJSuAvZLzp/flNjpcSD1aPof7itwJ
seRGVTqkHShx7cD28rupwKNJB2vvDyKx2BkSGX+U9tAhz9ZTwAO7s/DzuxP7
6NApmKRwEVtxRnVPpDYd1P66p8pjnwu1ZMs+SofXtQ58TOy7clF1bbp0GH+h
Ebe0TEDvxSm9tWfpcMC5lasJm74stkH1HB0Gj3cs5GOrPDg+cPYCHfKlJRlp
2AENGZdjzejQrcoW7Yv9zrpnS54lrldW039XsQcJ9tnPl+jgmXa00BqbM2Fn
3pItHa6XRAWfx96pbnVLyJEO6xklfsexzdqj9u12psP9ubGMfdghjuUMIzc6
UKxFVtSx8zimGz2v04En5abHVuzRZ+L3Ezzo0H9acJM89sSdwQXCiw5bj2wN
kcKeMk0ytvahw4NaUwNR7AUwqaj3pcNYJEfQBmwWUXF55QA6NEYGyqzHZvs3
EBYVTIe7Q7BZAJurJ3FuIYwON8vuPf6/+XMvGhrdp4Pw048egtiCD8RKSx/Q
wVVsT40wtrjrgIxMHB1m5q3uSmDLnkoMDnyMrxcKyZLFVlS+OP0rCe+fJM6T
Stjb14gZnH5Kh4M1uyzUsDUm+4s+pNJBfeXKpBb23roEKeEMOii20if+X5/D
acYBtzPp8JU4ZXoBW9dP9PdoFh3CXZ6dsMU+a9Gvp/2ODreUz+Z7YBtpJeS/
ysXX239IDME2FzcWZxbSIfaeEJGMbbMq4ne1mA4llPbhd9hXvvRN9JTR4dGd
rfsasK/lPz4JVXTQGLqzcRTb96qICKORDklbtRzX4/0TrNfnY9dMh+N+2r3b
se+rPP7e3EaH/9xvNp7CTvolnPOwhw7ujyK172OnNnwRXO2jw/lzHJ3vsF+9
iPcyG8L7vaXz52fsAithHYXv+P1JIRUy+DyU7f/yJmyCDjfS2fx0sWsl49fN
/qLDZMvPLnfszn6h4cI5vF4O4ipt2H2FvYckFukg/nZqN4HP50jco1e+/+iw
K3tPnwr21Fkh9+MkA4o5L4zEYi9s7+1/S2PA3KE0nU/YLPyP9gtwMKCaw/k4
G+4HXE0beAd5GdBr5rrpOrbsoQ2pV0QZsHKh+MQV3F+2SPdwdUowIGXQ/3U2
9g4yznmXNAPEKp69ncfWKhZE5GYGDFFyXtzF/clop2BHlDoDfj8cv/MW97f7
suvJXD0GXNDl+2qM+6ehkfTzYX0G/Nq37fM7bKn7KtrchgzQiNigs4aG89zq
0TAzUwasUVvNLMdu6/AW4nZggCOhH7EH92vm3YltZvcYILubGn4H9//PeQud
wYEMUGaRG5jGTv7NduNDCAMc3vcWmHPh74+G4iVcUQwQTfeQOMKN87vKmaMf
khhwmTP7vRyeLxGDHy248hlQla7YtJ0f54h1DfSdRQy4nRpvWoQtcfTzC9MS
BqxnyQw7hOdZ1oeZP++rGPDjkXSZCc41LaGbPE3bGKCguC/2OZ6HvJqR0e8n
GZBmWld5G8/TsIeWVSZi7ND96uJXV1kSrrp5O3tIsoN6+WrNlk24Xicfiz6Q
ZgdYf/jED2wF9o6r9QrscEqlVNdKHuev6/tlVdXw+1duyTjj+U81kPLnPMkO
TzY9av28jQTXdUPa733Y4cMsH8svnD8Mp//NNfuyg2A0o61PC+f1T+tTJvzZ
QS7opWkTzit8fieWxMPYwfJBRNYHnG9ezRW/CHrEDonFxYqPtUn41p7AaZrD
DgfOs0sXnsT1uH+hkfMrO9yQ2mVwHOcyobfsG2zG2aHlYDEZbkFCf/N7q5pJ
dhD2tmtqsyTBfA0fxXeGHaRuSdSZXsLzKqBSZZXCAXZyMyYxOLd5e22J/SPE
ARFRSlmXr5OQZksx7zjJAZyx5VGvcb6zDXz1etsZDpBc+v1QNQLnxPTz/yIM
OGDlfVJ7cSSu/9ec6OMXOcC5bHWyO5qEAtPLNdV2HNARdy9fGufNJv1Wxfx7
HJDYlnVUHufr+X1PFxKKOOCobbnmSAX+vpGf4FNewgEC8z9WIqtIYNn6kOt7
OQc4WLXk7a8hgSYaKr61jgNSNrrLZNbjPLtw7XB5JwfEEGb9sa04177Uif32
mwOqXneIfRrEn++/mZ3KkpyQlsJ/O38V56PAn6V60pwQuG6d6wsKK7hSv+u4
b+IEcZY7jvEEK3j8+nKxbAsnRPKOefrRWCGwpuqengYnmBk+obqsYYXUm3Fd
1/U44a1a6vgrUVYYHt17rdSPE3JkVNGrPaywN6ExWS6QE4it8v+497FCov65
hogQTrgiJit75QArGNU5SZhFccKkikslOsIKn18n1hMpnCBV+1xh/jQrtNxY
EdtfxAncGyT6v1izQilvXk3VDCfQ9JvTPSNYIXm38oYGEy7Yc2DBRnwSv36M
3WfJnAuCDx2/OvGLFYaMh8c3WXOBIrHhRe4UK0h6R+X52nOBgs75oHPzrPCk
csEAbnCBdI6u6jucq58eL415e58L6t957moXZINUk1NrH1ZxQaZcq2aWNhu8
vOvKa7WZG9K1QfHbazbw0zM7QsxyA7n37tyRCBps701K82tYA2EbWm/6v6BD
zKa4lw1HeEC+wJWp28qAW8XBMUdyeWBa1+eJ7A68zhv0ntZK8UJkAMeZj1mc
sMe+6jyvPy9w2/18P7KFGxKETKXqZ3nBcXIi3mpsDUiVPY8+dp4Prjpt4xeu
5YGwzaVyLUV8MOd2aX3JE16wnCaba+SY8IhiO/ovhg9M30yJ+YcyoU2xYe3r
20yw9T61rB3OBKNCxnjlXSa4nsru5IxkQtlsx+wXfybcm3UNCYvGf/cuzuaM
YMIrtYWlB/FMGBIQ/mibzISFktWOZy+YoBV1zWtHGRPCWjiDy6uYoKfIEThB
8sPDFDtr3xom9PpMH2Iw+CHFpVHrUB0T+vJMFaS5+OHd2rDFukYmbGxyM7n4
Hz/0nmNat7YzwW6iz7ljIz/IDK/XGhpmQvWAUE71AX5QynYXeTLKhIRMqztf
tflB/W7PgsVXJtTqlTqwHecHHZn419/HmVC5pB2z7yw/XLERE/nzhwkRO2XE
Sq34wUPj9kLWNBOm5uw+Dtrww12uoTaXWSasu8XlRnHkh5jMlMD5eSb8NlqW
3nONH5K9SKu8RSYUhouImXjww4sTFns9lplQtQ8p3vbih2yJSmHNFSbspFfr
Jt3hh6Jp6YXVVSaccpfwK7nHD/8DCPF8hg==
       "]], LineBox[CompressedData["
1:eJwV13c4VW8cAPBzrnuvVZIrVFZRMhoilcr3q4lUFJJESVRKSiSUkqJElIyM
KIqGFZWSvVf2FhFKtOz9e3//3Pt8nvOc857zvu93vEsszu0/waAoikl+/v8P
v2rBVrZ00fg8KgJrLL018mqkdQ9KH4KG6geJPiMnYbYg44a09CmQdX8QUlvm
BOFZPlIs6cvQpW826eHsBWe2OJwdlboNWi689buagqBm8mTAH6kQ4IzoBrg/
fQaOhZJrfic9gofUYEN193NY9KC2dGBbGHxNr7/6QSYOLBSQ66f1Y5Axzdnn
dv8lOL3iT/vX8AT6HvVueCCZCNwtnXIDUnHA4O+NcDiZAo1Znxz6v8fBFmEV
yzk/UuDFs+Dcn0kvIKd9p2uxdSrsvbDXvG/bK4hZ3b2wzPwtBPJ+COy1TgCR
pg/HPNXfQ8olnQv2YolQ2ntGr/vVewjrW79w0DURfE98fPxAIg1sK4Ws/+1I
Aj+zb4XD42kgFFbE+NuQDD194buOPP4IkwJv4+w2vwHuvLyrpcx0+Hb9qd6f
yDfwJGnh/OST6fDW+mrE71MpENrW8mJS8ROYqKiq/5pMBXHBvHh2VAZElTw+
/1MqDbTv7BC6HZ0FQ8GpCu1300DeXiTn9Ocs2Gld2lVNxj0+9Ja+P54F/Vyj
hh9qPkDSpaN70ndnw4Yte9Vve6bDRKxebllvNnjzWw66DqWDhmNTjtzcHPjS
dPmV3bFPYNakyPNFOQc8HGMkjTdlQIrIRLvV5RyoTJhiyP3OhL/PfnPW0rkg
BLxmc1dlQRufUUrCklzYtDxA3dMyC960r+OEa+aC71DcoHNVFvTyqwxUuuWC
qn/dCYuX2TASELj663AuuJUo6Sib50IapzU0tSQPYpPeLX/5MBdihYTr9nTl
QXXwVq5lZbkgo9+m5jKZB7LWxuliG/OAvapxTYRCPpRweayiOPmwadkZFU2P
fBjqE+B31s4H36VSrMyQfJCoDukddMuHGk1lnq74fLCLTIjs7c+Hd/tf1S1r
zAeRLS1CnwsKwLxaj+/z8gJAWavfWtMFECHMR7/bWACn+P+W5qgUwpM7jjKG
ugWQ3sS++TayEFotoh99tCsAC8e1o+HORTAyT3Kz1dsCiE+43XJmVQmsOeQd
XaZWCH1CfXd1jpVA69/6r8PbC0HOUUdjRUAJVL/f2TO6vxAiN/NHdY2XwEyv
zSdv20K4X3zXyiS/FI4YGhmKRReCY9e9v7tMyyH2a13oD94ieMxfemP+jkpo
NZCU4SouAo0tLqbXzCqhatLb5H1tEbTaKq77fakSIsptqLMdRSBW7d1T9qIS
eiPSshtHi8A/WFfbS7AKTmzgT69fXgw3llUIzLZUQbfUm6/at4rBGqpC+i/U
QIjllhI3/RKgnox8aPGugT1vvTzfmZVAMFO8tSS6BkSjDO/ynSmBomIrybj6
GohIyN/D8iyBFQZTT06o1wJ9xcvuWEYJfD8p9+oLXQf+aV3KuiqlcK1Ut7x8
UR0kjkZO3dlaCmKrLvxKV6mDZVRE5m/9UtAaTF8TeqIOxp6ohK08XwpxV/an
Hiyug1+b3ul5J5XC6ftXMir96kGVGbZsr3oZMIaftGfG1cO/W2eqlXXL4NHB
Iiohpx74qH6b7WZlUCLO2eYzVA9Whb9OjrmXgeLz2EJt4wbo+Z6+N66iDPo/
1lTmSDVCWNey+qBz5WDbLd+VEt8ES3Vcf0Y1V0CHWRNPdnETeNs2Wh4aroAD
jV6ryr81wdns0fSDgp9hQ2nv5e5FzbAXveIVdn0GrqQYQRHPZni+pCFF9f1n
CHZdonHJvAXur1NUEzGoBL6RyuM3nFsgp80gPfN4JVw5d+32vYctMHvP8+E9
+0qwsGivfV7aAsslF7Y+eVAJSlrhNo3rW8EmJ6M4tK4SsjkLQzYKtoFJhDH3
8NEqUPUpytih2AbfbYdR2L4KnrGdvunvbAMt94S2wzer4O54/erTrm2grfcy
zvJFFRi1BxQ8+t4Gb9wWbjMfqYK+F4JDk1lfYIe5ext/YDXwLfGQa9/QAesy
qnPThmqgaLP/6qs7OqB/+8kzLny1cMs4Yr3E/g5YOKdj4ph0LTD83u86bNMB
rNOXm8N1a2Fipt+6IbwDIg8lMKqe1cLPVsPYz4yvoGZwym25RR2UBcvJZ5V9
BUkLqXQPsi53UlSVzZu+graz4YkugQbQqtTcONP9FZa8cUm2km+APG5T7c2z
X6FTJUmkxawB0h39Tr1X7gSj+E6Wc2kDvDYYj0sM7IRh6+smni8bwVewVCHq
aBeIv5uTePNWM6Stl0jda9sFR07DyvHnzfDN7BxMuXSBfrb4+4fFzbDpNcfg
YFAXeOXVBmvPbYHv2qZX5lZ0wWmGQ3tIYAtsuzHw+fKmb8B2XCBZkNgKY8Pz
HPaLdEPqPcU7Xox2sGgxyOQq64GZhy6/tfk6gS/069nzTT0Q8+Xwdx2pTkg2
sRVv7+kBzSShhMOqncDV7Hn5A90LV/VcjV+ZdUJ04weV8+t74W76l1HulE7o
qZOO/fKkF34uaeILOkbeo7LfL+3ydzDN8U+/WfgNzud7WJyT64NgyXsRU2m9
kGQ354CY9gCc/RU/7ho1AFEuNn1rDv6Bkelr8xSV/oH74yn9of6/8LflB7Vo
zzBQNR2Y7jwITQ4PAxs3j8Hyi1ZOBgrD0Kl00btKfhK+DQcZ8X8agYGL3GGx
/tPwRFPFvi13BJbPWO7QC50Gc5+KewklI+BfMMX/N3oammVZxQcaR6BSQ79b
4v00VB24sClscATmtidflv0yDRlJutIrFUaBf7/o584VMxB0lu7bGzQKi/YU
SnHSZsAgLYy9JGIUaiKcrzRlz4AQa4PMYPQoSNf6vQoumQHfMFvToORRyAyM
vkS3zoBHaUtFe/kocHjs/VxnZsBO/u0bO+YYbKcVj4punQWd7tNX7p8fg6xV
B3Lqcmdh5xWZV9udxmBAR+Spb+ksbF3Q2jxydQwyNahzWDML6jv2bDh8dwwU
mzHft3MWFGJWD8o8HwOvzj5FG4pC/hNDJ1Nbx+BMDLcWjySFZd+uGDTuGocj
62N0g4woLHJVu3Fn7zh80jcfpU0ozBP+nbTZcBzeVJgInTpCYfr2o/OiLMbh
GMswRMmSwlfRW0tOXRkHmxPlA17nKfSx5MbJ5HFo8fX6HOhN4d5vfoqSkhOg
/v3IQt5PZDzFb7WmshOgsXX+VEUmhbvt118NVZgAF5/fZf45FGoxvlSKrZ+A
saFEdYEiCrdKKzpy9Cbg2k0r/c5qCteZ5mfxuE/A9ODmstFeCsVrxw0Huydg
ULDkYss8Gh8t3jOr3D8B3pOWTBSiceHxyFi7fxNwJir2fpQwjSL/dk4OzExA
UWrF68MLaRQUDIj8LjoJ0+K+f18upZFLd9XPNu1JsOny2/NJlca+XItrRa8n
YYtNyIdYIxql/BtP+6ZMwgNb0c3NxjQamO01NPg4CTuU1+znOUxjxthGhY6i
SdB51oEm5jTeXzm/drRrEuxDQrTrrGncFJQpJ7doCp6dH1os70Tj3dPin2/e
mgIzjze9eoE0Zq+/n7bbZwpOPTS6IBpM4wiTJ3p+wBTUcQY/NofQePTxoFN4
1BTU+vLePxhOo2ptydLU9Ck4s6fIXiGaxrYtlx2//ZuCfG2GlVoSjavm10ts
M5+GJflq8K+Ixh6fHveHJ6aBE5uEm0toDOcb7e21mYbV7OshN0ppnMMUS77r
NA2bqXojvgry/SOHdtaTuGnwTV8xVk1jTGub7ak8EjdtfueNWmk0PfSr5mPJ
NKjHSAc5ttEoXD+zQaBqGm6uDVIM+EKj+2cprjdt0+CfpPe8sIO8f86xoKmR
aXh8Y0BYsJtG8djuzHvyM7Big/yyFQM01sqOyHaunoGPMx3/pH7R6B3FvqOq
NgOnG65rLfhN48QjOYOmrTMwv/OX/9gfGht9Tn1fajoDTp8qS6KGaHxgPyD4
1ncGWtdmb7s2SaPOn2kHnoczECfRekB/ikbGWYEWk9AZCHm2ji09TaOd1eqY
2eczEBlxwvjtDI17D53fqE3i1jdhW2cBzUA+GD7WOjgDzbsU5lzmZqCT5gqe
txMz8KmQ94AKDwN7th2Ov0fPwh9L5cE+4hyt7Imt82YhznOf1n4+Bjrv93kQ
pzALtxyaPOi5DPxukLXxhvIsLFlF1z0jNjo42G66YRZedHj4aQswcK3pISXB
nbPA1Z+/33MeA3+eWJbveGwW6PW3tn+bz0CTk8Y2eidnwXpty2oHIQYWnfae
r3BuFjQ2TwVzcRgYfe7vkTbXWRgvGhoQE2ag6eVPI9uCZyFqSufbMhEGlrj8
CZN4PAuuvO6zT4g3XJXZNhozCx56ui8lRBkofOP2vRdvZsGtSySDX4yBZXcN
V8z/PAvnlyhzShcyUP2eV0Vf3SxoTsQMqy5iYKz/x4t5rbNgubnQJYzYI3BJ
9qW+WaisS3a1XMxAycoRpd8MChXv/wxoFGegob4gZcqmMPesU+NqCQberZav
KeKlcOaLaI0H8USt6eUnghRuMT84KifJwPqmnHxDkqcEKwPwgBQD5x5uDc5Z
QuHZo6evBxNvbx22Wb2MwtR3lE8LcfKXFUK8ShT+lTkscFiagT/Mt3Y7rKaw
4obo7SBi6a+H33eupfDhppuNVcS+Xb5m6RsplLlkRxaFgfmWscryWyjcdfhX
iz3xVHc2MxApXHVAMiiG+PT3oRfndlE4wIh8w1jKwKhTAldbdcj9XeMLVxE3
9snpa++lkCMjcuog8a4Bk9GlhhQOn0ksfUocIXyjxs2YQv9/h3cUEA9tepnQ
ephC3yOVeT3EOsdrvDeaU2jZflGXJcPAyDuT1oEWFA65Jn1ZQjySJLN98ASF
NnN+X9lMvKdpt7TeKQqZKkFKhsTR1MWpV2co7LcQHrAhnpALa+S1I3myqSr7
GrHevrwUK3sKl4duev2A+Jljv1+uI4WSDhlJ0cRT4cJnpZ0ptBstrHpDfCB/
s/aVKxS+uVgwL5v4Rb/lsuZrFAbOrrAtI6aEfej1HhTGnzT/XUdstCm17YEn
hRabmx+2Eb+yaEv7c4esdxafZRcx4w4rcI8vhRcGLUx7iY2TVl544U+hk6fh
9R/E8Y2Ge7kfUrihy7Duf7OoqwqWwaROSDaafCc2lXvGzg6l0HhWT7ibOHlv
RafEYzLfE+uYHcQ8jiMZzk8oFFg5rdREbBYuGdoQQ2GCuYR/JXFK3s5LqnEU
zqUEVAqI+fptD/i/ovCr9K4FH4iPcoJW/0og++uSpvor4nfqmfy731B4+pBj
dBixgEVv7/O3FP77YG7kTWx5e14e8wOF9kpO+52IBRvNXTOyKJR2l1HZQ2w1
62m8OI9CUfd48XXE6csTVZ0KKXTMNzZZTHzKgRpQriDjPaFbO8n6Z4WtKPat
ovBL75RsHrFInl7Mz1oK9fIEy/7fPzlCUUdiWsj8BlzXMCMWUy/eyGin0MO9
XWAjse2xvwvMOymMGTu4S4h4caJmhdgPCoU5kROZZP9e3NOpcXeEQpVHbYk8
xCUX+Rb/GKeQt8iUp+H/+AhbO7pjmuxvZaHWp8Tlfe4Js1w09hqqMTYSL/eS
kbafT+MimUV++iTeXBN2T30mdfWs7sw8YeLqevtGJTEaz9XoSdeR+HVblufX
I0njrkjLqf3EjTmWtIkSjWN7DX9sIfH+R7N50ZXVNAYNe0hNkPzAnb1PNXIt
ef5LI7lUYrVMdeueDaROBMqmyBEHfBQsv7CDxl9FhlMzJN/sS0kP9jajcfKp
pKgTyVdWKmuT44+ROsLTY76U+Gry89IqSxpv3LscWkry26vE+zOiNjROs40G
FxHzvT5pSTox7FOUPfp6AQMLYoTXfPIjddPenXpK8usX2TvaHQ9oVEquObeF
ePjprAVXEI2nDm0frCf5WPZJ30NtUoctD7ZqcBO7R2RN1sXRqKthJHOE5G+N
oDOFv3JovFQnNtzOz8BUrzwz6WEaB24eMtFjkvypUyrmOUbq5hr/xwVcDHw0
p7p6gNQtfWtNyc3E1/zad35kMHDVmvhqWfKvGzyxykiQzOPTZRYDszR2Pl8z
661IrktdsT1C7hMoDHs8eoxcn5oqKf1LoxXLoaOigoEr9x5SdCD1eZFUccNk
FQN5D0a+aCL1u2KDxOcVdQx84HVkngax2pn8T+4tDLxgGuXPbqGRXbMgVO07
A7cl8aYENpL6H/nWMILmwvNqndtTa2j8tmms5KwqF9bk28tOFNN4/IJL6pxH
XPijRfvjgnfkeWu/pMqHc+E+yufdrbc08v3DtzsjudD7wqToWCqNiefZ7649
40L37aVzWlNonLLzfz+UzIUz0SsnYpNpDDz3/GNrKRdeu1l23TiexuIzNdmv
prkQLO04i5/RGKakllNMMfH2eIJsWAyp5/3BOT1cTDTIvlorQSxyxixXmo+J
PXv7RWRIf2Rh8yMvQISJJ1VqjNc9IeOdmi10Xc1EO5FpU+cIGldbK1boHmMi
txtG3yfr/OWU1LnXpJVcGHBcaSnx3TMcQYGTTMwL/5uYTPq1H+cn9T/bMvEJ
79i7+oc0PnUtrdN3ZeIKa9EJhQAaRe/btBkFMbFO9dYqtj+NBQHmV989YuLA
Go7bM7LPLgYdkBKLIOMJbfy1i7gqbNOxpmgmrld+u8b3Hul/nvN3H05moo8P
z/UVvjTOpr/sP1rOxL0OC6QDvWmMz3zsk13JRFeXqQPaxKY5D1YtrWUiUzek
cPoOjWmFLnZdzUz0pBY4nia2r949dOI7E2N/fFhx4DaNS+vgYcFPJp7aMnNf
kLiyQUVN7jcTl/ku3vPZi8aVbYudvg8zsSin470ecW/vz8nTXCy8mb/l2XFP
sj597WGlbBa+0qALFYm3D9RsUeJj4b5lzruGb9EY9e+j24AgC/XnWp67S6w3
nCC9V5iFOwQzFpkQz4w+zY4XZaGP++OV8sSHp7257CRZeKHzk3/pTbJfqGvR
lUtY+MypuSeC+D3j4g7lZSycX7HlpT3xAh5Tz3+KLIxa4H17CfFnISV+h40s
lDjzpcrXg0aNs2d/hG5m4fiK0ZlzxPGF8YU5wMKl38Qu7yf2dVX2ENzJQhGp
RyaLiWfqL1is12bhVDpPPk18VjkFzXRZGBAQ4f7jBonrHrXpl/tZ2C1lMJ1O
nI5OLdWGLNwa6fIpllgpNC1t3JiFmf+a6h8Shw1PBEmbsvBX4h8dD2J+vc2O
u8xZKOOFiy8SO7+4YmBrwULRjdraJ4j7mJlrH54g3x90u/4gsYk5NT/9JAud
b7vl7SYuSdP83WnDwgjuWGFNYnXhG+W851i4SNytaD3xC9u8l2susPBBp9vX
1cSLill3DjqwMMVT9pg88W2ZXSevOrGwUKtHS5Z47IrXzhgXFprbb3kkTXyy
sVi27CoLf1pGGUkSN67l5xq8zkKzO15uEsRaPrpfF95kYbn5SZH/r7/v9clE
L7Iedqni/98vt/VzuLU3C60Nuh7IEAeGCbr6+rJwQYrllRXE7FF9k1R/Fs7d
/rJ5FbGj/oMNrQEsvFcg91qNuOdlrQhXMAsr+XRGgNiILTIsH8rC0P5r73SI
848erNGLYCFloP7PiFj1Y3DSpSgWDqh2Pbckjl7QfC8imoUdvr1N9sTCdott
85+z8M6Z5Nv/z79Hialu/wsyn12v3wcSD8lGKHDiWZjH2XbyBfFxt3Ye9SQW
xso1h2QSb1W1yPd8x0K12jivX8TJvk+fxn8g+/vvay0esj+W/vh2ve4TC9Un
dPxkiOkIaw2ZPPI9G1o/mhHbjcWK6xSyMFkt4MlV4o79fRN2JSy8nHRGJJI4
i/vsu4xKFp6npl70Eq+xiH/YXUPWv8G2Yi7Zz5Hpv+3nNLBw4Rpnj3XEbucv
rDFpY6FBYuHr28S/St8IXO8g+4svQ+Ytsdny4f7nXSwM0k1V/kas0XIpbvgH
C7cvZS7eQeIrfl2ap/gAC3/M4xm/RCzhN3Fi2x8W6gSduPiKeGr7laX+Iyxs
1nPRWkTi+WO8e6gSFxsllCbv8JL4Z+saLgpis9FTJrZ3L7H+D7kQmo+Npq+N
1QL/zw8y5YH1gmx0mG+aqEDyCSdE9P41STaq6uRttyH5x0ytT/DnEjbWhZ4z
zyKOq0m/Z7iMjXSP/GVRkr9AwMJHQYmNOc1qiaXENjdeedVuZGN5i8EhXR8a
30q7ccMWNl5cJxuSRExn6N+KQzb+Ppz6TYzkx6CxkRtXd7HRhm0aM0Cce1bT
bYUhG8P2LRtLIPl1sXG9g6sdG4t0LdRDSH62Go4d6rFn47oFxb+kSP5Ouu9i
r3+JjY0tOoWxxLvKpc8vv8pGcwuPviyS7+232pyp9Gaj8UTOUn5yHi9Voo7L
PmfjMfbxcB5SP0RKqr/6vmBjkq+5ZjLxMeuYo+Ov2aigbyVt9pjG0Sgds4oU
NiraiT9Mj6RRRvThIacccv+RSLeApzS60Ap6ZW1sZLpPeSaRPqJnO3/j8q9k
fs7+eOfyguRPr37z69/YaDCnf6nWSxpl5yWcU/vJRiFYmND7isYycdV7kWNs
TNgqlqOZSKPkBo2KixxuXHzH+osFqcdeLlJGn0W4MeDV8D799zT+y6C+yC/i
Rm3JkHlb02gs3JE78EWaG8MzE68ofCT794DWXO1V3LhCvlxVNJPGHNv9uhLa
3PjBPoL7WOH/fZFK7SVdblSvj++4WETifVjYtHofNz5e77LQm/QDNq4NNp5G
3Ohm5B6fUUri8Y6p99/j3LiwKfDG1koy/zFWJflXubHeqiLzUxPJ963OWrYp
3Niszzp1m5z/1S7Fzb33jhtvV+vsriHn/2NCjdUJH7hxttvqkBTpb95rrTvy
N4sb77Qypz4Nkuel/j5/sZwbN2qW2y4YpzHb1zLUuYcbD+S0PlvJ/P/8vvfX
LTEe1HEKmctD+snoVtc3zxfz4LhRc3ow6Uc/X3rpVCTJg4xigdeKpJ9dHs/D
xbeMB4u8k/Ybk366ZlGuqI8yDzKdILdsBem7htZrPtDhwY3dSmlL1RjY/WxJ
wGNXYkn7rFv7Gdjv8XWc6xoPimkfz/YyYOA/iyjzkzd4sPN+v6uPETk/SS1R
VL7Dg5EeCssfmzBwUZB0Tk4QD87rj9HvsiDnNU+pP93JPJitHHrntz05P1hL
6Cr94MG2HXmKi4MZmLujLcmvnwflTZbcdXhE+nmZcNHh3zwoaW3/rjqMgQ3t
4l2fRnhQIy7G7mEUGf+guPM+Ji/W8GQ7bX7JwBVai2MvSPHi8qe66+dnkv56
xUJmmiEvju8+0NlA+j5Ts+XPu4x5MVV1rorZT9LvBqjoCJjyolTqtqmeAXKe
mt3jd9yCF+02jY/N/mNgbb27uMA5XrxHz4/aN81Azs1+1eNevJhlOVF7QogL
73/NPDH3Iy/qtBu022pwod8jq8Jj0nzI4YlrGSN94iVHd3tXGT6019K3Foji
QrP9EVJBy/nQ7CDDeHk0Fyrx1V8qU+LDG8KHTh55wYXFl3esWL+RD6P9H2/7
/pYLGYdkb8/Zz4dDqn0NdpVc6CDaqfPuBh/mBv77pstioknAkYo5vXx4/wlH
Rd6RiWPbY8YfZ/Dj84Vmbw+TutXVvdUpx3MObpXLfnaJxOmTLcqLy4/NxT/f
B6guCR58fdNhvvVKAezvzP8n58+LnobHd3MNC+Cc/kUyuxfy47rWqDjP8nk4
6RxWkdA2B4PlQ1+X7xbEn+5H3DODBdAtyyd4d5og9uaLmYrtEMQ9iw1jSmTn
Y0aaTJY6zEdN28LD82/Pxzb1sTpjRSF8LG4hWzY8H6dHP9knKHJQNvd54N7D
QhgqbyzYJiaMfitzFKozhLDsbHnH2mlhtBpkVhUrcFBed/n46MACtEj6J337
HgcTV67+vaRABM+4H5jS8edgzszV7KpiEXQ4kNIw5wEHNdl5ZdfKRdBr2MHX
L5CD4vfGvFtrRTB+4/hkUDgH+WVjw+90ieB49mz9s5ccPHuYEZBFiaJf9Ryf
vEIOhu705vdTF8VHT8+evFXMwesTF/4s0xDFpxcrtmmVcjBXXH36g6YovhXx
myit4GCpvfHdTi1RbDXhnKyp42Dw5hsX5A6KolzXwm2dXRz0pFkDnvaiuCbF
WTK6m4N5SW1CgpdEUf1my/iJXg7+5b5uHOQsirpy4Yk/+jjYY7VS8+l1Ubxg
Iy359y8HscHIOfGeKLpuvj6ePMhB7jPpfsoPRPHm3M7ai8Mc3G1C5SYFimJw
wlPvsTEOVkqoXE4IF8Un15jWHyY4uPSlwpRSlCi+1D+x1XWKg2oMoZC4aFFM
WVogoTHDwS06tvuWxYpixuDy8dlZDhZM5klGvhTF/wAmmEIA
       "]], 
      LineBox[CompressedData["
1:eJwV13c4lW8fAPDjHCt7FNqUKEkayOp7ZzSEJFLyo2RmJKNklKjMFFkN2WmI
MrN39t4rZSRCZDvjee/3L9fnujznnt9xi5nf1Lckk0ikv0wk0v//xt4zZz1k
4Xl8U1qypKxF8PGqDlFtI9HL0Bc4lpc6bwPEtxI/UVFb2CAxK7ql0h1iy57s
ZBG9C9+fcs8bWAeAvaqbw8rOQBAZv8C9khUNWZ0/khfVQ6BOxSJrwf0lrNtp
D85bPwWpiSvUS0diQaMpbM9yTzikwsUL9hoJ0EG1iZjb+QK8nqrkEyZv4XbN
Dtm/X16Cnp1WW31UKmx53tkwo/4aumqmGyoa3oG5FKL8sY4DL+vFOhfJj+Ce
xpn/rycRitySeRxSM4BtYERyZud7+FwSdIr8Jwt6y4rdpn+/h5y7ZV3xFtnw
4W1M5Z8vH+CwRBJdYzAbdJ11zabU0yCaefT41+ociNpQEDVhnQEXQ76tMR7k
QfYdLWcXkc8gVpuw5f50HryeUti84PUZbnfkzSkYfgXHVgHrf5pfwHYDw8le
LB8EXteS53sywTaMRzU4pQCoPLnvnVSy4BF4tHuSC2HsQZLeXHwWbBbbYdH1
XyHkWt9789c2G34YPmzu5y0C4yNHlWapOTAVb5XScq0YEurjbv3ZmQ/SEqN5
mhWlsBiTIzUckg/Z+7mbxdjK4KR1w2j7Wj4EvZXvtJQug2nKimFBRwH4bL1/
tt61DI6p6ioF+hfBAHU1zYxeBsGcFgtei0VwccpRYWR7OXzvu5vmhMfZGbzb
t1K1HB7eTtlxSbkEfkglpKd7lkNrBo0s+bcUUrQM9LzmykEANphyy5TBdavf
K2e4KkBZIkLJ36IM2FiTzEMlKyB08f2CR1sZmIyUsfubVMDRsC5L84/lYKDK
NPW4rALu10trHTKrhMyZ4XOSLpXw7kuexMfISkh+8l4q3b8S2mPUKHsaKyF2
8vbWnleVIG59qUhEsQqy6qrVNldWQj3loQxJsBrUdYR8krirQEh1QKDl2zeQ
2ps+PxpRBUjc6u9p+je4H6Q0nJZcBbac8w0VR2pA9vhZS9XsKijqY32UG18D
s2q1g8XtVWB++/BKrEct5J12LrvDXQ3pGYED9jL1sM9oQ06MZzVMCUyFaF2r
ByNT8+oF/2qQvK11fG9EPajv80hQjKiGeBXOhNG1evhhoVganFYN4XUhVsbV
DSCyT6TbebAabo8+nT9l0gSNy5KTQUrfII6zwY9fsxU+rL7PFlv7BsdVPU18
TFsh0Cxe1ZulBgYd98v9vdMKfE+DBGb4a0CkPfhX44dWODXye5l7fw2ExWif
CeBrAzmas5mzaQ347WnmIQba4LiyTtL7+hrYZXRvwmGpDYy05iere2ugLECm
bJCnHcdfpg/rRA3Q/oTeKjjRDtb+d5RXKbXglnmu0y21HYY6U6JyoRasoe3F
tHMHjN/4EH6ltBZIicsFA8EdcI4cO97cUgsxzNsG65M7oEy/ovPWj1qorbPa
8b67AyQEnumdIdfBXgNaoqVSJ+z+0Fd4/nQd/LaRTPvO1AUsX3MmLn2vA58G
7aamLV3ArmvUu/FfHYjIOM8WHemCqdAjDzlY6+H0QpHsK8suiPU4dSYFn8N7
b/0co7ouyEubzkn1rYcb4d4lrc+64d4BpRZ9+QYgLyUOl77vhtI3YYcndRrg
pVEtKaOiG4x51y+UWzZA/TZB9SeL3WB/YibkWFQD7E99V3PmUg+c/ZYcprve
ANOFHa0VO3uBEX4i3amlERzH941mp/fB0i7G+9mMZvhh2sdeXtcHDTM3C+U7
muFCb4BM01gfkDcGBfQuN8Oxhom741v6gb7FyFUKWoDyJYVPyL8fFk48WODp
bIEYL7Hjd8wG4DUvl4u/fytwLLde9/MYgDNBNAr761bwvukT+DRyALbs26aU
97kVzM2HO1MbBmCdeDOe0N8K0qdj7XoVBiF2eOnIB9k2KBfc/EKRbwiiJhqC
n4+3wdEntSWa+4dg0vfPLxZ6G7xldR87f3IIDknsLUnd2A4ha90Hb3gNwbZP
6at3Ndrh4nDEt5e/h+BaW4jQ5bftMPWBb5Fa9h2KzRd3U1w6gEPsoeTwsR/w
Jfxv5u+DXVCrEnbwnuYP2ODjoa93tgseX3qjsF3/B4zwi+X8sOoC8rOvp67Y
/YDFgp8hnm+6YJ0xbd0T+wOOX9kzHc3bDX8GDd+1kH+Cu4bkzv/WuqExRnJf
WeNP6GRpSX021QuhfA1SCVdHIbIujEvk+BDkK2zP0XUcBVK7VcZWqyEYM70J
NM9R8DRPiz4VOgTKnwQNjKJHofjkUx/h4SH4fcbEm7t5FLIyrF+E+34Hdb+Z
lrvKYyDqmcDZ2DoMq0u8bvpC45DYQJ25rfETzAcMSimNv0DNoo6yWWYMblU/
NL8pOQVNH672nHKbgi9OXBdEzswA838Xej9cmIMET7spWaM5IOeKhnB/WADf
ONr5xel5GOtuSb8Yswykjh+oyGMBiIzl+gTpNXg4WZLg8WABNJXMVLgV1mAD
KZasGLAAsYODr2+dWAOBA5erciIXgPm1hPCei2uwx7/tVMbnBdgqxGMjf38N
tJQrdBN/LYBdzn4TRssaPE9KMgnQXwRDSvRGFvt1kHC1cjeQWgLfNo4rYk+o
cEBp+EKc7BKk6HzkEI6kwlHSpYNT8kvANG7TwhJLBbWQM7/uqy/hc4gPa06j
gmmytMFHkyUoKXzbyNVIhajOfwfJT5fA3mKkS2kDDVjk7k9kLCzBsn9xpsE9
GnBRVyrW15bA68nyrRuPaCBQ7vRGk7QMPqK2YndDaCCqY244wLUM0j2+ug9e
0kDFUrOSVWIZVq8z2lRyaeAayRn336VlSF0o3np1mgZjS9EXOYuXYaFP5sTF
C3RIPHHEZahyGYo+8F/hMaaD2ZPmpxn1y8B9a9/ukqt06BdnqbvQuwwvPUtL
mR3p0HbBWfn1wjLMsR9VlAmgQ8kXbdEDUivQ3FpU+a+ADtEOTFO60Svw4y8x
f3oLAwzyX7OKvVmBh/lBdqs7GSDAcmz3QvIKNJpezY7bw4DQ144m0ZkrwOz6
tKBLlgEPGwaah5tWINDIrW74JAOc9uVmOTGvwt3rM+EOtxigNX7DO/zWKvyr
Fs66V8aAk9670zTcV8H1xm5xoWoGqG0a7F++twqqJr8XUuoYoKSpc+xKyCpk
bqAUpLczQCrl4MLu1FWoMh2XshxjAKflok3O4Cpkm8lw2rASwE5Pi7YeXQUB
VvGMxxwEMEdafts8tQrOmd++x/IQQKvq3n1vZRU+SJ6byREiYFo8//tJgTWY
tIvd8USCgMYxb4PeU2vgfjcxsV+DgFoveb8g3TW4abJ4z+80AVUb/35RMVyD
zmDOrXu0CSjSuMqbYL4Gouz34vUvEJCWrFZv670G8/bh6kbXCHhiwYaomWuQ
eqhKhMOLAN2xZ/t37FiHY9JrRbJpeLz9Y50m4usw0EVhq0sn4KyLwr1XUuvw
7M6Ew5UvBJwmf28VUViHgw5s8Y65BKiJ7r8tqLcOvw4rruiWESBnUl3G7rsO
+h6xwevtBGQnidw4FbAOMk6cWvJdBBz+Yyf4OHQdOGUcTe17CJDxELCivFqH
d3IT0TUDBOyNMeNkZK2D/GWjXKUxArZ1rhkujK8DxUB/QWiRgJdbdYhD0+uQ
UcrRvbZEwObr8e+c/q1DMFF3tmeFAKF/J6kzjHVgH91N8qUSwMcXEf9bmAo7
+Eq9zzKREEVb5s/QGSrUcfNc+8lGQr7PH0Rs06NC344543fsJEQa6FS9cpEK
Rr7pJfYbSIhm6/ms15wKu1r4G2c4SGjZv1auw5MK54zZFdu4SWiq0tyn9hMV
Rt68ltspSEI7w3pvhGZTocVmXrgB28BU19CgkApn+Z4Ku24koZJVRakftVSI
31Fxt3gTCYUf4O9cGaXCwDENERkREqpZf1xSPEUF9vs8RyqxaTW0d37zVPg9
9fSB4WYSsjL/7c1LUGE0ZGP1rS0kpBxdKim5hQbtQZvkA7eRkJOFnMCMKA3M
1j2Ps28nobeHPtIyJWmgvtEv7CE2X2NU23E5GlTPc+x220FCYyRHz4t6NCg0
D9KUFyWhzc2jltuMaCB5x3kxDlv31WW9kf9oMKV6iYVNjIS+ymnucbSjwQP2
6UtN2CE3trU8ekwDX0PlLcq7SahcITz/7BMaZPRxSj/DXmZmT+aPoEHTSmLe
CPbVuAX32AT8ez2Sp33ESSjS3vb69Xc0WBjZcqEBu15xWGdfBg0CBYZHBfeQ
0NHO+l05RXh+4suJsdi2CYjbs5IGRebGPd+x3zjmrqB6GsS7ZsZulyAh9g2J
jY09NLjR7zT9HFu1Wzgv/DsN+PcsejRgOyc9Sbg0ToPSfSmpJEkSGlK9e3vs
Hw1CCvsmrmMLcP69+mGNBi8sHjGFY5/utTjrRKKDzGp6dTG2d0q/nDwbHXxG
HBQmsDOd9URp3HTgHum/zLOXhCbgG0fFRjqQmflkj2Bv41ZZ8t9Kh9D4vcWG
2I9TJesF99HBj9OdPQK70DU2u+8gHfJ+/GnMwJ47IRgXJ0+HEfligzrsPbyB
gZaqdJh5y530A9t4kOGyX4MOPARRsIT99L2r6bwWHQ7B1zj2fSRUdXvqdN55
OlhGXjHYjL2mfvWI9yU6gDHfoCS2DH/3dnUzOuhyMxSPYv968ss30pIO7hHb
O1WxYzlWJibs6BA8tz1ME9vAn01HyZkOmlbhLmexuZhFMkPc6VDDy3vv3P/H
89krPHyPDpL9e7POY3vSj3kdekSHPl+3TfrYhz3O/PQLpoNyZHCqHvbU8uWT
3WF02GxDttfBTnS58XFvDB3Etjpbnsa+POfB5/mGDs4RLlEnsPkcgt2akumw
9V48kyJ27eSr/p0f6fBW/fl7Gez7Vmng/IUO4bwTz3Zhy48WJVfl0WGyVqFg
I/asWdMG4RI6VPHt2suCnTI45GhbRYdmUB9awPtncnm2o7CeDgPXFQf/v78b
uxnHeNro+B2cJNmI3aDP++ZqDx1UVUUrcrB9W3ZSsobw/z/QS4/FVtKWtWEZ
o8OBrs5ZP+z5WtRkNEUH9g+6j22wr1Zci6Yt06Hw58cqaWwRcKbp0vH5Xety
4sJuKfS9lkBhAHOUz70pfJ+O5yTtP8nHgHHJv7UJ2NvejZc+3ccAV9MLFnR8
fzvFl8VHDjLAMynNqhU7OIE16Kg8A/7rKhpOwF5/KWnQp8aAbrlUhLB7n9j+
3mXCgG3emux2OF6ecXjouJkzgP/3Asdh7FP+QZk1NgyYmfj8YgXHX67PRy97
NwZcTOe0uof93GWGLzeUAZOheiyeOH615uhu7JEMuBLolSWPTXbgGTB+hevm
fWnK/C6cf6wOphCpDFAe6w+7hq17+ZbimXIGTKn05h3G+YIDlq4NLjCAy+aT
bzTOP+4n9rLnrjPgQrwZrwL2L/Ur6U+ZCFg4HXikC+eritPl62q8BCwqc+tx
Y3voP3n+XoqAmM5bSg5bSeiP5Z7q27iuBVjf6J8VJqHGEMO9/C0EXKe+vM/P
h8/naUDzFK47T8TKPwXxktC7sELXqkECauI2jZCxH0aJld+ZIuCF5x67OZzP
d7QuS/8lkxBryLBZGScJdfdVVBviedEPXxqQx/Xi1Izxyi5DPA7N45U0ri9v
Nvp13L9EQqFZlQULa/+f58eMwSs4Dg7YNOWvEhAfRLWOMsf3Pqz6l9oyAeuS
r3s3OP0/7j7FnZnH9dl8KH8uCJ9blkq3zASuV71mXiVlJHRu4JbfI1w/eyss
mIylmdA+mRDDuncEzJ3o3+J9kAnllF6bikwlgK383NH4w0yI54bGivlbAuRL
lax/HWNCrbVyTxhJBEQU8jU5azIhY4kXcipxBJzLLooJNmVCygnc7V2RBHxL
2Shb/IwJvaTy5yb7EfBdPOjMj+dMaEpLdyTQl4ClJMKcEs2EorKbdzs9IEA8
cSryTCwTctPqXIP7BPi+KaN2vWdCK4lb3Gc8CDgebV8zW4HnZz7728+ZgJyA
KlPRJSbk+EEkstScgHdaDSL+q0xIr4A/qAif20uu9vYZKhNqe8Ryu/AqAT7P
hk8WkskozlVcq9SUAO2YdZmLfGTUnhv+aNiYgJFUWSJ4PxlV6Rjp++P+pstW
If+fDBmZM67ZvdXH/dH+4y6XD5NRxkm5nprzBHzKODshoUhGykPlxfx6BLjn
WbWUnySjAfW46xW4X+KpeR23co2MdkmVzL86SQBTYNJlU0syUtRx7BrRxOep
9UGw2oaMLBqzLKSx+5rz/MNvkhFPSNWrGnUCkrvbbx7wJqOhh18oO08QEB3T
ty/Ch4y+yvQMeCICgox/jK77kVEPpT5oAAi4+X3GqDaIjH4+cvNNOk6A0i92
dD2GjNg8yhwuqhBw4B3vet0rMnLpUAurVyZA9IZQtmwcGVEs13JOYLPM7t7L
SCGj2bcrwopKBLQuHed7kUVGu5v3t2ofI6AyT7OeyMXrv2b8tE+BgNy72g+t
CsjouY/uXVvsV/TLq0fKyUgzlHckXJ4AKxa3H83NZPSYMhvJJUfAlp11PdQ2
MiIf9+POP0pA87HtLXu78O9/4bezwZa3ry72HSAjo5g7v1uOEDD1aHNOxncy
Stl4hy8A+02cQ9rgTzLi7imVUcdm7dj0Sv43Xs+kmWnFYQIKpm3Dr/8ho7Kx
ujuPsR1ZSwKfzZJRy93EaB3sXaICD4rnychYc7pcGLtb0cp9apGM2A+lro8d
wvt5oeCm8CoZbXVu1czBPu7AY61BJaN+f/PUAOyU+FzDN0wUFBsTW3wM+1IB
h04DMwVNrhzw2ITN1WmqscpGQV/ml0yWZAkom8lU3sNJQX7mI7a92K5sbEf0
efD3NkPJJdh7xa5I3eenoADzZv532INKGWJpGymocOZFdgT2MwPK5j5hCtIa
Fwt7iK3haMTHupWC/K9qfryDver/ke3IDgrK/PKD1RE7LYFgmIlRUKJFU6o1
9tXCC8sh4hR0W3UkzAJ7Y1fqTL4kBZ1XWKj9v2tnqWO/pCiI2a9Nzwbbi11v
UFCGghoenT1wE1t2V3IHOkRBLL3S5nexx5RX6x2OUtCK+vGFx9gxhtoVLxUo
yLtKcywaW/tmfH6NEgUN+7EqpmGTAhc/L6pSUGA/WqrEzk48/U7sBAW16GRu
G8a2KXodp6tBQaWhm7Lo2Nu656I8T1HQhPuuop14P1v/aoS+06IgSf5QZU3s
hxtePOrSweM95JBzxD62e8aLfJ6CuiVOpb3EnlY54XrQgIKmb80l12PHX4y0
MzGiIGHmz7sY2AZOk+aBxhQkESe9Tw6fP3uQqnHufxR0QpKj6CZ2UVLY+dGr
FFSZMPn9E7Z4jyJStaag/F3io0fxfeude6Jw4wYFjbdkNnhjh3CMyEQ7UFBO
wQf9euxF1aDt8y4UtNq8XcsR3+d3Rt837rhDQY1eOeXV2Ca3DnOd9aCgMce/
46I4HqqS+9eTfSiI5/B1tRFs9xKZf21+FKShnvjgNI4f6V7fScZjCloTCvXM
xI7g3N976QkF/Wd+8VMYjrfrzp45XC8p6Mx3B1tvRRw/h7/n7IulIPk7EcoE
Nsc/lHsynoKOqn0qfojj+fMt1jyftxTUnH73+0sc7zSnsK+LmRSU5aL2Z0GV
gBbZxa/8uRSkot4e+Rznj8S5i/ky+RTUGRK5QQHnlzNO2wpsSinoD23X5UCc
f6JuphYONuDvy3Nmr+B8ZXuQo2itGZ/PpvOKW/B7UuWvfZFQOwXZjH22HMQe
dTxcrNdLQcX1bTftcT6UdSwuqRqjINci/9jCMwTU2XeUp9EpSGGj4JIIzq+v
peUr6kjM6PVn3zIhnH+dpmMqflGYEfOWitciOD8L2ZtWinIwo6hJvud7DQkw
t5usihBiRkXui9V3L+P12RI1XgeZUW1RftYorg8t+8xrXxxmRsr+rwd2W+D1
TVbV5soxo3BGALKxxOuzDaqbU2ZGpNl9jXRrvD6bTQ0Wp5nRxoKYoyYOBBy0
3t+sfY0ZFXQeCPvtjuuZ7c6bnyyYkfOLBnoork8h9oJ8PDbMiEK/GKOE37+T
t6jnWxyZUS7j9/UEXM+SvBq6znsxo+dM1LRPjwkQDrcbuhjNjMQPVeRX/r9e
Rpjdy3vJjJq0B+6WRON8EX1hp8gbZtRWMBBT8oKAttfK1/qSmZFxgQbRHEtA
cCrn+JVMZiTll1Mii+szUfRx+moTM5oXavddzyMgvTTuSXkrMzqWO+uvXYDv
X8VzmV2dzEih8bdIchEB+TWeTqP9zGhuds/k9XICXNrPLlr+ZkY35HJDJBoI
mJj4Q71BYUEaUb67Cobx/glIc7opsqAo/cLRSFbcTzo4TL5SYUFsl9N4SPh9
m16TXlMBLOhFRkb1/9+3oV6HHvKdZEGzwq4DOlwkpP1Lnv5RnwW5FeiUyAjg
91j+ib8jdiyIVY93pz3ug6qvGnXovWFBIZHUqf5j+H1WGPPlTgILuiSTIhuj
RELJm/qfvknG49mkb72kgvurehPt6Q8syMQqaWwYSEjtqHm1fx4LElDdZsh7
ioTK2BzySlpZUMfL2+qzuK8qTPd9JU1hRR9VZ+M+u+E+TNtwSzQrKwp0c3Oa
u0NC5yclXzBxsKLMt+dcjnjg99bupqhuPlZUeylYoPIeCQm+EA732cGKJG+H
1bIHkJCdX1pApyIrynVNjZZ5RUJbL3W7eTmxIrleMe+JSvyeXnq3+MuFFV02
0E0P/UZCX8I9Xc7fYUUm5ld2Kdbhfq9J9JbEPVbksjOhM7qZhFzU7Oxbg1lR
xSlZe68+/D6QJl0XT2VFRTl3skb+4r6PSUqvcYgV3X+u8GrPTib0S4OzV+In
K/rQY2IruQv3PQHTZg/GWFFzvoWF9B4mJM6bcVP+Dyv6LZn4E/YzocZtR5/G
r7KinBfCtBAFJrTj2PFmV0E2pNsgVV2qx4QqHPW1t59hQyorftP+j5gQx6DH
acdsNrTAybHyBvdV8nfecz/NY0M3ilOMpWhM6JpAb3tGARtKVWvz+kowoa+n
5f6bL2NDnGbfqYOsZGSV8/eWaxMb0nfMHzq5iYzKQy1eefxiQ4k67xdicR/l
fkJ39rEIOzojM3nCCPc942/FIuK82NFbMR/Nn3NkFLF3M3O+4Qb0mOdgQMcB
ZvTspVXNNVEO5Hcovzv0PgsyjvivmWuCA+XwJZ8Qm2VFqxopa3ElnOjoeb1L
j9+wo9FxNfcKfy6kM9MaRtPmQImqh7Y2XeNGBlFVm6zkudCnR2781gd40Hbv
W8UneXiQv+H1s5QlHrRi3bySOMaL5AYT3vs38SJWGZ1TWv/4UMy+V5+azvIh
blcydeA7P7pf9iTmbD4fSohqmD7XJ4B0thqm1Ivzo/KBd0L83wTRCceaK/yB
/Ih14ddj+ZiNKG6buXjjEv7ucq/OksMmJF6ZGqV7RQBt4vC2vSghhJ4dqJBq
LxFApUuxn6wahJDVAnNbnZQgWmoulUi1E0bmX/6JBj4VRH3faK2fZoWRve8F
mlaYIJKXNLnZNCeM3C5k93A9F0Qvgr3i/vwTRgFLbqHPogQRY/FV9u4VYZSu
uEaNjhVEQY1fMnwJYbRWTnS//SiIuAK+dlF5RdCzdq4nVTWC6HJpsWn/QRH0
MsnB5nGdIDq6uZ278ZAISnJtVj/dIIj4h29pFx0RQblCz9YbmgWRxfUD7jEK
ImjQWNCmo0sQiQklBQCIIMnRzeojo4JIhS3M/7SuCJLN9tiRPC6IAgYG9+/W
E0FKjwbWLCcEUc9/+ma08yJIWzL28+SUIHqdnOnywVAEOduJ7pifF0S9atL6
SyYiyEvlwVrmgiA6pvr2ZpWpCHrEPdLpuiSIhOJPbgu/KoJiMpKCV1fxfP4x
7d5nIYISfZitC9YFkdpXMe9/liLo43lLNS8aPpfnt6wKrEVQ9q5v248z8P5s
WfruYyuCShYk1ggCr8/s8y9NOxH0P5TkqCs=
       "]], LineBox[CompressedData["
1:eJwV13c8ld8fAPB7r1GhcC83LSNCVpISyecgQkulVKQo0aKU8S2aQoWMQpJR
9oisMrL3zpaRskXZ7njwO79/eL1fz733eZ5zPutIWNmfsKaQSCRd/Of//98/
sOLeefm+1u2LKgLKl19qlbWIHzYVPwub53uzSiZsYaWi4Km4+FWYrFr94FKO
C7wv8hHjEv8PGJJ316uaeMGN/Y43F8Weg7F+Ydcv32DIaO2PntP1hkqf85+t
jEKBdf1wz7TNK/gxYT9+lBUGB+r9ty10BEB7WoHzyqYoaGHbvp4Sewv/Rgi2
5fpYcKoUVf73ORS4jxLQahAHGwNbayd1wyBkmLFhnWM8WMkhjj82ESA7v2NB
tCARXJJ5c2Y6PsB9Xs2SUKFUWNX9W2ZSLAFMhc5O9NzKgM6ib44TowngWXL9
StNABiTGhpT++ZwIlCl5SopJJhx1OHphXDcZnJPkypByFgStyQ0asUmFOpMd
IgmN2ZDpbORwRyQNPqD7GfkqXyBsXG3DrGsa5GmHKywEfgG7JqrNjN5n+Hpf
d3HR+CtQw6oo0x3pMMFUv0bKzgH2uuyEW5oZsNYsoIuPNxcGH380norMAMFm
d2kXi1zItnkQ/u9qJnTIcVd4kPLg3C5Vjb/sLAhT8SGQSj5E1UTc/iOWA9Ka
X1N+Hy+AuZAsuZ/eOVAg6igv8aYA9G1qB5qZOeCa3fXyX3sBTHAsnsptyYWe
7YLu504Xwt79RzWee+aDQcn3xPdbi+Al7+VZ17l8EN6UkTWkVQR9Xf8l37L8
Bu6PY84FnisCd6cY0TP7CuBFvUaUol8RNKUSFJl/hVCzavZ54VwRUGGNxVql
IlCKa+EJ4iuGfdKvNTwvF8GeQkrcpGQx+M4lzN77XgTDaxknFY8Xg6p/m7VV
UjEMFe5PMYgthoc1CkY7L5SCseTFrNj9JRD/+Yt00ptSyNA+67j6WAk0h+hw
bKsrhU1GjnqbL5aAlM2ZfBH1MvAedDpo/bgEajjclUi0cqjLnfevLioB+v5u
amNFBdzwn0vevrsUPqU+776hVAP9OZUbjnOVwTh13NvIsgbO1WfsWCVYBjJO
Rlqyr2uA6zyzKm9zGURq8kYNMGsgVdh4Ulq1DAKqva+cK6+FpqDN7cqXysBp
4NX0QfN6mPkgeflSaRmk60992PaqHp5v3xrxtbEM/iUYm3CU1ENC3j5CsqcM
bG8JfimQaYAuaT57nfkyOLcU4Lp7tgFOn3saUCJbDhG8tU8F9ZqgaP/nl0Nv
ykFr/33zRxZNcGHqoYZqdDn02Mnv/ufcBNkx1z2S08tBpPnlcF1iEwiVpR8R
bSoH/5DDhl4C3yGI0aQqtbYCnm5rWLfS/R12Kpy+GepXAVtNH4zcnP8OA9md
pUtRFVDkpVTUs64ZpJrlXEIzKoD443s7V7sZEtJv337aUQGO6cdaHeOawcDq
qLL81kqwge9vJxxa4InErpCnpZVA+rCQ2/2yBTzerJNx6KyEEM7NPTXRLaDd
2lrycbISqqqviCa0t4D7+by4ZpEqkDUhPlhrtEKFRqzmLYcqGLWVSe4jt4Hw
ymZ3uV3V8Kj2cH39xjaw5arc7He4GkSUHP7m72qD9vWaCdpXqsFgNl/5nXUb
tIVMuL0IrYYEtxNZptX4+pzC50LuGrgW4FbQ5NcO8Tv9Dwv/rQHK/IefhQnt
8Pe6tttNvloINa0ipZa0Q7b6OUER+Vqo2UzT9Zlrh5nEvWnWV2tBPi6+0vBM
B/Q30G3+jNXCRF5LU4lYJzSMhpX3serAbmj7QOanLsg2kz03cb4R+i26VhdX
d0Hvtn7Ply8a4WSnl1L9YBcsC/y9GPilEfbWjvw3tPEHpKQXFdmtaQKOzzEC
dM8f4Di0j6lk0wQhrhJazhe6oauQNOej8B2KaRveqgv0gviWyIbCvmZQ9akq
0JPvBX/O/voIdjPEcrsMHtfvhWcJtg0ZIi3gzWzfcc21FwL7n3s5n2yB0z9f
V4SO9oLCY6HY67UtMJ4oMMcu6gPLEq3l6bJW4JFwl/m5tx+mrlwOTuxthypN
/x0P9PqBaa+2wW25HTzOhKttOdEPHBn+If+JdQDF7+tBs+v9sEu+adWUZQew
lidsOt73g6bZZHvDaAf86TkV30j5BfaKo1qqy51QFyKzvajuF3BLjqLn+t3g
K1ArF3VxAHy+8jdVSfRDjtqWrKN2A/D8c9s5P/wcgxb2QNwfgNzYrrGrx/ph
XwrNxDR4APKP3Hp5wq0fRg3N3dY2DEBAR6/wQlc/6D6dbPxv3yA4dDal2QT9
AsY8v+MJ+hDEBJ+QYm8cAKtuk0KOumHI3hLd0mU0DLfL3a3sZcYhMsPU3GBw
Aj7f4jspYjgJaU3w5LbXNETdvz6ubDoFG6408/1InAPlojUMz/NT0Li6bnYw
aw6KOOO5fl6aAqNTtTvGi+ag32dQ3OfWFIRsmfccaJ8D0cjzpmPPp4Al83rA
jzIPoWXHyqLyp0Dc61VV45l5CFirGk7dOg3vePRWp5AW4EkEcXxuYhosc77/
8dBcBGPlr7flZ6eh9V+pWqneIogW3/G3Yk7D4s+Ot4yji5D7e7ypiWsG3v76
+uqo5SLMbOs6liI6A1b+B5tiny2CVXLWkSvGM3Ak+KcGV/0iaOfYGXZmzMCK
8FDLxdMMWGckd5U/dwbaKK5pXy0Y0PNjyEu/aAYyTUxU19gwwIUwr8qsmwHb
xwzp184MSINDB/2HZuDSUJfd8RAGiFfI6Bmtn4U8x3eXbToZQGrpR/n3ZoHd
9pI6c4IJ7mMFUfcez8LFmYuG7HNMWEN6T1H3moVAibM+bCsmUBXPlmW9mYW6
Zxx7fjkwYZvn94OpabMQZJrdhwKYYLSv5OiH4Vk44R1nadzIhMCPH829TswB
n/L9qgQdFojkPv6mf3YOrmRJ3A8wZEFY0wVRrotzoDsuLuFgzILYpU39j2/O
gWJi1EG6BQu+mr6+dN9rDmzipzlnXFjQw/vsml3BHDB37Y9YTGaB9N0rLiZy
80Bi9RJoHRsUNX6ejFCeh3RF6RexNDaoks7sGN8zD+uEQ45xbmCDjrfh8EPd
eUgSCPeKl2SDRbSCSZL5PHi+KugJ3MuGoNaZHZRX8yA32eG8eJENXLsfjqTO
zsN0dFzMShIb+NiLJSzmPCheL4iwT2MDtfhWuB6OA9LtowKdmWwQP2J1qptv
AXp6RiwCvrFB01qvlFt6AS42KrKSG9hw9w1vxPkzC7DpvdIz139sGJwPPs37
bQHGdRTs38oT8EF7153e0gWYTROZsd1BwAWfhlepNQugNvuER3kXAT+kuKpP
di7AP883a2M0CPh+0mFf2OwC7Irc3y1nSEDB58PiinKL0LF2JD7hMgGuSyOa
K8qLEH2AlTxnQ4C64dOz39UWoX8LZ4DadQIy+3MCHHGcppyXosXcJiCRX4ar
4OIiHOb4/EjsAQHBN8njR4MXwTZlU0TQGwJMcsK4JcJxXLpMSViFEEDl2is5
G70I6To2P7a9I8A3zM48OH0R3v0IpARFEuBe293wE8fxhuuyDRuSCLi1PTvj
FicDFJuGLDILCFByPN6kw8uAquydf7iKCfhTNDEhRGUA96ISj3EpAVfOSErn
iDEg3jJQpKGSgPOefiHkfQz4rkWSdGgiwGjomlvAbQaw+c5eudBPgL6bZPIB
FwbU2puZqf4mQEe458fCAwYkUju9KIMEaOgd2WvmzYArmQsxL0YIkIvZMSsZ
x4AvfFLBRn8JkN4/KtGewgCvYOnlsX8EbG2LNPbKZEAy+XPjk2kCNnJRP00U
M8BZpaM2co4AXus526weBnwI5urxZRGweik52GaAAQqZOUYsNgGcb6wrNowz
4P2hR6YXlgggytolHywyoOSSkzWdtAQTUjl9+lQm+HK/4VXnWoLR/NtrmSJM
aDQ6IOnAvQSDJnKaSWJMkBxaWBuzagl63N+95VdkQvyKrjNjzRLUDbqZdB5k
wkxv6unT65agynXP0xdHmUD0eZRa8C9BmdC/z5qnmFBeHaVuKbAE+Qcu8kfh
PJ5z2XrehLoEydE6NVfdmPD4SrvOnPASxGuyGZvccZ4b7cyrpy9BdGuGTMML
JsivN7obtX4Jwji3PVMJYcKm1JoytQ1L4HN5FWKnM0GiNChafPMSvCAK7VJy
mLA7+9hoHbbHa5f3F4qYYDp9KebOliV4UDbGKq1nwkS6Vnya6BLcM/+w3amV
CYmtFwh9sSVwmjt3RrabCXcv+A93YNtJ1WV5jzKBK3lV6Jj4ElzLdx/U+seE
UsvK29ckluCKyX7a9DwTBE76EEPYFu6fbp3iYIHJt8MG9VuX4Nxmm4hVPCyY
lu9fry65BKczxRpyBFhAS075EoF9dNBPXlSUBScHTz47L4XXU36w1VyKBW+S
i9akYh+6o/bgnRwLZjMeSRHYNbkvZH4os4BrOaD7wLYlMKD0NYmoseDPbqbq
c+wKw533TPezoDX2y55qbD1/d8kgXRbEqLYNc0ovgY64vBMN17l7XKev2WMX
2TwQO3GaBbuqWwzDsSH1e5WfOQsehg39q8IuWJByaLTCdXMq3OoftqaWy6Z1
V1mwP0o4XlBmCXKf1ZYdtmfBnRnLih3Ye+tF7V46skDKPbzUEDtbyGF9zX0W
OB0ZjbmAvdu8vGj1ExaMv7a4cxs786PItYNeLNg+tlXlIbbKn+s0D18W5G84
O+qFnaZSmF/2mgUDO2TCfLGV7lGvcLxjwRGbrJN+2MnF1vw6USyYlFYS/v91
+TU5Xx/FsaCO+W3YEzvRmM+qMIUFDZ6BDW7YsiEXeJczWBDu+7PZHjv2Z3qm
Zi5ejx+tzPPY22S4Le4XsUAU4g0NsKPtzq7KrWBBkJ9flRL21uzkNEYdCxTC
Klz///6RSytn1VpYcEbi2Y0pvD5ieic5nLpYEFmzOrwWO9w7NjnzJwteSfut
/4i9uZV5anaIBYmRZj+dsEM3HVnZOcEC63spbH3sDZci42/N4PuXVTvQsOkz
+uzJZRaEVt97EYX387V6aLQCFxtKbkeqXcKmPZ48cp2XDdkm6WcksAUEXkeO
rmfD7N5G/kAcL76mI4Yyomygebqk62OvjdCYtZZiQ9s7o98LOP54lH7pDSiz
IWv9F8oRbI7DSn96DdkgOyjDaMLx/CTw8evNxmy40/Qk6yo2qbt1v9lpNuxh
Vqms4Hwgrt7367RiQzIR4CGOveBZtbvlPhtibGr09uP8utu46afgEzY4KW/N
ysf5N0u39zL2YoOUzIP16thTMcLd9a/ZoNs11CCL83W81OpRVQobJhZl8gdx
fov5d17zxX0tFZXdAWwTi6OnTPLYMKT77XuQCI5PhrpcfxUbDpbFRO3D9SFA
UbB1cYANfe3ZzhZCS7AvuFBGZiMBYuMfdgng+nTr8m7qpDgBcWlxiupr8f7v
TCLSZQhYV8Z94gIfXr+6oO9au3HdrJjW+MiD6x/J7v5pYwLYOfaOPLj+eV/b
3PjMg4C7nWcazq8QUKwWkHPIhwDmjkjj88sELHCujhZ8TcDe5unH53C9vRgx
6/I+igBFfDI8iuuxamsNXggCPuV+at+4SEDv/v+cBmcIIK85tv0Erv9Kgu1b
dC/8P241eR26CRj2GX7yxho/55GpR4d/EPCeZ3Fk5PoSkBciO7d1EcDHKZLu
7YLz/EKdQVs7AeMLZ/Xb/ZdgZnFyRKaZgJieXrurZUvwkTePHVVFwOb4ocJX
25fhgfT2jSJZBPDAvGXP7DLwVHtouOH3cNGWXZ3NWobfC9p75Lzx/XXNPr0i
r8CUhGBTxwsCSgyKWTr8K8AAg2VVLwLunfAJTJBbARBZJcN4gvun9bZyJ8sV
8PxekRrvQkCd9ylZwcYVqHQ9u2MczwMar7waxttWwIJSZpV7iYB4/7y7ZT0r
YO9is9PbCvfrIIli5/EV2Ci/tVD1IgGiTQsK/ygkNPhvy51QMwLau0rKT4mS
UEjA8nDBCQIOTp5b3HqKhPqoOp6ROgSECz1teXiGhEIvxdK+aBMwty8ptceM
hLbNV1ObEAGRL9g2QVYkpBES5r4GCDxnh3WuuUVCZ5oz50L3EWB8rCzzyh0S
4pC701aO55tYpwm/UicSos1uuzCrTsDJck1DNzcSYrWreZ3eS0CyVW/O1AsS
+qLQ8mc/jhvKC66gI74kJHJqfeMDVQLOfFZ0SPQnoe273P1K8PzERXogdzmE
hP5ISFWdUCHA4r3ou44YEuL2jisOwvNWZpm+s2oCCf1d/d+Rf0p4fybsTvon
kxDvlfA/RthfNAp5D2WQ0Ju/CS68igQIdF5wLSgioQdr9j5Pl8PzyornmU1l
JPRCRMNMCjtfOk3VpZKEsk4kOrzdTsBVR9LkzgYS6q3nf+kjS0BRmGy173cS
OnIiOIQPm15mHPOnlYRSH3/mfIXzooQadT6mm4TmvvoLhksTIKJRrU75SUIm
LyoK5LDtLKeFL/wmocqA6wO52wjYlKbdIDJGQgmv05OGpHCeHPmt5b2Ar4dN
DlhLElBzl2fTGJOEJvNcGeuwxcNUFvWWSEhqyCIrbysB9eNPUlc4yChytRoS
x5aiJr00X0VGue1KGzslcLypt9jk8JCRmbFbZiC2tJek+B1BMkKMv9p0bNfU
Q0SjEBkxfvxFvTjPm9vvdCqIkNF47fL6eGzZ5XeZzzeR0YwDud4J++G2Mr9h
UTKqKWu1NsRuPzxxQ3crGfGTToyKYSvcFTKM3EZGholHzrHECHjyTnPbkiwZ
rfIJLu7E7iy5TD6nQEasdJZkHvaU9o+NbjvIqESWLfoRe1XxMdVIFXx/6vtQ
X2xRVH6kdDcZESeev3PD3lOoYTO8l4yWt1tL38I+qpX2aI0mGT3Y0wxXsK2/
bQtVADJ672A3cQHbVfNdxjEdMtqg0qp8Hvt1nkC9gx4Z3RIPFbTATtbwGH5j
gO+ndTLQCrs0h73y9RAZ5f32zb2G/WPv7Q09R8lIJqPzpRP2zJdhlZXjZBQW
95XXA3uNmvnhrafI6BdXhtZbbPHs79Z6Z8jI6KLB9jTsvbsPPrQ1I6O6wPnG
GuxjmfkhLy3I6EzFLrUx7Cu7VNI/WZLR38sul3jx+j1Ij6v9fhlbYvfZndhv
dm4ZmrMho2OzHZvNsJPTApbXXyejMYHadC/ssh2rRfbZkVHKzF2xXOzuT247
LW6TEeexvTb/sHlSbC9HO5PRyoOnb63xfm9V6HOrvEdGNqPfvGOx1ZNOBo+7
4feZc7rxB9s2QatG2Z2MUh9GUh7jeHokmzlw0pOMTurFFH/HDo7bvuT0gozW
7z3+QBrHY0WMkPI3PzJKMHpP7sHuk3ph2B9IRpI7Mpo0cTzPf1yx4ggmo9WV
Zp+isKU+jL8xfE9GdnbSsc44/jUlLqbeiMTr8SqiahT7ZGRb1auPeD+fnuWx
wPnyJLyI3ZZARgOhNMIE51folj3CzGQyGp44lNmO/TksSWlzGhn9vrE7zBzn
Y39okKVVNn7fOEteR5y/WsE3Kv+W4PXoVOjsxOe10/Tf/YIVZKTmvf6hqwIB
N9+YslSryejxjS5HKVwfwgJ1FO83klGBSZLVY1w/WK9EAlf1kJH5iEyc/U58
fuL3TZb7SUaX/Dw19uB6tN2Xo+LIbxwv+8Y0ybhenfH+ywgcJaOX48T7aFzP
srzKLMTnyUjC6dU+CVz/4o1qRTwZZFTsmBEthutjKF9z8ySbjJ6xBmwkcf18
5PdTP49CQdd+avPv0yTgcAhL6bQABU1LhF9OwvUYzpHH8mkUJLrIFG/D9Vpl
8+qPkuspyL3mkTmnLgHrI4XXT2+hoGe8uy/d0SPgd5zyykt5CiJKuBVfGxHQ
dlUtZ0aJgk4fTrs4foiAKnmtO2dVKCiqTktN/wgBKamHRqTVKchUx61vHe7j
Ll+uNBbrU1DLdhvfwVO471eGRSxaUlCyQaJsDO4/5Ocfz1pYU1CBss0LU9yv
5owSaeW2FDRqrNfMf4WAroYvngH2FOSjYicVcJWA6PZme0U3Cvrvr4N23y3c
34ZXo0shFOS8Kqw0+BHu+/H8rOp3FHTbP808EfdH8Wv0TOUICjpv47ih1B33
g7+SsssxFDTYksS36jkBTfNaAm8zKMhoul6ryx/nE5djf0MDBY3Zy44kROPz
n1h1B/s7BSm8Ur+4EEtAw94tjbJtFMRn1HPJIAHXkxvl35504/tF+wsvpRDA
3SL8bs8oBSV+HLyR8AXPA5HZp8LJHKgkTERJoA7vby7PkVpODvTAdOvz7AY8
T7RaHGCs4kDNuZ+Crb7j+r1q1a4T6zjQieiZzlo8XxywMxXg3sSB1LbGKw38
ImBwH6PmpioHqjF1UZBhEhBy6nBJqBoH2sLK79hO4P22j8yp1OBA4CVspoLn
pcwPBvES2hxIPdtnxgSfN93XvH3WdoQD3Rm/G9EvuARSHepovw0H2iUTlUNT
WIJLDvez+EI5kGd46dGFy0uwR6Uva/t7DuRhxd0bbYvn1xmUrR/JgYqsenXO
3sDnhdvcXx7F4t/bZviu5Q6eT2/5f51L50DlcRC/7ukSBNnH5fXUcqAU+3a7
iA9LUH2jpTh5iQP9ZGQVqg7j86XCnpJqEieyvz/aGzmO58WJkJJhDk7EjJUm
qP/wPH7DolSchxO9yanTXMNYAqvrY2Wv6ZzITUpofD/PMp6HVypdd3CiJ9o2
JVU7lmGHjXzDYUtONHJmx9prD5eh76qYfcplTmSkaf1+9bNl8L5BE1hny4lW
vY0+9+nFMozdZh9vtONEFfzjFvxBy/DRtbbtuCsnas4XjJRJWYb1Add7Twdz
ohtm6Q8/9yzDSn7SxMV6TsTiVr+nqL0CjVQFXkd1LsS88/vXED8Jad28OfZO
kwudSelQN6eR0KfKT5UlwIU2xnWmt9FJyNd1p7uAPhdK2bBqVfMWEjo8vGcp
6QQXMpicUp6SJ6GaHO1/v69zocKaX4dKDEio/KJpi3E4F1Ke+Hgwz52E8j49
eafAwY2kYzSGRrjIiPvwqY3B3NyovCHF4QHu08fHZN6SebhR9mjdCxF+MhqR
rA9qF+BG1pEfTU1xX6a9XR/wSJQb7aYbHFqRI6PrT5O9WtW50eh//Y2LxmS0
6Uy7o+stbmRvcd3LPYKM7pPljOt68e/x/E1oxHnM03PPwC5zFfpIZURHZHKg
oViJ1xGuq1FL0vWh+Z1c6LXsBs6cU2uQ7Zxn9JE5buQXeqXSUpwH8Xxt3D6Z
sRqde32+gW+EB+lpXo/76cqDGAdimBEFvOis9lTsXRc+NDCk41LiyYdQsyM/
5dQ69GH/zk31lmtRQsnoGEVOAKU8cxS0UVyHBF6F/9lMFUSepy4d4phfh+js
OA+dCUG0uycqwbOeH/WUFYbx1FJRyPZ3KfWHBNDIaKWm0UsaeljkE3IoRwDN
rGM8XmcghI5sOhVTIyWIrj28WxX/RwiFDCoVmUkLIr2hP0H9k0JoMGV194SM
IJrh4pNePyWEXFG+AL+8IIJEh2eP5oRQsrWk68mdgmiXuazugSUhxJM2faJn
vyDKMpLzfbVOGFUe8CX9PS2I3h/m3KiqLIy07SrNBJ8LIjFSPEq2F0aszjH9
sheCaLiH2pl3Wxhl6vKpOHsLIv2w8InqO8JIesPx1b2vBFEZZ7j3L2dhxFf2
IzM+SBBdCuOIWX4ojDo3/F2LogWRaHy02NQrYXSrXKjIrhB/X5U/PPWTMIrY
bCVVNy+I3h5Vr34/Iow0dskrWS0Koo+iXf47xoRRq+GcGoMhiPqKMriLxoXR
amePQ1IEfp+9KvM9k/j3vic6uFKoqK9/wzD3nDBCHrNFCvzYO/eIbSLR0e9/
7ud9ZKlIdl2ejt56OnLlPmojKUdFz9+uxCaL0BF9y/rbOfJUtHVmYw51Ix0Z
GSW4DylRUXCk9MiPzXSUHl2ftH83FUnw9d0w20pHT8/SWZPa2LWvVbYo0pFU
aVzQUTMqMhOKNYvWpqMGBUZ0jzkV2VRvv9WtQ0cuQQYZ1yyoKN23X0fwAB3V
Xh1r9LCkIiHOK5L/6dORg4D8mkIbKtolcL5V/RAdFZ7/dH/HXSp6khNOe2hC
R+cYmRcFfKhIe7Xp6o1X6IjTiss+3JeKjHkqZLbb0NGn2lNuCn5U9IhK51Gz
pSNyxMJbg0Aq0hhcJXLsGh3F6+1tefSWigQ711rcsqOj+YA8vekYKtKPSM11
dqIjP8USueYCKkq1TVjz7hn+/F6zNU+KqKhZjdc9yAM/j+7cyM4SKvo9Yu3n
50lHf89Kx/iXUxHXsNjFR8/p6JDHC7HjdVSUecp54KgPHXH/PCHU1EVF6hea
cuJe09F9v4Gl+jkqavcTLDT6QEcB71x73BaoSJFvJ8+Gj3SUGCucp8igotdd
5Okh7M78gy4+bCpiNawNvB9DR3vGkmYOU2jo/SM9laB4OprSvjtSy09DSpWX
5Z5/oqMrs5zfq+VoaFvBgye2OXRkkXigwVyBhgYlt4iTcunotKV77T9FGkr+
7OEfhK3fyFEhvJOGGj1Wpgrz6Eg6iZJnqUZD/ZtckjgL6GjIihTD1KWh+BIh
09MldNSzAX3w1qMhD4rgmW7s1qaHEWIHaah0dJ3KhVI6KtNaeatnREPI2dbh
UhkdRW9c9vU3pqE344JKFhV0dLmZ7bL9PA05+0Pf5ho6Mn++zynfgoasoi+H
vMI2QffvHLtIQ9K91J3kWjo68Il10/ESDRXedl7px5Z6wbQqvorrgsD1jYH1
dDSgvXj4rBP+/iPD0OImOvrB2GM04UxD7cctbLd+p6PmVKeDD/+joU8izRuf
YJdsWdCOcaWhjBunlbSa6egDc27P9BMaMv5ruTGhhY6sPs+IP39FQ/OXFs2M
2unoxpOThJE/DU2K7i/9gO14MrODLxCv/9ryJia217yjr18QDVVH1PZ/7MDx
p85kB7+noZO/Ng+OdNLRV55zHWcjaGjk2g/v3V10VNydm74pioZ68/X6H2O3
urlejYimoeLyS8/pP+iIWbzSHptEQwZ1nnM7uumIEngx3TaFht5O36Pcwea7
XOwjl0pDv0Q+FmZii3I/PfApHa/Xlj5D1R68Xkbc6Vk5NBR6TPaTZC8dHd1k
4+OcR0Pl/WN65timE5W26t9o6HnWE/9A7Gu+z8W+FeHnUQrUX8b2a+bzKauk
IbEHWXvL+ugo9ONNW49qGoq5lPlwBvvj3QZdg1oa8tt78KHYTzrKpvuxahto
KCDPN9ERu2hkqs2niYZW33LuCMeu/nr887FmGloWMy+swO45R7NtacPv8/tZ
CbWfjobl7+q+6aAhIXnKzz3Y/4hWUdMu7B+jX89iUyKC2n700BBN0TbuHTbv
rcW0sD4aMlfY9y0XW0j7jLdFPw3JGEwGdGLLDGzQ/T2A47nF5pHALzpSzrwn
Gj1EQzdzb76Vw9Z41s20HqEh+8T6u7rYh2Xep42N05B2w0bH29inGUsvkyZo
SOuFwTsP7AvVFjY3/9LQ8QvHPUKxHa6Li05P09BV//9SCrBdNR8z02dpaMqt
Z7wB+9na361352mIERX1rxfbt08nbc8iDfFkXc//gx2S+vElg0FDaxp6jzOw
PzzitMll0VC31bs0jt90lHTcWseVoCEJA4OutdiZWyu2aC3TUF+aVx0du2BW
mrmyQkNySuSXotj/AzemW1g=
       "]]},
     Annotation[#, "Charting`Private`Tag$13994#1"]& ]}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 5}, {0., 6.436487292211214}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.756317702898321*^9, 3.756317759582011*^9}, {
   3.7563177981517982`*^9, 3.756317808511766*^9}, 3.756317908846867*^9},
 CellLabel->
  "Out[112]=",ExpressionUUID->"546d5a4c-749c-4696-9b98-a6bf7101163f"]
}, Open  ]],

Cell[BoxData[""], "Input",
 CellChangeTimes->{{3.7563177693847313`*^9, 
  3.756317787086705*^9}},ExpressionUUID->"c40feeea-4731-469e-878c-\
86e8d34f14dd"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "1", "]"}], ":=", 
  
  RowBox[{"Gls", "[", 
   RowBox[{"[", "2", "]"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.756147324776352*^9, 3.756147331403034*^9}, {
  3.756148892919414*^9, 3.7561488961570253`*^9}},
 CellLabel->"In[21]:=",ExpressionUUID->"a5368558-8afd-4b9d-a56b-08439c16cf62"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"N", "[", "\[ScriptCapitalM]0", "]"}]], "Input",
 CellChangeTimes->{{3.756147461151421*^9, 3.7561474626131277`*^9}},
 CellLabel->"In[22]:=",ExpressionUUID->"cb87a772-1cbc-4de9-81d2-0b8d8b0bc7df"],

Cell[BoxData["1.222409953716735`"], "Output",
 CellChangeTimes->{
  3.756147462824327*^9, {3.756316283043679*^9, 3.756316296271015*^9}},
 CellLabel->"Out[22]=",ExpressionUUID->"91a22ae4-3740-4441-828a-497e033c7d41"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"SeriesCoefficient", "[", 
   RowBox[{
    RowBox[{"f", "[", "x", "]"}], ",", 
    RowBox[{"{", 
     RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}], 
  RowBox[{"10", "!"}]}]], "Input",
 CellChangeTimes->{{3.7561481837468653`*^9, 3.75614819348151*^9}},
 CellLabel->
  "In[109]:=",ExpressionUUID->"216fa489-443e-4ec9-9417-7a8008940c1b"],

Cell[BoxData[
 RowBox[{
  SuperscriptBox["f", 
   TagBox[
    RowBox[{"(", "10", ")"}],
    Derivative],
   MultilineFunction->None], "[", "0", "]"}]], "Output",
 CellChangeTimes->{3.756148193682949*^9},
 CellLabel->
  "Out[109]=",ExpressionUUID->"4a8b362f-6f05-4b0c-b448-264112a6cea3"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  SubscriptBox["A", "1"], ":=", "1.15"}]], "Input",
 CellChangeTimes->{{3.756317997348439*^9, 3.756318006260545*^9}},
 CellLabel->
  "In[116]:=",ExpressionUUID->"b56744cc-a469-404f-8664-07188b9ae2ee"],

Cell[BoxData[""], "Input",
 CellChangeTimes->{{3.756318393315962*^9, 
  3.756318394552073*^9}},ExpressionUUID->"6db19498-70d7-4a31-b94a-\
fb123666ac15"],

Cell[BoxData[
 RowBox[{
  RowBox[{"g", "[", "x_", "]"}], ":=", 
  RowBox[{"x", 
   RowBox[{"(", 
    RowBox[{"1", "+", 
     RowBox[{"Sum", "[", 
      RowBox[{
       RowBox[{
        SubscriptBox["a", 
         RowBox[{"1", "+", "i"}]], 
        SuperscriptBox["x", "i"]}], ",", 
       RowBox[{"{", 
        RowBox[{"i", ",", "2", ",", "12"}], "}"}]}], "]"}]}], 
    ")"}]}]}]], "Input",
 CellChangeTimes->{{3.7563181770211887`*^9, 3.7563181926048527`*^9}, {
  3.7563183984201603`*^9, 3.756318398489237*^9}, {3.756318482117462*^9, 
  3.756318483362877*^9}},
 CellLabel->
  "In[175]:=",ExpressionUUID->"2029d5bd-52b1-4908-8a48-485536e69250"],

Cell[BoxData[
 RowBox[{"ClearAll", "[", "f", "]"}]], "Input",
 CellChangeTimes->{{3.756149659435717*^9, 3.756149661400956*^9}},
 CellLabel->
  "In[176]:=",ExpressionUUID->"4475a5ee-4adb-4d65-8679-439fce28abcd"],

Cell[BoxData[
 RowBox[{
  RowBox[{"s1", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{"cs", "[", 
         RowBox[{"[", 
          RowBox[{"1", "+", "2"}], "]"}], "]"}], "==", 
        RowBox[{"SeriesCoefficient", "[", 
         RowBox[{
          RowBox[{"f", "[", 
           RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
          RowBox[{"{", 
           RowBox[{"x", ",", "0", ",", "2"}], "}"}]}], "]"}]}], "/.", 
       RowBox[{
        RowBox[{
         RowBox[{
          RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
         "]"}], "\[RuleDelayed]", 
        RowBox[{
         RowBox[{
          RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", "]"}], 
         RowBox[{"n", "!"}]}]}]}], ",", 
      SubscriptBox["B", "0"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.7561471314904747`*^9, 3.756147284122757*^9}, {
   3.756147343870466*^9, 3.756147390732924*^9}, {3.756147435759054*^9, 
   3.756147488438939*^9}, {3.756147582383609*^9, 3.756147582968615*^9}, 
   3.756147707101336*^9, {3.7561477845429173`*^9, 3.7561477847720747`*^9}, {
   3.7561481986294527`*^9, 3.756148198874875*^9}, {3.756148304439522*^9, 
   3.756148304532578*^9}, 3.7563168505947533`*^9, {3.756317951141168*^9, 
   3.756317985811832*^9}, {3.75631803562996*^9, 3.756318039555221*^9}, {
   3.756318199905466*^9, 3.756318200454669*^9}},
 CellLabel->
  "In[177]:=",ExpressionUUID->"f5e2337f-6a07-4028-a75f-a54b5279226c"],

Cell[CellGroupData[{

Cell[BoxData["s1"], "Input",
 CellChangeTimes->{{3.756317987317328*^9, 3.756317987409946*^9}},
 CellLabel->
  "In[178]:=",ExpressionUUID->"3b8d2618-be88-4d38-99c9-3c8452692a68"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   SubscriptBox["B", "0"], "\[Rule]", "0.17685998965641545`"}], 
  "}"}]], "Output",
 CellChangeTimes->{{3.756317987664682*^9, 3.7563180084109793`*^9}, 
   3.7563182037063017`*^9, 3.756318499285166*^9},
 CellLabel->
  "Out[178]=",ExpressionUUID->"e05c30cb-ef36-467c-a6a5-c8320b4600e8"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"s2", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"cs", "[", 
          RowBox[{"[", 
           RowBox[{"1", "+", "3"}], "]"}], "]"}], "==", 
         RowBox[{"SeriesCoefficient", "[", 
          RowBox[{
           RowBox[{"f", "[", 
            RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", "0", ",", "3"}], "}"}]}], "]"}]}], "/.", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
          "]"}], "\[RuleDelayed]", 
         RowBox[{
          RowBox[{
           RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", 
           "]"}], 
          RowBox[{"n", "!"}]}]}]}], "/.", "s1"}], ",", 
      SubscriptBox["a", "3"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.7561471314904747`*^9, 3.756147284122757*^9}, {
   3.756147343870466*^9, 3.756147390732924*^9}, {3.756147435759054*^9, 
   3.756147488438939*^9}, {3.756147540537282*^9, 3.756147587568799*^9}, 
   3.756147711205501*^9, {3.7561477859025507`*^9, 3.756147786092229*^9}, {
   3.7561482040091753`*^9, 3.7561482042511044`*^9}, {3.756148307767613*^9, 
   3.756148307883068*^9}, 3.756316848642622*^9, {3.7563180190352583`*^9, 
   3.756318044980089*^9}, {3.756318207985362*^9, 3.7563182093429327`*^9}},
 CellLabel->
  "In[179]:=",ExpressionUUID->"ebc352c5-fe8a-4584-ac63-2f85071f3c69"],

Cell[CellGroupData[{

Cell[BoxData["s2"], "Input",
 CellChangeTimes->{{3.7563180469182653`*^9, 3.756318047034308*^9}},
 CellLabel->
  "In[180]:=",ExpressionUUID->"905163be-4177-45b3-8429-4a92056ce579"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   SubscriptBox["a", "3"], "\[Rule]", "0.002727972766430912`"}], 
  "}"}]], "Output",
 CellChangeTimes->{3.756318047269418*^9, 3.7563182112187*^9, 
  3.756318499832567*^9},
 CellLabel->
  "Out[180]=",ExpressionUUID->"e9c45a4f-3ec4-4d70-a46e-6c28a9f0d0e2"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"s3", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"cs", "[", 
          RowBox[{"[", 
           RowBox[{"1", "+", "4"}], "]"}], "]"}], "==", 
         RowBox[{"SeriesCoefficient", "[", 
          RowBox[{
           RowBox[{"f", "[", 
            RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", "0", ",", "4"}], "}"}]}], "]"}]}], "/.", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
          "]"}], "\[RuleDelayed]", 
         RowBox[{
          RowBox[{
           RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", 
           "]"}], 
          RowBox[{"n", "!"}]}]}]}], "/.", 
       RowBox[{"Join", "[", 
        RowBox[{"s1", ",", "s2"}], "]"}]}], ",", 
      SubscriptBox["a", "4"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.7561471314904747`*^9, 3.756147284122757*^9}, {
   3.756147343870466*^9, 3.756147390732924*^9}, {3.756147435759054*^9, 
   3.756147488438939*^9}, {3.756147540537282*^9, 3.756147604729485*^9}, 
   3.756147715373518*^9, {3.756147794574839*^9, 3.7561477947803917`*^9}, {
   3.7561482080935097`*^9, 3.756148208275079*^9}, {3.756148311191593*^9, 
   3.7561483113030643`*^9}, 3.756316845882742*^9, {3.75631805983946*^9, 
   3.7563180661526833`*^9}, {3.756318216089089*^9, 3.75631821858976*^9}},
 CellLabel->
  "In[181]:=",ExpressionUUID->"780abd11-8470-4e7f-b307-9f2346871bc7"],

Cell[CellGroupData[{

Cell[BoxData["s3"], "Input",
 CellChangeTimes->{{3.756318071222228*^9, 3.756318071339473*^9}},
 CellLabel->
  "In[182]:=",ExpressionUUID->"0f9d1348-9727-4ef6-a3eb-9add0816c286"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   SubscriptBox["a", "4"], "\[Rule]", 
   RowBox[{"-", "0.004371954547366299`"}]}], "}"}]], "Output",
 CellChangeTimes->{3.756318071670439*^9, 3.756318220035276*^9, 
  3.756318500352702*^9},
 CellLabel->
  "Out[182]=",ExpressionUUID->"6a0d7fdc-5a5c-4311-b0d2-f53f04004d0f"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"s4", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"cs", "[", 
          RowBox[{"[", 
           RowBox[{"1", "+", "5"}], "]"}], "]"}], "==", 
         RowBox[{"SeriesCoefficient", "[", 
          RowBox[{
           RowBox[{"f", "[", 
            RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", "0", ",", "5"}], "}"}]}], "]"}]}], "/.", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
          "]"}], "\[RuleDelayed]", 
         RowBox[{
          RowBox[{
           RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", 
           "]"}], 
          RowBox[{"n", "!"}]}]}]}], "/.", 
       RowBox[{"Join", "[", 
        RowBox[{"s1", ",", "s2", ",", "s3"}], "]"}]}], ",", 
      SubscriptBox["a", "5"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.7561471314904747`*^9, 3.756147284122757*^9}, {
   3.756147343870466*^9, 3.756147390732924*^9}, {3.756147435759054*^9, 
   3.756147488438939*^9}, {3.756147540537282*^9, 3.756147631038917*^9}, 
   3.756147718582081*^9, {3.756147799018648*^9, 3.7561477991882553`*^9}, {
   3.7561482113174353`*^9, 3.7561482114992228`*^9}, {3.756148314943677*^9, 
   3.756148315051283*^9}, 3.756316844411141*^9, {3.756318080019507*^9, 
   3.7563180843365517`*^9}, {3.756318234810039*^9, 3.75631823614211*^9}},
 CellLabel->
  "In[183]:=",ExpressionUUID->"06a2ae82-4418-456f-b4f5-1b9f39c49158"],

Cell[CellGroupData[{

Cell[BoxData["s4"], "Input",
 CellChangeTimes->{{3.756318085830123*^9, 3.756318088595845*^9}},
 CellLabel->
  "In[184]:=",ExpressionUUID->"fb6f2cb2-7cba-4724-9583-4f330a20bd07"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   SubscriptBox["a", "5"], "\[Rule]", "0.007378059825837999`"}], 
  "}"}]], "Output",
 CellChangeTimes->{3.756318088956551*^9, 3.7563185008935328`*^9},
 CellLabel->
  "Out[184]=",ExpressionUUID->"15593303-625b-4e2e-8d1d-ba3a7faaa52d"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"s5", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"cs", "[", 
          RowBox[{"[", 
           RowBox[{"1", "+", "6"}], "]"}], "]"}], "==", 
         RowBox[{"SeriesCoefficient", "[", 
          RowBox[{
           RowBox[{"f", "[", 
            RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", "0", ",", "6"}], "}"}]}], "]"}]}], "/.", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
          "]"}], "\[RuleDelayed]", 
         RowBox[{
          RowBox[{
           RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", 
           "]"}], 
          RowBox[{"n", "!"}]}]}]}], "/.", 
       RowBox[{"Join", "[", 
        RowBox[{"s1", ",", "s2", ",", "s3", ",", "s4"}], "]"}]}], ",", 
      SubscriptBox["a", "6"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756147648146731*^9, 3.7561476782344418`*^9}, 
   3.756147721581562*^9, {3.7561478069109573`*^9, 3.756147807124679*^9}, {
   3.756148215125565*^9, 3.756148215387376*^9}, {3.756148318817175*^9, 
   3.756148318910726*^9}, 3.756316842187614*^9, {3.756318099920137*^9, 
   3.756318103265397*^9}, {3.7563182410473413`*^9, 3.75631824190347*^9}},
 CellLabel->
  "In[185]:=",ExpressionUUID->"f2a84d32-c59c-46b0-b67a-418c0339def1"],

Cell[CellGroupData[{

Cell[BoxData["s5"], "Input",
 CellChangeTimes->{{3.756318104670274*^9, 3.756318104819955*^9}},
 CellLabel->
  "In[186]:=",ExpressionUUID->"526bbaca-17aa-4e92-a53e-66d81e1f638a"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   SubscriptBox["a", "6"], "\[Rule]", 
   RowBox[{"-", "0.010795334971149897`"}]}], "}"}]], "Output",
 CellChangeTimes->{3.7563181051765137`*^9, 3.756318501417638*^9},
 CellLabel->
  "Out[186]=",ExpressionUUID->"7215d2d5-3799-46cc-a537-5bcc23f2066d"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"s6", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"cs", "[", 
          RowBox[{"[", 
           RowBox[{"1", "+", "7"}], "]"}], "]"}], "==", 
         RowBox[{"SeriesCoefficient", "[", 
          RowBox[{
           RowBox[{"f", "[", 
            RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", "0", ",", "7"}], "}"}]}], "]"}]}], "/.", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
          "]"}], "\[RuleDelayed]", 
         RowBox[{
          RowBox[{
           RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", 
           "]"}], 
          RowBox[{"n", "!"}]}]}]}], "/.", 
       RowBox[{"Join", "[", 
        RowBox[{"s1", ",", "s2", ",", "s3", ",", "s4", ",", "s5"}], "]"}]}], 
      ",", 
      SubscriptBox["a", "7"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756147648146731*^9, 3.7561476782344418`*^9}, 
   3.756147721581562*^9, {3.7561478069109573`*^9, 3.756147844187436*^9}, {
   3.756148220205553*^9, 3.7561482204514713`*^9}, {3.756148322321295*^9, 
   3.756148322445093*^9}, 3.756316840858306*^9, {3.7563181134563713`*^9, 
   3.756318117353677*^9}, {3.756318247466488*^9, 3.756318248071858*^9}},
 CellLabel->
  "In[187]:=",ExpressionUUID->"776d66d3-6bfa-4e1f-a081-33aa26303ef2"],

Cell[CellGroupData[{

Cell[BoxData["s6"], "Input",
 CellChangeTimes->{{3.7563181185257607`*^9, 3.756318118804282*^9}},
 CellLabel->
  "In[188]:=",ExpressionUUID->"80c64682-c6cc-4e0f-b500-a77e45b9bdf1"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   SubscriptBox["a", "7"], "\[Rule]", 
   RowBox[{"-", "0.008191308327932398`"}]}], "}"}]], "Output",
 CellChangeTimes->{3.7563181192239237`*^9, 3.756318249927265*^9, 
  3.756318501904809*^9},
 CellLabel->
  "Out[188]=",ExpressionUUID->"92dcb0bb-3ae0-493c-b4f5-a229b621428c"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"s7", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"cs", "[", 
          RowBox[{"[", 
           RowBox[{"1", "+", "8"}], "]"}], "]"}], "==", 
         RowBox[{"SeriesCoefficient", "[", 
          RowBox[{
           RowBox[{"f", "[", 
            RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", "0", ",", "8"}], "}"}]}], "]"}]}], "/.", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
          "]"}], "\[RuleDelayed]", 
         RowBox[{
          RowBox[{
           RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", 
           "]"}], 
          RowBox[{"n", "!"}]}]}]}], "/.", 
       RowBox[{"Join", "[", 
        RowBox[{"s1", ",", "s2", ",", "s3", ",", "s4", ",", "s5", ",", "s6"}],
         "]"}]}], ",", 
      SubscriptBox["a", "8"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756147648146731*^9, 3.7561476782344418`*^9}, 
   3.756147721581562*^9, {3.7561478069109573`*^9, 3.756147890148263*^9}, {
   3.756148224994526*^9, 3.75614822516343*^9}, {3.7561483259038773`*^9, 
   3.756148326010647*^9}, 3.756316835634478*^9, {3.756318126086348*^9, 
   3.756318130006537*^9}, {3.756318254834443*^9, 3.7563182584158173`*^9}},
 CellLabel->
  "In[189]:=",ExpressionUUID->"63e0c88c-7398-40e3-b4b8-7f575ab6afcf"],

Cell[CellGroupData[{

Cell[BoxData["s7"], "Input",
 CellChangeTimes->{{3.756318131462134*^9, 3.756318131772496*^9}},
 CellLabel->
  "In[190]:=",ExpressionUUID->"8e5793a0-a564-4698-bffd-0d21360746db"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   SubscriptBox["a", "8"], "\[Rule]", "0.2607341726893066`"}], 
  "}"}]], "Output",
 CellChangeTimes->{3.756318132579927*^9, 3.756318502439548*^9},
 CellLabel->
  "Out[190]=",ExpressionUUID->"30a3762a-27d5-45c6-8483-834d62397b51"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"s8", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"cs", "[", 
          RowBox[{"[", 
           RowBox[{"1", "+", "9"}], "]"}], "]"}], "==", 
         RowBox[{"SeriesCoefficient", "[", 
          RowBox[{
           RowBox[{"f", "[", 
            RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", "0", ",", "9"}], "}"}]}], "]"}]}], "/.", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
          "]"}], "\[RuleDelayed]", 
         RowBox[{
          RowBox[{
           RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", 
           "]"}], 
          RowBox[{"n", "!"}]}]}]}], "/.", 
       RowBox[{"Join", "[", 
        RowBox[{
        "s1", ",", "s2", ",", "s3", ",", "s4", ",", "s5", ",", "s6", ",", 
         "s7"}], "]"}]}], ",", 
      SubscriptBox["a", "9"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756147648146731*^9, 3.7561476782344418`*^9}, 
   3.756147721581562*^9, {3.7561478069109573`*^9, 3.756147917732798*^9}, {
   3.756148229557692*^9, 3.756148229795514*^9}, {3.756148330602446*^9, 
   3.756148330709302*^9}, 3.7563168306906347`*^9, {3.756318139742751*^9, 
   3.756318148544838*^9}, {3.756318263386506*^9, 3.756318264632038*^9}},
 CellLabel->
  "In[191]:=",ExpressionUUID->"4f0ae511-477c-4ea3-9b25-e6ac9e3cab18"],

Cell[CellGroupData[{

Cell[BoxData["s8"], "Input",
 CellChangeTimes->{{3.756318150031145*^9, 3.7563181507799377`*^9}},
 CellLabel->
  "In[192]:=",ExpressionUUID->"fb097fd5-fc15-481f-a4da-dc6f9cae3f70"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   SubscriptBox["a", "9"], "\[Rule]", 
   RowBox[{"-", "2.9089715438924455`"}]}], "}"}]], "Output",
 CellChangeTimes->{3.75631815110573*^9, 3.756318502999918*^9},
 CellLabel->
  "Out[192]=",ExpressionUUID->"15a15847-ad25-460c-b177-35344808f0c6"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"s9", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"cs", "[", 
          RowBox[{"[", 
           RowBox[{"1", "+", "10"}], "]"}], "]"}], "==", 
         RowBox[{"SeriesCoefficient", "[", 
          RowBox[{
           RowBox[{"f", "[", 
            RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]}], "/.", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
          "]"}], "\[RuleDelayed]", 
         RowBox[{
          RowBox[{
           RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", 
           "]"}], 
          RowBox[{"n", "!"}]}]}]}], "/.", 
       RowBox[{"Join", "[", 
        RowBox[{
        "s1", ",", "s2", ",", "s3", ",", "s4", ",", "s5", ",", "s6", ",", 
         "s7", ",", "s8"}], "]"}]}], ",", 
      SubscriptBox["a", "10"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756147648146731*^9, 3.7561476782344418`*^9}, 
   3.756147721581562*^9, {3.7561478069109573`*^9, 3.756147917732798*^9}, {
   3.7561479711843576`*^9, 3.756147984365773*^9}, {3.756148248573999*^9, 
   3.756148248819899*^9}, {3.756148334128064*^9, 3.756148334205196*^9}, 
   3.756316825610066*^9, {3.7563181585830717`*^9, 3.756318161634911*^9}, {
   3.756318269354926*^9, 3.756318271335086*^9}},
 CellLabel->
  "In[193]:=",ExpressionUUID->"739763d3-b7d8-49d5-a063-fadaa2ffb319"],

Cell[CellGroupData[{

Cell[BoxData["s9"], "Input",
 CellChangeTimes->{{3.756318162487234*^9, 3.756318162708955*^9}},
 CellLabel->
  "In[194]:=",ExpressionUUID->"d12c402b-f73f-433c-993b-ae25b08e04ee"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   SubscriptBox["a", "10"], "\[Rule]", "24.76041836973494`"}], 
  "}"}]], "Output",
 CellChangeTimes->{3.756318162977748*^9, 3.75631850350289*^9},
 CellLabel->
  "Out[194]=",ExpressionUUID->"701d65ae-f210-49f9-8695-172a58a67ec7"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"s10", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"cs", "[", 
          RowBox[{"[", 
           RowBox[{"1", "+", "11"}], "]"}], "]"}], "==", 
         RowBox[{"SeriesCoefficient", "[", 
          RowBox[{
           RowBox[{"f", "[", 
            RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", "0", ",", "11"}], "}"}]}], "]"}]}], "/.", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
          "]"}], "\[RuleDelayed]", 
         RowBox[{
          RowBox[{
           RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", 
           "]"}], 
          RowBox[{"n", "!"}]}]}]}], "/.", 
       RowBox[{"Join", "[", 
        RowBox[{
        "s1", ",", "s2", ",", "s3", ",", "s4", ",", "s5", ",", "s6", ",", 
         "s7", ",", "s8", ",", "s9"}], "]"}]}], ",", 
      SubscriptBox["a", "11"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756147648146731*^9, 3.7561476782344418`*^9}, 
   3.756147721581562*^9, {3.7561478069109573`*^9, 3.756147917732798*^9}, {
   3.7561479711843576`*^9, 3.756147984365773*^9}, {3.756148248573999*^9, 
   3.756148288756596*^9}, {3.7561483379601183`*^9, 3.756148338051984*^9}, 
   3.756316817945969*^9, {3.756318277466614*^9, 3.75631828230441*^9}},
 CellLabel->
  "In[195]:=",ExpressionUUID->"02fcbe73-d415-4683-bde3-db70f64f57b1"],

Cell[BoxData[
 RowBox[{
  RowBox[{"s11", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"cs", "[", 
          RowBox[{"[", 
           RowBox[{"1", "+", "12"}], "]"}], "]"}], "==", 
         RowBox[{"SeriesCoefficient", "[", 
          RowBox[{
           RowBox[{"f", "[", 
            RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", "0", ",", "12"}], "}"}]}], "]"}]}], "/.", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
          "]"}], "\[RuleDelayed]", 
         RowBox[{
          RowBox[{
           RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", 
           "]"}], 
          RowBox[{"n", "!"}]}]}]}], "/.", 
       RowBox[{"Join", "[", 
        RowBox[{
        "s1", ",", "s2", ",", "s3", ",", "s4", ",", "s5", ",", "s6", ",", 
         "s7", ",", "s8", ",", "s9", ",", "s10"}], "]"}]}], ",", 
      SubscriptBox["a", "12"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756147648146731*^9, 3.7561476782344418`*^9}, 
   3.756147721581562*^9, {3.7561478069109573`*^9, 3.756147917732798*^9}, {
   3.7561479711843576`*^9, 3.756147984365773*^9}, {3.756148248573999*^9, 
   3.756148288756596*^9}, {3.7561483379601183`*^9, 3.756148360299959*^9}, 
   3.7563168172560453`*^9, {3.756318286959422*^9, 3.756318287455036*^9}},
 CellLabel->
  "In[196]:=",ExpressionUUID->"eaacc5fe-d679-4223-9913-84fcc8df1499"],

Cell[BoxData[
 RowBox[{
  RowBox[{"s12", "=", 
   RowBox[{"First", "@", 
    RowBox[{"Solve", "[", 
     RowBox[{
      RowBox[{
       RowBox[{
        RowBox[{
         RowBox[{"cs", "[", 
          RowBox[{"[", 
           RowBox[{"1", "+", "13"}], "]"}], "]"}], "==", 
         RowBox[{"SeriesCoefficient", "[", 
          RowBox[{
           RowBox[{"f", "[", 
            RowBox[{"g", "[", "x", "]"}], "]"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", "0", ",", "13"}], "}"}]}], "]"}]}], "/.", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Derivative", "[", "n_", "]"}], "[", "f", "]"}], "[", "0", 
          "]"}], "\[RuleDelayed]", 
         RowBox[{
          RowBox[{
           RowBox[{"\[ScriptCapitalF]series", "[", "2", "]"}], "[", "n", 
           "]"}], 
          RowBox[{"n", "!"}]}]}]}], "/.", 
       RowBox[{"Join", "[", 
        RowBox[{
        "s1", ",", "s2", ",", "s3", ",", "s4", ",", "s5", ",", "s6", ",", 
         "s7", ",", "s8", ",", "s9", ",", "s10", ",", "s11"}], "]"}]}], ",", 
      SubscriptBox["a", "13"]}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.756147648146731*^9, 3.7561476782344418`*^9}, 
   3.756147721581562*^9, {3.7561478069109573`*^9, 3.756147917732798*^9}, {
   3.7561479711843576`*^9, 3.756147984365773*^9}, {3.756148248573999*^9, 
   3.756148288756596*^9}, {3.7561483379601183`*^9, 3.756148360299959*^9}, {
   3.7561484588565083`*^9, 3.7561484713577633`*^9}, 3.75631681620724*^9, {
   3.7563182918349123`*^9, 3.756318292328499*^9}},
 CellLabel->
  "In[197]:=",ExpressionUUID->"ae6a545b-4a50-4ea0-984b-48c7cf96808c"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"f", "=", 
  RowBox[{
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      SuperscriptBox["y", 
       RowBox[{"-", 
        RowBox[{"b", "[", "2", "]"}]}]], 
      RowBox[{"Exp", "[", 
       RowBox[{
        RowBox[{"-", 
         SubscriptBox["A", "1"]}], "/", 
        SuperscriptBox["y", "1"]}], "]"}], 
      SubscriptBox["B", "0"]}], "/.", 
     RowBox[{"y", "\[Rule]", 
      RowBox[{"g", "[", "x", "]"}]}]}], ")"}], "/.", 
   RowBox[{"Join", "[", 
    RowBox[{
    "s1", ",", "s2", ",", "s3", ",", "s4", ",", "s5", ",", "s6", ",", "s7", 
     ",", "s8", ",", "s9", ",", "s10", ",", "s11", ",", "s12"}], 
    "]"}]}]}]], "Input",
 CellChangeTimes->{{3.756149434525546*^9, 3.756149462503139*^9}, {
  3.756318330596437*^9, 3.756318331079452*^9}},
 CellLabel->
  "In[198]:=",ExpressionUUID->"7a4b1d3f-69b0-4867-9dc7-ce6838fa479e"],

Cell[BoxData[
 RowBox[{"0.17685998965641545`", " ", 
  SuperscriptBox["\[ExponentialE]", 
   RowBox[{"-", 
    FractionBox["1.15`", 
     RowBox[{"x", " ", 
      RowBox[{"(", 
       RowBox[{"1", "+", 
        RowBox[{"0.002727972766430912`", " ", 
         SuperscriptBox["x", "2"]}], "-", 
        RowBox[{"0.004371954547366299`", " ", 
         SuperscriptBox["x", "3"]}], "+", 
        RowBox[{"0.007378059825837999`", " ", 
         SuperscriptBox["x", "4"]}], "-", 
        RowBox[{"0.010795334971149897`", " ", 
         SuperscriptBox["x", "5"]}], "-", 
        RowBox[{"0.008191308327932398`", " ", 
         SuperscriptBox["x", "6"]}], "+", 
        RowBox[{"0.2607341726893066`", " ", 
         SuperscriptBox["x", "7"]}], "-", 
        RowBox[{"2.9089715438924455`", " ", 
         SuperscriptBox["x", "8"]}], "+", 
        RowBox[{"24.76041836973494`", " ", 
         SuperscriptBox["x", "9"]}], "-", 
        RowBox[{"213.7144687697903`", " ", 
         SuperscriptBox["x", "10"]}], "+", 
        RowBox[{"1982.964576402642`", " ", 
         SuperscriptBox["x", "11"]}], "-", 
        RowBox[{"19173.037113711183`", " ", 
         SuperscriptBox["x", "12"]}]}], ")"}]}]]}]], " ", "x", " ", 
  RowBox[{"(", 
   RowBox[{"1", "+", 
    RowBox[{"0.002727972766430912`", " ", 
     SuperscriptBox["x", "2"]}], "-", 
    RowBox[{"0.004371954547366299`", " ", 
     SuperscriptBox["x", "3"]}], "+", 
    RowBox[{"0.007378059825837999`", " ", 
     SuperscriptBox["x", "4"]}], "-", 
    RowBox[{"0.010795334971149897`", " ", 
     SuperscriptBox["x", "5"]}], "-", 
    RowBox[{"0.008191308327932398`", " ", 
     SuperscriptBox["x", "6"]}], "+", 
    RowBox[{"0.2607341726893066`", " ", 
     SuperscriptBox["x", "7"]}], "-", 
    RowBox[{"2.9089715438924455`", " ", 
     SuperscriptBox["x", "8"]}], "+", 
    RowBox[{"24.76041836973494`", " ", 
     SuperscriptBox["x", "9"]}], "-", 
    RowBox[{"213.7144687697903`", " ", 
     SuperscriptBox["x", "10"]}], "+", 
    RowBox[{"1982.964576402642`", " ", 
     SuperscriptBox["x", "11"]}], "-", 
    RowBox[{"19173.037113711183`", " ", 
     SuperscriptBox["x", "12"]}]}], ")"}]}]], "Output",
 CellChangeTimes->{3.75614946286729*^9, 3.756149672369154*^9, 
  3.756318296383964*^9, 3.756318331277514*^9, 3.756318414512698*^9, 
  3.756318504692894*^9},
 CellLabel->
  "Out[198]=",ExpressionUUID->"3ff44560-6de3-4db3-a7a7-cee161f35388"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{
     RowBox[{"g", "[", "x", "]"}], "/.", 
     RowBox[{"Join", "[", 
      RowBox[{
      "s1", ",", "s2", ",", "s3", ",", "s4", ",", "s5", ",", "s6", ",", "s7", 
       ",", "s8", ",", "s9", ",", "s10", ",", "s11", ",", "s12"}], "]"}]}], 
    "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "0", ",", ".5"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.7561485618185997`*^9, 3.7561486379038467`*^9}, {
   3.756148912504231*^9, 3.756148953197178*^9}, {3.756149357359333*^9, 
   3.756149424414464*^9}, {3.75614946888211*^9, 3.756149514886841*^9}, 
   3.756149680067787*^9, {3.756318303155777*^9, 3.756318381689519*^9}, {
   3.75631842927744*^9, 3.756318443866081*^9}},
 CellLabel->
  "In[199]:=",ExpressionUUID->"ee6a5bed-323d-46a0-adb8-bbb4b15b8d1c"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJw1lnlUTd/7xyspkpKhFGkSDVQaUOFtKEShwVCSJAqRoUgooqJEKUpJUaRU
lNBAV3MauN3uOefe7r3JRyilhNKE3/Zd6/fXa73W2mevvZ+9n/c+Gh6+Dnsk
xMTEVMXFxP5x3Z6Opled1sv+n5KrVA6/U56N7Aa1/9EkJeHWE2VTCCty/8f1
jUx+srIVchyNnvzjVs9fL68pOyFH05n1jyLD8FVRyp4I2TnB5h9Tp20Mi1D2
w9dKm1v/eG7ck7mXlC8gPqs36B+3Od959K0vDs9Hhk2+E074e851zawUnC+l
VtoSatv3dFREpmPtsHjAa8ITb8yR8DMTxsZ5a9IIlQoUWsXFH2HCamevqYTP
/lvV8HZJPqQ+dD9oJSzfnzzDubsAq88sWexL2D9nqXzOweeYW6CfW08oMfRw
0gztYpz+3P3binDhX/dnjrkvUB+QuCaCsOGC6ZtqPRYOtO2un6DPglp011Bm
zyvYmx/fRxF2/XrXShmVwzzz6VWZBeVI/1JSJ3elAkb/VUzZQCinmtHb3l6J
b2aJRgYfK3F539O9qbOr0Ws1ofQb4cDyh+3ewTVY/qHhfjGhn3FlgWJFLSYq
dLjvIHyXWxnZpFEHJXep+32EI/u5SbqB9QgtOq7+/WQ99FdI/9lb0gCeabbX
1eIGrLmr4ZWn9Aaxhaf/3pz2BidUd2q+d32LvYue173Y9hbzujdPYOzY6Dd5
P1d5HRtT5L+Nqxxmo2xL8sHxP9mQZCU90rrVBO7r7qCu6CYcMC3hj1/PgS8O
nJi+mIOHNh6ppQMc3BnYH81jOOjvUpn06UYztp0ZkZ/g1YynjmvGxFlxccg5
+MOEoWYErw1NKfjEhbHOOLrBjwuOm7erUScXt+ynpsUe52K2/3rl7C4urMXs
vZ0DuKi7oxCb9o2LRIpPvT/FxdSR5LBrw1woty9R/BTCxYOcZwcPy1HY22Lf
WxzNBXtyh+W8hRQqhg+zIh9yoalbP5ixmMKvmWI1Bjlc+CP3qZYlBe0w13h2
LhcqPn6GM5ZTeHpL8fKkfC48q8S0ZNZRcDm9JeFcIReDJ5RlOnZQCNHg18+p
4kJDtI6XFkrhAFNXcETERUS55aPNFykoafUmyLzj4nvGvDDpSDL+SUHjnTYu
yo/KmR6IpnAj/b5a/Qcy/zjOVeMkCumXJmmO/0LWb+K8puwxhS4pkyCjAS4M
IryetQooSIa9o1Umku98t0VFt1LYWXp6JIDs86+TjefK9xSEgbWzKHkKbDX9
yfc/USg5tmFL+GQKR572HDzYR2FL4QWLZiUKBW3+2qNSNN5YHt0qpUnBYtGF
OGVjGg9eGGlWmVKgPZQXJpvSOFpiX15nRuHYlVxGfRGNn78cN70hdcz+yFPR
WULjWekR/bekjrPi5t9ZuJqGd+zt2OdLKEj00TmOLjR6HH41qltRuD3TZyPj
SuP8lJjxktYULNeK97nspPH+VqD0R+J+KfqmHp40Wlmdy1LXUPhkd7b48CEa
XMrCdoTUvT5LtyYqhIacVOfmFfYUvOlSb4VQGspzv27/S1xSwknmejiNYh2/
/mIHCsucg+xuXaZxbs17Ws+JwmPp5uasGzTYNQ6/u7dQsDXx9je4ScOxJtUm
fiuFTrffivlJNKz/q5iEbRQ0n811KUql8e5Cr0S4M4U4z9NtNVk0lnu1qg5u
p2AUrRCyPodGyFDv5yhXCo0l97XePqKRY2w9RYPcC6kpTXvpAhqaedln4UYh
oEz7a3spjTGL4eLqTmHq1+Ir3mXE+7dwhMTzpm8y6q6g4ckzi3HZReGLb+Cx
H7U0rnlXUHYeFFxnvR0Sb6Yxc2qqyhRPCnLKR5+WUDSeVCxYHEa8bMq0I/48
Gh0LmsQHiM8Zv72jQ0Qjle8WXr+HAm/Mn7S7bTRGVzpYLNhLIeJP6k7XDzTy
S3eExxLv/fGJfttBw2Y0QmTnReFuz6Vrl7rI/vtCRfeIO3XO27Cqh4b+5vV7
hokXth6tevaD+NGsoQRvCvv5084dHqDRdufb6H/EVbmFS/SGyP7UXPx195F7
//rPk+Q/NBpC8/IfEjetvOO7VZyB3u5Zhz4T/1xqpa8gyaDbOztSbT+FxKLP
n+qkGBy7f1nKibhtQcTdC+MZXNv+hX+B+J/c+W7LZBk4fv8ilk/8cSZbeVCO
QcxgznEBcY/0Y1SeAoMUZbuF4gcoTEtRjDkwlUGLktBCi3jtzSJbbSUGW6u9
g1cQD4xzHfdOmcFmiZE/24nPu/q3ImEmA1F2XMFR4q2X7gY7qDEwS1+QFEo8
+oK1pawmg0Mva3LiiK8K7hioms2g5uXqzynEB05G5gfPZWDglLAyg/gDP4ND
5noMUienFmcRd/Ft0v0xj0Gcl+W6fz5xv9/HbEMGG+JXdN8j/spT6c5eYwYr
n55PSiZ+dGexq7oZA/fkBocY4rNddkxvWcTA4Wub7DnitJMYN9aCAf93UKUP
8Ysb067aLWXQL3DzcyJuuW71eunlDLRXGistJt5j1SlVtpLB1Zj0DCXiqbhc
HmjNwKLeRf0HqZ+DhWGQ6VoGapd+nKojLmnGMe9ZR9b3S+ppMvFnhv79GXYM
JjTOqfYhvk9vet6uTQzeWrdmLiL+Rs1Nh9rMIP+kevMrcr5nVcTbr2xjoCVx
Z2IwcZNp6SlrtzMwKk6XNCeeIPNF8YU7g9I8nkIquT/rxkZx/HczuF7zeqYd
8d9/Da8Y7mVw8CGrsZ/cP49+/7FpBxiE5fbJWBCf+m16meshBq9rCyMpcp9r
vpScVjzCIDIhMcmH+Lw28Z+XjpP6mZ20jyL90F8X9d/hcwyC2h8eSdhNcnMC
5T16nsEv20lD04mX287sDQ9jEPvkQMB10n/Rb7JGbkcy6JL1XR9C+lOPUzO1
8TqDop12hXo7KUyaIp+0LYHBzkxT/wjS778ct2i0JzJ4d95J4hPJg0qqff5I
CjnPeQMB0SQv3Pjia3SzGIyMxqzNJ/lipWLTWJBNxs83G+wl+aO/Pdpx+SMG
wb69G3SJDwpnuW8tYJB+PVt4heTXtTbLk6GlZP9psz7OdqRQ/dn/4XsOg7s7
PPtPrCf5rPNywUGKgZ9Zc9xBkp+x+yQLBxkG3qqvLrjZUHDvulYpL2LQwbkF
Y5K3wz2PREs/M9h1tiYkdSUFw4FO+cQRBrWZ+WaxJN8VFy24of2HQcn2xQaW
iyiMngiYmSfGg6RzlEoreR/qhqR0a8fy4Lsp6dlUEwqev7VWDsjzIJx+3cFq
PjlfSTc/h9k8LGurf5ahTvp3t5JZ0xweFNR+n5ZUI+Mr2P0bdXm4nT003lWV
5GvIqhN2BjxQ+2e4jyiTfv2rE7h2MQ9Vx2Uchsl79mv4R/AyWx6GtO69+zGG
5KNLzvKXG3ho+XTSYFicnF/RXvEl9jzI5Vi1Df/l4koAP8R8Cw/HTr1z6Brh
Ys5AaaipOw/J39Nfhv/gYkvfpUg9Px7635e3PnjPxYtNq2wzj/PAdu1Z7UDe
b83Ho7I6J3mIkAzO6Bdy0XPI94p2EA8s44UL9XhchHY7xahf5GGjwKzG5g0X
BZ/V4hVv8XBk0oFLrkVcTGl9eleikgeVwPj45AiyHtkzZ55X87CiKCvBJJwL
GUurbT6veXAM2exTdp4LiQTORPoND/cuueyuPE3+H+x7AzL5PDR8nei/9xD5
n6nS2bipl4dIGVvdyZu4sP3Zqzv2Ow8CsVeX1G25qNV8Lln8kwftFzZKc9Zy
wQq2LtYa5uHzugdXFJdzkWvuof1Lko/ebEtWpCEXl3OSRpJV+OgLCAp9KcvF
OKEH7aDKx0fL2Ovm47i4IKOXJ63Oh9HmAxrZY7g45VW494g2H2Vmu4L8hpux
X4NqsjLiI3fJ2XExn5ux9rrcgy5rPmpH3GR7Wc0Ye+ack/kRPho0PsV3ejej
oK97iHWMj0Ny3+ed290Mz73bUlYf5+PJMUNNebdmVG40/OJ4ig+Tt14Sco7N
uKApCj4UysdJy6sHbixphmTt4odpN/kwHixaVzuxGRJTvonLlfMR4RyFXQ84
yA/fnhFXyUdi9vDaR3c48Bittp1Rw8es8+dXf0/koPxjcrxOAx8yYs5ft0Rx
EFK4fv4qmuxv5HzszSMciLtlbAv4wkd6zeQ9Q4s4EMt0e/Tf5BYs/9mS9rqk
CdXdzKGUaS2QTryi25PfhMtG9gau01vwZ1YVe0xWE5QKV+VQqi3ofFq2VCKh
CQY1Og9rdVogsJmUbnOsCa4fv9/PXUbmWxny8/ucJhRphN8O3N8CPyp5qUEI
G0F7xNwWHWzBppPO6Y4n2LDKPKn607cFjVoU4+XDBtvI59ZB/xaYVelvdt3C
RgfsE93PtsAu85r/MV02FN1m3Fh9owVzh+dwohPe4mjio6jJ5S1Q3Bk38l36
DZ6PJoaXV7bgvbT+tRk9jRh1Czt3tKYF1pzRNlVuI8K1dvhzGlqQv1x+JDel
EbeyZXZcY1qgnnZi1x/TRlSV7pk3+WsLIoKN9ulva8D0DzPqFaYLEL26N/5s
cB12WEtXlakIUHJYePiSex3uZnwvPaIqQM0OaZu9K+owz+d1fpOmAFRWjEmS
RB1W9B9PjJkvQNjw2CvdIa+xX5qzT2GVAHYZbxPET9Xipf7FcQqHBNCS5Udd
XlONhVylxmuHBUB6o4KBdjUen86ImXpMgI+Gbx+kSVTjbmO1yvQAAS6eNXGV
eVmFi75j56uFCJC8v6/9lWEVHJ6E2M+/IUBS4NCWLNlKfLY4k2hTKsD52LoH
s9PK4P5Bdmf9KwHMF4w69ASWoSXylpZdhQDTeprUwhzK0CAsyd5UK4BycPZW
NfEy5AcNl27lCJCVWpv3ffsrnC4/8WHPJwHUR0fHtsmXQmHd0XkhckJk3RNU
3/MtRGqZ/AQLBSEe9/znIytTCCPznM6+KUJ8u3lbtSftOTbodNzfpSzE0j5f
N3X6GSKk3DRWzBbCMUrspJHpU0hW2CiKWQjRolc0LYjOw4ClhljQHiE4Pntq
7HfeQ+iT0lYzbyEmVC8NTz6cjqn6ri+/7hdi+eCgWtHZNJioxAfuOCxE1Z/C
SpfkOzg8KNu/5JQQ5fJh7Wuik9BZMNg5Ei3EEHWNnxkRDuF8dvPJF0LEjU6v
yi65zkrpUjgzhiXEzVfDgklV8SyPTMc5UWVCNK6tXcph32R1zmYCUquFYKvb
WRzvTWYNzGhVrWEL4R/DDyyfncZSkOn2mvpRiOsv9fL2FT1krf4kPZo7UQTz
XSbW1JdnrPHpNvcWTxJhQaqnr9W556yGXZEbyieLMNh3Jt1teiHLUSR3h1IS
QeJqe/2NtUUsd+601aMaIjyO9zqhk1fCOlWuFW2zUITTGuELn9i/Yj2+jdnt
biJEmGysi7hYxfoR+EN61y4RrOX/DO8RVbEWbs3oEu0WYcf64W/JxtWsEnn5
J4y3CHkhnpe1W6tZ1WdbV9QfFUFReqtBsnktS+BxZmd+mAjlV89eOC1Rz5Ka
W5J4NleEMUdKHeDLZtmM8Q36/ViEi6f0ljalsFmX32l6BD4RISH0gUM8m81S
SIjQ9SsUoTTIt/yVcRNr5niXQq9yETrWbFe6MtTEMu4apDbQInge9zFeFtPM
2vFooYLqHxFkh7sY5y8065nLoBxbrBU6ctLyl+cwLDmpYtnzY1oh7tRtPWY3
w3rlunRc57hWBHXTtWVChlWXTE1ZotAKrrhYk2QSj/V/NM8BXg==
       "]]},
     Annotation[#, "Charting`Private`Tag$18798#1"]& ]}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 0.5}, {-0.3844615975395105, 0.33469646668553743`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.7561485963243856`*^9, 3.756148638267477*^9}, {
   3.756148908343822*^9, 3.756148953511476*^9}, 3.756149262343197*^9, {
   3.7561494122882357`*^9, 3.756149424816127*^9}, {3.756149470901289*^9, 
   3.756149515199387*^9}, {3.756149673325081*^9, 3.756149680988163*^9}, {
   3.75631829811685*^9, 3.756318335943342*^9}, {3.75631837667435*^9, 
   3.7563183821869717`*^9}, {3.7563184151021557`*^9, 3.756318444170249*^9}, 
   3.756318505204883*^9},
 CellLabel->
  "Out[199]=",ExpressionUUID->"9fb5751b-09cc-4a85-b184-f10491b06a7b"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Gls", "[", 
  RowBox[{"[", "2", "]"}], "]"}]], "Input",
 CellChangeTimes->{{3.756149037433765*^9, 3.756149041111251*^9}},
 CellLabel->
  "In[200]:=",ExpressionUUID->"e4561e06-905f-4c39-8e8b-097ef9db1978"],

Cell[BoxData[
 RowBox[{"-", "1.3578383417066`"}]], "Output",
 CellChangeTimes->{3.756149041375127*^9, 3.756318416069252*^9, 
  3.756318506339218*^9},
 CellLabel->
  "Out[200]=",ExpressionUUID->"216c461d-db22-4188-b5a0-2387b87b96de"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"ListLogPlot", "[", 
  RowBox[{
   RowBox[{"Abs", "@", 
    RowBox[{
     RowBox[{"Join", "[", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{"a", "\[Rule]", 
         RowBox[{"Gls", "[", 
          RowBox[{"[", "2", "]"}], "]"}]}], "}"}], ",", "s1", ",", "s2", ",", 
       "s3", ",", "s4", ",", "s5", ",", "s6", ",", "s7", ",", "s8", ",", "s9",
        ",", "s10", ",", "s11", ",", "s12"}], "]"}], "[", 
     RowBox[{"[", 
      RowBox[{"All", ",", "2"}], "]"}], "]"}]}], "/.", 
   RowBox[{
    SubscriptBox["A", "1"], "\[Rule]", ".01"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.7561483774921093`*^9, 3.756148399252618*^9}, {
  3.756148511905546*^9, 3.756148513134862*^9}, {3.756149004553083*^9, 
  3.756149022663352*^9}, {3.7561490593068438`*^9, 3.756149067302891*^9}, {
  3.7563164151620398`*^9, 3.7563164973802347`*^9}},
 CellLabel->
  "In[201]:=",ExpressionUUID->"85f17b37-fa91-4ed8-94fc-546e4de955ef"],

Cell[BoxData[
 GraphicsBox[{{}, {{}, 
    {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.012833333333333334`],
      AbsoluteThickness[1.6], 
     PointBox[{{1., 0.3058939805973418}, {2., -1.7323968783191395`}, {
      3., -5.904196522030623}, {4., -5.4325451050241975`}, {
      5., -4.909244571160941}, {6., -4.528641185283742}, {
      7., -4.80468164687506}, {8., -1.3442538861216395`}, {9., 
      1.0677995973725574`}, {10., 3.209246344674246}, {11., 
      5.364640866021879}, {12., 7.5923482647206235`}, {13., 
      9.861260254044426}}]}, {}}, {}, {}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0., -7.048463546100589},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{
     Charting`ScaledTicks[{Log, Exp}], 
     Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Exp[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Exp[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0., 13}, {-6.780055231812571, 9.861260254044426}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.02], 
     Scaled[0.05]}},
  Ticks->FrontEndValueCache[{Automatic, 
     Charting`ScaledTicks[{Log, Exp}]}, {Automatic, {{-6.907755278982137, 
       FormBox["0.001`", TraditionalForm], {0.01, 0.}, {
        AbsoluteThickness[0.1]}}, {-2.3025850929940455`, 
       FormBox[
        TagBox[
         InterpretationBox["\"0.100\"", 0.1, AutoDelete -> True], 
         NumberForm[#, {
           DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, 0.}, {
        AbsoluteThickness[0.1]}}, {2.302585092994046, 
       FormBox["10", TraditionalForm], {0.01, 0.}, {
        AbsoluteThickness[0.1]}}, {6.907755278982137, 
       FormBox["1000", TraditionalForm], {0.01, 0.}, {
        AbsoluteThickness[0.1]}}, {-4.605170185988091, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {0., 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {4.605170185988092, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {9.210340371976184, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {11.512925464970229`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {12.206072645530174`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {12.611537753638338`, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}, {12.89921982609012, 
       FormBox[
        TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, {
        AbsoluteThickness[0.1]}}}}]]], "Output",
 CellChangeTimes->{{3.756148379454566*^9, 3.756148400180973*^9}, 
   3.75614851341536*^9, {3.7561489960035553`*^9, 3.756149022990449*^9}, {
   3.756149059924506*^9, 3.756149067759342*^9}, {3.7563164200704193`*^9, 
   3.756316497939509*^9}, 3.7563183445890703`*^9, 3.756318416992405*^9, 
   3.756318506759302*^9},
 CellLabel->
  "Out[201]=",ExpressionUUID->"51e89cbc-f0a2-4dd4-8023-3496b614f57a"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"SeriesCoefficient", "[", 
  RowBox[{
   RowBox[{"f", "[", "x", "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.756148008108568*^9, 3.756148015078742*^9}},
 CellLabel->
  "In[108]:=",ExpressionUUID->"539f5741-8fad-4a07-a76a-87f3cc414748"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   SuperscriptBox["f", 
    TagBox[
     RowBox[{"(", "10", ")"}],
     Derivative],
    MultilineFunction->None], "[", "0", "]"}], "3628800"]], "Output",
 CellChangeTimes->{3.756148015259964*^9},
 CellLabel->
  "Out[108]=",ExpressionUUID->"0c15c51c-9889-4e87-9ae3-b6488476b465"]
}, Open  ]],

Cell[BoxData[""], "Input",
 CellChangeTimes->{{3.756147893106865*^9, 
  3.756147894195971*^9}},ExpressionUUID->"907cbcc9-e4ba-4cde-a936-\
11fe50f13a54"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"\[ScriptCapitalF]series", "[", "3", "]"}], "[", "2", 
  "]"}]], "Input",
 CellChangeTimes->{{3.756146670351677*^9, 3.756146713760792*^9}, {
  3.756147083912532*^9, 3.7561471140866127`*^9}},
 CellLabel->"In[61]:=",ExpressionUUID->"3851471e-6913-4b9d-a263-b5e8786a9d2a"],

Cell[BoxData[
 RowBox[{"-", 
  FractionBox[
   RowBox[{
    RowBox[{"Gamma", "[", 
     FractionBox["13", "6"], "]"}], " ", 
    SubscriptBox["B", "0"]}], 
   RowBox[{"2", " ", "\[Pi]", " ", 
    SubsuperscriptBox["A", "2", 
     RowBox[{"13", "/", "6"}]]}]]}]], "Output",
 CellChangeTimes->{{3.756147094752083*^9, 3.756147114377037*^9}},
 CellLabel->"Out[61]=",ExpressionUUID->"80405869-9d0d-4f31-b835-fea5e2eeb6bd"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"ClearAll", "[", "a", "]"}]], "Input",
 CellChangeTimes->{{3.756147142145719*^9, 3.756147143639929*^9}},
 CellLabel->"In[62]:=",ExpressionUUID->"fe9eabdd-9122-4e50-ada7-78e3950b9bd6"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"a", "=", 
  RowBox[{
   FractionBox[
    RowBox[{
     SubscriptBox["B", "0"], 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{"-", "1"}], ")"}], 
      RowBox[{"n", "+", "1"}]]}], "\[Pi]"], 
   RowBox[{"Integrate", "[", 
    RowBox[{
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", "X", ")"}], 
       RowBox[{"-", 
        RowBox[{"b", "[", "d", "]"}]}]], 
      RowBox[{
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", 
         SuperscriptBox["X", 
          RowBox[{"d", "-", "1"}]]}], "]"}], "/", 
       SuperscriptBox["X", 
        RowBox[{"n", "+", "1"}]]}]}], ",", 
     RowBox[{"{", 
      RowBox[{"X", ",", "0", ",", "\[Infinity]"}], "}"}], ",", 
     RowBox[{"Assumptions", "\[Rule]", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{
         RowBox[{"n", "+", 
          RowBox[{"b", "[", "d", "]"}]}], ">", "0"}], ",", 
        RowBox[{"A", ">", "0"}], ",", 
        RowBox[{"d", ">", "1"}]}], "}"}]}]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.756146114382412*^9, 3.756146115879637*^9}, {
  3.756146204448526*^9, 3.756146356228191*^9}, {3.7561464093991623`*^9, 
  3.75614642347545*^9}, {3.756146468612537*^9, 3.756146549640934*^9}},
 CellLabel->"In[15]:=",ExpressionUUID->"6be233ca-b95f-4a35-931f-f2a7712ee211"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   SuperscriptBox[
    RowBox[{"(", 
     RowBox[{"-", "1"}], ")"}], 
    RowBox[{"1", "+", "n"}]], " ", 
   SuperscriptBox["A", 
    FractionBox[
     RowBox[{"n", "+", 
      RowBox[{"b", "[", "d", "]"}]}], 
     RowBox[{"1", "-", "d"}]]], " ", 
   RowBox[{"Gamma", "[", 
    FractionBox[
     RowBox[{"n", "+", 
      RowBox[{"b", "[", "d", "]"}]}], 
     RowBox[{
      RowBox[{"-", "1"}], "+", "d"}]], "]"}], " ", 
   SubscriptBox["B", "0"]}], 
  RowBox[{
   RowBox[{"(", 
    RowBox[{
     RowBox[{"-", "1"}], "+", "d"}], ")"}], " ", "\[Pi]"}]]], "Output",
 CellChangeTimes->{{3.756146347689114*^9, 3.756146356998108*^9}, {
  3.756146410213119*^9, 3.7561464281405687`*^9}, {3.756146473765655*^9, 
  3.7561465079459677`*^9}, {3.756146540504715*^9, 3.756146550360112*^9}},
 CellLabel->"Out[15]=",ExpressionUUID->"b6554a5a-a9d1-40d0-959c-aeeea7e75a61"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"a", "/.", 
  RowBox[{
   RowBox[{"b", "[", "d", "]"}], "\[Rule]", 
   RowBox[{"-", "1"}]}]}]], "Input",
 CellChangeTimes->{{3.756146410726206*^9, 3.756146438764554*^9}},
 CellLabel->"In[16]:=",ExpressionUUID->"59f4d7c3-31bc-41dd-89b1-76d598a3395c"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   SuperscriptBox[
    RowBox[{"(", 
     RowBox[{"-", "1"}], ")"}], 
    RowBox[{"1", "+", "n"}]], " ", 
   SuperscriptBox["A", 
    FractionBox[
     RowBox[{
      RowBox[{"-", "1"}], "+", "n"}], 
     RowBox[{"1", "-", "d"}]]], " ", 
   RowBox[{"Gamma", "[", 
    FractionBox[
     RowBox[{
      RowBox[{"-", "1"}], "+", "n"}], 
     RowBox[{
      RowBox[{"-", "1"}], "+", "d"}]], "]"}], " ", 
   SubscriptBox["B", "0"]}], 
  RowBox[{
   RowBox[{"(", 
    RowBox[{
     RowBox[{"-", "1"}], "+", "d"}], ")"}], " ", "\[Pi]"}]]], "Output",
 CellChangeTimes->{
  3.7561464390142307`*^9, {3.7561464974127703`*^9, 3.756146508659766*^9}, {
   3.756146542082902*^9, 3.7561465519899473`*^9}},
 CellLabel->"Out[16]=",ExpressionUUID->"22cd78b5-c968-4202-9d34-07d97235746d"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"ClearAll", "[", "b", "]"}]], "Input",
 CellChangeTimes->{{3.756228246282179*^9, 3.7562282479674273`*^9}},
 CellLabel->"In[2]:=",ExpressionUUID->"6449ae2c-1578-4822-92de-6650bea5c849"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Solve", "[", 
  RowBox[{
   RowBox[{"0", "==", 
    RowBox[{"D", "[", 
     RowBox[{
      RowBox[{
       SuperscriptBox["X", 
        RowBox[{"-", "b"}]], 
       RowBox[{"Exp", "[", 
        RowBox[{
         RowBox[{"-", "A"}], "/", 
         SuperscriptBox["X", 
          RowBox[{"d", "-", "1"}]]}], "]"}]}], ",", "X"}], "]"}]}], ",", 
   "X"}], "]"}]], "Input",
 CellChangeTimes->{{3.7562282322023478`*^9, 3.756228277096583*^9}, {
  3.7562285458472843`*^9, 3.756228546283895*^9}, {3.75622877740093*^9, 
  3.756228780759955*^9}, {3.756228811714822*^9, 3.756228811719017*^9}, {
  3.756228844906363*^9, 3.756228867245256*^9}, {3.756228952565091*^9, 
  3.756228969531336*^9}},
 CellLabel->"In[31]:=",ExpressionUUID->"975b9032-9a07-4662-a33e-7145ac1d3dac"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{"{", 
   RowBox[{"X", "\[Rule]", 
    SuperscriptBox["\[ExponentialE]", 
     FractionBox[
      RowBox[{
       RowBox[{
        RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Pi]"}], "-", 
       RowBox[{"Log", "[", "b", "]"}], "+", 
       RowBox[{"Log", "[", 
        RowBox[{"A", "-", 
         RowBox[{"A", " ", "d"}]}], "]"}]}], 
      RowBox[{
       RowBox[{"-", "1"}], "+", "d"}]]]}], "}"}], "}"}]], "Output",
 CellChangeTimes->{{3.7562282683569098`*^9, 3.756228277801897*^9}, 
   3.756228546689384*^9, 3.756228781282853*^9, 3.756228845592667*^9, 
   3.756228969765421*^9},
 CellLabel->"Out[31]=",ExpressionUUID->"9f28f254-c6f6-4c75-9161-213e818af1d9"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"s", "=", 
  RowBox[{"Solve", "[", 
   RowBox[{
    RowBox[{"0", "==", 
     RowBox[{"D", "[", 
      RowBox[{
       RowBox[{
        RowBox[{"X", "/", 
         RowBox[{"(", 
          RowBox[{"1", "+", 
           RowBox[{"b", " ", 
            SuperscriptBox["X", "3"]}]}], ")"}]}], 
        RowBox[{"Exp", "[", 
         RowBox[{
          RowBox[{"-", "A"}], 
          RowBox[{"(", 
           RowBox[{"1", "/", 
            SuperscriptBox["X", "1"]}], ")"}]}], "]"}]}], ",", "X"}], "]"}]}],
     ",", "X"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7562295350133753`*^9, 3.756229554046912*^9}, {
  3.756231501031888*^9, 3.756231574437511*^9}, {3.756231604779117*^9, 
  3.756231607825807*^9}, {3.756232124524014*^9, 3.7562321699392023`*^9}, {
  3.756232319462789*^9, 3.75623233854205*^9}},
 CellLabel->"In[86]:=",ExpressionUUID->"f70d7ca6-ab12-4ef9-aedf-1cf978fe8905"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{"X", "\[Rule]", 
     RowBox[{
      FractionBox["A", "8"], "-", 
      RowBox[{
       FractionBox["1", "2"], " ", 
       SqrtBox[
        RowBox[{
         FractionBox[
          SuperscriptBox["A", "2"], "16"], "-", 
         FractionBox[
          RowBox[{"3", " ", "A"}], 
          RowBox[{
           SuperscriptBox["2", 
            RowBox[{"2", "/", "3"}]], " ", 
           SuperscriptBox[
            RowBox[{"(", 
             RowBox[{
              RowBox[{"2", " ", "b"}], "-", 
              RowBox[{
               SuperscriptBox["A", "3"], " ", 
               SuperscriptBox["b", "2"]}], "+", 
              SqrtBox[
               RowBox[{
                RowBox[{"4", " ", 
                 SuperscriptBox["b", "2"]}], "+", 
                RowBox[{"104", " ", 
                 SuperscriptBox["A", "3"], " ", 
                 SuperscriptBox["b", "3"]}], "+", 
                RowBox[{
                 SuperscriptBox["A", "6"], " ", 
                 SuperscriptBox["b", "4"]}]}]]}], ")"}], 
            RowBox[{"1", "/", "3"}]]}]], "+", 
         FractionBox[
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{
             RowBox[{"2", " ", "b"}], "-", 
             RowBox[{
              SuperscriptBox["A", "3"], " ", 
              SuperscriptBox["b", "2"]}], "+", 
             SqrtBox[
              RowBox[{
               RowBox[{"4", " ", 
                SuperscriptBox["b", "2"]}], "+", 
               RowBox[{"104", " ", 
                SuperscriptBox["A", "3"], " ", 
                SuperscriptBox["b", "3"]}], "+", 
               RowBox[{
                SuperscriptBox["A", "6"], " ", 
                SuperscriptBox["b", "4"]}]}]]}], ")"}], 
           RowBox[{"1", "/", "3"}]], 
          RowBox[{"2", " ", 
           SuperscriptBox["2", 
            RowBox[{"1", "/", "3"}]], " ", "b"}]]}]]}], "-", 
      RowBox[{
       FractionBox["1", "2"], " ", 
       SqrtBox[
        RowBox[{
         FractionBox[
          SuperscriptBox["A", "2"], "8"], "+", 
         FractionBox[
          RowBox[{"3", " ", "A"}], 
          RowBox[{
           SuperscriptBox["2", 
            RowBox[{"2", "/", "3"}]], " ", 
           SuperscriptBox[
            RowBox[{"(", 
             RowBox[{
              RowBox[{"2", " ", "b"}], "-", 
              RowBox[{
               SuperscriptBox["A", "3"], " ", 
               SuperscriptBox["b", "2"]}], "+", 
              SqrtBox[
               RowBox[{
                RowBox[{"4", " ", 
                 SuperscriptBox["b", "2"]}], "+", 
                RowBox[{"104", " ", 
                 SuperscriptBox["A", "3"], " ", 
                 SuperscriptBox["b", "3"]}], "+", 
                RowBox[{
                 SuperscriptBox["A", "6"], " ", 
                 SuperscriptBox["b", "4"]}]}]]}], ")"}], 
            RowBox[{"1", "/", "3"}]]}]], "-", 
         FractionBox[
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{
             RowBox[{"2", " ", "b"}], "-", 
             RowBox[{
              SuperscriptBox["A", "3"], " ", 
              SuperscriptBox["b", "2"]}], "+", 
             SqrtBox[
              RowBox[{
               RowBox[{"4", " ", 
                SuperscriptBox["b", "2"]}], "+", 
               RowBox[{"104", " ", 
                SuperscriptBox["A", "3"], " ", 
                SuperscriptBox["b", "3"]}], "+", 
               RowBox[{
                SuperscriptBox["A", "6"], " ", 
                SuperscriptBox["b", "4"]}]}]]}], ")"}], 
           RowBox[{"1", "/", "3"}]], 
          RowBox[{"2", " ", 
           SuperscriptBox["2", 
            RowBox[{"1", "/", "3"}]], " ", "b"}]], "-", 
         FractionBox[
          RowBox[{
           FractionBox[
            SuperscriptBox["A", "3"], "8"], "+", 
           FractionBox["4", "b"]}], 
          RowBox[{"4", " ", 
           SqrtBox[
            RowBox[{
             FractionBox[
              SuperscriptBox["A", "2"], "16"], "-", 
             FractionBox[
              RowBox[{"3", " ", "A"}], 
              RowBox[{
               SuperscriptBox["2", 
                RowBox[{"2", "/", "3"}]], " ", 
               SuperscriptBox[
                RowBox[{"(", 
                 RowBox[{
                  RowBox[{"2", " ", "b"}], "-", 
                  RowBox[{
                   SuperscriptBox["A", "3"], " ", 
                   SuperscriptBox["b", "2"]}], "+", 
                  SqrtBox[
                   RowBox[{
                    RowBox[{"4", " ", 
                    SuperscriptBox["b", "2"]}], "+", 
                    RowBox[{"104", " ", 
                    SuperscriptBox["A", "3"], " ", 
                    SuperscriptBox["b", "3"]}], "+", 
                    RowBox[{
                    SuperscriptBox["A", "6"], " ", 
                    SuperscriptBox["b", "4"]}]}]]}], ")"}], 
                RowBox[{"1", "/", "3"}]]}]], "+", 
             FractionBox[
              SuperscriptBox[
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"2", " ", "b"}], "-", 
                 RowBox[{
                  SuperscriptBox["A", "3"], " ", 
                  SuperscriptBox["b", "2"]}], "+", 
                 SqrtBox[
                  RowBox[{
                   RowBox[{"4", " ", 
                    SuperscriptBox["b", "2"]}], "+", 
                   RowBox[{"104", " ", 
                    SuperscriptBox["A", "3"], " ", 
                    SuperscriptBox["b", "3"]}], "+", 
                   RowBox[{
                    SuperscriptBox["A", "6"], " ", 
                    SuperscriptBox["b", "4"]}]}]]}], ")"}], 
               RowBox[{"1", "/", "3"}]], 
              RowBox[{"2", " ", 
               SuperscriptBox["2", 
                RowBox[{"1", "/", "3"}]], " ", "b"}]]}]]}]]}]]}]}]}], "}"}], 
   ",", 
   RowBox[{"{", 
    RowBox[{"X", "\[Rule]", 
     RowBox[{
      FractionBox["A", "8"], "-", 
      RowBox[{
       FractionBox["1", "2"], " ", 
       SqrtBox[
        RowBox[{
         FractionBox[
          SuperscriptBox["A", "2"], "16"], "-", 
         FractionBox[
          RowBox[{"3", " ", "A"}], 
          RowBox[{
           SuperscriptBox["2", 
            RowBox[{"2", "/", "3"}]], " ", 
           SuperscriptBox[
            RowBox[{"(", 
             RowBox[{
              RowBox[{"2", " ", "b"}], "-", 
              RowBox[{
               SuperscriptBox["A", "3"], " ", 
               SuperscriptBox["b", "2"]}], "+", 
              SqrtBox[
               RowBox[{
                RowBox[{"4", " ", 
                 SuperscriptBox["b", "2"]}], "+", 
                RowBox[{"104", " ", 
                 SuperscriptBox["A", "3"], " ", 
                 SuperscriptBox["b", "3"]}], "+", 
                RowBox[{
                 SuperscriptBox["A", "6"], " ", 
                 SuperscriptBox["b", "4"]}]}]]}], ")"}], 
            RowBox[{"1", "/", "3"}]]}]], "+", 
         FractionBox[
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{
             RowBox[{"2", " ", "b"}], "-", 
             RowBox[{
              SuperscriptBox["A", "3"], " ", 
              SuperscriptBox["b", "2"]}], "+", 
             SqrtBox[
              RowBox[{
               RowBox[{"4", " ", 
                SuperscriptBox["b", "2"]}], "+", 
               RowBox[{"104", " ", 
                SuperscriptBox["A", "3"], " ", 
                SuperscriptBox["b", "3"]}], "+", 
               RowBox[{
                SuperscriptBox["A", "6"], " ", 
                SuperscriptBox["b", "4"]}]}]]}], ")"}], 
           RowBox[{"1", "/", "3"}]], 
          RowBox[{"2", " ", 
           SuperscriptBox["2", 
            RowBox[{"1", "/", "3"}]], " ", "b"}]]}]]}], "+", 
      RowBox[{
       FractionBox["1", "2"], " ", 
       SqrtBox[
        RowBox[{
         FractionBox[
          SuperscriptBox["A", "2"], "8"], "+", 
         FractionBox[
          RowBox[{"3", " ", "A"}], 
          RowBox[{
           SuperscriptBox["2", 
            RowBox[{"2", "/", "3"}]], " ", 
           SuperscriptBox[
            RowBox[{"(", 
             RowBox[{
              RowBox[{"2", " ", "b"}], "-", 
              RowBox[{
               SuperscriptBox["A", "3"], " ", 
               SuperscriptBox["b", "2"]}], "+", 
              SqrtBox[
               RowBox[{
                RowBox[{"4", " ", 
                 SuperscriptBox["b", "2"]}], "+", 
                RowBox[{"104", " ", 
                 SuperscriptBox["A", "3"], " ", 
                 SuperscriptBox["b", "3"]}], "+", 
                RowBox[{
                 SuperscriptBox["A", "6"], " ", 
                 SuperscriptBox["b", "4"]}]}]]}], ")"}], 
            RowBox[{"1", "/", "3"}]]}]], "-", 
         FractionBox[
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{
             RowBox[{"2", " ", "b"}], "-", 
             RowBox[{
              SuperscriptBox["A", "3"], " ", 
              SuperscriptBox["b", "2"]}], "+", 
             SqrtBox[
              RowBox[{
               RowBox[{"4", " ", 
                SuperscriptBox["b", "2"]}], "+", 
               RowBox[{"104", " ", 
                SuperscriptBox["A", "3"], " ", 
                SuperscriptBox["b", "3"]}], "+", 
               RowBox[{
                SuperscriptBox["A", "6"], " ", 
                SuperscriptBox["b", "4"]}]}]]}], ")"}], 
           RowBox[{"1", "/", "3"}]], 
          RowBox[{"2", " ", 
           SuperscriptBox["2", 
            RowBox[{"1", "/", "3"}]], " ", "b"}]], "-", 
         FractionBox[
          RowBox[{
           FractionBox[
            SuperscriptBox["A", "3"], "8"], "+", 
           FractionBox["4", "b"]}], 
          RowBox[{"4", " ", 
           SqrtBox[
            RowBox[{
             FractionBox[
              SuperscriptBox["A", "2"], "16"], "-", 
             FractionBox[
              RowBox[{"3", " ", "A"}], 
              RowBox[{
               SuperscriptBox["2", 
                RowBox[{"2", "/", "3"}]], " ", 
               SuperscriptBox[
                RowBox[{"(", 
                 RowBox[{
                  RowBox[{"2", " ", "b"}], "-", 
                  RowBox[{
                   SuperscriptBox["A", "3"], " ", 
                   SuperscriptBox["b", "2"]}], "+", 
                  SqrtBox[
                   RowBox[{
                    RowBox[{"4", " ", 
                    SuperscriptBox["b", "2"]}], "+", 
                    RowBox[{"104", " ", 
                    SuperscriptBox["A", "3"], " ", 
                    SuperscriptBox["b", "3"]}], "+", 
                    RowBox[{
                    SuperscriptBox["A", "6"], " ", 
                    SuperscriptBox["b", "4"]}]}]]}], ")"}], 
                RowBox[{"1", "/", "3"}]]}]], "+", 
             FractionBox[
              SuperscriptBox[
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"2", " ", "b"}], "-", 
                 RowBox[{
                  SuperscriptBox["A", "3"], " ", 
                  SuperscriptBox["b", "2"]}], "+", 
                 SqrtBox[
                  RowBox[{
                   RowBox[{"4", " ", 
                    SuperscriptBox["b", "2"]}], "+", 
                   RowBox[{"104", " ", 
                    SuperscriptBox["A", "3"], " ", 
                    SuperscriptBox["b", "3"]}], "+", 
                   RowBox[{
                    SuperscriptBox["A", "6"], " ", 
                    SuperscriptBox["b", "4"]}]}]]}], ")"}], 
               RowBox[{"1", "/", "3"}]], 
              RowBox[{"2", " ", 
               SuperscriptBox["2", 
                RowBox[{"1", "/", "3"}]], " ", "b"}]]}]]}]]}]]}]}]}], "}"}], 
   ",", 
   RowBox[{"{", 
    RowBox[{"X", "\[Rule]", 
     RowBox[{
      FractionBox["A", "8"], "+", 
      RowBox[{
       FractionBox["1", "2"], " ", 
       SqrtBox[
        RowBox[{
         FractionBox[
          SuperscriptBox["A", "2"], "16"], "-", 
         FractionBox[
          RowBox[{"3", " ", "A"}], 
          RowBox[{
           SuperscriptBox["2", 
            RowBox[{"2", "/", "3"}]], " ", 
           SuperscriptBox[
            RowBox[{"(", 
             RowBox[{
              RowBox[{"2", " ", "b"}], "-", 
              RowBox[{
               SuperscriptBox["A", "3"], " ", 
               SuperscriptBox["b", "2"]}], "+", 
              SqrtBox[
               RowBox[{
                RowBox[{"4", " ", 
                 SuperscriptBox["b", "2"]}], "+", 
                RowBox[{"104", " ", 
                 SuperscriptBox["A", "3"], " ", 
                 SuperscriptBox["b", "3"]}], "+", 
                RowBox[{
                 SuperscriptBox["A", "6"], " ", 
                 SuperscriptBox["b", "4"]}]}]]}], ")"}], 
            RowBox[{"1", "/", "3"}]]}]], "+", 
         FractionBox[
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{
             RowBox[{"2", " ", "b"}], "-", 
             RowBox[{
              SuperscriptBox["A", "3"], " ", 
              SuperscriptBox["b", "2"]}], "+", 
             SqrtBox[
              RowBox[{
               RowBox[{"4", " ", 
                SuperscriptBox["b", "2"]}], "+", 
               RowBox[{"104", " ", 
                SuperscriptBox["A", "3"], " ", 
                SuperscriptBox["b", "3"]}], "+", 
               RowBox[{
                SuperscriptBox["A", "6"], " ", 
                SuperscriptBox["b", "4"]}]}]]}], ")"}], 
           RowBox[{"1", "/", "3"}]], 
          RowBox[{"2", " ", 
           SuperscriptBox["2", 
            RowBox[{"1", "/", "3"}]], " ", "b"}]]}]]}], "-", 
      RowBox[{
       FractionBox["1", "2"], " ", 
       SqrtBox[
        RowBox[{
         FractionBox[
          SuperscriptBox["A", "2"], "8"], "+", 
         FractionBox[
          RowBox[{"3", " ", "A"}], 
          RowBox[{
           SuperscriptBox["2", 
            RowBox[{"2", "/", "3"}]], " ", 
           SuperscriptBox[
            RowBox[{"(", 
             RowBox[{
              RowBox[{"2", " ", "b"}], "-", 
              RowBox[{
               SuperscriptBox["A", "3"], " ", 
               SuperscriptBox["b", "2"]}], "+", 
              SqrtBox[
               RowBox[{
                RowBox[{"4", " ", 
                 SuperscriptBox["b", "2"]}], "+", 
                RowBox[{"104", " ", 
                 SuperscriptBox["A", "3"], " ", 
                 SuperscriptBox["b", "3"]}], "+", 
                RowBox[{
                 SuperscriptBox["A", "6"], " ", 
                 SuperscriptBox["b", "4"]}]}]]}], ")"}], 
            RowBox[{"1", "/", "3"}]]}]], "-", 
         FractionBox[
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{
             RowBox[{"2", " ", "b"}], "-", 
             RowBox[{
              SuperscriptBox["A", "3"], " ", 
              SuperscriptBox["b", "2"]}], "+", 
             SqrtBox[
              RowBox[{
               RowBox[{"4", " ", 
                SuperscriptBox["b", "2"]}], "+", 
               RowBox[{"104", " ", 
                SuperscriptBox["A", "3"], " ", 
                SuperscriptBox["b", "3"]}], "+", 
               RowBox[{
                SuperscriptBox["A", "6"], " ", 
                SuperscriptBox["b", "4"]}]}]]}], ")"}], 
           RowBox[{"1", "/", "3"}]], 
          RowBox[{"2", " ", 
           SuperscriptBox["2", 
            RowBox[{"1", "/", "3"}]], " ", "b"}]], "+", 
         FractionBox[
          RowBox[{
           FractionBox[
            SuperscriptBox["A", "3"], "8"], "+", 
           FractionBox["4", "b"]}], 
          RowBox[{"4", " ", 
           SqrtBox[
            RowBox[{
             FractionBox[
              SuperscriptBox["A", "2"], "16"], "-", 
             FractionBox[
              RowBox[{"3", " ", "A"}], 
              RowBox[{
               SuperscriptBox["2", 
                RowBox[{"2", "/", "3"}]], " ", 
               SuperscriptBox[
                RowBox[{"(", 
                 RowBox[{
                  RowBox[{"2", " ", "b"}], "-", 
                  RowBox[{
                   SuperscriptBox["A", "3"], " ", 
                   SuperscriptBox["b", "2"]}], "+", 
                  SqrtBox[
                   RowBox[{
                    RowBox[{"4", " ", 
                    SuperscriptBox["b", "2"]}], "+", 
                    RowBox[{"104", " ", 
                    SuperscriptBox["A", "3"], " ", 
                    SuperscriptBox["b", "3"]}], "+", 
                    RowBox[{
                    SuperscriptBox["A", "6"], " ", 
                    SuperscriptBox["b", "4"]}]}]]}], ")"}], 
                RowBox[{"1", "/", "3"}]]}]], "+", 
             FractionBox[
              SuperscriptBox[
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"2", " ", "b"}], "-", 
                 RowBox[{
                  SuperscriptBox["A", "3"], " ", 
                  SuperscriptBox["b", "2"]}], "+", 
                 SqrtBox[
                  RowBox[{
                   RowBox[{"4", " ", 
                    SuperscriptBox["b", "2"]}], "+", 
                   RowBox[{"104", " ", 
                    SuperscriptBox["A", "3"], " ", 
                    SuperscriptBox["b", "3"]}], "+", 
                   RowBox[{
                    SuperscriptBox["A", "6"], " ", 
                    SuperscriptBox["b", "4"]}]}]]}], ")"}], 
               RowBox[{"1", "/", "3"}]], 
              RowBox[{"2", " ", 
               SuperscriptBox["2", 
                RowBox[{"1", "/", "3"}]], " ", "b"}]]}]]}]]}]]}]}]}], "}"}], 
   ",", 
   RowBox[{"{", 
    RowBox[{"X", "\[Rule]", 
     RowBox[{
      FractionBox["A", "8"], "+", 
      RowBox[{
       FractionBox["1", "2"], " ", 
       SqrtBox[
        RowBox[{
         FractionBox[
          SuperscriptBox["A", "2"], "16"], "-", 
         FractionBox[
          RowBox[{"3", " ", "A"}], 
          RowBox[{
           SuperscriptBox["2", 
            RowBox[{"2", "/", "3"}]], " ", 
           SuperscriptBox[
            RowBox[{"(", 
             RowBox[{
              RowBox[{"2", " ", "b"}], "-", 
              RowBox[{
               SuperscriptBox["A", "3"], " ", 
               SuperscriptBox["b", "2"]}], "+", 
              SqrtBox[
               RowBox[{
                RowBox[{"4", " ", 
                 SuperscriptBox["b", "2"]}], "+", 
                RowBox[{"104", " ", 
                 SuperscriptBox["A", "3"], " ", 
                 SuperscriptBox["b", "3"]}], "+", 
                RowBox[{
                 SuperscriptBox["A", "6"], " ", 
                 SuperscriptBox["b", "4"]}]}]]}], ")"}], 
            RowBox[{"1", "/", "3"}]]}]], "+", 
         FractionBox[
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{
             RowBox[{"2", " ", "b"}], "-", 
             RowBox[{
              SuperscriptBox["A", "3"], " ", 
              SuperscriptBox["b", "2"]}], "+", 
             SqrtBox[
              RowBox[{
               RowBox[{"4", " ", 
                SuperscriptBox["b", "2"]}], "+", 
               RowBox[{"104", " ", 
                SuperscriptBox["A", "3"], " ", 
                SuperscriptBox["b", "3"]}], "+", 
               RowBox[{
                SuperscriptBox["A", "6"], " ", 
                SuperscriptBox["b", "4"]}]}]]}], ")"}], 
           RowBox[{"1", "/", "3"}]], 
          RowBox[{"2", " ", 
           SuperscriptBox["2", 
            RowBox[{"1", "/", "3"}]], " ", "b"}]]}]]}], "+", 
      RowBox[{
       FractionBox["1", "2"], " ", 
       SqrtBox[
        RowBox[{
         FractionBox[
          SuperscriptBox["A", "2"], "8"], "+", 
         FractionBox[
          RowBox[{"3", " ", "A"}], 
          RowBox[{
           SuperscriptBox["2", 
            RowBox[{"2", "/", "3"}]], " ", 
           SuperscriptBox[
            RowBox[{"(", 
             RowBox[{
              RowBox[{"2", " ", "b"}], "-", 
              RowBox[{
               SuperscriptBox["A", "3"], " ", 
               SuperscriptBox["b", "2"]}], "+", 
              SqrtBox[
               RowBox[{
                RowBox[{"4", " ", 
                 SuperscriptBox["b", "2"]}], "+", 
                RowBox[{"104", " ", 
                 SuperscriptBox["A", "3"], " ", 
                 SuperscriptBox["b", "3"]}], "+", 
                RowBox[{
                 SuperscriptBox["A", "6"], " ", 
                 SuperscriptBox["b", "4"]}]}]]}], ")"}], 
            RowBox[{"1", "/", "3"}]]}]], "-", 
         FractionBox[
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{
             RowBox[{"2", " ", "b"}], "-", 
             RowBox[{
              SuperscriptBox["A", "3"], " ", 
              SuperscriptBox["b", "2"]}], "+", 
             SqrtBox[
              RowBox[{
               RowBox[{"4", " ", 
                SuperscriptBox["b", "2"]}], "+", 
               RowBox[{"104", " ", 
                SuperscriptBox["A", "3"], " ", 
                SuperscriptBox["b", "3"]}], "+", 
               RowBox[{
                SuperscriptBox["A", "6"], " ", 
                SuperscriptBox["b", "4"]}]}]]}], ")"}], 
           RowBox[{"1", "/", "3"}]], 
          RowBox[{"2", " ", 
           SuperscriptBox["2", 
            RowBox[{"1", "/", "3"}]], " ", "b"}]], "+", 
         FractionBox[
          RowBox[{
           FractionBox[
            SuperscriptBox["A", "3"], "8"], "+", 
           FractionBox["4", "b"]}], 
          RowBox[{"4", " ", 
           SqrtBox[
            RowBox[{
             FractionBox[
              SuperscriptBox["A", "2"], "16"], "-", 
             FractionBox[
              RowBox[{"3", " ", "A"}], 
              RowBox[{
               SuperscriptBox["2", 
                RowBox[{"2", "/", "3"}]], " ", 
               SuperscriptBox[
                RowBox[{"(", 
                 RowBox[{
                  RowBox[{"2", " ", "b"}], "-", 
                  RowBox[{
                   SuperscriptBox["A", "3"], " ", 
                   SuperscriptBox["b", "2"]}], "+", 
                  SqrtBox[
                   RowBox[{
                    RowBox[{"4", " ", 
                    SuperscriptBox["b", "2"]}], "+", 
                    RowBox[{"104", " ", 
                    SuperscriptBox["A", "3"], " ", 
                    SuperscriptBox["b", "3"]}], "+", 
                    RowBox[{
                    SuperscriptBox["A", "6"], " ", 
                    SuperscriptBox["b", "4"]}]}]]}], ")"}], 
                RowBox[{"1", "/", "3"}]]}]], "+", 
             FractionBox[
              SuperscriptBox[
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"2", " ", "b"}], "-", 
                 RowBox[{
                  SuperscriptBox["A", "3"], " ", 
                  SuperscriptBox["b", "2"]}], "+", 
                 SqrtBox[
                  RowBox[{
                   RowBox[{"4", " ", 
                    SuperscriptBox["b", "2"]}], "+", 
                   RowBox[{"104", " ", 
                    SuperscriptBox["A", "3"], " ", 
                    SuperscriptBox["b", "3"]}], "+", 
                   RowBox[{
                    SuperscriptBox["A", "6"], " ", 
                    SuperscriptBox["b", "4"]}]}]]}], ")"}], 
               RowBox[{"1", "/", "3"}]], 
              RowBox[{"2", " ", 
               SuperscriptBox["2", 
                RowBox[{"1", "/", "3"}]], " ", "b"}]]}]]}]]}]]}]}]}], "}"}]}],
   "}"}]], "Output",
 CellChangeTimes->{
  3.756231505610416*^9, {3.7562315485715313`*^9, 3.756231575283608*^9}, 
   3.756231608619032*^9, {3.756232138900846*^9, 3.756232170111383*^9}, {
   3.756232321430813*^9, 3.756232338905355*^9}},
 CellLabel->"Out[86]=",ExpressionUUID->"50dec67f-dfe5-4098-846c-bd34289eb44f"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Solve", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"(", 
     RowBox[{"X", "/.", 
      RowBox[{"s", "[", 
       RowBox[{"[", "1", "]"}], "]"}]}], ")"}], "\[Equal]", "A"}], ",", "b"}],
   "]"}]], "Input",
 CellChangeTimes->{{3.75623158741789*^9, 3.756231597025342*^9}, {
   3.756232163924045*^9, 3.756232184155179*^9}, {3.7562322256208677`*^9, 
   3.756232229572051*^9}, 3.756232326470851*^9},
 CellLabel->"In[87]:=",ExpressionUUID->"49c72fce-e4dd-4ce9-a8da-a490e4376c94"],

Cell[BoxData["$Aborted"], "Output",
 CellChangeTimes->{
  3.7562315972736473`*^9, {3.756232166090753*^9, 3.7562321846485777`*^9}, {
   3.756232226130578*^9, 3.756232229920475*^9}, {3.756232322753297*^9, 
   3.756232326980291*^9}, 3.756232465479632*^9},
 CellLabel->"Out[87]=",ExpressionUUID->"4435c2fb-6fd1-4eb2-a44d-279039aa9322"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"-", "b"}], "-", "d", "-", 
  RowBox[{"(", 
   RowBox[{
    RowBox[{"-", "1"}], "-", "b"}], ")"}]}]], "Input",
 CellLabel->"In[37]:=",ExpressionUUID->"73c8eea4-d4a4-453f-8833-d229c0fc3175"],

Cell[BoxData[
 RowBox[{"1", "-", "d"}]], "Output",
 CellChangeTimes->{3.756229740986614*^9},
 CellLabel->"Out[37]=",ExpressionUUID->"aebf1f12-4bf0-44b3-a5d4-0a20c1f5a4b2"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  FractionBox["b", 
   RowBox[{"A", 
    RowBox[{"(", 
     RowBox[{"d", "-", "1"}], ")"}]}]], "\[Equal]", "  ", 
  SuperscriptBox["X", 
   RowBox[{"-", 
    RowBox[{"(", 
     RowBox[{"d", "-", "1"}], ")"}]}]]}]], "Input",
 CellChangeTimes->{{3.756229691432335*^9, 
  3.756229772529271*^9}},ExpressionUUID->"0da9e65f-55f4-48d9-ba34-\
65e4c5d8feff"],

Cell[BoxData[
 SuperscriptBox[
  RowBox[{"(", 
   FractionBox["b", 
    RowBox[{"A", 
     RowBox[{"(", 
      RowBox[{"d", "-", "1"}], ")"}]}]], ")"}], 
  RowBox[{
   RowBox[{"-", "1"}], "/", Cell[
   "(d-1)",ExpressionUUID->
    "a50ec181-e586-4616-bcef-46b17dc5eb3b"]}]]], "Input",
 CellChangeTimes->{{3.756229788327608*^9, 
  3.756229797268004*^9}},ExpressionUUID->"540d1f78-77af-49b9-a447-\
24b4b3932215"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{
    SuperscriptBox["\[ExponentialE]", 
     FractionBox[
      RowBox[{
       RowBox[{
        RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Pi]"}], "-", 
       RowBox[{"Log", "[", "b", "]"}], "+", 
       RowBox[{"Log", "[", 
        RowBox[{"A", "-", 
         RowBox[{"A", " ", "d"}]}], "]"}]}], 
      RowBox[{
       RowBox[{"-", "1"}], "+", "d"}]]], "/.", 
    RowBox[{"b", "\[Rule]", "2"}]}], "/.", 
   RowBox[{"d", "\[Rule]", "4"}]}], "//", "FullSimplify"}]], "Input",
 CellChangeTimes->{{3.75622916519069*^9, 3.756229201951314*^9}},
 CellLabel->"In[35]:=",ExpressionUUID->"ceb50802-9d95-47c5-9af6-06e0caeafb33"],

Cell[BoxData[
 SuperscriptBox["\[ExponentialE]", 
  RowBox[{
   FractionBox["1", "3"], " ", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{
      RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Pi]"}], "+", 
     RowBox[{"Log", "[", 
      RowBox[{"-", 
       FractionBox[
        RowBox[{"3", " ", "A"}], "2"]}], "]"}]}], ")"}]}]]], "Output",
 CellChangeTimes->{{3.7562291775424232`*^9, 3.7562292031151543`*^9}},
 CellLabel->"Out[35]=",ExpressionUUID->"cdb02cbb-5aec-4176-8cf4-3f32d0098ce8"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Simplify", "[", 
  RowBox[{
   FractionBox[
    RowBox[{
     RowBox[{
      RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Pi]"}], "-", 
     RowBox[{"Log", "[", 
      RowBox[{"b", "[", "d", "]"}], "]"}], "-", 
     RowBox[{"Log", "[", 
      SubscriptBox["B", "0"], "]"}], "+", 
     RowBox[{"Log", "[", 
      RowBox[{
       RowBox[{
        SubscriptBox["A", 
         RowBox[{
          RowBox[{"-", "1"}], "+", "d"}]], " ", 
        SubscriptBox["B", "0"]}], "-", 
       RowBox[{"d", " ", 
        SubscriptBox["A", 
         RowBox[{
          RowBox[{"-", "1"}], "+", "d"}]], " ", 
        SubscriptBox["B", "0"]}]}], "]"}]}], 
    RowBox[{
     RowBox[{"-", "1"}], "+", "d"}]], ",", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{
      SubscriptBox["B", "0"], ">", "0"}], ",", 
     RowBox[{
      SubscriptBox["A", 
       RowBox[{"d", "-", "1"}]], ">", "0"}], ",", 
     RowBox[{"d", ">", "1"}]}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.7562282996636066`*^9, 3.756228321480444*^9}},
 CellLabel->"In[19]:=",ExpressionUUID->"56635cfb-2049-47de-8743-981e268587f0"],

Cell[BoxData[
 RowBox[{"-", 
  FractionBox[
   RowBox[{"Log", "[", 
    FractionBox[
     RowBox[{"b", "[", "d", "]"}], 
     RowBox[{
      RowBox[{"(", 
       RowBox[{
        RowBox[{"-", "1"}], "+", "d"}], ")"}], " ", 
      SubscriptBox["A", 
       RowBox[{
        RowBox[{"-", "1"}], "+", "d"}]]}]], "]"}], 
   RowBox[{
    RowBox[{"-", "1"}], "+", "d"}]]}]], "Output",
 CellChangeTimes->{{3.756228314918723*^9, 3.7562283218200617`*^9}, 
   3.756228547705492*^9},
 CellLabel->"Out[19]=",ExpressionUUID->"54d42bbf-4611-4d81-9b71-fe38c8aca03d"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"-", 
   FractionBox[
    RowBox[{"Log", "[", 
     FractionBox[
      RowBox[{"b", "[", "d", "]"}], 
      RowBox[{
       RowBox[{"(", 
        RowBox[{
         RowBox[{"-", "1"}], "+", "d"}], ")"}], " ", 
       SubscriptBox["A", 
        RowBox[{
         RowBox[{"-", "1"}], "+", "d"}]]}]], "]"}], 
    RowBox[{
     RowBox[{"-", "1"}], "+", "d"}]]}], "/.", 
  RowBox[{"{", 
   RowBox[{
    RowBox[{"d", "\[Rule]", "4"}], ",", 
    RowBox[{
     RowBox[{"b", "[", "d", "]"}], "\[Rule]", "2"}], ",", 
    RowBox[{
     SubscriptBox["A", 
      RowBox[{"d", "-", "1"}]], "\[Rule]", "1"}]}], "}"}]}]], "Input",
 CellChangeTimes->{{3.756228404610585*^9, 3.75622841465856*^9}, {
  3.756228462834785*^9, 3.756228508612195*^9}, {3.7562285890314093`*^9, 
  3.756228620394246*^9}},
 CellLabel->"In[23]:=",ExpressionUUID->"5d02740a-e5b0-40c1-a3c3-48eea3f711ae"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "3"], " ", 
  RowBox[{"Log", "[", 
   FractionBox["3", "2"], "]"}]}]], "Output",
 CellChangeTimes->{
  3.756228414860186*^9, {3.7562284728414583`*^9, 3.75622850892664*^9}, {
   3.756228591466531*^9, 3.756228620634259*^9}},
 CellLabel->"Out[23]=",ExpressionUUID->"2ff2e042-eba3-4510-8633-7e3546aec8af"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  SuperscriptBox[
   RowBox[{"(", 
    FractionBox["b", 
     RowBox[{"A", 
      RowBox[{"(", 
       RowBox[{"d", "-", "1"}], ")"}]}]], ")"}], 
   RowBox[{
    RowBox[{"-", "1"}], "/", Cell[
    "(d-1)",ExpressionUUID->"ee9e6b5b-a333-4268-8c86-7ffad92a65b7"]}]], "/.", 
  
  RowBox[{"{", 
   RowBox[{
    RowBox[{"d", "\[Rule]", "3"}], ",", 
    RowBox[{"b", "\[Rule]", 
     RowBox[{"7", "/", "3"}]}], ",", 
    RowBox[{"A", "\[Rule]", "1"}]}], "}"}]}]], "Input",
 CellLabel->"In[41]:=",ExpressionUUID->"fa3beba8-deb4-4335-8c3c-b1f633ff4b2c"],

Cell[BoxData[
 SuperscriptBox[
  RowBox[{"(", 
   FractionBox["7", "6"], ")"}], 
  RowBox[{"-", 
   FractionBox["1", 
    InterpretationBox[Cell[
     "(d-1)",ExpressionUUID->"2b2fb340-cee0-4b28-88ec-795c5431cdd8"],
     TextCell["(d-1)"]]]}]]], "Output",
 CellChangeTimes->{3.756230198179253*^9},
 CellLabel->"Out[41]=",ExpressionUUID->"5fa7663c-f3be-40c6-86e7-8ec1c6b47acf"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  SuperscriptBox[
   RowBox[{"(", 
    FractionBox["b", 
     RowBox[{"A", 
      RowBox[{"(", 
       RowBox[{"d", "-", "1"}], ")"}]}]], ")"}], 
   RowBox[{
    RowBox[{"-", "1"}], "/", 
    RowBox[{"(", 
     RowBox[{"d", "-", "1"}], ")"}]}]], "/.", 
  RowBox[{"{", 
   RowBox[{
    RowBox[{"d", "\[Rule]", "2"}], ",", 
    RowBox[{"b", "\[Rule]", 
     RowBox[{"-", "1"}]}]}], "}"}]}]], "Input",
 CellChangeTimes->{{3.756230244114882*^9, 3.756230255786006*^9}},
 CellLabel->"In[44]:=",ExpressionUUID->"e57b76eb-1ca4-4632-ab6b-1f3ecd7782b1"],

Cell[BoxData[
 RowBox[{"-", "A"}]], "Output",
 CellChangeTimes->{{3.756230246336422*^9, 3.756230255991004*^9}},
 CellLabel->"Out[44]=",ExpressionUUID->"e1a5bbbe-f89c-4da8-8d58-f1b517e8ae37"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{
    SuperscriptBox["X", "1"], 
    RowBox[{"Exp", "[", 
     RowBox[{
      RowBox[{"-", "1"}], "/", 
      SuperscriptBox["X", "1"]}], "]"}]}], ",", 
   RowBox[{"{", 
    RowBox[{"X", ",", 
     RowBox[{"-", "5"}], ",", "5"}], "}"}], ",", 
   RowBox[{"GridLines", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          FractionBox["b", 
           RowBox[{"A", 
            RowBox[{"(", 
             RowBox[{"d", "-", "1"}], ")"}]}]], ")"}], 
         RowBox[{
          RowBox[{"-", "1"}], "/", 
          RowBox[{"(", 
           RowBox[{"d", "-", "1"}], ")"}]}]], "/.", 
        RowBox[{"{", 
         RowBox[{
          RowBox[{"d", "\[Rule]", "2"}], ",", 
          RowBox[{"b", "\[Rule]", 
           RowBox[{"-", "1"}]}], ",", 
          RowBox[{"A", "\[Rule]", "1"}]}], "}"}]}], "}"}], ",", "None"}], 
     "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.756228426994399*^9, 3.756228455707407*^9}, 
   3.7562285129620953`*^9, {3.7562286112907963`*^9, 3.756228639901946*^9}, {
   3.7562286955908527`*^9, 3.756228764688662*^9}, {3.756229819723646*^9, 
   3.756229843367875*^9}, {3.756229873560066*^9, 3.756229873611905*^9}, {
   3.756230107799925*^9, 3.7562302215694427`*^9}, {3.7562304507833967`*^9, 
   3.756230473350346*^9}},
 CellLabel->"In[45]:=",ExpressionUUID->"2014fd9c-aabf-4b79-ba93-3ed77090f29c"],

Cell[BoxData[
 GraphicsBox[{{{{}, {}, 
     TagBox[
      {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], 
       Opacity[1.], LineBox[CompressedData["
1:eJwVlnk4ldsXx1Hve44hs3ORKUIpkaEkaaBoIJWkpFAkZB5KGTIlRSqprrqV
hmuokEKktZJUVOgYM1yzYzqOYzohfu/vj/3s5/M8ez1r+u619zIXn/2uAnx8
fJ3U+v8e1m/FXViQQpfJq7yUM7LYd54x2TInhS39mieiPWTRWvy/6cLfUpgx
y2H6nZJFlQ2+f3zGpfDprNwXa2dZLEu4Qe/ok8JF/Mqz9IOySF/TqITfpXBG
721SuIkspgQ67Y5Mk8Jd+hjlLSyL2fwBT/jWS+G38yJHXDL/QsLVQk/OURIf
WCSdWVPPQKmmT17p1yXw2F91tBQxBu7/+PeJlZXieMdTnuZjLYPnRzd5JXeL
YfrQeNKLMGksCvnbI2evKEbtFLufWyKF1jcOqszfFcF0oapPVwYl0eJ+qbXl
sBDaj6rEX1aSxGefzzUEOAiit4z/0+fOlJ+YFJnqDBq29gtM/0gVx3CnRS+F
pUgk1/6z52ihGPJpK4NZ7GI8+0XRpM5KFH9duXspu14ARRvNIm2/i6CCkHvm
xDZ+rPSnrdH3FUZPQy2iRWEB5BzaXQwXC+GJ9e0ZHz/OQljdX3TIp6PWWeMF
7yc80H9k4Fd6i4bYZq3VncqDsfptbL3rNLQzO3Hw0GUefKpK9M++SsMo0avZ
m7154Ol7KvNpNA2bn7QdEjfiQdTi7Ajwo2F8bWRuXtU0+H1yjU6ypmGf1mfn
Ce4UcHeAV5UQDS8kt1x1750CrYoWkRyShpJTo4WtjVPwUDPlXqoADU0/yIp+
ejcFBdzbL/xmSLx1yKP4VtwUbFIqS7IfJNE8ZonUevkpIGdsvcYqSXzUdqD8
3NZJ4MvvvpZ6jUS9Hr2ZOoNJcBbJOmxxlcTyQQld3RWTEPw7Nn8unsS+6eq0
PtFJ4Oe+3hIURaKW5J6AA60TYB20nvVPEImvdpiraodMQNVCk3j7URLNrNTs
4z0mgLtYYLz1MIl1BwSSuh0nQIC9INtpR+KUE/6+az4BWwkLl982JG48b1JL
Sk7Aso36ez23U/5zDCI7no/DyS0BZk46JB4skCrY+HAcHMucE9+upuJ5xx1K
vTkODuxNk7JaJNIrcw9ZhY5Da2iww+ByEq16VusUW4yD7rZBw2Z5Ehtk1dtv
dnHhwfVE30kaiaeUF0uP1nOh/IKsWhFBIk+9e+eur1zIaXgxf3ERifL6j97w
5XJBcajo/KoFAo9ZKSaeCeOCWEz9s8YpAvsvyphYyHIht7XI+1k/gUJhOaM3
hbiwxc6SCb0Erjm783HH3BgYvnfX6O4mMNg7TCi0cwwK3/FELTsIJB16m55n
jcEDs/Nbk5oJ1LKLuPr73hgUyT/3mWkk0Hqf3JYd18agupkd69dA4C0Lq3//
CxiD0uI2TiSTwOUGb4IkN43BQ9Pxyyt+EGips3flcZ0xqJIrfj/6jUAvrYHW
7GVjkFNnNVVWReBrFUXz7eQYrEw3I5O+Eti0tHD6Oo8DsrvcV8d9IXCOsS+7
fZAD+QG9nITPBJotiZU8W82B+cRr08WfCHSjK1eUf+DAk69wta+cwIRFb89J
vObAC2M7N2WKX87v1z72jAOZv1JyXD8S+PP3cEfWHQ40vAxJeVtG4NREXMp0
AgeY/xZtXUqxPEfF0jyMA6y7zJ6EDwSaDhXPJvtwIMta6DmdYpc+25w2Zw7c
z3WvSEEC4zrZLlq2HCiS+HpCh+Ks1nhGyA4OnEpset0EBP5oVK38aMQBkUtL
h5Ip5v58Fya+igP3tnON7Clm/LBb66jIAb8X92vXUGz8ldOTKcYBATnzAWmK
j5Un3Jni50DMvqnXQhQLROy8E8caBa+M1x7iFO8KCltQ/j4K7/UCt2pQfN0z
z+1t3iiYaC7320Nxk3Pv9/2poxDglK8XTbGKvZzhcOgo1CxiYCXF7tZW92KP
j0KV9W5bNSr+XPOLi5TNR8HxyolViRTzjN94FK0YhZHVcVH/z3/z2oHafUtG
gf8v3u1bFMdpKm4YGmMDS1Q124Cq3w/FfQ9jGthQffj2XC/FDOlYmlIJG2Li
FX5kUvU/JvTWu/ABGzz9X7pEUv15xjdSbxPDBk3ny/OnqX6OTKlsGnRng4O3
br9bBYEXuuOFFfXY0PQ7vCSN0kN58zv/AgYbSvuYRnWUXkRqOM17Z0fgymIn
jWWUntLe2WdElY+Aqh5/7O/vBHa9uiqmkDkCS/7eeDO2mtJzJga/SRyBuT+C
ezRrCSy+tWI7y24EeJdL6S/qCKQ79J/gNxmBV9FDL+MpfdupPIuSXzYCinHW
YaFNVP+y1HDP0DD03kjofdRK4BbfrnbXmmGImZ1e3dROYJLhoz/hb4bBrqVx
Wr2TwJWotDEvYhiO61rGCfZR9y227XDlyWE41H2XeMii8tl172z3zmGIK52O
2DtEoFO9XIGM9DD0h0dyZzgE3hmUXhuaMQTWJnvkr/0hsC+Hufdm4hC0Cm3L
5fGRaBB0w/u5/xCcdL50PXwxidULYs/bTYag6JOCYKcw9c7ICGua1Q7CbFqv
kqgCiba/vm4/WjAI7T1p+06pkJj+IP5kUNogBM+tfdtBzSdTLTL9X9dBkFuW
arNuDYlBm/kVRWYGgLXuj++FbSSWLcaN6v8NwFntK7R+CxLFK8OPmJYPQISz
w7lgKxKf287d9k0agF07naNJar72nJ6WrFcdAMOGfXLzftQ81ylYy6YNgNb3
1MPpZ0mMnAi0oY2wICuRn/SLIHFpBDdxQyEL3jeGlSYnkrg/ZYT+z24WOG3M
OcPJJvHh4eeahbossGoYKJjPJ5Gt5LmjRoY6X01TM31HYkImK1qgox+ENf01
bL+T+OF997xbYD9wTnhG88ZIFI1JV4w83A/3P252y54l8ehOZ5O7pv3g4xuR
epugIY/Zfq6K3g8Oer9DVORpqDvQPKFzvw98vwQsZ+ygYSBHe+VfMX1wsD/Q
f8iGhkXTFx3nPfpg3i7DbNaBhltJrYpvRn1wL12KVu1Pw/1qobdP1/VCeFVG
t/tjGqZq/aiyKekF1uzxYf1cGrasVeUzSu8FdYXlwWalNDy5pdKd9O2F71LB
uYZNNAxylDd+LNwLb2zXnUiWoGPxSW/vBG4PJJ5iNGeo0HHesyzdr7kHdC3d
VSV16RgX6iG85d8eYH+b1W7fS8c7t4tbW7f1gEJgLufaTcq+9kgEI7QbLq1h
5mpqC+J808v8P07dMKjvYW+yTRC3dQiweiy6QckpJLb8kCBWsbNs8mW6IYRh
mWwcI4itwrPLbPK6wL6IYSneLYgqUnvt1t/pgokDrWek5gTRVf5xglJEF/hs
5atIlxFC9ord48N7usDY7cGRwF1CuLA9rfwyqxNC8w3mrEqE0NxqlOdb3Qkr
orPbFJqFMN7WTNu+oBMWDYX8uj0thOInhm5pxHSCaEXFtyfrhFE1cuOpj8qU
fZzGlWelwuh26VpaFtkJCbW/jZw7hTErqbv6+kgH/BCO6x8jRFD//hUjp5IO
eGr6bP7FPhE0L24R/GPXAXukCdfdEyL4Muvphs8bOyBsDNUV1ZagbJrP6esq
HWDX1kbXPrAEG6bJG7vr/oNLNTnTawuXoPp5O/H7M+1Ae/MrhZEsijyHQZ+1
5e1wbVK3SKFSFL+ZhFd/SmwH1vqjHz8SYhg4/zSJrdIOqVYr1NZGiWHZxUmR
LRZt0H68TPSFpTimulz2qhNvA/1KHW35M+J42kzxm/uvVmAwneL+uSGO4sT2
K9fPtEJ2wxyfXKc49vQ2Daqvb4WWkgspGkISWFThtauYrxVWqz+yDzWQwOPx
KYLdN1tgof3Qdq1ECdQ7veJ0iGMLvDY9oPy4RALJXe++CGu2gGLonidpQxL4
UrjnkkHxL7iz5viYlY0kziXpk3EdzUCQb7rfrZHCGp/PrvJZzcDqEpDT95TC
xzYOn14GNMMrhqDrl0zq3y0ZHdNINkNt/oGkQm1pVBpn9HjWNIETzs5bBkgj
l5llxvd3E9h9DGa5l0jj3Vs/BVZqN8HFGI5O4wEZ9Ap2cymdagTLJ/HWXk9k
cMuhmQ/7sBEOS+sUK/JkkCWrejH0QCOk6+Rlh2UycN09v4Wqcw1gfE25xm+D
LPW/IY47mTUALKS+kcuQxTbHu+8nRBrAa7wvMnqpHMYofwhTfFgPm5fz1pdK
yKM938G2vNP1cPDyUL/WLXlc3cky2aFfD35oLHBbaSky08XnvCvq4KH606Zh
cwV8Fv3EYVFyHdA7f9KzuxQw9KRRye3DdXCxyo4mGa+IqhpOoTjMhCmmusTA
kBJOkRPNtgVMmNlV6XghWxm/9l/aMBDBhAi/G+mRxirom5nDk5BiwoO8V98d
pZehrqh39LaOn2DYusl0c9QyHPNfLRrw4id4TH79xJxchv4mmWp1Fj8hxXp0
Z9GoKuo/OvVyscxPYMzVsDjBajhBaGww7KqFn7adwznEcgyqTrdOvVALh0pu
BEuYqOM6A+fmip21cKGxkbnQo45Td5RPTjNqwRCu3hC7o4EFf9rYmj010CdP
V5K008QQl3vn7PNqYGtymQxbeQUafT6y+HJ4DYSde9rxaGoF8lbJXXu7uwZU
ee/v72hZieODq3YafquGC+X78pyZqzDwdcaxVLdqiMpbeJU7sBrVS10E8mnV
YHl3092RBW38H69cbV4=
        "]], LineBox[CompressedData["
1:eJwVlHc81fsfx60Ujs65vm72VcjMFbKK8/4UMkIiM/e62Ul2drKS0Q3JaVBm
ikj2iHPI3ntkx8E1sgmRX78/Xo/n4/H87/nP65SVi4EtHQ0NTdqv/Z8RDXtd
pvyOoMp7+1uanaDgOFf+Mgs+ADRKdObVvA1kDGWHKsMvhsFyzNZYkIqdfMkX
k5CH/lHQgxlNDQ/FKbJWLwrWmceCti4n2wjtgpKb3e35uqckaDlbS3UbCrqQ
piShU5//ApJ9vg/NK9Ip9+EWP9R3JEF+m2n3ykd7ZcbJ7N8aFpPBoszpe49G
hXKSmdx567BUeM1Wttwidagsp5pwe5otHbwe8F0zPq6g0nFmK8k6NQNYjNfj
NVPsVexPGHVMS2XCfpAyH90fT1RoaIoPrclvIfjOex1D2hKVF/Ps0lSdLLDS
FdqP5RhQken1tLIZyQZncz8Rwvq6SmtlXzz1Vg5IDlt0UfxwRJvMc/U2O7lw
K7q/KOu0IPEg5uk2NTwP0vgdUwYdFIitynvxBVEfYUVaxf66pTbxuXR2zvq1
fHBYpc/Vzr1BtBE2r5fhKoBVSEUzureJZ3mYx90nC6Dgw0hCZKgv8QBfsV3w
thDGuM9f7i8PJ7YwOOI3nItgU+ywL8Eunkja5RKVlS8GdJHVqZKaTLRabkYe
B8VQgxugCzPJIv457WtWWFcC1BNWPtIRhcS9QTH3jehSKHE6wtCmXUVsbPsS
JWtYBkJiG9U9TvVEB5/hxhsS5fDkL7WnYo87iceERhjC6CugrKh7NDhvgJjV
OXIxZ6QCkm4O6jEvTBC1/UcD+wo/gVYc7h6Vdpa4IDz2aT+6Eh45HcxHdXwj
RveM7QjZVAGZLvWj8/AG8UzguJyuMhkSixInFXF7xDaxCfe77BTgoSiSXnyh
Aaf+ibxXSxTgM4tfufzgCIQj120rq2og4MJwW6IsYExaZffuqAb9oYMQjQ0C
iCy5ykafr4GgLx9mfqyyw87FtWvJmTUwlVNe55bCBU3P3FwL2T7DesEjRpPf
+eH5t7XHjYGfAc9FrWIpEAAHVffckYXP8DgxSmBaXxgUX6y3rhjXwkyWgAu9
uzgcW3FfoK+thSAWRbz/SSkYUts4xilVB2cKs0frZGUg66WHyJnEOhgNqE7X
FpMDv9UNdXS0Hu78u+4W46UI2pc9ba571MNQLMdVi1PKwJ20GeIwUQ/6FcHj
ZA4EC2ueqQFXGkACOoIsDS9BhcYWJba0AU74yoy6N6hB1Ku74xmCjfDTU3tw
wEMDzDe29stiGiEkpemB1d/aIKHlxdP+oxGO8MlbUyN0Yf/1ttJX+ybgWWYy
J/jrQ9uml+lWbxP0MtxidLhuAE4p3gl8Oc3wV5btWrynMShvfy+U5mwBQ46Z
hYMqU8Dp+PSoh7XA9MnByStSNyD3uw/e2aIVWuWKbWQ0/oFA3V3JkKZWSGWw
X0GUm6CX7qtDOtcGxZalJvG61rCs5xdJxrXDs5rHJwTy7ICcsfe2x6cdFHyY
b98MdYDHe34Ns9R2iFrGhy64OIJUpj89vqoDTCatc7PinYFm/8cpQbFOYJpl
fTVm6wpd1wKQQkInWDp2180+doOyQDI5T74LcjmbmyqOeUJK1s/2cqcu6PhH
+duE2V2I6COO1aZ1wdDwa6yizAtMxSk/Bo93w272tqZoii8go0PmKbVu+CMm
XJhBzB9Eg4B7ya8beHVGyoWqA2C3n6JIM9cN0/2Js/24IJiiodFk5usBRlOJ
MKHlIGiRQCbshj0gGkxRaxsIhpfB1XdFKT3wJNWL25AcCuclawr0n/WCJUe+
LXHuIcj1DZDIzb0gOFmey74WAWf9l/zO7PcCS/sVu0jaKBBu5lA9drMPYqR7
NS3kHwFm69xLEe+HxajPetvesXAcF1Yq+Vc/DIokZd/niAPmwheJiTH9v7xY
pmVFHNDQ1lt7b/ZDin5TiQBzPCwl8Wz+SR4APc5z0RndCTCnKj2UtDoAe1cL
anujSTC1cLmSWXAQEqbNWAy1nsEXRfew2YeDkKq7JHOh4zk09DWxv742BJha
TYb/YSIk47zkWGe+wEy+nkZXYCq8LIzm8ucYhtNHoslTW6lAMk89+E9rGPhg
8WuEcxo8etdWX/dhGLjfq9pF2qSDj5qgcYDPCJylIh5x6zdgENDltcgyBtaX
tAY1s7KAzuv3URuuSVCU6+wNeJMP5v9k95Sdm4T9SIMwy8N8KNCGZpz+JOh8
UqAwmReAFf+tkqLwSTirOO+a91shfG6qjGXYnAT7+0WnuaOKIJTHRj2j4yvc
mVXVvvS6FBhqCj5Mh07DuQOF9w3aZLB4r/FGIXkaWOrdtQifyFCUMJoYXTEN
T8a1XXckKGDjyBgpuzYNqZlKPZ1Hq6EeM7cO/ZsK/ybcJ7GvVEO4HS2noNIM
tMUEkRNaP8NRnH6w1fIs/B5o96CkrAFMRcyr5ZnmwEhXHxe60wDZl2wOmYXm
oJTgURit2Ah6vj73Cs3mwDt3NPVqeSOQZlN8GernwGTC4FtCVRMI16y5ZSb+
B3G7vP+Su1pA3SveakFzAfyWdOPJf3RC6OSAqnv6NyD4h7DsC/TBx8Rw/cD1
NRgXR7H5LmPgkmZDoBpv/fqxvRFMnAp/O77kexi8A+3d96tEQuch8pqXkmzS
D3inLyC9vLwMDOwJs/f3fsJ9yYhNF/91GGx9sBqGp0XpveW7xmZbYORvJf+y
lg6hB4yP3IN2wIllUaDDnAHt3y6Zz/X7AfzvG0iMC0fQk8NBeg+nn+BfpmqI
TzyKDHJyFg67aZBrplOJvBQTCpw5JZ18nQ7h6BSs/pxhRlkGNaYfd+mR+p3r
CeLxOLSnfFAz/vwI4iznc1EXOo56fEvZw/mOoifuEXFnB/GIM6ZMT77uGDII
vyr5qoSAKmjv9I5dZUbiN8KMMu79ht6dxEikPhY0MMuUFm/EhrQ4zDzE/FlR
h9XMRTZ+DN2SC/IWZ8SjrwxvdxIEMMSusZ6CZ8WjzUyHPC5hDHFjvAObGB5x
LS7ynpLEUMVEoDXlFB7ZeKx/l7qAoUWjYSYjFTzaCz3M1TXB0FdV8v0QTzwS
fsPFHRmDobHh4rmZKTxS0hjpwsVjiE2+PaBtHo905pMexpIwpE9D5S1cxSM3
yZNbz15hSGho917QTzyqLBbuynyP/eojfWVlJSCDBtnwukYM+XH5imeLEpCt
w5ayZiuGWl3LW/nOEJAPc+lGaweGeIl67nFSBPRK7/zN3n4Mpb5z7PSRJ6D/
BpDy1DSGNvlPN2uoEdCeD92G7RyGcu9Rnn7SICBWnrqs+QUMqZu/sJW6QkAy
lhoca2sYEpGj5eAwICB1WqYOzy0MEZmjvkcZEZBpekvYzg6Gmlg0x36aEpCj
+qMLAfsYss5SbHK3IKB7c7rrh4cYsrxuVjZrSUD/AxH81bk=
        "]]},
      Annotation[#, 
       "Charting`Private`Tag$3623#1"]& ], {}}, {{}, {}, {}}}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{{-1}, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{-5, 5}, {-14.99985960843027, 4.093653564884419}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.7562301283371773`*^9, {3.75623016546052*^9, 3.756230180909937*^9}, 
   3.756230222318284*^9, 3.756230473632948*^9},
 CellLabel->"Out[45]=",ExpressionUUID->"d8549b05-64bb-486e-9980-a41260b01aee"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"X", " ", 
        RowBox[{"Exp", "[", 
         RowBox[{
          RowBox[{"-", "A"}], "/", "X"}], "]"}]}], ",", 
       RowBox[{
        SuperscriptBox["X", "1"], 
        RowBox[{"Exp", "[", 
         RowBox[{
          RowBox[{"-", "A"}], 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"1", "/", 
             SuperscriptBox["X", "1"]}], "+", 
            RowBox[{
             RowBox[{"2", "/", 
              SuperscriptBox["A", "2"]}], " ", "X"}]}], ")"}]}], "]"}]}], ",", 
       RowBox[{
        RowBox[{"X", "/", 
         RowBox[{"(", 
          RowBox[{"1", "+", 
           RowBox[{"1", 
            SuperscriptBox["X", "3"]}]}], ")"}]}], 
        RowBox[{"Exp", "[", 
         RowBox[{
          RowBox[{"-", "A"}], "/", "X"}], "]"}]}]}], "}"}], "/.", 
     RowBox[{"A", "\[Rule]", "1"}]}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"X", ",", "0", ",", "10"}], "}"}], ",", 
   RowBox[{"PlotRange", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"0", ",", "0.5"}], "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.756231668739176*^9, 3.756231739635553*^9}, {
  3.7562317727776127`*^9, 3.7562317905647907`*^9}, {3.756232264405724*^9, 
  3.756232304518921*^9}, {3.756232659116987*^9, 3.7562326871665983`*^9}, {
  3.756232887960579*^9, 3.756232897871813*^9}, {3.756234633850582*^9, 
  3.756234639037499*^9}},
 CellLabel->"In[98]:=",ExpressionUUID->"f6de5376-4aa5-4d69-a190-93ec6a31f0bc"],

Cell[BoxData[
 TemplateBox[{
  "General","munfl",
   "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"4895.104895104895`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"",2,98,114,
   31079175122089511229,"Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.756231711507893*^9, 3.756231750658662*^9}, {
  3.756231780954235*^9, 3.7562317908883877`*^9}, {3.756232276289069*^9, 
  3.756232304869416*^9}, {3.756232659415544*^9, 3.7562326878108187`*^9}, {
  3.756232888303709*^9, 3.756232898804175*^9}, {3.7562346342330027`*^9, 
  3.7562346392875357`*^9}},
 CellLabel->
  "During evaluation of \
In[98]:=",ExpressionUUID->"5e8670f8-0732-4fd3-b34f-e18cf804c51a"],

Cell[BoxData[
 TemplateBox[{
  "General","munfl",
   "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"4895.105303676323`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"",2,98,115,
   31079175122089511229,"Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.756231711507893*^9, 3.756231750658662*^9}, {
  3.756231780954235*^9, 3.7562317908883877`*^9}, {3.756232276289069*^9, 
  3.756232304869416*^9}, {3.756232659415544*^9, 3.7562326878108187`*^9}, {
  3.756232888303709*^9, 3.756232898804175*^9}, {3.7562346342330027`*^9, 
  3.756234639312743*^9}},
 CellLabel->
  "During evaluation of \
In[98]:=",ExpressionUUID->"67f2fba3-df64-404e-b8ee-b8ddc80e345c"],

Cell[BoxData[
 TemplateBox[{
  "General","munfl",
   "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"4895.104895104895`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"",2,98,116,
   31079175122089511229,"Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.756231711507893*^9, 3.756231750658662*^9}, {
  3.756231780954235*^9, 3.7562317908883877`*^9}, {3.756232276289069*^9, 
  3.756232304869416*^9}, {3.756232659415544*^9, 3.7562326878108187`*^9}, {
  3.756232888303709*^9, 3.756232898804175*^9}, {3.7562346342330027`*^9, 
  3.756234639329503*^9}},
 CellLabel->
  "During evaluation of \
In[98]:=",ExpressionUUID->"5348226a-b7ca-482b-81f3-87b2bec1826d"],

Cell[BoxData[
 TemplateBox[{
  "General","stop",
   "\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"General\\\", \
\\\"::\\\", \\\"munfl\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"",2,98,117,31079175122089511229,"Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{{3.756231711507893*^9, 3.756231750658662*^9}, {
  3.756231780954235*^9, 3.7562317908883877`*^9}, {3.756232276289069*^9, 
  3.756232304869416*^9}, {3.756232659415544*^9, 3.7562326878108187`*^9}, {
  3.756232888303709*^9, 3.756232898804175*^9}, {3.7562346342330027`*^9, 
  3.756234639334796*^9}},
 CellLabel->
  "During evaluation of \
In[98]:=",ExpressionUUID->"562a6c01-79fe-4fc3-9f1f-a49f7087e09e"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwtlYc71osCx4WU3pJxdFOOUSGFlHEy3t/XTZIZSjmSdWREiMx0UMp6ZWRf
5TXLzggN+7X3lhWRvV7em1NS99zn3u/zfJ7Pf/D5Cls6GdxkZmJi8v2b//rZ
n5Zsp61CCab/j9YrpH1NyA5p+6bt9/mzHPnZUPlQSMgLN1t4541YG6SfVYcJ
7hQKRgmngfmbf0mfdSC73d4UTIDqHH/6j4klpeK+iXSGahJUfTo8VvyvKX+z
1x6l2yRjXCBKNDI8X5m6YzR4Uy0FAx3+DRLXGcrn2yNFvgym4vfyp1orttLk
uXj1GoZdOpLSK/KomxZkitW2ycZWBty1dc6LsYaRpaWL/6KHvcCFtd1CPteL
yL1bttFrglnYc1+elkjqJbs3CkivFmbD9c7KC/2GNfKhp32ty6q5+Ba2IeDU
wE5UmobYLPXn4Z4em1lEhjBheUKFZdGmAFqu2ZvVs3IE85Z3J8PnFfTMW0Ya
f1wk+iYMf2WoFQKbAcNOAcZEZoO0/QZHEd55sjuJ2twiPHNJb9YHixBkejz6
l3FPQjNqhm2dWgz9Nb0mGZ3HBL9nzRW6XQlYUkNupYg+JVZuJKWunXmNk376
w9PpyUS1qsfa6tZryK1PhPj/M4uIEjcgVmml0NwVV5AZUkxY7ZekrISVYVCE
NYbPtoKQ//eu4eWr5SgLJ6Tqo+qJXSOfxJYF36CmzlnLZLWDGKqucFuae4OG
B7mtlPJ+Ijszvm6x8C2KdRRX9i2PET4UV65F73fIXiGB/9w0oeuia7ag+h43
IvL8S7YXCCEj8bz5vRWw0J8zp5bRiXUy69ZcfwWcP5J4tuhfCNrRjxfnnldC
pWCBzm+0TcSyv42dtanCD/qo9ngoM0o8NF1cD1bDeZSneUt6F5IWfuPb8KlG
ftCpuNjXe/Hohki1y2Q1aNTfnpckcsGxi9tmXa0Gtzb8uLqseXFNlYnDJbsG
hc8Uhc06+KBSulxC56iFeR3vJiYFIC4+cv2Oay3mpy9xr147Au6kJmb6YC1u
cfi5RWaIYIujNMtZuQ6+gdJpZyzFMe2fprdGrcMfcnlfcmMl0c6I2HTaSYPh
47oRJtHTKLX58/mqHQ3FCaoZL+tlkDxsr+bUQUNnplTLfL48gnR+X1o5U4+r
Ppk6tjMKuFN94aljXD3UadfftDmTYSwjq7iyVQ8HBU1T8ywVqGYKT942b0AC
/dOWW9M5SPDtD1qmNSBvIPbeX/9QAy/lu9Rt8UZ8jWA5JZeojh8/5vuXwhph
9zJN+K6+JmbvDPo4rDeC/vLAxBfooGuadnTpahPeZx3O3ZLRQ0pL8p1FwWaM
Fsr4xpZeBiP+9YmPlGZ4yj7JT+gxxAWb1qmer81QYuuXfMhrhAS5yaQG6xbk
RGmJJvkZY4ll0/Btbws6aqQPivDeAHr27s9XacUvXLz3DPvMEEU90pSS14pO
NkppnpkFzpJ1FYMD27DAtedQ+RMrhJKsNnwYbaDkpMkbalhj/INXrrNFOxIo
P41389siwD1DwEipA8+uzLunkxwweP7doNbLDsiG+AV4izviBE93BHg7ceHm
+h9UaWd0FXxnFlvtxMwkab9QhAu4wW66T6oLGQbhYwJ9rlASjVYMtOpCdcwB
s2ERNzxhZG14d3dhcCxq7+kND5SPyHYxdnXD0ZOV87CTFyZrq3IdiW6QxBxC
zb56Qzay/6ZlTjfyae9sfRT+hKmn+bnRyW6ov6eER676ItBsUeDqwR58l9Sw
Iw/7YVhyx5DGox6cKn0rEPv6AXxbJDRPm/XiorN8n1jjY7wsLBPNiekFc55J
Re54IHriz7GItPXC3nei8/N2EI7ZGL0/qNAH3Ug79uDLoWhhCZBi4umHJJfB
3HfJCDAWOEjeGv0QNfJYqh+KwK89CbMbvv3oe6R19m5gJJypBdTZpX5snORk
91uLwgHyCHdnwwAE4tzKVegxUDlmvXpxewDfIj5cOvIuFnYkemutzCAOF89y
TwbF4f0Htkel1EGsMKKjlk8lwNL9zOYz7yFcZFdv2cpJQn5B8IiD1DD6lM7b
xkikYoF7gaJpMYxpZz6vHS9SIeauSRyPHkaqLk/pzqNpoCqTUqa+DmNANDq0
UzAdUc0Ua+P6EUj0GNBkJTLhPhVOVzcZQxCHaGnEk2wUXVhLFQkfQ1baK91E
4RysZuldYakdw+nE4CD+0hzYOnOVVYqNg2IhYPVgKhfG21E+chvjuL//1nDc
pQIkk1ofcqlNoO7xSeaHckUgyPdM/EwncOzpwKRWSBFGHU/KrXpMIJYa3Vb1
sQgHe0Jn2rIn4LJ+/XY6pRiR8doaQZyTUGKtSTy3UoKHIh0cP0cmYXJyNvNT
Zxls0J2w5DKFR6FVZRY7K8GU+uXtSOgUbr8aoty1r0Q8K/9oS/oUemJMOPb2
VKKp2Voga2AKKY0kv3pqFY5f+Z56U3EaU1e7Mo6lVmPOVix3fMdnBEzVKdjp
/92hqPuVXREzeG6WuMQ1Wg/Hz+JTJfnzSD6losse1o4J0w+7a5rnwSY/Wra7
tx2Xh4Kk2qfn4ed8LFORrwNnW2e9Ph9agOeM8nPZzA6wFGZwHghcgFedFZtH
bSfifYQJD7NFaMuvEYwd3ajh4UtQ4FyG24jTKv+VXuwRDhD7eHYN87kqrzRk
hmBkfenB/ap1/O/dJ/AfeN/tLw==
       "]]},
     Annotation[#, "Charting`Private`Tag$110494#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwtl3c4l9//x41s2dn7rVBoyUjO64Qy0pBdyJbIXh8jQtkZCVH2eL+RUlQa
9shWiKJS9t7Z+fpd1+/+476vx3Xf53U9n8/XOfe5joil81UbCjIyshd7t/97
Pr1jSX3cOgqR/f9V3y2sbShsD1w+6ddCLSlFdxsrQ4SF/wPKHJX9GVUNx55W
xwhRCUeA8X/XhIpljyk4KnveXhN6DHWSgXF/70wrveoZyl1RfQLvUsTLy5HB
mU0H7cFFuwy4blDyiKuy+Ewm+WDE2rksCEqakJGgWT6j1h5/8G9fNvj4l37M
CpBRnkhRr1mxz4W30UoxnMnmytHWOybLW3ngVixeOZQZqXzs2Kv1xZgCMLr1
nMay8oVy99bNxAUhEqi/OJ3XrfpZ2atJ8Nh8aSFEXFC9cuj0nDLvw57WWdVi
2OhryC3ioEGVZpF2M73P4L9Tn+KO2Ashy8OYctruOZTkZORfNT+JKLZ8O1f8
X8D3cWZ9+41zqGdIX2DlXCmMsu/q+R4xRPmNxxyWmV5Cs35HS8OsLfIpZqhY
6nsJW9PrVU+9PJFWwhj1UuYrUG0Wf3JfJATx+9ToLdqXwUnLM+vjunFozvRJ
9sKJciDhKxWeXamoWtV7YX6rHDK//74ifS4PJUheRfP1r6Eg0DHL/voLZM0s
HT0X8waYjjdQNnm9RXKrNN9nDd5CqVKR8s2vNYhm4I/4rFAFlHC+qlt0aEb9
1R89ZyYqwHUicuPRx8+oMD+lbrr0HTx8nnZjUqsf+Ue7s077voeH7sQwAaMh
dMnt0o0p1Q9w909cS1ruKBI2knw2yfgRCvmpLloqz6Al5X1bE70fYVjS2qtY
agnVE35pTKRXwgPdB85feNZQEt27pHG7KsCFfCalVDuozFvLzZ27GvjVMph7
aSngyZQ8z7J/NZgkCTJaHKOGe6YHq91+V8ObtiMRbxkYwKmLzW7pXA0I8aqy
DxiwgKEqGZNbYQ3IOXmODSSyA349W7bIVAvSN6zMajS5QFJy4Lqrey2I/3as
exjIB2xPPlEs9tVC0ZrKQ0VhYdhiek1yOVMH0HZjXK1VFEbu5lxZyKyDZSnX
qN2Gg9C+ErfmTFUPaPaAo+cBSXhtdyd93r4epFv7P+RWSkHGd4dzzh31kFn6
XPqM1TEIv2g8M3eiAXia3LR+p5wA1+rzD52SG0Dy8DXJJxSn4NpJ2dNzWw0g
PXLM6HW2PKjmi/y+bd4IWfR379j6nQYpHubw2fpG6PkU8rDjgTIciN6WuS3Z
BGu8hmIBzhj+/ZvsnYlpgjDhru45ORUYd+3zd1xqgktKkwskQTXoGqknzBh8
gkBKaolY8fOQ1ZLhOi3UDN71nxK5MrVgJaX88K/oZqALLp92Ub8I5+1ah79s
NIOAksjFQsYrMEO5pv+uuwUE48J0B4R0Ab4wMpfgVuiX3flV3aIHCZmin7Ke
tYLKSRZ7hWgDUFC+dDoirA1sYufvV+legygG62X/lTZgGzwaJ3HNBH5++6/Y
xaId+OqIA1+9zSDUK0/QSKkDvv7qVCX5W0DX820K8flOUDoe/yU60hbYgM5s
v0wXVLtjd+FpO1A6lHg6zLoLHkkpF58xtIcHK6Rl389dIHXO9NwHHUeQje+1
sSz6DNnPbTo8bV3BzMdcZfD3Z9A8rfzPW9UNwm5MCxpwfwG2MI+8xoPu8F2a
vF/z3hcwxNwsfzc8ILBFSuv4jW7QuLK7K/LTB4ilbw4VPeqGyPiiQI7h/+BL
igrlwbZuyH4sF5U04wtidkYfuBV7ILNLtOgHYwC0UIbKkLH3gixBuuB1VRBw
Kg+wdTZ+BaBVD0qPuAclzyMGHGW+Q7JAOFUnXRxMsU1Fa1l8hwQjyvja63Eg
7qWFJBK/g0gd8efsszjIPMOQNbzxHXyvXhn8ejUeEpqjba81DEBMneWyVXoC
eA3HLqqb/ACJm9+nTyg8ggyG1hDWc0PQXZZX2GaUCkjZzyTIbAhWHraprBFT
YdDpyKl57yFYWy5g+rqeCtxfosbaCoeg0fjN29zkNIhP0dYMZ/kNbuVGLoqf
n0DIwQ6m3YHfEEEbRMV6IgPs4PPjGbdhiLt+YkygIwvIsv++G4gaBsXH04yZ
c1mQso9/sCV3GDoXlxd/MWXDp2ZbQdLXYeBxYtlNupQNEnrb2TanR2AzPSG4
tyUbJm6KF/8kHwV9pcTL8DoHglq129t5R+GgMVOJ45cc4JZxm/twchSUuz6L
Xp3LAY3lD8fSbEbBaHgiSO1gLpACrpYbNo+CtS/P+drYXLiVEFDZFTcGt9op
39AY5gHFavavKtLYXr87qPKd8iDV8BPZ89oxuETe/HXzXh608LOrxqyMgW7x
BcZPr/LgSAGxSdNoHFjKfnxcZMiHerqOCQXXcaBIiCA/J5IPJo7LdBKR47AS
mSNxWS4foo8jbeoP4/BEuS04/EY+zLzv7qoVmgAKGH2UUJIPoYIbi6UKE1Ab
cIstsyYf+O8KsmfpTICBFYOrTU8+aJ+31w8MmQDetlx/7o18eNb175vS+ARk
+gd8FoMCcBqVHC4rmYRyDlXHfZUFMGT2jbameRI4Vn7M/G4vAN3+cJn2kUmY
IcakO/0oAIXW8f9GeaeAbunpYtJWAVCW5rFwhk3BqcESZWlZIngd1pcTzZ6C
Fs6/wg/OEmEiZ5+JzMcpELsnw5N1iQgdSVYF55enYEOVo++nHRFS/EWQ941p
OFtD87Y+iQj0f7usQnynwX2B/WZNFhECnIMiYh9NQ9vRllvuxUSwtPzVU9A6
DRX5vvwb1UToGXiw+WpsGrKfUBPbW4igro+Eq8lnoF/zAhj3EEFK46lDv/wM
9B1Z100eI0J6jXb8yNUZ2CgcK9OaJwKr0vbrhdszkHkubOL1GhH+Sl+noMud
gW6LA8nvaUhQw87zWJFlFna/KwwFi5FANuZT5bkjs+Dw8UIm3RES5FP7jOic
n4XugOu/tY+TIHrj69Fb/rNwrP9eE70yCf653df3St7j1yfM7quQwHXmlF/w
y1mgE10yqlYngcGvxMbUiVkw+vPWwlWHBJ+M1GbyKefgyl1a60l9Eih9WWZ9
JTgHfM9nX4pcI0HJhRz5KsU5aHeTaeY1I4Fww1XTVr05sPvTINJrQYIERBHS
5zwH+37+kNexIQHV21LicOQcmM9/uh97kwQ+xy065vPm4ObF7Yg4BxJMFbKs
bFXPAQcl/Uc9JxKYiFXz0A7OQadCWtqgCwk6nzoDx9ocEDJvZUm4k0CFS8hG
mG0enpGBlqInCcriOiKlpOeBYWyUldmbBOL0d14oaMyDkJOMR6EPCVJDpL+q
Wc3DltzIDIMvCRh3Breu3JmHfY4tayf9SBDoFS1i+ngeSItJLAR/EizNK6nb
l83DmT2/3/bY2n7a0bNzHlT+Xr9mFECCvj+pCXen5uEttV5wxh4flDk42Eix
ANvPJfKf7/HPqe05bZYFcNtPdzZij1MKesi7BRagy2y7XWqPdayLOYyPLIDs
1o+m1L369CKh4r8UFqDDzJjUvafn05n4o3fOLYCiaca1qT29943S5QWuLgDR
53ha938kUPMogg9mC/BZUK0jds8fRdxb9esOexw/aCC057+6qOHypvcCpLh1
JAfv5XOn6Yvh49AF2H+9YrliL78zw79uKMQvQFIYdXuDKwk2/83Y9T1dgB+x
Y/fynUnwlnfT2atwAUxkLgeZ3CaBlxyNz4E3C5DFuSEwcWsvn9si4bpde/6+
lX+6u9ffFxEycUuDC9Cu/jc5zpIETnlKKfGTC6Aj1/nA6wYJpgf1iZ0UizAw
lufRbESCwnXLF07Mi8Bt/pggvze/bnK4vN3PvwhNsN83YG/+jVyI/HTh1CKY
FLKlPtIkweC7yokmu0XAZ9l2duT3+vm1dcHWYxG0aDOx0kkSGC31r1PdXQTL
Nm9+PRkS9Egu06qlLoLh8CoT7956aUsRl6xuWwR/qtAJMiYSRJbJHr/xbRH+
mxDfFKMlgUbXWcV/o4tAYe90R5yCBPU0JppndhdB0f+nWvMqET54xdm/Pb4E
IadpAyIGiPBMb4P0ImkJeEzMhjX2/g+OLtQvL+cswSnj32cCHhPhcDT7u7nn
S5Dw5pnro3gi5NdJt0g1L4H4SNBbt7t76/+E5RRxawkORXG9nLxBhAcsrYez
zJehYzEyhZmbCBXyAuWXnJbhv0TZicH9RBgxc4Ztv2UgUE/RxVISQekZu55h
8jJES91Uy5krgAlNk4D9HctQ/W5t/VFdAaiGzHb+p7QCDGUrdqs3C2B9ldnz
KucqfPuZ5UKZmw+WA3pVlG1/4fMv08HImVxwbQi1dBbfhFYWjQgatSwodWHU
5dbcgecir+NyJ9KgLZX9v2cGO3DC64z7xfY0GKvnzVCx3gGB0RPl+16mAS+P
5LRj4A7wLlRXpPulQWjNuZCa8h24JVtpGsKcBgZsga9uif6D8KAyH9HTqbD5
apH949Y/yDhHX47SUiDLz2HqmCEZJqa1ypDHPYJj1XTrYaZk2PVz75iO7yOo
3kek+mVFhuUI1BwvrR/BUMyIcIwLGU512j+QqfgIBDNNDScjyPCqT4aTwkgi
pNZfrs/6sDfeeOmtzplESNgvm84mSo5rgw2lTq0nQHDGts7KDDlu/CvdFpce
B1eOvXU9skyOmXep63lj4kCwxj3ecoMcK1dYGb7yi4N3f6a6uqgoMNNFE2Ax
joOlg98uPxOkwINp9Mk+HHFgWVx+0fYKBVY+1XDnH18snK1w0ux/RYEbqKIz
A7ligEnrsD3zOwpMfbWHW3w9Gga/j4afr6bA+h4/3ab6o8Fn2+RTWRsFjt2e
fVyfGg0v4IJ6/CgF/mpacKlBKBqEG8XPaXFR4vGntwdnZKKArHsIf/ClxPzs
Qw89LCIgdLIyy/cuJT59w4dcSDUC6MieUiiGU+LPyXXyE2IRwCZtXF/+iBIH
L2+Ufp0Ih4Nhn9Wfv6DEjlY+NSJu4aClVHspe4wSr5p+kr8RGQYPc3JMwq/u
w1EKxJrprnvA/e7ux/PG+zCvqAuN5ut78KTrhiCV+T7sx8ryqDbtHuTv8A3d
vb0Pe8rUydLb3YO3holWfuH78Ef6FjT5LxQGGe7dcqrch8e4yY72nAyFQx62
PnqHqbD/0V2ultJgkD79SzfjGBV2fvpX/8CTYJAlMzo6JUeFWRqGJ73uB4NK
tOZYoCoV3lip7fC/HgxmuVJ6RSZUmNyguDCeOhiSepaOUsRS4a8UYhld5neB
6lTg+PNlKkx5mdP3yMEgYNxaq93coML3dj/ICbMFAVuNS/o5Mmp8tbzgwtV/
gSB80VJ/gJEaszKZP597GQhnbM7VUR+ixqpPjayoBQPB4xFDhqkRNR4kSh1I
3AqAkdVkA4aP1JhmUTkKuv0g++xJ9x911DjWU2ns8HM/uBHTEfu8hRpHezr2
4Cg/+C5G1azbT43NGD0aplX94LOum9KTZWrMsZTnp/jGFypLtYWlD9NgGdbw
+3F5/0HybfKpS8k02LJlvYc90xv0Kp5Qi6TT4DoyhpOUd72BjUqBsJxLg0sa
o8W4Lb3hwRMnk+SXNPjr0Cfxl2LeENo60PGrnQaLmjQFZBd5gYvk61cu+2ix
iEKZlG61J2iN3gpIcKXFRq89e+YpPeB8AKFYzYcWMyzXn2uYdAeVA4Pf/96h
xZ5ZDD7vOt3h9LmLCtejabGlddpjyifucDjv6DKhgBYb+A1K7ZdzBwablZvl
g3vfp4/WDzm7QdtIgF6/Oh1+s7B7mbjhAp/85UIiL9FhB2uTXrlhF6jnmC89
o0+HU6k8+X63ucAHNXPmLEs6LJR4xSU80wWKc1Va7APocI3s9XlBTReIsabB
Wy/psPiGo242coZLI3FHBAXp8eLu/sqdj47QdmSkx0SMHlcVzlZLpzrCBXf5
O2mH6XHA4dr6MC9H0KD42cUtT49n0vgFK446gorwES/2K/SY1spVnTHXAU6Z
NFTTBtPj7x6qjpcSbwF/z4b+8ig9fidPUOJJuAmpfBd3j8/Q442tKpBzvwk8
VplElyV6XJqbQu6jdxM4l85vzf6jx4+WVwTsuW4CC0ti5gQXAyakfbPbSbcD
Sm2Z6R+aDJisrka8rcwWpuosgz49Y8D76GvL1zesQSi+/9aDMgbM0/nxsdgP
a9Azu6Sv954BE43jxL2qraFyXfHw0CcGzHTpV1REmDUkSLP2rA0zYHILxVhH
LmtQSq4SF+dlxLKXJfq2la0g+hZ/5737jJjzw1td3jwLqJFPqLgQw4j1BrSO
FkRbwN99tLmsiYx4WzrESs/DAswzln2eZjHiY15H5ZnVLEC2p0W0/AMj/hXx
Spli1Bx+KP/nNbLEiCdvk/68lzIHGdavAqo39uML2XTE2VxTGIsZC35ksx+/
+vqbT+uOKTylXxsfd9iPW6qYe74amgLjPu6X0T778Wwu+7EgBlOY+mt8/mv8
fjyzQe3L6GkCeYM/nOzr92N+YwbpgSvXgZ84WhUryYTVaU9ZDUgaQ4/YX7E/
R5lwiXaASx+tMURlUUfKyjHhl7HShJ1xI9hMFdf7psKEzy4qvqrPN4L+GPsJ
URMmvKJTIgqHjOCh+yzL6wdM+F7KIeY3UoZAD6sWg8tMOEHEkd3RQB98zkrQ
vt5kwvxzxN/j8vowpnq9JJacGY+ki9fH8OhDrUbNpgozMzbWTJgy+KG3d06N
eUg6zIwNCOOt/bZ6MG1zsMHLghnbdNtKOt7VhbZofQnWTmb8R+6M881uHTgd
G94x1cuMK6fJZGsqdIAY/96jfpAZH7zQQVLO1IHQJJEa7ylmTC/3bTrztg4I
dv2VmqdgwWvd8c8Y6HXg67faBn1BFnysnZdMS/MKqM9eWxPVZ8GFoWbjdtUX
IZ0jpDvQiAVL6ytfF0q6CCtKRc8Hr7NgGY8rjKyOFyEzcssuyZIFszRuLWdx
X4RN8Sf9dC4suIZfLNbVQxuKLX9ULESyYD4X3677cheApf+Gf2X13vvvQ5UJ
fzTAdjfMiK+eBX8pM9DYV6UBHw69kPVpYsE/7+pKFqRpgL0n2ezxDhb870rG
dKC+BtSyZZnmDbBghzu+hl6t6uBx8Q+K/suCleqdKaH6PPTXWpNfk2LFB2tr
HeJb1WDh7HfegKOsuHq3Xa/suRrQ1FyWzTzBiv+bPpew9VAN5KpO240psOKR
UFe9vyZqkPiepd3tHCs+rCBJk7KgCpfLPqREmbHiS0LHbtgIqkJjHsexj3Gs
+LrY7snthLPwUyxSc+ghK3aYuWuo73cWVnN2LSmTWTFVkP/ddquzIJY99Ujz
KSume0+pzXvqLASnV2/1kljxUGCdn8g3DCjZsWmulhWrmP4cqj+EoTy83kx4
lRWrTyrlvC9RBqJWK3fYOit22WnchhBlSGX88mV2ixUnH04MpTBShqC4X+ff
U7Bhzou+TZhCGbRTNmUMWNiwG/P7jhTjM/Cn4Nhu1BE2fPb55sJtdiVganqS
sWbBhsmcrtL4lSoAeUSOsZkNG44OeNR/KEYBVrQK2RtusmGNe02T1PYK8K3j
TViCMxvm9dshWoooQO7XL87SAWx4WGzpXVCiPJweo8VWKWz4UvicLU+oHNhS
eQ51dLDhTvekx7/vywKvUHPf1mc2fH/5xmzcLVnoUBDolOhlw0+qZQJsL8mC
nGPDx+ABNixueDc8hFMWqLsPpMlNsGFF6dO/A4knIS/ztX46OTt2Pr+1a9B9
AkaU1ltuy7LjrLhoZznV45Cir12bKs+OeyvK31w5chy0nTMrmk6zY/emXoco
9uNQlq1BFDnLji9orjtajByDULrH93ovsmNXoZjjUWHHQKxPESvbsePLHSJf
LAuOgpWbXzlj6h5TzJaa75MGuRM/yyWfsuNyqW6nwUEpoF/Cr89nsmNDhdq1
6HIpeOFK/SYonx1r99Ncj7KTgm2X+LcrL9lx6RXetdX2I5DkXPB+sJUdP4hP
4dXIPQzNjt01xTvsmFG/47GApwQ8kZKrbSbjwPR0dYuvdCXAZSaldoySA0eL
nxfwPiEBnI5mdcL0HDgo7/a+kAVxsHSYrE/k5MB05UUVhU7isG2/2+R/lANf
M7f6Q+N+CI7aHenQtuDAF0zzG3xSxeCnvZDzM2sO/J2h5cM3PzGIdmRnYbrJ
gauELZztTMVg0nVLp9OJAyu+rqShFRGDHP/WXh1/DtxrriloWEgArgSHHwbJ
HFi2irrpb70o7H4omjFv58C0H6WMn3CLQElVRkxNFwd+cDr3ttCuMJjUPpQR
7dljWtmRplFhqGjycxn+zoGtahREwl8Jg/uXCys2Exz4DbsNU/UVYRgfn966
RXkAf7ZeCakmCEEnmxSDp+IBHLgIm3TX+QHdvj2ZduYA7pVwrvM6yQ8lTSVN
tXAA58yUzfEw8sMD/+OhLOcPYNOlmfMUlXygPSa3U3T1AH4y9ZlNV4wPWirO
zv9xOICb2hmWX2/yQIO5YfeV9AN4ZvKQGamNC2Tfp5R6Zx3Ago1R964XcUHu
ge+x6bkH8LPI2ylKkVwQ2mKiPVN4AHsW3A0P1eACFVnLhrA3B7DHsfLvJ5o4
oZrm9pvKrgP4YFVDYlvbAXhfEpwmRcmJs/cJV5mtsQO1tj5vMjUnNnB5+nrf
N3bQmRR/TE7PiXvfckj1v2OHcUJ70lcWTjx7wecedSA7sD/mSggS5MQyRa9f
/0fHDg4hxeE9ipxY9F2D491DbMBn9NXT34UTJwe7p1kFsoDtKnFlzJ0T6ycc
TkK2LFCa4Oeu482Jt37VmsNFFlBvF3Y9dIcTe+3TvV/KxwLuKg6OXVGceDP3
EnuuBzO0SpFZiRVwYhXO17qk7f3gR374StsPTtw8QuU7DQwwpsbQf+g3J068
x5ZMz8UAV8Jnbtwd4cTF1+jBdo4exJifO8tNc2K7R/qdn5/SQxu/bGzmOiee
oFyyd9mlA0EF1OHBzoVtml78CmqnhVqnq9oCmlzYlXrlb2kCNUi9PNnjrc2F
H3BEFle7UEPSKofJl8tc+KoeUzv5ZWpw8O9zCDPgws48OhK8jNTAEWkStWjF
hX+wd1xJC6cC2zzbloY7XPhFsQRVVuQ+oB/01XAq48IaxQl6Ay8oQM6btD/2
DRfm5K/cn5hEARZs/V+ev+PCHQz7L7j6U8BbjVOmi9Vc2LpZLzJFgwJsy+dd
Pdq5sOLnsVeJf8ih5oF1mu8YF+aoKL/II0C+t59fmrvPzY0Nunsp+Qx2Ue6g
/6sCPm7MzU4RsSq5izq9i3w+CXLjKMeKmP3//qFDJbSU9Ae5cf5VnfqV/H+o
m7eOK+Y4N77nW1SftLWDZFbkzz7U4sZOhvIev59vo9F8kcQMf278Hb37dEtl
E82E/t6gDOLGhkqjI6d5N9GSZdaNmyHceFAuuV99aQORCYkcOR7JjcdVwgc4
czYQb7JwbW0yN/6h7hIYSLOBroQJLYy+5MZ0AkX2MgNr6IOdgLbUJDfeuOgy
W160iurO/SiNm+HGLlkHknwjV1EL4SnX6jw3PmwWVOJqv4r6fvEPf/zLjUfT
G8j+iq+iJUN+38v7eLDjLUmKywUrSEKDj+gmxIPZ9CCJ4vkySpTg2Vehz4NT
UXrQ/aFFZGJ2qGDYiAcT6V/L/m5cRGKJJ7WYTHiwqtdxA/Nni6hs92KclSUP
ntQWO9Dqu4h6vgbzMznzYCMLlh1trkXEfm9G1iqcB9/QMpfoM1hACb+rbPa/
58GWun5+Lj9m0TWudlqFSh68bvDS897LWSR68XuRZQ0PdirhDOsLm0Uv364s
vmniwfYUHCnHT86iL7GSdyx7ePD5zDDJsugZxIoeJr2Z5cHJUyPKhVrTKC7V
tslCmBfX1J+YPLwwgby9gt39CbyYvV3AeaNtApldTRdKPsSLpT/wHNkgTSAp
+q/ebVK8OAPcTkVZT6Dm/85JyCvyYmUFbsWlgXFEYSwWwXiVF1/kydBJ6B5D
nlx/tN6E8OItHhufGyMjyGR55+/n+7y44B7hWV/jCFLr5MmZieDFKs1Hz/5H
GkFsYTpbInG8OIFfNFveeQSV/K0uin7Ci5msWA6kbQ+jid4MRstyXuzqNyDe
JjiMriWadjCO82JFc5pgi8DfiP8VPZ/DFC++JXBKNtj6N/r1+Y1d8+yeHurg
z62av5E1Mxv5/RVevLpzpK+f4zdyimw8uUvOhy+8SrbtLh5CwUFHHy/y8+Fi
hz8rUp9+IZIjufXXq3xYup/jWeTgIHKMKnkha8CHez73KR58MYhkCq/vJBjz
4e4V9WDK0EH0crw86bI5H55zDX0WITWIPljeav50mw+rFK1YlAYNoC6jbpn3
4XzY5fZyJ9ep72hdLW8jo5IPP6xNKSxs7UP+7zNC6mv4sBzZ9m0PUh8iO5G6
f7KeD/v2ru84hfUhGqFYkROte/V7DVxWVfsQ54aPZn0fH/724/0RXPUVnXym
/XhigQ8nWDSkJlT2IqcDKwrHCfxYKoh2+dbPbrQUNVerf4gf8/ySf9NZ0408
KSa1fSX5MSinXzPN60b+8z/M647y43XnWcMlx24U1dwUrn+GHy8NqM5s73xB
xIC0/v/0+fEVV94AK/EvaHhUxac2jB8zbyz+23nUhVQyOrIPR/FjF6FkD3b/
LpRpdK094QE/5rfx49ex7EJmra6iVo/4cZzJMUa1o13o+4vMNsocfozKGIIo
kzrRF79/wucq+XHzsYMpV9g7UC3ru+amlT293FkmB9VakUjruZWj6/z4BYsW
tR9PKwoK/SyYssWPw4MUNtjmWxBam3C/SSGArXqYCLRpLejdIJcgHYsAfiz9
5O72ajN6WeDppnVEAEeFesq+efMJZSsf52u3EMA7TVVtQ3aNqPYSfciWtQBW
LBlL41RvRH9uDE9J3hTAa/Us7P6HGhEh+NG7+04C+Mx7qvGe0QaU27hhjP0E
cNW1qYrXtg0o73JtyqtEAazsXTVJ5lqPiBa6nKlNAtj1W4z5Yl4t+uQmdedT
iwBmesmlkB5ZiyZCqMb+tgtgrwLFXjfnWiSR/6Zct0cAu/8e9E1QrEWkKT79
/b8FMEtkJuR11qBC95GHQZsCOKU/gHOCogY9u+fJaictiPXOx58epK1CM2dM
g+8dE8QVp8NiFAYrkdSK2nLOSUHc4vqiqOd5JSq05OgdUhTExqLyQy2GlYgI
r1KunRfETJrrVnmFH1HuxoLQpRuCuDhOXLnx+geUettR5lS8IO49bsvmMFmB
vovpZegmCmLaU+dqeesrEM+gEotbsiB+qFDYt5tegVK0GJZKngriBy0M++z1
K9Aj8cJyiUJB7LAee/x5/VsU93v8DH+dICbfliW1FL9BYfpWFyhXBfHQ4yR6
naxylH150MRmXRCbdISJBwWWow+a+k5NW4K4M169a9i0HC0pq8dHUQjhg1N2
d9X5ypHJoSN97CxCeK0jOds7pQydWFuyFDsihJWCqFzlnrxCP1OCfc9ZCOFM
g4Ei0aZStJGwFVVgLYTP9BgdvVxUijhiPJ7S3RTCIZ85dvNjS5HmXdvqdqe9
8ZcZffqMSlGZvRa1gb8QTrHNTpadfYEiT7Ml2CYL4Wu9M2wFAi/QqcEsUli7
EHasuP/tP/lniEXm5vrzLiFMfPpy8wPjMzQTKKPe3y2EX4YPqaE/xSiX8H5E
4rsQJssJm92IKUYcDj1CLWNC2MxuYvDCRBHa9Ke8QE0mjO/kd8gzEQvRNwa5
Gg0eYXye332yQYeIGmUfTwzyCmMF5eX7kjJEVGa6zezKL4zbfr/ZraYnorjn
tWaPhYSxxC8zw8j6AqShe3l78qAwzt2sC71zugC9Tb0pH3VCGNueArNnR/NR
imTas/YLwviKnyIPUs5FK8vn80IuCmMtSQpJXoFcdLly6Yni5T22btqW2MlB
1Lpa0XlXhbFTI83LHx9zkKf/xq0AY2Hsx5D1LvVsDrraaSghbSeMM/7dZhC+
mo0YPTlyooOFcdSnb536jzLRTahOVQkVxq9GZ7bWfTNRHZ1jwvq9vXqH6vob
zDORb3rdXeuIPX3X/qUPSGWiySY38zNxwthFLid5KCYDNfJ+Fph5Kox7wbhy
P1U6CqyOSblQIYzNZzvrQo+koakf1Ykb74SxvWz9JVbyNGSwtRxX8EEYs57w
6fv1NRVJyV2LoKzey7enRetsSCrqLzrk+75RGJ9GvW/ofz1GJ5Krrh/pEcYH
MjSSLLJT0NjtRUGGeWE83X96Mlo/CelEifFVLAjjSq3S2fQTSegD0ZDLbkkY
2/SYXhpnTkIPhz8y160KYzWVGz08rY8QNo4k89sWxh33tX9tqz5CqWqEP1N0
IpjpwvSCOySii3z6eS1iItiXfmuR+noCShmRqb5+SARbviqOkccJaOQZ7cCM
uAhuDzslGnswAfnjDyzMR0Twy+YavZcL8ajYhuCve1wEfyNjb6kNj0f0Lxav
DiqLYCNf1wuDVXGoSe0B2ZyBCC5hnaOkjX+A2Jhu8gUaieBmAzRqZP0AmfWd
lWO5JoJjDC+2Tsk/QH/tVx1OmIrgFOom6a5fMehQrEmfl5UIFu/yEk0+EYNC
vx0u2XUWwUdN6Y82Dkehs05N11kjRPDoKJY87xaBNvsnz9dHimAP7lTJKc0I
VKbKeMI7WgRz4rU/7SIR6BCPDu2PWBG8svpv4eqXcMRY/72MmCSCu8JpSzTk
wlE/z9x+nCuCE+Oo0AO6MOTSwFHtVCWCc5hHTbe/h6LDx+SLRGpE8MbdjtGh
ilA0nGqc1FMrgov8uWs2UkKRgUu64+lGEex5UkqyyTAUneGT4KFuF8H9VD9/
NvWFIFpXJben30XwpJGKD9/vYJTBbynWtrrnV9t7fJ3zLjp98oiM5ZoIrjja
RZa+E4R6NFfk19dFMGmCEHtzJAjRet+/ILa9l6dPi8ztl0HI5XOhmz+FKOa3
2A6TuRKE9g7+1VLMojjbXO5Qo1gg+jMfahojIYrld0MumJr7I3/qS3aEw6L4
SmcXs5KcP+IU4HKtOCKKaQp/Chsy+iMtLVLoqIwoVtpmeK9R4Yde5rYXKZ8S
xdzFdydpOP1QiDHn5uxZUaz35UYR8ft/SKyuIOnSdVF87w9jisgDb9QhtZ47
aCKKLZV333U5eCOfJI1Xt8xEcarbdEGppjdqtZ/svG8hipUHfatpqL2RG8sR
uio7UWxW4yyxE+SFqkxL/I56iOIts0f/OgM90bX1MnOWGFFMP/maWzXDHe2z
pHJOfyCK00+efFYQ7I5KWvUDpOJEcZWacNspW3dEnvH3scZDUXxG26WiXdod
Ec8pdAc9FsVxI6Te0Uo3tJrw/txinigOdzRRD51wRXHStYe/VIriYeV1kxVD
F0RUuE4XXC2KT16cAS7kgqpUV8aP14ri6mr5CUsxFzRnfCgvvkEUX1aLYhv/
44wu3I8U0mkTxQkHeLTHeJ0R9a+rHF3fRLHmxQ+ZDo9vI7+44Z32FVFst6H5
zKj9FkpI8x8M+CuKvVPfXxnLvoUK8w+8l14XxY5BJjOvfW6h/g/qPjFborhh
estO6OAtJDdZtKRNQcCnw0W5KO7ao4WzHuOtzAS86VOSVK52E9ku7/vcfJiA
WXvOdcts2CCzQrUOEykC/pqjS1vSb4MMLEJb56UJWJ14Wsz0rQ0630nZeOA4
Af861rim6WODDhVRvLeQJ+Db6ve9DDat0aglWd6GKgFbJKla7FJbI+svWz6S
pgTcNiOn1IwtkUmEktcHMwJeG2OIrj9oifSwn/tlcwJW5jv2epzeEqmVbN72
tCLgUu3Hxbm9FkgscsOyxp6AO9YXO5ccLdDw2TVtYy8CfpFD416SbY4sS5eE
I2IJWOntVPzlq2bIMVh3WyuegNPuJF06LmyGPHXL+hgf7vlT+ZVsM2eKwlc9
H8QlEfAshfOruihTVKK4sZX8lIDZvj/zUG8xQRs1u1/ziwiYyT+EfUv/Oor7
whhT30TAJ/OMvhXnGqHUnNs37zcTsPF7p/pJPyOU49GhqtFKwM/jt4bsdY3Q
a864zdYOAv5M7F09TmmEBq+x3+zuJWCx6+dJvTaGSHyYR/XPMAFP2uOLTPIG
6FiZr2DuKAFnt+/waLMZoNP3BjZsxgn47ZOp0MZZfaQt/vTF5BQBJ+RmFDjn
6SM3B2HBxUUCJovasgrn0kf+Z+5uvFwmYO/pUxaZK3ro3v4/PR6rBFxCilpc
/KyHUp7nRK2vE3CFxlsdHKOHsoP22b3bJGDbQgnbMw56qEjHRsV/m4D7PUaT
XDT1UJloowD6R8Cu22/DBsX1UOXyoY3dXQJ+6bPvRyC1HvofTtTKFQ==
       "]]},
     Annotation[#, "Charting`Private`Tag$110494#2"]& ], 
    TagBox[
     {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwtV3k0ld/7NVVCA1ERwiVFRClluPstZKxPg6E0yBBRhBCiQspYoiQlQ0LK
GEKUTPdFGStCSWSe7oCk+N7fWr/zz1l7nWed9Tz72c8+60jbXDxylouDg0OG
k4Pj//aEqzZLVe3CqRz/v6rbpEwspBzhMuhusyKAW2ax9m2QlJQP1jm1xRzj
qVVJqIjcuEQqFEoln069fqSy+4K2p/PsxoewzQ3J+fljTPPVpx+pLJ3HoOy3
FWwMsND6c96km+6QCFfldVYWd7K1kji7Q2f1kvFTVjRyzpKlpfvxrtxMewq+
vryQU3xORXsoTv89yzEV25dPCZjPWmtH2P07yZx/hoe+HG+juCO1VVRe/aZH
pkNlhevi0hP52m3z5+5NbXyO+YerjJfxt2l70SRVJvMyEXmF2l1YM6UtFvOp
YVznJUwCzGeO1Cynvj0d5jD2OQutMy7RL1KlqTYKBPeoQw4uJAgXew7spHLN
+zax/HKRXRdyROifAfXTDzMJll4etolxK1kGWlLTalXOM1fmo3yK14Bm50T1
fslfwmjPB/fs9r6wLm+qUfTAUkbSK9hG6u1NNrpJFfd+b0p3LMB8nvFxOdkY
6sSpxylT2wsRUhk2apyUSK3QuTw1OV+IHZHJ/xy1n1OjtxyhTlYXgdu4R0Pm
1iuq3SqliInI1xD/OhCvbVNO3TW9rHPcvBgHD++SWHa7hrqs66f8+MYSmGwO
v9872EjtqCj3HBsqwYXaSwH1+Z+pmWlxVaN5pegwvZJypv8b1S/ikuCo7xtk
fpoQLdDspx50P2g1olOGu2f+NDmxRqhSx7ZkDQuUQzR7hQRXHp3K0OaZH/pc
jqFLX+3zh2ao1ZQeg6EnbzGbvv+OvvE/auzy0thBh3fQJfMMJYO4UHDZyP3S
+gpsGipu2iG3DI9H1EWZfhUw33CscPiZAIJPyVW491Yguf6GjV2UIFyahRwY
eu+hSo0rtD4uAgsdjpXume/BcfvdO4FyURBF4wX0lZVQyN+9VqJBElu2dJ1w
u1SJw3JGEsOGMhB6THLR2yuxaa1yAT1GDvMri567alWBlvHzrrrJFvQHPD00
lVSF6R6xU55XlPCRFTV7cUk1Kh9PXtYVUUWRw9Unk47VOHK86unOvB1I7Dyv
d7GxGgX/zR8Rjt2FkAPHxya210Citcn7ArkHbhX7Y1we1MDcNWXbBxNtWO5Q
05iYr8E757gNP2II6KRJ9zqfqYXoqXf/DWXvw1bRVSHj1bWo7vRteTunC5GI
v8rOW2jYdKjo2BMvfSwsDH8ei6QhOy3kS6m8EQbd2v0uMGg4/aRuK7HqAJr7
qylj5iQ6wo9fy1h3iM1botvoxjrMTg/6FUYdBSuuUKEnog60QeWEG2lm2O/Q
0Nc6Vwc503Y5x58WeLiz93GtfT2K6+7ceqBniTHuWbPStnq8tnuppNFyEmgV
WJVNNKC46I2w200rRCfJkMlZDWDOKRZv3mGN3doHNUJvfcBenxtfRMzsEM5v
x/RjfcAdy74mfl57fP/q89LV+iO69syfM2h1wA2vZ5LHNBtxgzd3h372ebTr
vmk3zmBj2WHntgpnKKxpiYJIE0TbrUw1xi6iOecvl/xkE5zCw7w99d0hhOWn
Vyg3Y8oxLdMh6BI0N93TuGXXDKrs9jHrDx64zXrO9G1pxsSGhkvDwZdR3KXW
zFrWgpaPf4SyZrzRW/nupQu1BT++iYT88vCF2t3PZ21etCBFNdSZO94fp73P
7OvubcEZdQHv5Xuv4ZbVqKT5+lbINEu3/fS9jk4lzg7D4FZMXZuv2qcbiGv1
W41UrdpQo314pmnLTWTkvd704n4bTupQOtzVbqE1bh+33Ic2rD3/xHJWLwSy
DsfK1u/5hPmc2dQY/zDUc99Q5ljzGatjZv/ZU++ANbKS39fwM84N1PEUIYqt
q4eDzGufoThmbx3eFwXXpJykwbHPeC/OY7xuZzTWancJNdV+AW/ZIYH5hXsg
ZO0nDf59QYPWKsfTJffhyE9vqNzRjjU9Q6bdXrEo+7o0uCipHQXvhUyWzD+A
jdf22QTfDvQVhD9ZLv8I2TmhXReUO7Gud3qZL1cyRoRGIoysO/EzVqntqksy
5L2MqJvvdcJOas75flcykrT4k/vmOmGqnov+4hRE10XYW9Z0If3N5nu+11Lh
1XeHrn/yG94Efw+fUc9AIn9DkKDeD9i2cc9xr8+FA1oejrn3QTrXYdzwRjE4
UmZKu8L7cOk55+p1tcWI4xHvrk/tw5Ct0kzNshKQdfaSz7/0gcZJL6oIK8Fm
078pZzX6sdfWcwn9dimGzsm//M75CwK0xTuht8vgFO3/tjlqAAuvviiqbKsA
13RKz7vnA+hjJrw4b1KBeAuSI6dyACGHHi/3d6xAvfganUjWAPJl14xKPq2A
YnoGzfDYIDxEDnccFH6PsTdtzZUbhyBcafRycPw9XH5t6SvIHkaX6gnLGd8q
/Dj9lfd93TAGw0rcp2KqcLQjRPlj/zAq3V7ff/6yCrsbBn1+iY0g4KPLosW3
KnDnPVu99tYIzrs/O5OoWY04P2nqZatRJDLlNxeOVoNvptk2yHcUpEF6eBhH
DfwvXg+9c38UKDzQIC5SAxubnk/pDaMYTyhpuaxdg60GCec71Meg3BR0lDe8
Bu/XiD7cs3ocf83EuZNEa6EWSb7VUxzH9ey9/AYKtUhb6t1/eP84nqneFsvW
qEXE3JdtTn7jMM50mSuwrIV5z73a+KFxnNcaH8p/UAvymO5YGvcELttsMzyU
VgvNVqbgK8kJbOI03ZdVUAupmiOnGkwnYBhhRk9rrsVI5mrWfMUEUn4wDyQt
oeGkbIUob/cEFucM3PcK0dCUcBHCsxMovfZFN1WShoKoxrCtSpPYk5YhlbuL
hmteEdKnHk5in0gAddiWBsakpr5jwSQecq4xTXKhwc5x9IJn0yR0OSZiN/jQ
IKcs113LNYXSEokFK7Zv8knfkO/ZPYUYj3W8Cq9oILXubruqN4Wtb66pe72h
4eaxJ+oSR6aweMa0NKqKBq6oYv0T56cw15kyodpGw5+FMYf2hClcXbuQqjRF
Q7HYn4temVNYWfPxH2uGBq9dy7xFXk9BjZiQifzHzs9ZOuRo8xR+3OYQVeUj
MdptltHERYfkN+3yQ9IkMn/b5LqsosOp6YN/+iYS54Rdi1eI09H2WPFpiyKJ
fuMw0ngnHQYnqReTd5JIcXjQPLKXDg15wQp9DRJnglI7Qg/S0e40UFdJJdFd
+naI5kDHoRhTq936JOK/NEzZe9Dhn/w+docxiWOMjt9LAuiAatN3nv9IfNrC
5NWNp8MnZsUfBfa7Ea3HIdiXxj4Hxff6cRKHrFeIBr6iQ/TxQ7uskyQ+xMlv
qfhAx8YI9bbbNiTCCtRUrb7S4e5axqN7loRB8949C7/oyB84Ot/iQGLp2MG9
CQw6dD5mr9jjRKJ62UlDrUU67M0vR/tcIBFIcTzcxc8AOWfyI8aFBAGv477r
GdjuX3EgxJXEgmWQtagcA3LCh1Qt3EmUeUU5FqsysCrWtpfDg4RvdIKbBZWB
yXqDgmBPEruzM31mjBjQb9zGMeBFYqbudcB9CwZYt+Q3yHiTKPhVHapmx0CX
htgJDR8S7pytd9tcGVi3pV5kmy8JFYmeh+7+DFw50JjEcYXExO6xZMEwBjYo
3Dmcw8ZZpnPPc2MZyHyh46/pR+KC69L8/54y4CM94f2MjRUi1pRO5DDwyvD4
w3E2HkqXqowsY6DMTWSHsD+JtCql+q11DDhmesaLsrFdj0Zrw2cGKlZFUhbY
8TLz+p1OPxkQk90qU8nGP9aa/Vw+yYAe9fvwWTZ+st1mJGOegTC+wY/D7HxO
HrzI0OdlQlOSkD7IxmJOfn8GhJkISojdFcOupyM4lOumNBNHmAZnStj1xibH
8skpM8H3yG6qgs2HaflToWoNJnLmn+7OvExC6GuumK0+E1amF8I82fw1s8pl
uEyZqC9p2EVh83t7dYNC8hkmnGUv3351iUSJukThQRcmXNtcT/Gw+9N/+iL+
XmFiZSLdfwe7f5pZa0wtHjARcE/KQJndb/tPZ7/zPGPi7+WG0j+ObL3Nvz6X
n8/EqCJjdTpbL0OGJ/1XNDIR/7uImcTWl7Bb9rI3XUxcOkrXnbQigTiO6HPD
7Ps4urk2nmLXM5CaVsXDgvntTH1ZCxI6QeNNPposiFw5ea7ZkIRLJizlDVm4
bnMgVm0/ex5a7vZ/Mmfhz5iCvP8+ElMbd81tc2fhd61Ebxl7np6UXZUZyGDh
Zv3lJxwKJOr6ml/GFLFwVOld8105Eiw+ivreahaeTmio8bHn1/g4zfhxDwvJ
9k+H89aR+D29yvPI2mkcPiVydoCbBEXCZnGRMo0eeVe/0gUaDuoWhGapTiP0
yiVH7zkankUfe8J7YBrKGsv4Xk3QcGRbMu1t0DRqbH9t2tpBQ9a57WKK9Gm4
11Iz3NJp6LhzI7VjYRoKLxW/L0umgef1F+WbAjPQO3Y8PyKeBsslV3R65Wdg
Mq57yJbtd7wpVRcenJ5B4MKGOWN3Gmy6TN9xf2DHbx+J0tvD9sNHvc5uX2dQ
VKXDxbudhnxLF/GegRlkCWu+KFeggbvzlk8p5ywGI8tDuMVpSO0o3eGmPguz
B9wxi/9qMfBZKuN7yiyeSDUJDr2rhVPzWFSJz28kJjiHtmvVwq3mhs1F+T/s
/4BFg5tsDfJcBY6uN/wHo2cHSl4sqULylfMjKhYcxPz8Pk/RTxUITPx7mDXG
Sahnvoz4O1sOjrYfRJkvNyGzRqC3jVaKTR723qYKS4itaR5qirTX6J9+YM5f
vpTYzffbcfFEIYx+OflHu/ESHZ4iKUKir3CwP0pRUpKPyK0rbhNUycNIlc11
MoufSDEx6H+tnwNlwS8SOlYriJQGnnYPy5fgw7R1N3Ml4Vv2rbZ15jn0xy1n
ZcxWE419GSqjuenoqLTjtNwqSHzbxjMo/OYZCkOqT0tNCxI3fNIb2zekwn6J
54/GRiFiY3rnG/HwFNi6XykUiF9DtEkkv1ijnYxtDoqNJtbCxDYfjwC1tUlo
EtrK77lHhCibvxKlOZaAN9mBj7ZyryVyBlgV5NLHuMKpcOjDt7WE76iirJdC
PPi6fQ1cCtYRpxNHFsSD4vArTfpeot96IsDIWlZiwwPc2yzKU2ImSiym8QjZ
FN1HVLw9zVpKjNi5//qLm8H3YHnvVKPAoBgxGKTlp+keg9+6z+YS324gdsvJ
bdhsFY2+X/u8K2+JE2qProt6uN9Firbqho/WEsS1v44WdsFRyAr2FHRQkiS2
fL73RNntDm6Z2RpzT0sSlpubswrmI7GzO/n5rY8biYsysYXSQRGI2/Io66Ox
FOHWq+e9XCsc1yoi44xLpIip8lTjInooDmwwe1YvK00ELdm3P6MqBHtdaCcE
Q6WJUyYd7bxlt5AobiP7YVqa+KlCkzfJvQnZqvTYgydkiEvlYq9ZNcGIUqpU
aH0rQ6TA4b/c8RuwZ/K01ClQCKnQmVfM1Tdgk8eQCr1DIfbWBdOW/heEC4FH
/xrdpRDtcb4D5cZB8Dxa0C4Qw44f9+jyNAhCyLTn7ahYCpGacGz/0N4gZO+Z
m3+QQCFkJH6va1cLwtz7xS9pLyiEQ0fn+W6xIES1CkRW0yiE84zTQNBgIOKf
Op+7WUchrgbwa5n1B+KpR6OOQQOFcLL/flq+NxBFa6P+NDRSiF1BvPyNnYHo
tlxzru0zhQhSoU/LNgZCvk9U52cfhXj7Pazzd0EgVAp8JVN/UYhuMcu+L3mB
0Ajumjs7SCGWp0oUFmYHwkQ+IXd4hEJ8o3vme2YEwv28lCSdTiEWv25csfgo
EH5aAXP5TArBJ6Zn3hcXiOAVPz95TFMIno1G9uT9QMTlPA3//ZtC3KaOfr13
JxAp13kcSv9QiL7r3Np+EYF4cfjsPr+/FCKynXnWLjQQBTK1EtQFChES72t6
4GYg3jI3zbENjpjQMudVDwrE/wAu0ux3
       "]]},
     Annotation[#, "Charting`Private`Tag$110494#3"]& ]}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0., 9.999999795918367}, {0, 0.5}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {0, 0}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.756231711524808*^9, 3.756231750689517*^9}, {
  3.756231781011859*^9, 3.756231790917742*^9}, {3.756232276468837*^9, 
  3.756232304978105*^9}, {3.7562326595094976`*^9, 3.7562326879476357`*^9}, {
  3.756232888417676*^9, 3.7562328989193087`*^9}, {3.7562346342844067`*^9, 
  3.7562346393504267`*^9}},
 CellLabel->"Out[98]=",ExpressionUUID->"27b35305-56be-4114-ac78-77463220cbbb"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Integrate", "[", 
  RowBox[{
   FractionBox[
    RowBox[{
     RowBox[{"Xp", "/", 
      RowBox[{"(", 
       RowBox[{"1", "+", 
        SuperscriptBox["Xp", "b"]}], ")"}]}], " ", 
     RowBox[{"Exp", "[", 
      RowBox[{
       RowBox[{"-", "A"}], "/", "Xp"}], "]"}]}], 
    RowBox[{"Xp", "+", "X"}]], ",", 
   RowBox[{"{", 
    RowBox[{"Xp", ",", "0", ",", "\[Infinity]"}], "}"}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"X", ">", "0"}], ",", 
      RowBox[{"A", ">", "0"}], ",", 
      RowBox[{"b", ">", "2"}]}], "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.756231860166916*^9, 3.756231900342329*^9}, {
  3.7562319314647617`*^9, 3.756231932087323*^9}, {3.756232066946086*^9, 
  3.756232113130064*^9}, {3.756234554175756*^9, 3.756234558100246*^9}, {
  3.756234645649914*^9, 3.756234651287368*^9}},
 CellLabel->"In[99]:=",ExpressionUUID->"79574766-1a43-4bf7-9635-4149f940d556"],

Cell[BoxData[
 RowBox[{"Integrate", "[", 
  RowBox[{
   FractionBox[
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{"-", 
       FractionBox["A", "Xp"]}]], " ", "Xp"}], 
    RowBox[{
     RowBox[{"(", 
      RowBox[{"X", "+", "Xp"}], ")"}], " ", 
     RowBox[{"(", 
      RowBox[{"1", "+", 
       SuperscriptBox["Xp", "b"]}], ")"}]}]], ",", 
   RowBox[{"{", 
    RowBox[{"Xp", ",", "0", ",", "\[Infinity]"}], "}"}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"X", ">", "0"}], ",", 
      RowBox[{"A", ">", "0"}], ",", 
      RowBox[{"b", ">", "2"}]}], "}"}]}]}], "]"}]], "Output",
 CellChangeTimes->{
  3.756231902637813*^9, 3.756231937047072*^9, {3.756232075688158*^9, 
   3.756232105208271*^9}, 3.756234546044178*^9, 3.756234585393394*^9, 
   3.756234663349443*^9},
 CellLabel->"Out[99]=",ExpressionUUID->"eb280c9f-1110-41a0-9025-ba02fef63b8f"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{
     FractionBox[
      RowBox[{
       SuperscriptBox["\[ExponentialE]", 
        RowBox[{
         RowBox[{"-", "\[ImaginaryI]"}], " ", "A"}]], " ", 
       RowBox[{"(", 
        RowBox[{"\[Pi]", "+", 
         RowBox[{
          SuperscriptBox["\[ExponentialE]", 
           RowBox[{"2", " ", "\[ImaginaryI]", " ", "A"}]], " ", "\[Pi]"}], 
         "-", 
         RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", "X"}], "+", 
         RowBox[{"\[ImaginaryI]", " ", 
          SuperscriptBox["\[ExponentialE]", 
           RowBox[{"2", " ", "\[ImaginaryI]", " ", "A"}]], " ", "\[Pi]", " ", 
          "X"}], "+", 
         RowBox[{
          SuperscriptBox["\[ExponentialE]", 
           RowBox[{"2", " ", "\[ImaginaryI]", " ", "A"}]], " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{"-", "\[ImaginaryI]"}], "+", "X"}], ")"}], " ", 
          RowBox[{"ExpIntegralEi", "[", 
           RowBox[{
            RowBox[{"-", "\[ImaginaryI]"}], " ", "A"}], "]"}]}], "+", 
         RowBox[{
          RowBox[{"(", 
           RowBox[{"\[ImaginaryI]", "+", "X"}], ")"}], " ", 
          RowBox[{"ExpIntegralEi", "[", 
           RowBox[{"\[ImaginaryI]", " ", "A"}], "]"}]}], "-", 
         RowBox[{"2", " ", 
          SuperscriptBox["\[ExponentialE]", 
           RowBox[{"A", " ", 
            RowBox[{"(", 
             RowBox[{"\[ImaginaryI]", "+", 
              FractionBox["1", "X"]}], ")"}]}]], " ", "X", " ", 
          RowBox[{"ExpIntegralEi", "[", 
           RowBox[{"-", 
            FractionBox["A", "X"]}], "]"}]}]}], ")"}]}], 
      RowBox[{"2", " ", 
       RowBox[{"(", 
        RowBox[{"1", "+", 
         SuperscriptBox["X", "2"]}], ")"}]}]], "/.", 
     RowBox[{"A", "\[Rule]", "2"}]}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"X", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.756231954200506*^9, 3.756231959967703*^9}, {
  3.756231990513883*^9, 3.756232026968809*^9}, {3.7562346030827417`*^9, 
  3.756234614407552*^9}},
 CellLabel->"In[96]:=",ExpressionUUID->"f649aa49-5afa-4daf-aacd-27f69f6b3b1a"],

Cell[BoxData[
 TemplateBox[{
  "General","munfl",
   "\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"9799.398928374116`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"",2,96,109,
   31079175122089511229,"Local"},
  "MessageTemplate"]], "Message", "MSG",
 CellChangeTimes->{
  3.756231960216709*^9, {3.7562319908587103`*^9, 3.756232027168392*^9}, 
   3.756234614849684*^9},
 CellLabel->
  "During evaluation of \
In[96]:=",ExpressionUUID->"ceffc3ae-0814-438c-9ff0-eda2f03c7ff8"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV0ns803scx/Eh8Rg6LgkJ4ycKkU6dKHy+pVKoI3I6SXWsjFMiZR5FqaZC
osW6SMyi0pHr0Tmh8NuFMWaMjY1TWY5H0sVlNJTj/PF+vB7P/9/W5JjAcHUC
gXBgYf83L4m82PVYupeePHr9zbQ+4IpJ/vtJv8MBnVDez7Q+mG+qTyaRzsFx
tSebTBP7IK8xw0qTlAbVbHStMaoPojypJ6etcmAy9Vx+VEAfiGcjGV+snkKy
tkMpZtYHWvJB+49WNSA0tbNjlfcCq5UZ+8GqBSgrBt3NPklh8t5zh9c3WmC2
0itweFgKOyIEii5VC9hoqzTq3kphVGM6uFbcCk6BF4lneqTg5rlnU1pKGxif
2pZu+0oKovI5dfvPHSDM6VVeyZDCxVYnX9cjYphcW5bzzVUKZeVp8ihnGeRo
TVLtUiUwYjhywzdMBkx6v0lMsgTs4329VjFksM21cKY2SQIFHjoshUoGLsqw
2FCqBLJablBCeHJYJ2sq4ZElEK+4OeYTOgD+u36oWuMlAaaOINlg+xuIuz7D
cpvugQjozBk9rYAfs89ei4/tgeih1YrqsvegnRQSqH6tG4jWV+xfu32B8UCZ
aPCxGDL1BQ6s3yagaMWWl7mfuoAs39eg0TYFvYfT48Y2d0Es7wo5xn4G/ILs
3AzzO6HylG6Q6a5vYOXFW/nRpBNYiSdG1u4nIMbug5SCLBHQmHN7J0fV0NbM
PwK1SSIgiN+glwkayHxq++34mA6wi6Oc3eegiQqSmRsnHgjhnfLuLzqvFiPi
0yR6yVA7+A4dv5AVq40KGjwv1zq2w553dEdLSyJK+GxIrLrUBiMc8iV+qQ7a
dprNPjEiAGcDiYX3ET1UVXVpICVAAERQhvVPLEHjpqVuxfxW8PkYMm0TrI96
jLmpJM9W6GUfUwtxMkD+46WaW+pa4Hkq9zBJaYBOTXn/NOqz8AtN6huh0BAF
FZooa0R8OHo68bnufSN03c74BY3CB5cIR6F/2FJk+F58oUWdDx2GTjpUd2NU
v5Ib7pLbDHVltFwnjWXI3Pskn+bVDIlqDgFtA8tQ/jv5nM0/TUDsT9gZXW2C
CgmvtA4lN8HQY2sG87wpcrEekw27NgFjldmimmAzlO2e6d/XzwP6fUpzGGk5
kjRQHX6l8yCEcUioO7wcqRubVv/rw4Ov2x6pmPXmyGi8gfNtlguKoa1n2Skr
kFOu1tvMv7nw0NPVvD3MAnGCi2U9MVwovUo1iFhjieai5Zv1XLiQEnzUT0Np
iZZm4azEMQ5s6Gc9TWm3Qhbnnk9xKjhwb3VuabsfCb0JPUTcEM+Bi40Z9/xq
SChltHFnsRsHdpsHP2q1tUZ5MzyG/nc2bIluPmiQZo3SWN3d03w2MFeQbduU
1ij/durxRbfYYMt5cmfPQRv0gnyI7HGYDfQ1bIeuehsUP/AsBF/DBsrEos4W
BwyJJASXjBkcyJXjpLSbGBpfJ0pZ3IZDFC1ozvcWhswNas+4C3CgBlVLdbMx
FDBaFx/VikOqkppJv4Mhn7gpvIuPQ5m7avZuHoZK1TqiCng4qPB5yeMSDMVQ
g/RRAw70Lt0MbjOGviuWxNKrcLhfeDLyWguGEm0aNjZV4lAYJ/TeKcBQsz/B
eK4Ch7+W0WcEQgwVCWyNIstx6A8xihT3YEjnIs1iyzMc7BVm3oMKDNWxJinT
j3BYW51gWTSEIWcFh+G84E1X5arwYQx9th/sDS/Cwd8+r+L9CIb8KLOF3Q9x
OH2CZDk2hqEd+c7b/2TicN7jsqpqAkNUmcbKD/k4XNUb7I5TYmh9upY5tuB7
5YXpX79iqH/Z9V3ZD3B4eGlRRO0Mhh7ICDRBLg4le8O3np/DEPPdbZHGgqtt
miy8vmNo0HH7Bo/7ONRP2Knm5zFEKyZWxOXg8B9q37LG
       "]]},
     Annotation[#, "Charting`Private`Tag$110376#1"]& ]}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0.13749559970648667`},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 10}, {0.13749559970648667`, 0.39902095909512597`}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{
  3.7562319602548447`*^9, {3.756231990897192*^9, 3.756232027260557*^9}, 
   3.756234614866877*^9},
 CellLabel->"Out[96]=",ExpressionUUID->"9430d860-e877-483a-a503-ac9a375923a9"]
}, Open  ]],

Cell[BoxData[
 RowBox[{"ClearAll", "[", "g", "]"}]], "Input",
 CellChangeTimes->{{3.7563220409420137`*^9, 3.756322051453816*^9}},
 CellLabel->
  "In[202]:=",ExpressionUUID->"275e1cde-4322-42fc-b96d-b8c290d08a97"],

Cell[BoxData[
 RowBox[{"ClearAll", "[", "f", "]"}]], "Input",
 CellChangeTimes->{{3.7563220527193403`*^9, 3.756322054341959*^9}},
 CellLabel->
  "In[205]:=",ExpressionUUID->"7e5cacfd-96c7-42b0-84ac-b1c6274eb93b"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"f", "[", "x", "]"}], "=", 
  RowBox[{"g", "[", 
   RowBox[{"y", "[", "x", "]"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.756322055271574*^9, 3.7563220768786497`*^9}},
 CellLabel->
  "In[204]:=",ExpressionUUID->"3c3e4784-c7cf-4706-a7ae-1a06fc5548dc"],

Cell[BoxData[
 RowBox[{"g", "[", 
  RowBox[{"y", "[", "x", "]"}], "]"}]], "Output",
 CellChangeTimes->{3.75632207729678*^9},
 CellLabel->
  "Out[204]=",ExpressionUUID->"d2b747c5-0f1b-410b-9ffb-6b6d5a3cd838"]
}, Open  ]],

Cell[TextData[{
 "Let yp=y(xp). Then dyp = y\[CloseCurlyQuote](xp) dxp, ",
 Cell[BoxData[
  FormBox[
   RowBox[{"xp", "=", 
    RowBox[{
     SuperscriptBox["y", 
      RowBox[{"-", "1"}]], "(", "yp", ")"}]}], TraditionalForm]],
  FormatType->"TraditionalForm",ExpressionUUID->
  "3dfa29c8-051f-4d5f-80bb-ba2819813199"]
}], "Text",
 CellChangeTimes->{{3.756323269658092*^9, 
  3.7563233387889557`*^9}},ExpressionUUID->"06da8123-c2af-49e5-a57f-\
97e24bfe5b8b"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "\[Pi]"], 
  RowBox[{
   SubsuperscriptBox["\[Integral]", 
    RowBox[{"-", "\[Infinity]"}], "0"], 
   RowBox[{
    FractionBox[
     RowBox[{"Im", "[", 
      RowBox[{"g", "[", "xp", "]"}], "]"}], 
     RowBox[{"y", "-", "xp"}]], 
    RowBox[{"\[DifferentialD]", "xp"}]}]}]}]], "Input",
 CellChangeTimes->{{3.756323386044703*^9, 
  3.756323418861184*^9}},ExpressionUUID->"95b365fa-df4b-483a-a1b3-\
5cf02317570f"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "\[Pi]"], 
  RowBox[{
   SubsuperscriptBox["\[Integral]", 
    RowBox[{"-", "\[Infinity]"}], "0"], 
   RowBox[{
    FractionBox[
     RowBox[{"Im", "[", 
      RowBox[{"g", "[", "yp", "]"}], "]"}], 
     RowBox[{"x", "-", 
      RowBox[{
       SuperscriptBox["y", 
        RowBox[{"-", "1"}]], "[", "yp", "]"}]}]], 
    FractionBox["1", 
     RowBox[{
      RowBox[{"y", "'"}], "[", 
      RowBox[{
       SuperscriptBox["y", 
        RowBox[{"-", "1"}]], "[", "yp", "]"}], "]"}]], 
    RowBox[{"\[DifferentialD]", "yp"}]}]}]}]], "Input",
 CellChangeTimes->{{3.756322092880144*^9, 3.756322131367614*^9}, {
   3.7563223144507027`*^9, 3.756322353539707*^9}, {3.7563223853722353`*^9, 
   3.756322427972773*^9}, {3.756322491221879*^9, 3.7563224929341288`*^9}, {
   3.756322629592431*^9, 3.756322630912422*^9}, 3.7563227764983797`*^9, {
   3.756323198873953*^9, 3.756323218473778*^9}, {3.756323344548374*^9, 
   3.756323368324808*^9}},ExpressionUUID->"7bcba897-ba3b-4b3c-98b8-\
268ff5d9bcac"],

Cell[BoxData[
 RowBox[{"Series", "[", 
  RowBox[{
   FractionBox[
    RowBox[{"Im", "[", 
     RowBox[{"g", "[", "y", "]"}], "]"}], 
    RowBox[{"x", "-", 
     RowBox[{"y", " ", 
      RowBox[{"h", "[", "y", "]"}]}]}]], 
   RowBox[{"(", 
    RowBox[{"D", "[", 
     RowBox[{"y", "["}]}]}]}]}]], "Input",
 CellChangeTimes->{{3.756322653250744*^9, 3.756322654787459*^9}, {
  3.7563227470900183`*^9, 
  3.756322767658465*^9}},ExpressionUUID->"654d28e5-ccb0-4935-83ed-\
3a1ff8ed10fb"],

Cell[BoxData[
 RowBox[{
  RowBox[{"\[CapitalGamma]", "[", 
   RowBox[{"m_", ",", "h_"}], "]"}], ":=", 
  RowBox[{
   FractionBox[
    RowBox[{"\[Sigma]", " ", "h"}], 
    RowBox[{"2", " ", "\[Pi]"}]], 
   RowBox[{"Exp", "[", 
    RowBox[{"-", 
     FractionBox[
      RowBox[{"\[Pi]", " ", 
       SuperscriptBox["m", "2"]}], 
      RowBox[{"2", " ", "\[Sigma]", " ", "h"}]]}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.763208042046925*^9, 3.7632080794367456`*^9}},
 CellLabel->"In[1]:=",ExpressionUUID->"115bf7c3-d098-4d8b-a159-1af2e3115a49"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Series", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"\[CapitalGamma]", "[", 
     RowBox[{
      SuperscriptBox[
       RowBox[{"f", "[", "h", "]"}], "2"], ",", 
      RowBox[{
       SuperscriptBox[
        RowBox[{"g", "[", "h", "]"}], "2"], 
       RowBox[{"h", "/", 
        RowBox[{"(", 
         RowBox[{"2", " ", "\[Sigma]"}], ")"}]}]}]}], "]"}], "/", 
    RowBox[{"Exp", "[", 
     RowBox[{
      RowBox[{"-", "\[Pi]"}], " ", 
      RowBox[{
       SuperscriptBox[
        RowBox[{"f", "[", "0", "]"}], "4"], "/", 
       RowBox[{"(", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"g", "[", "0", "]"}], "2"], "h"}], ")"}]}]}], "]"}]}], ",", 
   
   RowBox[{"{", 
    RowBox[{"h", ",", "0", ",", "3"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.76320812768954*^9, 3.763208145477357*^9}, {
   3.76320844930233*^9, 3.763208471203129*^9}, {3.763224977410864*^9, 
   3.7632251578996696`*^9}, 3.7632252153766127`*^9},
 CellLabel->"In[78]:=",ExpressionUUID->"ee8647e1-7d5f-4307-ad48-444a1bce2dc1"],

Cell[BoxData[
 InterpretationBox[
  RowBox[{
   FractionBox[
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      FractionBox[
       RowBox[{"2", " ", "\[Pi]", " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           RowBox[{"-", "2"}], " ", 
           SuperscriptBox[
            RowBox[{"f", "[", "0", "]"}], "3"], " ", 
           RowBox[{"g", "[", "0", "]"}], " ", 
           RowBox[{
            SuperscriptBox["f", "\[Prime]",
             MultilineFunction->None], "[", "0", "]"}]}], "+", 
          RowBox[{
           SuperscriptBox[
            RowBox[{"f", "[", "0", "]"}], "4"], " ", 
           RowBox[{
            SuperscriptBox["g", "\[Prime]",
             MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
       SuperscriptBox[
        RowBox[{"g", "[", "0", "]"}], "3"]]], " ", 
     SuperscriptBox[
      RowBox[{"g", "[", "0", "]"}], "2"], " ", "h"}], 
    RowBox[{"4", " ", "\[Pi]"}]], "-", 
   RowBox[{
    FractionBox["1", 
     RowBox[{"4", " ", 
      RowBox[{"(", 
       RowBox[{"\[Pi]", " ", 
        SuperscriptBox[
         RowBox[{"g", "[", "0", "]"}], "2"]}], ")"}]}]], 
    RowBox[{
     RowBox[{"(", 
      RowBox[{
       SuperscriptBox["\[ExponentialE]", 
        FractionBox[
         RowBox[{"2", " ", "\[Pi]", " ", 
          RowBox[{"(", 
           RowBox[{
            RowBox[{
             RowBox[{"-", "2"}], " ", 
             SuperscriptBox[
              RowBox[{"f", "[", "0", "]"}], "3"], " ", 
             RowBox[{"g", "[", "0", "]"}], " ", 
             RowBox[{
              SuperscriptBox["f", "\[Prime]",
               MultilineFunction->None], "[", "0", "]"}]}], "+", 
            RowBox[{
             SuperscriptBox[
              RowBox[{"f", "[", "0", "]"}], "4"], " ", 
             RowBox[{
              SuperscriptBox["g", "\[Prime]",
               MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
         SuperscriptBox[
          RowBox[{"g", "[", "0", "]"}], "3"]]], " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"6", " ", "\[Pi]", " ", 
          SuperscriptBox[
           RowBox[{"f", "[", "0", "]"}], "2"], " ", 
          SuperscriptBox[
           RowBox[{"g", "[", "0", "]"}], "2"], " ", 
          SuperscriptBox[
           RowBox[{
            SuperscriptBox["f", "\[Prime]",
             MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
         RowBox[{"2", " ", 
          SuperscriptBox[
           RowBox[{"g", "[", "0", "]"}], "3"], " ", 
          RowBox[{
           SuperscriptBox["g", "\[Prime]",
            MultilineFunction->None], "[", "0", "]"}]}], "-", 
         RowBox[{"8", " ", "\[Pi]", " ", 
          SuperscriptBox[
           RowBox[{"f", "[", "0", "]"}], "3"], " ", 
          RowBox[{"g", "[", "0", "]"}], " ", 
          RowBox[{
           SuperscriptBox["f", "\[Prime]",
            MultilineFunction->None], "[", "0", "]"}], " ", 
          RowBox[{
           SuperscriptBox["g", "\[Prime]",
            MultilineFunction->None], "[", "0", "]"}]}], "+", 
         RowBox[{"3", " ", "\[Pi]", " ", 
          SuperscriptBox[
           RowBox[{"f", "[", "0", "]"}], "4"], " ", 
          SuperscriptBox[
           RowBox[{
            SuperscriptBox["g", "\[Prime]",
             MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
         RowBox[{"2", " ", "\[Pi]", " ", 
          SuperscriptBox[
           RowBox[{"f", "[", "0", "]"}], "3"], " ", 
          SuperscriptBox[
           RowBox[{"g", "[", "0", "]"}], "2"], " ", 
          RowBox[{
           SuperscriptBox["f", "\[Prime]\[Prime]",
            MultilineFunction->None], "[", "0", "]"}]}], "-", 
         RowBox[{"\[Pi]", " ", 
          SuperscriptBox[
           RowBox[{"f", "[", "0", "]"}], "4"], " ", 
          RowBox[{"g", "[", "0", "]"}], " ", 
          RowBox[{
           SuperscriptBox["g", "\[Prime]\[Prime]",
            MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], ")"}], 
     " ", 
     SuperscriptBox["h", "2"]}]}], "+", 
   RowBox[{
    FractionBox["1", 
     RowBox[{"4", " ", "\[Pi]"}]], 
    RowBox[{
     RowBox[{"(", 
      RowBox[{
       RowBox[{
        SuperscriptBox["\[ExponentialE]", 
         FractionBox[
          RowBox[{"2", " ", "\[Pi]", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{
              RowBox[{"-", "2"}], " ", 
              SuperscriptBox[
               RowBox[{"f", "[", "0", "]"}], "3"], " ", 
              RowBox[{"g", "[", "0", "]"}], " ", 
              RowBox[{
               SuperscriptBox["f", "\[Prime]",
                MultilineFunction->None], "[", "0", "]"}]}], "+", 
             RowBox[{
              SuperscriptBox[
               RowBox[{"f", "[", "0", "]"}], "4"], " ", 
              RowBox[{
               SuperscriptBox["g", "\[Prime]",
                MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
          SuperscriptBox[
           RowBox[{"g", "[", "0", "]"}], "3"]]], " ", 
        RowBox[{"(", 
         RowBox[{
          SuperscriptBox[
           RowBox[{
            SuperscriptBox["g", "\[Prime]",
             MultilineFunction->None], "[", "0", "]"}], "2"], "+", 
          RowBox[{
           RowBox[{"g", "[", "0", "]"}], " ", 
           RowBox[{
            SuperscriptBox["g", "\[Prime]\[Prime]",
             MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], "+", 
       RowBox[{"2", " ", 
        SuperscriptBox["\[ExponentialE]", 
         FractionBox[
          RowBox[{"2", " ", "\[Pi]", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{
              RowBox[{"-", "2"}], " ", 
              SuperscriptBox[
               RowBox[{"f", "[", "0", "]"}], "3"], " ", 
              RowBox[{"g", "[", "0", "]"}], " ", 
              RowBox[{
               SuperscriptBox["f", "\[Prime]",
                MultilineFunction->None], "[", "0", "]"}]}], "+", 
             RowBox[{
              SuperscriptBox[
               RowBox[{"f", "[", "0", "]"}], "4"], " ", 
              RowBox[{
               SuperscriptBox["g", "\[Prime]",
                MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
          SuperscriptBox[
           RowBox[{"g", "[", "0", "]"}], "3"]]], " ", "\[Pi]", " ", 
        RowBox[{"g", "[", "0", "]"}], " ", 
        RowBox[{
         SuperscriptBox["g", "\[Prime]",
          MultilineFunction->None], "[", "0", "]"}], " ", 
        RowBox[{"(", 
         RowBox[{
          FractionBox[
           RowBox[{"8", " ", 
            SuperscriptBox[
             RowBox[{"f", "[", "0", "]"}], "3"], " ", 
            RowBox[{
             SuperscriptBox["f", "\[Prime]",
              MultilineFunction->None], "[", "0", "]"}], " ", 
            RowBox[{
             SuperscriptBox["g", "\[Prime]",
              MultilineFunction->None], "[", "0", "]"}]}], 
           SuperscriptBox[
            RowBox[{"g", "[", "0", "]"}], "3"]], "-", 
          FractionBox[
           RowBox[{"2", " ", 
            SuperscriptBox[
             RowBox[{"f", "[", "0", "]"}], "2"], " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"3", " ", 
               SuperscriptBox[
                RowBox[{
                 SuperscriptBox["f", "\[Prime]",
                  MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
              RowBox[{
               RowBox[{"f", "[", "0", "]"}], " ", 
               RowBox[{
                SuperscriptBox["f", "\[Prime]\[Prime]",
                 MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
           SuperscriptBox[
            RowBox[{"g", "[", "0", "]"}], "2"]], "-", 
          FractionBox[
           RowBox[{
            SuperscriptBox[
             RowBox[{"f", "[", "0", "]"}], "4"], " ", 
            RowBox[{"(", 
             RowBox[{
              RowBox[{"3", " ", 
               SuperscriptBox[
                RowBox[{
                 SuperscriptBox["g", "\[Prime]",
                  MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
              RowBox[{
               RowBox[{"g", "[", "0", "]"}], " ", 
               RowBox[{
                SuperscriptBox["g", "\[Prime]\[Prime]",
                 MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
           SuperscriptBox[
            RowBox[{"g", "[", "0", "]"}], "4"]]}], ")"}]}], "+", 
       RowBox[{
        FractionBox["1", "2"], " ", 
        SuperscriptBox["\[ExponentialE]", 
         FractionBox[
          RowBox[{"2", " ", "\[Pi]", " ", 
           RowBox[{"(", 
            RowBox[{
             RowBox[{
              RowBox[{"-", "2"}], " ", 
              SuperscriptBox[
               RowBox[{"f", "[", "0", "]"}], "3"], " ", 
              RowBox[{"g", "[", "0", "]"}], " ", 
              RowBox[{
               SuperscriptBox["f", "\[Prime]",
                MultilineFunction->None], "[", "0", "]"}]}], "+", 
             RowBox[{
              SuperscriptBox[
               RowBox[{"f", "[", "0", "]"}], "4"], " ", 
              RowBox[{
               SuperscriptBox["g", "\[Prime]",
                MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
          SuperscriptBox[
           RowBox[{"g", "[", "0", "]"}], "3"]]], " ", 
        SuperscriptBox[
         RowBox[{"g", "[", "0", "]"}], "2"], " ", 
        RowBox[{"(", 
         RowBox[{
          RowBox[{
           SuperscriptBox["\[Pi]", "2"], " ", 
           SuperscriptBox[
            RowBox[{"(", 
             RowBox[{
              FractionBox[
               RowBox[{"8", " ", 
                SuperscriptBox[
                 RowBox[{"f", "[", "0", "]"}], "3"], " ", 
                RowBox[{
                 SuperscriptBox["f", "\[Prime]",
                  MultilineFunction->None], "[", "0", "]"}], " ", 
                RowBox[{
                 SuperscriptBox["g", "\[Prime]",
                  MultilineFunction->None], "[", "0", "]"}]}], 
               SuperscriptBox[
                RowBox[{"g", "[", "0", "]"}], "3"]], "-", 
              FractionBox[
               RowBox[{"2", " ", 
                SuperscriptBox[
                 RowBox[{"f", "[", "0", "]"}], "2"], " ", 
                RowBox[{"(", 
                 RowBox[{
                  RowBox[{"3", " ", 
                   SuperscriptBox[
                    RowBox[{
                    SuperscriptBox["f", "\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
                  RowBox[{
                   RowBox[{"f", "[", "0", "]"}], " ", 
                   RowBox[{
                    SuperscriptBox["f", "\[Prime]\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
               SuperscriptBox[
                RowBox[{"g", "[", "0", "]"}], "2"]], "-", 
              FractionBox[
               RowBox[{
                SuperscriptBox[
                 RowBox[{"f", "[", "0", "]"}], "4"], " ", 
                RowBox[{"(", 
                 RowBox[{
                  RowBox[{"3", " ", 
                   SuperscriptBox[
                    RowBox[{
                    SuperscriptBox["g", "\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
                  RowBox[{
                   RowBox[{"g", "[", "0", "]"}], " ", 
                   RowBox[{
                    SuperscriptBox["g", "\[Prime]\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
               SuperscriptBox[
                RowBox[{"g", "[", "0", "]"}], "4"]]}], ")"}], "2"]}], "+", 
          RowBox[{"2", " ", "\[Pi]", " ", 
           RowBox[{"(", 
            RowBox[{
             FractionBox[
              RowBox[{"4", " ", 
               SuperscriptBox[
                RowBox[{"f", "[", "0", "]"}], "2"], " ", 
               RowBox[{
                SuperscriptBox["g", "\[Prime]",
                 MultilineFunction->None], "[", "0", "]"}], " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"3", " ", 
                  SuperscriptBox[
                   RowBox[{
                    SuperscriptBox["f", "\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}], "2"]}], "+", 
                 RowBox[{
                  RowBox[{"f", "[", "0", "]"}], " ", 
                  RowBox[{
                   SuperscriptBox["f", "\[Prime]\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
              SuperscriptBox[
               RowBox[{"g", "[", "0", "]"}], "3"]], "-", 
             FractionBox[
              RowBox[{"4", " ", 
               SuperscriptBox[
                RowBox[{"f", "[", "0", "]"}], "3"], " ", 
               RowBox[{
                SuperscriptBox["f", "\[Prime]",
                 MultilineFunction->None], "[", "0", "]"}], " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"3", " ", 
                  SuperscriptBox[
                   RowBox[{
                    SuperscriptBox["g", "\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}], "2"]}], "-", 
                 RowBox[{
                  RowBox[{"g", "[", "0", "]"}], " ", 
                  RowBox[{
                   SuperscriptBox["g", "\[Prime]\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
              SuperscriptBox[
               RowBox[{"g", "[", "0", "]"}], "4"]], "-", 
             FractionBox[
              RowBox[{"2", " ", 
               RowBox[{"f", "[", "0", "]"}], " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{"6", " ", 
                  SuperscriptBox[
                   RowBox[{
                    SuperscriptBox["f", "\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}], "3"]}], "+", 
                 RowBox[{"9", " ", 
                  RowBox[{"f", "[", "0", "]"}], " ", 
                  RowBox[{
                   SuperscriptBox["f", "\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}], " ", 
                  RowBox[{
                   SuperscriptBox["f", "\[Prime]\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}]}], "+", 
                 RowBox[{
                  SuperscriptBox[
                   RowBox[{"f", "[", "0", "]"}], "2"], " ", 
                  RowBox[{
                   SuperscriptBox["f", 
                    TagBox[
                    RowBox[{"(", "3", ")"}],
                    Derivative],
                    MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
              RowBox[{"3", " ", 
               SuperscriptBox[
                RowBox[{"g", "[", "0", "]"}], "2"]}]], "-", 
             FractionBox[
              RowBox[{
               SuperscriptBox[
                RowBox[{"f", "[", "0", "]"}], "4"], " ", 
               RowBox[{"(", 
                RowBox[{
                 RowBox[{
                  RowBox[{"-", "12"}], " ", 
                  SuperscriptBox[
                   RowBox[{
                    SuperscriptBox["g", "\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}], "3"]}], "+", 
                 RowBox[{"9", " ", 
                  RowBox[{"g", "[", "0", "]"}], " ", 
                  RowBox[{
                   SuperscriptBox["g", "\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}], " ", 
                  RowBox[{
                   SuperscriptBox["g", "\[Prime]\[Prime]",
                    MultilineFunction->None], "[", "0", "]"}]}], "-", 
                 RowBox[{
                  SuperscriptBox[
                   RowBox[{"g", "[", "0", "]"}], "2"], " ", 
                  RowBox[{
                   SuperscriptBox["g", 
                    TagBox[
                    RowBox[{"(", "3", ")"}],
                    Derivative],
                    MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], 
              RowBox[{"3", " ", 
               SuperscriptBox[
                RowBox[{"g", "[", "0", "]"}], "5"]}]]}], ")"}]}]}], ")"}]}]}],
       ")"}], " ", 
     SuperscriptBox["h", "3"]}]}], "+", 
   InterpretationBox[
    SuperscriptBox[
     RowBox[{"O", "[", "h", "]"}], "4"],
    SeriesData[$CellContext`h, 0, {}, 1, 4, 1],
    Editable->False]}],
  SeriesData[$CellContext`h, 0, {
   Rational[1, 4] 
    E^(2 Pi $CellContext`g[
        0]^(-3) ((-2) $CellContext`f[0]^3 $CellContext`g[0] 
        Derivative[1][$CellContext`f][0] + $CellContext`f[0]^4 
        Derivative[1][$CellContext`g][0])) Pi^(-1) $CellContext`g[0]^2, 
    Rational[-1, 4] 
    E^(2 Pi $CellContext`g[
        0]^(-3) ((-2) $CellContext`f[0]^3 $CellContext`g[0] 
        Derivative[1][$CellContext`f][0] + $CellContext`f[0]^4 
        Derivative[1][$CellContext`g][0])) 
    Pi^(-1) $CellContext`g[0]^(-2) (
     6 Pi $CellContext`f[0]^2 $CellContext`g[0]^2 
      Derivative[1][$CellContext`f][0]^2 - 2 $CellContext`g[0]^3 
     Derivative[1][$CellContext`g][0] - 8 
     Pi $CellContext`f[0]^3 $CellContext`g[0] 
     Derivative[1][$CellContext`f][0] Derivative[1][$CellContext`g][0] + 
     3 Pi $CellContext`f[0]^4 Derivative[1][$CellContext`g][0]^2 + 
     2 Pi $CellContext`f[0]^3 $CellContext`g[0]^2 
      Derivative[2][$CellContext`f][0] - 
     Pi $CellContext`f[0]^4 $CellContext`g[0] 
     Derivative[2][$CellContext`g][0]), Rational[1, 4] 
    Pi^(-1) (E^(2 
        Pi $CellContext`g[0]^(-3) ((-2) $CellContext`f[0]^3 $CellContext`g[0] 
          Derivative[1][$CellContext`f][0] + $CellContext`f[0]^4 
          Derivative[1][$CellContext`g][0])) (
       Derivative[1][$CellContext`g][0]^2 + $CellContext`g[0] 
        Derivative[2][$CellContext`g][0]) + 
     2 E^(2 Pi $CellContext`g[
          0]^(-3) ((-2) $CellContext`f[0]^3 $CellContext`g[0] 
          Derivative[1][$CellContext`f][0] + $CellContext`f[0]^4 
          Derivative[1][$CellContext`g][0])) Pi $CellContext`g[0] 
      Derivative[1][$CellContext`g][0] (
       8 $CellContext`f[0]^3 $CellContext`g[0]^(-3) 
        Derivative[1][$CellContext`f][0] Derivative[1][$CellContext`g][0] - 
       2 $CellContext`f[0]^2 $CellContext`g[0]^(-2) (
        3 Derivative[1][$CellContext`f][0]^2 + $CellContext`f[0] 
         Derivative[2][$CellContext`f][0]) - $CellContext`f[
         0]^4 $CellContext`g[0]^(-4) (
        3 Derivative[1][$CellContext`g][0]^2 - $CellContext`g[0] 
        Derivative[2][$CellContext`g][0])) + 
     Rational[1, 2] 
      E^(2 Pi $CellContext`g[
          0]^(-3) ((-2) $CellContext`f[0]^3 $CellContext`g[0] 
          Derivative[1][$CellContext`f][0] + $CellContext`f[0]^4 
          Derivative[1][$CellContext`g][0])) $CellContext`g[0]^2 (
       Pi^2 (8 $CellContext`f[0]^3 $CellContext`g[0]^(-3) 
           Derivative[1][$CellContext`f][0] Derivative[1][$CellContext`g][0] - 
          2 $CellContext`f[0]^2 $CellContext`g[0]^(-2) (
           3 Derivative[1][$CellContext`f][0]^2 + $CellContext`f[0] 
            Derivative[2][$CellContext`f][0]) - $CellContext`f[
            0]^4 $CellContext`g[0]^(-4) (
           3 Derivative[1][$CellContext`g][0]^2 - $CellContext`g[0] 
           Derivative[2][$CellContext`g][0]))^2 + 
       2 Pi (4 $CellContext`f[0]^2 $CellContext`g[0]^(-3) 
          Derivative[1][$CellContext`g][0] (
           3 Derivative[1][$CellContext`f][0]^2 + $CellContext`f[0] 
            Derivative[2][$CellContext`f][0]) - 
         4 $CellContext`f[0]^3 $CellContext`g[0]^(-4) 
         Derivative[1][$CellContext`f][0] (
          3 Derivative[1][$CellContext`g][0]^2 - $CellContext`g[0] 
          Derivative[2][$CellContext`g][0]) + 
         Rational[-2, 3] $CellContext`f[0] $CellContext`g[0]^(-2) (
           6 Derivative[1][$CellContext`f][0]^3 + 
           9 $CellContext`f[0] Derivative[1][$CellContext`f][0] 
            Derivative[2][$CellContext`f][0] + $CellContext`f[0]^2 
            Derivative[3][$CellContext`f][0]) + 
         Rational[-1, 3] $CellContext`f[0]^4 $CellContext`g[0]^(-5) ((-12) 
            Derivative[1][$CellContext`g][0]^3 + 
           9 $CellContext`g[0] Derivative[1][$CellContext`g][0] 
            Derivative[2][$CellContext`g][0] - $CellContext`g[0]^2 
           Derivative[3][$CellContext`g][0]))))}, 1, 4, 1],
  Editable->False]], "Output",
 CellChangeTimes->{{3.763225044115782*^9, 3.7632250528350782`*^9}, {
   3.763225115733904*^9, 3.763225158729478*^9}, 3.763225216018067*^9},
 CellLabel->"Out[78]=",ExpressionUUID->"6c73d924-a33c-4c0b-9134-c418d0f230a0"]
}, Open  ]],

Cell[BoxData[""], "Input",
 CellChangeTimes->{{3.7632251331213627`*^9, 
  3.763225135482133*^9}},ExpressionUUID->"2dffb761-e25b-4268-83b9-\
0ff49aa646b4"],

Cell[BoxData[
 RowBox[{
  RowBox[{"int", "[", 
   RowBox[{"n_", ",", "m_"}], "]"}], ":=", 
  RowBox[{"Integrate", "[", 
   RowBox[{
    FractionBox[
     RowBox[{
      SuperscriptBox["x", "n"], " ", 
      RowBox[{"Exp", "[", 
       RowBox[{
        RowBox[{"-", "1"}], "/", "x"}], "]"}]}], 
     SuperscriptBox[
      RowBox[{"(", 
       RowBox[{"x", "+", "y"}], ")"}], "m"]], ",", 
    RowBox[{"{", 
     RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}], ",", 
    RowBox[{"Assumptions", "\[Rule]", 
     RowBox[{"{", 
      RowBox[{"y", ">", "0"}], "}"}]}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.763221462937625*^9, 3.7632215620936327`*^9}, {
  3.763221594449231*^9, 3.763221615383012*^9}, {3.763222060944474*^9, 
  3.763222070574812*^9}},
 CellLabel->"In[51]:=",ExpressionUUID->"12fc88f4-cb1b-43cb-a447-139b196f0433"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Integrate", "[", 
  RowBox[{
   SuperscriptBox["x", "2"], ",", "x", ",", "x", ",", "x"}], "]"}]], "Input",
 CellChangeTimes->{{3.763221707138867*^9, 3.763221719902907*^9}},
 CellLabel->"In[24]:=",ExpressionUUID->"e0b8e4c6-761f-4ffd-8a29-7e6a33ce40fa"],

Cell[BoxData[
 FractionBox[
  SuperscriptBox["x", "5"], "60"]], "Output",
 CellChangeTimes->{{3.763221716989985*^9, 3.763221720317008*^9}},
 CellLabel->"Out[24]=",ExpressionUUID->"8125dfdb-9536-4fc9-aaa7-a482977baa5d"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"test", "=", 
  RowBox[{"Simplify", "[", 
   RowBox[{
    RowBox[{"A", " ", 
     RowBox[{"int", "[", 
      RowBox[{"1", ",", "3"}], "]"}]}], "+", 
    RowBox[{"B", " ", 
     RowBox[{"Integrate", "[", 
      RowBox[{
       RowBox[{"int", "[", 
        RowBox[{"2", ",", "4"}], "]"}], ",", "y"}], "]"}]}]}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.763221645438252*^9, 3.763221677183313*^9}, {
  3.763221722586137*^9, 3.763221737344351*^9}, {3.7632218119317913`*^9, 
  3.763221812369815*^9}, {3.763221864303968*^9, 3.763221871555028*^9}, {
  3.763222056145197*^9, 3.763222083110484*^9}},
 CellLabel->"In[57]:=",ExpressionUUID->"63651aa3-bc00-4dbe-abb9-a75dd8756b7f"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   RowBox[{"y", " ", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"3", " ", "A", " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"-", "1"}], "+", "y"}], ")"}]}], "-", 
      RowBox[{"B", " ", "y"}]}], ")"}]}], "-", 
   RowBox[{
    SuperscriptBox["\[ExponentialE]", 
     FractionBox["1", "y"]], " ", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"3", " ", "A"}], "+", 
      RowBox[{"B", " ", "y", " ", 
       RowBox[{"(", 
        RowBox[{"1", "-", 
         RowBox[{"2", " ", "y"}], "+", 
         RowBox[{"2", " ", 
          SuperscriptBox["y", "2"]}]}], ")"}]}]}], ")"}], " ", 
    RowBox[{"ExpIntegralEi", "[", 
     RowBox[{"-", 
      FractionBox["1", "y"]}], "]"}]}]}], 
  RowBox[{"6", " ", 
   SuperscriptBox["y", "3"]}]]], "Output",
 CellChangeTimes->{{3.763221646768148*^9, 3.763221678100853*^9}, {
   3.763221731962682*^9, 3.7632217386403227`*^9}, 3.763221813832883*^9, 
   3.76322187448955*^9, {3.7632220579849167`*^9, 3.763222084186201*^9}, 
   3.763222146975143*^9},
 CellLabel->"Out[57]=",ExpressionUUID->"894f74ab-43fc-423d-80ca-312ad0f1dd00"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"test2", "=", 
  RowBox[{"Simplify", "[", 
   RowBox[{"Integrate", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{"-", "A"}], " ", 
       RowBox[{"int", "[", 
        RowBox[{"1", ",", "4"}], "]"}]}], "+", 
      RowBox[{"B", " ", 
       RowBox[{"int", "[", 
        RowBox[{"2", ",", "4"}], "]"}]}]}], ",", "y"}], "]"}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.7632220857669363`*^9, 3.763222125311212*^9}, {
  3.763222218811028*^9, 3.763222236881112*^9}},
 CellLabel->"In[69]:=",ExpressionUUID->"45d0c759-ab9c-453b-9bc7-c8a74f2ce56b"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   RowBox[{"y", " ", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"A", " ", 
       RowBox[{"(", 
        RowBox[{
         RowBox[{"-", "1"}], "+", "y"}], ")"}]}], "-", 
      RowBox[{"B", " ", "y"}]}], ")"}]}], "-", 
   RowBox[{
    SuperscriptBox["\[ExponentialE]", 
     FractionBox["1", "y"]], " ", 
    RowBox[{"(", 
     RowBox[{"A", "+", 
      RowBox[{"B", " ", "y", " ", 
       RowBox[{"(", 
        RowBox[{"1", "-", 
         RowBox[{"2", " ", "y"}], "+", 
         RowBox[{"2", " ", 
          SuperscriptBox["y", "2"]}]}], ")"}]}]}], ")"}], " ", 
    RowBox[{"ExpIntegralEi", "[", 
     RowBox[{"-", 
      FractionBox["1", "y"]}], "]"}]}]}], 
  RowBox[{"6", " ", 
   SuperscriptBox["y", "3"]}]]], "Output",
 CellChangeTimes->{{3.763222113929743*^9, 3.7632221494971447`*^9}, {
  3.76322222171766*^9, 3.763222239782604*^9}},
 CellLabel->"Out[69]=",ExpressionUUID->"89d2bb57-ca68-4528-98b5-4ffc4c09f17a"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Evaluate", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"test", ",", "test2"}], "}"}], "/.", 
     RowBox[{"{", 
      RowBox[{
       RowBox[{"A", "\[Rule]", "1"}], ",", 
       RowBox[{"B", "\[Rule]", "0.1"}], ",", 
       RowBox[{"CC", "\[Rule]", 
        RowBox[{"-", "0"}]}], ",", 
       RowBox[{"DD", "\[Rule]", "0"}]}], "}"}]}], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"y", ",", "0", ",", "100"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.76322181441158*^9, 3.763221999339964*^9}, {
  3.763222129553796*^9, 3.763222202179368*^9}},
 CellLabel->"In[70]:=",ExpressionUUID->"2ba91c24-8862-4f6c-82ed-0f40ef248826"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV13k4lF0bAHB6bZGyb0mEYRgMSSHvuSvJni3GWiLZikgqZc2+JITKWtaS
NfV5ZjAztigqUbZSociSJFvke96/nut3Xc911vu+zzkyp/2szmxhYWHZxsrC
8t/3SqXP0ayqLTB/XaUKKtuRoLeCoOjEFuhz4eYsi29HX2Y/uF7+/Q90NzaI
c31oQ+9SEutTtdlgWaexI/xJG+pS095afp0NmM4HLywmtaHaCxnVg+zsYBnl
VPMI2lDEb+NNHREOeJl4hzWmthVdzFyxsnbgAD2nhNHN1Fbkub+kxCePAwzV
+sV1/VuRxRVW8xwCJ6TPKSp/JLci6Y1nORtaXDAqNiiKsBYklHdmXjiEC+g9
/a5KeS2ICwnqqzZzAUuIStHjyBb0I/z8tMuxrXDostoPb7MW1MQmr0O344Yh
j38PWk4xUW1xb/LAPW7YO+JWnfiGiUoMwj/Pj3LDG9P2PIQxUUrccJyMJw/4
sT7YxZnMRM7b0t5HXt4G5beC2Bn7mcjiMVK+R9sGIGT9LkCWifTNZ0PrWHjB
Oi5QJXYHE5FSDQnjcbzwsq6isnuSgdYFNy8evbMdksNIbGn5DNTNq7WVzZkP
UpZ2dJAlGajXRCC75xofNO7M1OfezkAD8XOEOzl88FcX/KVYGGicvVRfdYQP
ND0mln+O09H6hmg4xZEf/uVPzpavoaMtBxe3y4bwQ0zPvNiTIjriuvo6d/Yu
PzAca1wuZtOR4FIcNXKIH4g7t5nHhNOR0tzqUoW9AHS+zirqt6IjMulddPAV
AciixnANHKMjLe9aocN3BEBn54ElNj06OvzVW+P9gAC8Y43VGVagI/uPw+dY
KYKwh14g8PxvM4rraRw/YSsEY+fHmRnezShl291A6UtC8Nya3VLPvhllGF/a
Mn1bCBJWFA3kDZtRfruqdHi/EEQURLBUEZrR06Z8x4c2wpAfxmuc9LUJTVRG
9P61EgGPG4eMbvs3oe8zzq6dASLQO9rvQDvdhOaVdObT00RAgle5RfBEE1ov
WeAl9orAuG7sNQudJiSU72ZkbSkKfweu18xwNKHDN4/SS4+LwUQBTV+4rBGF
Gz8p7z0vBq4t6pxyuY2oiV02fSNZDHRcyd9s0xqRzjUWD+uXYjDbZT1KuN6I
9npReTYNxSHBlGDvatOI5I6o29keloAmdk2Xfq5GdPpvPkS4SsCJsWCh6U0a
KmjYrlQRLgFWM8cv7FqmIUnyzDprswSYqQTGvZugIeFdpfcf6+6ElyfDA262
0hDHsuQc2z5JuGP4lfkihob0axPfq9lIQg4t7FlYGA1FnlujOwRKgnOOYL3x
ZRr6O/Y+vbpGEqzNnTPlvGlo+XWatpPqLnBkm28bNaehyYdc0XUKUiAepGKn
JUlDBI/g8x8NpKDl+GdZbREacpf5arfVQwqwwd2Pzflo6FNWi9LJIim4yknj
qGGjocEboa+5ZXaD0/4dN0znqOiM2hqvOq80eEkkfa1spSLT4dhiMSlpMH9c
b2LfTEWascJ6LGrSEOY91imMURHbKNn3lYU0dA/aybZWUdH9lLNd5zKkYYbH
YePHPSoane2LebhTBlJqdrbbBFNR+53TUmkkGVjF3Go5Aqmo8uh8/RU9GQja
eOfecZ6KQnN5JgxPyoDhXV63ix5UJGl2+Mi3+zIw+2tzKNiWiuwrqjZllfbA
vklG8uYBKgKKXhaP7h4QivoZE7+PihTZXqj+MtkDv/YdrditQUUrjl+dmef2
AI+v9ZSfMhVl8uyinarZA9m7h0xypKjorXfC5dwDsiBTKKbPyUlFmIgYX7SR
LLBEjU8dYcPnwywu9XWQhWDS2qMEVioKkGC8070mCwtf4/i01jHE17WsOdQs
C8WuXw+xLmDIjHjmp8gxOZDXbX9iOYqhtcQg6gdbOZhOczls+AFDZXPR0UUe
cpD9wEDNYBhDbE9KxDVi5OAZM3vI7j2GsH8nD5m1ycHvffvOvX6FIc/CFR6h
fjkYnU2c2uzGkDDb1ndD43KQ4PevhtZLDPl3Er092eQhbM517OlzDBFsfNKi
jsiDSkXPdw4mhvqehjgZW8sDla16zpuOoQjxJAK/mzzsWInU7m/C0MjHCiwv
Uh7GYNWdRsVQutfclwaGPDDHDdzf1mOIJezC3nlEADs1c2nRRxiq/Byx8fQ4
AZI4olIGyjHkqJ/Wcf0kAZbG/+eYX4ahp1vrHHnCCGAy0fPxYAmGfDMWowhN
BFB76inztBBDEsts5rPdBOApsZcuLMBQh72w2JMPBED69uK38jG0Z7dWxaEN
AgyequoMy8XQYHlwn9NBBWjW/3ck8w6GYrbF5cmaKoCk6H63smwMafple353
VAD1gJ+xTVkYStVsWA8OUYCQq2OhK7cxZNC8JpeOKYBuxrelwjQMLcrw/LDv
UgBSqC56fwtDhTd2NkgPKQBNqPM1H+51o4NmlasK0MfmX5p6E0O1fdeDOg8o
gpjN2g5mEr5/0e6nvxgpwm25tkRu3HlaJsf/OCjC9KjuE7tEDCVkixFVrivC
9WXHkc14DIUbbQobpCjC3a0LrQ64L61NbDmZrwg9N7aRsDgMuTnVjaQyFKHS
XdgoJhZDDrx3O8t7FeHhyPLkQgyGLJrCnzLHFCGX3WDYDfdBafPURXYijFw9
m2QVjSGh8ckjFGMi+E+Q112jMMR9+xX5giMRuJbZuecj8f0zeLorwZcIJ2be
ikbinimNWqamEIF7Q39bbQSGvlC8x/vyiSAucH/0OO6BrZZvZquJUHvUJ+ln
OIbafKQe7X5LBL66EVPATZNkzz4wToRvwYLms2H4+nRP37D8TQSx1t5/8nDn
qTW4RIkqwYEnu724cWd8yjfJUVSCgDx2zvZQfH1uxRyo11aC1FVZrWjcl35Z
C3xzVIKtQq3y23H7FulsbvoqQdQD5/731zF0+oTMjFioEjx+6LJYhJvCwTWo
flMJHkYkXQ3Cbf5srs24QAl0FpknjXDre/bXutUowYuVX/ekceuI0/KvMZXg
o6eCwp9rGCJ33U+6/VYJXLCrqwO4FULir1SOKwE3Js2D4ZYi+Xt0/FaCtwau
Nnm4hT7YWn/iUAbf7Xe6o3Fzp+jBqqgypBtr+/njZkFyKgJEZcgM61B3wb30
g1tCWUcZinU/8B7HPVPwk0PfRBmE3iusH8b9xXLgl5OTMjzZ5/lbG/fAluZP
QeeU4XNcwMJe3D11xd0pocqQKKA6Q8bd6p6Eld5UBu2pjOH/jAkHltILlKGC
Vtfw3/817fYZgzW475WH/ddeWTBELDCV4QxWSvivvzxFhfM8fcrQov2z1Ax3
xiCvo9yEMkT+GFp3xJ2QsHhMb0kZ5NVeSJ3DHa47rGnLSYJ76dqcEbgvzTBk
/MRIUNdZWZWF2ze3bHsckQRnHVv5a3CfNr/5p0CHBK0hcgrduCmbQZMNJiS4
+zZ+ahq3ebVTf68TCVbNm6148f3QFVCqYgsjAU+MCCsFdw+rQ2f3TRJcj+0I
DMd96mf8WGYBCWaUop0f4b7xekqUyCSB3eRIGBceHyJ0cY2FXhJMGwc91sFd
XmVkSh0jQWKyyEE/3D0p5eFm7Cqg28VxdhT3qdDBuyIiKhDxP/qKBB6PC+e2
1o8SVCBD2v4dBbeomdfUBUMV2L6WcGoY9ykeolVmogp87AiT/YPH+8Iaxfdk
jgr4NbvEGOL5ceN7XIziYxXwzyfxZuMu75zEsB4VSH0ZFaiH59dCbJnsKL8q
/LmjKl2I5+MNNsXfCtmqUBqYyPEcz1+RRbsdP8tU4bTu/ah9eL6XjcUSsQZV
qN/l9aEIdzfzm7PpsCqYahaLxOP1QSSitN1fSg3KWgzUzibg/W0QshuK1CBG
0Dn9UgpeD2ZtayPr1YDgEPYPC16vekZiXpq0q4G+z6ZAIu4F6leWj9/U4DFa
Zi1JxeNb761mhDAZ7IcLm+bwenj2T1puMYUM+5OyWp7j9TPDfKblyikyaJli
JSfx+kovPPrdzJMMdx47tC3jFjNc0VoKJkNcrewj5bsYep7h/Nogiwzu5R59
hTkYIqoq/jPZTwajzhcJbXi9nz7V6KlkrQ7T6enfhyow5Nf+bW+VmQbEpH5I
7GnD24cKH5KtBrBHaOTXt+PnKdX/QbmLBuioX03L7cBQddWqQJGfBkxlHuP3
78Tnk82zkH1LA46GROruxs/DSz5q1ZH9GsD38XxFUR+GrvEFk2yd98IWj64d
MI7HtwOH/IavJjgdERZwZ6cit44QD3VPLWg9c+avpSEVMTjFLX3sD8DnI2Xz
i8lUpM4fnjl1UQeWBJK3DwxT0alfeiRz34PgTdMOdJWnocK8Nsnl5H/h08Nk
ye1BNFSXojPcawXQ+OKHWDaThi5ieha5poegFKulz25tRM1dxQvxjofh1qu/
rSsnGpHXMe1GL8oRsPFo5k6514hyytTrfbz1YfXkwyTbiUZ061djhH/wUTh5
qy1XjNSEvj4MuuQZYABHHA3isnybUKtBWnZk5DEwfbtm9Km6CbEeH/pyM9wQ
yjltrCV/NCGWQ09ZC64YgazZs9OYEn5fF1026401BrJkyLvPXs3I38GNuRxl
AmT+6C3nHzSjzxGa7ui2KTQs06RtPzUjofQ7Q/GFZiBY65xpz0tHJXxKVzru
mcPEIc4Hv/D3ACNg91GFR8ch8+bO5wR9OsqTLpDUs7EA0/BEvzFnOmq8tsbi
+doCpn364zIv0ZGMCee6rJ0lfDL4IfsmlY6evCImDvZZgp/bsGNbGR0ltf8l
SztbQWhJcLc6k47SA6e8T41YgarYGY0Lg3R0TVhqxx57a+hXucXT9YOOyons
XRc/WcM0/IhK4mQgjkVWcYaLDUD/m02jXQxUSq4JzftmAx2qv+TdNRmIePqh
+ca5E8D6ZI9zgTEDDRs11J6YPgHTFyzG/7jg77EHV1VQoC2c1KaRSy8y0Eqd
5cE9C7aQ8WdV9kYcA23+L6A+5rwd0Ny8fpXeYyATssHRa7/tIOfQo4Yd1QzU
4azm5RNIAcpQsVM7k4EE3DypuUEU6Dqy7YB4CwO5eBbyvg6mwClRB15f3EsB
grWa1ygw5V1VzN/KQHJxy2sbNyiwQqUkO7UxUHhtc1JqJgVmDp7R/tnBQDqc
FtX1DRQg19hyi3Qz8PtP/JZJKgXOXbOQ88T9hp9pI9FEAcPXpgcw3J6Smquh
TAoUeFuYu/QwUJa62GHDFxT40H1Xo+QVAy06fno7NEIBva9LI5q9DASu4gTe
UQr4mVzPisGd6GF1GX3G5xMvaDqAe8+FVsmiCQrUfQh4EPKWgSxjys6cm6PA
x3+EeJh9DJST+PlZ/jwF3E3ImYL9DDSZKsHdu0ABIpvbzjO4w+8lVWot4+MR
2CHE9Y6BXha0sXitUiB6W0KsPW7Rkr9W9/5QQIgu9fsh7tOP9hd3b1Dgz99u
p3XcldX+y5ubFHh5N7vJ7D0D/R8Vzcrd
       "]], 
      LineBox[{{0.0306717920557554, 0.0593636206931928}, {
       0.030671792055785504`, 0.1771927695617559}}]},
     Annotation[#, "Charting`Private`Tag$137492#1"]& ], 
    TagBox[
     {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJwV1mk4lVsbB3BknmIb6ziiQXSIHQc5dN+lVELGbEplnssUQkIToUKSkjSg
VDx7b/Ow7R2pjOWQipMGQ6WQacv4Pu+Hda3r92Gt57n/677WtVTdjtt68vHw
8Dwnx//n9xIHZ3M7W2D8lFYJFjfBi5TOPdPeHVCY/V9HBusZjJ8VH44seg33
VNUlVLoa4VRDiQY3718wFvTQDeVtBFE+u4ATWd3Q0NeeIm/aANdwpngytQcW
54cUTa49hXWns38Fn30H0cd0i2/OcoCoM9Ybj+qF/DfvFCx8OPDS6EzVD+9+
MJ4wvXPBlw2PjGVi/y75CBM/Mjfp/KqHX70et8OKPoFxyZvCD2vqwTC6nM3M
/wxFnGmVABcWxK4W/jyR9wUiQ70N3R/UQWOV04otOQNw3OFcYOxyLYg6PVof
nDUIwwKnUvNcayEry8p7LHUYVCkZpzeZ1sAH/bzEzUlfISAu0H+MXQ3r3/x6
GHj2Gwj2+vQEmlUDIZv5YyRqBD4y6wd0vapghjkk8Vf4D6jpCDINWq4EEztD
bb/gn1AeMdWxL7cSmtN6g796j4HsgmWnxUgFJF6/9jKDOg7lb13c669XgKYP
OOuWjEOlZOE+X/MKCBFKiw4p+gXh+hIXLKvKQa5nqzhFfQIoe6vCxMLLobLg
cw49fwKuNjlwBPXLYWmXHms8bxK0V5WrjLPK4I7cf1ZXlKfgkiNn9uyFMtg5
eK5fO2cKto968t+3LYPksz08x7OmgXV0Ter4WClsto9Lk5Sbge6jJw/1cUqh
c53G2uL0GZALTElrzywFxYYo05+pXFi4buDnbFoKNenrulLEZsFC7Mn9p0ql
cNit1UMzaRYsb0ipt3OZcJ9X+bz/2d/grJUxEMNgwu7XTfJifHNwLuyXyVwa
E77nHS8sOj0HCbSa0fYQJlCR8+Jb1Dxor8gs2GbIhK6Vfk5Js/OQX6evWavE
hMh+ynf18AWwKZj74sDHBFash5hP8CJ4sVe3PXrFAPM6Iash72UYi5qhPohk
AHXZbVp+fBkWv5y7u8GdASkqR9rXGfOg1M8NgalWDAhzqz5h38iDKlwJ+8mN
DPBZ4fMyQJgXrRdfhH6QY8Ch+3J/nrPgxWdE06dUfgbsHApqLOvixY3ln3hX
DdDB8IKyYrsiH87aXz022EUHTfVW/6FDfFgivS7NsYkOMn4bZRQG+bCA8uAM
5REdBMW6vbQ1VuALbZvvVrl0mHuUUL07cAVOif6zSTGdDp9//ucaOb0CXRVZ
af9E0+HNpeSyK1v5sX5vy8XkIDo0a28VeXiKH5eLz87aedGBEXyVeCcggA1u
1APGdnQooOzgn9grgCmRxDs7czrcYI45il4SwKeDuyY7t9Mhftp82UheEG85
SEr+ptIh7NqsrZ2zILq3hYhkb6KDj0FBgX+uIAaPTF1MX0cH65O8VjlqQril
JKf4nDwddq4uuVPqJ4SziSH+J6XI+msOTbcWC6FUvsfHalE6qCxW5CzqC6PM
+F9hSjx0kM31HJeLFkYxt2dZBvMECIPMzs31wmjWfyjq2gwBC/3sLLMVIih3
KaZPf4KAsbhjI4d3i2Bvtl+m/CgBn1WVICJZBMW4sum63wl48/Rl+uUOEXyR
Jt6VPEQAi3+DEdtRFG/o3Lo81E8AI78z9e1NUdwlqeI/2EdAgVncp/F+UeTu
VLBSfE/AjWGtv0XWi+FEaFfGqR4CLiX2Jqr6iGG7BRbKdBOQoJHUt/WxGJpl
afC96yQgvFlfx3ZcDLUCbmm2viLAz3/gjJ+eOE6u2lM70k6Ai3h6T0KkOO7V
/mCn30aA9RP462atOD7USb1b1ELATqufsUweCbQ5H+q+u5kAw7EbnS07JdDH
YI2L2EsCNK/sURtIlECUlHGdfk6ACnXm5EKrBCq9sNnHT1q2816brLQkfpsd
5TVoIvMLtVHVcpDEn9b5YSnPyPxklsN2ZUtiLTc4ZwXp8dLHL1z+k8SgUr3o
m40EDDg4K4WrrsTO2/Z/2JF+OyMUdMlzJaqq+l7WIN2SVdZQ8HAlKs4N/fqT
NMvQXaH+50rM2/TaQ5v0u4DEshFFKcyOCJR2IW1ncqSfaySFbPeFjQWk2yT0
RfhdpHBvQFi/CPn9zn2U6+0xUthTcd8plvTbpFG17BwpvHJx9rkw+f8fnjeX
uddKoa93VOYD0gMChTs390nhRFY21YWs97vpmX9n56VQYYlPSu0FWU/8EbeG
P6TROjb6AR+Z18KiQhztoDSGRlnNTZF58hlPSa6LlkYbj8BykVYyn6hXt37e
kMZu5S9UHfI8ZGYSaxLeS+MmXoUMooMART1Pc8s5aUwX1coSeU2Acsj2dwqr
KSi4gZIVQp73ptHfM4+dKLiNr/1rCNkPOppvzkWcpGDID7lgEbJf9P0Ysjuy
KZhV3e9a/JaAHUN+W3reUjCNeVpoLdlvTh96A3lpMki13FxR8IWAw0qVCy0R
MrhFrauxYJAAD+erydeyZPAPluIlxjABQW8sHv7VI4P3FyvVfowQkNheN+Bw
QBZtjt2+2z9F9qf4jVCVcFmMCe4l/uYScNU8nG8kUxbN6yNtMn8TcLtps0pc
tyxGKDQ6BC0RUM66fbDIXg43GN2jXBamw2BxfOeSrTxeEF1W3a5Mhx2Xd7EL
9ytiguTc9R1WdIgzL33YeUwRC0v42w7Z0IElsC5jMVURZ7onxaLt6WAUw+Nl
16qI9i0u2OBMB13fGrHlPatQNehV7WlvOqw3pToe2LEaG4+bXbkaT95vXKVR
/r+VkHFwSftuBR08teckqBIqWCzXcUFenQGWGp6/5Hevx95nDmYcZSYwuk6d
eGmojmrxrACTeSb8Q9lUwn9aE4MK7R45vC8F7/n0W/k0HeQmtg0J5JfB8aZh
3RLLLdi2Xkw1yb4cLjoLblgM0MOlu+w7qQIV4P482ovqo4/PDzSmFt2uAI7Q
Kht/J0M056ylhmpVAlU67tq3MCOkNFyW5WFVwtFJE02rAGPMERLzljWpgju5
z5S4qdvQ7sbvtwb1VcC8ZNTbaYvYvLlHXcKwGsKqTaxvWWzHD7Tf29TvVUN9
c/5E0sEdGL0xSKtVugZ8d2+t86WZ4j7XL5IOYTWQ84Ba5u+3E5/w337v/r4G
0ibr4oMidqHtmyBdQ6NaGCo6Ee4TYoZeFCtboSu10GiWfj0hYTcmRnpLhn6r
Bd797z9fjtuDs5UCfc1b64Bnezlv3sm9eNrcV/T1uTpIVOBadl4wR4NDva7H
uusgyNn9KffMPhzeLrJg8CcLPsXreUCmBVpkR9VG+LBANiP7fdIdS7Q8R+0f
KWFBgdSmk89vWqGKjeTTpHEWcELW7Nr4aD8Gjq3OvKBXD7kqeUom9tboIuF8
eWNIPdTFzPH4vLLGlbvkno0+rgfVfUIL6xxtcN5w1n7+ez2Udmgkv+uywSce
e1uKpNmQ0rSko+Jii1knxOP9tNmQEfrN72ifLW4ZKJCJMWdDjJzyyrVOdii/
LaDU3YMNDzUEmsM+2mFrwhatV6fZIDjFu4pz2B67IyYftV1nQ6EOPTZ32B4L
36pc285kg4ZbkdVioAMe7rKsy21lQ+/eKobDiAM+7uHXafjChs57UVoQegB9
bBSrrBfYMMu0MV47cQAv5tsfYlM4sFwZUnb+mCNafDy1Zr86B/bpmO2KmXbE
lKNPLI2AA89dtH39Q2loebzpgo49ByjuPjW3TtAwiK27NZX0YZ87Eq8iaNie
++LzN9IzITIMvRga9lkdU77nwIH1idy5xbM09ItuN5Bz5EAcoz7lyjVy/bDw
FNeJA0ZC1kRZFQ0PNCXfrDjCgfPiSXxfa2gornbCXuYoB15LP7VfzaJheEeJ
wHHSPkp6v2Of0nCjqrKNmisHsqiKO/a00DDhBl/KVTcOTB38+O/7Php+fiyc
cdyTA+i6Sk2in4YNk7dfN5NO9rKNhE/kfkM5wmpeHFgb3Kh0f5CGr/taj/SR
tjn/wDNwlIYjTurMPeT7Oyf5U8XtcRqaWkmV3SP99cpq0c4JGurz+pQskY67
mVKsz6WhW4F/aqkvB1rznvH4/qZh6qrVwSv9OKBQsGR7c56G2yxNLP1Iuz0y
yG9bpOH6+Deqz0gXE0Hc5WUaPpgaGl3jz4H/AcgH2BY=
       "]], 
      LineBox[{{0.0306717920558098, 0.0593636206931928}, {
       0.030671792055900107`, 0.1771927695617559}}]},
     Annotation[#, "Charting`Private`Tag$137492#2"]& ]}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0.0593636206931928},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->{{0, 100}, {0.0593636206931928, 0.1771927695617559}},
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.763221828223776*^9, 3.763221847328966*^9}, {
  3.763221878649907*^9, 3.7632219238547564`*^9}, {3.763221955963235*^9, 
  3.763221999623062*^9}, {3.763222139434455*^9, 3.763222239832561*^9}},
 CellLabel->"Out[70]=",ExpressionUUID->"c3ad4bfd-1ed6-46d2-ac8d-33bf2dee9ddd"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Integrate", "[", 
  RowBox[{
   RowBox[{"int", "[", "2", "]"}], ",", "y"}], "]"}]], "Input",
 CellChangeTimes->{{3.763221626169365*^9, 3.76322163936662*^9}},
 CellLabel->"In[19]:=",ExpressionUUID->"964dc3a0-273c-4d37-a14a-1bae597fe234"],

Cell[BoxData[
 RowBox[{"-", 
  FractionBox[
   RowBox[{"y", "+", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      FractionBox["1", "y"]], " ", 
     RowBox[{"(", 
      RowBox[{"1", "-", 
       RowBox[{"2", " ", "y"}], "+", 
       RowBox[{"2", " ", 
        SuperscriptBox["y", "2"]}]}], ")"}], " ", 
     RowBox[{"ExpIntegralEi", "[", 
      RowBox[{"-", 
       FractionBox["1", "y"]}], "]"}]}]}], 
   RowBox[{"6", " ", 
    SuperscriptBox["y", "2"]}]]}]], "Output",
 CellChangeTimes->{{3.7632216275981483`*^9, 3.763221639989242*^9}},
 CellLabel->"Out[19]=",ExpressionUUID->"39771f52-a583-465b-89d5-0c5c7571b597"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Integrate", "[", 
  RowBox[{
   RowBox[{"Integrate", "[", 
    RowBox[{"x2", ",", "y"}], "]"}], ",", "y"}], "]"}]], "Input",
 CellChangeTimes->{{3.763221565107686*^9, 3.763221580997492*^9}},
 CellLabel->"In[15]:=",ExpressionUUID->"061269b2-f62d-4813-9ceb-051d0e9cb478"],

Cell[BoxData[
 RowBox[{
  FractionBox["1", "6"], " ", 
  RowBox[{"(", 
   RowBox[{
    RowBox[{
     RowBox[{"-", "2"}], " ", "y"}], "-", 
    RowBox[{
     SuperscriptBox["\[ExponentialE]", 
      FractionBox["1", "y"]], " ", 
     RowBox[{"(", 
      RowBox[{
       RowBox[{"-", "1"}], "+", 
       RowBox[{"2", " ", "y"}]}], ")"}], " ", 
     RowBox[{"ExpIntegralEi", "[", 
      RowBox[{"-", 
       FractionBox["1", "y"]}], "]"}]}]}], ")"}]}]], "Output",
 CellChangeTimes->{{3.763221571080494*^9, 3.763221581224246*^9}},
 CellLabel->"Out[15]=",ExpressionUUID->"ea851468-05f4-40ab-8ad8-cc0d97b2d0f9"]
}, Open  ]]
},
WindowSize->{1277, 1076},
WindowMargins->{{Automatic, 2}, {Automatic, 2}},
FrontEndVersion->"11.3 for Linux x86 (64-bit) (March 6, 2018)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 208, 3, 31, "Input",ExpressionUUID->"478e8578-6729-440b-8da8-b832148e0b8c"],
Cell[769, 25, 523, 15, 31, "Input",ExpressionUUID->"9c5d2ef8-d44a-4a91-867a-85038c55da40"],
Cell[1295, 42, 1072, 25, 40, "Input",ExpressionUUID->"f115e671-e364-4c17-8cd5-0e618136d51f"],
Cell[CellGroupData[{
Cell[2392, 71, 1565, 45, 39, "Input",ExpressionUUID->"388f6f91-566d-4160-a250-0df41602b59f"],
Cell[3960, 118, 2506, 62, 53, "Output",ExpressionUUID->"9f0187ae-fa3c-485d-92a2-a51c3d5728fd"]
}, Open  ]],
Cell[CellGroupData[{
Cell[6503, 185, 977, 28, 39, "Input",ExpressionUUID->"59e89fd5-4d33-42d5-bad6-f528bcc2bb10"],
Cell[7483, 215, 10486, 280, 218, "Output",ExpressionUUID->"c27f63f4-167f-427f-a08d-8a0e66d88379"]
}, Open  ]],
Cell[CellGroupData[{
Cell[18006, 500, 1084, 32, 39, "Input",ExpressionUUID->"8e569068-d7aa-4cc0-aca2-99cde3babe9e"],
Cell[19093, 534, 1552, 47, 65, "Output",ExpressionUUID->"16ed5cb0-22c1-4624-aca9-f9f9f8ac9e92"]
}, Open  ]],
Cell[CellGroupData[{
Cell[20682, 586, 1319, 39, 39, "Input",ExpressionUUID->"56748b37-be24-40c9-a42e-474a26341196"],
Cell[22004, 627, 419, 10, 52, "Message",ExpressionUUID->"b3bc7fbc-cbd4-4bcc-bc4a-adb9210cc190"],
Cell[22426, 639, 419, 10, 52, "Message",ExpressionUUID->"728a828f-4b58-4ceb-9a3b-94e3273f35f5"],
Cell[22848, 651, 435, 10, 23, "Message",ExpressionUUID->"20ebb82e-5bed-4909-bd77-9784075468d3"],
Cell[23286, 663, 307, 4, 35, "Output",ExpressionUUID->"d56615c4-7037-49e2-b0ed-a315bc8e03f2"]
}, Open  ]],
Cell[CellGroupData[{
Cell[23630, 672, 255, 5, 31, "Input",ExpressionUUID->"1abe97fb-164b-4eec-bc51-c0649a7677e9"],
Cell[23888, 679, 189, 4, 35, "Output",ExpressionUUID->"7f1bee79-e79b-453d-8db9-609c611a3fb3"]
}, Open  ]],
Cell[CellGroupData[{
Cell[24114, 688, 233, 4, 31, "Input",ExpressionUUID->"a53dc90c-5ecd-4d46-8c78-a740d38cb7bf"],
Cell[24350, 694, 269, 7, 53, "Output",ExpressionUUID->"868fd8a8-175e-45fa-b37e-78173abf56d2"]
}, Open  ]],
Cell[CellGroupData[{
Cell[24656, 706, 211, 3, 31, "Input",ExpressionUUID->"cc94bd4f-8593-4972-9f23-ccdbd2ed0e37"],
Cell[24870, 711, 149, 2, 35, "Output",ExpressionUUID->"b771bb4b-6dbe-48e3-8464-a5ac18d62228"]
}, Open  ]],
Cell[CellGroupData[{
Cell[25056, 718, 2176, 49, 40, "Input",ExpressionUUID->"04e2ca53-78cc-46c7-9cb4-df7379c535c9"],
Cell[27235, 769, 1865, 39, 40, "Output",ExpressionUUID->"0fc9a45b-a383-40e9-921d-5da3efd4e3c6"]
}, Open  ]],
Cell[CellGroupData[{
Cell[29137, 813, 2806, 67, 40, "Input",ExpressionUUID->"5a4623ed-04ee-47d4-b390-2c1d11b5f787"],
Cell[31946, 882, 7689, 230, 168, "Output",ExpressionUUID->"5ae19b60-ab4a-4c65-82cd-6412b5ed59e7"]
}, Open  ]],
Cell[CellGroupData[{
Cell[39672, 1117, 3548, 86, 65, "Input",ExpressionUUID->"b164c883-bb64-4996-acce-0bbca33952db"],
Cell[43223, 1205, 8082, 244, 115, "Output",ExpressionUUID->"df1478bc-00d3-449a-9c73-bdeb93252e49"]
}, Open  ]],
Cell[CellGroupData[{
Cell[51342, 1454, 3069, 89, 64, "Input",ExpressionUUID->"cab0a3f1-46ff-4ae3-a5d6-96d42fec30af"],
Cell[54414, 1545, 6480, 163, 110, "Output",ExpressionUUID->"3f58ba3e-72ca-4dd5-b9ab-8fd3df361bb7"]
}, Open  ]],
Cell[CellGroupData[{
Cell[60931, 1713, 361, 8, 31, "Input",ExpressionUUID->"b2b56ad6-73a4-4b5c-a74c-a5e583a79d30"],
Cell[61295, 1723, 630, 16, 58, "Output",ExpressionUUID->"43ea4ae2-6743-48ee-908e-53a613bb567d"]
}, Open  ]],
Cell[CellGroupData[{
Cell[61962, 1744, 1448, 34, 39, "Input",ExpressionUUID->"fe287598-6d85-418b-ad70-75bd3a04b97a"],
Cell[63413, 1780, 1554, 35, 53, "Output",ExpressionUUID->"b8168584-10da-4532-8a3f-886261464832"]
}, Open  ]],
Cell[CellGroupData[{
Cell[65004, 1820, 623, 13, 31, "Input",ExpressionUUID->"6c566026-c1ce-44ba-a694-f37333911a8c"],
Cell[65630, 1835, 1285, 33, 62, "Output",ExpressionUUID->"487b6fbc-791e-4edc-8cd3-06510e74d100"]
}, Open  ]],
Cell[CellGroupData[{
Cell[66952, 1873, 1350, 38, 39, "Input",ExpressionUUID->"0b5017ee-0ae5-428f-ab5a-c913a4e3ff13"],
Cell[68305, 1913, 2216, 70, 53, "Output",ExpressionUUID->"c9c989af-e89b-44ae-98f9-a973b6c654cf"]
}, Open  ]],
Cell[CellGroupData[{
Cell[70558, 1988, 682, 16, 31, "Input",ExpressionUUID->"73ce0861-86ca-42e2-a377-0c0a1aa6f379"],
Cell[71243, 2006, 2650, 72, 57, "Output",ExpressionUUID->"e9d3a0b0-9eee-46d0-9632-40fa31d4feee"]
}, Open  ]],
Cell[CellGroupData[{
Cell[73930, 2083, 1396, 39, 39, "Input",ExpressionUUID->"9113eae8-9995-4066-b8cd-a03b38806f54"],
Cell[75329, 2124, 4720, 132, 81, "Output",ExpressionUUID->"310b5372-fe11-4011-8dd5-0d8904e26b68"]
}, Open  ]],
Cell[CellGroupData[{
Cell[80086, 2261, 744, 18, 31, "Input",ExpressionUUID->"70b899c3-e437-421a-8895-987392ee433a"],
Cell[80833, 2281, 5306, 145, 89, "Output",ExpressionUUID->"0632b902-dc0d-404b-ae51-3a79bbd9ad48"]
}, Open  ]],
Cell[CellGroupData[{
Cell[86176, 2431, 1786, 43, 39, "Input",ExpressionUUID->"3f2a6676-1a4a-41b9-8975-78da98c9db4c"],
Cell[87965, 2476, 1134, 20, 35, "Output",ExpressionUUID->"bb6921ee-3572-4a1e-9715-426663da2003"]
}, Open  ]],
Cell[CellGroupData[{
Cell[89136, 2501, 408, 9, 31, "Input",ExpressionUUID->"026dbff9-6345-40c7-846b-ff24dc2b45da"],
Cell[89547, 2512, 564, 15, 58, "Output",ExpressionUUID->"bfa005b0-cfce-4912-abe1-27728b8a57d9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[90148, 2532, 1729, 42, 39, "Input",ExpressionUUID->"a12fb9de-9cdf-4485-b025-f9f3c4e7bfc3"],
Cell[91880, 2576, 1333, 28, 55, "Output",ExpressionUUID->"199bdc71-89b8-4e78-9a5f-e432ddc48931"]
}, Open  ]],
Cell[CellGroupData[{
Cell[93250, 2609, 624, 13, 31, "Input",ExpressionUUID->"690bf8a4-9971-4d09-b95c-65cbb97b53dd"],
Cell[93877, 2624, 893, 23, 62, "Output",ExpressionUUID->"2c6a5a50-cb3b-4072-b847-336729e161bf"]
}, Open  ]],
Cell[CellGroupData[{
Cell[94807, 2652, 1342, 37, 39, "Input",ExpressionUUID->"65446e1d-ab32-48e7-83fc-d6a5eaf55a6b"],
Cell[96152, 2691, 1595, 49, 53, "Output",ExpressionUUID->"e93135e8-3f38-495e-87eb-bec996b0d556"]
}, Open  ]],
Cell[CellGroupData[{
Cell[97784, 2745, 731, 17, 31, "Input",ExpressionUUID->"8f20dd13-db42-4729-b167-f229aa4a3b7e"],
Cell[98518, 2764, 1678, 45, 62, "Output",ExpressionUUID->"3bb7f71d-e257-46ba-9dea-7b580e6ba6ad"]
}, Open  ]],
Cell[CellGroupData[{
Cell[100233, 2814, 1364, 37, 39, "Input",ExpressionUUID->"94bea634-1ea8-450c-8712-a08a30280741"],
Cell[101600, 2853, 3029, 95, 53, "Output",ExpressionUUID->"5946d9da-f73a-4616-b6ba-3468fb7fc8b8"]
}, Open  ]],
Cell[CellGroupData[{
Cell[104666, 2953, 795, 19, 31, "Input",ExpressionUUID->"8d95964c-d1b9-4ea7-ad4d-3310eab145be"],
Cell[105464, 2974, 2993, 82, 57, "Output",ExpressionUUID->"e5602d2f-bb91-4401-82d4-83d97e78675b"]
}, Open  ]],
Cell[CellGroupData[{
Cell[108494, 3061, 1808, 43, 39, "Input",ExpressionUUID->"64e531df-0654-4956-866a-23d26adf4575"],
Cell[110305, 3106, 1128, 20, 35, "Output",ExpressionUUID->"371093d6-a8fa-4711-bf1e-983097d52f76"]
}, Open  ]],
Cell[CellGroupData[{
Cell[111470, 3131, 460, 9, 31, "Input",ExpressionUUID->"3137ad4c-13ef-4a23-886b-c9e98bd71cf6"],
Cell[111933, 3142, 583, 15, 58, "Output",ExpressionUUID->"16c00e93-00b9-4fad-ba98-739421b88a09"]
}, Open  ]],
Cell[CellGroupData[{
Cell[112553, 3162, 1761, 43, 39, "Input",ExpressionUUID->"163dac58-ced3-454e-8740-032104b4d6c5"],
Cell[114317, 3207, 1425, 30, 53, "Output",ExpressionUUID->"423991ec-5677-4978-bbf0-cdd14ef9b3eb"]
}, Open  ]],
Cell[CellGroupData[{
Cell[115779, 3242, 653, 14, 31, "Input",ExpressionUUID->"ad688161-f1fe-4e6d-a202-570a1b3c4a0a"],
Cell[116435, 3258, 970, 24, 62, "Output",ExpressionUUID->"f1a3af1d-6c9d-42a5-ae23-22e9ced916c4"]
}, Open  ]],
Cell[CellGroupData[{
Cell[117442, 3287, 1392, 38, 39, "Input",ExpressionUUID->"903f4b9d-b6bf-4bb2-94da-c185fe9001cd"],
Cell[118837, 3327, 1589, 43, 53, "Output",ExpressionUUID->"e16ebc0b-a0f4-4bca-8ce0-efa71a9faaee"]
}, Open  ]],
Cell[CellGroupData[{
Cell[120463, 3375, 777, 17, 31, "Input",ExpressionUUID->"6dbd5634-089d-4b95-be3c-9e5cc68c1e20"],
Cell[121243, 3394, 1387, 37, 62, "Output",ExpressionUUID->"2fd182c2-a6a7-45fb-9411-33dd39630122"]
}, Open  ]],
Cell[CellGroupData[{
Cell[122667, 3436, 1414, 38, 39, "Input",ExpressionUUID->"69b81d41-cdeb-4afc-9f3b-2bd7ffa8083d"],
Cell[124084, 3476, 2508, 77, 53, "Output",ExpressionUUID->"8eb46dea-5969-4ac6-80e6-17a50c8ef9da"]
}, Open  ]],
Cell[CellGroupData[{
Cell[126629, 3558, 839, 19, 31, "Input",ExpressionUUID->"eabad33c-1826-460a-a365-2831dcfa10d6"],
Cell[127471, 3579, 2480, 68, 57, "Output",ExpressionUUID->"69364d62-3113-439e-9388-f80165831e4a"]
}, Open  ]],
Cell[CellGroupData[{
Cell[129988, 3652, 229, 3, 31, "Input",ExpressionUUID->"2e2e9a4a-fb1b-44f2-a3a9-873febe3e54b"],
Cell[130220, 3657, 1065, 30, 62, "Output",ExpressionUUID->"329abf2f-b123-47c3-8b67-68d3640afbb2"]
}, Open  ]],
Cell[CellGroupData[{
Cell[131322, 3692, 225, 3, 31, "Input",ExpressionUUID->"279e6e6a-61f7-4705-b216-c68f0acd02d5"],
Cell[131550, 3697, 720, 20, 62, "Output",ExpressionUUID->"7d467daa-471b-4edb-8247-656f34b04a23"]
}, Open  ]],
Cell[CellGroupData[{
Cell[132307, 3722, 174, 2, 31, "Input",ExpressionUUID->"41d9dd4b-34b6-4473-844b-78edea0ce037"],
Cell[132484, 3726, 697, 20, 62, "Output",ExpressionUUID->"7273c921-8a88-499f-93b8-05ab516bd5be"]
}, Open  ]],
Cell[133196, 3749, 152, 3, 31, "Input",ExpressionUUID->"53b25dfc-8878-4e86-832d-43564600a3dd"],
Cell[CellGroupData[{
Cell[133373, 3756, 176, 2, 31, "Input",ExpressionUUID->"72adc0a8-b70a-484c-ba2f-6d63c2ab7ba7"],
Cell[133552, 3760, 2456, 69, 57, "Output",ExpressionUUID->"25a6e489-fbe4-41fa-bda5-024df0c209d1"]
}, Open  ]],
Cell[CellGroupData[{
Cell[136045, 3834, 174, 2, 31, "Input",ExpressionUUID->"8785a319-0a8b-4e48-a4da-1b52ce2f7f17"],
Cell[136222, 3838, 1460, 42, 62, "Output",ExpressionUUID->"080c2169-e2b4-47b6-b952-0af9ed1677c5"]
}, Open  ]],
Cell[CellGroupData[{
Cell[137719, 3885, 176, 2, 31, "Input",ExpressionUUID->"750b159f-254d-4227-b07f-a39ae3575a1f"],
Cell[137898, 3889, 1145, 34, 62, "Output",ExpressionUUID->"6f1d7a29-fa8d-427f-8986-93f1a78e133b"]
}, Open  ]],
Cell[CellGroupData[{
Cell[139080, 3928, 347, 9, 31, "Input",ExpressionUUID->"bb086641-9b17-4e3d-bc50-a30ebbec12f9"],
Cell[139430, 3939, 317, 8, 35, "Output",ExpressionUUID->"a64d2464-0fd4-40a6-83d6-0f7b93ae65b5"]
}, Open  ]],
Cell[CellGroupData[{
Cell[139784, 3952, 233, 5, 31, "Input",ExpressionUUID->"2664ca36-c2c9-4955-86c1-d1c956205970"],
Cell[140020, 3959, 177, 3, 35, "Output",ExpressionUUID->"a6985493-6cfb-48ea-94d5-dfab7dc2f677"]
}, Open  ]],
Cell[CellGroupData[{
Cell[140234, 3967, 415, 10, 31, "Input",ExpressionUUID->"25b44ff7-a2e3-45e0-adbc-bcf926e782d7"],
Cell[140652, 3979, 1368, 42, 53, "Output",ExpressionUUID->"c517e23c-d502-4980-a3c5-c6ef05504e65"]
}, Open  ]],
Cell[CellGroupData[{
Cell[142057, 4026, 468, 13, 31, "Input",ExpressionUUID->"5a6b8954-3b00-46bf-9079-86481926ba1d"],
Cell[142528, 4041, 226, 5, 35, "Output",ExpressionUUID->"5d179864-e60e-4392-ac88-4e71e6d58dcd"]
}, Open  ]],
Cell[CellGroupData[{
Cell[142791, 4051, 823, 25, 63, "Input",ExpressionUUID->"f1c7e4a9-74d2-40be-91c6-951654a8fd02"],
Cell[143617, 4078, 1295, 36, 55, "Output",ExpressionUUID->"eb0f5485-f16d-4d6f-a29e-5e5fc9aecd22"]
}, Open  ]],
Cell[CellGroupData[{
Cell[144949, 4119, 806, 24, 63, "Input",ExpressionUUID->"8071adea-9d0e-4c01-8a88-fb9f88973209"],
Cell[145758, 4145, 1286, 36, 55, "Output",ExpressionUUID->"73a4137d-b379-4558-8b05-09c618fee25d"]
}, Open  ]],
Cell[CellGroupData[{
Cell[147081, 4186, 305, 8, 31, "Input",ExpressionUUID->"279f48f3-7e5f-42c6-9ac3-f1b0fa2b0a88"],
Cell[147389, 4196, 245, 6, 53, "Output",ExpressionUUID->"606cbbf8-c6a9-4e0d-811d-c12420b759e6"]
}, Open  ]],
Cell[CellGroupData[{
Cell[147671, 4207, 233, 5, 31, "Input",ExpressionUUID->"d23f7910-15b0-40ac-a96c-152fbf9bfcfa"],
Cell[147907, 4214, 215, 5, 35, "Output",ExpressionUUID->"14b9fe2b-11e7-4f19-ab6f-60cbaac06aed"]
}, Open  ]],
Cell[148137, 4222, 1891, 51, 207, "Input",ExpressionUUID->"bf97e302-d420-4600-b2ed-8de6bbfed674"],
Cell[150031, 4275, 1962, 53, 238, "Input",ExpressionUUID->"90960e42-55d9-4f2a-889a-34d281b6a743"],
Cell[151996, 4330, 1624, 46, 206, "Input",ExpressionUUID->"2b8c364c-0d48-4e6d-9dfd-5989133c72e8"],
Cell[153623, 4378, 599, 17, 31, "Input",ExpressionUUID->"2efd5a3e-bf9a-4095-91b1-b411c8cf6683"],
Cell[CellGroupData[{
Cell[154247, 4399, 232, 5, 31, "Input",ExpressionUUID->"b6947363-4ad3-429e-a2e4-ebcaa803d1c9"],
Cell[154482, 4406, 451, 14, 40, "Output",ExpressionUUID->"bab73b33-0cec-490d-819a-4c2c68de2098"]
}, Open  ]],
Cell[CellGroupData[{
Cell[154970, 4425, 685, 19, 55, "Input",ExpressionUUID->"2c77d2c3-1722-4a99-a9e9-0ce2959d84aa"],
Cell[155658, 4446, 311, 7, 35, "Output",ExpressionUUID->"bb05cb9b-6f44-4197-bf9e-2d78726fc1c4"]
}, Open  ]],
Cell[CellGroupData[{
Cell[156006, 4458, 228, 4, 31, "Input",ExpressionUUID->"e8109cfb-3bf2-49c8-bd8e-a127954efef5"],
Cell[156237, 4464, 286, 7, 35, "Output",ExpressionUUID->"9022701d-0b6a-4ced-a62b-2c41bcd9a2bc"]
}, Open  ]],
Cell[CellGroupData[{
Cell[156560, 4476, 427, 7, 31, "Input",ExpressionUUID->"0dcbcc28-dc5c-4e60-91a4-1edcaf2fe4fb"],
Cell[156990, 4485, 664, 19, 53, "Output",ExpressionUUID->"d571957a-4183-44de-82a8-829e8646f463"]
}, Open  ]],
Cell[157669, 4507, 212, 4, 31, "Input",ExpressionUUID->"fd4325c7-04cb-4f7b-96ea-d9c5f77c6017"],
Cell[157884, 4513, 679, 19, 31, "Input",ExpressionUUID->"833fa001-f505-4ad7-b3ff-aebd9fe9ac82"],
Cell[CellGroupData[{
Cell[158588, 4536, 412, 9, 31, "Input",ExpressionUUID->"99843a25-5fc9-4908-9f2a-7dff30d0d370"],
Cell[159003, 4547, 1397, 41, 65, "Output",ExpressionUUID->"c2350950-99a3-4a63-935e-b30184369e38"]
}, Open  ]],
Cell[160415, 4591, 1545, 45, 78, "Input",ExpressionUUID->"fdf466b2-7782-4013-b18c-65d28449fd80"],
Cell[161963, 4638, 365, 9, 31, "Input",ExpressionUUID->"8c10c55b-bc30-4973-8fd1-b6265a896d3c"],
Cell[162331, 4649, 980, 27, 55, "Input",ExpressionUUID->"cad6feb2-2d32-476e-82c5-16259329f218"],
Cell[CellGroupData[{
Cell[163336, 4680, 341, 8, 31, "Input",ExpressionUUID->"3e5411bd-cf39-498b-bccb-2a6902ad309f"],
Cell[163680, 4690, 3547, 106, 200, "Output",ExpressionUUID->"8f17414f-c38b-4592-bfed-69e9325df181"]
}, Open  ]],
Cell[167242, 4799, 1178, 31, 71, "Input",ExpressionUUID->"3290d682-9201-4813-bdfa-777ffc301378"],
Cell[CellGroupData[{
Cell[168445, 4834, 742, 18, 69, "Input",ExpressionUUID->"47f5f503-5c21-4f53-b03c-7df66970460e"],
Cell[169190, 4854, 7440, 153, 318, "Output",ExpressionUUID->"d0abd33e-d67c-4105-91c2-0840fec737bb"]
}, Open  ]],
Cell[176645, 5010, 1028, 29, 125, "Input",ExpressionUUID->"75fce757-ae3e-44f4-a573-646fcf6e4852"],
Cell[177676, 5041, 471, 9, 31, "Input",ExpressionUUID->"4e43644a-65dd-4e4e-b6b4-e59e7aacde51"],
Cell[CellGroupData[{
Cell[178172, 5054, 471, 11, 31, "Input",ExpressionUUID->"05684c40-35c5-4c43-9cb7-360252747ab2"],
Cell[178646, 5067, 1654, 42, 247, "Output",ExpressionUUID->"53328a90-5baf-4e81-a2c6-0728ff9a5853"]
}, Open  ]],
Cell[180315, 5112, 652, 18, 31, "Input",ExpressionUUID->"1b97a152-c9db-4582-89ac-fe86460cd647"],
Cell[180970, 5132, 154, 3, 31, "Input",ExpressionUUID->"0cc0ba07-a5ae-4566-b4cf-5c08d95a344a"],
Cell[CellGroupData[{
Cell[181149, 5139, 459, 11, 31, "Input",ExpressionUUID->"1a4c5d8c-b72f-47cf-9b12-bae7177839bb"],
Cell[181611, 5152, 2873, 63, 243, "Output",ExpressionUUID->"9d403b3d-7438-4d62-95c5-d7f386c91678"]
}, Open  ]],
Cell[184499, 5218, 474, 10, 31, "Input",ExpressionUUID->"1560eb7d-4dfa-4579-bec8-49ba80245127"],
Cell[184976, 5230, 174, 4, 31, "Input",ExpressionUUID->"2413e870-0807-4641-9e85-c92b8b36361b"],
Cell[185153, 5236, 704, 19, 31, "Input",ExpressionUUID->"4031f3cb-9ab3-4501-9ecc-5dcee1471df4"],
Cell[CellGroupData[{
Cell[185882, 5259, 463, 12, 31, "Input",ExpressionUUID->"3e641a6f-a31b-4a0a-b0ad-b1b88af26d0b"],
Cell[186348, 5273, 2867, 64, 243, "Output",ExpressionUUID->"1753f01a-1e37-45cf-8c3f-b827e2793d8d"]
}, Open  ]],
Cell[CellGroupData[{
Cell[189252, 5342, 237, 5, 31, "Input",ExpressionUUID->"df2d3f0c-5184-4f8d-8e87-e954e5488a63"],
Cell[189492, 5349, 2363, 79, 195, "Output",ExpressionUUID->"13439632-f5a9-46e1-9c97-b5f30d8be1f3"]
}, Open  ]],
Cell[191870, 5431, 461, 13, 31, "Input",ExpressionUUID->"daa5ca2d-fa0c-4401-9a60-391d8e6dca68"],
Cell[CellGroupData[{
Cell[192356, 5448, 566, 12, 31, "Input",ExpressionUUID->"f3030bd6-e5b6-40dc-8a6d-e2472c4b836e"],
Cell[192925, 5462, 1532, 46, 94, "Output",ExpressionUUID->"67e8ec8f-369d-4c59-95b0-58b9a783afa2"]
}, Open  ]],
Cell[CellGroupData[{
Cell[194494, 5513, 438, 9, 31, "Input",ExpressionUUID->"da24f07f-294f-40bb-8afa-b87c0b00f28d"],
Cell[194935, 5524, 6495, 199, 367, "Output",ExpressionUUID->"226117a7-858e-4561-8b04-253742f8c5e4"]
}, Open  ]],
Cell[CellGroupData[{
Cell[201467, 5728, 745, 22, 57, "Input",ExpressionUUID->"7a2c7d58-8792-4fe7-9fc8-1b8c5bfed781"],
Cell[202215, 5752, 196, 3, 35, "Output",ExpressionUUID->"974a6c06-b7cd-4aa6-9657-ad9563df6b29"]
}, Open  ]],
Cell[CellGroupData[{
Cell[202448, 5760, 2702, 72, 195, "Input",ExpressionUUID->"58776c0d-ed85-4f55-865c-1da528d38732"],
Cell[205153, 5834, 1036, 25, 64, "Output",ExpressionUUID->"7529d7ab-9e56-4bc2-9cb9-39916068dcfc"]
}, Open  ]],
Cell[CellGroupData[{
Cell[206226, 5864, 306, 7, 31, "Input",ExpressionUUID->"8212b325-0c78-4677-88ea-cdb29cbb0048"],
Cell[206535, 5873, 352, 10, 53, "Output",ExpressionUUID->"fa677f31-4770-454c-8b44-9b5a36061a28"]
}, Open  ]],
Cell[CellGroupData[{
Cell[206924, 5888, 238, 5, 31, "Input",ExpressionUUID->"df551726-5857-4a47-a581-12f69f25ecb7"],
Cell[207165, 5895, 153, 3, 35, "Output",ExpressionUUID->"0d9af583-264c-4807-ae2f-d797c0ea6bf5"]
}, Open  ]],
Cell[CellGroupData[{
Cell[207355, 5903, 1439, 44, 181, "Input",ExpressionUUID->"5d367f3b-6f2b-4125-8342-21d218b7f254"],
Cell[208797, 5949, 1639, 47, 64, "Output",ExpressionUUID->"ee99f0c2-e439-4a4d-8fe4-274d91a8d394"]
}, Open  ]],
Cell[CellGroupData[{
Cell[210473, 6001, 205, 3, 31, "Input",ExpressionUUID->"7c3544b6-f791-402f-b763-8ab9eac5b7b9"],
Cell[210681, 6006, 174, 2, 35, "Output",ExpressionUUID->"247f7916-6198-4764-ae25-025257e0bfe1"]
}, Open  ]],
Cell[210870, 6011, 230, 6, 31, "Input",ExpressionUUID->"101be1fd-bb0e-4747-9643-3921da67ae3f"],
Cell[211103, 6019, 2141, 57, 185, "Input",ExpressionUUID->"b9bdff2c-d0c6-47fd-8a10-904aab671281"],
Cell[213247, 6078, 261, 4, 31, "Input",ExpressionUUID->"064b90dd-8bd7-4836-9e8f-25f5de9ccf79"],
Cell[213511, 6084, 2289, 61, 294, "Input",ExpressionUUID->"754eb2ca-63de-438d-baee-8894c7d76dee"],
Cell[215803, 6147, 2063, 62, 158, "Input",ExpressionUUID->"20480ec1-2852-4039-beb5-39084353bc4a"],
Cell[217869, 6211, 208, 3, 31, "Input",ExpressionUUID->"0adfbc83-67d5-482f-a14c-4995d005a937"],
Cell[CellGroupData[{
Cell[218102, 6218, 248, 4, 31, "Input",ExpressionUUID->"c3768c23-2c6f-43d3-ae10-ea36ad104537"],
Cell[218353, 6224, 716, 14, 87, "Output",ExpressionUUID->"4b177b6a-d29b-4f5b-b4ea-a0a979f07414"]
}, Open  ]],
Cell[219084, 6241, 1131, 34, 114, "Input",ExpressionUUID->"fdff31f6-3614-477c-b49c-b02646eabd5a"],
Cell[CellGroupData[{
Cell[220240, 6279, 746, 21, 78, "Input",ExpressionUUID->"759425ae-77fd-4d49-8004-d1c7dcbd9e9f"],
Cell[220989, 6302, 4195, 93, 282, "Output",ExpressionUUID->"cd0afb62-3d8f-45cf-bdc5-9ed9b1b85bf8"]
}, Open  ]],
Cell[CellGroupData[{
Cell[225221, 6400, 711, 20, 55, "Input",ExpressionUUID->"87a49bcf-31a6-4239-834b-5abc1a20391b"],
Cell[225935, 6422, 83383, 1394, 244, "Output",ExpressionUUID->"546d5a4c-749c-4696-9b98-a6bf7101163f"]
}, Open  ]],
Cell[309333, 7819, 154, 3, 31, "Input",ExpressionUUID->"c40feeea-4731-469e-878c-86e8d34f14dd"],
Cell[309490, 7824, 382, 9, 31, "Input",ExpressionUUID->"a5368558-8afd-4b9d-a56b-08439c16cf62"],
Cell[CellGroupData[{
Cell[309897, 7837, 218, 3, 31, "Input",ExpressionUUID->"cb87a772-1cbc-4de9-81d2-0b8d8b0bc7df"],
Cell[310118, 7842, 215, 3, 35, "Output",ExpressionUUID->"91a22ae4-3740-4441-828a-497e033c7d41"]
}, Open  ]],
Cell[CellGroupData[{
Cell[310370, 7850, 373, 10, 31, "Input",ExpressionUUID->"216fa489-443e-4ec9-9417-7a8008940c1b"],
Cell[310746, 7862, 286, 9, 37, "Output",ExpressionUUID->"4a8b362f-6f05-4b0c-b448-264112a6cea3"]
}, Open  ]],
Cell[311047, 7874, 224, 5, 31, "Input",ExpressionUUID->"b56744cc-a469-404f-8664-07188b9ae2ee"],
Cell[311274, 7881, 152, 3, 31, "Input",ExpressionUUID->"6db19498-70d7-4a31-b94a-fb123666ac15"],
Cell[311429, 7886, 643, 19, 40, "Input",ExpressionUUID->"2029d5bd-52b1-4908-8a48-485536e69250"],
Cell[312075, 7907, 210, 4, 31, "Input",ExpressionUUID->"4475a5ee-4adb-4d65-8679-439fce28abcd"],
Cell[312288, 7913, 1513, 36, 101, "Input",ExpressionUUID->"f5e2337f-6a07-4028-a75f-a54b5279226c"],
Cell[CellGroupData[{
Cell[313826, 7953, 177, 3, 31, "Input",ExpressionUUID->"3b8d2618-be88-4d38-99c9-3c8452692a68"],
Cell[314006, 7958, 325, 8, 35, "Output",ExpressionUUID->"e05c30cb-ef36-467c-a6a5-c8320b4600e8"]
}, Open  ]],
Cell[314346, 7969, 1527, 37, 101, "Input",ExpressionUUID->"ebc352c5-fe8a-4584-ac63-2f85071f3c69"],
Cell[CellGroupData[{
Cell[315898, 8010, 179, 3, 31, "Input",ExpressionUUID->"905163be-4177-45b3-8429-4a92056ce579"],
Cell[316080, 8015, 295, 8, 35, "Output",ExpressionUUID->"e9c45a4f-3ec4-4d70-a46e-6c28a9f0d0e2"]
}, Open  ]],
Cell[316390, 8026, 1589, 39, 124, "Input",ExpressionUUID->"780abd11-8470-4e7f-b307-9f2346871bc7"],
Cell[CellGroupData[{
Cell[318004, 8069, 177, 3, 31, "Input",ExpressionUUID->"0f9d1348-9727-4ef6-a3eb-9add0816c286"],
Cell[318184, 8074, 313, 8, 35, "Output",ExpressionUUID->"6a0d7fdc-5a5c-4311-b0d2-f53f04004d0f"]
}, Open  ]],
Cell[318512, 8085, 1601, 39, 124, "Input",ExpressionUUID->"06a2ae82-4418-456f-b4f5-1b9f39c49158"],
Cell[CellGroupData[{
Cell[320138, 8128, 177, 3, 31, "Input",ExpressionUUID->"fb6f2cb2-7cba-4724-9583-4f330a20bd07"],
Cell[320318, 8133, 274, 7, 35, "Output",ExpressionUUID->"15593303-625b-4e2e-8d1d-ba3a7faaa52d"]
}, Open  ]],
Cell[320607, 8143, 1462, 37, 124, "Input",ExpressionUUID->"f2a84d32-c59c-46b0-b67a-418c0339def1"],
Cell[CellGroupData[{
Cell[322094, 8184, 177, 3, 31, "Input",ExpressionUUID->"526bbaca-17aa-4e92-a53e-66d81e1f638a"],
Cell[322274, 8189, 290, 7, 35, "Output",ExpressionUUID->"7215d2d5-3799-46cc-a537-5bcc23f2066d"]
}, Open  ]],
Cell[322579, 8199, 1483, 38, 124, "Input",ExpressionUUID->"776d66d3-6bfa-4e1f-a081-33aa26303ef2"],
Cell[CellGroupData[{
Cell[324087, 8241, 179, 3, 31, "Input",ExpressionUUID->"80c64682-c6cc-4e0f-b500-a77e45b9bdf1"],
Cell[324269, 8246, 315, 8, 35, "Output",ExpressionUUID->"92dcb0bb-3ae0-493c-b4f5-a229b621428c"]
}, Open  ]],
Cell[324599, 8257, 1495, 38, 124, "Input",ExpressionUUID->"63e0c88c-7398-40e3-b4b8-7f575ab6afcf"],
Cell[CellGroupData[{
Cell[326119, 8299, 177, 3, 31, "Input",ExpressionUUID->"8e5793a0-a564-4698-bffd-0d21360746db"],
Cell[326299, 8304, 270, 7, 35, "Output",ExpressionUUID->"30a3762a-27d5-45c6-8483-834d62397b51"]
}, Open  ]],
Cell[326584, 8314, 1515, 39, 124, "Input",ExpressionUUID->"4f0ae511-477c-4ea3-9b25-e6ac9e3cab18"],
Cell[CellGroupData[{
Cell[328124, 8357, 179, 3, 31, "Input",ExpressionUUID->"fb097fd5-fc15-481f-a4da-dc6f9cae3f70"],
Cell[328306, 8362, 285, 7, 35, "Output",ExpressionUUID->"15a15847-ad25-460c-b177-35344808f0c6"]
}, Open  ]],
Cell[328606, 8372, 1581, 40, 124, "Input",ExpressionUUID->"739763d3-b7d8-49d5-a063-fadaa2ffb319"],
Cell[CellGroupData[{
Cell[330212, 8416, 177, 3, 31, "Input",ExpressionUUID->"d12c402b-f73f-433c-993b-ae25b08e04ee"],
Cell[330392, 8421, 269, 7, 35, "Output",ExpressionUUID->"701d65ae-f210-49f9-8695-172a58a67ec7"]
}, Open  ]],
Cell[330676, 8431, 1542, 39, 124, "Input",ExpressionUUID->"02fcbe73-d415-4683-bde3-db70f64f57b1"],
Cell[332221, 8472, 1557, 39, 124, "Input",ExpressionUUID->"eaacc5fe-d679-4223-9913-84fcc8df1499"],
Cell[333781, 8513, 1622, 40, 124, "Input",ExpressionUUID->"ae6a545b-4a50-4ea0-984b-48c7cf96808c"],
Cell[CellGroupData[{
Cell[335428, 8557, 855, 25, 63, "Input",ExpressionUUID->"7a4b1d3f-69b0-4867-9dc7-ce6838fa479e"],
Cell[336286, 8584, 2389, 58, 155, "Output",ExpressionUUID->"3ff44560-6de3-4db3-a7a7-cee161f35388"]
}, Open  ]],
Cell[CellGroupData[{
Cell[338712, 8647, 848, 19, 101, "Input",ExpressionUUID->"ee6a5bed-323d-46a0-adb8-bbb4b15b8d1c"],
Cell[339563, 8668, 7742, 144, 227, "Output",ExpressionUUID->"9fb5751b-09cc-4a85-b184-f10491b06a7b"]
}, Open  ]],
Cell[CellGroupData[{
Cell[347342, 8817, 228, 5, 31, "Input",ExpressionUUID->"e4561e06-905f-4c39-8e8b-097ef9db1978"],
Cell[347573, 8824, 232, 5, 35, "Output",ExpressionUUID->"216c461d-db22-4188-b5a0-2387b87b96de"]
}, Open  ]],
Cell[CellGroupData[{
Cell[347842, 8834, 938, 22, 78, "Input",ExpressionUUID->"85f17b37-fa91-4ed8-94fc-546e4de955ef"],
Cell[348783, 8858, 3802, 85, 239, "Output",ExpressionUUID->"51e89cbc-f0a2-4dd4-8023-3496b614f57a"]
}, Open  ]],
Cell[CellGroupData[{
Cell[352622, 8948, 331, 8, 31, "Input",ExpressionUUID->"539f5741-8fad-4a07-a76a-87f3cc414748"],
Cell[352956, 8958, 318, 10, 58, "Output",ExpressionUUID->"0c15c51c-9889-4e87-9ae3-b6488476b465"]
}, Open  ]],
Cell[353289, 8971, 152, 3, 31, "Input",ExpressionUUID->"907cbcc9-e4ba-4cde-a936-11fe50f13a54"],
Cell[CellGroupData[{
Cell[353466, 8978, 303, 6, 31, "Input",ExpressionUUID->"3851471e-6913-4b9d-a263-b5e8786a9d2a"],
Cell[353772, 8986, 417, 11, 72, "Output",ExpressionUUID->"80405869-9d0d-4f31-b835-fea5e2eeb6bd"]
}, Open  ]],
Cell[354204, 9000, 206, 3, 31, "Input",ExpressionUUID->"fe9eabdd-9122-4e50-ada7-78e3950b9bd6"],
Cell[CellGroupData[{
Cell[354435, 9007, 1307, 38, 93, "Input",ExpressionUUID->"6be233ca-b95f-4a35-931f-f2a7712ee211"],
Cell[355745, 9047, 894, 26, 75, "Output",ExpressionUUID->"b6554a5a-a9d1-40d0-959c-aeeea7e75a61"]
}, Open  ]],
Cell[CellGroupData[{
Cell[356676, 9078, 272, 6, 31, "Input",ExpressionUUID->"59f4d7c3-31bc-41dd-89b1-76d598a3395c"],
Cell[356951, 9086, 807, 26, 74, "Output",ExpressionUUID->"22cd78b5-c968-4202-9d34-07d97235746d"]
}, Open  ]],
Cell[357773, 9115, 207, 3, 31, "Input",ExpressionUUID->"6449ae2c-1578-4822-92de-6650bea5c849"],
Cell[CellGroupData[{
Cell[358005, 9122, 782, 20, 39, "Input",ExpressionUUID->"975b9032-9a07-4662-a33e-7145ac1d3dac"],
Cell[358790, 9144, 694, 18, 51, "Output",ExpressionUUID->"9f28f254-c6f6-4c75-9161-213e818af1d9"]
}, Open  ]],
Cell[CellGroupData[{
Cell[359521, 9167, 898, 24, 39, "Input",ExpressionUUID->"f70d7ca6-ab12-4ef9-aedf-1cf978fe8905"],
Cell[360422, 9193, 23706, 655, 2097, "Output",ExpressionUUID->"50dec67f-dfe5-4098-846c-bd34289eb44f"]
}, Open  ]],
Cell[CellGroupData[{
Cell[384165, 9853, 495, 12, 31, "Input",ExpressionUUID->"49c72fce-e4dd-4ce9-a8da-a490e4376c94"],
Cell[384663, 9867, 331, 5, 35, "Output",ExpressionUUID->"4435c2fb-6fd1-4eb2-a44d-279039aa9322"]
}, Open  ]],
Cell[CellGroupData[{
Cell[385031, 9877, 223, 6, 31, "Input",ExpressionUUID->"73c8eea4-d4a4-453f-8833-d229c0fc3175"],
Cell[385257, 9885, 171, 3, 35, "Output",ExpressionUUID->"aebf1f12-4bf0-44b3-a5d4-0a20c1f5a4b2"]
}, Open  ]],
Cell[385443, 9891, 373, 12, 59, "Input",ExpressionUUID->"0da9e65f-55f4-48d9-ba34-65e4c5d8feff"],
Cell[385819, 9905, 410, 13, 61, "Input",ExpressionUUID->"540d1f78-77af-49b9-a447-24b4b3932215"],
Cell[CellGroupData[{
Cell[386254, 9922, 663, 18, 47, "Input",ExpressionUUID->"ceb50802-9d95-47c5-9af6-06e0caeafb33"],
Cell[386920, 9942, 482, 13, 44, "Output",ExpressionUUID->"cdb02cbb-5aec-4176-8cf4-3f32d0098ce8"]
}, Open  ]],
Cell[CellGroupData[{
Cell[387439, 9960, 1099, 34, 88, "Input",ExpressionUUID->"56635cfb-2049-47de-8743-981e268587f0"],
Cell[388541, 9996, 551, 17, 69, "Output",ExpressionUUID->"54d42bbf-4611-4d81-9b71-fe38c8aca03d"]
}, Open  ]],
Cell[CellGroupData[{
Cell[389129, 10018, 891, 27, 73, "Input",ExpressionUUID->"5d02740a-e5b0-40c1-a3c3-48eea3f711ae"],
Cell[390023, 10047, 344, 8, 53, "Output",ExpressionUUID->"2ff2e042-eba3-4510-8633-7e3546aec8af"]
}, Open  ]],
Cell[CellGroupData[{
Cell[390404, 10060, 569, 18, 61, "Input",ExpressionUUID->"fa3beba8-deb4-4335-8c3c-b1f633ff4b2c"],
Cell[390976, 10080, 376, 10, 59, "Output",ExpressionUUID->"5fa7663c-f3be-40c6-86e7-8ec1c6b47acf"]
}, Open  ]],
Cell[CellGroupData[{
Cell[391389, 10095, 567, 18, 58, "Input",ExpressionUUID->"e57b76eb-1ca4-4632-ab6b-1f3ecd7782b1"],
Cell[391959, 10115, 190, 3, 35, "Output",ExpressionUUID->"e1a5bbbe-f89c-4da8-8d58-f1b517e8ae37"]
}, Open  ]],
Cell[CellGroupData[{
Cell[392186, 10123, 1459, 40, 91, "Input",ExpressionUUID->"2014fd9c-aabf-4b79-ba93-3ed77090f29c"],
Cell[393648, 10165, 9879, 181, 245, "Output",ExpressionUUID->"d8549b05-64bb-486e-9980-a41260b01aee"]
}, Open  ]],
Cell[CellGroupData[{
Cell[403564, 10351, 1551, 43, 159, "Input",ExpressionUUID->"f6de5376-4aa5-4d69-a190-93ec6a31f0bc"],
Cell[405118, 10396, 754, 15, 43, "Message",ExpressionUUID->"5e8670f8-0732-4fd3-b34f-e18cf804c51a"],
Cell[405875, 10413, 752, 15, 43, "Message",ExpressionUUID->"67f2fba3-df64-404e-b8ee-b8ddc80e345c"],
Cell[406630, 10430, 752, 15, 43, "Message",ExpressionUUID->"5348226a-b7ca-482b-81f3-87b2bec1826d"],
Cell[407385, 10447, 719, 14, 43, "Message",ExpressionUUID->"562a6c01-79fe-4fc3-9f1f-a49f7087e09e"],
Cell[408107, 10463, 25390, 436, 255, "Output",ExpressionUUID->"27b35305-56be-4114-ac78-77463220cbbb"]
}, Open  ]],
Cell[CellGroupData[{
Cell[433534, 10904, 957, 25, 64, "Input",ExpressionUUID->"79574766-1a43-4bf7-9635-4149f940d556"],
Cell[434494, 10931, 914, 26, 75, "Output",ExpressionUUID->"eb280c9f-1110-41a0-9025-ba02fef63b8f"]
}, Open  ]],
Cell[CellGroupData[{
Cell[435445, 10962, 2148, 54, 159, "Input",ExpressionUUID->"f649aa49-5afa-4daf-aacd-27f69f6b3b1a"],
Cell[437596, 11018, 557, 13, 23, "Message",ExpressionUUID->"ceffc3ae-0814-438c-9ff0-eda2f03c7ff8"],
Cell[438156, 11033, 3564, 76, 234, "Output",ExpressionUUID->"9430d860-e877-483a-a503-ac9a375923a9"]
}, Open  ]],
Cell[441735, 11112, 212, 4, 31, "Input",ExpressionUUID->"275e1cde-4322-42fc-b96d-b8c290d08a97"],
Cell[441950, 11118, 212, 4, 31, "Input",ExpressionUUID->"7e5cacfd-96c7-42b0-84ac-b1c6274eb93b"],
Cell[CellGroupData[{
Cell[442187, 11126, 285, 7, 31, "Input",ExpressionUUID->"3c3e4784-c7cf-4706-a7ae-1a06fc5548dc"],
Cell[442475, 11135, 207, 5, 35, "Output",ExpressionUUID->"d2b747c5-0f1b-410b-9ffb-6b6d5a3cd838"]
}, Open  ]],
Cell[442697, 11143, 459, 13, 36, "Text",ExpressionUUID->"06da8123-c2af-49e5-a57f-97e24bfe5b8b"],
Cell[443159, 11158, 456, 14, 59, "Input",ExpressionUUID->"95b365fa-df4b-483a-a1b3-5cf02317570f"],
Cell[443618, 11174, 1031, 27, 63, "Input",ExpressionUUID->"7bcba897-ba3b-4b3c-98b8-268ff5d9bcac"],
Cell[444652, 11203, 481, 15, 59, "Input",ExpressionUUID->"654d28e5-ccb0-4935-83ed-3a1ff8ed10fb"],
Cell[445136, 11220, 544, 15, 61, "Input",ExpressionUUID->"115bf7c3-d098-4d8b-a159-1af2e3115a49"],
Cell[CellGroupData[{
Cell[445705, 11239, 1041, 30, 39, "Input",ExpressionUUID->"ee8647e1-7d5f-4307-ad48-444a1bce2dc1"],
Cell[446749, 11271, 20447, 495, 488, "Output",ExpressionUUID->"6c73d924-a33c-4c0b-9134-c418d0f230a0"]
}, Open  ]],
Cell[467211, 11769, 154, 3, 31, "Input",ExpressionUUID->"2dffb761-e25b-4268-83b9-0ff49aa646b4"],
Cell[467368, 11774, 831, 23, 61, "Input",ExpressionUUID->"12fc88f4-cb1b-43cb-a447-139b196f0433"],
Cell[CellGroupData[{
Cell[468224, 11801, 275, 5, 39, "Input",ExpressionUUID->"e0b8e4c6-761f-4ffd-8a29-7e6a33ce40fa"],
Cell[468502, 11808, 218, 4, 58, "Output",ExpressionUUID->"8125dfdb-9536-4fc9-aaa7-a482977baa5d"]
}, Open  ]],
Cell[CellGroupData[{
Cell[468757, 11817, 695, 17, 31, "Input",ExpressionUUID->"63651aa3-bc00-4dbe-abb9-a75dd8756b7f"],
Cell[469455, 11836, 1118, 32, 80, "Output",ExpressionUUID->"894f74ab-43fc-423d-80ca-312ad0f1dd00"]
}, Open  ]],
Cell[CellGroupData[{
Cell[470610, 11873, 581, 16, 31, "Input",ExpressionUUID->"45d0c759-ab9c-453b-9bc7-c8a74f2ce56b"],
Cell[471194, 11891, 958, 29, 80, "Output",ExpressionUUID->"89d2bb57-ca68-4528-98b5-4ffc4c09f17a"]
}, Open  ]],
Cell[CellGroupData[{
Cell[472189, 11925, 693, 18, 31, "Input",ExpressionUUID->"2ba91c24-8862-4f6c-82ed-0f40ef248826"],
Cell[472885, 11945, 11857, 213, 233, "Output",ExpressionUUID->"c3ad4bfd-1ed6-46d2-ac8d-33bf2dee9ddd"]
}, Open  ]],
Cell[CellGroupData[{
Cell[484779, 12163, 260, 5, 31, "Input",ExpressionUUID->"964dc3a0-273c-4d37-a14a-1bae597fe234"],
Cell[485042, 12170, 628, 18, 80, "Output",ExpressionUUID->"39771f52-a583-465b-89d5-0c5c7571b597"]
}, Open  ]],
Cell[CellGroupData[{
Cell[485707, 12193, 293, 6, 31, "Input",ExpressionUUID->"061269b2-f62d-4813-9ceb-051d0e9cb478"],
Cell[486003, 12201, 605, 18, 60, "Output",ExpressionUUID->"ea851468-05f4-40ab-8ad8-cc0d97b2d0f9"]
}, Open  ]]
}
]
*)