1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
|
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 591593, 11657]
NotebookOptionsPosition[ 577508, 11420]
NotebookOutlinePosition[ 577901, 11436]
CellTagsIndexPosition[ 577858, 11433]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"Get", "[",
"\"\<~/doc/research/first_order_singularities/mma/schofield.wl\>\"",
"]"}]], "Input",
CellChangeTimes->{{3.817548726786456*^9, 3.817548838429791*^9}},
CellLabel->"In[3]:=",ExpressionUUID->"e595a667-7f25-4f98-9f12-a321a236d113"],
Cell[CellGroupData[{
Cell["Definitions", "Section",
CellChangeTimes->{{3.817119832436002*^9,
3.817119834596055*^9}},ExpressionUUID->"bb531fce-8a9d-4a5f-8d6a-\
ec66b9fbf698"],
Cell[BoxData[
RowBox[{
RowBox[{"$Assumptions", "=",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]c", ">", "0"}], ",",
RowBox[{"t\[Infinity]", ">", "0"}], ",",
RowBox[{
RowBox[{"gC", "[", "\[Infinity]", "]"}], ">", "0"}], ",",
RowBox[{
RowBox[{"gC", "[", "_", "]"}], "\[Element]", "Reals"}], ",",
RowBox[{"B", ">", "0"}], ",",
RowBox[{"A", ">", "0"}], ",",
RowBox[{"\[ScriptCapitalF]1", ">", "0"}], ",",
RowBox[{"\[ScriptCapitalF]0", "\[Element]", "Reals"}], ",",
RowBox[{"\[Gamma]", ">", "0"}], ",",
RowBox[{"\[Theta]i", ">", "0"}], ",",
RowBox[{"\[Theta]i", "<", "\[Theta]c"}]}], "}"}]}], ";"}]], "Input",
CellChangeTimes->{{3.817121509075202*^9, 3.81712159405204*^9}, {
3.817122146902429*^9, 3.8171221498463*^9}, {3.817123222631443*^9,
3.8171232401305323`*^9}, {3.81712327174748*^9, 3.817123302075263*^9}, {
3.817123345236269*^9, 3.8171233467245693`*^9}, {3.817123565480311*^9,
3.817123582960553*^9}, {3.8171246080192423`*^9, 3.817124610971168*^9}, {
3.8172096124512787`*^9, 3.817209616026865*^9}, {3.81721066071721*^9,
3.817210665188924*^9}, {3.817211071596877*^9, 3.817211091620666*^9}, {
3.817271204530282*^9, 3.817271209927745*^9}, {3.817275283336474*^9,
3.8172752836605864`*^9}},
CellLabel->
"(WOPR) In[446]:=",ExpressionUUID->"395191f4-75f5-4aa3-87f6-ccf9cbedf73f"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Manipulate", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"R\[ScriptCapitalM]", "[", "2", "]"}], "[",
RowBox[{"\[Gamma]", ",", "B", ",", "\[Theta]c", ",", "1"}], "]"}], "[",
"\[Theta]", "]"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "20"}], ",", "20"}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Theta]c", ",",
RowBox[{"-", "1000"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]c", ",", "1000"}], "}"}]}], "}"}], "]"}], "}"}]}],
",",
RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"\[Gamma]", ",",
RowBox[{"1", "/", "10"}], ",", "10", ",",
RowBox[{"1", "/", "10"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"B", ",",
RowBox[{"1", "/", "10"}], ",", "10", ",",
RowBox[{"1", "/", "10"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]c", ",",
RowBox[{"1", "+",
RowBox[{"1", "/", "10"}]}], ",", "2", ",",
RowBox[{"1", "/", "100"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8175496131650867`*^9, 3.817549762607664*^9}, {
3.817550982837791*^9, 3.817551030438055*^9}, {3.8175529357604218`*^9,
3.81755293778432*^9}, {3.8175530988827267`*^9, 3.8175531070583982`*^9}, {
3.817553402424604*^9, 3.8175534118159523`*^9}, {3.8175536922933187`*^9,
3.81755370940517*^9}, {3.81755419838216*^9, 3.817554207237907*^9}, {
3.8175542657350683`*^9, 3.817554403122216*^9}, {3.817555063285273*^9,
3.8175551707746563`*^9}, {3.817557024056016*^9, 3.817557024895731*^9}, {
3.8175573533737717`*^9, 3.817557355637789*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"389cbfb1-8cc7-458c-9f8c-1fd631f97f2c"],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{Schofield`B$$ = Rational[9, 10], Schofield`\[Gamma]$$ =
Rational[22, 5], Schofield`\[Theta]c$$ = Rational[179, 100],
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{
Hold[Schofield`\[Gamma]$$],
Rational[1, 10], 10,
Rational[1, 10]}, {
Hold[Schofield`B$$],
Rational[1, 10], 10,
Rational[1, 10]}, {
Hold[Schofield`\[Theta]c$$],
Rational[11, 10], 2,
Rational[1, 100]}}, Typeset`size$$ = {270., {82., 85.33243899140032}},
Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {
Schofield`B$$ = Rational[1, 10], Schofield`\[Gamma]$$ =
Rational[1, 10], Schofield`\[Theta]c$$ = Rational[11, 10]},
"ControllerVariables" :> {},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, "Body" :> Plot[
Schofield`R\[ScriptCapitalM][2][
Schofield`\[Gamma]$$, Schofield`B$$, Schofield`\[Theta]c$$, 1][
Schofield`\[Theta]], {Schofield`\[Theta], -20, 20}, Epilog -> {
Line[{{Schofield`\[Theta]c$$, -1000}, {
Schofield`\[Theta]c$$, 1000}}]}, WorkingPrecision -> 30],
"Specifications" :> {{Schofield`\[Gamma]$$,
Rational[1, 10], 10,
Rational[1, 10]}, {Schofield`B$$,
Rational[1, 10], 10,
Rational[1, 10]}, {Schofield`\[Theta]c$$,
Rational[11, 10], 2,
Rational[1, 100]}}, "Options" :> {}, "DefaultOptions" :> {}],
ImageSizeCache->{307., {134.849609375, 139.150390625}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], "Output",
CellChangeTimes->{{3.8175543100594673`*^9, 3.817554403402668*^9}, {
3.817555144679367*^9, 3.817555170954733*^9}, 3.817557025045121*^9, {
3.817557353599874*^9, 3.81755735592977*^9}},
CellLabel->"Out[6]=",ExpressionUUID->"2b3d333d-6106-45b7-8d31-f398af6dca84"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Limit", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"R\[ScriptCapitalM]", "[", "2", "]"}], "[",
RowBox[{"\[Gamma]", ",", "B", ",", "\[Theta]c", ",", "M0"}], "]"}], "[",
"\[Theta]", "]"}], ",",
RowBox[{"\[Theta]", "\[Rule]", "\[Infinity]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817557366814589*^9, 3.817557383669715*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"377f0dcd-6050-40b3-be70-41379e9fda93"],
Cell[BoxData["0"], "Output",
CellChangeTimes->{3.8175573858936357`*^9},
CellLabel->"Out[7]=",ExpressionUUID->"02602b05-0f8e-4f3a-8e08-cb1c3aa44a3f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"eqLow", "[", "2", "]"}], "[",
RowBox[{
RowBox[{
RowBox[{"f", "[", "\[Theta]i", "]"}], "[", "0", "]"}], ",",
RowBox[{
RowBox[{"g", "[",
RowBox[{"gC", ",", "\[Theta]c"}], "]"}], "[", "0", "]"}]}], "]"}], "[",
"0", "]"}]], "Input",
CellChangeTimes->{{3.8175547641765738`*^9, 3.817554807184411*^9}, {
3.81755721589187*^9, 3.817557223395288*^9}},
CellLabel->"In[4]:=",ExpressionUUID->"8c3eb7fb-65d2-4a56-a3e3-0dc6e0518fe6"],
Cell[BoxData[
RowBox[{
RowBox[{"M0", " ",
RowBox[{"(",
RowBox[{
FractionBox["1", "\[Pi]"], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
FractionBox["1",
RowBox[{"2", " ", "B", " ", "\[Theta]c"}]]], " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"2", " ", "B", " ", "\[Theta]c"}], "-",
RowBox[{"2", " ", "B", " ", "\[Gamma]", " ", "\[Theta]c"}]}], ")"}],
" ",
RowBox[{"ExpIntegralEi", "[",
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ", "B", " ", "\[Theta]c"}]]}], "]"}]}],
RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]c"}]]}], ")"}]}],
"+",
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["\[Theta]c", "2"], "-",
SuperscriptBox["\[Theta]i", "2"]}], ")"}],
RowBox[{"1", "/", "8"}]], " ",
RowBox[{
SuperscriptBox["Gl", "\[Prime]",
MultilineFunction->None], "[", "0", "]"}]}],
SuperscriptBox["\[Theta]i",
RowBox[{"1", "/", "4"}]]]}]], "Output",
CellChangeTimes->{
3.817554807406887*^9, {3.817557206327607*^9, 3.81755724215594*^9},
3.8175573305621147`*^9},
CellLabel->"Out[4]=",ExpressionUUID->"e44b7486-110d-476c-b94b-28e4b600a40c"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"eqLow", "[", "n_", "]"}], "[", "m_", "]"}], ":=",
RowBox[{"SeriesCoefficient", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}], "+",
RowBox[{
SuperscriptBox[
RowBox[{
RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}], "\[Beta]"],
RowBox[{
RowBox[{"Gl", "'"}], "[",
RowBox[{
RowBox[{
RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}],
SuperscriptBox[
RowBox[{
RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}],
RowBox[{"-", "\[CapitalDelta]"}]]}], "]"}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Theta]c", ",", "m"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"Join", "[",
RowBox[{"$Assumptions", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", "<", "\[Theta]c"}], ",",
RowBox[{"\[Theta]", ">", "\[Theta]i"}]}], "}"}]}], "]"}]}]}],
"\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"eqHigh", "[", "n_", "]"}], "[", "m_", "]"}], ":=",
RowBox[{"SeriesCoefficient", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}], "+",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-",
RowBox[{
RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}]}], ")"}],
"\[Beta]"],
RowBox[{
RowBox[{"Gh", "'"}], "[",
RowBox[{
RowBox[{
RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"-",
RowBox[{
RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}]}], ")"}],
RowBox[{"-", "\[CapitalDelta]"}]]}], "]"}]}]}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "m"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"Join", "[",
RowBox[{"$Assumptions", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", ">", "0"}], ",",
RowBox[{"\[Theta]", "<", "\[Theta]i"}]}], "}"}]}], "]"}]}]}],
"\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"eqMid", "[", "n_", "]"}], "[", "m_", "]"}], ":=",
RowBox[{"SeriesCoefficient", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}], "-",
RowBox[{
FractionBox[
SuperscriptBox[
RowBox[{
RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}],
RowBox[{"1", "/", "\[Delta]"}]], "\[CapitalDelta]"],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"\[Eta]", " ",
RowBox[{
RowBox[{"\[CapitalPhi]", "'"}], "[", "\[Eta]", "]"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{"2", "-", "\[Alpha]"}], ")"}],
RowBox[{"\[CapitalPhi]", "[", "\[Eta]", "]"}]}]}], "/.",
RowBox[{"\[Eta]", "\[Rule]",
RowBox[{
RowBox[{
RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]", "]"}], " ",
SuperscriptBox[
RowBox[{
RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]", "]"}],
RowBox[{
RowBox[{"-", "1"}], "/", "\[CapitalDelta]"}]]}]}]}], ")"}]}]}],
"\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Theta]i", ",", "m"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"Join", "[",
RowBox[{"$Assumptions", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]", ">", "0"}], ",",
RowBox[{"\[Theta]", "<", "\[Theta]c"}]}], "}"}]}], "]"}]}]}],
"\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"eqMeta", "[", "n_", "]"}], "[", "m_", "]"}], ":=",
RowBox[{"SeriesCoefficient", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"I\[ScriptCapitalF]", "[",
RowBox[{"1", "/", "\[Theta]inv"}], "]"}], "-",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", " ",
RowBox[{
RowBox[{"g", "[", "n", "]"}], "[",
RowBox[{"1", "/", "\[Theta]inv"}], "]"}]}], ")"}],
RowBox[{
RowBox[{"(",
RowBox[{"2", "-", "\[Alpha]"}], ")"}], "/", "\[CapitalDelta]"}]],
RowBox[{"Dmeta", "[",
RowBox[{
RowBox[{
RowBox[{"f", "[", "n", "]"}], "[",
RowBox[{"1", "/", "\[Theta]inv"}], "]"}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", " ",
RowBox[{
RowBox[{"g", "[", "n", "]"}], "[",
RowBox[{"1", "/", "\[Theta]inv"}], "]"}]}], ")"}],
RowBox[{
RowBox[{"-", "1"}], "/", "\[CapitalDelta]"}]]}], "]"}]}]}],
"\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"\[Theta]inv", ",", "0", ",", "m"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"Join", "[",
RowBox[{"$Assumptions", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]inv", ">", "0"}], ",",
RowBox[{"\[Theta]inv", "<",
RowBox[{"1", "/", "\[Theta]c"}]}]}], "}"}]}], "]"}]}]}],
"\[IndentingNewLine]", "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"eqB", "[", "n_", "]"}], ":=",
RowBox[{
FractionBox["\[Pi]",
RowBox[{"2", " ", "1.3578383417066"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"\[CapitalDelta]", " ",
RowBox[{
RowBox[{"g", "[", "n", "]"}], "[", "\[Theta]c", "]"}],
SuperscriptBox[
RowBox[{
RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]c", "]"}],
RowBox[{
RowBox[{"-", "\[CapitalDelta]"}], "-", "1"}]],
RowBox[{
RowBox[{
RowBox[{"f", "[", "n", "]"}], "'"}], "[", "\[Theta]c", "]"}]}], "-",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"g", "[", "n", "]"}], "'"}], "[", "\[Theta]c", "]"}],
SuperscriptBox[
RowBox[{
RowBox[{"f", "[", "n", "]"}], "[", "\[Theta]c", "]"}],
RowBox[{"-", "\[CapitalDelta]"}]]}]}], ")"}]}]}]}], "Input",
CellChangeTimes->{{3.817122561958515*^9, 3.817122595430499*^9}, {
3.8171226412071457`*^9, 3.817122654383555*^9}, {3.817122684808043*^9,
3.817122893980072*^9}, {3.8171229823734827`*^9, 3.817123013558132*^9}, {
3.817124148403132*^9, 3.817124164362879*^9}, 3.817124570570879*^9,
3.81712461824366*^9, {3.817124882096373*^9, 3.817124904954482*^9}, {
3.817125021810815*^9, 3.817125026171056*^9}, {3.817125056291629*^9,
3.817125062179249*^9}, {3.8171251399727*^9, 3.8171252034061813`*^9}, {
3.8171272990345707`*^9, 3.817127305730093*^9}, {3.81712793122969*^9,
3.817127935645309*^9}, {3.817196911039874*^9, 3.8171969748088827`*^9}, {
3.817197722814756*^9, 3.8171977381903067`*^9}, {3.8171977809682837`*^9,
3.817197825063862*^9}, {3.8171979540210543`*^9, 3.8171979962111807`*^9}, {
3.817198723032823*^9, 3.817198738800659*^9}, {3.817198786617443*^9,
3.817198842450691*^9}, {3.817200387324769*^9, 3.817200391268491*^9}, {
3.817209494881345*^9, 3.817209739781746*^9}, {3.817209870543663*^9,
3.817209873007422*^9}, {3.817210066331233*^9, 3.817210077563465*^9}, {
3.817210203677601*^9, 3.817210214085437*^9}, {3.817210686686688*^9,
3.8172109359308043`*^9}, {3.8172110570612993`*^9, 3.817211067132907*^9}, {
3.8172111388865967`*^9, 3.817211161790626*^9}, {3.8172115612695913`*^9,
3.8172115624854527`*^9}, 3.8172121773284616`*^9, {3.817212401044241*^9,
3.81721240169213*^9}, {3.8172126942254143`*^9, 3.817212733676169*^9}, {
3.8172128432044477`*^9, 3.817212850900301*^9}, {3.817213122273017*^9,
3.817213125505207*^9}, {3.817213504392342*^9, 3.817213522176297*^9},
3.817214109954194*^9, {3.817214983818109*^9, 3.817214986450067*^9}, {
3.8172173960165873`*^9, 3.817217426058158*^9}, {3.817218919892474*^9,
3.817218934448584*^9}, {3.817218984339595*^9, 3.817218988675902*^9}, {
3.817219056474732*^9, 3.817219056918*^9}, {3.817270667311324*^9,
3.817270696028246*^9}, {3.817271226342354*^9, 3.817271252979103*^9}, {
3.8172769069026337`*^9, 3.817276953348996*^9}, {3.8172775487711554`*^9,
3.817277647805482*^9}, 3.8172803779817553`*^9, {3.817280418228038*^9,
3.8172804267347317`*^9}, {3.817282016179366*^9, 3.817282092169364*^9},
3.817282209641667*^9, 3.817283240977447*^9, 3.817283291741331*^9},
CellLabel->
"(WOPR) In[798]:=",ExpressionUUID->"77a88da0-5b31-458a-9ed8-0b34545e511d"],
Cell[BoxData[{
RowBox[{
RowBox[{"\[CapitalPhi]Rules", "=",
RowBox[{"MapIndexed", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Derivative", "[",
RowBox[{
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], "]"}], "[",
"\[CapitalPhi]", "]"}], "[", "0", "]"}], "\[Rule]",
RowBox[{"#1",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}]}]}],
"&"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.197733383797993"}], ",",
RowBox[{"-", "0.318810124891"}], ",", "0.110886196683", ",",
"0.01642689465", ",",
RowBox[{
RowBox[{"-", "2.639978"}], " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ",",
RowBox[{
RowBox[{"-", "5.140526"}], " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ",",
RowBox[{"2.08856", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]]}], ",",
RowBox[{
RowBox[{"-", "4.4819"}], " ",
SuperscriptBox["10",
RowBox[{"-", "5"}]]}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"GlRules", "=",
RowBox[{"MapIndexed", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Derivative", "[",
RowBox[{
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], "]"}], "[", "Gl",
"]"}], "[", "0", "]"}], "\[Rule]",
RowBox[{"#1",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}]}]}],
"&"}], ",",
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"-", "1.3578383417066"}], ",",
RowBox[{"-", "0.048953289720"}], ",", "0.038863932", ",",
RowBox[{"-", "0.068362119"}], ",", "0.18388370", ",",
RowBox[{"-", "0.6591714"}], ",", "2.937665", ",",
RowBox[{"-", "15.61"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"GhRules", "=",
RowBox[{"MapIndexed", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Derivative", "[",
RowBox[{
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], "]"}], "[", "Gh",
"]"}], "[", "0", "]"}], "\[Rule]",
RowBox[{"#1",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"#2", "[",
RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], ")"}], "!"}]}]}],
"&"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0", ",",
RowBox[{"-", "1.8452280782328"}], ",", "0", ",", "8.333711750", ",",
"0", ",",
RowBox[{"-", "95.16896"}], ",", "0", ",", "1457.62", ",", "0", ",",
RowBox[{"-", "25891"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"DmetaRules", "=", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Derivative", "[", "#", "]"}], "[", "Dmeta", "]"}], "[", "0",
"]"}], "\[Rule]",
RowBox[{"If", "[",
RowBox[{
RowBox[{"#", "\[NotEqual]", "2"}], ",",
RowBox[{
RowBox[{"Sin", "[",
RowBox[{"8", "\[Pi]",
RowBox[{
RowBox[{"(",
RowBox[{"2", "-", "#"}], ")"}], "/", "15"}]}], "]"}],
RowBox[{
RowBox[{
RowBox[{"Derivative", "[", "#", "]"}], "[", "\[CapitalPhi]", "]"}],
"[", "0", "]"}]}], ",",
RowBox[{"2", "/", "15"}]}], "]"}]}], "&"}], "/@",
RowBox[{"Range", "[",
RowBox[{"0", ",", "5"}], "]"}]}]}], ";"}]}], "Input",
CellChangeTimes->{{3.8171238506222553`*^9, 3.817123981055841*^9}, {
3.817124021016416*^9, 3.8171240795775967`*^9}, {3.8171241841479683`*^9,
3.817124191819606*^9}, {3.81712424202855*^9, 3.8171243317581472`*^9}, {
3.817124763670149*^9, 3.8171247637578783`*^9}, {3.817124806239091*^9,
3.81712480629488*^9}, {3.817125233990562*^9, 3.817125241366708*^9}, {
3.8171253924669952`*^9, 3.817125393009253*^9}, {3.817125426242784*^9,
3.817125508131061*^9}, {3.817125668253682*^9, 3.817125720078556*^9}, {
3.81712575752703*^9, 3.817125884277041*^9}, {3.817126017709049*^9,
3.8171260243875713`*^9}, {3.817127284274146*^9, 3.817127295450204*^9},
3.8172038927147207`*^9, 3.8172039519957237`*^9, 3.817211900243198*^9, {
3.8172119490120792`*^9, 3.817211969444298*^9}, {3.817216957447488*^9,
3.817216958531187*^9}, {3.817268003369576*^9, 3.817268019019158*^9}, {
3.817283853841984*^9, 3.81728388518631*^9}},
CellLabel->
"(WOPR) In[843]:=",ExpressionUUID->"1f309ab1-20a0-46cc-93fe-35aed54ccb3d"],
Cell[BoxData[
RowBox[{
RowBox[{"\[Theta]i", "=", "1"}], ";"}]], "Input",
CellChangeTimes->{{3.817283930216783*^9, 3.8172839337126226`*^9}},
CellLabel->
"(WOPR) In[853]:=",ExpressionUUID->"e7fef682-ee6e-4d26-962a-6946f28d5999"],
Cell[BoxData[{
RowBox[{
RowBox[{"n1", "=", "2"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"eq1", "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"eqLow", "[", "n1", "]"}], "[", "0", "]"}], ",",
RowBox[{
RowBox[{"eqMid", "[", "n1", "]"}], "[", "0", "]"}], ",",
RowBox[{
RowBox[{"eqHigh", "[", "n1", "]"}], "[", "1", "]"}], ",",
RowBox[{
RowBox[{"eqLow", "[", "n1", "]"}], "[", "1", "]"}], ",",
RowBox[{
RowBox[{"eqHigh", "[", "n1", "]"}], "[", "2", "]"}]}], "}"}], "//.",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"\[ScriptCapitalF]sol", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", "\[CapitalPhi]Rules", ",",
"GlRules", ",", "GhRules", ",", "DmetaRules", ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n1", "]"}]}]}], "}"}]}], "]"}]}]}],
";"}]}], "Input",
CellChangeTimes->CompressedData["
1:eJwd031Qy3EcB/D1cPI8zjydrNYlqTxexilJaXasjoVITxuVp8plx0yb8hCV
h5gUoq7Hs26tG7pWSuhyVi3GVSaFapFdZWU5l/i9v3987vXH5/O5z+ePz4cl
TOBHW9NotB1UwKhTsUG3j5s2+2XFEZ3MLsFwPC2LeCzUPRxO2POIvL55Qihe
OzMW6p87iaBRTpdAmuBoFtz2k5cNmcWCdjjVMNoBs9qMrGzKuqgYD3hqo/4E
1NqlnYbptxgykhdnElcJE29DZYuGqMhblAsl78qJ6rI3BXBNE6sQfu1IN0F5
T/MQ9JuTUauhNA0m1EHhbO8z1ZRFu24SOaXB5+FW5VnikVFJPpziX1sAuQyz
Gh7rHCFeaDuvhfs8VzfDaGnVEHQaZg/D8ZCkUcjn9lqgY8t06xrKwcp3dtCu
WCaAZeqzQniyKkf1lPJ3UmsF1A4oNFAkbq+G6/fLnGux/8U3xDAHEx8+C9AH
w2buNilMfaUgNlqUmbAnwPsGHOXTS2C9WlQK37deLYOJlYeV0IphP/KM0lDj
MQbH99ja1FPO8E8hTm55Qodhu9kMGGjo2AIH51/lwpPJ8mrIXtJKnF3p9eA5
pe0Vt3x4RvytBdKlm3Rwc5Ux8AXmaO7tgLTyjEi40neIyH97IB4uWPeLyIni
nX6JPvomGUzqtUqHLMPBDNiltE1twH2E64jiGe4P4YRGq4DO7dbdHyl3DjgT
AzYc4nRSul0XboXM7KUNML8kmWiZeWfnJ8oSjoJIE6h2Q5PvU6Ln75wwWK9K
iYD385hHIUtlIDIcuOMw06PpLyxq22PThftw0RPti/9Ng5eNe6fDkE8h+2CT
VyTxQ9G/KBjWIxDAS2tFFbD5T6gaRi+UaOCfa0E10JwaZOnGP1Q9HIMqSQHr
M2XEcr4TrJBbM79Qfg7XOsL9EZnO8L1VDpEd+9gN6h7IV0CfQe8AWDaJx4GN
cWa/r5QNJqk/3H5xWSh0NdcStyvnSmHrhbsy+CLyxxUo+zvrOqnrU8mhpTH+
FvT4tSgXDjzqJ+ZLmJE9lNWv84g8eko81CUeToDDgYUiOODZT/RRBl2GX/Ts
NOio+94JY7z4XTA5554Rnot26IeT1+S69CLvs9gduhp9V8LydfHE/3wzwOY=
"],
CellLabel->
"(WOPR) In[862]:=",ExpressionUUID->"2f5b927d-f164-4051-b8ca-bad9a5ba3b97"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"s1", "=",
RowBox[{"FindRoot", "[",
RowBox[{"eq1", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Theta]c", ",",
RowBox[{"1", "+",
RowBox[{"RandomReal", "[", "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[ScriptCapitalM]0", ",",
RowBox[{"RandomReal", "[", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[ScriptCapitalM]1", ",",
RowBox[{"RandomReal", "[", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"gC", "[", "1", "]"}], ",",
RowBox[{"RandomReal", "[", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"gC", "[", "2", "]"}], ",",
RowBox[{"RandomReal", "[", "]"}]}], "}"}]}], "}"}], ",",
RowBox[{"MaxIterations", "\[Rule]", "1000"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.817127065230098*^9, 3.8171271351270227`*^9}, {
3.817127221800994*^9, 3.8171272630331593`*^9}, 3.81712740736408*^9, {
3.817127491557787*^9, 3.8171275000934143`*^9}, 3.8171275721198053`*^9, {
3.8171278100273*^9, 3.817127849603622*^9}, {3.81712788866899*^9,
3.817127911532996*^9}, {3.81719706565886*^9, 3.817197105498705*^9}, {
3.817197893385504*^9, 3.81719790689716*^9}, {3.81719860001385*^9,
3.8171986053976393`*^9}, {3.817198639295259*^9, 3.817198662766809*^9}, {
3.817198876170909*^9, 3.817198908051071*^9}, {3.817198993133552*^9,
3.8171991533442287`*^9}, {3.817199209928318*^9, 3.817199241960556*^9}, {
3.817199495862*^9, 3.8171994994689503`*^9}, {3.8171995495740423`*^9,
3.817199605718575*^9}, {3.817199652392643*^9, 3.817199715256566*^9}, {
3.817199865131709*^9, 3.817199880715331*^9}, {3.817199936333564*^9,
3.817199987661281*^9}, {3.817200026262958*^9, 3.8172000468302813`*^9}, {
3.8172001570412397`*^9, 3.8172001598323307`*^9}, {3.817200236641964*^9,
3.8172002385137587`*^9}, {3.8172002992189293`*^9,
3.8172003208190928`*^9}, {3.817200415813776*^9, 3.817200416404771*^9}, {
3.817204016980706*^9, 3.817204076853834*^9}, {3.8172041381029387`*^9,
3.817204203727563*^9}, {3.817204234304641*^9, 3.817204255961961*^9}, {
3.817204390931651*^9, 3.8172044426360817`*^9}, {3.817205022823312*^9,
3.8172050577028513`*^9}, {3.817205106256721*^9, 3.817205106559868*^9}, {
3.817209919633216*^9, 3.817209920608328*^9}, {3.817210044562058*^9,
3.817210053786522*^9}, {3.817210136268099*^9, 3.8172101405721073`*^9}, {
3.817210451098201*^9, 3.81721045318543*^9}, {3.817211412418923*^9,
3.8172114542674837`*^9}, 3.817211713768137*^9, {3.817211774217906*^9,
3.817211820329513*^9}, {3.817212210577387*^9, 3.817212210720683*^9},
3.817212495142112*^9, {3.817213148937108*^9, 3.817213155649081*^9}, {
3.8172131921538963`*^9, 3.817213198714007*^9}, {3.8172140038972063`*^9,
3.8172140040882683`*^9}, {3.817214050225759*^9, 3.817214064234343*^9},
3.81721453132269*^9, {3.8172191352175198`*^9, 3.81721914521805*^9}, {
3.8172192016924553`*^9, 3.817219202057729*^9}, {3.81721981372462*^9,
3.817219818492318*^9}, {3.8172203944673862`*^9, 3.817220425613224*^9}, {
3.817220485354929*^9, 3.817220583732532*^9}, 3.81722086630956*^9, {
3.817267355013483*^9, 3.817267405354693*^9}, {3.817269076393395*^9,
3.817269087009036*^9}, {3.817269120326481*^9, 3.817269121269062*^9}, {
3.817269939213081*^9, 3.8172699495241137`*^9}, {3.8172700164421453`*^9,
3.817270029113059*^9}, {3.817271285570938*^9, 3.817271292845436*^9}, {
3.817271338825984*^9, 3.817271347239892*^9}, {3.817271687882124*^9,
3.817271688161475*^9}, {3.817272026928958*^9, 3.817272038746695*^9}, {
3.817272732073227*^9, 3.817272740779784*^9}, {3.8172727722855988`*^9,
3.817272774613453*^9}, {3.817275330702072*^9, 3.81727534054673*^9}, {
3.817275373172369*^9, 3.81727537934888*^9}, {3.817275674947576*^9,
3.8172756762795753`*^9}, {3.8172777393447733`*^9, 3.817277749634144*^9}, {
3.8172778167894783`*^9, 3.817277820829632*^9}, {3.817278006315517*^9,
3.8172780223674107`*^9}, {3.817280034270249*^9, 3.817280072111932*^9}, {
3.8172802071691732`*^9, 3.817280223767226*^9}, {3.817280503291031*^9,
3.817280510489274*^9}, {3.8172805452815933`*^9, 3.817280546902663*^9}, {
3.817280635015347*^9, 3.817280643275325*^9}, {3.817280679286304*^9,
3.817280679669477*^9}, {3.817280748769155*^9, 3.817280752344582*^9}, {
3.8172821291550713`*^9, 3.8172821298656*^9}, {3.8172824240538273`*^9,
3.8172824749055367`*^9}, {3.817282636494815*^9, 3.8172826427854652`*^9}, {
3.817283320587726*^9, 3.817283328321372*^9}, {3.817283389745932*^9,
3.817283391669229*^9}, {3.8172839405657682`*^9, 3.817283941194763*^9}},
CellLabel->
"(WOPR) In[864]:=",ExpressionUUID->"630fc9c9-229c-4372-8a16-eac1f2d98690"],
Cell[BoxData[
TemplateBox[{
"FindRoot", "lstol",
"\"The line search decreased the step size to within tolerance specified \
by AccuracyGoal and PrecisionGoal but was unable to find a sufficient \
decrease in the merit function. You may need more than \
\\!\\(\\*RowBox[{\\\"MachinePrecision\\\"}]\\) digits of working precision to \
meet these tolerances.\"", 2, 864, 557, 31479193581598412653, "WOPR"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.8172839055832853`*^9, 3.817283971485866*^9}},
CellLabel->
"During evaluation of (WOPR) \
In[864]:=",ExpressionUUID->"20e41565-1936-405a-9504-d530fdcc8152"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]c", "\[Rule]",
RowBox[{"0.35782801821894805`", "\[VeryThinSpace]", "-",
RowBox[{"9.694348542908053`*^-16", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[ScriptCapitalM]0", "\[Rule]",
RowBox[{"0.047012285433126993`", "\[VeryThinSpace]", "-",
RowBox[{"1.1840438922058634`*^-15", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{"\[ScriptCapitalM]1", "\[Rule]",
RowBox[{"0.8534070714613905`", "\[VeryThinSpace]", "-",
RowBox[{"1.3933688967862164`*^-15", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{
RowBox[{"gC", "[", "1", "]"}], "\[Rule]",
RowBox[{
RowBox[{"-", "7.301447130143889`"}], "+",
RowBox[{"1.0883136380300957`*^-14", " ", "\[ImaginaryI]"}]}]}], ",",
RowBox[{
RowBox[{"gC", "[", "2", "]"}], "\[Rule]",
RowBox[{"40.82128454804195`", "\[VeryThinSpace]", "+",
RowBox[{"1.5964707349774136`*^-16", " ", "\[ImaginaryI]"}]}]}]}],
"}"}]], "Output",
CellChangeTimes->{{3.817280643827911*^9, 3.817280758907701*^9}, {
3.817282118654529*^9, 3.817282122045233*^9}, 3.817282223769466*^9,
3.817282305603149*^9, {3.817282434403528*^9, 3.817282479844577*^9}, {
3.817282643441534*^9, 3.817282683973117*^9}, {3.817282855874453*^9,
3.817282863884409*^9}, {3.817283328636736*^9, 3.817283360690146*^9},
3.817283392486912*^9, {3.817283901559588*^9, 3.817283971572627*^9}},
CellLabel->
"(WOPR) Out[864]=",ExpressionUUID->"319eb113-9321-48fc-ad65-5700453ef613"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"s11", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], "\[Rule]",
RowBox[{"Re", "[",
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], "]"}]}], "&"}], "/@", "s1"}]}],
";"}]], "Input",
CellChangeTimes->{{3.817282132727553*^9, 3.817282168778081*^9}},
CellLabel->
"(WOPR) In[758]:=",ExpressionUUID->"ea36fa2d-8c46-4383-be61-eff682dedb14"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"B", "//.",
RowBox[{"{",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n1", "]"}]}], "}"}]}], "/.", "s1"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}]], "Input",
CellChangeTimes->{{3.817282197466474*^9, 3.817282201883644*^9}, {
3.817283506545725*^9, 3.817283511684161*^9}},
CellLabel->
"(WOPR) In[826]:=",ExpressionUUID->"5823df11-0739-494d-bf1b-44bf2a14cb2b"],
Cell[BoxData["1.8046902735396873`"], "Output",
CellChangeTimes->{{3.817282202366857*^9, 3.8172822271920424`*^9},
3.8172824865696583`*^9, {3.817283507032922*^9, 3.817283512110911*^9}},
CellLabel->
"(WOPR) Out[826]=",ExpressionUUID->"cf69a3b6-a533-4dea-b33c-8d65e371fe08"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphicsRow", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}], "//.",
RowBox[{"{",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n1", "]"}]}], "}"}]}], "/.", "s1"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "1.5"}], ",", "1.5"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"g", "[", "n1", "]"}], "[", "\[Theta]", "]"}], "/.",
RowBox[{"{",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n1", "]"}]}], "}"}]}], "/.", "s1"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}]}],
"\[IndentingNewLine]", "}"}], "]"}]], "Input",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQAWIQLfCjU+JgwRvHF+X/5UD0lte/lUB0toyUMog2vn9g
xhEg7XLs0nwQ3VEUFncUSJ96KRkPokNq3LLuAOkratPzQfRGE9daEH0rLwNM
619cNBFEF3Q+AdNfrhim3gXSq/5agWm5o/NyQLSP1AowLdQ0txxE68jvqQLR
M34ufwSiJZYWPwbRRUs1he8B6UO2a8D0ki8xRiCal+cfmF4VyboPRJ/a9OEw
iG53LjJ6CKT/GtSYgOgVzL7WIDpg23YwbdBywgtEfzt2yhtE9ynoxD4C0g0L
RJNB9Kx9Pf6PgXRZ3CkwfWPf6pcgWsNT8Q2IBgBMg7MM
"],
CellLabel->
"(WOPR) In[821]:=",ExpressionUUID->"2a7b9f00-b942-4f1e-89df-1d3081b1fc6a"],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwBsQFO/iFib1JlAgAAABoAAAACAAAAY6+Q7///978vtjyhSXr0vxT7GiY7
/Pe/mB28sDp59L/ERqVcdvj3v2ihTAUpePS/Jt65yezw97/8+WOo/HX0v+oM
46PZ4fe/2eOiMHpx9L+bWG3aFN73v9R9sb9PcPS/TKT3EFDa979ySPMCIW/0
v607DH7G0ve/IXkF97Vs9L9wajVYs8P3v+j47zWlZ/S/Iba/ju6/978tN6T8
U2b0v9IBSsUpvPe/B752Tv1k9L80mV4yoLT3v0sS8Cs/YvS/98eHDI2l97+T
ONGWfVz0v34l2sBmh/e/t3LOQ91P9L8vcWT3oYP3v6x7rasuTvS/4LzuLd1/
97+kdO9Wekz0v0JUA5tTePe/+l90yQBJ9L8Fgyx1QGn3v9X7SdHMQfS/jOB+
KRpL979ws7OUezL0v5qbI5LNDve/mMZDvQYR9L+qMJmhtwr3v19ArsWmDvS/
usUOsaEG978KhKvDQwz0v9rv+c91/va/n/U14XQH9L8aRNANHu72vz75XEG1
/fO/m+x8iW7N9r9/7MbDuenzvyifvmXxr/a/5G7HJLl29b/5zf6G
"]],
LineBox[CompressedData["
1:eJwBsQNO/CFib1JlAgAAADoAAAACAAAAhu1/MRuo9r+L6/cINNLzv5/fiG9R
Cfa/mvh+xp9n878W0FNPKRX1v62o6u6btfK/yFBTRMsl9L/8Sc0GVPzxv0gp
JXQjIvO/3eAmQTYr8b86rlymzy/yv9mAtlx+YvC/+opmEzIp8b9IBYHywwjv
v/X3pJVeJ/C/FSSbBFxN7b/EIpI0vm3uv9K3JteFquu/OwV/sytk7L/+22g5
rd/pv5RANzdBfeq/yclLYqgv6L9jnFjl6p/ov5rZaq8/hea/z6ceCQGa5r8x
QOgV2bPkvx4MsDG/tuS/qOhk0GT/4r8KIObP6ariv73Z9BdCJOG/bFSFmKio
4L8z+SH/HqDev2DD38sekt2/xSD1sC40278iPf5RxYHZv5bs6qOze9e/qWiz
4bu21b8lxhcsxQDUv2rzsVyLmtG/lgJMl6450L8ufgVZBiPLvxplhLWsBcm/
E3nUC5abw7/SxrytuxXCv9dkbCqv47a/HywUQqsdtb93eiqOyZWev0jo4uPJ
N5y/qo84QKQwnT/Thcu1Su6aP45pgdZggrc/UOAWIwmwtT8N9Ew7rFHDP9sL
UeGZ0cE/4HTGNHaEyz9kTB4OaV/JP+65TcJ3yNE/ipKeSOxj0D+mh6FgZInV
P90MgSUh19M/JfarE3ib2T8mHeSuQZPXP96yH707aN0/JU4/G+EN2z9Vl+CI
65DgPxAX9FPSdN4/nqWMvUyW4j9iXNauhRHhPwRbbe0FeeQ/3DrzCoPH4j/O
YKmnUoTmPwX2VjZPoOQ/tQ0aXfds6D89y04+lVfmPyaaIegHTOo/MzNKXM8D
6D/6doT9q1PsPyB4U5YX0ek/6/obDqg47j/tv2I6B3zrP6Bnh9QbI/A/opEZ
4PpF7T+QQcyMGSXxP8gzWQDGAe8/Dm+rQsMV8j9fZeoqqEzwP75EuL22GvM/
oEcmMyIl8T/9bV82Vg70P1MUrgy+6fE/AQfSmSv99D9q3MricaPyPzZIcsJK
APY/7GSWm05h8z+JMgvvEQT2P0ZLuD/0Y/M/3BykG9kH9j/nb8vQmGbzP4Lx
1XRnD/Y/mp6dr95r8z/OmjknhB72P8pNjRZddvM/Z+0AjL089j/ESR4ZIovz
P5iSj1UwefY/mtr1rbaz8z/rfCiC93z2P8zLkRg0tvM/PmfBrr6A9j9M5Q0F
sLjzP+Q78wdNiPY/2rKAUaO98z8w5Va6aZf2P8fhpzN3x/M/Oc7ZA7Kq9j9y
Bcts29PzP7Wm8Fo=
"]], LineBox[CompressedData["
1:eJwBAQL+/SFib1JlAgAAAB8AAAACAAAA238YOIiy9j9LJRfu19jzP/rcrOgV
8vY/DdZOOxcA9D9EbMiQTfb2P1aMELucAvQ/jfvjOIX69j+OrklNHwX0PyAa
G4n0Avc/x7cFbBsK9D9HV4kp0xP3P9Xd/73tE/Q/lNFlapA19z+4Gqa16Cb0
P95ggRLIOfc//WYWNTYp9D8n8Jy6/z33P9Gu71B/K/Q/ug7UCm9G9z9WyuXF
AzD0P+FLQqtNV/c/o/EUG9E49D8uxh7sCnn3P051cEBWSfQ/eFU6lEJ99z8P
RvKNSUv0P8HkVTx6gfc/Vu0r2DVN9D9UA42M6Yn3P6zIzO74UPQ/e0D7LMia
9z8c3f3XJlj0P8TPFtX/nvc/JCM2p99Z9D8OXzJ9N6P3P/Hq4viQW/Q/on1p
zaar9z93r08+3V70P8i6122FvPc/FhqUGR5l9D8SSvMVvcD3P2+DXaGcZvQ/
XNkOvvTE9z+FAHVbFGj0P+/3RQ5kzfc/QAPwEfBq9D8WNbSuQt73P7ZDaAVe
cPQ/YMTPVnri9z/4PKN+q3H0P6lT6/6x5vc/lC7B2fNy9D88ciJPIe/3PzIS
rkJ2dfQ/hgE+91jz9z8Kxe7bsHb0P9CQWZ+Q9/c/3B+Abed39D8aIHVHyPv3
P9qlAUEaefQ/Y6+Q7///9z8wtjyhSXr0P0YaBhk=
"]]},
Annotation[#, "Charting`Private`Tag$906403#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{3.4698486328124716`, 0.6280517578123863}, {0.5, 0.5}},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1.5, 1.5}, {-1.3414851605111204`, 1.2798553751303068`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {160.85922755461604, -97.08986231664207},
ImageScaled[{0.5, 0.5}], {301.7078610521121, 184.93307107931824}],
InsetBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVl3c8Vf8fx5uKQmlIkZUImaVovEuJEkWFiKSshsjKCEmSndGg7FV22euN
kD2uI5t7rXzteV2X8ru/f855PB/n/fmcc16v1/tzPoff6Kmm8YZ169Z5MA7/
P3slFG7vfb2KRVdlaEIac3Cl8nfNpyeraCyvcXD65SzwlD7dfYJ7FauSPRva
WaagnuO4jQLnKirxrcf0sklwNKa3nuFYRbk3j2U4HCbhN8vr4ItbV1HgjJe/
9X8TEHgrjENzYQX9PvxuCWoeh43jFTue1K9g1KByXHjuf/D9jLel5a8VdCi+
oF5m9x8YBl5rti5fwbWOcT9juf+g6HhXgGPeCurrVk4czh0FO7dpNq+4FRT6
YX/YoeQP/LdnP2us8wo6ThxtKh4cho9m/Y8T7Bn1/7VR7L8Nw6XCuPqvz1ZQ
7GaZVrzVMMQYSvpmmK2glxTnD+31w3An+eK2kpsr+DHjisWWw0PQdO4pc6f4
Cq6aP53992oAsh9VbGbvpWN3lTZf7IF+OMlnIZ3QTsfJT790lwv7oIDg1D9D
ouNP1bM8kvp9UHrmUdajX3Sc04oVl43phVp2jvvVmXQ8bCj23FquB8g/7pa+
9KTjXZNZH2/PTjAyY57Y95KOM+kjKsLHOmGY+wdnhhMdO7k8+HwHOmDsNdPT
Pks6jptwuSWd74BF7VSeU3p0dNFav34zczuwrNIdFyTp+Gcyx2l/IQF+GXEJ
PqJ0bP/jHxFsQ8AOY3WSgBAdP0jd5UEJAvY0Rh/R2E/HfVkSNOH4VuCLUulI
3UTHUdEfq9xhJDh+8f1x085l5BV6cO55bDMY+krPdLovI4vD2fkarVpwzAry
bHixjElX3g4o0GogtGeeu+z5MmbvNBOIDKuBWvGcy0kWyxjFunhLYaAaZBsU
Yu10l1Giy/vWW+dfwMR2UWuXzDIWmg3xrnVXAJ9c/ATT0WXMfftTu9mnAk4Z
ML2iCy/jV++OweenK8AyrTqdwrOM7M8lL16O+gmd6mrMGczLGG5nkJxnVQ4p
AVpFVyk05HI+vd1YoRSqcnM1z/XQ8PkG2u2GSQRK/77/ZNtpyMZl6KpqhrBX
qnvPgQYanovbuivlXgm4Nt99+l8eDXcKmHolGReB5k5zAc9AGk4Ks09PpOfB
Y/naPAcfBteLMclCHry5J3btiScNBUvHzlQ05UJR5qTTTWcatg8Nxxct5ICQ
5rM2ATMaZlX+u5yjlg20ICcvBBq6c2iXGcp/hz/cZWOXFGg42rl74BKRCb8T
mNQaj9Gw2WuVycUyE34UvNvZe4SG0sxJW0gpGWAxkBhG30XDtD8JSubmaTAo
TaQcH11CpUzOT4f+JgGpkIu9eGAJk2rFUzbrJkGp0l2ri71LuH3stLdAfiJE
3B47foO0hL6DF82WXiSAzst1aFm0hKeFKWvG/HHQ2Czekhy4hOrsaxpPQyKh
SPeZrKzPEla+fRsoEBgByUO5oQWvl7ArdktTcMAX8KIp6tY4LqHnvYh7Hp/C
4QLf7cGRB0tYd5By06LjA8h8i1CyuLuEaaSHfpSZ98B3bChx8fYSphyqKiza
/h7+KT99vOka43qU37mX6iGQ9/T1Ir/8El4VvR4usBwIicu12l9ll/AdLTk/
SywQ3r/aUSAlsYQu06elCsr9wfpDuAsILqGeK4n2LtkHJDBziz7rEsa01WUv
/XwNsWx9XB8pVDQNhCP9f20hSA+2yPdQcb/xOOf1N9bgnhS10PmbijtmspyN
9luBkeL9pgP1VEz4MapSm28GAnajHpE5VHzALBS+1eUKcPy8/OxcJhUvrBus
+XFEBjbsSL5LSaZibU6Q3iZeKRz4+kRBMJqKo+SOB31VNzGmd246wYeKbTej
7kwYPMQg0Zu9yp5UZKr8dMVazgLd7bNrR92ouI3WkaC3ZolGO5/Hi9pRUarI
LFQ20wb5lf7qphlSUS3krbRViRNGpWypyj5OxceFJBbpqx4YuGz2Q0uKinUO
oxe7t71Gt0u1UUuiVNx+suLAp+rXaEj2dZLno2LEbn7O1/JvkHc3h3QxCxUP
quwa9qe/xQgn7s8V/YsYYH/5afimAPSvfvHWuGsR/7WfivIPD0CXPf12TG2L
eGqv9IjkvkA0SI/WUKldxJhF57jhr4HIM3h4S33WIvaniiy9LnuHn69IP2t9
u4iXi8xU31QF46FtV2qbPRZROV6F7LkWjMl1RgKNrouYMT3PNnIiBAuuhpCq
bRdxevTzRiIhBDvVl2RK7i3i1rzuGcqLUNx7o3g+SX4Rt/lu1lPe/QED9C7b
uvy3gOOfZFeDVz/hXm6jBqehBbyTf51325EwjOhxFHLoX8DlgShrnVthmKaf
0mbdtoCdnc1W7qlhWH+XXc68bAHnDVgtHt0Jx60P2qg3Pi3gzPYuc7ncz+j+
+N7zI5cX8Dl/pYCBTST2+Rt8LriwgCZeQr9Y4iNRIVOvVPXsAkqPlWlOtUXi
3OKtrRayCxhSFzwjwx2F91yvfPzOs4DsFWfey7pF4bkg2bxTc/O4cN512eda
NH7Okuqpn5jHTUr5ceceRiPt99F1Bn/msepoqdLh19GYcUBExa1nHve175d9
WxiNvPHcHRVV8+hs7azdKBqD/3I309TC53GjqQSo7Y5F3a4N3P2h8zif+9/T
jzKxmLO6BpaB8/i5gWdYSCMWLc7T3wS9nsdyhxbjbQGx2Fs7xdn+dB7djY3M
9rPFYVFv+wnDi/NIsxnUY94fj04bv9k/m5zD42XJ5tYWiWjxyYDJcHQOsc9V
4L/gRDSS3BWqNjiH/rulx1PyE/GKnvN3kc45PHq/T4OPKQn3/VCf7KuYw0SN
XTZlMUmYZTRvpPp5Dk8sWUmfGf+KU2Wn1Q+pMuobXJ0EClNwQHu2Z+elOayr
GdtDH0vBtsn4R2vn5tD9wYKHyIFULOJif9slN4fvmeNMvZ1T0ceK8jNQYA6r
urReGF9IQxF+T/m/y7PIL/zvpi8lHe+5NR36nTSLnLTQjv/SM1GrM/Jsb+ws
hrpppRbVZ+IVGUudoYhZLJEPd8v/LxOPDe3wnQuZxQNKFXNSh77jVhXNebaX
s2hkY+azJ/w7prG3lSnfnkWFDYWXEwN/4EpEl0E+8yzeOWmlcissG0OLhz9+
fjiDPezFE1S+AjR4HuZywngGPQ0Tvvy8UoAistcekO7O4LsJZY48mwIsSMqT
3HprBidE/wBnTQH2BftUWcMMsuaO6iRaF6LwQ+mFK7tn8KAsf0dLUxE+O0qP
mHOaxkpFmSXVGMSCfpHtKQJTuDQa37ihqRwFd5xTvBkxjnNbnJYj8qvxu6jX
w4HBUawRuzY1+q8ReVsM88U6R7G/PfyA6N4m9LWX32rbOIpOsrkGd442oXHF
WPyW/FHcGrdiHKzXhPsM1Cji/qNoue/DqUu5TfjiHYeO/clR/LstILf2eDOq
0D4rbff7gxcGd/tcHmzG7AjbkFvuf5CZWBhpmGxGASX1wQj7P0hV7BpRpjXj
yrs1N2mjP2iZNuvAzdqCaWJGRVon/qAqW+0rJbkW3H1XWDaaMoKWz9J3e3i2
YH9lJp+c3AhGKIo6HDxIQucbyxdPio/gH2v9xneHSbiPcs5cQWAEF+t825cl
SHh9tSnzLNsIDu0qqEwEEpbKTCkqjwzjE+rvGw6GJIyKFDXWeT+MWztSXg5H
kvD00WdvdX2H8cCUTtbnRBJ2FOSn3nEfRq9v09HK6STc8VuFamgxjIncE1bP
S0j4crvpG/NLwzg0bKB0sYeERg6xXx2pQ/j5w3Wq/Z5W/Mc03uA8wWB/Jup9
7lYMC5GZcxkYwv1Fs9WKgq1ISi9TeNU4hBmXFjM6pFrxwkh/nU/CEIoFRDE/
UG3FQze4pz5rDWGOVvT+yRetWEq+zxF5dQjDLbYurr1qxTsWyXLRikPYr3Ov
YZN3K4a8VXCNlxhCNsXjSkOhrbipVGdHGtMQ3r5WPkdLacVh8VAZzBnEC4tj
gRYdrSjqEj81mjyIhxNdJln6WtGiKfsbR/QgGj/UGQsdbEWa1W8BE59BZH4T
5G0/1YosuZy7WA0HsWWXXKvpRgKvbRVpkrs1iOljqpH2WwkMuX3Sx/DKINp7
TH6yZSWQZ1VnY9axQRxt2Dl0ipNAqfNh87rMgygVTNKcOUKgbdC3dI9/A1gj
b81lKUFgwWDBo7T5AdxjvjmuV4bAC57dg+v7BvBeYFvLy1MEatVxE0nfB/C2
9wOpSVUCnW5FZlH1BlB77ayekjmBpQnplnwaAyhvkB4R/pjATTQUv3JpAA+s
yxrpe0qgfxg57ovUAL44naojbkdgVD9/6MXNA5gYqP6R8pLAYSkZDQs6Bd1q
XFsjPAgUdVdk/ThNwd7n2SUqbwj8cej+6/FOCirX8r0w8iWwyjzONiiNgi7q
sl4poQRuK8ySLoql4MbaWanGDwRe3145OfyRgquRyad7PhHYmTZsLP+KguGl
9TrFXwg8uI7Kf/85Bb806WsHRhJopMHU5/uEwujLM6HXogmcmD+sRdamoKiv
X0pQHEM/pRMcLGoUzNx5wHZvAkO/98qNsooUfCUpq+eZyNDvj7a3/gkK8lzK
1BpIIvDfSbNLb8QpyHc74K7oN4ae3s83ZPJTMGrPyBODZAK9ur1KuvZS8FDH
hINLCoE7Xb7KSaynYJnVy8fuaQR65ohU71giY02EWI52OoH0qcTb8xNk5OdJ
tj+QQaCFsPB42wAZMwUPJzcweOBugnNeBxk/qHZdschk+PVRiC28kYyhwdwa
fxlc2xwX+aKCjCr3b+c5fifwLPMhacMCMmr773YaYfD387HlihlktNP+L/jc
DwIPOwrcFEogo5a1918vBod9jx7e8pmM97aVf0cGs43z2Y+9I6NtqVXaEIPd
BaO2Nrwho35q0PgSg6l6vGHpL8ioYX7ceJnBD0MixIKsySjH4r73Pwb31fMU
25iTseNwHr2KwZqbv6hr3yXjQocEazCDq85wk+VvkVESb15WY7CCXbgVtyoZ
p/6lf1tkPG9a2v6Na+fIuOlSn7gvgwX+fAqhyJHxZn1I3Q4Gv+flOlwhTsZL
t6LcXzHen0XnY26CABkPSQ+rDTH0cgnkvPx2Hxl1z949Isvg+er3XY/YGHqN
8e+0ZOhtun7vY/VNZKyT1VkfzvAjx1p05d5CP3J8vUj9kUpgxJDIQWFyP7o9
Oj9RwPDP85bw+Ym6fiyUKO1PZ/hrUSX0IDO3H0PkrzQEMfzXOnHojV1sPz43
ccu8/5VAYS7+hnVOjHrrsetNjDzt8OadqTTpR8nJts0P4wmk0Xl2+Wj2I6Wg
J24ulsDqnv2394j246WBtNCGKAIz1Licu/b0Y77NFIWXkd+PJZyRkev7cX+9
NKshI99mUbuHj3T24aJXOvUrI//Xd+7aOl3Rh075+zN+MPrjpPtOsayMPrx0
YfxsMqN/mB+wWZ316sMAQX7i/jsCvwlv/at5og/Z91bH0xn9F/SRiW+fYB9O
7I8mPXtNoCPz5gu9bH1oycFa1eFO4JXx9W9NR3qRM2qe/uQFgeNpK7udQ3vR
Rs3esdiKQIKXfuL8y14cvI15sRYEFgXSdJme9GKPfVKW/SMCfZ8tRgVe7MXH
STEDow8IFJebFo+f78FnMieYZ7QINJFwdc3v7cG1k1aVC5oERh5mJzX86sGP
pXmsQ+oEcnBK2lPDe/BnDSq6XyJwacmiTPliD1IbycrFxxj9O/Nv1x2JHvR6
1/F4rxQjj6P+Jpb7evDuMeTXFSOwpyNt26eJbtTW/AbR/ASW50/dGgvpRmWK
mJUEYz1dzXRJ+ufSjUaBU/I9Wwg8/o1thcO8G7+9c42w2UBgUphE1Kkz3Xgt
UOeC8VIr+jlZjPkOd2Gm+ejpS+RW1Dkz5SIp14UGR/jvMqe1YtBxl5YLfF3o
e38fr1FiK9YdZTukw9KF9Uk63+KjWvHsQYkat75OvELtlpkMakXBtSe7SJ6d
eLOr8ZWLXStOlU4m2rR34JlvY5fT5Fvx1cXJ5vzn7di7y6XVPIOE5SoT147d
b8c3843PNBjf03Vq441pau3Yz7NFSyiC8f2+9V99rEA7Nog0bw7yIaGdyXC1
X/1vvKgpS3Y1JqGZV2/pPb7fOEj96ZG1h4RX6xsymKsJLPExkETTFvRurpf0
YPTZV9ekWLjTgtVEXdq/zwRKZq93Tr3egkq9NSnzDN8tzItfaci34NmpyqTe
AwRm1g7xFTG3oNSOkqjMp614tSDeUiixGffcTAu8zUlC88tirSe/NuH3wz4F
ShtJaHtZZPBjQBNeXzYdkp5uQTywINtt24TeEfwnWX614Nbr4rNMik34bzSk
v8CuBZUPCWr+7WjEkRdOEty/m7GbmO1zWN+IFtfefSw+0oQkrPbTPVOP36mV
7NWHarFDnj3PxKQa/b/FlJ9drsHh+rNsRheq8ZGBq212Qw1u/FEmpMhXjYeq
TnbH2NVgKLldOrPzF74PTU54UV2Niju6FtVVf6HjsXdnZB//wvWCnHeTj1Sh
4rM7jyJ+VOBO1kjNdcRPjO8e9vvPowT5br0r9W8uRn0N7qzu+3GYVrtqe10r
DvNZnNrKbWPhiPwG11XzWDg+sP7gSx0EblLMlERoCUgUaM9KfUVwdPkmutBf
AoeDUivIywiFRVuMw0URtkWnHI9SK4WuiofZ/oiwel2nZ22qFOafvn2+zqYU
ejPSj6B0ObBKHvz98FMZRFoaVJzJrQArutE9sfafIDhTuKxQXgONpoeG6Hur
wbnhgsfCZA0k3r3VqaJQDb+/1bGlcdWCeNZNfSf9avA27hbkt6qFIW8je7/Y
apjpoqtt4asDowXXn/ckaqCkUj6m9UU9eLuY5X09Wwu64blXHss3gYJY/+Fc
lXrIeg5tQsZNMHzZYu81s3pg0/p1tz+wCa4q17H+elMPZTvabTRHm4CuzOqv
VVUPuy84Xfus2gwDvnB85nwDOOWFObjTm4HG/j1nVqYRLsd2NqjrkODajHnF
jZUmmHmdZlL5hARBrk5tnNua4aPZq7VTr0hQTCi8sdnXDKNHj0ofSSPBl02L
s8syzeCV5xaycVMrFISJOcuaNkN1g7BeXnordEYXPNWqbwZlmu0o/5Y20FbY
fIj5bQtMdV15+ZG7DQI8jhudCGmB98W8+9ll2sDTB8Y1I1tgxL1GdfVOG9Rk
jmdrZLeAJytP+u/vbZA863vgCbkFqgQqbH0MfkOwP+sEhywJlNQ4Ni5mt8P+
I0qH+mpI4H+PeXa5ph2KWoybWEkk6LBd1/+vtx0OaA5cFu8iwcOIqYKtTB3w
6+vpD8fHGPXTtc+4tTqg3eLQOgfmVuh492rgArUDcrKaskoutgJ/gmOzCksn
zOhvo3aotsLDAqsStYOdkIJa+RTNVlgduBumfakTlFNTsksMGfXHTms+et8J
z7un9yY4Mep/L5QFyXVBhwFNXTitFX6Mjad/uNIFLccMZ4SzGOP/DXz5bNAF
j+83de8taAV/4RaHBM8uSPLKfo2VjPrnqdIFv7sgK2Jd76keRv1+k2iKXTfk
PL34uW8zAUqS+gEj3gx+8Q3LWQjwv3DzxXhEN9x/9osllJ0A/seKtxeruqHE
I5hjExcBl4oP7mTm7AG96stV28QICLjb7iaV2wMjBl8XS1UJ8Jw4DSP1PVBV
Ykdpv0aAi0PM3/CBHrDLNinvvEGARfATxy1svTBLFN6P0CNA/ddGm74HveB9
7q6Y2EPG/DfNZUIce4Hnll/VpycEnKU0zlwO7AWD1IO685YESKx8epJd2AuP
VG5bmNoTwCYpZerL0QenuF2f3HhFAFNRqJCiSB+crT07yeVJwD+VlcGlM33w
6KSpZZ0XAVNGVYb3zftAYn+l17QfASPTYrxcrn3APSMtYBRIQJ/zu97GkD4o
vGb3C4MIaHx/R1ehtA9YfqvC6Q8EVAmW75tp64PXwmycep8IKMkQbo8f74MG
PZbNxuEEpNXO3djJ2Q/JDg8lFSIJSNDW4fgl3g95/stWm6MJiBgqbnZW7Ie4
/n3thTEMvf95qY0+6QdP+5y9Y/EM/XymtkW86gcOVl3avUSGfvtu1t741A92
zh0slUkE2MXnezGn90NXOIfmrm8MPWV4lbGiH5692Uq6mkyACXpstu3qh7PR
nf5WKQQYXB37KTrTDzmBFb4vUwlInhA+P7OBDEcVhZud0wgQ/qHLV8dKhj0j
Lvr30wmIdfBbi99HBs4ZU/njGQTwnivtcxMkw8qeCLM5BoczzRfrSZDhgfrq
dFgmAZwNQl/k5Mmg3eRMSHwnIDhYx3nnRTJEb5c/kMZgdl0fvQl1MmzPMa/Z
94MAH74ShV+3yXA722TIgsFb/sxwxTwgA694olUGg1+lCi47PyWDnVWZXS+D
16y1OrQdyWDG/mh5kcFOCm9zZV6T4XLp8zXG/haW1hW9Zw0kQ9WjPn/G/has
f03ZjoaRYUQwPbWCwdN+/Ld+xpOBsYE38mHwo5s3j0VkkIG13OH7GQb/2f9m
l0MhGYJeHo/vZjzvfUr+3I0qMqgv958zZnB/4kSLRAsZPLqEfbsY76tnwZvJ
3EOGgLEuv1MMbj+mGTg0Qgbff8NXvRj63FjxeIqzZKij3mwuZejZVJarHrZK
hgMFmrzDDL1VvcaO2m6hwJjUkfOLDD9+qfOwXuegAPe582dmGX7tlqDsfcZN
gfcSPXcmGH4assbzhRymwNVtTfQ2ht/0OvFjHQoU+MO6u86GkYdLyTNn6Bcp
4PvxKosoIy/B3lnK3NcooEr6Smlg5En88mk9w/sUsKmJsqYw8vZcZJ2x+xMK
JCj0nNJg5LFyS4VFnD0F+vJcc9MZeTWoUnUf9aHAFb4Lwyc/ExB4Qe+rZRYF
Hgh+H3YOIaBHgPdHUAkFZlfddt1n9MeRDYNFWdUUOOrxRfIko3/KSx8203oo
EOEwrpHuQ8DiGcclt80DcNOT+yDpJQGKPGfXx7IPwLPVpc9Sroz8r67fVsk1
ADs5W664OBMgUvj2ILPEADi4vr31x44A3ZOflN5pDYC+xbP9s4z1IYFT/9oP
wwF4ZLG8sdaUgHkq3+22hwMQIjBuFPSAAN/spMdcrgPguJcaP6tPAMrkBUcn
DoBH8ZzyOGM9OnS0nZJJG4Bc/Z+urVIEWG4PH2/dMAg3GhvOJ4kTUDxusLi4
fRBM23ZzPhEhQOvbyFYF/kEQMe8S+sVLgJcwVbL88iA4bo7dUMJKwCT/HhdS
2CBcL2e3KR1phZNO0VZlcYOwWcgyMZvSCu7EUeOMtEFwO4Tynxnr7943l676
lw+CgIZG0hlSK5ydsN9/ZWwQKI/TJ0lFrRCQ05VTJj8EE5L5dzQCWkFaNWo6
o2MIWh6t65w/0grOceKDkQND8HG+9oS4YCtU/c377T8xBK6ez15pc7eCbkZL
8eN1w3DRaZnzDRvj/ns2+oqIDMPLUPk81TkStPYbi0TZD4PeRWMB+1wS2NqI
3QvYOwJZZt+Ci06SYC/LdJEW/wh8/zvTnidJgrzI7/sOio/Aa82LA4mHSbBa
K9+ccn4EgreWfjLYTQJ3fhWofTwCtm0hDVLTLeDf+IBn888R4DFl1XOMaYEE
kYhOx6d/QEOnoF1uXQu09+zQNKkehf3inketFZrA0OH0ny1Xx6F8UmEm3LkG
foqd8P65eQpgrkbk1M6fYCB5M3aWfQqS77gFUpbLgSZjVcS7fwo2rQWYBQ6U
g7hC8pSTxBRsaA1g3ppVDiEqvDeOaU9ByqqS6X3tcjAx3sIdnzQFd+//GpuI
LIOtke2pnqrTMJXN/kNLvhQOMxeNxqnMAMtFyzvZooUw90viYYzaDBxUMxi7
vLEQSjyjxyM1Z6BSf95jrbsAtDa9mQq7MwNOhZtyGv0K4PWaxkKg5QxoPTrw
a8N8Pgwt/llz/jgDUhYsLFM/8yBmYBfnrdEZSBKhWXG9zAGLaM+PmpOM+QeE
Wo4a5ICC4TLX9bkZEFRYmTc7lQOk3j5u1dUZUIoW3XuTmg3rO78KnN8xC0Ld
YvHrLbLBsAkkjp6chQ3ncmJ+P8gCnqJHSpu9ZuHxJptTYlbfYTcXnW7hNwue
fo9EG65/h+12XhkdQbNgIpr4IUrqO6xKxh9I+TILyqbX5XpmMqErtm9W88cs
yCndvZJknQnvfTQiovpmwWsg0yTCPQP8R/tvsAzNwnCnd7CBcQa8VrJgtvlv
FkRT2oeuq2SAzZq3jfLCLDhUPqHWsWWApnXFlSnmOVjyZTp94nQ6sOmdWDp1
fA4upcm/lPNNBaa8ypR4hTnIDdzxk6qdCn933zRiPzcHm+5fOLv/UCpMNFo2
DFyZg7OXhy54F6dAreK32LeGc8ClaJLKvJgMb0R5rrf7zMH+oIKDWnbfYB19
w9dnA3Pw1cblK0dpIhgOds67/mHc/7LfuGlYIpTWZ5z1m5gDMeX3mSy2ieAW
aUAkUudgl8km7hNiibB2sWCth2Uezis8EeANT4B/AVZayrLzYOBn6VfmFQ8G
DirRN0/OA+mvzodc03goMeKduHdmHh6Iu6nNX4oHl+MNL52V5+HhkyoLeaZ4
+NslkpqpNw/RT8fLpt/EwaoQeSO3xzz8IcozbT8wftnYc9WPvJ0HwaeuwU6O
sVBE8/sk5z8Phz8SiUX6seBcd0pS4+M8lF7SNZs8FAsrlh90PVMY84UPJ85n
xwC9UD1zhpiH+WcLL3oo0bCkUWxQKbQAKr+3/63TjQL3zvTes2IL0KgNpuHn
o4DtXsydPKkFmOqTV/UTiYLDlm90k08tAM8FV7P4yUi46a+h9U5jASy+3h2w
ORIJGbXDavovFsDNbzxL8esXML/AdmaRWIAJlydZHZlhsFC7rsiiawHU5/6Y
/nwZBm6a8wqj/QtQ9Fe++ZVGGHy813Gye2wBcgY5xW1nPkGVa8yxsnWLMBh3
MTVW7BMIFMmJ+4kvwge167U6wR8g7cKRZCaZRVBm2jbz3uADyNcdEHU7sQg3
6Jqv7h/5ANe71olYKy7Cw6d970OK34MLrVbwts4irHW/ManvD4XuY3cPCHks
gvkmvcwDW0LAZPk4++u3i9D8aDBrS20wzBRv3zjsvwh3yjgD5HyDYZNywVjc
p0UQsHWNVWYLBonbewoOpS/CR5kdNVFbg8DtRZ3Ooa5FWFfy5F9STACwKMZc
9ehfhBMdKRy52wIglMnh3NDQIiRYJrB/eOYP3wIOi8RNL8IlyT3en+X9oDX6
5ZLgZioc4SJemyR7w+GqE+8FpajAeS4+boLjNWR4s3m/Ok6FxsGtPWdveIDC
teEXgwpU0P22N/d94Cu41hFkHKtEhaqHiZV8G9zh+djkMUE9Kpw3PbV2zOUF
bEivEHllSIW/Xqw+R+udwM86nHvQmAp3+gd/aOxyhJhVlU2xllQQJG1j/+pr
B3Vsca0CnlR4fNy3seC6BWi1Ov5y96HCUe3CiJXnD4H8QaNwIJAKG8i3dPPf
mcAC31pMTDgV1DLpto+F9eGgrO4zgUwqeHrtzCg3k0ZL7R07BXqooO+c8aHX
2RqNkiTDhChUiBrTWfhXbYu3ltUFj4xQYR9+eBvJ8xwVwv2OS81QwfL2ytsG
sjNu7mfRPbtpCZwjvznSzF5hmMnmWF3xJWjYldirdNoffXMPiRtIL0GNY/G/
DakB6Lr1YvY9uSWg/Vw5YfMuEB98c/9ldm4JupbNmo6xB6Hk1Nq43c0lMH5t
v7AiGooVtvRjwc5LcH8wxjdkLBxzqrhK3r9cguuiS4MjTZ/xK6e8cpjnEhic
FQ5Ry/uC/vn2t6MDl+CGaXq+Q1Ak3v678CI9bgmKxP8uf8mJximP6aq6+iXg
8Rq6vWkgHiltbNebWpZA+dLtO9pPE5A4LNFJ+r0E/AVOg47/EjC/+vF4J3kJ
rIGgKQkkocf2MfbRhSXIkXDe8NTtG3KFDOls4qHB1Iv+2JPh6XjyFe9eGwEa
bKvUf3lSLAO1num2DgrT4KSnwOld3hkYdL1Z7acMDZ7sk5F+p5qJ21mLFN1V
aLCdw1qOpe87/nsdLL7OhgZHNcU+d17IQW7bxv+eOtDg2nS3z1hODp56wJzY
70KDMeXUrKdiufhc0ZUf39Lg3+cvdUP78nD238O9LpE02CzbRundXIBD9orr
VmtpcP6Pw7FTYiW4wfRF8aNmGnxZv2p8PrcE+bTyHLvbaCA0Wh1AvYiof0xi
sYDMGH+ZK6xEphR/z3CNOVBpoPPng1GWfhnWmM+2LvEvQ15Y0yuu/p84qiP+
zlR4GZzfvtv1UrYCmVRM1dvFl4Gn0UqM7FWBiod7q3NOLMMjvzBtP7lKLBqo
LrZVWwada6mrfV+qME0vKnH++TIc2caafyGiBo+1C9KZXJbBbWG6yny1Bgs1
E6/uf7UMC5d4f7/Wq8Xqy2mz5/yWYURht1Eidx0Onig65R+9DBw/WIIrvtXj
vt0dTSK1y6DtnD69k9aEEQF6AqeblsGyS/rDGdlmFNrWb3ONWAaV03YBqw+b
UWbDCJdd3zL8qfd6y9PTjGoz8/d/zi3DRuPO3i2VLehez07TP0CHwFa/yvvf
W3GrSvAVKz46vOhpV8mba8WAn3u/eAjR4cbWp8mJsgR+LuBRTJakw9TGSl29
XAJzk8R8aRfocPSGafGxqjac8FDmC35Mh3HtUO+EDR2ofcZVpbqYDinWqxtf
/uvBnsUR9vJyOtwZE7qWotmLRmnq7YW/6JCj/7EhILEXH/MeNElvoYPVaxZW
jxt96L6++NX7YTpI1VxyUMzqx7RKeskD1hV4nRwuuFONgsdcjDwNOFbgeHJo
iOQLCubL1arpcK5AvuPBgh+pFKxI/NSjyr8ClFDOqGn2Aex8e5Iuc3wFarMm
zZQ7B3CTut3x9for0K8+GLPZbQi9mfpW6fdWgO3WsEldzhCyo1LFgskKyN3k
5F8/NYT7pfbcGLVcgT3bJ3hRfxglObIsmzxW4HJ17qaPiiOo+3s2+UsKY7z9
6odbAqOYafBEQGF1BXJLRZhGzk6gUfYMT9T6VRAYOpi34j2Bu7fbcDFtWQW1
9Tnd6e0TaJfvuIO0cxUCP3pdX3o2iQq7vf6ZC6/CMTkfzoOZU1heE9P1SZMx
vraq+0bCDFrzHf69pr0KXvw7t/i1zOAh+68txvqrUHyrT4fn7wx6HsqoljZb
BTTveqF0axZVXYtzal6sglm8+tVy5jncMTY+f8JrFZbrDTfvNZ7D/wHlPNQj
"]]},
Annotation[#, "Charting`Private`Tag$906445#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{0.4999999999999716, 0.5}, {0.5, 0.5}},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-1.1496792039950476`, 1.1448116011786587`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {481.0287324685357, -97.08986231664207},
ImageScaled[{0.5, 0.5}], {298.6099606614872, 184.93307107931824}]}, {}},
ImageSize->{
UpTo[600],
UpTo[223]},
PlotRange->{{0, 640.3390098278393}, {-194.17972463328414`, 0}},
PlotRangePadding->{6, 5}]], "Output",
CellChangeTimes->{
3.8172702319184723`*^9, {3.817271056741686*^9, 3.817271069000525*^9},
3.817271313118545*^9, {3.817271408985536*^9, 3.817271454589876*^9}, {
3.817271694266157*^9, 3.8172717054033327`*^9}, {3.817272810682543*^9,
3.817272864936503*^9}, 3.817275682687436*^9, {3.817277848688168*^9,
3.8172778625827103`*^9}, 3.817277919175124*^9, {3.8172780270049467`*^9,
3.8172780475022287`*^9}, {3.817280236948023*^9, 3.817280282125651*^9}, {
3.817280450116068*^9, 3.817280466295412*^9}, 3.817280587317416*^9,
3.817280647024148*^9, 3.817280761888534*^9, 3.8172821757749*^9,
3.817282229805689*^9, 3.817282311242402*^9, 3.8172824892587852`*^9, {
3.817283399411484*^9, 3.817283426493174*^9}},
CellLabel->
"(WOPR) Out[821]=",ExpressionUUID->"155c39dd-ec1d-4900-9cbf-4fc4b876ac75"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"g", "[", "n1", "]"}], "[", "\[Theta]", "]"}],
SuperscriptBox[
RowBox[{
RowBox[{"f", "[", "n1", "]"}], "[", "\[Theta]", "]"}],
RowBox[{"-", "\[CapitalDelta]"}]]}], ",",
RowBox[{
SuperscriptBox[
RowBox[{
RowBox[{"f", "[", "n1", "]"}], "[", "\[Theta]", "]"}],
RowBox[{"-", "\[Beta]"}]],
RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}]}]}], "}"}], "/.",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n1", "]"}]}]}], "/.", "s1"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.",
RowBox[{"\[Theta]", "\[Rule]", "1.04"}]}]], "Input",
CellChangeTimes->{{3.817283576740225*^9, 3.817283588198867*^9}},
CellLabel->
"(WOPR) In[830]:=",ExpressionUUID->"da645597-b6a8-4dfc-83c5-3cec31d750f9"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"1.7736514921292306`", "\[VeryThinSpace]", "+",
RowBox[{"0.7346705029632056`", " ", "\[ImaginaryI]"}]}], ",",
RowBox[{"1.0629888287473626`", "\[VeryThinSpace]", "-",
RowBox[{"0.44030438951824896`", " ", "\[ImaginaryI]"}]}]}],
"}"}]], "Output",
CellChangeTimes->{{3.817283566616807*^9, 3.8172835890690536`*^9}},
CellLabel->
"(WOPR) Out[830]=",ExpressionUUID->"f27b02e6-f3db-42e2-b534-43e5409fe36c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Show", "[",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"g", "[", "n1", "]"}], "[", "\[Theta]", "]"}],
SuperscriptBox[
RowBox[{
RowBox[{"f", "[", "n1", "]"}], "[", "\[Theta]", "]"}],
RowBox[{"-", "\[CapitalDelta]"}]]}], ",",
RowBox[{
SuperscriptBox[
RowBox[{
RowBox[{"f", "[", "n1", "]"}], "[", "\[Theta]", "]"}],
RowBox[{"-", "\[Beta]"}]],
RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}]}]}], "}"}],
"/.",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n1", "]"}]}]}], "/.", "s1"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "1.3", ",", "1.4175", ",", "0.0001"}],
"}"}]}], "]"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"1.3578383417066", "+",
RowBox[{"0.048953289720",
RowBox[{"x", "/", "2"}]}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "5"}], "}"}]}], "]"}]}],
"\[IndentingNewLine]", "]"}], "\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.817280804305807*^9, 3.8172808637975616`*^9}, {
3.817280897254437*^9, 3.817280903087328*^9}, {3.817280943100966*^9,
3.817280948025497*^9}, {3.817283466925474*^9, 3.817283468322001*^9}, {
3.8172835171353197`*^9, 3.817283535406034*^9}, {3.817283616348012*^9,
3.8172837913669252`*^9}},
CellLabel->
"(WOPR) In[842]:=",ExpressionUUID->"b03f723e-24d4-4097-8ca2-9b1145403bfb"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"714.9997764249956`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"", 2, 842, 544,
31479193581598412653, "WOPR"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.817283761224256*^9, 3.817283792191354*^9}},
CellLabel->
"During evaluation of (WOPR) \
In[842]:=",ExpressionUUID->"1ff6b3ff-f0d9-48ea-95df-10584520bc02"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"818.9883777407213`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"", 2, 842, 545,
31479193581598412653, "WOPR"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.817283761224256*^9, 3.817283792266705*^9}},
CellLabel->
"During evaluation of (WOPR) \
In[842]:=",ExpressionUUID->"82682d18-f80c-4d23-8675-d31ca1576f0e"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"958.6767276347036`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"", 2, 842, 546,
31479193581598412653, "WOPR"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.817283761224256*^9, 3.8172837925686893`*^9}},
CellLabel->
"During evaluation of (WOPR) \
In[842]:=",ExpressionUUID->"164319c1-a2e0-427a-9f70-94e763f48d8e"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"General\\\", \
\\\"::\\\", \\\"munfl\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 842, 547, 31479193581598412653, "WOPR"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.817283761224256*^9, 3.817283792766893*^9}},
CellLabel->
"During evaluation of (WOPR) \
In[842]:=",ExpressionUUID->"5d8fc41c-1820-4591-bdb1-29d65ed68611"],
Cell[BoxData[
GraphicsBox[{{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.004583333333333334],
AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJwc23c8V98bAHDZComiVIqWkJGR/VApeySZoZItFCqyI7NI9sjI3nvvvTdl
RCL0Tcge6ff4/eX1fp1zn/Occe89934u5oeWdx4TEhAQhBETEOz/9aSlCnt5
aRiIXpx3PUK6DrrXV1nbTw7DrdOMmjMk6zBC0RN6jmYYlNPyb5Wi7d4fmXAj
HoZ4ylkZf3S9JtfW3OYQuF1Le/gAbcmWOKm2MAT/nVsJ4Ed70K++a/02BL49
xQMU+7aOP3BzaAjqJX9f+Uq8DittItyNbUOQ4OoXlYeWnVWmV6gegrGPXmff
oHfLnmeN5g9Bc+7nUm00g4HcilXKEGj1PTXmRvNeMJ+gjB6CCywKHCToaF1n
i+zAIZBvvk8yQrQOwt5cYRqeQ+C1ELGShY7n5tAidxiC003b6+5otYXLWVWW
QzD45tlhTbS23tRbB4MhILLcEeVEU7Ie3RDXHIKnlV7ORGjqGbdv5IpDYFN2
ZPgz4TpwsW1If7k+BE15fjey0MqvxFlzrg1BzOZigzs6WY7d3p8D/Z1HWxO9
vvBByJp5CD73SJNyoV3C1R9o0w9BBQt7EzHaTO/uL7lDQ8Ak2R0xcmAd7ly0
HrxOMARXw9lf56CjP4UxSKwNgnu0gJsn+p12WeaNn4Ow0vjjgw56ILDtvcLE
IOS8u1pxFZ2nUFd7f2AQRBxpNsnRb5Q/8tu0DoI6/XPpCYJ1IDxiMB9QNQi0
czqZhWjqIobP+fmDUPS65KIfWvZI0+5YyiC0ursUPER7RDjfoYwZBAq39HtC
6AkTzQHJoEGwYOamokEz8Vo4OnoNAh0Fyecf/9bAW+KLdLXjIMjPnC2uRDtY
1PCQPRsEPyP7tA/oFGZZXjXjQbC+RZ5nhv4tFy+deh/zF6vtvI62v79lTqQ6
COepo/6eQIfefB35SBrzc3wnuby3Bv+MXnW3ig2Ckfr78Bb027gzxAK8gyBr
FkkSiw4UyuFLYR2EV2/jPJ6jt7/Z6JxlGgTmyMgTSmiP3BK7GLpB0Ldyqb24
b6Z2JxaKQXj855bj3t81cNv+Z5mxNwB3D/6QH0JTWWRLia4OgELSXe4sdPki
/07v/ADol3pf8kTTSK/6WkwMwHuRV1d10a9fK61QDw5A3+VzKgJoyvUcjqK2
Adj1sHWnRs9xePI+qhmAjnumrT92sf9/JIjoiwZgJnmTpRr96bZ6aFf6ANR6
MwSEovW0b/znFzcAVUeqaKzQhj7u28qhA0Cq9f2TNHpBI6KG0X8AYlyd5JnR
vE+ohX66DYBKhifZ9s4asAaY6lW/GIBqwpXBPnRUjBhXxJMBkM4rK05Hm79j
/GRvMABHFwYyXqOdTMJK9bUGgOKnYOF9tLvEHTN55QFonx7vEUD7cc8WiN0a
gPzT5f8Oo8c0twP5RAdg6Euz5Pz2Gpwfu7rHfXUAVh/uhNSh3fpE1q6yDoAL
mcK/SLSqUsNTYaYBCGEssLdFy6s7P719FOuvXKJQQo+Pn1vSPDgAxEsf01jR
6TXms9YE2L4lnR4hmqL++N136/0w9/nlxbGtNdD1+cmT96sfQoLbCIrQruEp
r0am+iHx6N+Fd+gs+dPc5F/6wa6V/LcJWm+QXlqkux922GcIbu5bwKjmWWM/
pJV4X2RCX4LpD7nl/eC5tKC7ubkGz7yMaldz++GYJkVaHzrYsktSLKUf7r/q
J8tEb9FuH/GN6YeJuRsv3qCjFLqvfP3QD+E8d3YeoCFfIFDAF9tbWAsQRUf4
nRL84NoPi6UXhRjQ5/qtmDae90MD/9jK8gb278olCb0n/QCk1LUdaP15gfAO
g37wGMiPTUb37kZcAO1+YFdsfO+Gfr2r8q1IpR9OXRAOvY+mPqnbwivdD6mH
D2YJop3ONw4ViveDcwvHMB1awz6AXIy/H2KoI2gX17E+TadmK3s/6CXK6Leh
aw19m7RY+sH8Lm9NIrrOe0J2+Xg/VMwqXnVFUx36NuV3uB8CuT4U6aA399J8
rpD2wwuCHXlBdPamtnj/bh+I8Dqs0e2Xk9JvO670wdInypzFtTUoyd4rvfKz
D6YEkl+1o4d+idtPTfZBVNd17WS0LivRtajhPhhXG5ZzR/8n6PBLq6sPYsp0
FPXQVLojIUyNfUC82PZQBP1SVP3qbHkfGM6f8GZAZ42wlxfk9cH1T5K1K6tr
YBMdfOVNah9IMQkf6kGz3hz00I3tAyGtHcMM9PI0Z41waB8c1nMc8EK3zc9/
Pvm2D4avlag+RkdTqnQc8OiDopWEaUl0v2peyC+HPviTKPiGCU1yWI9v7Gkf
fH/8RGRnZQ0M+tPjekywv4piBz6jz79YGmnV74MQl+jPBWh3Oq+xZvU+0GR6
UxuIPrLRE9+m2AfNSn/Kn6DFMjjY+qT6wEFiuFkOfXr535Ovon1AdpZzhhX9
tSDPYpG3D8hZFulI0f8dzWEhYe+DY060d7//WYN1DUOfMyx9UG0ZkFiDZl+6
FSd+og98BB6Qx6A/WjQ9ekjTB+vHHF85oEk8dLp8yPrAWm3sgCY6mOz1ePFe
L2hJPA8TQH+eLPOfX+uF1Qu3JI6i/9K6jZ5Z6AVbTcmt5eU1MC24X6813QvL
PA/qu9Ge/w1IRoz2gsHBmJhMtNMva9Wvfb2QKLnk44s2X6tdvdjWC5bCyl4m
6E45NRab2l5Q0S4KuY1+I1j9ubGkFwqpTxZdQGeRhBw9ldMLw3V2P4jQedtP
++ySe6F5vvbS1NIa5Gv+oR6K6QXDrdWXNWgznfwmoRDM34x8PAadzq2xHuff
CycqV5Ud0TtrHhHUHr0wbpk3qI3uKZ3Odn7VC0nkwmbC6Fu2Z3jXnvUCJ83r
IyfQThTTZy3NemGT1rtlY3ENVkW/2y487IVrcZIBQ2iPkh5OK61emFJMMi5E
nyZ+JL2h0gtR+dkqH9C6r1Wr3WR6od70ntwzNMFz3QBayV7QpQtSu4OOWbpe
kiTYC2zKulY86HNf6niBuxc8mnMiadBs8/H/Ri/1gts59+HF37j+k9OOO57p
hc4jXee60SoGnxxYGHqh5oaPSxZaSvj+hQ7qXpB7krPgj04kS6S1J+0FMlkh
Mwu0tIWiBMdeD5wOOr0lj55u50yfWusBVYp7oRzo9xJMytELPUBhNSpFie6M
32DXmekB9rdJxL8W1mDCJUzkzHgPCHHm9LejvU9/c/gx0AMSTMt56ei7FgXz
uR09MMb1MN4XHUW36era0ANsgrtxZuhGvQ+SahU9MHS4JFcO3S9rc+FKQQ+Q
Br3tZUd72niwUWT0gHnciwOUaNezJQrzCT3AyWQp+esXXp94//l2RvbA6qJp
YAf6zlXlqcKgHhgneLycgW4USVCI9+0BV/F7D/zRfhQrbe/de2Au/No3C/TD
/0TV3zj0wHsyQmtFtHujy6Lzsx4wcs6i4UJ7UdUGvDLrgfpd/prD6I1mQkHH
Rz3wyCnQeek/bN9DYcpVuweek5Yp9qLfP0j381HtgbcRKVfy0EJ/WflC5Xog
7Ma9U0HoO86Dg8k3euAnVQWjzX79gLonFSI9cJWin1UNfUaTeHeAtwecpD/c
EkDfd8q1X2bvAf6pzWcMaP6z32ePnO8B6qWtnM2fa5A6VCAhcKoHTr4L+PsF
fTv7ppvu0R6onSjULEcPs+Wn+lD2QCbJo8YodJvwuYIy4h74eilQwgl9ztFG
bHyrGyKthNr10ClEEp3yP7vhOZXaY0l0+NO/RxpGuuE21zj1ObTVAVLSG+3d
wHqwvZkY7ZlTnNBa3g2WgwwBP+bX4LKU7Yx6RjdUtFcYtaDNbyQ1LkR1wwRb
vmIaOvlnkbivfzcs8K7e9ENLcR+X43bqBnb2l7JP0H1lMDP2pBvoNUT0lNGj
48lkgXrdoEfC534VXfWhO0NeuRvmXXSKjqIfOAl3H5bshpqTWZvrc2tg8tnK
ZISnG1jYWGS/oPvt/9lmsHTDM6K8tHI0X//zRQ+6bgBCdcYYdN6EZY8hcTcI
vz4Y7oJeYXejU1rrApGfjRcfoRvaFPLFf3QBf5hbvRR6+45dGv9wF4itCVmy
og1HElZ4W7rA02zm8iE097Kbt1BpF2gZO60szGJ+MQ2Gt9K64IzOXnsPelyT
yVMrsgvkynTz89EuFLJTtn5dYLQVlhqCPrxLYhfm2AX0QUlZL9H900dF6550
wQFi1zoddOawGNeKXhdMtTPPAHrkhrwsu0oX7qvd6M+hZZcPe5le74LIJ1H3
SNGG2zrfc3i74KiGSeL8Dxyf1kPqe+e7oKxwirATTUG3NX6HvguM6Qktc9AS
/STPssi6YPVQ7XwQuv02w5EjW50gyH7i2XO07QJ9vv3PTvh3iPiQNvq7/R/V
/0Y74aSMQ644+uVY5O+HnZ0g7fLCkAUtzkPh9K2qEyTurF0mRR9v5PtrmNMJ
GQ//25mfWQMB6tNGK3GdwKpxd6wTrZbSUOQZ1AliY5fbc9Fjyldnz3p0wsPI
xy3B6AdTViu1dp2wdfPAwEv0GZV3QybGnSDnu75wH02QHOt7XKsTvM8B/XW0
0r9yqi65TqhvHJC/iB5w21X3EeuEDY7cwIPoewaujxW40PRd07+n8f4xasHD
wNwJDjcv3OpHU52bL5ql7QS6lzmFxWj2p0zLVcSdcMXBhDcKvbstOhq13gGH
jspWu6BvzTy3cp3rgObD8pqP0dpypBnmIx2gKGZyQBZ9WuCct25HBzx+ElnM
iU4KoyJSr+qA4OdjDnRoCQXyY/dyOuA690XFze9rcPWIVpl2PJY/fco5jv7r
ovDb6EMHuJ4sP1WH7j7Kk2Hv2QH1B7ePJ6NzTqkvBr3ogK8sl8/5oWsrjuXn
m3bACZnrItZo1/mmP190OuDVY3hwDy1i0JJKqtQBfQ8Zg0XQbMUO/UKSHRDL
2Tl0Fn336i2zZ7wdcKVU5SIpmmo2wDz/QgfYrMW5/ze1BuqJLX1bDB3A+aX4
dw9aZeN++K2D2H8df6MitD9TY3n4bjs8cjj1OxKdddiOf+V3O/Rf1XNzRT+1
/HVA9Vs7fHRXOm+ELnubfKq0vx12rWb75dHORmyuF5raoYWAOfAq2itshy2s
pB2fr9a1j6OJHyUeO5LeDm85HvDtfcP+JBWKBkS3Q8Q3bcZp9L/RyshjAe0g
aDZJ1YZePqbKGefWDv5jc9Q56LAtqqWrtu3wUM7ydAh6ocJnrM2oHU73WAi9
QqucM1k01mqHRo+vDx+iJ1/Kn6dSaIcd7/JwaXR20KhdMbTD9u7eOCf6RXPN
lNHVdgg7kMB1DH3yv9RHTBfaQawy7u3OJO7fVaTXRhjaYUF9bfsbOqxROSj6
IOa3G2rTgub2dhAy/NsGUsPuO1noQaXX3/mW2qD2eP67YPRTUTZ/iu9tsPLn
DM8rNN1XrqvTg23wKaJh4iH6BId2V0NLG1y5HRkpg37kbns/vbwNzK/GGHCj
FRLkRkOz2qAprFmYAb2dmnnDJ64NLpQeYdqbWIOQI5bv3T60wfqAHfUMOjbD
sN7lDZZzLx/qQFskPOl7bd8GZ4840Oejn1sZlL+1aIP+GmrOCLT+OKt9jH4b
xPsk3XFFixDEHixQbQPLCtHXxuisa7nG3bfaIDCpvU4Jzc96O2BJqA1GIhWo
r6GDSpUcGa60gd9yhSETOpu2gv3m2TbQ/UfXQYKWDXUJtaNrg5dnFMQXvq4B
08yHiizSNrDNelg5gB7tXgn5tdUKmoeUZCrQXHqRLNwLrRAWSjmVgL7f7qf9
crIVKIuD3/iiv7/sEGvpbwWCnmmhZ2i5nQeNp5pb4ZTc6qYWWolM47ddWSvY
BFU1XEdr2VcUDGW2ghO9eDQb+qRq7FHRuFagv2nhRovWy2I4mPyhFSzf3rLZ
Hl8D+kahQAavVjhv2vB0Cn1x/mySv0MrsCp+c2xDJ7n9vElh2Qpd+aHBeegA
ymITn4etUEE/VRqBjqFNozlyrxU2Vst+uqGrrvzkj5ZphcGuU6xmaOEDcYOc
Yq1AdonwqSr6s+DOf43creDt9rhFBJ3wmtX24flWyDWWZD+PvhyqbUF8vBWY
HwVEUKI5Wdp60g+1QvNfefq1MZyvgYxIjX8t8K3JOmYcra8GbQdXWmBDcetq
E5pMqkaj7kcLjLF+7c9CpwhY33AeaYG0eUbXUPSt7BBPya4WqGZNE3ZBD7O8
YKKoa4F6Z08CEzT/sh7ZUGELRPik9amgDxlEiqWktoDVLE2uMFom3b7SOboF
sgQKIs+hF0eU3XUCW2Cb8d17SvSHuWe+4h4tICIUFbw2ugZGKaJ9F162wDvB
oU9f0eZtpHdpLVrgTt21mma002duKuIHLUDrVj6bg267emp7+24LhF/QORmB
pqa+wrAh3QLTOke13dF0Vm36m6ItcH7ka5I5moFTt3+PuwXKVYr21Pbjzd81
O3ihBUTtgx8CWpmK6cLJEy1gQvm8jxUNHex/ualagKdeTZEWfef0yqLcgRbI
1eYY2hlZg9bS/7bM1pqBLXjNZAadxRjAEDjfDFQ8GRTd6BHb+1Ll482w+Ee2
sAR9oqLf+WdvM/jGdpjHo/OCbeuZmpqh5gAHtx9a/0ELpUZZM7ybfPTPFs3H
fVcjJKsZTlNYjuih9RoS4r/EN0OmjHStDPrw25tzzKHN8PHpz3ze/fLUpguW
vs3w9J5y3mm0wmiFeq1zM1S32lSQ7Tugwv64TTOIJNzpW/6yBmuf7/vaGDdD
dvn0yii6y0jEc1CnGf4tXGBuQsu8+2MkotIMFxiOaOWgt8XPXUmSagZ2+riY
CPS9A1Z9x4SbgbOj5/dr9Mstx7s+nM2gfypS1hL9ZHI1m+hcMxD+2s7VRPMR
OX9zZWgGXZb/zt9EX5FonSGmbIauFMMETjQbiXupH0EzVJgaXzmBvi2vq3li
rQk+qP1XR4ROjDhclzbfBJ0aPx/9/oz9+auwJPG1CX4+1qf5gpYl658c7WsC
cyvplnq0ebdWgENzE3y1iPbNQpsuJOycqWiCdjUtrXB0/QvLM605TVDLbM/3
Gs1N4rppl9gEMp0bJyzRl+Ni3C9HNMGqWtdBLXROf0Dl5NsmkC7fJJVCk0ew
JES5Y7w9a2pu9IABM8/9F02wfY6f+SR6j/6+AYtFEyhziwEpOpwwRejXgyYQ
YvcwXh5eA9LZocyye01whok8egw99rum0l+uCTSO1o41o7MywfCxRBMInEy/
lI8ePM31SZK/CXYkax1j0NdjLGxY2JpgMHzvqzfabmm0n+xME0zz68rZok8I
3K9epmsCEfbROn200OIQ7yR5EwwEWEnJo+k2uTn7/zZCkPOJ/mtoH0+19LY/
jaBI22t2Dh3MypPSNNsIpY/fHz6M/lObx9w81ggOYRpV20P4vOHTfrSjtxGO
tTO9+LHvg5ZOg02NsHFmUrQPbcQYpP29vBEsy0Mpq9BXv3GlruU0Qla9xGwq
erIbDCiTGqFRf6gjGK0bV+19KbIRUipUK13RVepZ9LcDGoGFqKDEAp0vTEVu
5tEIUw/+VGmivw5MaAXZY3zygz1SaOc/7JQ1lo3Awbr+Hw+6KGbr+LJBIyit
5tIyofVZVJ0uajXCcpzgzYNoyQNSQvpKjbBi5OGyPrgG0Zvjt2JuNsIJ56Dm
KfTBv5yfJoUaYZFZ90Q3+rmgnOIlrkYY85u0LUezk0tff3q+Eej2jo0no7e2
RR1rTzRCSOGW4gc0d/eN3aOHG0F8zbPdBV1g9aLCnLgRkghK71ig2TY2y1q2
GkD8tO+0Jjo9YWaVdbEBhN5vutxCe03oG/lPN0BUyu4lXnS80LvD618a4Er6
+y9n0BKPQ38+7G6AVz8KgynR9tfi1/obGmAy5YHO1gCul8SRKzJlDWBzPfDK
DzRng0VAXXYD0JFIUPSjl+t8GCUSG0D3psliNZp34WFrbUQD5KuRT2agS5Mu
R9wOaAD+gOOj4WgL06M+vR4NUCMfPOmJFmnRCtFzaIDlmZdLz9CmjwQqlq0a
4HRJ7cEH6Malqc03hg2gxmzMpYgu4IuRYdFpAENXY10R9JMDKek1Kg0wIFQV
yoo24b9+6tHtBhjMNBg9hmYqzQmjEGsAvevql4nQZY5CTAVXG+CIbqDrUv8a
HHA4n/aQtQFum1BPj6NzMsuFjjE1AGlXq3I72ueYXFs7XQMc3qxqLkFv55/V
9KRogLa789JJ6Elvv+83/9WDourNgSD05ZBJQ7K1enhs0G7iii7rt5rs/FkP
rtsvKSzRpwSDFMIm66HGWy5fB+2e+zHdcKge5t+IGMmi6S4sbQh21IOFudQF
QbS4xSTX4bp6eJRjsHABfUyjS3m+uB78uj5U06FjE09oNGfWg9SN3sgD6A2S
8zdSE+ohyu+Y22If9odB5fC78Hq4xnb/6TjayJC07MU7zC86wbwd3WKcLmHo
UQ/UJtNWpegFp9RYdYd6qD5y0jkZvblkNixvXQ/xp2+EBqMZFvSmpIzqwemo
Rqk7ettjter6/XoodFabsUY75kaY3lCth5s/BU7qo91uNU7dlqmH2skNLcV9
78ydV4Z6uL8c9El0P5/Hrzh1+OthIp10kw0tvraxa8ZeD7Fxcmon0LPrg/7O
zPUQ8li3ggxt/e791xCGerjuJ3xlvRefZ8rTf+VS1UNd+mjyNPqpYlxhD1E9
VGiLcfSjCRdXBVa26sCMX7usFm3JwPbkxFIdRPVz38lB89I1adz4UQef+kpX
YtCP/yqtWo3VgUnPcow/+kW1snh8Xx08MB9QfYW2P6zKN9xSB+6379OaoV2e
fO8/XF0H6sReI5pooUsBjPKFdbB4SzlDGi0jP0/il14HEwW5b66hF4pcgrrj
6uDmWrL5RfQtkp819GF10JTDqX0M/S+szPfB2zrwDJRUJUaHBXsvZ7+uA74b
Y3dXevB57+vi4gGHOth6uq03hX543Ou1unUdvOkOtelFb8X9zsgxqgNyipz3
NWjJsFpDKt064OoVL8tG/+uNzba4WwfMo/BfDJp74opHryy2N5p14S2amYxy
RlCyDjy83pg4ou/fnuxIuFYHFeGNReboHRUVYVrOOpBsMaDS2S/3I2N/fR7H
r0vfQg59hyozaouxDpaNC4eE0apRC35Pj9RB/F1dGTb0k2y7rd9kdZCurN54
As1nujHxZK8Wnp+OkqVAM0WdFf+zWguTr1i/bHZj/tWfjrz8rxa4r25azaG3
169pEE3VwhVCMtrPaG7qgMOBn2thL0+5ohnNY2fAz9JdC7cpey2L0U+knjQX
NdbC4WF3jmS0E79xvWJFLfSPG/wJQWfEU1/6mVcLdr8saz3RAd5nlrxSa0G6
JzbcDv3YU+sUe2wtEGms2BuiXftdUntCaqFN9dHje+jc22rBL/1r4ULwL41b
6PNqUeMXXtcCxaKPmgB6i+yUy6B9LbTzC2tfRFORRNl7WWN9WDehR2t5zbSJ
G9eC8FSZKym6+1H9k03dWvDdcI9f78L75d8DBoVqtbCrodDxA22tbJliK18L
Pd9o/w2hqWdHhIRu1ELOkx7hZjTD12P0BMK1ED7u6lyMZvr2R7iNuxZWqM51
JqMjLt9KCr1UCzaT2efC0BOOM2rGTLUgdu28uxfakSvltuixWihfc/jvBZqX
0eglHWUt1BLk65igH8Xvzi0Q1oK1eOOQJnoz/+aH9q0aUAzJ0pRFG9Seepmx
VAOsy6Yzwmj/2kfBAbM1cEVo/SU7WoNr+8fzrzXwRVOe4RSakLzO7OFgDRBL
mFRSopdbY5iVO2qg94u0+d/ONbjxzJZUsr4Giuhnz/1G77lwHOcvqwGnWZj+
ir67kH6XI7cGJMWVMrvRFZzjpRdTasCI+ohzDTpKIF3q/McaSJB31cxF/7Ik
XD8fUgNbvyNF49EHqnpaWP1roPiXDmsQusSBpILrdQ3Yideceo2ueRnYKeRQ
A8e/1p6wRdv8Ndy59bQG2prunzFEL1S/vKFuUgOEa++uqKM//KpKMNWvAXvD
uzel0aRnrzC6qtcAH2PyIyF0k2HFpwhFLKd57cuGlhQ1lCyWqoE+2dnyk2hz
7wu/h0Rr4HBHxyolOithPWWLtwYgjFtgrwP353LDlmfYa6C0gNplEa2R3iQh
zVIDlKyP+ibRFHha2ZzA47cvX+lD58gMbsbT1EAPr15APfr0zNboAFkNfJzY
2ylAE3yzdKPbqwYKChKrJHQMJ7uC+69qGKyw+BWKPtvDd3RrpBpIKPitvdHe
STH9Nq3V8GX33p492u2u45v14mpoTOkOMkfTis6xOyVVgy1TJI/uvl9tVRwK
roYeq8JhJbT/706Bj+7VsJLP6CmJPnPRI1jwaTVw/G0S5UWHmkkODutXA8Gj
op3z6N7yS39eKe2XT9fRozsa9eYuiVfDh2nF9+Toolm6gs8c1aDLu2Sy3b4G
8pzWKu9OVkMfcaPML7SmcnKF3MFqsLRt5fmKfp01t0y1VQXf47eYe9AHlU0X
BmergCxDhbEOTfPtUXrCUBXM5HQyFqA5cg6zPm+sgqw+k3NJaK+MND3lgipo
5GXhC0MbPrJR5EqogoKNP/I+aNa9rCW691XAfuOzxSu0scTH63suVUAh2hXy
BC3r4Sfx27IK7lD0NuujlapqfnzXrQKe/jECVXS9pRfPhEIVrNUtSEqhT+Rc
PT0pWgUMRAS+19A7548k/WCvAs7qw2OX0eYHXrT8YayCrXMn+E+hV4iqXIgP
VoGW3vEQavQhG9H2k1uVoBhL8Y8AffOs0ifBuUrYpp+3XGnD/a7OXXLt4Ur4
uJo3N4P+9C9jxa2pEuLMHpl8Rjs9qHiYU1gJL7PXl9vQ3RpzKt8/VULLqrFb
JfqJUHjlyQ+VIGVdxJiD7ukVitd0r4R67dGyeHSsybXdqKeVcPVX/8NgtFn1
gZaZB5UQph1F64V+TXqIkE+lEhimudvs0UQzzUlvJCphtsbf2wL94Gl23iRX
JahzZivro7P4RFjgTCX0mASeUUWznJldjqeuhPZc7nUp9NY7HibKvQoYlfIe
ENw/XjEywX6hAmIMQ8vY0b1eyU6/xyqgR009hQk93zeabtRRAQL3GqOPoL3O
1Vz6UV4BaenjEcToH31ff5ukV8CJyKiPG604XmENf/9EVICt6V76T7SlN4GK
q08FdOr/qx5HN9OfnzlqXwE8TZGjPehPB+uLMk0qoOl79149WuHNszo5zQoo
IQq7XIw+TtJFvChdAdetl7TTWvff71nYhwpWQOKLweBotJbn7zNSrBjP6MZw
AJqeYXl5g6EChHwFzr5Gy1XTL2STVQATX7rVc3SLFxG1xUY5SOZFt5ii95rv
q3DNlgOV+kFWXbQ5Y1f++lA5rNgsvFVBNxn846lvKgcjvRt/b6JzemJaPhSV
w6Qp+TNBdGq7to1ZUjmM/BJcYkcnEs/x3A4ph26RXpsz6GumG38veZaDRHYn
AR3a+7LEIJVdOaR9ZPtAitZMty/YfFwOvobTnNsteP4HPQibUysHHd2NngX0
38pcx3Gpcoie0rP/hn4pzvZgmL8c6pQY2QfRuzp+MHShHESJzn1vQYsHRx4b
OVYOjtp28RXo4Q+nJ6dIymGxmMYkB/1FcCRyaa0MVl/8FviEHveLlCL6UQZz
/w5RhqFTW66MMA6VAXP24zlfdL+i3r1rTWUwM7/R7ozeSSMo1igqw/1tddGz
/ePfTW86JZUB04fiFCP0xODE8bSQMljrGo/TRjO/bKUb8cR4HJzxSmiCMPsf
1M/LoJwuMfUGWt+6y1/aqAwaf4uXXEPXP4wnfaNeBiKXNjvZ9+P9GFRou10G
hKydP8+gp4Jk9WkFy2BTp4z6KNrhxLSwHmsZTF2tECJHz4DXSM7xMnBg6Dbb
bV6D1WkmUTKKMnj8cvHTEtp+N1Dn4VYp8LacmJlGR/p1CtbNl4KBjSzHFzRB
ZnXnxZFS0F10tO9Ev/bQOB7QVgov0nO6a9EM8j7H9spK4dfJCfYitM4NmTqr
9FKYKyB5l4ZuL/E9ORdZCs/+O7sVg3YjkmUy8CsFT/4rpkHo625OzdOvSuEf
xaWpN+hzEReOmlqUwsfJgw9eoUsKxA6s3i8FqquDP6zQTeLNvm6KpTD83O3Z
Y7RSUkPOMSgFU47DZFroh5rCFplcpXCi/XmcIlq2gbNK5iy6p+T6DfScUlrs
T5pScCrp+nkNXa1ffCTgQCmIERaFc+wff/chtfCfEuDgMFNiRn93KQ2amyqB
v4U/D9GjS692xkT2l4DUWZ7ug+gL6dkcqg0lYPVLOPxf0xpIn7EVPlxYAh1R
xKaraKEi3sbuxBJwLvCRnEdveBK1fQgpAd/i1jNf0RWhe1K6b0qgi62KuB9t
NCYhwPGiBHaDDJaa0fJ8c6F7xiWQ+LJ0qgJtanLUeFAT83tUOpqLduacTciR
LYHBz/qjSejx06+lA0RKIOtRxrdIdEYxjaoNRwkk+If9DkA76BfU6JwugWff
mAk90Qf0w97KUGP9nzdPOey3NzFbKvyvGCr490St0IGz3cC9VIzXGVmDx+hQ
fefTbN+K4UDzhfda+/09fEmZta8YTrH5Nynt9/fD1gBbPdYndzwghRY1ZU/l
KSiGuJXl68JN+79H/mkVTSyGToc5Hy60C5cXn3xIMVjz3v9yHr0qe+GH3pti
sMqU52REt1CSjj1/UQxOjvneh9Gxp43pPpgUA4Pg2/+I0WMbPt4FWsXg/vSL
6nYjXr9mskW+yBVDf11g3SJ6/ADjJUKxYpitzr82gz57lVqGi7MYHh0QzR9B
C7H1x+ifKYbsM5f4e9B/jXIvhNAUA1mBdWUj2ujqykj3gWLQ1TguX44uD5su
p1opAvtkhm856Aqr/kal6SL4Kmr+Kgl9U+3wevBgEQwU0DJFockS52Umm4rA
LIOsKRBt6FpYxVlSBM9qb9u8Qed2NKu4phbBq/fdrI5o7svPCT5HFMF4VeT3
p2jVjZMtV/2KIOVHyidj9M+7NEmBjkWQl7Zipou+eDIndPVJEbzNeCF0d7/+
V40IbX30Wz4qWbTsfybpTSpFULtybhbQ9bdutvDfKIIN5xvN/Oj/0mV/p/AV
Qf7wu0x2NIfvN8azF4tANJYkghndQ24pF8lQBIHOcX4M6NAdLUdGiiIwPaXv
QbXfn/+os6K3C0GQSfw1EZqLZn3k/K9CYL0i6L3VsAYhyo4HcsYL4eQf2Q+L
aEsJujPQXQhp9M8SZ9BTZ1h5+moK4ZJUZsUoOvHLFX6TvEIIYV3/0osWJwxj
Jf5UCHnmsn+b0TRDo+QJwYUwX5l0sQp9QMiqX+pNIei2kt0rQIsWdHr8elEI
30VNfdPQkbZPToeaFgJxc1tTLJpPsStUSqcQVukvkoeiVXNN/2woFMLHsRdK
/mievDq2LCiEyJbqKHd0ObG6uDFPIfD6bSy+RMttp7JdPFcIml9OyVihLVxh
YfZoIeQ/5EgxRL8/H+2eSVoIgaMsVPfRI+Sy/9ltFsDKxu5zVbTxry7mmz8L
4JV58ZwM+uTFovPHxgrg9W9FPQn09QTf5fnOAiDhqxkVQDPPjnnUVRdA2gqZ
7hV0NIXQRExuAVRMs/w4hy4o5N5xSigAwWoqG0Z0E+u94YfBBVAu0kh2ZD8+
j5i17JsC8KS7FUeGLuNwaOJ/WQA+BP4Se/VrIEGePHDerADuVobMrKLzxTTD
Ge4X4D5DP+A/dEg/Oy21UgHkBM1ITKGPa5eJkksWQPCF8xuf0fGLcfSkvAUw
/fx4fvd+PH7XaLILBXBfutqmCT2ivtlFyVAAemrHRCvR1yhSU45RFMDP+wwU
BegdFwFWlp18iGSuG01DN9hLyV1dyIcCfdqCOPQe36vDtyby4eAY8fswNJeV
29P7vflwRi3E9l39/vdnB56+qM8Hwrf1up5oht8Jh0IL88FQxlvBEd3CTS9W
mpwPobLTkjZo3z8kxBPh+eCo1itihr5gzqJL7pcPYZwKIg/RWSqnZPid8oE4
8q6EJvpKb2LdY6t8sNSfllVGJwY+bQl/mI/rdUvrNnoi95pG7918oKQJsBJH
P2hOt6S8nQ+BXom+/Oir456UckL50GQnkMGB/vnUjcOfPR/kEqDvHDrdQbOz
73Q+qA9X/mVEV+i0/DpJkw95Y5mctGjqBT8vY8J8KHKkfEyBvv3MMKZkNQ9U
PIZiCdAvEo9xUM7mAUk1+dRG3RqkJetwPfqSB2PrH1kX0aUH/yVWtueB/VaY
zQ90enut/8mqPDj4YalxHA13zKZf5eSB/IeEU4NoWqv65G/xefCmJetFB1pH
L2hQJjgPQv9Rj9Sj2esSzQrf5MEEea1EOfpiXJPRefs8UCyozchDh5nWN4eY
54FeHxVTGlph2dSbUi8PGPniP8ShY8z80zxUsP10B5pw9Junu6yEN/NAjiI0
MAB9l8CX0E0A82VeZvBCj1pS8ZNczoOaJs8EZ/Q1B80q35N50N5xl+85mlrk
VtQx6jzoJtNoe4IuvJDREU+QB17y/o8N0TJUjxV4V3KB12qZRBc9eEb+VPNM
LgRJu6aroe/PiF3T/ZwLv9OF7imgbeB41GZbLtBYM5BKoRmNy6RDKnNBzJKh
XBQdvkQsci0nF6SdBGz50B41X6xG43PhpZ01Hwf6xLFTc27BufCRu3HzHLrB
OSfmilcukHhy1p1Ev5559X7UPhdsldMC6Or23y8b1/pZYH6m/AaH0LK92pcl
9XOBKqtDlAidUCrRsnknF4Q3zBl3anF+9Qij8qVywYWZ7u8fdLOwf7y1YC4c
pqiY/ok2oOn+cpU9F+J8DHqn0BvLeK0/nQs67hT1I+hLYvx9VTS5MN+TXNqH
VowQeedNlAuPVEQL29AHdyps1NdzQO97fWEdOiMi04V1PgfmHouUl6Gndwhz
d0dzwLXkY2MeWmQun2igKweYyxcG0tD9liV2WbU5eJ1lmY9HS85SkPsV5EDY
HWHCSHTxbHyheXIOJKRePRuEfq7g7KgckQOM/OQ3fNGnr0Xdv+afA/zDxabu
6HjiTVVmlxyIfioe6rDf/3vvdamf5YDFz7CWZ2hSKnOHvcc5cIWlYc8M7Xzr
TcqyRg58/lshZIB21Jv9PiuXA0MPXF7qoK8vB7B/E8+BrauHqu6i/+vxdhzn
yQHve1pkCugC6i/DY+dzgCvPVE0KfXTNU3CCIQeoOIRSxNA6ZNHR0wdzIDat
7h8/ep5Q/uDITjZMHiXW4UQTZGmPLH3LBpY72xUX0aGP3JOpWrLhimw8yxl0
1tSEBXdWNrDObPoxoG/eDbis+SEbUg/t7BxGn5EpGnpjnw3JSYmW5OiBYlvr
Cv1scP+4NkuAfr+zurZ+KxuIJ2cNtmrw/O3T0b92JRvu3Hn5YxnNofU5w5Eu
G/5OJpn/RNsfCR5u3cqCNTuLjSm0XX/d2MnJLHj7r9VzFD09FFTyrCkLXAxL
GQfQUxmiRr0ZWTATKpjfgS4UX53mC8oCbpebyo1o646VKzEvswAoR5Yr0QU/
7cSp9LPg9uX10CL0L9dyWrdbWfC1Ifh6Njqq/UDyLkcWbHQULiejxVX8Nl7R
ZcEcl2piLNrp50cCou1M0BozvR+OLip3r3o7mQkatVsn3qO1+FyvnG3OhNtd
uyM+6JeU0zLFmZkw+8cq1h39/Ob24bsfMkHpjKrpK3QT89FX6/aZsHwjVtAW
/Y3ztU/Mg0wIV1E79ARtJfjxmrx0JhgIWU4Z7ucnX+H8jzMTun79rNRDx5fw
6ZUcy4Sk+43RGuj3ZAZ9drsZQO2046qCTiFIGRT+ngFOEj6msmiCJP3HxG0Z
0BL6RP0G+vLVJcf+nAwge54oLYqOZig/mRKaAbm97OL8aIa9SyJuThngE7l3
jRNNXffx84PHGZDWwihwCc341H/plnwG2Co4Cp5FGyrqOvPwZkAS0zk4gf7d
6OrKzJgBYjwUsrTocVuTFfoDGRBiz6F5qGb/e3fv3iNz6aCw5G1OvF+/595x
2u50uOvF9Ppv9Rqs+cs2MBSlw7zg7Md1tNKnr70s0enwdnOyehH91PmdGO/r
dGCsIp+eQ1tnjxLJmKVDios25RTaaPYGs8GddIi5NiQ4iibdlX3/WigdUkds
TQbQw99sVdPOpkPjg2sxnehHGXIPBsnSgbORYbgJbeerVkKymAYmf+mO1qDP
tTOpiQylgQTRZbVSdF8PH59dZRq0dKtG5KEnGS/dKfqUBio6gd/T0RHib9J3
fNPgZfxX7kR08I850VvP0oAhStAtBu3Z+40wRCsNlG5EDYf+Px7F9k/JNHB+
T8oTiO5o2maSupwGMq9t3vqgHRKVn3yiSYO3dN8X3dFj5qnT5JupYC2ipOaI
pmZLdHo6kQp3Ngqr7NBMazOC35pSoef6UQ6r/fwWD9OoZaVC4wmjaBO0zM1W
gq7gVFB4kU77CJ13roxM3jEVyrW++urst9fgx9xtkAofK3fJ76F1HizIqsun
Qn00kY8S+vE1H5dp3lTg2VyklkETedBV251MhbNtVaHX0YpeIkTURKlw8IjF
eVF0hWORTNrPFPjYtlHAj86PEX4n15cCNavaMlxovrMuPculKeDrH/KNFU3P
I3kwOi4FlII+ObLsj9eWkJCCdwqEELufPrU//2GsWoTWKXB0krP2GHqKpdOk
QiMFys4nGh9Gh8TPGzhIpEBK7xQdBfrV0evSwJoCPD+m6wjRl42iaMhpUmDg
QYrtbhVe717WlA1uJIPsTTaOdXQ444sbKRPJ8Mzf6MciupPkXbJzczIYiN3/
NI9+/b3vu3Z2MmjdJTf8jqa6TbcmGpoMTX2P2cfREZnMn1mck+Fm6dPVIbTJ
q15vKqNkiCTnqO1Bt/3bIP2rmAyVtW8D29BVJubyywLJ0DoT+rgBHdZDpv6T
KRkO2N0Uq0JXXEk8N0eaDOPPAo+XoPu0mbN//k6CP5MOG7noN/Ta68tDSfCv
imAkHX1i8+r636okWDp8uiYR/fiFbzp1chJ0D3amfkRf/yVNd/5dEvTR0oSG
o/+6qbCJP08CpdbJN0FooVv+Czp6SdCwI/rKH93K8EPT5XYSdGYw27xBL+Tc
Nk/hSgKeCV9LV3R17EfmQYYk6Ap+8cQBrSw3bkdKkARZ/dNWtlX7z+fLxqJz
ibAc2Wlnif7j1LNq15MIE8tcLib7+f1nwVBUkgjDn8n9H6Hnhmo6t2ITQf+u
WvR9tHVp7dHr3olw1Jg2Vx196LPp/FvrRMhhEGtRQafcKJGe1EyEg0Z9U3Lo
teFkLoHriUCv1U1wq2r/fa5QZABbIoyucrNI7Pd3wMJrkTYR3EVWbwnvz+dX
6dU7O59A5iq9JR/6iFL3aNn3T+A9HhTBiTafJhO91PEJ0iVNW1nRXGd2joQV
fIKrj0J2WNCXr+drUUV/gspbx3hOo0uUReneeHyC9aXvJgzoSKpPgiRPPsEn
w3+JR9AHt7ea39z7BMEZBjOH0GOqSlXUgMc307CSoouPFR+PuPQJqCoJnhCg
x1ekBi7TfILQQJ7i7co1CNCh/V25mQDPZGOJ1tAcdnyP7n1LgJ5fMqqL6KNM
TdwrrQkw7cieNI/ump1S/ZCXAH8Jr+9+R8ucTGkVikwAU1cfta9o1gK+d9/d
EyBo70DeZ7SofmpcoHkCfHNOPNJfuf/7OeveDTWMf/CpTSd6l2koblssASY/
GYw0o2P3hr0LLyZArKr9jTr0W2+1fJvDCRB3Kie7At04/Pyk4GY8uJEQnSlG
U2WaVP+bjIfvdFaBuWjG5+pR7a3x8FRhlTQD/U3eMjsyLx5Giv2ck/bzW5hc
s4yMhx4NgZ1YtE7luLn063igEPj9MhJt3xp25IJFPEiq5e4Eo2trbn0juRcP
AhWvXALQ2eunv/wUj4dYKwVyX3S6/r31/kvxcPPF2SAPtEvwZYFamngY+/zn
rAt6rr0vOG8rDi6E1eba74/3l7e0KVNxMF7uLWWLzuOJSo1rj4MyGekxS/TE
tLDGx4I4sL69bWuKTojJOBkXHQeFZVG0jyv3r998y0meccCdypGnt1//M8NQ
jmUc+BxPvqu1P545Uc1VGnGgT02xfRe9JnqovkcyDhQDlOKV0LdYMht/sGH7
Cc8VZPfnO7Kzg+BoHEQqOu3cRHPblQ4y/Y2Fv8H6GYAOP1o9LvEjFl45n9QX
RpuZcE4ZdsfCC5oMen605abGZEBJLCgrHu7hQtMOBg5WxcWCvPh1P7b99RJ3
pXrJJxYyZyTlLqBp3rpFXLSJhXiZQ1Rn0Tz35gz078eCtGVkLyM6WLLkZMyt
WMjTXgw7hr7LolAxwRUL43TEj2jQDapENy+ciIWCqCGuQ2ifUsGcJ4SxQLnz
6B8JmsIxfPf58EfI4k3tJUAXJUuoM6Z9BGm5hKSdCryfTLCbNbz6CM9uKTmt
o2uOn+O1U/oIBZfTNJbRTkrLqVwsH8F2K4f/F1rGzaBtaTUGDpXpH5tF/85T
eFfaHAP5lkUb39CdUy4r3hEx4MOUPTaGVjgyuPzAIgYi2m43DKMnhM57SErE
QOtzx6w+9M07cimsdDEwf1khshNdcpvtHsOPaEiezvdpQR/8l+BNVRoNEelZ
r+rRQwoxYof8ooHXTdi6Ci3374AFjV40NJrdNS5FS3WU0Z6+Gg2vzbYeFKBl
dYov85BEg/Pri7rZaOob8xnyn6MgqfSzThqadu9mqGV6FFRTUekmoq+t1H4P
d4oCO/eaB7Fonida/u0qUSBzeskoEi3y8dA74gtREDweZhWC5gsb/H5zMxL8
m4odAtHn5Ms9/dojQXRExtsPHelb93Q0JhI8GOXD36DHiFbjeZ5GwkXv8nQ3
9Fkxbdp3UpGQdCm4xhEtHUpasXI8Ep5sDA6/QL+XIYvU+xUBBVv2y8/Q5XrW
aX3VEeDK5UpluT8fJdoz8kERkBE+w26KPkU0eavLMAL3d4nyj9FXqhjb7glH
QDZVpaU+mk6A3fQHVQTIHWcL1kY7uPKyOH4Lh0GN+Yp76GoXjQXGwnDg7d74
oYI2HqttqvYKh1MOd+gU0LkHIlLNdMKBVGddUhptxUIdyMQdDhLWk09v7K8H
HsUXn4nCYaiUKkkcrTrtpxU+HAbJfA6jQmjS9H9XH6SHgerkBTr+/fEp+LrL
5RwGN8oPKnCjNX8a5JOohkFi/UVvdnTeQrfK1MUwMNmwa76InmXQ72/cDgWZ
u5tkLGh3Ow3enK5QqB1Olj2NJm7fM4+LDwUSZ7d3x9GfvSIdwu1CgeG2xxAd
Oqf3pVaYbCjkcWSeOYymej5LHMMUCiocG6YH0RfW+OzS/oQAx3X9EpL9/j4r
TK1sCgER0xmyA2jCuqqI4YgQ4Ix119wtx/lST725+SQEnk9cy9xA8yr1xJ+5
gfXP/SNcQX82DsxRYAgBHcMhrd/oRWIFE7f/gsE6oaxgHl10zrClsjoY2gZS
aGbQjw2ut/4LwvLV6CeTaIsDskbSxsFwZjekaxQd2TMbHSoaDDdnAriH0SIS
3sYLNMFAmOr1oQ9Nci+mTmbmA/BIOGx3oo9khidnlH6AuwmPH7ai6WyWaOnf
foCEtpsdDehVM0YCz4cfgCTrmGDNfvyZQNNdgQ9AJTWYWI4er+lXeHnoA+x4
uhwrRr811UvcnQiCKtOjb/LQyiNF5p4FQTD/w387E+0eqPuR3jsIGpfnLVPR
p8PHBTPvB4Gg64XZT+h510o+2atBMOojph+LztD1ebtAGgQTRFyjkWjZ5j7J
0NH3wP5tXT0UvdN3SfZ2znuQZHg/9B4tzng64e/r9yAf8ffe2/L997XS0mWa
74FOV+CLNzqJ4wa/I+d7IL0ndN8DbRaS/PgW0XvgsSX67oJusaEbPPY5EG5k
BZq+Qsc2XHT+LyMQPFYmV56jUzfd9ZpdA2FS4LfTM/TTjW7r1HuBMGZSdMgS
TcaYlxvIHggfHAUiTNFH2QcYXQgCofmhGZsh2uDRVIrNYAA0UtypeIDONPVV
t0wLAMeHs0r30ZqqLixWzgFgqcM6o4H+L9KG5PndACj4ceTVXbQtG9Ou++UA
WF+MPaqM1o8wJeb8+w7sDfuy5NAMT+Yv6ie/A2rBBNnb++uNkFc9RuUdHL9D
M3cd/Ve2yW9u5y34xtG/EUfn7F2sFk96C79o8y8Jo598GJ+JVX4L0u+nWvnR
xmLPN6l3/OH6oXgLHnTbtMdvr0R/2DP+TXtlPz57bDW1sj/whjSUsqJ1Hj14
FLvtB6cdmR+eR8sHmPSKJfqBGxkh5Vl0mv79A7NKfpDJ9Kj4JPrklR8/I7d9
wSZd0oAB/Ww110Mn0RfYQiJo6fbjaT5rZVX2hbQm0zpq9G70t0yCHR9QOZ/9
7OD+eMWXsE0n+uD91+AiKTp+suRav7IPUBF6jRzYX/+myR2dO96grUgf8LcM
75fTCt/6k7zhpj7l7S20g6e9xYyKN3w8ZfRvFb17jMCE8K8XlBmdK11Cb3wv
bGdL8QKDC+I2v9CErc/9dVW9YEKwgHsOffX8xaTovTfw67Xb7+9onqFEqrnU
N1D6X2LmBDoCJsvF1LBc8eSTUfQn8fqUGII3kPxugmsYrXFZsuNghidYv138
04eW71JmclP3BEV26eIutLHlQggxkSekS/141YbOrabnfJ/lAUYVTTea0L8n
ekbZtDyg0+LHoTr0is75sC4SDwi9dn2wEr3AzqTtmPsafqwPfSwt2//epvvU
tfuvQcYrzqwQPeyjOLhD/hoKm2MEc9GH1wpetRe4g0dAO2kmOkCf+VCSvjs4
Vp4fStkfn9iiF76U7tDImpz0CX16KrLSocQNZtOVXsSiBT7t9toZuEHnmZNy
Uej6MvKsVzRu0KpDeiYMbXlrVca/whXchalXg8r2/798IzrF2BUOBnC1vdsf
z0ql+K6jrlDNaxTni/bVEVP6V+MC5ju5L9+gPw+SRAtbuABrBaWqO3oo7Y+7
ywkXMJW1ueKMFhVN2IzzdQYC+xlyB3T4vfld9WknOMR0f8YOPUNnQHJOzAkI
KT7XPUULyrUQEoU4Qg6latwT9Cmx/pmN36+Ae7vNxRT9wkf24wHpV7AUJ/rA
EL3Ms3vmbJwDZPR/uv5wf/14VWmobtvDQ12CC7roQD4r4UhVe3CikSfXQhux
bhZuZLyEt8Wvf6mhe2OkKoxJX4LT2eReFbQVjbL4b70X4MKQU6yAfiLMcMWr
9DkcMY6KkUFXEye8FKB7Dj/GjD2l0DIfiI5tmdsBqQStpSR6jE9lqbvJFnK0
gjXE0BlaGbtlZ23BbO33dSG0faQYe5m9DSwPn+TkR5Nl8Ft0DjwDqdbjjDxo
ibud+aucz6Do3RTplf35fia1xOX9FEKWbFdZ0XsrP+icv1tDYU731Hl0Xgsh
zZSYNawG/eo9i86fWR7UCLMC6/uttafQb5zZsppmLMG6+2HecfQ9z3QKosgn
4JJemHB0//z5KB1nqGwBz/KqgmnQ3MYr6ssk5rCTYO9FiX6kmkmTUG4K5vDD
gXx/PYa9yXKwNoHB63uWxOg1zoSjDpeModWs2oAAXdbMfTFu3BCa7C5q7Zau
gWGRVdNC0GMIO8OtvIle3Mr7rC9rAILMX26tonuZ1SW2CR5BKD+T+BL6mkzH
ZGnxA9g8tsv/C91zODD64xN9CLG35JxDc7IaFdyT0wWKk7aXptEiRfGrpaXa
kJFJwTyJ/pnFWW/Mqgkqc5dPjqH1U9xnH4beg/+c+459RssPCF5OIb0LXy8R
HBlAT5ESKwvaqcDe2L0/as4b8I/y2e2LHQrgX1PsZIseIQv7bJUhDSd9xmiC
0X1M4d+V/G/Aw6H6lAL0ocLUZY9xUXhz3fzWAPqIbYdKUNz/ZmSvnXPl5Wcg
f/XXiUJ9ZxXs4z7+miTc8N0eAFD1ui4=
"]]}, {{}, {}}}, {{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV0X00lFkcB3AasY1hjSelyIyObTKIjtpdbfndqMhb5WWrkcqIQUrjmHOs
selNUoemzcaMtVaiVRlpp9pRWTUWeZm29KJFzZLtpOmsluc+RmLv/nHPPZ9z
7/f7u+dcV3F6ZOIsMzOzcLL+38sPii2X75H7izoW/KLR0tDSww/byt8Ou8a1
tv3EM61NR/n8FEhwEaWyGmkoby7kzeZ/A2kZKtdI4rQ1sn0MrwAOLnRS/EPc
8yG5eJSnhPOpzvuEt2mw6hsUvOPVwhs2T/BTEw2VHRXStzwtZIW6lZ3S0aCu
L+hLW9YBL5VVCZ/raZDAQ6UxoweiT65d6dlLw/5h9yGN+jkgjwOzRv+ige16
TPDySwPIlNTVfCMNRXadwsrdQ6CtfZKUimkQ90X/xur6G9bnc6b55hikvx8T
pwtGYKPDY0W1NYaGA5wox43vIHZ9o6fMAUOlfO+Iz9ZRuB7gUOvIx3CkYmrL
uPE98AaLllkJMZj1GNDt7DGYWa6s1/liWJKZlBUtpGHpJkdutD+GV3TJ19Z3
MOy2vSH3DsYQMpz67XfSCTCo2ltfRGKIeKXwcHGZhGfP9trsiMMwohMfaq/7
AAM3vOLcJBiWcZ8uCtz1ETwT9hQ2SzGwgY7vH5uGggZt60U5hqB3ImZxjBny
7j5qEB/H0Htvj7nI0xyFKV/QbxUYrp9o2cmnzVGW1ba5zSoMSbNlBr1+FjIG
bKCSqzEkZMivc1QslM6Pcoqtx+At8dCHxVugFPWoi7MWwwN7T2uZ32x0ZQ6L
1aDDcEt9pMyTZYk+Wq4YVXRjkJsLN3cNWKKSh8/vrOsl7+vPDt6vsUI/h9nl
tw5iGK5xLa7I+QS1pSRuP2vEULx0gYU2Zg7yifbmrGAwKFRJbfF8NqoxzG/n
mTMgKo7Tc16zUfGiM7nP2QxMrKs2VTRZo05B7nyJAwNDwwFZ9/I5yO7xqV+B
x8D5NcuduuNt0I/hNquM7gzU5cm4Ei9b9FVKXcuQLwP5MQmhLNoWRax8EVK7
hoGV/ZW1+d2fosv6ow0BwQyUupfVdYfaoXnsYFdBJAO5zYWloVo7dN/+sPTl
DgbCnWKqO9y4aLwz5E6ihIG1+9tiuQVc5CXwtf9CykCFs9iti+ai+k2KoH45
A266i+ciYu0RLOQc78pjQOF1T/ioyR4Ffe/YfPI0A0ljFg/vCylUMqD801nF
gLjhX37BaQrhNr9pUxUDaUeipkLOUEghyZ6z5AIDsijNM85ZCrlb3ZobSXyC
lhUpzlEobsNqj0vEaj/Th5JyCula/LeJqhkw3Z15WnOZ5O8GXmusIfMfcQpb
2igkvBWeJK9lQFW1L/n4fQq1iIqkF4mrMvWBwZ2kb1Kf00N8Y55islNP8n6b
z3pcYqBfRCX3PKEQczOyuY9YMLQgcHCI5DVbF66+woCPJtvlwjDJR5d+lky8
Kq/PlPia3B/r9SkmDhOUX30zQub7ioKMxBl7+S7v31PoTMOOzB/qGMhZfdh0
bYycbynPbSfOsxl8nEmT/tGBk+PEpfVVpyYmSJ/3rsowNfnvQxaSxkmSf1Bx
JYv48pbEgJwpkk833LxArFncush/muRtXXV/EDeNLTHNzFBopzpeP0X8H0l/
WUA=
"]]},
Annotation[#, "Charting`Private`Tag$907698#1"]& ]}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 1.3563204624785772`},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{0, 0.3617843613504096}, {1.3563204624785772`,
1.3857285757189266`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.817283762942142*^9, 3.817283793407621*^9}},
CellLabel->
"(WOPR) Out[842]=",ExpressionUUID->"0f099d03-656a-4602-85f6-26b4b2405b3b"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"n2", "=", "4"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"eq2", "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"eqLow", "[", "n2", "]"}], "[", "0", "]"}], ",",
RowBox[{
RowBox[{"eqMid", "[", "n2", "]"}], "[", "0", "]"}], ",",
RowBox[{
RowBox[{"eqHigh", "[", "n2", "]"}], "[", "1", "]"}], ",",
RowBox[{
RowBox[{"eqLow", "[", "n2", "]"}], "[", "1", "]"}], ",",
RowBox[{
RowBox[{"eqMid", "[", "n2", "]"}], "[", "1", "]"}], ",",
RowBox[{
RowBox[{"eqLow", "[", "n2", "]"}], "[", "2", "]"}], ",",
RowBox[{
RowBox[{"eqHigh", "[", "n2", "]"}], "[", "2", "]"}]}], "}"}], "//.",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"\[ScriptCapitalF]sol", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", "\[CapitalPhi]Rules", ",",
"GlRules", ",", "GhRules", ",", "DmetaRules", ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]i", "\[Rule]", "1"}], ",",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n2", "]"}]}]}], "}"}]}], "]"}]}]}],
";"}]}], "Input",
CellChangeTimes->{{3.8172700941895447`*^9, 3.8172701434323797`*^9}, {
3.8172703209660187`*^9, 3.817270321333618*^9}, {3.817271463286846*^9,
3.817271467845633*^9}, {3.817271562977268*^9, 3.8172716016608887`*^9}, {
3.8172717298008966`*^9, 3.817271734832752*^9}, {3.8172728813729362`*^9,
3.817272883219574*^9}, {3.8172756877299633`*^9, 3.817275699753543*^9}, {
3.817276014465931*^9, 3.817276016863351*^9}, {3.8172809741886683`*^9,
3.817281030128274*^9}, {3.817281198191544*^9, 3.817281205016101*^9}},
CellLabel->
"(WOPR) In[716]:=",ExpressionUUID->"868d07c1-b3cf-44ff-a070-78c2a21c388b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"s2", "=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"#", "[",
RowBox[{"[", "1", "]"}], "]"}], "\[Rule]",
RowBox[{"Re", "[",
RowBox[{"#", "[",
RowBox[{"[", "2", "]"}], "]"}], "]"}]}], "&"}], "/@",
RowBox[{"FindRoot", "[",
RowBox[{"eq2", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Theta]c", ",",
RowBox[{"\[Theta]c", "/.", "s1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[ScriptCapitalM]0", ",",
RowBox[{"\[ScriptCapitalM]0", "/.", "s1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[ScriptCapitalM]1", ",",
RowBox[{"\[ScriptCapitalM]1", "/.", "s1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"gC", "[", "1", "]"}], ",",
RowBox[{
RowBox[{"gC", "[", "1", "]"}], "/.", "s1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"gC", "[", "2", "]"}], ",",
RowBox[{
RowBox[{"gC", "[", "2", "]"}], "/.", "s1"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"gC", "[", "3", "]"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"gC", "[", "4", "]"}], ",",
RowBox[{"RandomReal", "[", "]"}]}], "}"}]}], "}"}], ",",
RowBox[{"MaxIterations", "\[Rule]", "10000"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.817127065230098*^9, 3.8171271351270227`*^9}, {
3.817127221800994*^9, 3.8171272630331593`*^9}, 3.81712740736408*^9, {
3.817127491557787*^9, 3.8171275000934143`*^9}, 3.8171275721198053`*^9, {
3.8171278100273*^9, 3.817127849603622*^9}, {3.81712788866899*^9,
3.817127911532996*^9}, {3.81719706565886*^9, 3.817197105498705*^9}, {
3.817197893385504*^9, 3.81719790689716*^9}, {3.81719860001385*^9,
3.8171986053976393`*^9}, {3.817198639295259*^9, 3.817198662766809*^9}, {
3.817198876170909*^9, 3.817198908051071*^9}, {3.817198993133552*^9,
3.8171991533442287`*^9}, {3.817199209928318*^9, 3.817199241960556*^9}, {
3.817199495862*^9, 3.8171994994689503`*^9}, {3.8171995495740423`*^9,
3.817199605718575*^9}, {3.817199652392643*^9, 3.817199715256566*^9}, {
3.817199865131709*^9, 3.817199880715331*^9}, {3.817199936333564*^9,
3.817199987661281*^9}, {3.817200026262958*^9, 3.8172000468302813`*^9}, {
3.8172001570412397`*^9, 3.8172001598323307`*^9}, {3.817200236641964*^9,
3.8172002385137587`*^9}, {3.8172002992189293`*^9,
3.8172003208190928`*^9}, {3.817200415813776*^9, 3.817200416404771*^9}, {
3.817204016980706*^9, 3.817204076853834*^9}, {3.8172041381029387`*^9,
3.817204203727563*^9}, {3.817204234304641*^9, 3.817204255961961*^9}, {
3.817204390931651*^9, 3.8172044426360817`*^9}, {3.817205022823312*^9,
3.8172050577028513`*^9}, {3.817205106256721*^9, 3.817205106559868*^9}, {
3.817209919633216*^9, 3.817209920608328*^9}, {3.817210044562058*^9,
3.817210053786522*^9}, {3.817210136268099*^9, 3.8172101405721073`*^9}, {
3.817210451098201*^9, 3.81721045318543*^9}, {3.817211412418923*^9,
3.8172114542674837`*^9}, 3.817211713768137*^9, {3.817211774217906*^9,
3.817211820329513*^9}, {3.817212210577387*^9, 3.817212210720683*^9},
3.817212495142112*^9, {3.817213148937108*^9, 3.817213155649081*^9}, {
3.8172131921538963`*^9, 3.817213198714007*^9}, {3.8172140038972063`*^9,
3.8172140040882683`*^9}, {3.817214050225759*^9, 3.817214064234343*^9},
3.81721453132269*^9, {3.8172191352175198`*^9, 3.81721914521805*^9}, {
3.8172192016924553`*^9, 3.817219202057729*^9}, {3.81721981372462*^9,
3.817219818492318*^9}, {3.8172203944673862`*^9, 3.817220425613224*^9}, {
3.817220485354929*^9, 3.817220583732532*^9}, 3.81722086630956*^9, {
3.817267355013483*^9, 3.817267405354693*^9}, {3.817269076393395*^9,
3.817269087009036*^9}, {3.817269120326481*^9, 3.817269121269062*^9}, {
3.817269939213081*^9, 3.8172699495241137`*^9}, {3.8172700164421453`*^9,
3.817270029113059*^9}, {3.81727016313024*^9, 3.817270185946486*^9}, {
3.817271080438819*^9, 3.817271082380143*^9}, {3.817271475068852*^9,
3.817271483911096*^9}, {3.817271617556754*^9, 3.817271633205493*^9}, {
3.817271726594358*^9, 3.817271760456759*^9}, {3.817272895451928*^9,
3.817272906053697*^9}, {3.817275703982615*^9, 3.81727574191495*^9}, {
3.8172758130790777`*^9, 3.817275845654808*^9}, {3.817276032115261*^9,
3.817276037209382*^9}, {3.817281045413492*^9, 3.817281106435656*^9}, {
3.817281187208206*^9, 3.817281238944985*^9}, {3.817281276487254*^9,
3.81728128676392*^9}},
CellLabel->
"(WOPR) In[723]:=",ExpressionUUID->"7c02fde8-7f1a-472a-9e7d-0e95772516eb"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]c", "\[Rule]", "1.2324003216794353`"}], ",",
RowBox[{"\[ScriptCapitalM]0", "\[Rule]",
RowBox[{"-", "0.032245651188134536`"}]}], ",",
RowBox[{"\[ScriptCapitalM]1", "\[Rule]", "0.933438837044559`"}], ",",
RowBox[{
RowBox[{"gC", "[", "1", "]"}], "\[Rule]",
RowBox[{"-", "2.7666956506400777`"}]}], ",",
RowBox[{
RowBox[{"gC", "[", "2", "]"}], "\[Rule]", "3.0942385597019992`"}], ",",
RowBox[{
RowBox[{"gC", "[", "3", "]"}], "\[Rule]",
RowBox[{"-", "1.6831403018575868`"}]}], ",",
RowBox[{
RowBox[{"gC", "[", "4", "]"}], "\[Rule]", "0.35760302968040714`"}]}],
"}"}]], "Output",
CellChangeTimes->{
3.817281106988557*^9, 3.817281187737056*^9, {3.8172812309684668`*^9,
3.817281294710451*^9}},
CellLabel->
"(WOPR) Out[723]=",ExpressionUUID->"6b22737f-c85f-4c36-9b44-d9e694bee115"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphicsRow", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}], "//.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]i", "\[Rule]", "1"}], ",",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n2", "]"}]}]}], "}"}]}], "/.", "s2"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "1.3"}], ",", "1.3"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"g", "[", "n2", "]"}], "[", "\[Theta]", "]"}], "/.",
RowBox[{"{",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n2", "]"}]}], "}"}]}], "/.", "s2"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.",
RowBox[{"t\[Infinity]", "\[Rule]", "100"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "1.3"}], ",", "1.3"}], "}"}]}], "]"}]}],
"\[IndentingNewLine]", "}"}], "]"}]], "Input",
CellChangeTimes->{{3.817270250152678*^9, 3.817270266945251*^9}, {
3.8172714956480207`*^9, 3.817271502761599*^9}, {3.8172716647273273`*^9,
3.817271668552335*^9}, {3.817271770580183*^9, 3.817271775109421*^9}, {
3.8172729204002857`*^9, 3.8172729476159267`*^9}, {3.8172757499631653`*^9,
3.8172758078877163`*^9}, {3.8172758601082687`*^9, 3.817275866449978*^9}, {
3.817281121853549*^9, 3.817281145460658*^9}, {3.8172813100145817`*^9,
3.8172813131216908`*^9}},
CellLabel->
"(WOPR) In[725]:=",ExpressionUUID->"0e89b49c-ebf1-4e9a-800f-62ec63f935a1"],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.],
LineBox[{{-1.2999999469387755`, -1.2110078507365805`}, \
{-1.299202533406545, -1.210265967439999}, {-1.2984051198743145`, \
-1.2095240898427762`}, {-1.2968102928098535`, -1.2080403518124079`}, \
{-1.2936206386809312`, -1.2050729448741262`}, {-1.287241330423087, \
-1.1991384112800034`}, {-1.2744827139073984`, -1.1872704966221705`}, \
{-1.248965480876021, -1.1635395471734082`}, {-1.2365508835190653`, \
-1.1519965232134384`}}],
LineBox[{{-1.2348927202537592`, -1.1402144322706482`}, \
{-1.2332294033120883`, -1.1386522868190403`}}], LineBox[CompressedData["
1:eJwB8QIO/SFib1JlAgAAAC4AAAACAAAAHB9rC4S0879SiryAijHyvzl5jJAW
dvG/fSov0i9G8L+pAe2oDZXwv5Z9bbpu6+6/sdjTlxKG77+hM77BMGftv9zf
01Tfvu2/dBP7sGzD67+heqZH+f/rv4/TGWjuJ+q/5tmxTxxf6r+7yWnZJKjo
v/dqw84Um+i/V1k81IcH57+JwA1jFvXmv/ageyHYgeW/tKkqLWVX5b+VkFSo
7wLkv6vETW6JluO/8z5opGdi4r8jpKnEtvPhv29V+Oi93OC/Z7ULkrkt4L+/
BfzOp2rev4i0gCoT4Ny/oJzORWkp279Ch1tbxaDZv5YvVtfRHti/lL1CeiIb
1r80Y2wP8dDUv+d8m8OR0dK/ZmgUlUu60b+lPwH2V4POv656YGshwcy/4tMV
PMGEx781R//kSCvGvyB6DddO/sC/0yiz/nQFwL8dzzucZNazv/C6fruItLK/
8DeL0NCBmr8a0jKp5P6Yv2JZhhVKTJk/tKp9IgXblz9MbLSG7V+0P84/ikUz
NrM/H48g7z++wD/aDdGiLJK/P+cgzj4z2cc/ZYU3C9J6xj9JZDG38dLOP5c/
p2UKDM0/1cpY7UWq0j8RuNByWpXRP+5/DBFoMdY/kHrsINrl1D8GrE4KeHzZ
P53yZSHK/Nc/67Drl+223D8aiqHt5wLbPxwpvhvcG+A/n4QSTkpJ3j9CtU1W
OL7hP7OZ7qfnquA/nA/XGb+D4z+0/xJ58VDiP3WlJ8g8K+U/XbkGOgLa4z+1
p6VAbcrmP+c1sJFmWuU/KXgdQsiM6D/mrpH1VvrmPxyEXC4aMeo/H52u4MR9
6D9DXpWjlvjrP0TL2wwiIeo/0aT74sW37T+WzZtf4rzrP94mKQ3sWO8/O8Zd
JYM97T+QOyhgno7wP2EP4QqG3+4/cYEfL8Jh8T/VgTlgVjPwP4V9LWO/MPI/
sBL3V17z8D+zYLjbURHzP4CPgfPvw/E/9P+6vZ2z8z/2H+s0sjDyP7hyl0M=
"]], LineBox[CompressedData["
1:eJwBgQF+/iFib1JlAgAAABcAAAACAAAAPO+Kc2i68z93MiwqEzfyP/J/en2H
5vM/q+p9Th2K8j9CHk4xL+rzP0mhRlWDjfI/5Fr1mH7x8z8woutpT5TyPyjU
Q2gdAPQ/++BGr+eh8j+wxuAGWx30P05SZKgYvfI/wKsaRNZX9D/Lx+pFfPPy
PxFK7vd9W/Q/kc4ikuL28j9i6MGrJV/0P7nWeOBI+vI/BCVpE3Vm9D8/jHeD
FQHzP0iet+ITdfQ/AYCM4q4O8z/PkFSBUZL0PzIthAPiKfM/IC8oNfmV9D8O
QcRwSC3zP3DN++igmfQ/mvQF4K4w8z8SCqNQ8KD0P9pzh8R7N/M/VoPxH4+v
9D9S3lOlFUXzP6chxdM2s/Q/LutxInxI8z/4v5iH3rb0P85ChKHiS/M/mvw/
7y2+9D+ZUH+lr1LzP+uaE6PVwfQ/GctkKhZW8z88OedWfcX0PwEZOLF8WfM/
jde6CiXJ9D+fofc541zzP951jr7MzPQ/Sc6hxElg8z97bMNo
"]]},
Annotation[#, "Charting`Private`Tag$891482#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{0.5, 0.5}, {0.5, 0.4999999999999858}},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1.3, 1.3}, {-1.2110078507365805`, 1.2110078507365805`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {159.94490842698494, -97.50736892665735},
ImageScaled[{0.5, 0.5}], {299.89670330059676, 185.72832176506162}],
InsetBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwtmnk01N//x22JUJIkhTZLClGRFq9SUvYUpZRUtpLsu0nITmhB9MmWrUJI
sr3s64ydsZOl7GbGKFv6ze+c7z/zPo9zX3Pv6z7v877e957z3nvviZ4pCxMT
Uxfj5/+fg45hpUQiHfneBgQanXbHgDrP6IB6Ok495mLbL+SOR3c9trtQQ0f9
jZM+5YtuGFCmIV6MdPR20OPNT3FD+W2nmFyK6SihPvF0v4cb9ptK9R79Tsdn
ui+LonTcUI6LM+xjDh2DS1Layimu2H97ydw8i45R4+ULoaWu6Jf969z+T3Sc
ZV6xCg1yxV79msW3H+jYvTHc6YqwK/rG+9wOiqYja4DZ1DZZF5RZsFO8+JqO
ocnGlQnzztijem8rSyQdC8XYPn/NdEaZ6bPVrsF0FDL7m/hG0hnJx9cPWxLo
mNcW3nqR2wmlGl3W1B7Q8aVp8Wb1WHvsELboYjWh45edcimBl+zxqc31bLxN
R52q5hsDdDvs2K7wQPE6HcMmGxKH1e3Q8+5Co7g6HRMSNWakZ22wZfFx7IYj
dMxsf+sXus8KHffcP1m5uoChLn6OG7nuovfTs3hiaQEvGhgLBFvewfBB4QuZ
9AVM5Z2bcys2wk9x3VoxswuYlV0/K2RiiGOC2iZPhhaQxflhOmeaHl7bqhSw
q3IBt16Wj6WyHMdjLFu67IMW8Pn36Ub9zmugYjJzc9JvAZt0Wj+mWRqAbln9
0B2fBXToX/3Fv3YdrAi+k5c9FlCq0PgA865bkLyyvCZqvYDfesz5ye/vwraF
sf3EKwvYTPfrzw0xA9pooe2BnQuo3zz6ezbbBgLzKji6ti/gjdQUm1+rNrDn
ecN7f74F1At+uE/2oi1oi/eSprgWkCZTkJXUbQsZFssHv6zT8PbUk6E1uh2Y
zCqOnBmj4UDRlznTTY6wVAKu88M0DN8RrZl12RHCwtR4EwZoSCuqjT4W4AjF
steV2cg07CkafjLP4gSCdk5vG+pp+NxVqHjzvBO0/M7Tu55Fw9i6mSatBBcw
ry2e5PhEwx+vpFiX211gParKqzCN0Z+BQmvHBlc4rNSRKZxIwyCynuxuc1cI
cF/YNPaKhpb1F8v7Rd1AVHM14XUEDZUs/j76p+EG+btZldTCaHgg22WXjrMb
jJXwmWf405DJxlzQodENzjLJV9q40ZDHn+9xo6U7kFuUbu5zpqGvlSWT1gt3
sE44R223p+FjFVmJ5Vx3iFO5Iqr4mIZ2HxzPt6y4w5KvjftfYxp++aoh4EDw
gBf6LnxZRjTUsK8PuPDOA8TFvdLvGtJwvGVlu3KRB1yrfUGu1KMhpspu+ET3
gCzOrKNBqjTklHnsZ3PbE6yf7jPVVKHhd6W1fbyOnnB48fWbzUDDdF6TyOFg
T0gb9liOPEHDM9WapG3fPMHMgCKlf5yGvE7p4U6NnnCAeN9ohzwNX3JbCmwa
8oT4b+oYe4iR354F20pWAtyRLqXclqTh2Py7K5P8BNidJLdvjxgNQ3h1Np4V
I0BMmODzZBEatm85Lup1ngA32ELyzXbR0HqTd6zlFQIIuP37JSlIQ7bqyb2+
dwgQafpT/fNWGorCs9eaTgTQ7TP0eLKZhnsnz39c8SLA5iukz3JcNBxKOLy7
N4gAxJqzQwsbaagaHM80/ZIAQafzePPZaBgsHWknHUeASzkSKi7MjPmUO4Qm
JBGAXTLW/uQ6FUeyZa3VMghQ9W7zh7UVKhYq8R0VzSaAzzbvrtI/VHQ8XLsq
+ZUAKoGLG5/RqWg5eWnywXcCMP2zUDpPpeKsdadwezEBSh36H26Yo2Jl0kix
PRLAY0onrnaKitJ5fNMXywlw8m4lKfAXFb8nSTZpVhBgqVPhn8YYFZH5b8hz
BudrZBzZ/IOKMmV2OlRGvEO58L2WASp+kLNSDi8jgLxixMvIXirGHS3zuVdK
AMontuprZCrKOcmqWxQRIHOfy2+BDiomTRiWJHwjgFX0tERPCxX9ruRxbskl
gNRmY8NYEhXzWQlG2Z8JMOHTFnS7gYrDpfmjz1MJkLKsWixaS8Xcj/xNL+IJ
YPrk++yPSiqeD15Rb4omwIHxw6LJZVS8Pf046Fw4AUZuxuualVDxdTJPyaQf
AeJbtnlLFlIx5B4Hf60Hww8X/XOn8qnYoL2tvMeW4YfilbFPuYz5UO/+3mtG
gF45a4En2VR8vCP653tDAhgI67supFPxwh3rqjPKBOB/WZfxNYUxv71Xdt6R
JUAbx+l+5yQqrri9/JMnSgAd+j5Yi6OimJDwvo3rnrD54Rub0hgqZt6mkllm
PIE4xJno9YaKWlyyU8d7POFSI4VtQzgjP+blJZUvnsB+7oFCbQgV79kZ3hWO
84SqfLJ5YCAVrT2Ll2X9POFsYmkDjw8VF1/0Rq9f9wQl15BwAScq0h613lej
ecDN1VmrSDsqzjGrXQzr8AAPT53Lm59Q8blGN8fMVw8oe8bHwm5BxdXNQqdn
HT1ALSjaftGQim57WDJ4pt3BgntFx9aAikTBrwN8Ne4QFHbr8KweFf8a9rLK
xbtDU6TI+JgGFTuaxCS/X3EH/dhkg44zVFRz7M77l+4GTsLsR3VPUnH/asr9
dk83iH5vvoWoQMVnTKd+l+u6QX+SVF2lLBXLso/mUBZc4f6nbKXcvVSkNpHr
3sq6gm1J8e7IDVSsflCUquvhDJEgsszDQkU4W3hv5pwz5JU/7Qxcp2CGEUkt
hd0ZlqpVwp79oSBudVd2DHWCp011/2wmKRgJFvd8wx0hdKhjRIdEwdqnpGp/
K3vINFHAxnoK6iaM7hU8YA8to1GxajUUJNzfRa7rtQP+iZvXACnoN5P8KVjV
DmIpw9UyXyi4nhZ7PYbXFtKZZ9N4XlMQMu9kVy9bwbVFl6jqCAo+KLdojLph
BesTbH6eYRTk8F3rGv/6CK617L4/609Br97vpMVHD+Hff5rCJDcKhn+r3T9e
bQ76pz9FhNyloPTEBlw+cg+YnR+5cR2mYCV7c+GxUDX49PCPRaUkBbWdxo3n
VS+AwR2f6+5iFGS763c1eOksfFKNPTYtQsGOv64GNW+OwXX+xrmGrRTc6jI9
cb1KCG/e16/hn5/H2XBp+litDn7pbo/i85vHqkX5gYir5tjUXduwSJhHZaLH
eLmVBU51F/3tdp7Hfu1ot0Z/SzzQk3T/veU8dihfyH5c+Qjf9NjLHtaax5dJ
T0ufStqgR++2WlX+eSSaOCrTRxzwYv/V3y6Jc7j9m6R+B89TvN+vdtAodg4t
StnjMwqeolf/KSN4NYdl5YL2p+W98Hv//ooNfnPY4jfm/nTICw8PLIRGWs7h
k7wDkoPgjVsHX4p9OjKH6g1zXIcEn2P/UPu1odJZJH/MK7WTDEY1qffFo99m
sfC8ws6J4GDMcXh4YCJ7Fn1OOqr2zQdjACcznZI4izc4RnpPfQ/BY0dlXrL4
z2J/E+/D6SthGOoX0CqmM4t8pX9jokjhqCx9RttqaAYj+LepaKq9wnRnjnyb
7hmUcOeb4Xv2Cvkr2oUdW2ewH1ZtdhW9wimDh7OelTM4NqV8lyb7GqO8okJe
pM5gw7NbQoW73yClndqQ82QGezaqOFewRGOCW4ra8r9pDH3XNXWcOQ5F0mra
HZen0eZh3K0J5TiM6/xpTKNN46mf9f86PeLwzREJl+nxaWwbjeG6vxyHQT9T
0wYap1E99up51cV3aKeXzlkRNY0cnvLjckvv8YLUp8Yg2Wl0qRy4/Hh7Iv7s
+aKz23gKi9aNhycTUlBqT6Yc940pdOsVXnNqTEFrs4xta7pTqPH7+Kr4Ygr+
oSWS+1SmcEHJyG/+UipycL8yjhWfQu3cGvpeWipKKTs9EZqbRIXiGmM2jXS0
Tjz5QtBzEldiGiRtBT7hn4eVTfyxEzgk1VlyguMLBpbx3BdY/InMWpOnb538
hnnpUtKm18dxW+qD+jPDJfixSss68M0ojvbmWPtmVOD+5PSq/IUf2M77+VQ/
Ww1aHB5q/m/mB15RzMgr4avBzDz+Pr/xHzjm6tgftacGT1Q/pRqQf6A7KP44
froGNX/qi/wp/IF6pppGAvY16CDJ4qLo/QOThKpW9YdqsPrTzUMFvD8w9tOH
CYUvtbjpeLhCPOcPTJ56P8VaWou6JdXnAlh+YERT03BNQy32ko7cuEEfxhqr
Fj2ZsVqcm2N/vkQeRsUN52a9BOpQQC538MT7YZS8zbpxn2sdmn/livwuPYyk
hhXhkuP1uOIv2FYhPoznmH5kTJ6tx7CbYnxE0WHk4PJe4NSsx6//lCMHtw7j
b4OLFmL36nHDq7EDG2eGMGN7aW51aD2eLvkiFusxhPlRW0LejtTjxy2aEpXv
BtGFf2CU27sB2/JMUztfDOL8BntKUHADLhk+lZh4NoifHFQ0V1414MXkHAke
s0Fc9c1N+ZTagCMndkpelxlEFh7/gdvEBhS691NyunQAd3Kwy43wNWJAnpfU
tuF+FLVM3UF/2YjtohcWtrf345VmnfA/bxtRJHhjsWBNP9ad49edSWjEPJMw
LZFP/Wj8s/dxelYjDm2Oszno0o/j7VZJNg2NqGD5LR94+3H42qKExN9GfNbh
9lSFlRGfZ/HtBCsRiaB8SfV3H7qYq387yUnEewLVPer9fbhmYt+xZTsRwyrb
1vTT+nDciXv330NEHBeeU7E624cHO+Qauw2IeCTwC9eTo31oxyFiOX2LiG50
hw5b8T78WyCVOXuXiLyNq6bO3H14Rv/i37KHRDztwhno3d2LDplSdxM8ieg/
SrzyvLEXL1fc+CXrTcQ27XChgNJerJu2yv/sR0QLsR2fQpN7kbOt/q/TCyK+
ajvQHG3Ti0X31OaV44k4dGYiKvZ+L85zSNtfTCaiVPrHu/8Z9GK8ccTo6TQi
lj2VpyWd7sVmG63bv7OIOH347PYsjl4kD9/weltKRIVo1sEvqz14jCn4qGAF
Eb1Ya1Py5nqwqZ7k7ltNRIFerROFHT343ZEtQZJIRBX/W7eq43uwx0lP8L9u
Iu46QG7OjOzBIVsexaY+ItLL9C5E+/ZgkY6V4+QgEVNXLks/suhBHZY3wj/G
GP1HVSdcu9mDAhr9j0t+EfHmsXMCypo96BhZkuE7RURu6xP/eI/0oJmwTkH7
PEPvTXn2K3t78GrmSZtbNCKWpspOjG7rQSauE6MkOhFtf4i35v/pxs3Hp+rt
lomoTkhUjZ/sxse678Q+rBLxwC6RwsC+bqxlM+au+EvErmvbk4ywG6/6CWkW
MZMwixq+4+KXbsz82h0axUrCgDDuENmkblS1kzl8ZwMJT9WxOrL4dyP18Jkr
GRwk5Dd9Ojnt0o3p8T7lsptIjHPO6u3Oh90YXuRh8p6LhPGnaBfTtLtRIOs7
25nNJHTrflwUcbYbv6wa0B5uIeFVx0lZd/lubGK7OebNS8LDfKbJDw50o9iK
bIvvVhKyZw0Lagt048014482fCQc0jAKVeToRsmjwY8ubiNhwQSZee8KGTVH
rdjZ+UkY+fyq06YZMl7z7bXNYvCjfc1TCwNkVOiqTFLZTsILqG480ExG4m/5
SGSwiFFNe005GTmdNY+KC5Dwz9K5S9m5ZDxqo+PpxOCW1yXFMR/I+D36tVk2
gzPkleR8osi40fDleDuDfZrzPlgFkvHAMJkyzGAjqyNCBu5k3HmC5ymZwQqc
n8LgMWP8m0t+3xi8JUWC9aAxGSXOu/7zYvCESpIz3xUyzrAHDx1lcMWQyMyq
Chn9xs6LtDDyi/V4e3f8GBljDTtz9BnssFOgs0mcjB3HQ15VMeannR9xuUCQ
jDsyWwp3M1jiKk9pwiYyvnkiLnyHoQ8TJUA+eK0Lc3IO5wYw9OsJYUt1mOvC
DK3/HOIY+uYc9Np1Z7gLpWqvGMYw9A+pWX2h1taF7yyUDJ8y1sf0vjObXFUX
3tG9b6XNWD9lpgUXofwuLPZZDmLnIaHgO+tZ1rQuLGRS+ZzKWO+GLtOuruAu
PL89bDCZ4Y8k+x/qZZ5d+GJfxiDTRhJ68N7G9CddaOKfXqXK8JOs+rU0j6td
yH+0UCyI4T+OX827zVS7UMCiJjLwHxFHfDQidBS7sIv6sd6W4ddXJSpu+3Z1
YVO6vNvaEhEj9lgorvF0oceflqXa34z65BNK72TqQuM+WcmnjP0QeLnbOvBn
J+6PJvpmM/YPofPxfcqXTmS2jv0oMk5EjxMv9zQkd+IOGRRTGyGia2zBQFJU
Jza37pS6NUREBxPWG9c9O9Frsg1Ve4hoORutWXqJ0W5ASjvA2P9muqWc0ac6
sUvI729aHREf5I7W2Mp04hthlyJBRr244ypzToy/E5eb5B8UlhDx2oaq4yFD
HXiUIMLOnklEZeF5kZtOHfhHnx2Lgoh4you//6hlB3IeV9y5+JyIJ0aVYniM
OjCi5OXHnc+IeDTdd1v5uQ58P/TxyQFnIkoeF+KQ5OnAvX/MTp69R0Q+LVXq
YlI7mqoaaL84RsQt2Q8zm9+0ozfPwCV3GUY92Rb+KD2wHd83upnoSRJxY0/v
uNGTdvSsSpos30XEtQc2vZUn21GryPR8CjMRf3nEVka0tuHFMXOyT30j2m11
PaxX2Ybny3kivcsbcf2DwWu+r234pra0yuJ7Iwo0bzV/Gd2GluUhr6fTGvHC
3oBNr43b8NAoE2ujXyMmVjtciZ5txSuZ/pa0M40oc1Ov8MZQK7rX8WlYHmvE
wjnZ/TtbW1FCOqasVqoRW3dM02PyWvFN7yb7UzsakemhSXSseyv2VZM01+ca
8PZm7aH/OFvx5x7XZXpMA04kHrpkvNqCzEMjX3+GNaCDIucX0dkW/MwzplLm
04Ahd6u841tasFRZY0TqcQMW5pwUT4xqwToxsdpB5QYUvC7x+INYC558/3lH
zUA9fgDm39d9mrBImkYt46zH3xE7Y2+bN+GvwgTVldU6hi5yZ+9rNGEqbcdu
4bk6nAi4F2S9rQmFBeXtRdvq8HBbpcjzJEZduR5UsiOmDvMe+KnlVBKRbfNc
6eC+OqwK5IrhZmvEaypx17jFa3Gkffvpct9aNFKu6bObrUL3nGd2qQ9rkck2
gpzeV4X8EbNpobq16HvGvbe5vgovaldvv7m7FrkPUSQmP1RhRp3DPC23Bj0f
Rqnq3a5Cu5L2xAOj1agwR5rlrK9E5tQIzoBzVWg+upX2+FUF7nHjIWuvl+Eo
iVDgtoYo3Hwq7kFXLo6Nq5eRrXORohjc0vLsLfqdzsg9Z/cW7xn6bVfXjIG6
JwHKlcoxoGmV5zdrnAdnF+Lf18/nguiLPfNQWgYX+X02a0QimKkaF3/sLYMg
+itP93LGNW31XeCOP2Wg7rHJP4RxbTttsevAvGw55OYwD0hIlMGNcwKG/yWU
w9unPBQp3zKIWOCqXPOtAFfpq8PCp8qB9cafN981qkAwNvWfWFwFqG9WeCBm
UQVJGgLi779UQGSVg1yEbxWkFUVzstdWwB45WqNFSRWMup4ojqNWwOlNs0yC
stXAGilcNa1aCY7FIw+d+GrAfNszfabpSvi1p0n5aE8t9PdypwWIVwP9c9YJ
ocVaiHexHz6jVA0spyLkmbfWQc70hMWQRjWI6F8Tb75UBxHmR2V/2VTDtcBe
nkcFdeBXZr+6sbAayqg/+xOj6kEpxPaU96UaiK7458Zn0AgDh50OrenXQorO
D4dl20YY0wge32NWC7n9FdbDoY0Qk1CjecSpFpp+P7+XWd0I10ZfLG5+Uwts
h7jV1Y8TQfpmqVtDRy3YvBTc6c1Pgls6z1nltOvg8gO5b9S2Jri/lmnvfKQe
Npui6NJME8yZVyz/OV0PHaZaAevszXCT2D7x4HI93DW3NOQ61Qyvbm+YZL1X
D04PE1YPJDUDm+3OOv3IerhSwLHnk1ILvOw4vX5+vh7yCnSuZV1sgf31/wwC
VupB4PubgJyrLbBt6DQWbGiA/u8HqAWPW0DjYHfGwK4GMC86W1Gd0AJpw+ZW
imoN4Fnq8mCIsxXqnTpbxd82wHApRo8ItAL6s26WSm4AFWQnje9vBbWUAoGd
mQ3AUfbq+MyZVth2bLtXYXkDvCzPZl+2bYXeG7tvbJpogPSqiTS+3lZoeb3/
Vd+RRuCulh3Y/qsV4qdLZN4qNYJ1tdPWnfRWaNRNsLyg0gjHatjcRDe3wYdC
nYJbVxsBa/doHFZpA17JWL/XDo3Q2XBjVjWjDaqslmKP5TZCRswvx3sFbVBs
f5VFq6gRCBZO64SaNuBStjXUqmwEcfZXWwpG2uDzQxHyhvZGcDnXLCe1qx0U
yxVZDaiNsLtA1WlzSDtsFnm72/4gESh+HetSbxlMjHfbdIQI1fr3/dXS2iF8
Rp4YqEAE6wWvaK+qdlD6PK199jwRUKa4kLbWDk1qW9dCbhHh3gf5f12PO2DI
88aHFH8iKDiU+y+4d8DdCi3e0hAicJ3X5eUN6oDDBUHhJRFEyBt+vPdySgd8
2eQ24BBLhA27088XDXaAwkFxjurPROidUiSSZzog75m7u3AOETK/11yjr3RA
K7vlnjv5RDC4PmYqvaMTnA3ttkSXEiEtUjTgvU4nKFx6szpHIoKHSSZv8e1O
CJWTdwhsJcKVI2diuh91grnaaRXuTiKskG5mbA3ohEbDYlpDHxGa4iblZd50
woGdoUPsQ0RIfORSpJ7cCcFPnikcGiGCBucbok9ZJwwfbD4hPUGEPd0H9OOb
OmFV6cn8pmki0FNyB4r7Gf3tLhNvnSVC3IXWucWlTqhjuyC7Y4EIc0+5t1rI
dcF545FrQWtE+C+AqvtKuQu+6QaJBK4TQSeiK7xMowt+Ckm+tWciQXZiPO9O
sy6wOBZcwsVGgrsfn+uq2jPi19Ntvm8gAW/ew3Bbry6442U7o7eRBLbVx3gb
3nZB8P04/cubSLCvaafu79QuGE9j10nhIkFb1/qLfV+7oP+axMF5bhJ4D402
a1d0weF0xan9m0kgP1G3xb25C95d94u+sIUEI5TPOqn9XXDD0fnkFV4SvFyO
fNE+2QXHrH27Lm8lwQUWl+Z/v7tg7M8pexk+EtA33d5ymI0MLBtUdvxjcPI2
FZ0bW8mw+k2nvmgbCfR3S7zwFSHDiP7R8AeMusAuxt2cfYgMgkotdssMzpem
bh44QQZqpYiL23YSmCl0aXNeZLRfPZz6i8ECUBR2/CoZ5mV3bTwnQIIatfgm
k7tkaPbe996Pwc66zzeHPSYDv2qYUwGDJQ0fahe6kUH6KL7qYnC3iU7YT38y
WJVKMf9gcMDDY018r8kwvH6zknEehhP2OzdDIiO/5LmRQgZPuK9rPcoiQ+ZU
tHkQg2N8R0OjislAer7X8CKD1UPrSJX1ZLgd/QDnGPmtvP7MQ+kiw8VEvUQf
Bmf8F6m1e4wMenYUzg0MvpXqHHqJSgaRHdfX7Rjz5c42Ijmsk+FPc64/iaFP
ccE5ngSubnjzVy2Tn8FW5eJaJMFuqOOzdLvE0HN3A1foslg3TPl60S0Y+nv2
dXLrne2GeLY4fhvGesmMFWoStLqB6tHVaMBYz8GZ9yEZN7uhd6PDVSkeEiiv
W3KzOnbD9Ssif6IY/phj19GU9e6Ghe3/DshzkuD9lmMht150Q0L31MXvDD8x
7V3nykvvBqkyk+Awhv+yD45qDOd3g4eHUVk/CwlM5OuCuau6wfjCuc2CzCSo
OB/JZTrYDetJ7kIGf4lgp+msETHdDZOavdM3VomwT98ouGSpG6yZj69dWiaC
j5k4l8C2HtA9U85EpRPh2BMuDZU9PXBI6iVHOo0IY86UIGvpHjBpSHDSphDh
QmDhplq1HvBz8/lswthv7J+0N7l49ED6xvrEjGEiCO15PmwS2AOWxk/CBgYY
76FXRfkab3pAtePdxHovEa55SN4Xze6BFooDLw9j/ydqshTXjPbAyMXuSzfq
iJBfdiIym9ID3v4Clf+qiFB/7InF2789MLRf6+/rckZ93N3Pb72jFzaqRvSF
FRIBZr8+3q7RC3zjTha5H4mgZzJz/t/1Xkg+zMHVlkoEs859QpMPesG/iaty
KIkIYSUvaooJvVCqp/e+jlHv+kMtRR/k9MIASxS0BhHBRUa4NWdnHygnV7HX
mRIhJPFqapx4H3iu6qoO3CXCe4EgT7+jfcDi2KIzwqi3Neu/D97U6oMrx7SX
iq4QYXtzizfzsz5YMJj8lXmaCDlPfI/pTvTB5/oS+rstRJjOno6aze+HFZfp
/cvpjWCzYFlBqeqHl1+rdgYlNsLv4xMzC2398Dd/az9nbCMwFY2dW5nrByUx
Ta6u4Ebgrx6YZpcYgLqrmWuJVo2g3NMMe6IGIO2FaKLIoUaIZM77pec8CLsX
LUt3xTXAjgvyfAbPB2Fv6mlqWmQDxPllnzZ8OQgikuKKEoENkMr1OcI4axD8
jWMv/XFsgOLtKaesfg3C+gbF2F/aDTB+MPrF8+tDEHj25+zO9XrYfbB0V/+u
YXh0ZvmXtl49aJqnhZjuG4brMhYHx9TqwfND5N85yWGQiOsOtz5TD4N7zYeY
FYZhPfn7tvuS9ZAgxJskoTsMKUGvC4h/60Cc+56Uve8wZJglc3xJqQPZ+Q1K
m2aHwVnbleUotRZUvmoZnCj9Ab0b2hRarWogbgt5J/qMQroDc5h8WwU4fpCo
O31oHD5PtWntji2Fr6kfzj5u+AnnQ90OmY99g4Muwip1IROQn3W4uezkF7jh
0BRo+HICAn6Pevvs/wIBNk9bp2ImwPtBguNV7i8wYfHjLk/qBAwdY7uwazAb
0gw/PNUrn4AwP8FsDe9sED8lXdK/OAHcm7fb2L7Ngn3rp09Q70yCBMF7iaPv
E+z2NZIRkpsCGdHbO9lzU8HXXG7PiRNTcFXBTMssIBVm1dn5DGAK6K5pDZO3
U6F0a/ZihNYUDKbvr7jJmQom71lLOB9OgcLaI89xkxRIKczQWE6cgttz0vSk
nR/gCHXJopt/GoJEFMPHkhIhuoN08/euaSCRw5MKPBOBuSBRk3//NPjxrnll
X0+ENoLmEV25aWhJd4rm4k4ER+74P7Va00C77bP3iVMCFEqo+X3zmwbDZ+/4
pq7Ew/k7r5PeLE1D4sTXORm1OLjzJ/Luy3/TwCon7bTMFgcu4eHC4ewzwCnj
ysdRGQufKoKjAvlnIMg04ioVYoFfwjvY48gMaM51PaKdfgs/563t71nMgI+B
wsuE89EQ9OzSeZnuGTjYObKm5PMKkoUuMh0amgF15q1PzC+/gtLc8yUSP2fg
mh9/SdeWV7Awrqy4lz4Da8+GX7u9ewlG6scP8fPOgpi4X2tHUSTIbNu3bUVt
Fur6fsQjWwS0Jq+OVH+bhYs7dulHhgZD781kd/XSWVDRcOHOPxIMI7xa/M1V
syDkw3ZarSMIaB7/qXa3zsJ+p093v+wOAj79c2lT07Pw7u/ey/E5AXBtg//j
LXvmYLnBpbmK9hy6TfmWbgTMwbERWjFXpRcM7yoKHwibg+Yq7bgX9l4w0Xr/
4L3Xc/BQqOun+wEvWD7z9eajxDmwZp05L7TlKQgJ3CjxLJ6DIbHOhV0fPOBW
zTvvRMocMG76ii1/nGFQ/CDPzI15CHJrS9hgZQ2iVYs6f43nIa3la3OZ+mO4
a1IRudl8Hl4gWVrvkBWMxN4SlHOchxWJuU2LVEv4yRu23yliHrZqHUiRem0K
8ys0JaaGeUhOjmHJNL0JR6LRY2vrPBgPKvvfvX0D7I6H4L7uefi+2abh8w0D
oD8RU1X9OQ+PTGRK+W/qgQftkKQqMwXaRq28F7eogpf5naNBwhQQPZYjYVAh
h3vyqzr49lJgNH9x3GP9BJazHXKKPUAB8+rjegoCZ5El8U/Bp0MUaLfpS+uW
UUPf/nDlZiUKxCzPPfN9rocBVyov8xtQYJ1d1f3fN2MMPyV5978wCnD/65i8
XPwI0wQfzE9FUGCL64hyg7EV4uJ7guJrCjw6InargvkxzmXteNcSS2G8P7+Q
dp6zRs0DG3tZ0ilgmnnoSI6BDXLw/LxqXkkBwSO2nw/9Z4d7pvaO5tZQ4Luy
gVLKqB0q1t62Y2qggFm4xeItSXs0e9YZHtNCgReeAZ9csuyxarGK1DhAgbOX
9JIc8hzQazBJ7cgSBVLd3vYbxzhhdNFQl8cqBZLUp5qftTlhVvQus/p1Cmjy
5J8a2OSMg3ovfe9toMLoyatz4OqMp2u9y1/xUeHIXlJGtqYLXksu1f2xnQqd
r02vvn3qgo+erQxJ76SCVyLpXPEXF3x7ym69RpQKOT7OamnbXHEpy+TU8mEq
VIy9PbK7yRV5Q981qB6hwq9z79UqV1xR4mGPYeRRKtxtJZxNEHdDgwNXXA6d
pMLaL7ogs4cb5kWf/XpbjQpb05c2aQi7I9HR40KGOhVIybl9SefdcVSvoP23
FqM9wI1Z3tId+XiO0F5co4KKRIX77Bd3tH0mKlthQgU3QqNxn5IH3vs+v3/9
ARW+QTTHSUMP1KOi4EkLKpCt3HU7nD1Q3uQuS441Fe63z84W5njgvpgjf2Zt
qRCvsaOPvdkDt7UyzRx0pIJ1Z9Sb0CkPpJ9N6Exwp8LUl+wP6qKeOOZi2zBA
oEK3mdMLrxOe2JF9Dnd6U+Hlwoo9RdcTv+4ZSYsIYIzX+uqG51NPdGLa7/Hs
NRV6I3lLVds90ezEgk1JNBUsll58Uv3piQY2labLsQx9lPJmPJc8UXH4vo5t
IhU27GB68UaIgJKCxy58/sD4v/vhACcpAgrqsilNplFBUHIHc5gSAZcweZ9J
FhUuqywl3tMn4MQfhx3vcqhwPnmfqeg9AvbIqnL3fKWC927fHj5rAjaYb2fe
/p0Kb43TSKddCVj4fnxRt5jKOB8Gb3nnQ8AM8tepEKSCUGHi46OhBHy7xW+o
roIKHcnj+f9eEzBIzaCDrYYK4sfIhcz/EdD9qXj92XoqPNr54rLSBwJafftd
4kGkwieJyqMpHwloNF+TU9BMhaypFvVLXwioKRGVSm+jwsnrtXdF8wl42tg8
7kgXFfLf2Vw6VEjAw1GKEVY9VIiTNOp8VEJA4eaNfmn9VJgrmegbRgJu3tjt
NjZEhWd52nJB5QRcV057smeUCskWGR/NKwg45+TywOgnFR5+Z9/nyuDBzEuG
0ZNU+A/NrUoZ8U0/BbU7Zhj6xHXeVywjIIpMqvBSqEB3Nx8ZZYyXbfBdUXOB
Cj8StSsrGfnEhwUeDvjN8FPVj5EuRr7hNYZ7q5apEHkvTUQ4h4Be6wcFmP5S
YdrYTP/NJwLaKKxsOs1EA+1CCXOVFALetW7458xKg1f3NI/vfU9A3ZS39Fx2
Gny8/CpRPoqA5wYfTs5z0uCU36GXTmEElBc4NXiIhwZ/M/JnZnwJuE+bq92c
lwYAxm9euxGQpfRj8ZAADWpzXxI87xOQtuj+ZZcQDe5sILwsNiDgqLRmynVh
GkxVGH2QvkzAqnczL5r30yBXifz0wyEC5nUW+3JJ0GDYjEn60y4CJvOEuqpJ
0YD1wrX4sU0EfO4pfR+P0GDuzpaCKYY/+dK3fD53jAYUdrcbPG2e+F8H9Xel
Ig2UXKKEzxR7YsGh/KA6ZRpwqmQKVoV64oXr0R3qKjQ4IcB2Y5ejJ7Z6u4mQ
VGkgwbzQ9PSWJ071KOe0atLgzdDtWBsxT3TesHftqi4NdvHFbf/L4YlscqwX
u67SYMVDYmvUtAcKB9T29N6kARtL5frCZw/UVdBlHrOgATW97Ku+hAcOmMhr
mFkxxotV2afH6oEPQ/lfTzyhgSgX093bg+7oM9YtOetEgy4LVfWECHfMjzTR
/e1Lg3fvJ6t+zrjh7nm79xwJNLh5oyy6wMkV04X0J4OSaXCGfZmj4bwrKlxU
PMqTRoNHm/a/oWxxRZ13qzVbs2jgfHKP+dMPLuit4TsnVMKIL9yx/LXaGSdS
X5+R7mHE99b1yPQ5omO7s39WPw3kAmO6fsU4Iss/w1a5YRpI87vlVFx3xF0G
IqYKv2jwhzlUa6TFAbXZUkNgkQZB/frzEwX2mHu3oO/K1gWo0u/KlzOxxXwh
m23R/AsAv5bzRnfYYmGHhMbgjgVIvOzX8ZNkgxWXogofiiyAQtXKwriiDbYc
cYrxObQAO04cYB3eaI1zTMeuf1VdgKaMeguJVQuUSshqE3RbAG6jpdJYXiOU
uWW+ydhzAc7e0681T7iJ8ttFVT54LYBl4tk0+yOGqBQY9kXOfwG0eGyMnC4b
4CXbx+HqrxZgX9nerfctdNHs3CFtj8wFMKJwUj5HyGHCj5T6oZEF0NCNj1+9
fA1oT908/X8uQJaaUddRdgNQEdGWk51agPNJ/jaGFddh7OZiNIG6ADUGe2tZ
T94CyY7zFsJMdPgdfyx/dqsJZNcMs98SpoNy7TVVwTFzYDbNK2TZS4cWRZHO
P4UWoMcaYJ1xgA7STE1eQ+GWQAfZruVDdEgtXDPyVnoEJ757fog+yWD9gykH
PKyh7KPQha7rdFg1/3Pv8C072Ko+98fzFh24cn5V+Rfawb2J8o9ixnQIyO+w
JgraA5uY5TZHMzp41x99ON5qD5f++zayzZEO61wWR3ccd4SY08FvilzocLGh
QuZpkCNM9d5Rv+9BhydGV97ZDzpCyA72nBwfOlw2keJteeYEzeHXnl2JpIOn
okU8Jc8Z9shKHl9+TYeZ3zF1Bn+dwYa0OhEfQ4dfIh0sP867AN+mJF1KPB3O
L7wlH2x0gftpTmzRyYx8rg5tJHK5Qt5F9QJIo4NlSIiDoborGPhQRV9k0eGU
dRhtpcwVUvdWtyvk0mHgc99vypIrLGG0/2A+HeQXH+1+I+MGb9dgXrqUDtnp
prezIt1g+u22pM5yOriURX1jLXeD00q/DDyr6VDdSciqnXGDUHLhJrF6OtjF
fCNPbXeH/31PDf/7nhr+D0USEhU=
"]]},
Annotation[#, "Charting`Private`Tag$891524#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{0.4999999999999716, 0.5}, {0.5, 0.4999999999999858}},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1.3, 1.3}, {-0.22726070175099367`, 0.2272607093523108}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {479.8347252809548, -97.50736892665735},
ImageScaled[{0.5, 0.5}], {299.89670330059676, 185.72832176506162}]}, {}},
ImageSize->{
UpTo[600],
UpTo[223]},
PlotRange->{{0, 639.7796337079398}, {-195.0147378533147, 0}},
PlotRangePadding->{6, 5}]], "Output",
CellChangeTimes->{{3.817270261356271*^9, 3.817270268199273*^9},
3.817271504527851*^9, {3.817271573161305*^9, 3.817271593697728*^9}, {
3.817271656884376*^9, 3.817271669919692*^9}, {3.817271767551162*^9,
3.8172717765611887`*^9}, {3.8172729282761497`*^9,
3.8172729490402613`*^9}, {3.8172757458366337`*^9,
3.8172757952482033`*^9}, {3.817275849713189*^9, 3.817275867735188*^9}, {
3.817281126303303*^9, 3.81728114683925*^9}, 3.8172811899898577`*^9, {
3.817281290630205*^9, 3.817281314398292*^9}},
CellLabel->
"(WOPR) Out[725]=",ExpressionUUID->"7cf0a89e-6d18-442b-b56d-94b97702709f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"g", "[", "n2", "]"}], "[", "\[Theta]", "]"}],
SuperscriptBox[
RowBox[{
RowBox[{"f", "[", "n2", "]"}], "[", "\[Theta]", "]"}],
RowBox[{"-", "\[CapitalDelta]"}]]}], ",",
RowBox[{
SuperscriptBox[
RowBox[{
RowBox[{"f", "[", "n2", "]"}], "[", "\[Theta]", "]"}],
RowBox[{"-", "\[Beta]"}]],
RowBox[{"R\[ScriptCapitalM]", "[", "\[Theta]", "]"}]}]}], "}"}], "//.",
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]i", "\[Rule]", "1"}], ",",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n2", "]"}]}]}], "}"}]}], "/.", "s2"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "1", ",", "1.078", ",", "0.001"}], "}"}]}],
"]"}], "]"}]], "Input",
CellChangeTimes->{{3.817280804305807*^9, 3.8172808637975616`*^9}, {
3.817280897254437*^9, 3.817280903087328*^9}, {3.817280943100966*^9,
3.817280948025497*^9}, {3.817281378848133*^9, 3.8172813936536837`*^9}},
CellLabel->
"(WOPR) In[727]:=",ExpressionUUID->"6c30dc25-997d-4790-bfcd-6e15ebcf7cbc"],
Cell[BoxData[
TemplateBox[{
"Power", "infy",
"\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \
SuperscriptBox[\\\"0.`\\\", RowBox[{\\\"15\\\", \\\"/\\\", \\\"8\\\"}]]]\\) \
encountered.\"", 2, 727, 461, 31479193581598412653, "WOPR"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.817280903495492*^9, 3.817280948486462*^9, {3.8172813874112787`*^9,
3.817281393884687*^9}},
CellLabel->
"During evaluation of (WOPR) \
In[727]:=",ExpressionUUID->"56028de4-0ddc-4ea7-bf21-a25534c5c68d"],
Cell[BoxData[
TemplateBox[{
"Power", "infy",
"\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \
SuperscriptBox[\\\"0.`\\\", RowBox[{\\\"1\\\", \\\"/\\\", \\\"8\\\"}]]]\\) \
encountered.\"", 2, 727, 462, 31479193581598412653, "WOPR"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{
3.817280903495492*^9, 3.817280948486462*^9, {3.8172813874112787`*^9,
3.8172813939726467`*^9}},
CellLabel->
"During evaluation of (WOPR) \
In[727]:=",ExpressionUUID->"3d57804e-381a-4ba2-8dce-4428206df060"],
Cell[BoxData[
GraphicsBox[{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.011000000000000001`],
AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJwVkHs01HkYhycSMna7INpykOsmYuy0Sb1T0xJra4itmFpjl9pya2UpubQT
lRJ2rRJ7KkqORSmELm825G4Mk8vIJffblPr+fjNo29Ufn/P895znfAx9g939
lBgMxu6FfWItPkxVO7eHk7u1K9l0K4PTkqsW/M2oBUdjUrDBreVfCImk3IN8
lnH0tDY4DvM/gIS4QIgOgZsxTXfGfechcka0vK2tFFSM/pDzc+dgwKiNwfri
FZYHDxtXas3BV6e/53dZj+KICs/BJ2MWnl/kK5cJJ/FECS1rtpsFh91D4Wkp
08i/5mvh3aOABIPQ4lK+DOmInt9fXVbA+LZnEfbBMvzumGm+vosCKpqXdKfo
yHBntutoLFMBSwX8s70x07jyxzFZU7scnFItD7JrpjDXBM1XZcnBsVA8x5qb
xHNnXnveDJWDsSB9qYXpJGq2MKdf7pLDnazHmy/wJlCNm31vm6EcbqQdY3lF
jaN8UYJK2AcaYgRnBFp3x9DYqczQrJsGm840b+vRUUwxT4z+vIKGC/dr+JGm
o/hLgZPV+wwa3gpzrb0DR7A7idF+PYaGD3V1GyceDWN3E7V84icairgH4rRX
DKOBmdee/G9pOBqlpMgPHkJxchNWs2h4IunfE9Q+iMc8n2TqrV3wMy5RTM4g
Dk6YxF1WpcEqyk5v0/3XaLbKcl7zPQXrS9Ak/cvXyFtmMivso+DCgyn1/twB
PKFjk97bSMG1RGFxheUAGkUVNmg+osA6yUFZWtKPfaVZesp5FDS4ufBobj/u
L+0MKUqnQH5V+dTFgj6k42VyZgIFukbP/2L29KJV6fjY0kgKHlvek86s6MX6
INvjNwMoMAwOzKxye4WP+ZppLw5RcHiGm6F9tQddIzrXhLlRwNbbknx6WIrm
V4//mrWTAhxLaL2yWYoyrnPBrq8pOKG1f0YjtRu3e1R4CiwpYK7S9RaSLpTm
82JHDCg4MND3rsCrC3MqHhaItSko9tcq49R0YitTu8pAg4KheL8Ait2JbtOZ
Ko0MCpxXXoGE/A7cWsxWE9EEnvp4xFaaduC8hmah+TSB4z2r3QW3X+La8kl9
8SCBJQWmR1jmL1E8w/untpvAzw/Y1YvvSnBaY429upjAKembmNubJagSUHMw
uY6AyabrF8detKMtV4ftXUng/ZxOXPaBdpQOOcz6lxPIURMIC2VtaOrroVpU
RGBdttLUYHwbepbYjLLzCCirJ7kYGLWhqtlvXDqLwMkU5/U7nolxvmr92FQG
gZjQDIWFQIznq8ZR908CuZ3G0vLFYlySoC8Ov7zQP2WXKclrxafNEo7aeQK1
feEJvntbMUXlnWPtGQICnUIfp48i1Lsbyy6NJMAT7rAK+FuE7xpswkVhBOw1
r22v8BLhLvU3Z7VDCChSFSvXMEXIuJUkEx5d+Cu6NHAuugX93HM8VvsRCE7y
iEsdb8boZv8jHT8Q2KK0O3FgXzMGSm9MlHsR+Og5F/q0rgk1u5vznnkSMNat
lKpDE3basuMneAQSR7iLbj1sRAc13cNsVwLqGbzsIFYjUg1vudlOBDzPRUy5
3m/ARWHV+hu5BJ7vtzy0zq4BnVlRi3u2EaC14ElHWT02pTsyc+wJLFcu+Y/H
qcdWnuq+RDYByaXqLeH1dbgzQvJZii0B+d7ZK6x9dVhHnfS/Z0Xgf/vZntk=
"]]}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 1.2326611203921132`},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Identity[
Part[#, 2]]}& )}},
PlotRange->{{-0.9510776861588656, 0.5156707189238211}, {1.2326611203921132`,
1.7786750794389343`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.8172808645119963`*^9, 3.817280904138884*^9, 3.8172809490422153`*^9, {
3.817281388171639*^9, 3.81728139444154*^9}},
CellLabel->
"(WOPR) Out[727]=",ExpressionUUID->"56916602-5965-4962-8188-b6662a5aa173"]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"n3", "=", "1"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"eq3", "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"eqLow", "[", "n3", "]"}], "[", "1", "]"}], ",",
RowBox[{
RowBox[{"eqMid", "[", "n3", "]"}], "[", "0", "]"}], ",",
RowBox[{
RowBox[{"eqHigh", "[", "n3", "]"}], "[", "2", "]"}], ",",
RowBox[{
RowBox[{"eqMid", "[", "n3", "]"}], "[", "1", "]"}], ",",
RowBox[{
RowBox[{"eqLow", "[", "n3", "]"}], "[", "2", "]"}]}], "}"}], "//.",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"\[ScriptCapitalF]sol", "[",
RowBox[{"[", "1", "]"}], "]"}], ",", "\[CapitalPhi]Rules", ",",
"GlRules", ",", "GhRules", ",", "DmetaRules", ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n3", "]"}]}]}], "}"}]}], "]"}]}]}],
";"}]}], "Input",
CellChangeTimes->{{3.8172700941895447`*^9, 3.8172701434323797`*^9}, {
3.817270286114553*^9, 3.817270318899034*^9}, {3.817270357375535*^9,
3.817270357541957*^9}, {3.81727041769875*^9, 3.817270431586034*^9}, {
3.817270463371037*^9, 3.817270467092168*^9}, {3.817270570223769*^9,
3.817270572329393*^9}, {3.8172707344012623`*^9, 3.817270737650587*^9}, {
3.817270775215129*^9, 3.817270781533001*^9}, {3.8172717945510798`*^9,
3.817271814605665*^9}, {3.817272979628352*^9, 3.817273005497312*^9}, {
3.817273039233885*^9, 3.8172730416036663`*^9}, {3.817275902266474*^9,
3.817275915955117*^9}},
CellLabel->
"(WOPR) In[494]:=",ExpressionUUID->"b31259b6-cc89-48a8-920d-e9dbcee664fb"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"s3", "=",
RowBox[{"FindRoot", "[",
RowBox[{"eq3", ",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\[Theta]c", ",",
RowBox[{"\[Theta]c", "/.", "s2"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]i", ",",
RowBox[{"\[Theta]i", "/.", "s2"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Delta]\[Theta]", ",",
RowBox[{"\[Delta]\[Theta]", "/.", "s2"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[ScriptCapitalF]1", ",",
RowBox[{"\[ScriptCapitalF]1", "/.", "s2"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"gC", "[", "1", "]"}], ",",
RowBox[{"0.1",
RowBox[{"RandomReal", "[", "]"}]}]}], "}"}]}], "}"}], ",",
RowBox[{"MaxIterations", "\[Rule]", "4000"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.817127065230098*^9, 3.8171271351270227`*^9}, {
3.817127221800994*^9, 3.8171272630331593`*^9}, 3.81712740736408*^9, {
3.817127491557787*^9, 3.8171275000934143`*^9}, 3.8171275721198053`*^9, {
3.8171278100273*^9, 3.817127849603622*^9}, {3.81712788866899*^9,
3.817127911532996*^9}, {3.81719706565886*^9, 3.817197105498705*^9}, {
3.817197893385504*^9, 3.81719790689716*^9}, {3.81719860001385*^9,
3.8171986053976393`*^9}, {3.817198639295259*^9, 3.817198662766809*^9}, {
3.817198876170909*^9, 3.817198908051071*^9}, {3.817198993133552*^9,
3.8171991533442287`*^9}, {3.817199209928318*^9, 3.817199241960556*^9}, {
3.817199495862*^9, 3.8171994994689503`*^9}, {3.8171995495740423`*^9,
3.817199605718575*^9}, {3.817199652392643*^9, 3.817199715256566*^9}, {
3.817199865131709*^9, 3.817199880715331*^9}, {3.817199936333564*^9,
3.817199987661281*^9}, {3.817200026262958*^9, 3.8172000468302813`*^9}, {
3.8172001570412397`*^9, 3.8172001598323307`*^9}, {3.817200236641964*^9,
3.8172002385137587`*^9}, {3.8172002992189293`*^9,
3.8172003208190928`*^9}, {3.817200415813776*^9, 3.817200416404771*^9}, {
3.817204016980706*^9, 3.817204076853834*^9}, {3.8172041381029387`*^9,
3.817204203727563*^9}, {3.817204234304641*^9, 3.817204255961961*^9}, {
3.817204390931651*^9, 3.8172044426360817`*^9}, {3.817205022823312*^9,
3.8172050577028513`*^9}, {3.817205106256721*^9, 3.817205106559868*^9}, {
3.817209919633216*^9, 3.817209920608328*^9}, {3.817210044562058*^9,
3.817210053786522*^9}, {3.817210136268099*^9, 3.8172101405721073`*^9}, {
3.817210451098201*^9, 3.81721045318543*^9}, {3.817211412418923*^9,
3.8172114542674837`*^9}, 3.817211713768137*^9, {3.817211774217906*^9,
3.817211820329513*^9}, {3.817212210577387*^9, 3.817212210720683*^9},
3.817212495142112*^9, {3.817213148937108*^9, 3.817213155649081*^9}, {
3.8172131921538963`*^9, 3.817213198714007*^9}, {3.8172140038972063`*^9,
3.8172140040882683`*^9}, {3.817214050225759*^9, 3.817214064234343*^9},
3.81721453132269*^9, {3.8172191352175198`*^9, 3.81721914521805*^9}, {
3.8172192016924553`*^9, 3.817219202057729*^9}, {3.81721981372462*^9,
3.817219818492318*^9}, {3.8172203944673862`*^9, 3.817220425613224*^9}, {
3.817220485354929*^9, 3.817220583732532*^9}, 3.81722086630956*^9, {
3.817267355013483*^9, 3.817267405354693*^9}, {3.817269076393395*^9,
3.817269087009036*^9}, {3.817269120326481*^9, 3.817269121269062*^9}, {
3.817269939213081*^9, 3.8172699495241137`*^9}, {3.8172700164421453`*^9,
3.817270029113059*^9}, {3.81727016313024*^9, 3.817270185946486*^9}, {
3.817270335143284*^9, 3.817270367462471*^9}, {3.817270440307015*^9,
3.817270442465829*^9}, {3.817270579806553*^9, 3.817270600570369*^9}, {
3.8172718236141233`*^9, 3.817271852429574*^9}, {3.817271884330206*^9,
3.8172718930060387`*^9}, {3.8172730122522783`*^9,
3.8172730205535307`*^9}, {3.817275923134584*^9, 3.817275950260332*^9}},
CellLabel->
"(WOPR) In[497]:=",ExpressionUUID->"30d0f855-c86b-4121-855c-813e9ee04f96"],
Cell[BoxData[
TemplateBox[{
"FindRoot", "jsing",
"\"Encountered a singular Jacobian at the point \
\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{\\\"\[Theta]c\\\", \\\",\\\", \
\\\"\[Theta]i\\\", \\\",\\\", \\\"\[Delta]\[Theta]\\\", \\\",\\\", \\\"\
\[ScriptCapitalF]1\\\", \\\",\\\", RowBox[{\\\"gC\\\", \\\"[\\\", \\\"1\\\", \
\\\"]\\\"}]}], \\\"}\\\"}]\\) = \\!\\(\\*RowBox[{\\\"{\\\", \
RowBox[{\\\"0.10883474635158481`\\\", \\\",\\\", \\\"0.1087637311720366`\\\", \
\\\",\\\", RowBox[{\\\"-\\\", \\\"0.03027802286883688`\\\"}], \\\",\\\", \
RowBox[{\\\"-\\\", \\\"2.395987125603358`*^-7\\\"}], \\\",\\\", \
\\\"0.010188811377372375`\\\"}], \\\"}\\\"}]\\). Try perturbing the initial \
point(s).\"", 2, 497, 355, 31479193581598412653, "WOPR"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.817271845315606*^9, 3.817271910309051*^9},
3.817273022397489*^9, 3.817273086526833*^9, {3.8172759390488853`*^9,
3.817275950677195*^9}},
CellLabel->
"During evaluation of (WOPR) \
In[497]:=",ExpressionUUID->"f1cd282b-fb73-4166-8899-1f1b71289512"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"\[Theta]c", "\[Rule]", "0.10883474635158481`"}], ",",
RowBox[{"\[Theta]i", "\[Rule]", "0.1087637311720366`"}], ",",
RowBox[{"\[Delta]\[Theta]", "\[Rule]",
RowBox[{"-", "0.03027802286883688`"}]}], ",",
RowBox[{"\[ScriptCapitalF]1", "\[Rule]",
RowBox[{"-", "2.395987125603358`*^-7"}]}], ",",
RowBox[{
RowBox[{"gC", "[", "1", "]"}], "\[Rule]", "0.010188811377372375`"}]}],
"}"}]], "Output",
CellChangeTimes->{{3.8171270996292067`*^9, 3.817127105556841*^9}, {
3.817127204285718*^9, 3.817127264091604*^9}, 3.817127314951366*^9,
3.8171274144813757`*^9, {3.817127496044944*^9, 3.817127500612631*^9},
3.817127572469696*^9, {3.817127822124675*^9, 3.817127849973984*^9}, {
3.817127889203796*^9, 3.817127946658205*^9}, 3.817197028103486*^9, {
3.817197066173236*^9, 3.817197105829151*^9}, 3.817197840657063*^9, {
3.8171978941536694`*^9, 3.8171979070770073`*^9}, {3.817198605563414*^9,
3.817198663128005*^9}, 3.817198745965067*^9, {3.817198871986658*^9,
3.8171989082517653`*^9}, 3.817198993524138*^9, {3.817199036402801*^9,
3.81719915472499*^9}, {3.817199214650189*^9, 3.81719924238663*^9},
3.81719949964295*^9, {3.8171995521181307`*^9, 3.817199606127068*^9}, {
3.817199653014206*^9, 3.817199715660084*^9}, {3.8171998628734703`*^9,
3.81719988217598*^9}, {3.817199923819672*^9, 3.817200047007765*^9}, {
3.8172001378170567`*^9, 3.8172001643989763`*^9}, {3.817200217372025*^9,
3.8172003472950993`*^9}, {3.8172004167155123`*^9, 3.817200455504426*^9}, {
3.81720316131075*^9, 3.817203174094232*^9}, {3.817203897725556*^9,
3.817203945272635*^9}, {3.817204011992119*^9, 3.817204121995092*^9}, {
3.817204163591261*^9, 3.8172042070966673`*^9}, {3.817204240782833*^9,
3.817204274807415*^9}, {3.8172043955128317`*^9, 3.8172044503395233`*^9}, {
3.8172047031255627`*^9, 3.817204709501192*^9}, {3.817205004979569*^9,
3.817205059570442*^9}, {3.817205106897121*^9, 3.817205134762471*^9},
3.817210054018056*^9, {3.817210124483952*^9, 3.8172101408168087`*^9}, {
3.817211385711073*^9, 3.817211461402006*^9}, {3.817211675688643*^9,
3.8172117217755623`*^9}, {3.817211753410542*^9, 3.817211833201375*^9}, {
3.8172120745520897`*^9, 3.817212091409594*^9}, {3.817212211123355*^9,
3.8172122275095043`*^9}, {3.8172122698902597`*^9, 3.817212283156934*^9},
3.8172123869969254`*^9, {3.817212477265932*^9, 3.817212505367959*^9}, {
3.817213142038204*^9, 3.817213156396003*^9}, {3.81721399823987*^9,
3.81721406485555*^9}, {3.817214510874466*^9, 3.817214540922349*^9}, {
3.817219147826261*^9, 3.81721916839528*^9}, {3.817219202321391*^9,
3.81721926178716*^9}, 3.817219819433941*^9, {3.8172203499673634`*^9,
3.817220388880389*^9}, {3.817220428714097*^9, 3.8172204420687723`*^9}, {
3.817220475912451*^9, 3.817220600722657*^9}, {3.8172207994737062`*^9,
3.817220837753346*^9}, 3.817220869735447*^9, 3.817221490855907*^9, {
3.8172673879327583`*^9, 3.8172674061020613`*^9}, {3.8172677896248503`*^9,
3.8172678294150743`*^9}, {3.81726803150861*^9, 3.817268040027916*^9},
3.817268349512271*^9, {3.817268405281534*^9, 3.817268494757325*^9}, {
3.817269089883569*^9, 3.817269131142281*^9}, {3.817269950143134*^9,
3.8172699532985477`*^9}, {3.8172700248676157`*^9, 3.8172700504906073`*^9},
3.817270188031938*^9, 3.817270369694803*^9, 3.817270443551853*^9,
3.8172704748305483`*^9, {3.817270580860221*^9, 3.8172706056496277`*^9},
3.817270683974093*^9, 3.817270741457181*^9, 3.8172707866388893`*^9, {
3.8172718454749317`*^9, 3.8172719104007607`*^9}, 3.8172730225617037`*^9,
3.8172730866934967`*^9, {3.817275939131167*^9, 3.81727595078214*^9}},
CellLabel->
"(WOPR) Out[497]=",ExpressionUUID->"3b7bac7f-12db-4bb2-8d83-0f02d8f19997"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphicsRow", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "/.",
RowBox[{"\[ScriptCapitalF]sol", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "/.",
RowBox[{"{",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n3", "]"}]}], "}"}]}], "/.", "s3"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "1.4"}], ",", "1.4"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"g", "[", "n3", "]"}], "[", "\[Theta]", "]"}], "/.",
RowBox[{"{",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n3", "]"}]}], "}"}]}], "/.", "s3"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "1.4"}], ",", "1.4"}], "}"}]}], "]"}]}],
"\[IndentingNewLine]", "}"}], "]"}]], "Input",
CellChangeTimes->{{3.817270250152678*^9, 3.817270266945251*^9}, {
3.817270389641168*^9, 3.817270412114234*^9}},
CellLabel->
"(WOPR) In[241]:=",ExpressionUUID->"e1346f99-b8a8-49f2-9bab-d7d94b52e5d3"],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV03k4lP0eBvA5QpbpULydiqRIIiNLOFRfsmSJapIUSdKkeCNFUjQhUikS
ydJgsr/IMssjPA1SUVRG1hSdyBKRrW063/6Ya67Pdd/375l5npnVXv70o2IU
CiUVX3/eM2/J7WMwZknz+mVXV7XVky2Hd7zr95olKQLK0Vep9eSPjbHHDh6a
JZk2E9cKvepJl1axEGdXzNvsv7+eqiMXUWdTttlj7n1BXKRYR4Ze7u1WoeF5
6panmjwfkc4hBR4dMzMk07KzwV2niozYPjhIn5ohKfnPrV81EmTpUjX/lnH0
otTzKZ4EKcNJv/h4CPtcq+RVSXxSMHkzs6ILXXQyRlGMR9J8gwdu1qDHlf5d
NVpBLvSwZNhexv3fGlKyoiJyaaffxpBL6F6R+ROjIlKDnvw9Lww96524O6CQ
tLIZvrEwGP3Ozvr1x3ySSbvJa2Sg59/siO/OIedF3VLWtug1ntpNb1jkJ1Zg
kYUs2tvI15IXQc4tTw86tRAdZbl8UJxJSt5+DFkL0Hzuq99FoaT6lWVCys9p
kvKSmmIpEUB6BtT+JMfQmSt0l7zaA53mMk5bW9Dxdx4InkXD0/6sL6YJ6Nm9
PdKu92D60Effoji0eI5PkDcLVvdpDildRbNfJmcYZ0Jod+nbnxHoMjPnT5AF
2m01TbVn0LSBUaYNG240dN3f5or+312qoXYeVG1bqVrhjA68rD3FzoOhR55p
arvR1sUebUr5YF4zlCBuj45JdfwpVQBTnJnwRjP01QTp9s5C2Ju3eL/9KrRL
U4iYUwlErN0rrFJCr9RnZPBLoISdslN7Gdq1t2PnmlKQzFxlQ12M3kqsnZ8q
BX6KjkGLGLpae2FmwwNQvmq3iD74laT4VfPOWZWDrVTclboBdLnvJnpgOQRF
v1xg8O4ryeRl8EtZ5dASse+7QidaRfXb3Hw5XDx/dKj9GfYtVc0f5FTAgN8l
wf5i9MbEGPpQJdRprFXpLcC+hmBPFJUD7PdPQz1y0aKFDiZ6HPB2ljc8wsL+
GcV/1M9xYNCMleuXgHm1SRhlARcaZ7YtmIjDXHr1pKE6F/JKBw+duooOWOww
ZMUFHzXa8uBI9NTOgPooLozI1Fy7GIROv+tmJ+JCU4Pnp38F4nmnGYPuSjwo
Che3jjqJNjmfP2zMA78pB9GVY2jFI65+/jwY7+oOuLUf91TDbPFOHrQkhr9Q
dPnTt9d9+YUHpY5rtO7QMW9Va5aT5kOA4PiHNAd0T0HgJ2M+TObP783Zgv3g
xK7RG3x47ZVevs4U82c+VlZsPpQrm8sVGmHerScly+NDYHzM0xJd9OKW+Pe9
fKDba6/V24DOWt70eZwPBuKtlyo00QM61gwKAdNnl5rxV6MDHZuTVhMg1Ku6
Y6qCNjhr6KBHAGf04HT1CvTBmDQfcwKCD+UUCxTw+l1Zog53AlyW28lYyaND
wsw1TxBg3DbGaKSi1UjZt8EEzNsYqjZL4L6Ylhtwg4BOSucFRzF0XFmm410C
iKrzXa2iKZK5aeX5a2wCUs+sMqL/QHeYbltfTEAorf6WcG4K74fq77VcAg58
Yky4TKM1V/KYtQSYZcvs6PqC/eJ7viaNBCi7l+S7fUYbq6zY8YKAn3/RJfqG
sZ8iWV3VRkBv68xhz0H0dJpNZBcBNbF3awcG0J4Dhff7CLhnuUXp6Dvcp0e2
r/xAQPiv92eHejCXqCz5PEiABy9KeLwTfXHpCoURAuCUpt6YEH2fNXt9jABV
7edxJ1/9+fxnVQ6ME0D56D/y5QXaq5dxboKAOjtK7Lom9LJf1FF0VEn8Oo9G
NLFDKw5to7C68XYdnvdbsMED91IhZd7NtehUQag7nt/Ua7FA7CH2GwcDo4cJ
uG7xOsuEh/mbZ77dHwlwyvUy96/4c72GCpd+AuRkv/bllKKtK+K/9RDw0j8y
rLcI/YsDgnYCbgkVlBXycR87Ol3UQoDzf+9X2d1HR2/o4eH9XHrPcD8zE/un
6hQ+1ODzE3s8x01HDytxtSvxeR3bm/w5Bd0Q1nqzgAAVveC2Awm45xYdy04g
4H2SZGBCHNrWtHlHFAHZ35Pln8Zi3451UgZ/HxoNPMdNEZg/EtVwXQj4pGk7
5huO9t85kWlNQGFc59XsUPRauxNJBgTo7Pv2RO407vcZchKpBIw/jGXY+KP1
j2WkzPHhgeoKiTBftPkjUUY/HwxHTLeNHMH9+o5KVjkfNoddqG5wRvdLzOrZ
8kHUT3X7sQutovufcS0+PLLJ+KbniJ6kziVS+WAlX2vEssbz2raviX/OA8kg
p/Z2C8zbnF68K+TB066+09StmB8On5a9wgMH9u8H54zQKo6+o1t5QJWK3/lA
H/skQb+zDP//fqrjgzT0w/gP8pNcoBtZaDuvw76s4Kv7PS4ceBaRQ1uGebYV
vX+YA8o0Baujimg3/eZIggN9t9gDafLoYCPnlzEc8HJvWCUtjfvCoH66KgeO
T0ikfvg2SVJyfU96mVeClnOyyYrZSZJ5/azEQ/FKGONrdOyaQoevl735pAIC
IrYr1o6gazax42wrIOSv2BspPbgfEzdZYlwO+8IN+uQ60RTZXLevZWA09FYn
Roj9H5tZSiVlMMPXfxH0Ak3UXHunUgaB7r2ye0jsz+6Tke4qhd2Po92aHqLX
TK9RMy6FjTS9Igs++n20aXJCCUz8vmy/sQwdrqClZVYMfmzd2EVs9D83/6Z5
FIIDtbszioVuyhVuTi8AraAozZ9paK9oN0F7PgzbdD0ZuY2eYVonmeYBYyRC
8mk0OjWyJrWRDdZ7dFwgEj0gr3+3JxvUqztyuBfRIqfAyJEs+BC3wTonBF3b
vH1imAWeem8iI06g1b14w953AFKZbd8YaGGr66/lSaCyQFvt1BG0spauXPUt
eCu8WHfIHc0/kpx26RpUb9Fa0uGK1tQ3HNwaDem5wsNOe9G2PvlXHjNBc5dV
R5vTn+9fUm2xxwf+D/QiEqQ=
"]], LineBox[CompressedData["
1:eJwV2Hc81A8YB/ArhSjJKKOMhpESRUV0R1IhpZQtoUEqeyRbsrKSvVeUlWTF
PWe7+yK7FEVD9uhHoeL39E+93q/PM77zukvU/O6Fa2tJJJIU/vHv75JVJXO/
U3NA8taK+el8G94KdpMFKGiK0qelvIegC/c9f8midX8uV35JgkMS4u13pNGP
NQtaXNKAK7Jzx8hedDLr44c2GdBpLlbTswstFiH8cWcOFBMdG7VE0B/DC4u+
PYUIOXfj+u3oxf9OGcfngTZzx+8XvOgQAenyvnyQvntPU5ILLS+/nt28EDa9
252YxoGW6/l7f7gIWvPcFMNZ5sD7c/tA1ZUXcObsLjebpVnwDot98ZupFNiu
VrHFLaBHh/eEFJUCw1EnqX5uFkgVMfnpl1+BVpIXCIyjr994ph5XBtoTH9bT
32O9btmGsukK2LxqHzvfh3ll1OiYeyV0cLFJinRj7uBZzsJcBTqKR7VcCLS/
1xP3La9BNyg6ak81mirkfoi1BniSpXbrVKBXf4aVedVAb3Hdq/ulOM9LsmNi
vgYuv5t9152PeZPhlvJ3VDAQPyvsmzwLtH2Smp0naGDauD7/oyfmddH+ts21
INyfpMzmjjn3u2cn52thaPLQG3mXWaB8i1I2EamDqzzmP0LvYh4RNGnpXAeW
FtSjx8zQ69fvVReoh90ulxjXjbH+8gotVaUevgVPGkXpo73mzxnerIfrJQJe
Y+fx+AIFt62+rAerNS6NsSrYn8GXbajWAHt5OfTqldENwQc4bzTAuET26LQC
1suaxisHNYDN+W529YN4vK7Xuja0NsCd1AMX5ndivW0tJVezERyVRz+eX4f5
cvdlQq4JxkI/6YSRMO+5ZO13rgleVxQExS7NAKXKmfWtVROE/Qy+9Gh8BmiZ
OW2Xk5tAzv7klGvrDHhrUL5+Wm0CoS1y3f81oMWSlhO3NQNL8c7KOzXYj20r
0s3wfmrV37JwBkjc19mrjZvB26pq+/kI9IzKHoXSZrBmzVtLBGK/LBOHBr0Z
Lj6NHT3pg/3P7oWzfWwGsW+Opcfssd7yuGsKcwu0mh3QEtfF+nQl9/26LbBN
P8t9ZRse35uPF14NtwDpV9RVN06s137dJfOjBcaf+JyaZ8WcWUPOei0dqrtN
uceXpoFUrZbGv5MO5uf4n/d+QHecuOdlSgetaZbI8z3TQMl95LViQwf5Rz+d
iVZ0+g1+FXc6sBLdqrU100AjnJ9xx9KhUD3sfX4q9t8PYCa10iHu232aeBzW
6xsGFbyjg4//rZyMCHTQaMKub3TQrTttH+czDd5HRspv/aXDsjITm78Fzkvt
uOcuxQB1eVcFI3Gc1/lWY7MnA6wHEnz0RP7N52D5FsCAML8a+kV+nBce9yIy
nAFvO9caarFjv2agpl0aA27eeXRPeWYKaFZnsi7SGBDKW1ynMDoF3oNeU+PN
DCiu7mI7PIx56oZlozcMWGLjS5TuRocrlLQOMiD4acZr4fIpIKXXVswtMqBQ
u5Fpe/EUUDrmlc1WGdC18F2TLw/rVU9ufb6eAEG1/QOciWjKy4W+LQTkD5X/
WeOF/bVBL8MlCOh4+F5txQX383JsH9tPwLz039BlW8zvZEuJHiJA2UN1x3/m
OD+EyVBamYB2/jblr+qYt6l6NJwj4Adt5sEQGfOu0QIBXQK23uRqHziK5n2Y
raNPwJUyPdPevbifN2XC3IwAf5N7OZ27MP90oVLZkoDcdcnTbdvROR5ayzcI
mL3w2bOJA+ud1ar47xLAs7yuuY4Fc6KJw8OegKPp4puBhMc7ErG93okAnxmb
1PIfk0DR6Dm/6E4AV+gvyO2bxPeZ5LjpIQGHDwmwZr9B/+CfCQ0iwPC90vn0
FqwvyJ2aDSEgU8J3KL4KcwmDczciCGh5kyUR8xI9oiB0L4qASedm26h8tOeW
0/bRBMg1blwTkoKOv+zJHUeAvs2BMw9jcd7ZSz+q4wm4z30h0i8CzWQXoZVI
QFqVY79X0CSQTh0KqUsioOFqrOh9X8xP5fEIpxAwylpl5eo+Cd6J10zNUwnY
WDzwwtER56/6xIemESCjt7pkexvrWdJ/JqcTcGlFVPX2daxvnMmOySBA6fcO
ji5TnO/hlxmYScDuRf73h/Ww/gKN0zSLAPYF3pzEc5gf0ZLclo33a26LPek0
uvWQRCm6f3rT8WsUdOHkKfkcAmgTG9gYR9EFenUJ6Kej6/ukZXHfQl3HV3TY
tzUZjyVxvvLkc+6nBDh9/nt7URTru9aGiqONPy0pmAhgXpyXK4I+MbCwvo4L
z8dn6egq9u/tn+sUY8f6BF+HevSWvqnkECacP6oddhu92DVmNft7Arw/fqH+
xeP79Oab/KX5CSBpqSk6optah9dUTaKVfsh14vkV0AfbhL5NAKV89jMPOrqp
P95vEPvDGl3IeD3c63uvjfZi/TZ3MR28Xua0Ttmz7egP6aIaeD3P1LT9fdGE
Vr+QuPff9a6i07fCBNA0pBt/4P1ZeVl7dagIc8lnU4p4/74V1+w/mYv5gObZ
1wkEtBZULuWl4f7/hIV34/1PePoi0iES92fF9BU9weczq8DkXRDWqzXydz8m
4GZ6nqSyL9YfUgn+FEnAkcT0WmYHrLfPzyt9RIBQXPKjW7fQfZ9KPPD5ZH4S
b9BhgfsNJpJl8PntCYuci9fFnFpL1/UnwNbXR3T/YbREkVyiGwF6Xh5TkdI4
XySXvcKZgOP33Sp/iqFXpAVpDvh8Odvp0Lbh8TRbBEbdxvfP6qrPxaVxoF3L
ZDmJ72f4dZOzFXPjQDGu20IzJsDZwoB/xzg6JTVa3IAANROdFyPv0QtOKdU6
BAydVxl2qx4Hkrv2yFpVAviPiqqkeY2D9/vNViLCBCgq69wNcMX6jd9vNgjg
86Hqk2xjh/WRUsYGW/H90BpeOmqB9W3aIZc3ESBxNb2kUx0dq7Q+fZkBh4NF
dzNxYP85pqhHXQzQHRBluZ40BjQTfiYnVwY4D+vIaz0ZA4p1zTUrewbEjfhY
HAzDPOpjn44NAz7MDsOK1xh+v9ivvHqFAebrM1xjLbDeXNCzXZ0BdtI7x1v2
otmzPHS48PPbe2ebVOUoePuO/HJJpwPfXy6qfAk60ohxLIEOGW5MReTno0D5
4/PoZxQdyuy/RlxMHgVS1cm9Ov50+GiZo+vug/X13TFJ1+mw/8zeAcYZdMnD
0gRJOrRuOThh9f470Ga9FjPyWoA9U2VD7u8RfP9WknifNIPS4bJjJ/m+AU0s
a1PyYgMIv9v3W/HSFyA5rDllZlAHZeOLxTo2w+Dtcd1Ud5QKzwob95fwfQLv
Ui/LXr1K0MxO5raP/wDeT6r/KNwqhUseIiMO7W+BNJud/ZZUBHX2T7vE1HqA
tHXj9mcdOSCkuDGnXQ49Jan8oCgH3NbYuTnvQbuWkJ3CckAmQlGkiRkdmcoV
rZUDyQVtt6/Ru4F0tpWznZ4NrqP/sWZpo53ELyi1ZMF+UwpZ1KALSAHwXr03
A+LO9D8XvNMBpIN5y4csU6BhlbqO/Qp6Zar9x/4UmHmVZbJ8Dn1HU+vjr2RQ
32m7uV8WzSXqeSw0GcYXNo3sm3gDJBlZE87yJMjUt3LcudwOpD876DK8ibBV
SCRyE18bzls7VfhfLNwOnlCdXGrF7w+MVKH6WGj4WTbP+IDm1K2qjooFhzdn
9QNT0VRFQ/+DsdDh7S7MJI6m0J+pOsZA0Je+gkV5AkhHUwICSE/gT+4jxpeL
dDyexpdeSlFw/LDk+pYjaM6g5CKeKLzPDeR8QTS1/fCGqUhY//F3qeMX/J7T
dz9RISUSOLitU9c7oK0Vd0esjQQRD3VH8ahmIBn/CTqSEw4ndVZ33OpoBJK+
x5Y34iEQ+DFB/1wpWmZv6uvPwcC4dfjxoTh0qVzi3+Rg0A64zfrnClopUsCX
Nxj0X3/4ETrTgL9HlvrCWIPAek9FcyEH2pGxrmElAMKWbO1+aNUBqUW4dUXK
DwYG7V67SqMrXuzpmPQFyTr79aub0dtT/mMp9IWGYMd49u5aIL17LfVc1heW
BV1rdxugJc7U1ir7wI3jXlv0rtGAlKvyyK3LE0p3ehsNqqOPdostmXnCWhaf
bAsJdMuOoFOzHqCIZz/UB/j7RZpPZ4sHPK3dWM/1hYrzVK8LmLiDN7Oghcvv
atz3/ViyoCsIvtn+y4+KPm28bWu5C5TFCoVE+KBJWRZXLrrApMTOl3ks6DSJ
FxZhzmCgKck0wP0a91k3ynM4wcGII5mUfZVAutmvwSNvD1/5db9sMHmFz79m
dw7FGi7t/hkouhst0pH9/pUVNEnHSStMlAJpqPGh5z4ryDsx4HbTDU0Jnd4q
dBPu3LbkbH7yEu/3g2uPuK7DEs1R2b/9Be4PGcqlmIM1sfVL4hO09/Cz8dar
MNBbEfjSGF2sdDDF8CpQx/90fx4vxnqbd4b3zMCP54G1CguadlDCMMYEBDv2
HvjrlY+eToy01IOVr3fu7ePI/1cvbP78MgwtlTQaJT3H45l/y7dwCXJ2HTOu
qniG9SI+CpG6IOOiGeQyl4vX5yhNc1IHv/+E9+R4odOe/tHR0IGFtG7hvk1o
M5YI8vPzUMUwKpPb+xTrn/hkTGjDSSGbL3Pm2TjfIy7LSAMkDhVLi85loWtC
96ufAbbT827nvdC0+F0PD5+GDrv7nEWJmWih7QUS6mDYGKps05OO5pdgXFAF
pfcdgYnmaNJTyY+3VEB4hqeHMZuG88ChIZgCX/mSrSU3oUlXFLeUKsPgO8MD
bSFJaJ0To/ePQM7M3I6s/MR//QpXuA+DLXPQRve2BLy+m603vJKDtXLlYxKb
4zFfF7nIfxAIDe13qwfiMB/adHxQBqKvfmvqOx+L+buMu3oHQCycO8s/6gk6
nRLVsxdmsp9FGb2MRgO5rlQCKqpVfA72PEbzJxs/FwON8bumQ7xR6OwtXR92
AvcalrPlhyPRwlMFvKIwsC3lWJheBLrKdIIQgo/BcbKuBx+hd3tGP+YD24om
DjHHEPR5g6IqXlg7Mj/R/SoIneKbxcEN0dy76D6/Hv6zn2M4J4ir6OQcUAhA
51aS722EyjtefoP3/NHR7NoHWEEzqcAspNoXPdvPc3wdDNI/KCuseP97H2ai
c0jwaZr7cLuXJ5rCntK5TF2nYTsryeSONnvwcMMCVSK79dmDABe093T72AxV
iyR5bXiDIzqt1UP8O9XW6IGw8iNbNO2NYtwnquTt+peyotZoEWfTom6q/a77
EmPiFv/y4U6JRqrzSytFFRP9f/N0bXe8oHJSyk6Z9aqhST27WYKocomJT1jI
+8hoSj9Jj9rLrLrB/p7OPwcnJKdT1RI6hJluX/nnBxS3amp/zAFBRtF1NC0u
v6CNGjHknMOVd/tfrq5m0k/dzfspbr+OPXroF6H/hUqq8v3Y2eb0r/7sd6sJ
6gdTsd3OGm7/ctUl2x/UMiaGlUDzffTRAaehX9QzPWV6n0S90XxGN5lWqOU5
gfdkh3zQA7XfbdbCHjfDZL8UPzTn7x5ZZojS3EfrNX6A3rfN/TwbkIRWPosL
PkSLqPa3cMBAXbpEa2zwv+PbZGLBAxpPHDSFLoei1c13iG2Dihsn79jyhKGj
q8t5BUAjYN4guCUCrbGpWlkEfO6a3Hr5NBJ927p9URQq9JvuDwREoZ96azF2
wR6puFTpk9HoUybBxeJgzLPmhd7uJ+huwzONkhD116rOmykG3eJlPyuFv4uP
feuqjSWTvI9SSSdlYMDx016X44nob05rr8lDZfaO2nCZJKzv2Fnz/TDE9Bnp
5e5MRldz5rgchXNH3/n1M6di/UnZNXAMhj1uTiffSCeTKInFo04qcD7mocKz
ITRtm//SLVWgFub4lxlkYP+vjtSbJyDh01eBN5qZmDt9e+50EnRVrp4iyWRj
/xOW1x/PQJ2Bd9TGPDTtBNhu0AQZ+9RBvp056JSvlYpasClz0EGW5ynOe6y7
/oU2NK0zTDNfzCWTRHSOKf3UAYWWC0sNtHys/7By4o0e5A7ZqXUqFOD8t6Hi
8fqwdSkifLAELXJX+sJ1A/gh+WbPz6xCPJ+x7+5sRtDXuCfvsVox5vVPBe+Z
Qrh4Rm+DRAnOayuQ/m0OTS9lf2tcQ3snV2nds4AVcq1IZzrabCZ+428LsNEf
ujUo8BL3nda1W3MNTgcJrf25sZRMiog9TojegLUTCdLic6/w+BvbMotvgYV8
sGqGZBmZNHte7iHZBhq83C7vMEd7D6b3vLGBAB59T+5udLE3X8H8bWA7ztu+
WlpOJnUcCswVtwWuyPDb71wryaRRswe7s+xB9Ih/fhCpBvdZTjLtdgVfHwfa
OgV0sVD5go8rfCbMe7zs0O9yLiYMuUKWmcofp89omZsvfqe6gUTwiqZ5AxX7
K2u3i7tD3J1qpx1qNDw/YVrjZU9Iqz3M+5OljkyKcwgLSfaFxs308EgxtKvZ
dc8BXxg3MWLbfxKtpJ/wTtAP5Je9Vi180awdvXWJfsA4SB/r/IM21uuwSfOH
/zKNqAVz9WRSaKQwa00AqAd437j2oRHnx7gOqYbArR6uz6RlNKuUSXJYCETs
zDZO4mvC8203g/ch8IFK1+m+hO5pczroGAq2v7iUVDrQoa8yu54/goSb2Zw7
GpvJJO2bQfNbI2BKg1HZU0gnk/ioK7eoUWD/2lByuBVtY2lVORYFP6Um4qbG
0Y5plMO8+Dm/aaMrsziDTLJ/x0K1eQxcb84ePpqKDlyoWicUDUcvdpYkhhN4
v0rDLYOegL/Ru+fmtm1k0nXLQn6/OOA4/J/2YlwHmbQ9ic9/NQU+mFys+52D
Dk0Njz+YCrkPXsqvlqLT8m16r6WCSq/DduZOtOE1cVprKjg6zo9xb+gkk0zX
iMpop8GHkgX/A27/fOD3FdF0yD2wWHXdoItMmmYsdeD35xOSf8V6+XvIpJD/
fjs45cDmY8ZctiNvyaTPH/veHisC1wPlXwzsP5BJn+QsJA+XQufdPl3zyY9k
krljddK2SjC7kW3DYzBMJpXSIjULqSAeOCiaKviFTDFxzt+9tg4UjtKGWNd9
I3sr0HhkPjRAQn8al0DrCNlbu8D09+VmqPj6NHpr9wiZ9GCj316zZuidKdzK
/X6ETGv5Yqlr1QyczDUCG0exXverTJx7Mzw42L9zhek7mdS2N+ZjajPYhmw5
9PkY2tih1uh7M6gr+1589vw7mXJry6MauxawPB3Um1OCvnl1WOpeC/hcjNDL
rPxO9uYpu/DYtwWqrVKMkpq/k2kcTy+efdwCsjFVFmFfMC8YU7IpbYHtMz8c
7AVHyZSo1IHTCy3wX5pFtGLIKD5P+vZcdnTQvhwZ1R41SqbVqeVIuNEhlx0i
zBOwfmifq5wPHUydBR4F52HufSR1XyQdWjQ7H7xvxnzZ+HFSMR2Sfh53ubdu
jExjvXjtxhQdfj63ceLYOEb2/i6wrm2eDjpXExwyuDHvO9cr9ocOzK0Ldxk7
MZftLSxjY4Btev5NARXMT/BHq4kz4KSWgGGVxxiZom+vwWTKgLQ1p/W1H4yR
SQGPHdIsGbBc5nT5cyjmEZzHZG4xoFi08wJbEs7znlEQx9+7Ar8eahpWYX79
1srdSAZMpy8oLf/E/BnbUd1aBpzW23UsbAUd9us8RzMDMjfqKOxkHieTJOvV
KlsZoO+SL6/BO072du9RG37LgDotC+mEQ+NkypizjvMUA2J/dQgr2mI9d+aB
eF4CyrIYr7VcMGeu1lyLv9/7dBr0rnhi/3kfT2MhArbml4f7h2JeQ6r6IkZA
jFnKansu2lHAXfEI9m+KSxwuwnlvFSmSx7C/KvLIfBn2j8QrspIJ4OV9cJe/
cZxMEzMzjFEnIJp+65PFMObSfayzugSUOl9zdx5Fn5JVMtEnoGfXlW1BMzhv
IuFVpREB3J4XzhX+xX1ST1fI5gREHVSARf4JMu14hKvnHQJKPh00YhedIFOy
J2zM7QjoCt33a4fEBNnbb0eenCMBW74LHzhxGOtf7XbKdCMgIpE59dEFrGcd
eZHjR0DxadKxNAP03JDS0gMCOhaW+krM0DZMaxQCCdh8forj3Z0JMqlwX65X
KAHSf0eejTvh/MCDagFhBGg/G1L/ex/n6xiHuEUQELaux3NnCOYbPwbtiSag
8EWbgHwUWq/v1+ATAtpNm8tOxaPNZD19YwngqKyatnmK/SoTyuEJOP96abBX
Ie43vi31KxHncxeKRb3C/SUx8RrJBDy6nW5aXo++FG38MpWAfIHEZToD5xlP
m7ekEdDaHB0z0In944taLekETDqGHZx5h/VsyT9KMgjYuDOwfc0QOtta6t//
J+5742PN8x1tENt+KosArfvuzOLT6HN/S+bQNpJOGQoLaFaBogfZBIT23Tmu
9Qf37dsUz5SD+/1uvjdlmiSTNGPVb6FbZcyd7dgmyZREvkfV6MlBIy7/LZhX
hqv8QrOHXCqM4ZvE6xV3VPApAXuPntPIE54ke/dbqUugNb6dHnkthj7Qd1wI
bR2l6tu+H005vfAH+4PJSkLDcjg/tU6pAf09xvhwiBLO2/ZB0AatNn1fW14N
97U8YF7E400/mXz9kybWr31bewO9klTjGXQR699ocL3G8zOaH4w5ZITzc+te
z+H1qNBcKRw0x3yHnw87mjdTqPmhNc5zlRVjxetnv3z8k6w9zjvdees7Xu83
Old+fXDD/Ectdx7ej315XpsDfLBfqPqjVgoBQaQ0cZkgtMSb0K4kAkb0aOT3
EbjPw3RQAe/viaIhPf849IhQuG88AWnMa2yl03B+F7dZPj4fhq9U0nyL0MKi
uhmPCSjfaF6xrxznzRbN3I4kgMfSt6OPivuVDRP5w/H54qonSbVjfrKenTOY
ACnrL3y9vTifeVHV8CEBgbVMsl6DOO/9/rt+/gSo2qpd7Z7EnKfL186TgNRm
SzePeexf1O6Tdyfgj9CDSPE/OP/b559vXfB9b2usdWefItOSd9wptSVAUurU
zt170SL/PWs0IyDA94Ziu+wU2bte8MtdYwI+9z+84KowRSat9bqzoEdAUmCL
b+tpdMxmmUhtAjhHznxxvIH9xK6/axQJuK1s/VvoLvpYjqOHHAGM6GBuujPW
n08I6JQmwP8EcWJHANqphnXtLgIW07SyGrOmyBQ18333NhBwadGm+m4++lnO
nuK1+Plw7lEPfykeT85o+evfDLBZaVt3px5ztgyOC/h5OGR07trWz7hv7AOb
bTsDlF/e9aCN4Xz5NUanmhiQwBbxxHoO+y9LTs/WMEC3sqORSpomU6JvbK3M
Z0DL1gtiN4SnyaRnTRmcgQyo+fnCfUpsmuy9wChJ8GRASd+WTgdpdLA234Ij
A5JiOt29lbHfqmwN/1UG3N2q0xlvNE2m/dlVvfkIAyx/FouJWOC8ufY5jn34
ed7HeT/HGk1+FPRehAGqMR1iL93Q479oPRsYsHXr+futsdhvp7hevZ8O7D+L
Oi+k4j6HHxzxrXQg9W0W78/BfT/q1pcCHcaevOn89gr7DXV0ydl0qOY9J77a
jc7jEki4TQcLXu0uWc4ZMs1mxaL1RwvoLxSIV2ybIXvz52ed/9wCWr2bPI4L
o5u3/BfZ2QKHn7SJa0qjH5pFnC5qATbesx6WWtgfptR/50YLrM7nd41fRLc4
5TfotsB8z0YJOyOsv9TW06HSAoPRrV0e1jNk0t8NLqyCLVDMoyURG4iOcDj4
nt4M2fPPPXZEYP++jSvNpc2Q0MPenRk7Q6Z0zlEs8fuHfzThUZyDTrboy3Ro
Bj0ezW56A/afyA0S5muG1Q17yJ6kWbL3Npbm+XNNMLBQVUFaN0umUTY0sB5p
gqrh8wf9WDA/fGVtw44mcKy8vyeQA3OfcQmp8UYYvdnDHrV9lkwJfJYS49kI
Hc1+77KPzpJJGvRtcdENUPCS/4KEEubkmkhHpwYITi0inpFxntRy/KdLDaDm
8oFapI71hESEAW8DVIgdyq7UxXp1ef3MsHpIe/DZrs0WzZPpHHCzDjzsXCfO
OaJL/kqTVerA0ITjWpcL+nEy6xX+OuCRV9R/64lO+rqmubkWAr9GHh8ORXPz
LfRsr4VrHeIVFhG4f3rgiuUsDVSra2RHHuP+nXVcyvU0+PN4bPdEAuYpQWcr
rtPA7oQK+0IumuP567jTANoH3vq75KNfrcwqfqHCPsHbK0tFaB2O34L3qTDy
I25upQznqci6XM+tAcOM2besjZjvT/cJHHsNR8ICdEJa0JeFEyIcXwPPve3E
plas//VnvdHfKmjXOU3l6kZLtZNHWKpAdU1a1vZhrJ+6tHB5pRyOq54ZGP+K
uaVNropVOSj4/eCuHMVc2OlGYkcZyKw/6XdpFnOLnkOTj1/BPvXpql3z6Mg7
m31nSkHiYeyPuV9YL5j2ul69FIQ3jF8NW0XncSdf+l4CAhqP442Z5vDfo57t
O2RKYGuIUudeljmyt3NMhYfDC+DYFE5p5sDc09hfr7MI/nDKCZOE0Je+Xri/
Ng8WdQYvt4uihSye8Ik/hf+iAsKS9qBvTIZUKGTDOE//36P70V82eR7Zkw4j
l3zlWWTRPLUXRZaT4XOM1O1eObSa2Dk/v3jo5/McsFNC+5pfN1KLgB4DcR4K
BR2d0fj23EPoSOjQ5FBDi1CmDHd7gGDEV5a9p9Bp9FoWYVv4H1lvI4c=
"]],
LineBox[CompressedData["
1:eJwV0nk0lAsYx/FBXYXSokhJC5IkVLaWx21RtiZFZU2D0WKZyhJZhsiSaKyp
LMkdlDAYMy/yMupWt0JRxhqSpbRYQ4v7+MNxPuf7e+aM97WW5nnERZRCoaTi
z+xvVtfnAP9Dw0C5EXJycMAFHtu/HLlERVenFTrXuAGZ7q124Cj6dLfkY8nL
ULbmWeoHG/S8t33TFlFQfOr8a44D+lf37YHWWHiYJT+fSUMLY7I1ZOMhW8n9
0qqzaOeChPT1KZCguuS4lR/a35MxrpIJsWcqYtcHouWurunVuQvR953/HWai
/YrNtCELQtV522Mj0WoVRScNsoGhaSfzNAWduPud5YcccDs/1yzpNlr/4Uxv
VS64FhdcccpAb38ZI5KUBw7bREZn2GgrBi1F6wGY67Ff65WhhzPjkzQL4KAf
db54Odp1f5/oxwLYVz5p+PYRWsamWSWpEHbuNC06/2QYmEltx5heRaBm+D32
fhPaqc1JWMSBeYHBy/SEuL87J5w+wYE+YuGdJ23YXawtXA2K4d7WzXldPeg4
iuj7R8WwasPZ2uXD6BrrJ6dLSmDaaco4ewz9uJJz+EsJCDMjG7Qm8fMkXQ27
lEshST6nw2wGPT8PpBJKYeHC3h+hC0aAwnyrvcGBC0MmF4MWLUbXJ63uuM6F
/yJE56bLjADzQKo0rZILESJrlxArsfdHPx1cVgaUcXv1bxvRYz+mHSrKoFPr
S3HAZtzbr/T/1V0GlR4B+hJaaFVPrwhxHvgN3DJS1kMf+S5zkcqDkbZmR1sj
tKaQM/mGBw1yrv0Dxvh55VN0m2EeFFhNuPuYoz9JddQs5MO5epnLLEvcT5ST
+UZ8MJHKFlE8gb1Vz277KT6oGm+NzLdFh+TI1/nzoVdgkfSUhntfO47+Az4I
ZrpWWtGxR9JhsYAPmTsZWT1nsKd+shUV8sG+LLbwNwN7nISsgQgBO0cVdK55
oZ97iYTLECCv+bBS7hLuX7xYMqJCwLu8F8+3BmNfN00aGBNQ2mdzuCYUzVpu
Km9NQPz6T+8OXZ19fvbt608TwHD0s2+PQj91sbD2IYCaNq/3zHX0weHAyisE
aLSmnP1xA++nddWpNwiQkt0wHJaIXr5VYekdAp7d2P8n4zbu62+mb+cQwH7V
FLY5Azt9c3hKOQFhEs6SFVnY/5jYatUSQDswyjrInv17snlzXhDwd1io3Ls8
tLzWxqVvCFhTszjD6SFa4KTrICTgz+9M5eEivK87RevvIKDdQDM/qBT7HZ31
RT0ElPuS2lJ89IO5Q0QfAb2XvjZHVOC+qcbxxyABC/0VAsVI9Gnb6eAhAvQu
m60LFuD+lKGY1VcCnAIuP51+gl1Judr3GwGxgffdfJ5jt1VjDKL5QS2LR16i
3UTMH6B7gufx3BvQb6WvVeG9VIiu3WDj7PNiWSt9IUAnlC7i0jz7/vg9HZ8I
cLySxO5qxX1RvelQPwHRYY9N7Tpn/9+OcQ/34vsJH/3e3I3+pbhDqouAzqvr
ko9+RAsYY4ptBMyLtNhRP4D3+1aMxbwlQDuK2WUyhJ3HOmhZT4B9dGH4v9/Q
ijK/fJ4REHmtU23PKO4LuTIT1QQUxyxoeDSB3SM48Q0fn9/1nd760+if4X4L
igj4K+6cPPc37mspVTlsAjRv3CI1RUaBedTxRBa+XxvWc+f8OaNA0XLe8YdF
QEHChsJ7ktiNTyZ2+BMgTDxmqSiNbpfvpHkQIJocPnVrCTpKTc78FAHHb37Y
G78C79XH3h/dTwAlLUPI3IAOqcnY8xcBaul1gb/UcP9Qz0V8nA+WGb/XXdLA
LrGkQfcDH/Lu2rp7bsfu95Pf+YgPR9iyog570fY6ujZufAjIMcppMUKnKd9m
HeMDO9fbzMoE7xPi2QaGfJi+35hsZoF2awrvXcyHe4Vxm3acxL0O6979Ah7U
FVU1lNHQmkOs0EQeTHK+eGvTcR99hfXajwdmpabVG93RW/oPN+/hwRhf3Eru
Mrrjm35CXRkYCYKDxpPxXt1r0OIVF+LkBN2Vt9BKt5u/53BB6DFnf1g67mWM
86ZCuHBmZZTkUjb2iMu5ptu4EOMVf1OTiz1fP0AsvhTeqPxTfK4Rza0yp2qX
wMrA/mVbm3HP8VRtESsB58aNftOt2DMWvXrXVAzjwQUQ1YOdxiza4l0Mci28
l+xh9J0bW1wLOeBw7b++bukxoDyO4NAkiiCnW8okbyl6vrHJG3YhfNelPmTI
ojlZls26hRDS23hxZjVaaH3z1bECyN7VQVHQQF8QqwyLzIdP377JnzBD04L6
eitywddyGbUuEm10r1T/dCZksXeJWMWgfeSbO55lQN2kS0lbHLpBUeM+mQ5K
aWWyg8nooDNr3HPvwJuPx7vE/kEr0agV9Jug4XvrvH4NOlHS951GHPSmKiZm
T6E1taoWBJ0hFw0dMNr0e/b7vdq6L/s8uWM3Y5JDGQeKo0ffpTgfMr6n2o4U
RzcoKXTsYJKwiabcugxtp+6ediCavFWZXSatjW4yyKrzTiEPv9/Y4n8WrbLn
QUIym1TwWRtx1gOtINe662QO+UlqxXabC2ibbTNPVHPJcIN5LH1/9OcubY+q
PLI8qe/gZBQ6c+/dRWP5pJLZPb533jgwVxwXrHjMISf5q24yBrDb1oy65PLJ
J1QZI8ch7FdsF6nKE2R8n+QY9TuacUDqSAxBbpb5Sd0yiVbxaG4/X07SPFvE
v4pPAGWoas+zvyvJl8rJvuc2TABzv0PZizGSTK28rmy7aQIMp6St/XWqSfrR
8EaTLdgV0vbWXKgmRUK8tqjpotV2i/V9riZ12o/0DxhNQPUyidLIrhpS7KJJ
ktAE7xcQChqrBWTD/D17nx1CK/AM59oJyHO6Whk5x/BeLsL2oFBA6tWpmqfY
YA9do1q6vJb8y2XNz6sO2Okpxy2sasnGn7J5PjTsp7OaFBNrycx46eN0OrpW
LlqxsZb8H4bHvAw=
"]]},
Annotation[#, "Charting`Private`Tag$738014#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{0.5, 0.5}, {0.5, 0.5}},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1.4, 1.4}, {-0.21603873670728646`, 0.10131711070161664`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {159.9449084269849, -97.50736892665735},
ImageScaled[{0.5, 0.5}], {299.8967033005967, 185.72832176506162}],
InsetBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVl3c81W8bx0UaFJIkoaGsQlOZVylpS1nR+IVSUhkNMpJNhQoNJEKShOzi
ss7iHHvveY51jmMmief7/OX1fn3d97nG5xr3Fst756/z8vDw+PHx8Pz/rzFt
qWWy/iQOCWvq9duMwHjSrHGC9iTaetT86X44DLWWURnyGpPoZrbPekB+GDKk
Dgknq03i2E15TdeWIXAM9aemqk6ixpltm8x0hmDqkbhm7pZJfHtA2LVYaBBm
j+3bXME/iZGGlwuTaQPAM3BvmMuYQKOfysmFcT1QcoInUL58AmtMfAYPX+0B
n9RQ+SvkCQxtjpk3kuqBFc7p1hWFE2hze/Nu+bfdICw42ZnwfQLdLY3fUnZ2
gczuh3XmLydwQZb6bcnFNugOX+b48sUEkoKn9A/0tULcXIQINXACD/YX5Dvc
bQW5spwz+70m0O91RSbHvwWUTf9QhJ0mMPhKsUI7uQm03N1+lRlNYGyjn942
p3pY6Fll8ffcBPo0WhgMraqHomPRf3afmUDrw1IK7z/XwVGRQrUYvQmMLHY9
lNdVC6c+Laa5qE3gaNk93VLzGjCneSWoSEygdIOIs+s0HZzXBQa/bRtHuXs+
Z/PSSsDUY2+ncPM4shwvFH+RLQE1Voeyf/04Xrq2K4X5phimc/cwHjDG0Vd/
h722TxE4XmoXvIDjSPH/WaDf/AvsPqkGrv40jsEZoqUCnEw4taq12SdmHI8X
b8/1//sDlB74KMxHjmP54RMsC8EfMHSshTIcNo5Wuwe2z+1OhxvDXsuofuP4
dHfF30P7v8J/uxu9vWzHsWMPs6DJLBLgvWfdnxvjqEFyvWoi/RZk+HbIOliN
45HTR0W0h8Ogo/5JydVL45huxhchrPECzJ0Vl2ifHcfrLWfC6+WtwAjdPH7v
HkfXrB/xe4PDcK+CfOVdlXFcn0trnj7xBkVf1kgzlcbxxyPtpL0L77DGUq6g
XnYctbT4C83OxeDZZdV/09eNo+5t+bZrlfF44oysi90fLj4zPZPXZZ+KAtfy
Bd5Oc/HCa68umdTvWH7fMKp0nIvr+M2Mcp3S8HTUE5Qc5mLKsKyy2ud0PDvS
xk9r5WLkaMt3w98/0Cgw7NX2X1yUuRy62wlyUSx6xzbDXC5+MrMR9izKxYa0
kiy3TC5+4Scdq4c8NGnmNtelcJE24BV8TT0fL8qf2eQVzcWh5K3/Hkj8wisk
/pRODy7ue1GT/yUQcVNLlLaAKxcLGgd/dXARu0f3Vu1/xMVc/mbeEzuK8JqY
5cTze1x8LHDKvSy4CK2tCg9q/sfFhO+T8svPFOO2R8blNy5xMbCv4kjN42Ic
CBq1eGXGxUcHpOoHPxfjjQzJJ0PnuHj3VhZjGU8J3lryiPTmMBe/RfLy7Ugq
QaV1Qqal2lx0OWea/qK6BIcVEgY56lwM6q8JPjlbgnbn6gSP7eHi7fOMFS16
pXg3RvX81FYuHuxpqHdqKcX72oOd55Zy0XT9inPcvjIcet5lGMzDReuVpkwp
XhL+zP0W+ObPGJqYXg0q2kTC4Jkg4xfDY7jv5NrzjhdJuM9Rj+1MH8NUCzIj
nkxCmTX76ibLxpASl8lI7Sbh8rSteXcLxjBHMd9IY46ErexFH+vUMXx1z0a4
bQcZPW/lS50LHcP4I053bwSS0XbFF96KgDFU3Dc9EhNDxguf3wzqPR1D3fU7
2dZZZJQbuJ+p6TiG6vZlRhFdZKT/p3pa3mgMX4R/1ctVoWD2ovSeuNNjuEhT
cb13mIIxH1ZJSOuNofyd2pyfFyjo2D7UJ6o2hgnes/3rH1FwvVm868L6Mbx8
e+rfQi4FeX6/uuYiMoZ9i+9velApOBz+VH9qxRjeOSw5GNlEwV91V9YO/+Fg
vtyZoKwpCloabPja0MbB3sTx3KdKVDzNWf7yXD0HlSuM94kcoOL+FzMPK+gc
JKct/0/vCBVXVNTpFhdwUDWia+qzORVTjwW3psRw0FOrd8TWl4pvB9yK5N9y
8NsSK8apECo+9bmdGBfKwR8FZc/a3lLRqOS449unHFyTqRsu+JWKOtcOmK19
zMGtXK2mbz+oKM8jpxPsSHy/29TH+4uKc9p8Aj5WHHR2v3WQVkHF/vbxsQUL
Dt4oW2KrVUdFhmt3g4sRB71nPdRvtFLxY15B7D09Dr7wdHDqYVExyCzFf1ib
g+FHPfL3cajo9Pv9netqHFQSjjPTnaLisf3O6hbyHDwXmHI4dJGKtu3vn5pu
5uADuSezLktpGOxdQLuwgYO1lRE7lVbSsKmG1/y0IAcLfBvHutfQcN55e9zx
pRx8m5bAHlxHw82bjw8f/cfGLZcEjuVvoOHNuy8ea4+xUaGzr/HnZho+X5dW
oj7Ixl07Xt1ny9Iw7VetgFoPG+VlTh0YkaNhvdX0+T2tbPy5pqQyS5GGfwQk
IlXq2Kh3wGvozE4aymRo9CnR2UQ+xvZlqtBQ9+LlHfIkNtokH788tIuGN3g8
nWQL2WjolLias4eGQZ/jfm7KYWN9+MJYyT4app4l8UmlsdF8TPbbTTUa1k6z
Tkl8YaMWhTLadYCGM1ECYWJxbHw08NhYUZ2GG48qt4tEsjEsKfW5ngYND40Y
bFsdxsYZyWy1/Zo0tH7laLfyBRuzl1NmZgkOUA/P5PdjI1Xo792XWjRM6c6Z
X/KEjQm55w4tElzt33p04REbLQJTBI5o03BK5d/zOXs2Dou22l0mWKJxU8PM
LTbqLn+x1IBgbXdd6UlLNoaesLwrQbDltuvXxyzYOLLQrZdP3OdX4f9txIj4
/sF1+36Ckx2Tp1ln2Gi95GViIGFP5QaGdv8xNvI53LmWS9g/UTTm2w1slM0+
xS4m/BO/KVrZfpCNT+RMuhMP0lBDeL94y242Smd8rrIh4nE12/RKgxIbB8dO
G/AT8fK5/DixRpaNAkp6E0+IeCYtjeYwpNh46Jb3yWYi3tzzvR5kITYuitlc
3qZKQ7G5pZSS5Wz8nFKotkGZhgdj5YWRh40tGSW8HCUaPh2zi8mZGMVhh654
dSL/iREhrB8jo3i41uFlOqGPcu0M1bT+UQxeSIgW3EJD0ee/MalxFKm3Ue3m
Rhqq7ZVckVA1ih15y2pvS9DQvFXrXCx1FC/PZn25QOjxk4JX97v8USz+vm5z
rRAN95FWLXn2YRRdwlbdfctDQzM71RP+b0ZxRoB0kD5PRbe15196hxLn/QZP
DM5Ssezamy1uXqN4w+H37jYuFY0XtujeuTGKN6dMfPO6qKj1V1qo9sooPvTa
Jd9G1N+22Q2taqajuNfO4cZAAxUnxtc48hwfxRhfrzXZRP0GDyyJe604igZn
f242y6Yimd6zJH90BJmpxQc2BlDxQGRs8TKnEbx4/miY9hYqyryNfnH79gj2
7QV9N0kqLgt/d7HaagQNpD73/VhLxfrgl+PvjEaw22DutfAyKtp7Pd2irDaC
YpPhP3yGKZh069rTC3+GUb+l7npxBgU3HNxy+OOTYeTPaFpQOEJBDW3De37O
wxj/SlH/lxYFL+k+jbZzGMa3FaLfL6hR8OPpnj8HrYbxrkB+W4giBRWuxWbU
HBvGA125jkdFKKgWtGUbn9Aw2ovxRNZ2ktEsxPD80LJh3Fo2t6OsmYyPw556
Vi0O4a9+C++CWjIWfuhpjxwfwlJPcVMqmYx6P2LD9zUMYXQ8Q/HodzIatW9Z
fiNqCPdlzYktPiXjwx7D/afDie+Dtvo+bmR8y3xqtSd4CAubNmuJPSJjG7cH
F54MoWLyoXXGdmS05I9zfmM1hOv8bvFeNSWjg8rWYarSEK78K5+RpUrGV3vP
S3yXHUISuS3sjxIZMw96HQuXGsJDl2TfnpQj46xub9w1oSE0W/HDW0yamG+m
cRZz44N4Yc+tG6cEyRjsuZWxI28Qf4+bn7g6TEKJf6KF+zMGsXRQtCCCScI4
F77v8HUQr3q8CmzvJWG2Y3/ohehBVGpTDHjdRsJO60Qj16eDyDwj5JnOIOHN
ngg938eD+Gwkc8uVchJOXPZXC3EaRN9iB/IGCgmXmd6U+HR9EO+Tn18vLCKh
8gml9vITg7h6IeJ3YSZxP0mSUa87iPyrH2QMpJPwkK5gYafmIH5Lcv+38TsJ
jTRHYyaUB7F3bJ9XzhcSuimnWkmKDuKnELmerzHE/ckfjLYJDqJqmvHPc9Ek
DJUL0VNZOoipe9oi+CNJGL/JXl53hoUuGh5eMREkpK/ZM3KrlYWXhvfeCg8m
oUnw1nanOhaeObk2+OdzEnYLrGW401lo398oMBFEwim+qdSXhSw8sC9dNdSf
hB6e/TGROSyMp8UM/vYl4Yp/9aEJaSysiZDdaO9DQqmZLMe8OBbu2mAi8Oop
CRMdE61KI1kYq0+q1/Qk4a6xCCNGGAvzWk/tm/EgYf5tf72mFywMSm5SKXYn
4dHBR2o9fix882OGFuVGwkrrm/IjT1h4LaNJINCVhGY9ZhLTzizMKTw54/uY
hHat6nMrbrPQnWLYme5MwhkTpRFRaxZ6KGX0dj8ioWedZLvUZRY6RerEbiZY
4JwgQ86EhVv4fks5PCRhGP1vwS4DFoaDp1ntA2J/OjGaqnGched+bTM5SnAS
qT3m6GEWdq9sWE+5T8I9uozQsxos1HqgEGNO8K/Cgqdme1n4+sNl9oITCY9p
pjpa7mRhsrAFXybB1TkfrOy2s7Cu5nuPC8Hm+0KMHsqw0JcvLOAcwf1pT/Q8
17PwxJ2h3wcIvqtsrxYkwsL34lqquwie/fKffNhKFnJaSpTVCfaSM5T4wMvC
qNmrE+cJFvx0eGXSXyaqp8a6uhNs9kDQQ3KKiWZ8s28KCY7Xb5h4PspEqeC/
dmsJe8c3xNgs9jMxaV3gb1eCdUZvtjt0MFFea9W+WYKfFe4x7G9gIv9FT5kA
wv/m0HmSSSUTHc47ZOwg4rXdiqxBIzNx78P54V6CHfeHftdEJpINa0q+EfHF
5ebbUnOYSAncs+85kY9VrbLvNqcxMTVt5qCHC2FfCnv16yQmdkkFlnsT+Uvw
yPHij2XiWMFwTxSR34lzT38/esdEq/GMRzQi/zqyp+yGXzIxyETEZyWhl2ZK
p3GVFxPv3NPpKiX0tP19UvlhVyb+E7sppeNF2GPnCJlOTFxwbE2p8Cbis2aZ
4jtrJl5xnIjZTOjXrK8qWvAyYU9bBZsVQMQn652ohzET+5RMr5cQetcxV563
PMZE966sT2lEfTzb+du+QYeJbr/Sz5eFEr+/UDSgf4CJccsy/g6/IqHDJ6Oq
nQpMlKMvLHd4Q9w36ho3s5KJXie0n12JJeJdqLf+Fi8Tl+ffCl4RT9z/Uvh5
29wA1olTJEmJJGza/+lB0cgAinvxhT5IIfT5pPx4EGMAty6V3ZyRS0JTw7CC
edIAutT1xXF+EvfLXtlzr3AAs1p4FbSRhNrU8Y1G3wcwVR/HhIn9337NhjHp
lwPI98T4v6B6Ehb09VqFBg7gR427fUbNxP3ZKc28XgOY4v2WsaudhJ/MD5Ww
HAfQqCjPW6qfhI2fbMLTjQbw8ZuVm4qnSKillq2pJzGA6eo5Vjs2kLFMJFNU
fc0Amvh/fZdK9NdTI+lDOwUGUEdEPA+2ktH847c3YvP96LnO1fIZ8b5wFkiY
7OvqJ+ahjgRZh4xZna+/en3uR343ula2DRlV/B02Fqn141iQSG9PCRmzr92b
+KHaj0qbHp7/TSWjttYd2meFfsQu8/L1VWQ8PX7zUYhkPwZJq9u6tBHvFYv/
6q4s9KFS88aIX1NkTFQ1ePaP1IfRx7mvdxDzblPzzr8axn04UryknP2WQrxv
lpq8OdOHvz6uTad/pBDzoy1tUq8PUzX++WYmUfD4u8AbKWp9uF358fUPxHvE
0ZxZIy3Rh6zmkaHGZgqWtcck8bT14oqVBxTziXlu2yNqQv6vF4t8p1u0P1Ex
e3g2zdCuB8t/FgZ+LiT251ehlTXWPbj2hvl/NynEPqqhMGp4uQdva1raKFTT
0DPQVP782R4UW+FyL6GHhicVsqPP7+rBh1X1eiFLy7HzulPQhaluXJ+6THDJ
yXJc1sO2MnbrRjfYc82kthxzA3yfNtzvRhFJP4fM1nK8vUs6xvhON37eZcK/
uq8cq5+cbjW+0o2ua8O2fZssx/cyX8+ZHOpGycNdhxLEKlDl0k1t06XduGzF
7k3GxhWYnEpSzpDowpbjC3651RXoI3RZOUugC83sZeJimyrw6t2pnbnznXj/
4voNXp0VKKYiu7OwuxPVr2t+VRitQI9vnkrlSZ24rarbbOVyOp5P0ZTvPdiJ
4f/42nk06bhzVZ3cgFInMpatrDp/mI7L7WzlBqU60d1a8tZ7fTr+2vFuO4en
E/3Ws+QFjOgo93VGdo7agY3uNiM37eg49yV9s+jFDmzXHkheFUnH+pUnNq87
1YF8vgVFKR/p+P1W9yYJ7Q4M2fu841AiHa0VhTfJbOnA+qPSlKPpdKxMspNW
GmrHXWe/ReWS6Rj3WV5S16Uda2SjsjTG6Oi2HDfo3W7H0i3Ob4Wn6GhqY7Lh
+OV27Cvw/tM4S8dV8r4SZw+34zC/ZZMWLwMfJvaKm69sx9bn9+wtxRh4KiF6
reO7NvyX2NnFo8bAlDSW5LEgguV3e+lrMHDVr91bJV3b8FsfBrvpMJBeS9pV
cqkN6ZuPPkw/xsDTPJwzopvbcO6q1oMjJsR5wYPGTJE2VNXPvzJ3kTi/3utS
/pI2JDlVNHy4zECGsvhty75WvPRSZ0maNQPPWugEZCS2oobqyRtcBwam3ggI
8XvTim0/VetFHjBQyLE2wjygFaX4RuelnRlYGXAjgde2FfXDgyUW3BmoEpaW
0mjeiqGY2lztycDgmLkfyada0e37Bk6INwMNsoNLziu3YnKjYFZtAAPTiptp
cjKtKPhww36TZwwUYWytmRNqxSNTHp9JLxhY3ZfdFcdtQYOBnbw3XzHw3Jqu
+YkfLVi8wYKb8544L6W4lBLfgtmbjlu9jSLOKzgJRoa34IJ9hID1B+K8znLJ
I49aMEnp2ftfsQzcddJwy/qbLegok2t84hMDQ40jFUbMWjD+x4XhongGGtqp
Hnit0YLwqfSY/WcGZjxy0bHZ0YKP17n1fk5ioKh3qZ6mVAuWh91epH1hoGPw
6jPCq1uQaj7h35jMwNp3pkZ9/5pxmhV1g/GVgXsSYi1yOM14afM2v9QUBr5K
G7F81tWMVJs7NS7fGDjxc7/t1epmjC8I2quaysDzlCcOe4ub8VZz/ptKgjNq
ac7LM5ox49CtIdPvxO93rvVsi2vG7tsqYhUEOw5d9v/+uhkfNlbxKaQxsG7q
c7C3TzOypA/F3yV4H89EuOmDZlSUjOn5QHCYoFb0jhvNWDmjnpRL8JS4X/yi
STNWnXrW/5Ngo63VX+v0m7F2v6Z3EsGZypI/Ph9sRu27mxw8CBZTt853VWzG
HEvNSG2C7x9NLTaQbEan00WcAcKeeoNZqqxgM/47tvriI4L3WehW//7bhCk3
vlPGCX/CbjxvqhhtwoLKawrGBE85NHbGdDQhL2X1rVgiHsbum5lOlU2oVVP+
qJGIl9K72vSTRU3IFngutJRgniwf9y0ZTZgx7X1emohvY7XaidlPTegmFrp/
KxH/lNFBsarwJqRopn8RJfLjtSKyO8G/CW/GCMZyiHyabjuT4ubShHu7mauz
ExnIeyn9iNLlJuRjj61ZTuS/+ZGV8BKDJjzy6kpwaByh/9fr2poONeHL7qqT
/IR+Lla4OPpuI+zVKzNIiyb0ztqhc0m8CbOiEjyYkQxcyte5cu+KJtx58Fj+
8v/rU0M3tnukEQ/0C8oJRjDQz2TKLqejEc+uT9Vmv2bgJcfEg8FVjVgyuHJ3
/ksGLk8WqNb80YiUzPuuYoT+20m/IkUTGvHHqi0/Y4MIPfTctRmKaETrmuLP
G4j6ubKhbiHicSPaSH8xp3kR8d7vW37HrhGfOqcKLCHqT8DwQMTRK43Y9me7
pixRn1kBkcoThxvxlY3zhNwjoh/MWl06s7IR5Sz/hivZMrB3rbjCtr8NKHmu
XzbrBgNzVamTc6MNaHNiVbeiFQOtbHY+S6puQKmTWb9qLBiY3ziVx/e2AS15
03klTxP1NJHo2xpInOdvnp/SZ+B1oYuG6a4N+OamSnveEaI+jxUMXrnagG/j
3yss0WSgTZbv+ny5Bqxyaljrq8Ag8n6gL1SiAds5rYapsoTe2UOpNgIN+GBB
ZX+xDAMLt509to5Tj30awZWfiH4pFib+wD6rHt9sKve3WKRjiePnWrmj9bhb
xNw2pJqOMhqrEiv31eOvnD/yNBodXZY4uDzcXo/bl1nuGiyh465Qjc3kZfW4
Ql9nRWMmHaO/Me5cp9URfX2biv0bOjoPTq6IP1uH8kKfaO9M6Vj33az9FNTh
5EmexO0GdFR5VPB9UrUOF2/99Yg4RscBfn+TI2vq0OXPHkn5/cT8kpWM762r
Rfe6V0l8a+iofOUQbLlYi1e07CyTSiswYHuCKO1ELZpJvvrtlVeB/aMrmfYa
tej0quOO7vcKfO9a97xoYy1qPxv+d+99Ba54d6P1amcN5l34ne17rwJ7654/
+GBVg6Ex0YFRxDx+e6Ll68a71eg1erkskJj3ZYuFSwWvVuNp1Tn7I9rlOJYV
f3nOoBq5512M+lTL8dhWe+GW3dX4J+5eU4NYOQ5Pr2buHKlCEXGVx34dNPxk
duv+1rlKlO47tVPKlobiMptfrpZg4IK/tsh5eyreCRrRHf1DxEFvbnvPVSqW
zWRPlbcRfps2eJoaUNGp6oxZQAwdAyc4e+aUqVjt6bqJT56OfJaiDIlhCgb2
NX6b3V+BsWZXfEiXKTif9KK87wINHy+rzNXYS0YdNUV+6gEaVlW+aNmwhXiP
l5ZBykYaKoc3cPuFyMjf+Tfzfh8VmzKqDwDxHhdaaxvD70TFIq2XMfwfSbjZ
/dh9+VcUNFTlnR5YTkI9w0Xp29Uk/G6dcceCVorBf+wdJk6XIO/xD4c/ixdj
e4fDT2eVElTMOsYrtlCEiiWO/IvCJWhz9rHI3YEiLAu6/06wrhhnnjS5DP8o
wrmNzsXbLhZjre09veXnitBG58ka0+tFaOihEFG5EtFz2UarR39/4eJMX9ZM
6U/s32DUt/JyFsoO2UlodmViR7O5KuNZFFoLBBl2O0dh+/0upUc6kTBiv3Qd
n0ok8I68V5EfzwJs/rl35GYWWO0P0o1TzAZ+v93a+tFZUPbExUTaMhvuk+47
BNdkgZ+YmcfaumzQvU0K71DPBgGddZWLmTlw92quk8vKHBB9GXKn2TkP3Da6
S7rH58KWAz4pgTwFcFvX6bIN9Sd8LFZbN7O8BFwayEYjnUVAEqaFvJQrAb2g
da7pv4tg+LKFgLJeCZiPTVZYixTD/rkni1ZeJZDxxSzg1eFiKN9DG6qZL4Fn
BoHfl38qhslPFoXfxkshrkHt0BHLEjjm52lzvY0EnUqvQsxrSuF2vWgvzxwJ
HA9k+r9hlULo1oRLURJk0No7XVz4rxTaCmmGdcZksPdeTKpQLAP736Jah6vJ
kGIftNDuWQbvbyaISJMokPmgQ5muRAL2yfK8+lQazJ41KzC9QwbHn+aKPXQa
PJXb2XHJkwwzO0besodp0CJ3hnbyNRl4Vq9yXiZfDtFvS2nduWQQrTqjdjCm
HNgiUhWTvBQ4eKEmIzKkAgIaZk9/eUUBH4vmr5b2DJg6pn9rJoYKK+k3N94L
ZsC6R7/ezH2nQrDWnyDXFAbkPmbPDiAV3khL2oYNMkDzgNAOxy4qJHdZKJD/
q4TYRlOtq9I0qLbqilc0rILg0Q3CPmE0EFKbPDv7thpkl97cWXyvHNouXyj5
m1gNKqYfcwpdyyHJ98f+xcxqiFh5tiPBvxwONzhJLauphvXMisFdhN33708N
rV1ZAwvmq6LVGcT5jGkfVZcacL2qVC26vQKSWo1n9/jXgOcC80mSagXc582+
rRZeA34bX0XJa1SA0PmH57XTa6BzO69479kK0B2f2XRqqAZOB8736D8izqvO
5t+4WAshm5LXNZZWwANTMxVbm1q4ekFlLS+D+P8nubF3HtSC7bNQx/WNFdBe
6Rxw/2UttGhwzBZYFSB894+xF60WVppmtPwSoMPDlDlutHodxEzHV/w7RYcj
9ebWsfp1QF7z8nbRBTqIzOc3xRvXQbjLIV87Czp8OeVa+NWhDiT6M3Y9taVD
+/DfZ3lfiP+X3vYzyp84r/hPrmFDPcz0K6XEFNAhKCH51XLFeniwRmfQu4wO
tVvMFtQP1kP107XsMxV0+E/yR8MHk3qQ41Oyfd1MBzfBWz43X9dD4Bkc7R+n
Q6m/OPd9XD2UXNJXmP1NB4GlZRaM9HrgPdVgNf6PDu/mZfbuqa4HtNSfC1/J
gGx2fc/fVQ3wli4ZlLSJAf9ueZ1RkWoAU4U1yaPbGHCUqZr3344GcDELWb1e
iQF1nUGhpBMNcP2Nb5nMPgZwqw5BiF8DMD/l8f49xoADpznJxeENQDKdPeN4
igEe1EjxqfgGSF503lltwIBVxTNss9IGcIv/WQlmDFDMSInaytMIGtkn+8Zs
GGCvYr7CWLgRLp09zht9m9Bl8vL7/jKN0Bt5V2T3PQYc+2R5alSrEaz8SnYI
PWTAi00iOTKnCU5TPW/qwoD6yIKthhaNEBd29L2/GwMswyTmslwaYWHqd2m0
FwO+iJCvDwY0wpGdZkXevoT9z51qJN82goxb31rDAAY88a1MepLdCFu3i8zG
vmBA1EMf0xOTjeA0YnhU5g0D+iZ2l7ryNkHFnpMBh94xQOlel0rqmiZIWfLg
zclIBuTZaCxbu6sJQp+NG4nHMICnn+WgB00g2vh0a/NHBhz/L7zj0dkmeJhY
/OdpHAMazbiZ7XZNwJvVyB+cwADphujNwm5N8D76ugU3kQHWhqeeH37WBLe0
189rJDHgK2P2t9P7JrA0Lpy984UBEycSrRK/NMHetEuWgckMUCdfqGrObYJD
wrInX3xlgKfuEk1BahNsWO9Q7ELUObUwNVG7qQlyNBtazn5jgLDmJVF7ZhOo
pqxKWJXKgO7E2LyYqSawiN3SkkRwhijrvyreZij+6tOx6zsDfDx2rlgUaYZb
sWuK4wk2GXb4rrKpGU5FUF4tTWOAgkmOyRXlZsiiU6+dI/hP8fy/F5rNYJNg
rh1AcLmybkLBiWZ4GDKwL4XgqHf+p9mmzTDwe8r0F8F3+RmTUjeaYZX6gWxi
34dDDqKRp+83Q2Kg+9VYgkU7THXdvJohZ+Sn1UOC+45HD30NbYatG1fWHSA4
M7M3tO1DMyy6figg9nvw26xwUPBbM3xf0bzXk2Cz53e6NH42QyHsO7acYKXZ
DD9bWjNcW2PE70r4O281q/y+qRnq6XNP24j4MKq0G2gDhP2rhRgKBH/Q9Hb7
M9kMOp/Df1sS8bT/TJVV5G0BzuufokFEvHXXClWYibRAcmeF6gciH2JPLjgG
yLTApdB9/8UQ+cox6SxiabQAi2x/+NZnBgSUyN5cf6IFrN7T1u0h8m2ucktY
37QFzh73PToYz4AF/qnLiU4t0F0f+0eK0Eu1gzp/49MWmE0Ni48k9BTb4ZHC
H9oCLipCk8sJvR3NWvnXOqUFYi/Kk74QehTfYhAXlt8CERzLu12EXlnPw06U
UVvAnXFpGd9bBgRZb3orO9ACOa+UDcTCGFCzdv/+XulWWHO6xeraMwbEPXnc
vmZnKyyzzo5dEciA+yPofVijFVzPDNh+8GOAROnJ2o8mrXDryeBY+FMGXHH8
797VkFbIjjrLk0PU567OBPGQ6FZ4PR1XV+/EgCUnRwoKv7ZC2p2+xh5iLsVv
ebhKhtoK1o70YpotA0aqn31p52mDT1+9PesuM8BZNafvomMbKAhcLeo5xIDH
Ka78up5tsEFA3k9EmwGuiofklYLbYG/OzINd6kS/kaXZzn1pgyv+fkpHdzPA
e33b+PueNqAxtM4UbGZA8OLCYtu5djDfkLmwkuiHoW6lW8qutEOK1nOa8Swd
Xv7xP5Ji1w6lvoztYZN0CJsU8XcLIPi/4bHBIaJ/srYKSRe1Q8zgm8vTDXSI
rzomdUW1A0y8rvunfqVD4mlBnWPaHaDwovK5SiIdPtOqrqqc6oDaMIX4uI90
SC41+7RwowMailfZ2YTT4XuOrVLMhw44Fb1O+oYHHfJjgg92r+6EXd1tu86e
pUPNvUYjy9FOqH3u2e7BrIDThwfvuvzthGuSz6/KdFUAVXQuIFSgCwRme9J+
NFVAUZZ0QaFCF/gu+e9kEbUCUv9ab994vQuYR/13X0+ugOf+k9N1HV1wncvf
N3+7AuINAiribLrhlxSt8L+hcvjPJsFO7GIPtP1jeEg20KBP//Ebmf96QJbX
zLif2EtuKBiUKNj0QNeGDf99K6OB3dDseu0HPXD7ztUQ7UwauNw+XXr9ZQ90
JOwpvviaBq/uTW7IofUAJUGiMcqQBmWPDlMuavSCd8T2bwpVVNA3E5+wOtwL
qd6OsesoVCg/OCJ193gv/HOeTOMn9pHqP2GOXia9sGbuXPRYKhU6XAelvzr2
wlNDtiAnmAozT0Luzyf3wufP09vTDKggH9CxJWZjH+zfUi4r00CBQdEW6iHZ
PviPRy10JYMCSdH193qV+kDr1XaJf2UUUPhRUbBdow/2nMoW/pdJAaXOvIsp
Zn3A11f81TqcAjv3RbzMC+8DQ63JLxOmFBgtfHnQIroPSh4fE3I4R4GUEy+6
5uP7oPueS8Of4xRQvuqjfCizD0QGhzbs0KCASpAjjVzbBzpBY+dEpClEXs8u
qRfuB/mKt1/4BsjAtT2Z9GB9P/SXiHse7CRD2rSewfpN/fDrSXiHSxMZdgtq
R5ur9IMmoyNtazkZ9qjtUO853Q/qBvZ6Imlk2Pd8uQMnsB82DRpyHnqQYUqc
TyL0ZT/cGhfe5+1MhszYhcLd7/ph2Xz572hHMuzPmV71IKkfjgTT7y3eIINa
b1/SX3I/ZCW9vvDgHBnUDxZ1r1g6AB/1vDL15MhQmO+/XVFwAKp3qthHbiHD
UW0D2xOiA+B/av+FRSkynNPtnAzcPACs47f6xteS4cbp+WWC2gPQ7hl9x4eX
DKOVpad2HB2ApXa5iWcWSOBg+Cz01KkBCN3Gl7yd2KPdTCQln18cAPL215d4
J0jw6r+DyqsfDsDIiRPe9r0kkOhbdFB2HwDZN4JbMjpJEH2dkn3GZwA2zIrK
8BF7eZKtyaHgVwOwt3SHW10dCQrv378g/H0AruSxE1XJJDj6W/OtavYA/GC0
yXBKSEBz4eswKCDuk7ng9gtJUO/x6kZoxQD8rrwkF5hHguGANJc1gwNwsm1n
Z983EtgLOhfuHhuAxeq7O2S/kmD6BfCdnxmAjU2v6x2TSMDzuvL5q6VM8Nnx
y/7IJxL4rYuoyRBkgnaUskfZRxIIvr0sXifKhCbNy1ImH0ggHj0as3YLE6YO
VWt9fUeCqE2Z/XsVmBC/9mzT3Tck2BLnqmikyoT/SP/2HAknwc7PAj/CtJnA
z3fKQuYlCXTTFcjrzJnw07w5KiaQBNS9XAG1a0zgndpgP+xPgjPZOQYmN5mw
ZDrJ9JgfCcx+HmuJeMiE1Sph/ru9iXeMtpBMjjsTOFyZnqKnJLAqarBs8mGC
39/zDtc8SXCXZD26/jUTDNKTjBrdSTClv3P3wfdMEFB3yU52I4FL+eQDs1gm
rA0wsAt1JcHC6Z/5zklM2K2b7eb/mAQ+VV6Lb78zgbJ0gB3iQgKB8yeP5mUz
QZ2KpC/OJAipXxPYUsAEycONKxsekUDMtIXxp4wJYYescA3B71s+ikrSmRAj
dnrk6kMS5PZ/DhOvY8JGC/KzkgckaBhLFV/byoRbnDv/9hM8MZf1VriHCclz
o0fy75NAZFmB5KpBJvy6HGVpQLDymrKoFWNM2CPmfWnaiQQnpSpk+GeYQE4w
3pdC8E352o9L/jHB++WDUSeCffe0bF3gY8GRPK7faYLjtLvj5wRYsIThya9G
cNFxltzvNSxwzwq6tYvgjgucpEkJFgQuSGdqEjx3ZVqJu4kFgoenBkwJlrCd
TxmVY8HB5/aLPgTvf8CnOqTMguzKDzylBJ/3FEgf2McCXtg7tIaw1/7Zmr29
mizIKA3MdSA4OEIiq1OXBZPmCXd6Cf4au+lA2wkW9DxVXW5N+E9NkctrOseC
vZGPvGcIZuYoa9absuC1sWP3OyJ+fKX7CqqvEPatydt4lojv5kpNYFxnQeOx
wD1riXxY9J84QnYi/K0cHagi8uU8do5U8pgFtUJKrhQinxFzpvr4lAUX7hzp
qCLyXS1y41RuCAv6FM9Oi3qQgLPxDiMzggVQM/7xzBNC7/L3DdKjWaDOrl/6
jtDTMW2vC8lfWbCa/Kr9GqE/6+OBDYkZLNh4S+xIlw8Jnl4INf2UxwLG6q36
dwi9/rr1wSKKwiL2vsEVPwl9t9xP6HhbyYKXPxWyHz8jEf0+5Wp4AwvetfF2
n3xBgt0R+VbBfSwQ09vtI0XUx9nY4oGgYRY0vGgZln5NArsUqo3/OAsUrUsS
VYl6SixpvO25yIJvh59MeBP1JzU24eS4cRDS4gJCOHEk0Jj7M3136yCEf5gw
c0gggSn/EufbioMQf3fNuqVEvb/aKOxmfWAQyvvFdl4k+sOK4zt8TC4MgrqT
5Y6iXBJMfrQK03g2CK93/frqWEvYY/LyVeWrQbjT8madeiPRrwQx1PL9IJyZ
1JgRaSXBlYeSL4K+DMLxN/rfpnqIfJ6q8W2lDML1tw8oAUQ/jJrRefR46RC4
zJRJUcXJMPPV7oHQqiHwkvn37s1GMhhee+8Ut3YI/JQ2+j7cTIZl9Ol75VuH
QPGuoYClEhnsY1NuSh4egsyDTXYjOmTQOy1pnu8+BAqeD5fG2ZLh45LjZmd9
h0C5aTbbyJ4Mc9kPTHqfD8ElH2lxsYfEPNpSc14gagj0hKWFc5+SQfK3/ynz
/CEYvTq5K+QdGTix01pzM0NwPWQw/UQFGd78rt6kYT8MAkZ2T2A/BbLjy3+e
fjQMZk7jbR81KdBoWGZ61WMYDmh8Nl+mSwHxlJwQn+fDYFlWg+1nKRDx34fF
yqRheJGssTLtJgXCaLe7rHqGwbu4en9WFAVCI5fFvDg/Ahun3J8dWEqFtOM8
mh8vjoCnwG/aawFiX5j+05jx3wjcDsglD4tQQfgcW6j57gjMOwy+85emQvDS
eo+tz0bA2Fy/2lGNCi/uxF7JKR2B5Sr/+ApvUCFFMnKOVj4CAxJzyyLtqECn
hEW014xAfPbbHjtHKqzaGlC5pHsEHqdV+bLdqfC88a7O6fkR0E9r2WUaRoUg
0JLp2TcKEypN5+4WUoEVcUntmdYoVD6Iqq0upcJRjtvZ/UdH4ZaU1gEZGhUW
ogo8Ai8Q340jTB7VUcFxTqdrt+ModPr3W4qyqFBlePV3m8sosaeiy88RKuz8
8kTY7+komFKUU05yqcA0LYLW0FHoFcliSvyhgnnW4Y9e30dh8l7anOVKGuSs
sszdmTMKER01sGM1DcSsvaobC0dBu5HmVS9Cg0rRUp4dlaMgv2fFRcp6Guyw
7ZNoaBiF1EaVMOGNNAgo5tv9pGMU7l0bklKToYGu/dFrdaOjYBKqabpxGw1i
KNYu7lOj4DpxNqFZjgbzMr4v5ecJ//2HXRwUaXDxYcKXGj42aAmnbRrYQYNs
BqnYVZANmkjv2qNCg7XbmS3b17IhPuX3EvNdNLB3WzZRJcmGv8r29It7aECv
kxN4vJUNdTrz3rv30UBxh/7WbUps2NLLvN29nwZ+XjYalbvZYOu9QLp+gAa9
Lf7nndXZsMn0dW3RQRrA7iTbrYfZ0Jf3oJqrToOoAKoX/Tgb+EOm5qc0aPCn
a/D9w3NsyI5ue03XpIHJgZU/Npux4TXboeqhFg1+BCtWlF9lw78tzoMTBIsw
T/Tdt2FDRr2c+CFtGtzRtv0rc48NS8Z2Bl8muDwsaC3tIRsSeFN9ThIsP5q8
w8mDDdMfD+1cRrDPkYoj0n5siEgfzQoh7ut5P2JBecEGUaqiIZP4fZ0JwfsO
4Ww44dyxYyXBkSd2Pt8YzYbVyRcdfxP2z348HU+KZ8PQiLlBGuGf8azdr3sp
bHhYtmx0D+F/hsGL+g2ZbNjKN3zPg4iP8Odvo6U/Cf+Ff/O82kvs6wuMpXdL
2VCg7lNqt5sGNGOOlEQFG24uPdm6WpUGct+E9pfUEucfXLtxfycNui0Mrov3
siHkS7F5MJFf7R/33IuG2NASJ/wPZGnwXiA03HacDd8gO+DHJhr8vpb2TewP
G57bvBEfJPRjlFdNKuThgLfGSEE7oa90kfGOmys4UGuiExa6lgZCN9fMiIpw
IEva/huvMA2o4uflbDZxYOC155g0Pw0KZtJd2XIcOHPuGLVzkQoZjWtqnFQ4
8F7yvy+X5qgQFVHj6qnNgUP1Bweecajw8uHummV6HGh5csZOc5AKfiYv5V6c
5oC/6xWj+B4q3BM3rHlnwYF9PLbBH4h6s55Jk9tsxQGRuapFZToVzBpF3BJt
OSA9yL/GqYwKuhHVcj9cOCD1MB8kM6kgLn7Ojf6GAyvCk78Wh1BBcOZ7zfkY
DqipWy3t86UCT6OwfEsiB86FPNiR4UqFofCqmoEsDhjnCbUbE/3l1zoD+cU6
DlgnP94RcYAK6dOpbr5tHCgW2GuzcgcVEhuEagX7OOCpHrZ3qwwVQsMr3SQm
OPDb9oPOIT4qWK07W7tbZAz+Xg77J0yjgNn0N/nc9WOgc8o9+WUeBU43rHbX
2TQGZjfpGmlfKKAWzpA/pTIG3LTNLzCAAgLrzrhbnx6DdQs9+suJ/rs4lVI7
fGEMrmSV3j6nSoGp+lUKDhZjEH675ryyFAU6wui17rZjkL7eKSd6ipgHYqcV
3gSMwRKO+4sDH8mQMPXVXTp0DM7dNw76F0iG9/WCdZ/ejMEbn4wfZ5zI4BNW
4Z6WOAZpTzHK/ygZTMVO1dHKxkC9fr5Gh5h3iyu3gwcPF4J75nKjeEnQPp2f
y7OUC/om5ynOzDLI7zm3x3s5FzoPNti308rgfp7b9gAhLlC5ISpqIWUweLNe
8JUUFw7Mb1IVEysDkpGtr9hmLkBr8d/VU6UQd4hnMUKWC+8rau/41ZXCJYmd
E5FKXDhpzfjCCS2Faop3c8JBLtyeD/nnyl8K335sOK+gxYUlS5e5n+wpgaCY
7xXJwAWxgir94F8lcPRRW+H3Y1xQmx6ftHcogVy5vQl5RlwQfVfy07O+GD76
9jow7Lmw+YGqcZZHEbg7OI8Y3OfCtHKFoZ5hEZhfFrpe+4gLyaKUb2qyRSC2
X8OsyYMLJKe5KPsghID+lzo9z7kg2Hv/5za+QnA4clhwOokLX3ikKMOZ+XBW
tcnnUQoX9parrvp9NB92bryz8Oc7wdfe1b+vywPmxNvxhWwuFHcWJESP5oJ5
HLdpBYkLbnsK3Q6tzgHdJR/jpXq4QP+0M9d+2Q/Q0T3RPtzPhbKJzULrnDJA
3Xtibd4gF2KOBOi0dqTDLn49b2MuF7z234jO+ZYGm1YOXwte5EJurOOdj3Yp
MC+ybxOPzDh0mhdasCtjYdaww6RyyzismVd9Hn7zI0y+8guO2j4Oxzc8hvm/
0TAs1vLvoPI4aD+XO95x4C20SHi0O2iNw7of+e+dXwRA9mbquz7zcZi2dgoO
iwrCjGsONelXxiFZ4fiW5V9D8Vuc5EpPy3HwT89JtFgThvHb7jhL2Y7DPYkl
LLG/7/G1gqipscs4qK8Lb74RF4/2uy6JUd6MQ2jhi233uemodIgbnFw/Dpbf
zySYRhfjCvcn6w42jwP/lkQuS7EEmXlCUaQ2wj4q/2VqTgl+2qv8pbt3HFJG
Xx71aipFKXnbUvHxcVjReD5gvTwZhYT6f3utngDSj9NpeSsqcPSkk4fImgko
zzVTM/5ageX+vPwfxCbAKXXws7UBHf2XbBHN2zgBDQqibwYjGcgzfXnnmOIE
8GfUSFrJVuNEW9N/Fscm4M7Q1uSZiVqslrBhDZ6YAL3igHyHc3WYajxz5+GZ
CfC2mGLlpdbh7Sox15dGExB7Zt3L7Dv12F9iGE6xnIAh/dWKPtMN2Pilgrb3
yQSoi+nue6HcgvmPcM+q3An4bLKfX3dbN/Y7c5r8f05AoVZwZufVbhR6LO3O
hxPwxeO13kRkN1q5uVLmSBNg5G6R7bmuB1c9PXBpqG4CWNqKUWeEevFy0Hdf
8tgEdF3fNQPr+5EnOqbZU34S5O1qX999NohKHyrd55Um4fDNaiedpkE0ivm3
1VllEqL/+FZFyg7hl1iLO/f2T0INj8b8ksIhPJ+4nvfKkUlA5gbLl3+GUeAi
V7VEfxKurnrkc+PaCP4PfV1dRg==
"]]},
Annotation[#, "Charting`Private`Tag$738056#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{0.5000000000000284, 0.5}, {0.5, 0.5}},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1.4, 1.4}, {-0.855639704437987, 0.8564320900118193}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {479.8347252809547, -97.50736892665735},
ImageScaled[{0.5, 0.5}], {299.89670330059676, 185.72832176506162}]}, {}},
ImageSize->{
UpTo[600],
UpTo[223]},
PlotRange->{{0, 639.7796337079396}, {-195.0147378533147, 0}},
PlotRangePadding->{6, 5}]], "Output",
CellChangeTimes->{{3.817270261356271*^9, 3.817270268199273*^9}, {
3.817270386217204*^9, 3.817270413445382*^9}, {3.817270447239348*^9,
3.817270477074524*^9}, {3.817270593198266*^9, 3.817270607955358*^9},
3.817270744280167*^9, 3.8172707889603767`*^9},
CellLabel->
"(WOPR) Out[241]=",ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztnQm8VVd1/2/zHoNo1Go0TjWp89xWrW3/1VqtY/3b2lqnqsUhRtSYuTFR
o8UMJDGEkFklk5kkJGSEJIYEEiAECDNhJkCAAA/C/ID3GE7Xb5/13Xff8849
9wVT/eu/7/N5DOeeu89aa6+95rXOJ7968qBvfPerJ3/r61898qMnfvX4Qd/6
+klHfuS4E+1S2x/Vam1H1mq1fUfW9O/M/ul/FH5eqz96XP7/9ur08FdbdvTR
R/NJfueQkg+m/obfqX/yP7H6s/qdcP13AVGvaPTF8FffbE3Hjmz8jFXZ7Q8t
zcY+8kQ2Z2lHtqd737dLvvmt8Ge/7ID9teKprdmDj9W/Nm/5xmzvvv05gIeX
fPkSv/bwrNXZnROXZavWbau9MwflC/7R409syn78i0nZfwweU2sPf7ZlR519
b3bVXfOyji2dtUEly37Tr3Xv3Z/9euqK7KTh42t9/LvfPu/+7C57VITrJRVw
nXXNFH0tmzDzSeD6nH+0/8CB7KZfLwirHuLQnXDhg9m5103NfnLlI9lXfjL2
EH/k1868J7vj4aXZvv0HakeXPI1rC1c+nf3nxeOTJduyUy6ZkJ3zy0dFAvtf
fu30n03MNm3dVd/7F1egcOqlDwUUZi5aDwqf9V0+YChcPnpW+Fi/598wLdu4
ZVdbguH0Beuy7136UATnrKunZFt37Al3HFXy1KMSbhAXDPSlv37WPdnoCUuy
Hbu6am3+eO2OyMLjjx/2gB7fEqNvnffrcP/S1ZsbMWq3DVkYl7v30Sf6JYiK
Hwf+ZGz4SPv01MYdZQh83b9i7JFddmsjbbbt7MpX7BMOyKBzczi0RZ27u/Ot
eFHJmhc7dFqT9QxRh/0z/umMRevrsE95YoA/6Ym1W7PvDh0XLh9z/v3Z2o07
ciDDM76W0HLojdPiAndPWqY9eI4vsv7pznBo9NFFN8/QRzm4f1wBrliM9Wx9
B/ff/NOdu7qz7/z0/vDpz26b/Tx/0tPbdmcnDn8wXBbYT23aWftayUO+6vfb
mciG3TQ9PujR+U/VnuePmG/iI7neAuC2bPmaLeFe25jauxqh/eXY+eEjQby7
a9+h/vQt23dz4gL7bd6+2yFrfMJX/H6x9S/umBOhsj2rPd8fcf29j0esd3ft
DV98YQW0jy3M91vHy6H9tC9lvCn5ET62217gT99oG3LcBQ+Eyz/6+aSsq3tf
7QPOADt27MiuuOKK7Lvf/W52wgknZCNHjsz2799/CMBdf312/vnnBwi6u7v7
CKLac7JBgwZl6c+jjz6aff/738++/e1vZ2eeeWa2fPlye24zerQ3HN9Jc9a8
wC8LfXjj1vGL66QIq0AAaQrdcfa1jxYJcOktM8NHEqQHIGN+6o4ekrPx5XY4
xcZ/r88OyYYPHy6m3Lkz27BhQ/bDH/4wu/3223Ps+2UzZszIJkyYENG89dZb
s+9973vZU089ZZLN6FEbkO3duzd+vmzZskCC2bNn69Ps3nvvzY4//ngRub2E
GgMdanZUv3dNWvbHfnn8jCfDpaOH3BdOjX5eUMEYtz20JNxvRIAu/+pLrX96
ZxSpi1Y+/SK/PGvxhnjZRMdf+UJdXV3ZunXr9Gv/0599so6OjvC0TZs2hYev
Xr26dojfP2nSpOykk05yjsqvjR07NpBq/fr1tXYn59VXX51ddtllkVwSr7pn
/PjxtTL6/Idv37pNOwMRBOZlvn0QSXLgxAtzuSECtCLSNWPmhXvt1DUSqS2e
9cFXTq4d5svfNiGnqU6V6Y33+K1LliwJp8V+7X/6s082ePDg8Chtvs6HYRcp
9OSTTwZotmzZUuvn1wzr7OSTT87WrFlTQ3WeccYZ2ZgxY8L/+O6ll16aXXfd
df6/nph92akkUf79yx8O4P7QNH3X3n21FzsaD/iRkSKQNtHP8yuoNHzkY6gD
qPQvvpRJwbgZUx9/6jB/uvZS9gZqUortfb7alClTArVSrDZu3BieLO7q79ce
fvjh7MQTTxSvxfskVR588MGG71511VXZz3/+8zpFglj6ogPINkpvdWzuZCdN
6GXfcs07Zd7aliRw21HiqUiCh8zqDBL7/HHiv5f45e2dXeGSn0Gwb8UPua7t
GzDSXvPjvMCWt2KDLzkUc83kRpg8MnftS/3WG+4NJqfMzFpL3FEWZkM34t6W
nXn1I+Gjm8ctqh3uj5zXqG/f67ciKgzZiLi2GFEB4joIp556akRcYsKw5Sut
pAT7HsjvBo8ZFgAn2a9LA3PjKXzn0JJlLvL7Zb2iQ02fOvqf8k83JraNffoy
v3zdPbkOl4lpZu57HTNTLtmwYcOy7du3S2cEZjb10tc/vvbaa7MFCxZk27Zt
y1auXJn9+Mc/zkaMGIH2QZtIC+3evTu7++670SaVhEAJyjDZtWfvy/xWaX5d
Nt1ba0kF2ergaVq5gQptwSZ2MVN7uX9D5wuTaPjIGZCgiX0BCW677bYgOL/z
ne9kp5xySrA3du1yV6JPsCt+8IMfBDKcddZZTe2Kf3cg5HYA9sIVm17ut5pu
C5dMPLZCvS04o7navbf27ka8/2vE5FxJT1xWe4U/0tRpatb9e8nKX/Bbd+7u
jgLCpBQryPRlBSlq/TyvAsCZprWDAXjJBAD8Z19Kdmmy1Cv98tV3z4scYbsZ
4AlrA9lVd81Nb3ilPwkZePfk5bWWYGGWDTGzrAGsthAS0EfmU9Ze5Y/sFDH8
uJoy/kLJyp/3Wxev2hyxMpPlVX6rmUrhkvmWraEbPT5X5FeMnl2EDmX3q/sX
1v7EHznt8ZyR5PmZJ/X5kpU/57fKAkHvmo/ECqs3bI+WgzZeP8+NhAesK+/M
CT/Snu1g/VOyLorWBHG+bu5KXOCOjxx6k1cxtlAGnu1dtCK37NgDeFoGMa9T
E8FrQj/5sbr311NXFAFd8uTmqHDNuHi1X5aoxHGeMPPJMhhxv3UCvuFuprnf
R/iteEzX3D2v1hLAH14xMdxsO9cIYN0wPu/6qbUj/ZHwg3tdn62AzlgGh0ub
AnSmXHHjW0OHV6PYQwE6c2PiIQO6PSZMj/XdGfXAojLocP/l53M4TBGzQioJ
9G/9DChZZrjf3xBj2LrLYfxk8qlCMfrUvOU/9csTZ+eGkD6yLwWQwvK4z+Iy
hX5009Abp7/GATj5ovHYj7WWkKUq1+AoQGYEzZnvrHu1OUAmowGFd9ktsz5T
sj4wPrZwXTyoazfuAMZf3J4zn6n2VjC2xSNg9nXtL1MApSuXR2/1tf7IVGcY
Av9WsjIerSiPWr12zPzX+q2YoIZja+gQZlLXBegU1NFHtzy4uPY6fyTXBpu2
sw38dAV0dljDrd885z7ZX+Anhw3paRZI+M5zKgBUrDVnkWlFAKWR9JHCkABo
Vn2IjQYTd97aMgBxfOU3Y/WPmbycFcSXhAMVKG4FIPHBq+6aB4D/15faurNu
KZnV9Hq/bMokalTzxP61AkZMc4W/zIl7vd9q0qpR+VYBiM0n464BQPM/lmwA
ktob/JHaFESSfSVAEhbGxZEd8tUzxnJK3+BrKSijS5eMmtkapjOuyl2Fh2ev
LsI02t1qY7XaG/2R+KhSBKao/qVkZaAz+zLc6mEeoCOOorB9HbqwBDDBTvJs
CjChVO804w6YpINPuywPhI+4Y04ZTHgGi1bVz/Sy1VtYIQ2GchT6lyxzod/f
4H5s2lmAEY09Z2lH7U3+jXnLNkYHZ9W6bZ8qWRzzUFIRm86kIiuE0+CHRGi0
gjE1WE1TOYyf8E+37eyqa54de97sC8HOOuNVMMo3133iPvPX+PoQ15KyP1oA
2BaVgiFVe08jdMSGxf2G95v98sp12yLQZm7+c8niqV2GRL7hvgVv8Vvtn+GS
GS2tAZwyP0fyB1c83AhgWxSp5/zy0dpb/ZGcbjnfBvQ/VUBH0FASeceuLqBD
U0d9UQXdGDcZh900vQjdCDfJFD4DOkl7WNYYM0ASFkZHKzLFwbv9oaV8D5pL
dYvt9dOvAiycbHOdAAtHRY69HboQ2X67XxvszppycG/zR2JuKz5mh+GTJU8D
6HvcZ8wj/3sBWrjUPaxOHiZczHgIQbcFFThc+Kvc1zCroIiDdkwfmUEX4RVR
8AGMqbmsA4gCNOn8jnC5RSy/T0MsXz+TJ0+u5QH9/iEEoZ877rgjxGLkcCs4
qajT2rVry3xuFGAatDdHG4r858UTouLm2vc8p6j0x3iHSoGPs88+OzzxtNNO
UzDZ41sDstNPPz278847I8QXXXRRiB5x70033aTQfRl0EFw7jalZILj5zxGa
lLJsr3mob/fLHG6l7Oz8h8uVuYP+PXIHthEhJzBnzhwBGtIHaZ5hzZo1inyE
pa688spAfVu6NNID6XFspBaMMSHzMGcyhSm4RtLRrPfag/5YBZVETpFYMf/H
H388BGIWLFjgAbsBIYWh6/wogKfYrUBdsWJFiMoMGzasagt4tHyfwhYg1cfP
WOVb0BYl9LFDx9Xe4YgqtkcCx87z6/zW3yRRgaSZP38+UMdr2isdolmzZpXS
/xMNYN3nKDz5Dr8V2+9nt82OjKXwGIxlTDa2FxjY+QzhcIMmYiDO0BHX/7C9
li9fHqDr7OwshXaYgyDzI3EJC1txuSetTUDHrcAuly76M18F000C3XgOh+TZ
yIiUbYWOjHjSjk3lVmChSzPbCWUr8JPMUoxboaQ2BpPdOrYpBu0RA0nSCy64
gLj7/fffH457uguLFy/OvvnNb+pQVe7CKtd6kt9GkMIu3OiCRiEPdoGExtV2
jV3QXqoiJQjdR594q9/aKtNSRuk2p7fYcN68eUEAiaUuvvjiIGQjQkFXfMwB
2Lx9d4wImDXzZxDRHWFzriL8WMZyjsf7NYW+L7/88gZAxe+SelnQC1lQaYsW
LcqWLl0agJo7d272ox/9SN/rE+EZ6l8m8qus+F810pQImInFCNNPr58G7Wp/
7igR1XaNj+l0MNxLqYoEu7hXgX8pM6U2TDCVSct/dCiu8VitmYZ6JBsuUcPh
NbuODTe1Fg1JaOvM2kDblGOh7Y033hikoeLuSjaZ8sr27NlTBtwwvwaJZMQX
qDx57prwkQqOoPJJHucxFzRS2Syk6MaYrIHKrZJFzancFqgs6mZB8faE/uP+
6A2bO6NTO2vxBiCSkZXoKEiL8DNWiaQVi+p8pSJ5xIgRUSRDO5FW5lYziKDn
tWPmR5O2QE+FJXDbMT4VDBpYdw7/wi+X2vwtsk/tgZLTpk0LRorBhsyCmKpu
yGsc2rJ9+/ZF0MtyjxCYojD3y//CbyVtokAA1B05blF0l8b7DmOPjB49Ovxb
phL2CHUFouwvf/nLBvCkrqvAg9rEsM20b6R2Xjmjj+TH2Kl7C5eTQJYRH4Kn
LqAhAsErc13tgdjnnntu+LhAcEErQ/yQ8GdbkL1VGCGFlWSggGPBik3v9FuJ
WCuqB8HNGInXJjizrlq1KhsyZEiwp8Udsr05aCJ0Eaz77ruvV4TGsn5s4foi
oVMjZOuOPRz/WZ7TUujmXX7rIx4JUF7Bbv1YUzrUUzjnXTfVv16PMakcBiIQ
hBg3fWVtYcl6F/ijFSjBwXpy/fYCDhIYVMWZ4wcOqbUEDvJrCSCZzxzgDY/8
qN+Qhu/t3wCfSlOAJ8lkqq4S+M1J6N/0mANP1gy+lUwGckrQzD327EQ9LC4y
mMH60ZIHcu2nfq4UzXu3X0sNARBICzCbI1A3GEwR1/66EXqSCXLqgf7CxN0B
em0R8X+zm8qg/4jfSnZR58jOEytsSTLgxrQEilL/f+PWXVVoTJqT76GJvyIa
BHTMgYto4Kka23tosj3UTxMM69jc+ZGSp304wfhsLzs2W54VUk5etX4baHRs
6YxomGCrQoNzdNkts4po4BbLMgUNNKkxQERDsBEN/vntc6rQwPuTIF63aScF
V6ckEoWQICwmNllUgQCSb9QDi4oIjElMQ0iTSqjNuEntUR9LFZi2+HDJAz+U
oIvOG3HHHMrqsDkVwgQH7DdVJlThQNmN+L6AA3lIiQpwMJkV+cY4AAgo0JJI
rEKACoMQg926i6+rdF6Xb/r1gogA4UqTATkCYUXAJsGvcHsBbFNXuZt/wQNx
MZ578kXj/fZ6gs9F8YfiM/4h4XCSv2ZH/bWvpbYAXbp41Iy4Pk6i5FwZtYf6
kqpxS5z1BsgbjQKT72/yhRD/qn/4G7829MY8p2Aiyonb+EBwgA3kUZlrDg5o
gcEmQcAB3X7r+MWVOOBnakkjUQEHBe2SWAA4jPTIhayyv/FbqYdxDfUPJc/8
oN8qbUeMz5gEKiz0dGe61bCiNHFzNBoPSL6e12i0xciLAqYgQOm9qPN//Br5
TBnyVdAjr5WAMncL/OU1oB/M8ONJafSwCgFKnaUcCwhAKgk1lkXBmU3vCOQl
bLF6d9XTHyx52gf8VnkIZkNh6bFCg9basouHEVITBatw+Lnnws3WLeLAPt4/
bWXEAQCUpfpbhwDXQGrA5OMHKnAgESh3Zufu7r/1W4kxGwVifq6BjXfsqcIh
TQcUcEBB3GwKgpUlw9GbZhWAhvKi5DpmL+kIIIfn/b3foDgfUs+2nlrI0125
T5m/Nj4i9Tns5JQBf34CDdaT2SsF+A3u8InijSyexgt27up+r18uJED+vuSZ
YELYxMMhYEKaVE7UG/0autH8+triCjRSoOIJi2gYC4VPVKIKGg1SLMtAI02A
GEnL0Hi/36o6M5KbJqKpyq3rsoURjdRgq0IDi1HLGlAFNMhCq9iNlY1VomL7
O1/Fm8CIWL6/AodRvsEqrLYTDg4Up9vZik+iKG74yBkVOLTFmIGdR5czEQHa
Yez8xWWJo+p2EChEv8sQ4FYVSeAxPTx79d8VgJDK5ElEOxUSqUKASKkZWI0I
FB2gfZQHIIllEUDZNIPStXff35U8EBwATI1xdly5NVZjJtuNxpFHEnAIKwI5
7pJygAXIFVhIAjxAzqNViwTkadpt7CNPlEH+Pr9V2VHiXuY8slG4nuk+IyUn
zl5dSf0TvOVCIt5xeLV/dGxSPA4CRvJwTbUVyBcsR4WxzeZ+X6QTYCOWVbFg
xwzEC9UHPCKtWS+D/KcJ3fj6pq27CsCnVf+sjOdiZyACL4UKDUaPX/K+kgci
q1Ltbd4NK2irgcNMDOqGCuXnVZiwf9LiRp8CJoRETCBETE6O8diOqG0f9pOt
VexE55z4rOSS9VPSGFYWX35vAWiFUDBz0HtyKKHSlsYQR3Mq1SsfJNT/tpFE
qaiBRJhEZvVGEmmrsNVuuHdBINGzmP2t6BorzSRhi6jgASKYzIZehJsUJqKW
LD3qSyqIhU6S/V8g1l0T64qFbSgkNTGkycVIQ9sRoyf32c7Wkrh6pm1lGMUy
qkhAG1a4Bli0D0xfFemX6vQbk68rViDpamf8kNCE3haOu4q+TPHEwFcZqYkG
yI4qkBo7RB49pNZTILWZAB9MgEBmmW0HqZ/tbOxv0p8GuekSkn4zIkHuGAqb
sCSSG0tQBdvX+C7L2lBwSGpDxpt2ThWTxmR23uxuE1o6vIqSSv8qbKWo8o5d
Xa8vgYptQFsZdMVtwKqV28oSnDmFNT9URMx+DbFX+K0Hn4t9Jl1vf5UwAgFP
c9cINqQ1U+CAu6BD/otwLW/fU9BIlNeOGGVrzwlUbQvqSD6x2eB+rT0EXBQs
UAzOvvunJRQ+zyGzDYicu3XHngYiN5YKm+6jsoOmdjOOG8JqHM6hN06Dzr9t
fiYuQGTCCxWhOFamSmSheJqPuRyK21+qRBg3fWWoZ1WtYj5ron9QecJUCko7
IvdBu6PSSlNG9NPK2ZcmlHRXn7t6GlT7o4AoIy9kpNhjw8iLI5ruUp3ZlaR/
b+MWpVLeHscWmSMdLp159SMxepvGimxF+q8OPrnbj25AAG4p3YkbppEQU2uE
O2lFksvB9hBzeeCxVbVvJMwmxBUKNJKTgVUnj9SbGqbsjLS74NERUcRXAXF9
LA/kAEMH2OudIbKhFJTdXmMoh7wBEV9Nza8qwYcNoo9AKS7fIPYT91ZhHHYn
VddkOjCof5i3DeW7c3B54mfenci+UEIgHjdqsi+kmxTnY19OTsoHmPsg61+R
Vh0ZfW6nz0nZL6QeJP5lRcpl1glV9E6kPdK/L1tOQkuV7EpTD4xb0ScIcMlQ
1W/NXdYRVDhSRhuvDjeFYtk6KV6pGK3/ihKU2TpiX2ryKmxdmtNj6/Bs1WzA
1gltym3MomXrnlnGuY/ToLddlegWSXDSOvc9uoL0DWEQiYy0sSJJNw30WyW8
tGOi9qFObTGAmF+KWnmunbu6ay9zCFUkoiyguFiGknox2131SGOrOUeF4gYZ
qkeRIjH4wGQIjrxZQak7wtIBP7YFQ1kxucK2pKkatiVNoJO9lWSN4YPufSRK
yohIjlXhHpNNbGyq/0y00UFTCN992ReWUJONLjrmSD4vCDldk9wRncUqat8V
5yt5Is2gkTrywU+5ZEJfF1n6mi6JxIph6HY7HIfCWbbnIp14XjMTdC6MtO2+
eQrmaPNUJS2LV0cAF0oNW7LQvhKBzKsLBZjueGkJlc51vCVyCYAYaQrbQvRS
QTu2haIOY8y4LTLLNepA100fl20Lab200cUoyArqG4r0393NtsSS9bODy533
3PcLuWKscP1KsATLyD59rrO0YFLOS3kpDa7Rqcn34vkBY9myijTomAhPWW4q
kpEwUt5KpUKyzKQ/xLlmkfX1zVAQTpe1yzo1GlH1NgdNiV7CUfqVIScTWm2j
ZROs2AjSbiG4cOBAYSPSnDAbAQGUv6Y+hVC+Vtm6c8974hmE/HTyeGcD5JeS
hw1shygynelWoTqfv+SMKq5Cz2sjFc+IqrdvEEjynXQ6dFoVvrbbX+inQGJN
VBeLKxopKWKn4J3+bWWuEBMeRFBU5rCmhKv7LoqUvq+RaqnFBNUAfd6yjZFq
0lGM37rm7nnvKXkamfW062j5mi0f91spDTV3pQbxZGgSW/miM6XEDIX6SrfI
hX25c45ksI62ZLMgF+OKGY0R7Vgrhdo/NJarfU38IMTVabhszZawrlH+r30p
IST7Bc2gvwWOzkfZ4CtoSQ+mPaJIS7qeTrzwwUhLOigUu6Ekje437+78y5Kn
xZqRtDvq1ln/6LdSeiArBFreTPXa7XN89kBuWVCAoRNp4sutyb5ByqQCQiUr
JmHLhlKBO2z3yNy1jbi3h0YT2N2Afk3CNjzAWB4KpG6TcX8VBai40v7YClCA
AKiCwlAgTUMzfQHH0oflfNORV0hTcXYOtBT4whWbymZcneMryeomZmp0LOCf
hnBN04F/qjNN2lJQK5nNWmZov7vksVRrpVFdM9ZoehoWm3aeiPiz0+pcYDqA
qkMpmQsPsCUJhsoUsyvpYIviwKy3O70qQ68DeoRem7TsvNpXk4Sg+Uo7oLTe
gfLxL+86OACadOXQeaJLjYWEfaiNDT/e5OOOYT50T4O21PpwzDHHZJdcckm2
devWdt8jHFVPvjlrHOkPS5uo4AvqNUJtZ5bRMUBSWya4sSiVd2V8cbcn1TxV
AV8gnmQRwhf4LEqMfN4x6jZJetql5qucdmVYvqu7ux7/fW4IVowaNSoSpCoe
HNR6Zez5uT1iz1XdRXCJ7B2KVfQry3BP976yOSnvagnCgB4gNOkaguM1Q02Y
qg9MVej6d8JwxR6ke+65J3C8nNXOzs7QSGBuDl4nOT3Dx5N3kT1wt8zbrNHo
n5aR0Vglo0JtiSEqMH1VQDlQ4Z1+gyw+bjDFR38uBXHSkbBfoZIg9L72DRHA
vrGwmtqhb5x+rZ6Sl4xXR7ZfV1+nPayThNDLIuj0qaS9TUckR456qRAguGKi
rPiyeSqUGLcK2Jc1J9GUo5Jjb+vz0E+/ICXGjRsXUVViQN8zSRajcFTvKqVV
2Fi8APVzsLHUFJuBE7s6wVJ237adXWDTE8P2WEp0aj72gy2Wke0WQq1M83Tu
7qZ7WKQmCt8e/uwbToFiCfjTV908rr7jrQOSr2m6dHtYOgmGNp811thVlTvQ
fcLgMMSnnCd1CpaNNIFmvZtr1tgYVcYBVPZLNui7S5cu9R3vnx177LHZ1KlT
I1ekM3HMOy0wAWOOVJ8IoWIJ3ZWTG6aZYNWZDC9jAir9qVLUr/2bhmGMfJWU
wQT4hp6O/ZyTlZEJ0sFz5s7zHGm+TKswPzW1rVIJffwQVbVwvcbhUdURSkoR
JUWeyoaHvPMZPbtppxaNYWU7vnnz5rBMfQJi/yDXH3roobjjK5N2OTPPCjvO
cVawnR2PfTs3TItd8XgL+jV5T2NKii/dQGIOnK/Lb51Frz2msdLIPAl3VFnB
zzlmcvM5RfKaPKTd2/Pd26YzqN6kwex1/rGiOES39TsmN/4CNIk+6/3zmvSM
Ve1yz3Pdr8e5Tp3m9zduMcnQwQnh0fAKPzA3ghIT6S4TE39escUNI7G272aL
KbaXvuBJOM2KurPFWIMaOyqB1LDF1QkLEsKtEiJEY9POtjf548Wg6fRtBYrs
GWWTE4rKutXj0rY1vttMWaujkB+deZR15GrP6yroXdjSWA88dFwkNENwrhkz
L25pOhbMTnXZlv5Zya1mA6CB0y4UnoTvrsKxzzpC2kacpGtvGZfmO2rsa1XC
422+N5WplNa9dRxbmYyElt3W0Lb3LSHAu3r35FZtc29xPpBhIDNMSlvnW45Z
f3+EzG6dezP5wmPkmJ133nlYZ8d61asGPjRseD6wKfifg0PxAiF7PDDV3TJG
h7MpGWq+fdjfgDE7zTmXKW/bBq+sTRv4soxH0NU+evySuNkKiKOoJz8yJc2Q
1Bh8XpYiaeGfp5vc6O829vO9wR+hyDpxCeUbzN0qzcK08MrTHS4+Nu3XS3dY
ywg7mWXpDuN6Sy7I9ZYY27ZtG8PA2Ub9mslb2OR0glzHlk52gOCJxlh9KrkV
HXvF6NlojxRrJj+kmtssPlZonE+6j4el711gaB6xLxVPft+JoDglPpmSRHq9
QFnS8my/RtbYlIuXANZ4JMXeJtTitTQ4xMwq4hZ+7ztKnsa0kXzmW26f2hlh
hbSIf/P23TyMqfmqYGEoYLpTazp2/MDRFgwUuIn+JjVrZSUOoG1mVTSoC2jT
36RCSa6dnsxaYbiZqehwTeFMJqc0QZvKCffNGJnGPhkekdcUUiRr89SmnYz3
Q2bKVjjdcVZxBHWyEvF6D8IhJVCclSxNQt0sggLaSB/NWeMaXe5zl3VEtFWW
AaXHPvJEGdqMo1B2glCCmRtMsyN/pWZJ0E4Lm7u696VTFuGCB6av+lG43C/E
vYhmKnIlSuhHsmGIf3WZ13qLyHaOCtjekGSiuUY5plILjAFkVpIwNp56Wwm2
b/XtEKxkV5VTVB4KlOF5xc6wFchDKToDd3NN4Uw7uT8Ol/NMEGWaMu00ZdFA
4LU1OO7Kf3ygEU9Kkc83lwFaC1AKcY1nPu3wpxPh9OKMAxG3MnzbY3eeJL0R
m1GPJAP02gpQRS9pRhccTS2AIBvsIMio5/vy4Or7WR/yrKrCApJUZRr0EUnl
eGAoY1kYSlVuROsfnr064BLQoy9e7E0Ew4QD0CJq1bwEVrRYDh/5WC1lWDhz
4uzVP3HE5DshwUVLjXLlWKasv2FzZwNuaSn0fVr8CL+czmY09Qr/MHtANoYx
DT5Xun1vTtiV2JJ4S/O9wJZiZaUFwDat1AdbiqJ8EvAZvrRS3Uqh67EitqYj
nOnL4HZorMcHG1FNNV/n7m5QVYaJM2FAf8YfIlUCuyp8JnYd4OflGYb5m8Tl
Cds/g8lhdKmSDxVhlq/ZgsKm0EI2G3TlVS+i9RvyZWzF4/XHYY30KbTuH+EL
sAl6xwujkXUNLWLWWKDLMwxsNwlFH+xgLyYySiegPkypMTsZ7lI+FMqkc4/L
1EzZhM6yeM8Af7SuocjN6SqbXlL29d4+5pmB82w/o2+4Rt5Gv4ogHVAg/XcJ
1rNHIkq8FJFGe6mmQTqiLJzf22flRQHRh0ZTz1q8IWbkCZWaYPfMV5/YoSbX
XJUoXV1dep/LMyr9J7hZlSFAyrQa3PZGX1FCgtJ/DVpSxQyHjGY7xQc4ZIOS
Cstn65BFX2lz5x/WIcuvicTSglSAyZI5kE/5LN2a3+fTRpmTavvCyM5n97Sl
PdZH+DViz6qX5bTJNkV0ywVdvHixXX1m3R9sTc+obVsatY33tZrPRyMvUXnp
21Xrt1EyQSxVPZlH+K3pAA7zA/EOaORSeLaMkO9teq09XvPAGjwpS0NE001l
VVZlSyJqKIpRAcw/NO4X7y1QmSL7RR5Kgwh564amN2Gq3PfoCiK4rTIukLln
+mRAQ/qkIhtUn+dH4a7sR7xQc255HYe5k7nteN3UuD+82cJ7stkf8qVqNRni
pEoIF35UTwvxVW4gG1h3/iBCUY9bGEQFuhL21ygF6BoD9NdPjXVIMJXwWbdp
J7r94Fn/OQ0JiyY5l9Lg3eudEIoqwDHy3fRKT2icpihBi65ivVwCL1vSk0iG
Kd6y17HSnimvE8tWjzW3w2lcn/GhKsQPNRKYI6bGMyC5O/pvM2Kpm7AxaGHo
4MSDfe9yDQOqcgiRykbdspNOTxyupc6Quei8eofeITm6YJHOFoCeJoai+7G7
a28ZPSnXUmqI/nUFns3/rZ3my0iAEAQ0j6ZA0oUr6n01AEOYStWDvLRJwRoK
/EdPWJLzbMs3SDUJyUP3g5nlh0BQKTksdM+UJ77ot6ZjCcEnHauDNOCVSwrF
nVPymHanrGI5hNsUw7JTXzvV72BKuvx0c98bKNvYEWlyhK496uwlhngnGspH
zvHiVZtJZrZ4N1VlNPzg5va91rHW+11wy1X6rAMEhRm/oIYwKJyGHaEwgXVV
n5VRGONENbw0x0t8qK7jFCdM2j5qTuWHGykszk560aEwVfhK23zJH6KF8NH1
MPM/YklcCtRrkvvx8xVR3LR1l6/Vlpa3RgIQ11JxOTFW7Q/RyHnLN5bRoK8/
Ti0JVHzoHMtv+U9fBr9FmBpPOQ0AnndLzl3aERtDSW1qmgFvX1QBHSEtRXWk
ZF5TAhG0Jfah39lLNnzZL6fDDYz8PJF6bgWDQT++2C4XX2Xo8x5jeYOS06xs
xoZ24CT/Cvbl5bfO8oajHmWuaoYGGOoEpcz/w4HRMUZamPgKWAZYCMtInCDf
Ro5bxPdUCpVEs5iDUZjrQyqANIwipOfGR5C9UjCTg6Jf9aAYDU/wNeMAt8Eh
oFtANI44un9hRBTkNfhhoK+CKMn3raOs8ZVWM7EE7KNDLp0P3mmyzPa8+NIw
Hw4N3pwUvXXh3JIn8iZFnQiKsPUb3rq9c89xvrrUNv6BLfnRRgrQ06FaGijA
sVOYemBydLH1JJnreZlGoI7w+/VUIv6SP3pX8lf8/pjD2bgjjp/Bs6mbPvWh
lcoslRGAJhvZPXCZxJD89WMde95Pp8/jQMuI/cPJmAiwJ5mgyn/e5CwmgypK
/ChzeERT7OtTfoTpopVP85LotGUTxHUqg/i4flo85GlloRGuDHfeoK1oJhJI
T1MQ/hhfJm0fNCv6Y424U48hGwXcqYYw+6Wh9xJLR28tE0O/ugQiGoehqX7N
Tv9aYWkjR8Sd8g9NkoTrqd+UqXFeyWNoVRONeImafsWc5kN+K+E/aqBku3Xv
3V9rIEDjK8ZsgwEq3aSv+WpKjeCzSREqoP4nJcBxotO077Vj5n/db0UZKdXF
1+Mc00nLIg2oHpR/XEaD5zsNpKpJawTWHD5eMnlQ5MKFkS9Wrtv28Ub0G7Kp
G3cAD2jGN8fX6jPy9GtuVrg1QPQqp4/q9ajQ1KkXj4A0skehah5C+FoSBqRR
MNKvZUi/0JFWWzzv09SvIncmWGnhxjXUr9n/eT9IbBaqz8HtiFMRRQi+YTxx
lF9mE/RrPF3Wpf1KR1+Jd0CSYWWKrHaU388MT7XR8EQJU8oFl63ZAgWopVFX
WBkF6G7TQIC0bF82pXHo3/hN0geaRaIeELXLKs8pZJTXVcebCmbVV6jYnMS/
lJtKI6TNVeEu5n65Y4Z0cts6fFYgKfXZilOBYBrMsYN6lK8mvLEjZcBoiuIr
SxB9hd8vRNkxBZ/t/95cVW/W1ShJHpv2b5oGpIQiTZ4ZNGWkzfvR+gUIZaSx
OwP9wEvg0x6o8IWyzOppV0OUmNlOzQv0BftYUW8xgeJBIq36ae0rL/Jvq8mJ
8gj9ygQxDvxEI1F5H4ByPq/yb6ZoeAglf63A0aG7RtVr+lHvkVBTHJA0XROf
5+1O57K+JHJfyXJh+ZkzZ4ZXFisWctxxx2XnnHOOwoAv9qUkkkiRSpSoPqWs
Sx4G05ZRFCQto4kVL3GoK3OPA2iuYslmkBG573WfVv8yesR22rsnL4fdyC4q
4mSMw3viGPsnDfbTEtQPc15Tcjtt0pXiUdxFquptTh7NMdQYIvm3MkDUXZ03
AB8azCoNdVCmWhVv13hbps65/ta0CmnFc6+bGu7TGCj6wOX2iG9lLat3NnRz
HzhA5b8MVTXGmgcSI3dSNITyC9yaDlTOifPCOEBVv/618LdCx8Ta1N6j//O5
CizVE9XR0RE2uUlaNifO86paporL5aspttcnrKaNV52cIoNLliypwb6qtsIx
kumkuXLMM0n3kJEF2h8Mw9BKu36bd7r3rc4StxcbwKqgo2io+TyxQ3vdT3bJ
r3LsNHkJnZa+RgVlRF2W9rSMi1/qXKxWW2qh9CtjVKyj5BpFj2InmZtS1RKN
GmTAEBUl2ZSUk8ksQ155y9iDllfWq1xJQlmHQDbd0UPu7eNnQEaHNKz0mqJ9
GuAhXpYek2iR8apjKh6XpNVICRhatVY6W3rQJxsZGoIoz0JntLjKB5lls+Yv
ywaePjI76r9GSSLFqI8IjewlsN8q04k9/vTTTxcGpbWHg6Ifbwnj62lxOZmk
Cy+8MIh1/Q9uVsAJIzgIYzMseDF8upeH+/2iGNwsyipodLijX5WILYMBsdvz
9U7PadrhNuTiG8Kz9U5ueJMJOHr5DLyJ1BQPl/Hm4WyHnWZpaRWCs+vqQ1aY
0hgr+uySPuqQkbWjUQGmwmvMvJBDKSkqR9KlpK+f9zjrmuakSpIqqWyS9VB/
lFhbLG9CwqvbY5y1MFLiZU6esWPH0uCVHXvc8dk3Bn0nO3rQMarKqeSxVkkO
eEyRyuLbrqTs9ONNKjwm7U8hHK/CoJtvvjn87zCnnYI22LjiMY21hv495UWf
UERGEFQ8puAW97dKP5bB0ZzPyvpu2gNePx5yMRYtbCYBoktKXsNmVFeqtj2w
WcAIdSDJJLNaajVnrvZAANWZyPS2vXiFP1OWm2SbTEKzCmAt1foonivBpfBn
fWJRv3B01ccgC1KKXBVycqHrk4/6BLtDvq1ez6mpR3oP5r808lnn7gaLuPia
IVVtpDndIl+1SkrGl5S0aGljfJSGQYrfpBJVISXrTkpq5cqVkUGEOT6FfhXR
eGmk/kv8LmVOCLPJcJKoQrT1TJG2pSnSXkFDpXYZW/XEtj1ge/oZQwM8ts2w
VfrGMdyR1Esx/VQmwNgn8ZgEmAbztTmPSSDJhVOgZA9+RV7cIlkkTSeGUMIc
RhuYh7hCCkqei3QznQGSffJJxCnyKsSEeR1hnMiVvsEFyNIByFUc1EoywUGt
WuTyZ+SejL4rU1AqSWMITFy8zD+WpZFGg91oLRvdggATQYj56ISt3rA9mny9
q4doChUtDs9ENp3500sDKJeMmll/eY+/VHXxhh6NBf5G4zImIhglLSVm0dQd
E1A5U/SL5r8kjMwmKUDx24GIV/981qAJL5lQmtUmZSx3WMxk5nEfZ0l1luqy
hJBx9zmN7BNHBM1dG9knrXquYp9WeeW3Ok2r2u/IUbNJZl1Hn1q0ob5Sv3Jd
TaMxUTUlJ0aVLFHyY1Jkaqd4pYNR1SJXBgbtds2MpDKULr3qFjeIpsd3U6Wx
PBMCeKL4ZSp+Z4Z3z5xFHq6RflJcwly+/r6tcoBkwyiiYRj3R5oY8grqKYak
b4kA5zduOS0keq0oW84weVUgULEgyTtx4sTgrLD1JHaaJMEZcVXVmFckteo0
yIRr6gT4IzUkA2X7sa06cEbGsiFFxOCUESCUpd/zzMk2EQpfNUnR9+0lYPQR
FKYw9nfWaIb7PZMWxv2GNTY1RrlhDZJLynyVscZrncziOuWn5NLJRjrb7RC5
cP1dksiI1YtRFIiQj6Z75bPJHrmwkTHSEUowRjr3F8YQ3cQAOudFxuhFMKvY
xFeke5q91zJg/Qp/hEYOoxNkZenMG5OUDS8iLC0DLh0apijMvv0HmKzepKyg
t4DBEIXZjrlB3L8M57T2DEqnb1/CyOUFZGrpKmMEyvYlYtRZITVh6uCQkB/J
c5eqyZAbYBS6rHG7edWDWa/1F7PGd1U8VjveqaNUTDopS9Ft0zsvKIEnzX0o
WobYky8x7fF1x/tXmCyqXopXFqG5ekrUo1omjq5ct62MAlMbcUpfe8LK5Aqu
GD27doKfHOlOeX+01Cg8JFZX1UeIboSnEOfQecH11q8KrTZs7jzBHyAFrct6
lQgPTV+mCTrp1CMDoCU6PbJgxGrTVxIzrlf+CC9AQvtpfkh94GFZfjafRoi8
wemVJaEs0Yn+vfR1wSCIm6/6F+QWkRnliYe2xq6gGMGuPjNkYe1kv6b9UtDL
oKuPErVdUGpEe1ZWk8Y11VHK6JZ3xnfl2elk6A5qLnixjQIMYEkuTEUuYEnX
msrvKrB8g390SvJWKlBkVJtiJKf4NUWcpbTSGZ2K16lgX7U4ZdMEkFDyDTQO
QyOU01G4Og66g8KaQtz35X5ZKpZWfeN1EKWoRuVMvUBUvXe6XQ1BIMowSb1Y
5VS/JiAUDtde4jcxvFzh+e2dXWWFWmgfxY3UXCabQIpd0+bBWY64Yp5i+u85
cpKLOuY64kanlyeXIcWOXV3gzDgqbXgvcKa0TScRnBVEUW2NPcG7m9uCAyeA
ZVIzUlzWm/CWP61HyC5TwZbs92OHjuuTREJlBSt6HZY7ROjBoOk4BeTM/sYX
TAY0AhYO/GE5Lkd7txavP0mZw4RNBfZlaUEaJhCGUpNlcmeAbyPXhLUccU2I
LGPx38cmhNxpel44V+Izhdel8ZXs1X2SZDL/pfPE8VIMJm/7liz1+9RfwjW2
USpImv/oJr0X6XfFMnpZWtkzGEhO9YkCLheU3NeSO+td+PrMeLw5heoMSu2A
amP+UBj0DxkW9ogAZG+5T4ZMFffRUa++74PkPgyekHHasL033EcDiKT//3Lf
//uwxDC02xG95T6VUVZxH0ax6k0ruI+XxlG1oVFyeSClMIx4664ybmresHVw
12I89ar6u5IBR043BZBmemOA0QOq0qFeIBpn2UxaFldOX29jhtdZJatwjUot
DWfg62nB9+6uGJShYH/+8o29AYz6PvWssnL63lpDvwowxompl43USfr2I2y9
9L3I5iX0AjAcbbW9sXL6MrKzdS2sACzpS9n4Bl1oZ5vHASyF9xv3ApZFXuaq
UhZW5t1N0vJnV1CIlh29apPv1qejzI3uWvq64mGtQOrxQtTDC6uc/rOJlVDR
ZHPBTdMjVDCZnCCgujN5GUwvoApvm/WYl3njQEWXq3qoqqCii0zD/ICK2j35
pUBFm6QCjxVQ8VZhjrWygICUzn+sAmlG8uKAwx1LefnJqyaAKn0B87DInQVY
RjjoN963IMJCpbdKmKtgIb6hiTbAQt2/9LVJTmCh2HrBik29oRAFEjIagIpZ
B6MeWNTjsNV7SHxqGm/mgP/UQVd29k2g9wIcLOiTho+P4NAjZJxbQaRGh3nX
nr0ARjREHaAAltLObJ6WgNW7TAfmvieLpyOtqmBLVVvHlk6+TimnKM0Gpi+s
uLA1YAVfmpXTmeJlgHGNM6sMON8lqKuUG1DFRgPjkwqoeFU71oVKtFk2nbNe
BVL68oSXOJbSxViaK+u6mFfVaQJkL6Aitzt6wpK4ctpVYzxaBRjSRFN3+Dod
hYEvuqMu5o3X5kT3BjAiwJJJrFwY3FUFGF0AehovaOElFnrZBdF6Mgwqps9b
UfuoXCHMUGcS/6RJk2p0hvuYfZ7XbGp/WRNzAUHaMiUdgHBVvYopb/4OK4AT
6TFVc/ENgv8SVhxlKR44Y8VTW/MYXr+Q2BKoAl+VGioWVWnvggULYnFycUZ8
k4nzLdHrIYspGCDUJGlW1ioMrlgKii+AKxFYBZljKXoi4Xbu6iZeqdpkVTnv
378/prk1NUhpLv2vbK562dyFAlI6GeQ0TeiDVByue+XkSqTiTOXrp0WkVOKG
uASpZfVXh2szQUp5uQsuyE00kFJyXEUSKVLpqPAKpBjYhd8hdwaMMIlM0VRi
RNmByUf/bi7YSRGY+C3adEognebXrr322lDFm2KkrdNwpyyj+bbpVOzwcfC7
pzSiRLpcUXBQomFfxn0VSulYXVCCmT0LVCwHUEkvKLXapBYjoCtOFsihvU3E
ReTSt6o1R66eztKvqUnKMqbMq8siJGM6gw3ktDfKEKfHasSIEfFYlU1ALpvK
U8AIu1JCAYwoGpdPWRSFPd5dAx5kwzXRGjzQO3IXczzqonD06NHh36r/RhT2
TXComvVblu9owKs95OkS8wsoOXCq7CzbrHgteYk23yVhc9fEencbloV0GKNZ
V61aFWZOSy+p0EM6DM++1YzbXmAm44P+tCVPbga6QYnpVIUZ9owKsPgu/Yyy
ccAM+0jrDW8OVax5c2vkwcdWeQNSj5dr5618v8OpfZCAVssU1rSNe9PWXaiD
tPnL9F0vCEG3k16gwuJxtOHg0BMfCPG7HdMHKZgurbgJ0OLeuQqEFHhaobM7
y3pBCvqVpZupP4plGybiB/m13+b8NBAfmcxQBzaKd1TVxTGIRtNF42sXtUK5
bj4oPWyMy+vRsFLUmw3Wv+05VmCOJaTCKjDHvE0rxpnvoHqXXmCevvfyqY07
wDz1d8H8tzoeiqCFumNwZEGbIhW5UKDNEAGNkqhAmwnB8SV389bWwFk17rp2
w30LnoXdPvjRTYxIprfPT+4L/bIsaoxFs7IgALxgJ6Q3BGDshJCFAOnLZ4uH
/H9wqhL4pgHtbTu7wDclg0nhfy0Aq57fgG8aLgNLDo0OA1hiSygimLfq/y6m
HYF0mNrnVovpbMr7CF9L8jCLAp6VEdRyhxtfpGqG6wuSB8Z027ptUOC3P5KI
uTHYYnKmQP/qRBuDfhr56QX6qWAzHQj6aQezWQllw2u4hhmssQgAxiSBuugp
GBs79lTARqMQHqxWocAwLXGpj5gBFipwNBAdVFT/mxSWFcfz+Es6ewEOgq++
eF31aSJb2fAPAOOEqXIWwEDFOa+ok5XyuLg1VAzxkKMMVDEbYlK+Cir6nxW3
4ru4nvVJbI0vxm0JUv1dH/o1f4pXWeI7q86tOVSNo7JNivN1qsdkzAFY+p7j
XgCm48mopvnLN7JyjMGalqsCLI0/GPscyqr2F5mAOUs7gC0NqlXARvsSkXfF
Sw9N4E3ibWWwcY1qT+V4+XrqJe7c1Q1gqAS9kbsXgN2dMAQrF7Ki9YMIOERJ
VUfBSyo5K3odF3P2Uw+zJSz1I6O6VNsNcum8GUpNcmUzI4AKL/7SW2ZGqMhy
qWgPqOARe1xvoJKpwTaZiQxUnCT1w1ZBRfm3YiRART5uirHkp5PHQPSNW3Zd
HInu4NDDRIBDWXBgIYMsZmwOSz4GDKloz3tuyX5v3r4biNIRf3Z3BamAjV51
mefAlhqZVbClFp2pZOoJEYApW6XvDL2kFVT5+xSwnUwhDkgemOjGMti4hq2t
2TEAhvdZf9dAWyhR1jXFKnsBWPqyk7lLOwBseeKH2S1VgKG0lK7n6+mg0pmL
NwBb+mK+Cth4zRfiXOgNKCyhuv16Hy6wYK1p5iSwUGygjTVdASypA9sSlvbQ
Sul+rMQx5jMpP6WBy/ruzvOvpymF7r37+TraRczKSyWIh2q4Yi8AC/XGg+OL
fliZkJTec1sF2P4kGrZw5dN8HYUlCQ5gqn7G0K8AjFcrkkaXMqYiLW0wMM+i
DDCuoUPSr6cvNTLJAGCIeGmmXgBG8lPtqkR4sT9UtVHWKAFUd3nOSpXv/QvX
5CLwBguYX/K9JUj521SQA6vWbyPayQHQ5J/mUNU9s4G5LZ0WxOqywse8+aQh
db25swI2+hHZdp3vvr6K5BbO0rxlGwNsYREgkgDAYjF/om8RUMPVcAaoVPib
dGwJVHuM+nuVfR+/TLZdl5u0vHBN7a66VYEV4uYUdUg+sZNprdKlEc8COKIH
r2syCUUwgQy1+fil1f3n+9fjYEojS+fubl50nr7CYdbiDUCUlhRc2pxUvLqc
CJIkgsHZlrKc03zRyqfzGYktgst9egSXJ0+enFeP2mlggJJ+SqYmlUVYIICk
kAbWBaNi8nIIQOORTE/jKAjAEFAVg/WCAJ3Jy5Zve2gJBMAsU0+ESfRAgMqg
cv8eQeXmM3j6Vb7DvSy8ONTBooTHRx7TDr4uyX4Z8/OqCgaiq9SgghTv9t0l
QuvSPtxjzEf/jxqq+OYxvlqr4DLCJm1b5iWvVW8vb06DASFFxnHSvBX9qPoI
FtEL+2yt4ktxZCe0JEJbYDYv+6y1O+ZhYK/f/l2/r1XIsTnmrUcYlMVhKGDk
RcM5ZPmfckfUbak7QBvpoiGJFWj/pX+UvDQsNnyJ93Vddxzr97WKLleh3Wr2
R7gvyIuhzpGjkmG1GJxzl3UwGT99nWMFjvmrG/rEWWUKW4nX9bIuukB/29uZ
Fwrlwl0cqqogs3+YUc/EQFkIFZiN8o9ahX9bHcNmAxHKjmH4sywH6jDd4ntX
Gazt0bDOpJWqZv3fBJrKwGmPbmlmo5d1iJdpqlZQTD/Y79Q/qZcK/KZr/gF9
J2v8ee3/Xk2v1v7ovwEsLc+u\
\>", "ImageResolution" -> \
96.],ExpressionUUID->"24eee5ea-c8f9-4063-9d36-9e38f4d71b1d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"GraphicsRow", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "/.",
RowBox[{"\[ScriptCapitalF]sol", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "/.",
RowBox[{"{",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n2", "]"}]}], "}"}]}], "/.", "s2"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.",
RowBox[{"t\[Infinity]", "\[Rule]", "100"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "1.4"}], ",", "1.4"}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"g", "[", "n2", "]"}], "[", "\[Theta]", "]"}], "/.",
RowBox[{"{",
RowBox[{"B", "->",
RowBox[{"eqB", "[", "n2", "]"}]}], "}"}]}], "/.", "s2"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.",
RowBox[{"t\[Infinity]", "\[Rule]", "100"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "1.4"}], ",", "1.4"}], "}"}]}], "]"}]}],
"\[IndentingNewLine]", "}"}], "]"}]], "Input",
CellChangeTimes->{{3.817270250152678*^9, 3.817270266945251*^9}},
CellLabel->
"(WOPR) In[193]:=",ExpressionUUID->"8b99e721-7bc5-4c63-b150-8946bb7d2007"],
Cell[BoxData[
GraphicsBox[{{}, {InsetBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwV03s4lHkbB/BxCKGtfZVXSKTkzSGnVMSNZEUqs0ohREjkVGEVyaGiCO2q
dWoGgzGZeZIi4acwiVChECrlkKZIxlLK3u8fzzXX5/p+7/v3u565HjWvYLqP
KI1GS8Hn/7+MjKXOvr4zxKIjfza+jk/aD+96/dZrhtTTz+vwLvDJd70kv0Me
MyS2eBFTxJFP9neIRjodwP6b2Tjl901kiezMdSs7tEjaFy3ZJhKV2N+noovz
Tp9riHcDcYpku78UConF+H8MDPTrSdxvIyP0KSGJHVNf3/qTEJ68enD7ZzRT
vjIhmxDpOzlnm0bRbYLuye468uDLFcbtXnTIN+tbu2uJbkD40JVaIaEJf3oI
91QTSfftvraJmNsxuJyMCiLfE6gXeQ4tuXXTdoMKokHP/FYcjX7K2Wr1/Dax
tvmQKhmODlcrjZC7TWJ1r1TyfXGfq0gjP+sWmf3ZJ7XDFi3H8TwQVUbGboRx
LGXQ5d5J9ax88s/KnFOhkmhu0sVHC0wi8WcTMMXQ/mcsuS5MsvaiQhdtfprQ
TDqtVskxiGdI3TwRoH+BqbWrskmPhfRu83a0LDO21TOdNL9lTpqko2np5bIf
bGDaYziAk4L2TNlxJsAV1AY1R5WS0Qz/7J4CH4jq4w3Mx6EthiPecsJAq7O2
pe4k+smJH46S5yC1sbfQ6gBa6oK2b9MVqLZapXrbCf3evaeenwaj9Z7Z6o7o
2fcpsux0sKgdTRe3QyuuHXQ+ehWm7ghj+KboyZa0q88yYV/xrwftVqOjJoPM
HXIhbt2+rmol9LvPtSHL84BbcH2PlgI6JsDnUW8eSDBW28j+il5sffj4RgZU
XdcxbBdFHzAZNWQzQTl55xL6yFcSa37vVW1QIdhKpVx8OIQekJ+XaSiEU+ef
ihm+Rmtf2XhIngXtcc7f5HrQvQK2eDULzp72Ge1+/JXQZpS32AmLYCjw3IOD
Zehes7OVJmx4qLFOpZ+N/fL/zXlGs6HgTXOUexHmgu00CcKGI07LjLxvYM7s
+WEGpTBieqMoMB3zEaVX2w05wBdaiU2koHcPfC8+zoFi3ohHaDL25e50/yji
wFF13ZXh8WjGePQf8jdhXLr20tlT6KgS7UtjN6Gl0XNMJAzn4+WJs2IZcGLE
dyQEodUFmjL2ZRA4Zf/zoh/2Cw9XqbLL4HNvX0jGQTT9ksqAMxfar8a0Ld+P
7n8/fDeWCzyHNRuu0dGu9n4BJVwIeeD/LtsevUlM1X2aC19KZvexzNCJla2m
MTx47pVTvt4EzxvkfarJ5UG5ssXSUmO0svtmmRoehKVdaOZuxH7aiu+SQh7Q
7bTW6Wt/JRZBHz16JSkwFO84d1sT+2srGOnLKZiOkDetUkN/pL3W0KagS7/6
mokKzteeeCeymYI7Hw9N1yjivM/3TlNLCjJZIo7w36+k3rWN3WlHQbgHq+yB
HObSLw42/07B/pU7pa2X4b6I3C4FNwo2dwp8+bKYy2hJNHpToJCS1mC7GO01
1t18jIJZGyPV1kVopXgNjVAKemg9ZxxE8fxrbd194RTcqz7d2/FzisSy8mqG
T1OQdXK1Mf37FKmXobg7YimI0m3I6Ppnilj0no6ai6fAZcx3Yv805tEKHxbO
U2CaL72rd3KK0NLk6pyTKFB245a4fkKb2VcuJFMwv4K+aPAD7jfnX565REF/
h/Cw5wjuO5w8aXKZgtqkv+uGhnBfYGhqK+Z5282UfF7jfNi8TDHOx/x4EzH6
CvvO66SeXKTAvTKhy78H+/m6SlvxfAjV1Bd0oR1DXwjiKFDVepIS9Az7RLNx
OIYC2nDw+GQb5se2+a2JouDhTlrS+ha8z55UcbWTFCRw09a78zG/SNttfpwC
Gzk1/p8P0XMi5pE+FEhF3jrSWof3ORnb8ATfd0u/pZjofdyvkfBgK/4fly2f
M7dUoi34v9TaUrBU5usgi4fzpY23fuhR8DQ4Prqfg7nt8RN31SnI6JJTlivB
ffeMXM+soEA+z+hgLAPv81KBay/gQY9o0z93c9DcvodSLTzI8tuX+ek6Oqf+
WyuLByr64Z0u6TjPnjbf48yDN39JhKWnYG7UoCGuw4P8b5nLmpMwT+kYLqHx
QKOx0mFTHOZlx6bZTC6MadoKAmIwV7r1ei6IC6UpPcn5UehEyReqJlzQcZ57
tPQE9teqrul9jN/X/SRfm2B0X8XfbqllQKkqLooOQNODXbP3loHRuInVuDfO
Dzwv0m6/Cduiz9Q0OqEP7dxcd5MDP9/Kun7fiybhO83cOVBvkzun74D2F3QY
LeGA9bI64xs7cJ9DxzZf71KwL1ig/jDGXEbgUjZRArJSaXsoA7TKxPiTSyXQ
Hqj6eUQX+8y6ftl1JUA3ttRyWo/OE9t6b3cxuDyOY+kqYL9iws8gmgXKunLW
PsvRn+yf8WksGMwoGMpehk5ubBY5Vwhebo2rFy9Gh9DHVkcUgP/Eoqx3c19I
bNPN4+WbmbDBKXOL4swXQjOUVDLOY4CgSuPl3il03XwIh8aAkLjflteNo92d
8j6E5kLkiqTU66/QNXmpWSPXwDnGcHBpD9paZ5NEYiYYjw7oXOhCLxjLuyj+
BcIqg7ZTbegxNQN3zQzoUhtQ/vQY7bHBcBcjDSqSLwQe4aM1C8eMlVIhzK1f
5neCNjlwrPHyBXBsOu/ach/d7+UbqJYAerr6HMsq9PR78W05sTCxkGindwsd
yb5WdDoM2o/qZRWXoSdX5ubF+UCFtqGT+E20ashZHWc3+BcTsKOd
"]],
LineBox[CompressedData["
1:eJwV2Hc8VW8YAPATUkbIKJGZ0JIGkXQoGlJRiZBkNERZGVnXSFZCMkIuRSoh
ZDQ8F1nXuUZGiFyJ7NHW4Pf8/qnP9/O8z3jfc+6555KzuXLMnoMgCCX85///
d/du6C96MAuEmdslB3k7WH81RPlvCprbPe2YHg1G93XXjcWjd8X5hIVFQH1+
8EqbWHT455dO/DGQI65yvvsm+tid0qmvcXBuLIi7PhT91JxLZEkyWG/pDA5y
QN++ULb4Xw6Qd2ltc+dmgSbBvuXg9xikOTescbHFeOjVr7q/nkBfe0DVGUuM
33+dY9abB+Ze6xZpH8E4zV3z1aZC0BxoMyo2wHh0XjPRWQjiBv70DftnQSf5
58N9PkXwTrKNlNBBZ+rs4HxdDCfA1//nFnRHQHCpdClsU1ZquqyC+Qn5l5wL
SkE4tlVqeD3GjyqxksgyaLVRfN2+BvsZe0e5nSyHI9wtf56JYbzcbsXw+Zdw
8PAab8e5GaBJB+TZrwXgPfuCN+n7DOhorVpVmgbAdDdOrZ6dAesilbnfPAww
TA0AibEZkN3+Y1TdjwFHxt8vbuiZAQbHKZN9ZpUguOCa+K1zBtg3j4c0RFVC
izDvOtk2rG8ivN2ZUQnGOzUMPRuxPv/UKq21VXAiPD5u7Su01MecvUNVIJq2
QcG4DPvpXX5uLVINHQVVz32LsX5Lf0S1TjWc7JrpastFl5jtvphcDaeUDssE
pWF9vzCHO3vegFXN4twP/jNAPHQdUvCsAZnuVG1eH6yXvotLPqUG2BPbmtU8
MX9mWVZ8RQ2cFbX5EnUF4y6SDwc5a8HOtkJDyxrr7a34bh9WCwqeJsxzlrif
haSPhjm1MBQxYRFnhm5QNXxRVwvnCiUCRo2w30L+StXFdXBxkWdNoi5ad+5e
+bU6WC8mYFqtjfW2xXVxJ9bBmHLWyJQmnl+ewtWRwjpwNGrj27cV16+T4rsy
WgeX0zcf+yaPjjRbX2RcD+7aIx+MuGaAPqIve1CoAUaj+o2jCZz/6598acUG
eFn2NDxxbhqs6bQFulYDRP+IMLk5Ng06+bo8BfYNsN1Vf9KLmgbascz3IiUN
IL18e9vXN9PAUON6cKmhAZYUyJdffj0N9BOWnF69DdAzuRBilzcNRFm/ZOEi
JtAuvlhtFIP1dpz8WH2ACQ5LH3E0hmH80N78rlNMOP4wcUQ/EPu3c3TmODBB
cci9WMt1GmTzRQ39I5lAWW82VDoxDezJx33CTCasNHvgM78S+z/5Hk3TagTi
Z9xZbyGcLzArI+NAI4zdCdz/bSnOI/tWPNykEV61WYmMzU0B45RI8tPLjWBz
dNWTjvdTILuoSub0vUYwnFoSa9SOcZGFrMpHjaB284dHI4WWtZGZLW6EpY1t
eypfT4GOZx1vEbMR8vZF9+SmY1xu+dbWr42QNOTLUEqaAlrGe1bKv0YIDLmU
nRkzBQRd2EFtCQUnqg64JgVOAT3XK+zdKgp+a3PyhthOAdtx7Z5Puyj41Ds7
PW8xBdZ7fN9u06eA5cPu8D6B6z9NcZw8TAG9/HXGFX2sPyjyU+Q0BfvUvDQt
lLD+Oc2qwGsUOPTeDTSVxfnqYof/0CiIDn7dcHwV5idMnjG+QcG7Vg5zQz6s
vyQo5tZtCi5cvnlNe3oS6Lccnc4+piBKrKBKcwRtPf2mIp+CgldvedUHJoHo
efJurpiCOV7xFJW2SWBn3DTmBQoiHma+lCmdBBrn8tOprRTkHanhXF0wCTp+
tubTHRS8/f75kPgjXP9gYK98DwWSept6hVImwZrtO6T8kQKd8aMKy+Jx/dwH
2X9DFNjFuTry3JwEWa+/RwpHKchll/5dFID9F0yCGDMUtNzo0Zv3nATGiPli
iW8UfFP5F/XbGetrFnqY/KRA22+P1FcbjPNUirv9o8BGwd5+2gLzd6yqMiFY
ENp44+n4CTQH7yFJThY0rWJpf9qH6z9pDh9dyoIvjOnrbBL382O3I/CyYMUF
4aZeDZx3hVO58DIWnCkxtepYj+u1PSPsl7Mg5PS17NY1aJVQP3sRFuRwpU2x
VuP5KSqvMBBjwcyxj/61AjifULRQlTgLRH9z1VUtwf1u3t5nIsECjQwlQSCw
X5Da2mZJFlgeMDB9OTcBOpfKV6tIsSBw2jG99MsEyFac++kqzYLshFufi8Yn
gIixH0mTYQFTu3BzwacJYP+yls+XZcHUp3bP3L4JsG4Ne5ctxwLhqJ+Q04lx
+9ua1+VZoL5NYmlW8wTer+BtsIYF5j27jDLqJ4Cu1l7/A+0feCYprRLrb1U0
jVBgwX3lIHbyC5wn7c6JxWtZUN/8QDmhCPODYmfOoyc86pzjcnH9nLh5IVpI
eqwsOgud+Qo+obfX8C+KvIfzrKUfXUCbOW4+eCMR8zN8dnAossBX5FhscAz2
l0x7MIlx+gv37oBwzB8Yra5EvzmbKOcbhPOP91f6o0eWvrjo5YP5GolMBTR/
Qe8zd/cJoMlU8xTjvKqmC3POTjhvStHjjWiTebk9TuewftLJrmjc364/UgJv
rXCeg+JhTDwPhV+retRNsd/dKs0JPC++72LZKUcxbnZH/hue55fZ5a7EAezf
dNTzI55399Sy3fY66PCtjqV4PRjjPLxMDey/fJGaG16v6KFFmbfXYb+qpYJ0
vL5XP/5z+iWH9QXOX1++Cq9v/5zmaQn0k/lkh5UsWN8926rIh/X+iNi24/2z
vHMyLZIT82WEvIfw/vr1dvTizJ9xoPnqz3wQZEEtNbDoxcQ4MH5HMiL5WPC0
oY8lPYTxo1meJA8L4mu7k4P7xkFWjM+wl5sFNozWLYebxoG4uJvr7SIWzBdV
nmXnj4POc0d64Q8Khgpeb9LPwXy731uLv1JAPS2fe0QfB3py0n46ft7uPnwW
6xY7DtbN6zM1xijYkZJRye2G+XO2JZd7KZBOSrt56RLm72n7Xt9FAfed5FMt
ttifdpJLED//7dGxs8knsB4rSuUMiwLnoEC5TeoYn1u6WPQ1BTkXzwYenxsD
mkOB5GwSBbfOnT5cNjsGDD4ZG4l4CjxsT62SGhsDurlY25ZbFOidNn423DMG
xDblyg3XKWAb6Q54vxoDnV9JCUedKVilIadLD8D1aXO33PdSsFPb+Eqo1xiw
69Klv2tTYLknMM3RBfu1qc+c18DnqeHAnIYt2ja0UmETBcpnMwpb92E+l3TX
PzEK1CPkFDgFsH7yszV7hxrhRK/cknOpo0CcocxfXWsEjwFjNcM76MEk/SI3
fP4PB9pujUZf2GeU7tgI72cGYD5gFGjP9VeaWuH3zeJMr0TbUWAnlWTu120E
FxX5sfr1o8CQVJjXXtwI0TR51obyEbBu2bucK5QJ4v+EK9QKR4DIP7V0yo8J
md6c+eSTEZD1TWQ2X2VCieunmONpaP7dM9fsmfDBLvuETyA6RsLbRY8Jmw6u
72UeHAF20fT8BIHfn8u3jl/s+Qz0N4svX3dvAL77ujw5f4aBbVkyp3GwHnap
l2jpiw+BjousbmQwvu90bfyz02QQCCG3vJaaKigZ+1Vg7DgAjL0J9Q5RAI/z
ajYVivcDTfvj5YK35XAoK03ENfk9ME6+49heVwwmfrLDbk3vgMgzt9YPzocq
14dvFfXa8fq9Hkjd8BCkd/JnN21vB9rpJ3Q2z0PwXuTi7bEWLdDdrzmSDaox
O2VruXH9pU7uTVnZkPaU5WTf0IbvN4f4V8pmg9fI16UPjrQBrWP4GodEFmyy
0iHlTr0FWrEEh7f0fUg62P1E8nILEE33Zx+/uwdvFiq4+M6gX685F0a/B9PP
H5z+fRQ99fLG7Yv3YJ+8s2D3FvSSZL5tf9Ng7Puy4Y3jzUDobX6QtCYN7ptd
dJf/3YTXn32C1ycFVkjLxi7D5zrB43542DAJnCLG90zMUUCUHFgUL5kEb36U
fGO+R0u2C7iMJYJb82GzsHS0Z+SF8rBEaKH5yHAqoUOjnULqEiB8sPPpLzV8
j3Fo1hM4cgf+5txkDh5vAEKw68iegDjYrb5ucf0OdF5yeNfJOKBVvyFzJdGv
Vmsmq8TB4g9/it0H64F4nCR+90MsCIg4pC92Q/va1N7ViQVZv33uSnF1QLQ8
lkvH3yf6xgtSl1pqgLgse/tdeCSEfbhrdrQYrXekmrE3EpiX1G9vS0Jnmrwj
5iPgSKjT0r9n/o+//HTdLQLMXr7/EjX9BgiJzwpZNuHgsLasLk8AHUXz1DO+
AdFzzi5fDKuAUE+WtnMOht4+l5deKuiYkcrDqsGwrsp18YIgOozwTZ8JgjcR
7sl8bZVAEDouPq5B8FvSq1LhFDrvN8dKn0A4vztguak9A4heWa42MgCK5WkW
ffvQso8nSyh/4FgSmGWrjGa0tDqa+8NO3D27E/D96933I15+8LCSv1p4sAKt
Gz/92gdo3JK2nn9eAWG9rbTM2Qskm1f/DK5Af/On1fN6QUmidGRMIHp1/fsn
WZ4woSxf9GgJ+u9E9mSfB5w6tI6zV+QlrleTsDa7CltjdtzX2ViO+/GQFr3q
Cp9WnRjkOf0c60t5J6Q6gInCjzA5BXTX+KN+QQeoVUlS0RwvBsJIQvVeyEV4
tLfX+4L3/47I9XG9AJed7ITq7hQBUWBl9/LMOZhjuGuHND1Df6m1o9mAQ+OK
wZQ7/7u6UZDPBno7ysKKLP/346otiWehYuxv28exAiDYFoM9RdYQLHrdQXcJ
2ojVHPbvNEi2rN/8LyAXrwflJ1BiCvOfLl/bKIAWOrPH9PdJYM8V1likPsH8
ZxExuiche42W5Yuyx7ifJM2OrhOg6nko3HM2B+sJf3u8/hi+b9xqzw5AC/lX
+IQaw3d6m0znsv+9bc3uISN4wbQo2b7+IdYb8VA1PQr60o6DszZZQOhw8BuU
GoDytgIVudkH+Ht2JR//vYPAe+Cbt1EAmt0rUxRxAFpcfIXyU+5j/1C7Z1f3
gXlNlLZjewZe/zsC7nF7YFdPS1iKDZqd52mXowsy06LtzBk61u+P1HqjA5/E
0xzWLUPTYtt2Se6Gvi7zzazIVPT2o55NOyB7elbqQW4K3j/D9MXW6uDMHc7v
w7qL96Ponqm/24Fje+mosmAyxtsCms22QqPBka6FzUkYd0urX7kF4s8O1XYa
JaINVu18sxkUb4k8CIm7g/58+9mWDTCd9TjOoige+7kIBvKug7JXuoFb229j
nJpY+lsRDMauWLHF4tAsi71Sa0Bk0ZLDpeqxaL7HP4zkoHflPa1o0xh0RHad
ugx8iEja4rX1JlqV6BkRB+eyWgFF90i0gpYI9wrgGP423vY8HH3jdpWRCMSL
rGkI/Hnj//ybI/VCoKRrnL1ZMxRtdZCvjx/KLwcE910LQSclbg9eCodSn1pH
vgpC8/ccDuGCvob32przNHRVmymbgP4pEfWmAH90jmO2yp8KLgPnmXWcPmhZ
vcBj3yuUs6jH10M90b2HdDfOVBgS6+wHeNzR4vNNnp8rnC2uy2jfdEaXOY5y
sCvWOVUXbZFzQDvfy/7aVuG6xld5VMkWTVPd4VpT4VF0cafuaTM0Q6HJ7FmF
kE7JfusOPTQh+v10eMX2lJQ7S8iNJJp+38i0ooN7D4/rNeP/PVjck1Ghd7dF
htPpDJrxiKv3VUV3wmZJZv45tM7ze6JNFTFsj2zhR07/O5983l2hINaftMnY
Ff1LcCRlsIJ4EfShlXUVXcC/UD9e8d5KUcHDwBvtlT5b8KWihJN5UaLOF61x
8eC2XxUH20tM++VoaKrz+qX5itLssGtb2IFoq963uRyw1ts8LfheMNrxQ5s/
N8Qd2sjosLyOXr+j5gkvENLzH5Ukb6DfSmRvE4TeqgxlKjECHeu/6rEoGNxx
OyR9MgrdEHrZYyWUnde/7CwajVY7p+ksAQah305F1MeQBC1YZaWHLAReOX2p
6GEs+mvKhh3yUGZW69sbGof2LpsTUIC1G5LSVfTj0f5xlRzKYCm66Jmpwh00
560X0ush7t/FKhpnAtbPKrtkvBG/R7SG3lYmYrzS+ZqfKvS696/33J2Cluoz
yFeD8iypyluqqSTBGM3V37EDEjotTHPk09ArIJXSgKMaXcHd3Om4XkvLSmYX
DPhdmEo7n0ESOlrTsYW6YJRwQ/MxG80WXv7nyR6oyMsOKTmVif1jXgvl7oW7
/Z8kmg/dR4c26TD04YTu2f2EahbWX6/wVMMAqk7R4vgfoYmAObfzh0DVNb1P
XD6bJGT32wylGsKy+31uW0Qf4vrujlrJo1DLZU63+ZVDEgU98hXbj4Fm/bG5
N4xcXG+zTl3eDHLYLnqtmk9xPjPV3ikzWDEXc6uvEB2j/6u94hR8Wde89seD
PJJQ3SpQccECOmvWPrqtV0ASRq//XfhkBbeUMjveKBeSBF3Y5pq2LdQWbflj
YI9myMeZVtjCPFkp25qBzrnn26tjB45m7Et9EkUkUfaJp8/AHg6ES3P84C8m
CTOL/Oeu54Fj/K6K0uxzknB+qvJouSPYqkXsyVxXQhJLT10IzXSENwHeJ6Vs
0Mpy7LfbnSBU1MxfpA09YiJWfvoy8O4Wa1ooLiWJCefHFtbOIBx7y6nLq5wk
vNqWFwy5gtyOkNxw4jXurz1B29sLggLdGFya6LI7HIFdXvCx0aY9wAXN3zTr
reEND6x1/179iLZctSzqtzcoR8wfsnlTgedfK7j5hg8kXX51VUqPgedhFWFV
5Q/0SnWxH0uqSKLQtmi4PwhqBBtuxSqibQ6pMmSCYey0Be8mfbTzmnwO62BQ
+x2wYBuEPnLXvWogGJhbG0Zb/6LDyHMbxkLg632Liqez1SQhoVMTL3AD9oXS
ztu/ryGJKqknR7Ii4VK78EfiN5r+XE/5SyTEyGdZporXkkTEn/ILZBS8r2gw
bjNBj+wZl3ofBc4/hXfptqDjthiaroyGuxeyhKRq6kiif+fZa8YxMGnALG/P
ayCJo37Sazlvg+tL83UDFPrOaUuJzbfhx4bxpMmx/+POY6QFPueX8XtxKzFJ
ovRXo2TxbRBuPqyukY7+suAqdiEeNI63FqbcaiSJ3MJ47u47EGLR9cTGmUUS
Yhv33vqQBALqX4/8SmohiVBaT+DVdHh/+njVn2z0jfJ4x0fpkHO9SG2hGP3T
P8m/Lx10O9xWc7ei85IV+dfQwd3926gITytJpApHx0TR4X3h95DN3uhQzne7
bTMgZ/OvF+dOvSVpPk+9F8vch73r/il2rGonCTKXUduUDYJalsLOw+9IQkRi
uSvkg9fm0sFTru9JmnzRlumYYmi90nnCZuIDSSi8aKiLKQfr81mOoqcGSFqZ
l2OkEYBSWJ9cuuQgSTTlTylcqgJNDQZ7KdcQSauuXHbXrgbudtOFJahhUtby
bH4ydz2UfXoYv6JtmGSbb+V2EaqHjum8FSI9wyTDdrZkr0Q9CHG/luAfGSaJ
p9xzPZvq4frWbvl5zs8kfedSRvOJenCOXL7to9ZnUrZWdVN9Rj3s0w46/vgJ
usdkIR3fo+0OhHdkF34m2fzS8Y06DRB4PMb0fvlnkiEi/nfmYAO8unjPIrXu
M6kj4yW0zrIBtiS8sI0e/EzSKtrfGtIaYPX0FzdXyRGSvruNcbKuAb7SbeN3
Ro6QhDGPtZARE46cjI1rihsh2QadDwROMSGHD2Js7qK1ToZw2jDBykPiZsQj
XP83parFjQn1h1qv99ShD19d+JHAhNQfuz2vcY2SsjxVStbvmaBvKGH+wm+U
ZGeNufFZNgJ90QGzI9dHSR2JPvsi20b4XXL15MeoUZKedXLd0UuNUCDXeow3
FeNRmZVn8feqxM8bh8xfYH7Udc+ZxEaYyvi+6/cPtEaMfVpLIyT+bJHZibeq
7KLqOY8dFJQ8YL409BwjaRmKXQT+fu40fmN6xn+MpOflrfLbQ8GK3NJbIVFj
pDVrzVnDwxQkWN9baMpBb762fa8NBfENl/ptB9BuT0evhVNQ7GHv4zEyRrKD
5qukoyloX3NmZfg0+uy4SVEcBSL+x47m/UN32+zIS6Egbqsm/Fo1TuqMJLz5
nEtBTAp3+s1j46R1yWVVI4qCggOEFv3UOElf2DE520xBy/e5zkLrcZKx2OV6
UBsFgkaTAl2Xx0nZa1H1V3ooiOZq95ePxPXE8DLPzxTkPWNJqMWNk4S4+eqo
MQqarOpK9idjfrMVcWuSAoHyF1OOD8dJ2oha5emvFNx0yrAqrcZ6ypFnJOcp
yJVI+d3AHCfZsSyTFIIFVF18Qm8rzquTybuUkwX88mFNi9iYPyQs83AJCzY2
BzqIfkbzeal187DA0NeHW2kK+80veP7kY0FU5+Xdhn9xf3+ejv8UZEFu8IUe
K84J0tpasbV7OdZXtfFw4Z0gacftDj0UYQFfpElegvgEyRA+Ysv1/9+TNI4a
PJKZIInx54W38XepwdCB4ZeKEyT92KnfyyRYEEHukh7YPkGyn4i9rVrNgs8J
luqRuzBf85/1CmkW6E35HlHTmyB1Og/7GMmwIEM/7Vz/IYxrG084y7JgPvW1
f/hx9PpWf085Flh860vYZoH1o8X+2cqzoOzQfF6fDeYzPqqqr2GB2H3puhsO
OH+W5+Ak2vX37v4trjhfc2Tf/39fbDY+8/O9N8ZvHf7MvxbP51GAYGggerF1
vRs6nKArqYbjvHLd+wE9bMoge2IwnkZunEbvzWebhiRhvbEwLU5FFtC5Fzmr
0HH9ipVafzD+77RcWNdDdG7JdCfa/LkuPSgf8/1TpRLQpfw2ZRtL0ZdswzTQ
onZBLZ0VWE+a9+trnM/lZeYIrRbPu3xGRhHdJFxNbGjC/ft2tjjjfjY4DIp3
dOB683e1abj/sErOLQF9eB5BF6ty8XyGxBUOrhvC/iPmwWl4fnuc9c62TUyQ
sk+b6q/g+abX2Xn7fcP+YTuN1+D5/5W+Hqv0F+PSdj2leH1OeWQ9auWcJK0P
W8ltkmRBCaum0odvkmScC/0YtIoFImuHu9eKTJI0y8DuMrz+zr7cX5olJkn2
gEZlkxgL1m3YL6+wHvPdmAbJeP+EBp3f2bRlkqQPFlsdxvvrY/eNY16aWM/b
Yz+bnwWpYfVB1IFJUrZikVsG3q9z/SN3PYywXneoXDMXC07u4CmSNZskCc3j
vj2LWCA0fHDQ/Tz2t1q6OPwPBU7aDn+kr2A/9njihl8UMOMjRBo8cH0jV8bj
bxSE7G3cKxWK8cX/Onbh5+sX3fBBzQPMDxp8l9NLgckvx1dXctFN/psVuygo
PHqzfVUx5s8M2fnh59lxnsV1uRrnlfvDU9ZAAdviqP2Kjxg/cf/8iWIKtIuu
+DFG0U4i/Ql5FNzljbnjMIv70X5xqiCHghPlLTUVxBRJdN3vOJdKQf2KY4rn
ZaZInbKHy94FUvD6xzOfScUpknbwiuLINezfubzVTWWKpG9Mf97kRkFqQqsP
TRvzr3dkSNhTcGWFcWuyBcYvRBhn6lNg96NAUdZ2ipR10q89js9Ls04h32wH
rGdnYvtuOwV7EloUi7wxv0znxPE1+PxcYeRLJWJ/ibWXls83At+P/NZj6bh+
VWLo/m+NQHQKKnVnY5yrarXhWCOM3mluHXqO8ZjcqoqORngldlRpoQ3jqf0t
Wo8bwVbsyNstQtMkUXfGXepgI5h9f6pUthKtW3X6r1YjGHYs89stM03SGtQ4
MlQaQf0OS+mQyjTJXv96XkOkEXjFDvvZGeL6avW62G4mLHzLfTt2HNeH19+N
YjLhWzu/sosFxnMiR/e/ZEJfPPXWzwG9S2vNvxQmFIgaKieGTZP0tVHBh82Z
kPXtiZ9UzDTJyBCs3HGQCXfb+druJ6IrP/v07mBCSHyjX0E21o9vWXdMlAmm
oofaGt7gPO067Z0NDbDAs5b0J2ZIYskTIx/FBuj9/qKM4EJf/VMpJdwALwaM
tgYvmSF1/CaaPf7Vg3u579owgRl8PvNsP9hWDyMX2vniVs/g+0z9fhOfemip
C+7K0pgh6VSc+sZXdfC0aNUx5V1Yr95a8k1mHUSk5zc+Jmfw/WKxCkd4Heh5
vq/I3zdDWsuUzV06UQdlituyyk9gvfcSrm+Ha4F+/aMLyxnrOf4UK/5VA34u
XuNH3XEekcPV/N01YH5awP6tJ87TVBb6rawGRNV2mr3zx7iMob6DZw2EfYrd
PRCF/Ru+vn0x9QZc9uryfc/B9daZPko11XBk87sQz1zsv1VwX0haNWyUdJqf
y8f5RG/8PXy1Goa/JM3Ol+A8Wg9cpdZUg3nmzLulNVhPQvK7pWcV7FlEf7B6
YIZkywveT1hgwO49B3vHPmH9lkeC/A0M0Az+IlI+gm67L3knlgGqi/WDTWZw
vUVpf6MMA2R4xs5GL2C9F4Muh6wrQMLgdrIl5yypM3z9z9rB17Aiclfr+iWz
JO1A8Zk3tq9BYNktnToB9Orf2cJWr+Cv0HYZQnqWJKLJzXpqL+CXcd/JJjmM
a8WN3HpQDl/jQqNT16JbjdbLLC+HMdHufxqbsP7A7VkYKIVucf9el12zJCPB
5AvHmedQIlufPGiO9c7nP6l1z4fCsy6tz6wwP5gvlJh4Ck8zJXhoNui4QV/S
MhceKDh5rXZAv9dnZik/gtvKwqYm3ug/m0/O+2dC9MWX0Wv80EtbP6hRdIh4
bFc7S8P6XixmxNZ7ELSxVC067P9+3YM7ryWCv5O1k2UUmpMznb09HrzzeLLW
x6BDNbSUeWLBWdVStC4RbR5VemFXKDi6LDa8k4L+5NdT0UqD84V5wbbp6KVX
lOtcPEEsjGv3g2w0PWL28y0T+A/H9QoF
"]], LineBox[CompressedData["
1:eJwV0nk8lHkcB/Ch1hFKyhFJaSUkxcqI+koluUZF2hzJ1UZKCQk5doQi98hs
uQ0zYR4qpONxF1uOyNmBhEpumrTYb3/M63m9X5/P7/Mcr9nkdOGoKz+FQonB
36/rzS6R+zOFk0CZ2Dc/3uUG5lRWK7UUHWnOU5YIAmN/mrBgBdpAoF3NOQwO
VPAM3jxFO4yf8NhwHfT1TYmLdeg4A7ozxICqwcQtTjv6QBPr4dZkEAoKlqR2
oX1KKseSGDD0aOWdul509tKL+e8pkK2lzu4bQFPMO2qymbBe2b1GahL9TqHV
PzUd5p1/HM6ZQdf86fztdAZ0ZUS27ORNQkhNgULYdAYky+a9M1vC/D2nTEs0
C1auHPweJjYFFKVx+oxkDoyaeF8TXz0FId8Il1txOdAYwf9b2lq0lL+4slAu
RPBtkngkh322hkv8WC5QZu23jatgzul0aErNg/c7v5UEqqOdk4+OLOTBk/OB
uit2oj/6trqfygf/EaaREhVN+L1ql2XDVG+no60R7nH18o5f5kCLzJnhkcOY
77q71FrLgSLrOU9fc3RtitqyNffAo3ltQLwVupPJzsu/ByaiOXwKJ/B8veQ9
1Yl7sPWwVmSBLTrE41OYdgEMVh9Jfu6Efd+WxuZHBVC91Cdn7YaGD7TXvALI
0PfKGjiL/U/F9XXahWBfeou74IVO/yKZyi6EDva/DVrB2BcbNGX6F8GDoZOW
VWHovZrNTflFkLD5S4fFdeyL0oQ3dxQB7a7Q4NkY9JcmDVDjwvaeFPfvcWiH
SvHVx7ggKq08SU/C82dkkqT8ufAi7uBi+j9o23rZZpILrFftdPV07Fvf33yz
jwv0FS4ij7PQDL230UtccDo0HW/MmoLKKXfDcysJ2EcPk+lgowujFXXXE7Cx
anW6cyHubTOT0lAhYHEhQ2mS+PW9u9ZZahNQ4UdqipajB12F5UwJGLwy1hnx
GPdr+RdTrQhYeVU+aBmJuY5N0DF7AqgBZorB1bh/beGPw64EOAcGPJ+vw3yq
tiHwHAG3gjjnfBswN/7eOX6JgPJr3aunXmK+wJzOvkLAQLBQmWcLWvp+PjOI
ANFQHbvPbdi3CAx4E0rArjA3PtfOKTBozBuxDifA8e9kVl8P9qMTXeUjCbhB
rzW1e4/P9yDEUf0GAQ/Cpyc6+7Gf+Nwg4iYB768rMo59wnxA+My2aAKEIo/o
NY/g/rST+ga0ZlRIn8koWp0xbI99+xvc8Ppx7JN6H0ejCIi8+V7VcBr3Sr6e
eRlBQEm0WMvTOby/95myBToBb2P0fXTnsd9SJRaGzysQ6yH7cAH34sMzT+L7
7Ihjkjv4psGguCc7Et/3ZHyDS8HyaQg5yDEQ8yaAnsAT3io0DZVqVWmf8XsV
JSpzs0XQ9MkPG9wI6Eo6bqWwCvvLtDYVORDAzwj/wZSYBopm9dXbxwnYlvIg
TUoK91P3Uj6YE2Bz++P+hHXoheeVYQcICEuV+Cwmj+ejZJ/TdxNQwNx3K2oj
nt/KWTekQQDlbnpXiDL2Y+n5jTIEqKY1Bf2niv3TOu9oogRYpS8oXtmOVrBM
81rkAjvT1vOCNtrA3MmzngvtWTckvlLR4h5zd/K5sJj9qMxNH/fjHDyZUVw4
ypLmd9iPuXzABgFjLgTmGeV1G6HtqW/8lPD/nO9jZm2CfQL+esbHhXlOG8Ps
COaq3DctpUWQzY1V0zuFeZmmHXVNETQRz1pKndBuIcS14ULgFX/z0XTDfo9l
AauiEMwemFaqeGJOG03OtC+EmXJBa5kAdAZ9yoNRAEbVwddmGWjtTLmodg7E
ylT3P2Gi79i6/JnAga7zyw/S03AvrsNhyoIDZ+WiRNawfjmNSa9lQ/TlhNs7
HmI/5pWbVWY+vN6SW+LRhrnHgOpHRRbIBQ1LanWiL4ltGXuVCy5tKv7zPdiv
t/To8suF2eAiiBrAvEZ5gPYiB2S6y16yJtFNoWLfbLPB4WbjUP+qGaBIaQ2P
WGRAXr+oCXsN2jFRZbIlHSZ0aIVe0ujJXtMZvnQIHWzzXtqAFjhkUWR/F3L2
vKPIb0czgvpV/0uFL+PjsifM0AWGQ5TOBPCzkqQ1RaIJgX99I/6CLNYePuto
NKWBO1bsCE081/u9seiQgKTItCPw+91S6c8MtMHEbvAxI19/sulblovOSAzV
bPAmt/sxL+pWoWc+JPI9ukEOpiok5fxAr5A6OGSXToqPHjJSW0BvaaPNHsgg
9fZ68Yops0BRLFSlvs0gEwYq7UhBdO1jvkXRLBLUnJR6JNEBJySD/HJI5pOc
0lWa6B8nng5cYJOWH1S6r7rPQsgYKzB7tpiU990U4X4ebbicmXm8hPwiuk77
5CX0XO2eVeUlZPhuoXjdq2iHYRFq4H2yInnImBeF1tkVUS78kPzdLLvch437
MS5l+rrlJK98/W2vEXRWQ2veyDOyjrbWyHEU+8bmsfI2JJkwJDJDm8D8gpXF
zzqSVF/7k6bBQzd1LPgerSSdLnQLjgnOQSXjosobrSrypRLDz0N5Dii+E0Iq
lBoy9UmMkq0a5ja9rSm7a0i3Y+FtJhpzYNAr/puuTw3JF3pZQ1UHPelvIvG1
htz19ujwiNEchJD3KuS7a8ll3ibJXSa4V0fdKy9ZR7YIG+5/YYE+vcfL4kgd
6aGzMz3vOPpUAv1gYx1JbdpqnnISXUDoigjWkwKuG39ed8C98n5D/gP1ZNtP
abavEz6P3VCUamg9mZGwysbNDe/fnMX7+1k9+T8biWwf
"]]},
Annotation[#, "Charting`Private`Tag$724199#1"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{0.5000000000000284, 0.5}, {0.5000000000000284,
0.5000000000000284}},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1.4, 1.4}, {-0.22772255331967983`, 0.06463974354335722}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {159.94490842698494, -97.50736892665738},
ImageScaled[{0.5, 0.5}], {299.89670330059676, 185.72832176506168}],
InsetBox[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwtmXc8lf/7x5UWGqjMUlZDoRQZ6bJT2ZtKisooycgqomSVUFkRGihayo4r
DUVW5jnnNs8yDjJyGnz0u7+Px++v+/F83O9xXe/36xr345Y+dcHq9GIeHp4P
i3h4/vfMSV5jf+YMF1WYD6Y4IxxoPmnSP3iKi0FKMsoqzRyY2xV79vgJLual
Qu21Yg7YtSwOsnHg4tPKTYRxKAdWreSm6R3momnDsSKnVRwIieqhSSlxUffn
ufmMPaNgE/TUuXt2FpMkTopcjRmG5c76Z4yjZnHVjdliT2sWfB3MndRM+olX
VZql97J6gX4uotbx+Qw2+G317XRsBx7WhdHJpml0NPrcdvfSJwhaH5uQRkxh
i3fEhXdyGXDIVDb43J9JrFxTeV/n51vkP1nJnzY7iVflpJznT5Zgg79l5sep
SeSZn9HxaClBk8xwlBidxO/HjpbYPS1FMw6xtJ42iR3uhZciHcvRJvZusvy7
SVzhE2qgVFiFzp+XFvWFTeKqJz/XKPPXor/2cJ/FkkmUjKvlU1j0BUdu9lsm
8EyiSMPKp48Vv2BV+fPY1D8/UO34gZQ5xy+YwI2zvTX6A4teBoUdKP6Ce30N
x4Maf+C/NsVr4ie/4lWPyg0WiT9wR5OG/s7yehR1eBy6IPoDrxqtfsNr0ohG
qkEaR7dOYPJ4Rq36jVb07MmIsN88gVVFhtd+pLRiwrXqemvxCbR+oFKWmt+K
3d8XO5kIkPza/Pq7r63o7n0rRPvHODY+mhVz4P+OcfkPqzaVjaNlnYsdLe47
Nos3aTONxrGnvfKcXEQbTr//ETUA45j5ixsomNiGIu7CzT3q4zhmJOAx8aAN
T5TaO3cqjOPei3ICV9+14aQVPaxu9ThOOwy/+cttQ+Gbv7CgawzD9j2vtvBo
R9sFab3zZ8ZwMDqfmqbfgfvnNq5ucx7Dhb571UzLDpT7LU5Tsx9Db1/Ru5td
OnB6SsiXx3gM74uK73C/3IEJrEUP72wfw70LnKv73nZgXePgosoxDooOf6un
be7Effdza5f5cTDH2LTEeqITpdKybnl5cXDf27/v8/524rJ76Y6trhxU0Jiz
GF3WhR0JSVPpNhwMebRJUH9TF/pERkgrqnFQao1QnJZ5FxZ4nIyw/jOKFy9/
dDMp6kJxdWndnPBR3MjYcW7V0W7U1La8cCNoFC9ncma+unXjMb2IrHMXR3FH
78HQQO9uzDEZ/KPuOoq+HjGpzyO6cdvJ3OLvRqPoEbj4fFh+N6rFScvxrh7F
u39kPpRMdqNNj/TyM5kjuNsjHu8GU/DSoKWqyb0RVDMOtSuLoGAaO8JVJWEE
g9DqVFMsBYnJQVwIH0HLBfuh9nQKnlr6MCjVdQSHLQVXHamg4EUlmdGvCiM4
5+/6hzlLwYSrMk07KobR/cfJ/oHTVBT7T7hGtXgY54wtVzmco+LDYN6XUDiM
01GOWR99qVjqy0y0zhrGnyc8pwLDqdjnlmcTGjGMB8zC6m3TqKh4SKGn4dAw
5ifHqI98Icd/lmjq0BtGs5WrZAuaqKijJ1DTpzWMOma+eUfbqWijNZY9rTiM
UQU3o3L6qHhZ8YWrhPAwhi8rX/LwJxUbhVQ4HrQhzI3QWBItRUO7BJkev/Yh
fMXbI5IkS8MB/rVNVxqHUPnesj+3t9HwJ+/PF0k1Q7hgka5xToWGG7glvhUP
h/CL6F6BbEManqNp/F3hNYT+dU2cSQ8acu0UOMJuQ7jkvVDiIW8aXm2X6Nlw
fAilVpzWTPWl4d3Guepd5kM4ztP9QiiUhu9qqiMc9gxhu8yuS9fiaSjwSJev
YI6N95ffCjr+jIYOAQJhEj/Z+DsywMX+BQ0fH+ycvjnGRmWBhkyDYhoeGHPv
udjLxreGQnJ/Kmjoq5r4UgvZqL81it3wlYa43EnuRRkbjf9ocU400nAlTTZ9
8ys2UuNXnx1uoeGTsLLIpblsXHhytLO9i4aUL322LZFsHHfsXbqeSUP5jIIG
3VA2xi+p2m80RK5/zhfe+rExPMFxldcoaa/Qsu3pbmwsf73t1u1J0h4nxflT
RmwcVVC5ajBP2jsW+pDLx8bF6yLmTwoROFVjKOqxmI08n053Na8l8EDSmpvE
XxY26andVhYhsFv1UcB7DgtlP/W/aJQgkD+8wTiuiYXlN5Q3XZIl0N7ybvX8
ZxYmXzHziJQn8LGss8qFGhaqmPS/jdxKoPbXKUmblyzc4ZNy8sQOAn2ExH9s
TGLh7VmhuFgVAqsZdNfEWBY6jwQ6qO0l1y8toiyOZOGd9G+Hu1UJfOSk82HI
l4U0ucCiWXUCJ3fy73PyYuF9kXNyfpoE7v/XXtjoykL96ZjvTC0Cux6dvffa
hoWGvb49jw8QKHtpN7+cKQsFPxF6M0DubzwXlmLIwjL9xz9UdQnkG09wD1Vj
YfTyOMU0fQLt0KF3XImFmSzdL2UGBD5MkrFy2crCqMSE8m+G5H5qpVqGYiyU
bhZ/03qQwE+Cb4U1hFiY17yMp9iYwCOc1yM7+VmYX2+iGnuIQKec56nr5pmo
Kk6cET9CID2k0HvFLBNTKVKebSR72D41nB9n4g73YtcIEwKD+J/MMPqZ+Ca6
5mCtKYE8rIcN3RQmFt/brWFlRmA05uR++87EpT4jSlSSV2c8CMIGJi5b6brT
zpzAFP9M8zcfmfhIV1K1nmQp84wt+e+Y6PEtwUTFgsC87Wn/ZZQwMcVI81IS
yUpLUjoSXjBRak9GCZvkkr47hZH55P4zCqtVLEl/K5IiL+Uwsa3J/ZofyZ/u
3Hb0TGdi80iLWCHJJt63djknM5Fi1fOdQnKHcfxyq3jSvl98xfMkH5ON7TO8
zkTX/I53IlYEMv67UaJxhYm/Rctnt5DsSbl+U/ESE1v6lV0USZ4ujnSVvsDE
5cFl/7aTHHLrquZ6dyZ26TR0byB5kXuYEN9JJt4JZHCWkhyjd3l43pGJ33TC
gEXuJ7gxhKxJTNR+tL6rkuS0X4EpzCNMHImRe3OD5E1tAecpBkzciPI0Y5Lz
ivwMGrWZGM69Y7aIZKXoi5Lv1Zgo+HFk7SvyPEpPXph+o8xErcxcRVuStfef
r8/fxkR6j2r2JHm+n0S8cu5Lk/593HwukmSTKffA2xJMfHKxJ5Wf5I5vZ8yu
rWWi2DhdPpa8r6N5bvKBK8nzlHohvkDer+dRl3bnBQbmVwXrfCPvf1rV+ZnV
LwYaeZ0PkSU5WPBYhNEkAw85rdzmS+ol5rO9shKdgRsP7R6bJvUlmGO7TIZg
IKXwKZ88yakh1r3rOxjIWVtcYErqMU/ZPP6/zwzcG2UXHGlE+sdvemqqhoGL
hJivE0g9lzAPa7DKGOiWzwxOIvX+Kd1oqPEpA0XqNteF6JF65T2gn3mLga/9
C1/1aJP29mlJJN5goMmH35+z9pP5o1xj6lo4AwfHgm/YkvHH462a7XWRgcl7
uSJPyXjdRNk5p2nLwJcCrK4BMt49VyyxSzVloNKegX1quwl8q068mjFk4MlH
/324qkygcXrsmSI1Bq6tN/CYJfOFrxP7+0YxBgbSIy4elyPwXVz1zhBB0l7B
1dnHZAhcVnU3umsFA2/c5pWw3EzgfUl97dt/6Din841PYgPpT092AQ9Bx9Jk
BZOdZH5bvSqQ93g7Hek+J1y6BAl01DZzrvhGx/LjWqyA1QROZM2v9X1HR6cb
163u8REoesIxnJFFR1yWrmb3j4aeg8J2dS50jOdoLjCGafhWaPSVjCMd1e0G
dw6xaPhPt1Yg3JKO6QMJwgN0sr48vFC7T4+OFZ7J69700LDatXHnU1k6Ospq
ePeR+V6QHcV7kz2Iuurh5mZvaVg6+vuV5blBdBGLD3sdQEP35MTm726DWLZP
ZyH6Ig0lNbeNWR4fRLeNyZK258l6Fmu/1cpsEENuZkK7Gw0PbyvNsto1iDMW
+3JPWNOw77RfnPXPAWwrC/J4p0TDZYPjrraXB/DBmsB/D8l6XB4TFdHpP4Cp
QSfVbKlU9Nq1Mdv2/ACe0dt1e4Gs363hJjRb5wFs/TtXqlZPxQypQgs7nQGU
SWy00n5DRaVj7tr2SwZQaWbWLj+Kis9efFYsFutH8d5YdwE5Kl5ffVyxhL8f
PWolVMSkqHjC++fO8vk+vLkxt2yjGBXXKcnurBnow84nLN61K6kY9vyqQkNB
H2YqP1/Im6GgVZHWVrp6H1Y3j54NrKXg36evNws79pLxH+703Z6CR55krfVN
J9AgU2mFnE83Fr0akjCKI3CrdltV+9luXPlut4xEKIF1hmv7Qk90Y2Pb510f
jpE6ynUMLzHrRhOeCVNhUjfux88UNu/sRrOjB2KK82iow809ljnUhRZC/fPT
pJ97DYLLPth3oe2VzWy/5m5UMJfK3CrbiR9889u2GHSg/rpfRCPZH6cdohZK
ereiltLhV86SLThfcKuBYV2PiWu87M7f+IoJf3wuTpt8wMBHLQoB/2qRKW7D
4DteghOdRe0aB0qwl+Kk3BSfid9u71yvGp2JPf79CoEH7kMXZNUFad6HxZwM
pa1TJaDmXPHyU0sJ5NSqrecu/wDDuqKelOpaGD/cUNHxoh4cjh/ank75CqvV
Zsx+p7XCFu23DhquLaC//b8tneIdMBY1Z10W1gZrtI4J+7C74b7sFP+KPZ0w
kJdbkf2zG0wzmo3c9ndCsfCQS8tiCsTnznysNOwEu9GLL5U2UaDC1tLfzqET
MtOjTcbtKfB112JT4yudoPC7+IZnPQXCxtQI4bpOMCjhm3MrokI/V8l8h3UX
BCmXMRx9CXh42ja0wKkbQopCl+pdJeCd37N4q1PdELpdZ6tCAgEBmol6XI9u
CJOt9/z7lABwW5qqENwN10SJqYxBAqbBLtwotRsS/i38Iyx6oO+brZ9xWzc8
bjHa4KzcCyLsVWud9SmQZyJwwEib/K7k+/lI7TAF8utbTigd6QWt7MV+Kywp
8Oyjw6OFM71wZU10TaozBV6WeSpkP+gFtHj20i2YApXZCeoDq/rApptXquQ5
Bb5f6LI5NdYHDX9VDcSFqGCiO+wdPNcH2VdiZe+JUuGr8N+YRP5+2LLBL3mF
FBXel2ysrtnWD7lPjFd3KVDhxZybvOTpfpj2Kl0hYECFm9Ezs+29/dB1h8+Z
6k+Fx+Yx3x6eHQDgTiiPtlDhlHqSg9KFAbi6mKCbd1Jhs3QGq+LSANjwyGcX
0aiQOV34r5X8Ykue5ZU9wqLCnXste/49GgBCBOiSf6kQSYhkHh0YAI/KlsQV
MjRwOfvk3DrHQTghIK8x5UkDxsGQVCmXQUjh3+I75E2DM9vMP2w7Owhxsdnu
nb40ODfyW1Q7YBB4I42vpoXQINjL5OPppEFY53L9b2UsDZIvzIiX1Q+C2DqG
hHceDdZbfDWobR2EwjvKiX1PaZC2K+vCt+5BkLaRvGn0nAYPpow+97MGoXZQ
hP+/NzQo9MvwWbGYDmvKrtfw1tLgU6DuF0dNOrQWbFgRQKXBQQeRaVddOrwq
On3kWA8NGtQ5G7yN6fD6ydE+zX4atP656xtpRwcT9wRWL5MGvaHDGwt96WCz
pV6s6gfp77Fq45JgOihe2Rt8bJoGzP3JfniVDr9WNqya/UmD0f+06tsT6KB+
69Vngb804Ibf9p9/Rod3dqsFW3gJCHZxy15WTIcmnwuvty8jYF5Ho0Gwgg7/
Yi56ha4gYPFixib5L3QIkEuWXLKKgNXX1b6ZMuig7/Bd4Nl6ArbG9EpnSzLg
oKn1NkN5AoaFqV91ZBlwJPV8t+pWAgqyOi7QFRgQ5VbSLLmdgG1vvlXLazIg
wFD9+pedBCj0VTgWOTCAITtxO2sPAaPuJTxmLgwgbjksVVcl4NnMq/wfZxnw
bfuH7C9qBOzgK5hVCWRA2LI/u+s0CNi5NyWp4h4DMoLLLHSAgLGaJPWjWQzo
z+nzvaZDQNGhW/3zjxnQotOUUqVLgOKJ64o6bxlQvP9UG78BARMj4R2DVQzQ
oqsPShsS8MI/NPTaRwaE3tk3oGhEgFKcb31dGwO2LF+ZJWdMjl/n7eNOY0Dy
gKDVmkPk+GwPUX46A3Jm7rMmSPZWOF1TOMKAGC8D64+HCVAucTltOsWAUZPc
lJtHCJiEYyt//GbAh4BDhYdNCHjVYP8mkYcJRlntN/8jedeA2aKONUww5R1+
rGtGjvc8XBAgyoTNEw/a2kh+NWtoLrqJCXK7kqoczAnwuarLLd/CBNEam6Pt
JO8W0M5yUmJCzunw53oWZB65p24wr8oEg6a853kkF2/ey8nSZsJxfxf7fyT7
FiongyETFr3RzTOxJEBFbYfGoAkT5iv67yWQPP1+y0CkDRNKklukP5NcfEQm
Wu4YE5Q35RlOkuzbtVGpzpUJ0+K/59dYEbDnpHjnWS8mcNc76cuR/JOz7jKf
HxMehbmsI/tfeHtJULYwhAlvU7O9FEj2X7SywSSSCbuvFBqQ/S/svbn84kQs
E47Jit1f/L/5IrxiiUnkfLtgz15yv7e5CzW705mQUnXqRRHJ/jv/nm7PYUJT
89lTPiSrls2uDChgApspGbmNZK7u1BuRV0zwVBDm6yT9LW0ccyovY0Ljo97p
AJIv2Q8vckImmCgKaQmQrEZnFMzVkf6EQO9d8jy55/rNs5qZcEVsrkOY5LJf
NO6BLiZYenRtjCLvIyiyK2uglwlnC1zfcEwJUF/VZhDJYoLx8N4kI5J/pzZx
ZMeZMCPcU3yPvN9ymfrkzz+ZQBkZXUsl9aCh/n5gxRIWVHdFRe4n9VJTGS2/
XYAFS1M3VnqRejLQNvc8JMwCiVtqjxJJ/Vno9c3EbmZBwpXQ0CpSn12fnqg/
28qCcMLbtZbU79GD5680KLHguJrvxDtS32dM5pcJaLPgq5Va/109Mj6aPx7Z
YcAC4bBq7YtkPFy0jE88coQFhcGDu/TJeLlsJyFx05EFu47F133RJiDZRV1x
1SUWRBjsOmytToAY499FxSssKNd3HybIeMw6/aXU9DoLjnZYLDiS8VrgaaeT
kMwCh91VkWoqpD/+/tZrXrJAPv1hjM8O0p9fWmnKpSwIfr8q/DGZD+qDeXvN
q1kwckS1tYnMFx1hyWcSv7FARFzbn0eOzAcxr4KFhlnw63DtcZYkqXeBoJrd
P1gQt/vhp4/iBMzeAl4rLgt8juh7pIoSwHOn+WbyEjYo3zc8LrWWAJGssey1
0mxIk3of94yPgMxNb5l7trFhO1csRGU5AdIPQ7fbKLOhukwx7uUSMp/k87+5
q82GEPdlCzH/aKD3elvdeic2nHNpai4n8+nXPZP8aifZMG9ywnlkigampWXm
du5sqCzKmVpN5mOHKiNqyiU2aIk9XacxQgPvz25jonfYMJS7cmhFLw0yqDnC
Eo3k/EtJCXc+0KCcmX9XpJ0NZkEnbeWQBp0/XoispbGBEr/L9lkVDQSXVUus
HGbD+3Gh6XtvaRClQpVZ4B2CJUOfdDhPaOATL7SHrjUE9mrZu+Jv0CAhRayk
T28ILq+24ZyPJOtP7qZ9xKEhMO8UKjAMowG7TFGrw34I2LZs8Y4AGhxlHtKv
8xuC2gPZYefcaGCkHWn9rHAIqlqMD8UADdyMYzvziofAZMOd6ApNGkRYJ9o/
qhiC78Gtif2qNHjn8eBo5hdy/XgnLt9OGuxOqXRNYAzBl9FNz7tFabDhx7Sf
r+QwpP179Ml6nAozOa53NeOHwf/MFe/S21Qws0tKbk4ehq2aYQ+nY6hQIICJ
pzKG4aXsBTnpSCo4X5K4Ffd0GIp3+/HYkv3D1yPfo2hfhiG4f1+WqAPZH3AP
BIYsGYEjYWVxSzZSwdBEwqnyygi8M+Hf65xJgZxFxg5mUSOwxtQ0mbhDgb+l
AXb0myOgdbP01eF4CryS/m7FnzkCVevVNiyQ/ZDEr+gjTpUjYM25tLvCjgIT
ubP7/3JHIP9Ak8/lVRRI/dW6SdNnFAKV1UTFfLqh9HFDlUngKMj616QHnOmG
LstP9ifCRsHHqE+t7lg3iBSV3b5+cxT2jB8v1jnUDSkuD/41F4yCt1uecYZ0
N9yt9+p3HRyFD5ytn3pauiDx/rLsW1YcUHzifSVKpgteGfNo5ThyoNe41whE
u6B19k9XsQsHYuVPl3IEumCNxfhqijcHfqVtCd4w2wkJSzrCZOI5cFZLZWsv
2Z/eOp/rXPaRA3YNf6a7z3ZCHOyXGtw7BoZb7j5Pz+6AoZRjavH7x+CKpMXb
uKQOMJi4bKZqMAaUMq9rXtc6YCGzOizWegzs09a6z5/pAN+/B/p3+47Biwe2
X50UO8CpRDcn8uUYWDHONi0ta4ftOw7KyCmMg91eJ7mf1W3wVcRqy9lNEwD6
vlI70luhmvs6dHzLBLz/J/v0QHQrFHcJffdTmoDolUE+ugGtkJnyPfSq9gQM
/ZB5tM6yFS6IWH5PPzoBE4WaklPLW0FExOJyY+oERH5mdM0zm8F1vVnbbsEf
cOcUn2VKQCP845OHMJ5JSB3fGX5K6Qv0zFaW8yyZhIPFarH9S75A5aCFyrXl
k5CRK+irTdSBf8Vl+ZjV5Puqxg/3o+tg2L1DIHnDJHz0C0oe7PsMrV+uUZ6o
T4Ku6aqQ+OhPkBNFv9jkMwljq/a1y9XWgt6inMcbBich7W1EanZ+GSjoTCY8
65iCwNrlJ+evpWBlIKqsLJ+GCrctKWJNH9DoQ3jYbMoMSNcFsZVOtWGgzXrz
5pif8ClaNiEitBct+rdTQzxnAbTumVulMHHjJeloT+9ZkJnIPzD5momjK8VV
nXxnweLcf8/vNzExSnNFkkYIyW+KxSSXsrDyHtv4d+wsOEhKnX/nz0I5k0fl
AU9nIYjfMjbejo2/yzek+QzPwlxeofUFuWH8bL7OyGVsFqq2X//wQXcYk9kC
P80nZ+GlCd9KuRPDqLhuzlz59yzwqvppCmYM46kL1OUTy7mg62Vgc1twBBvl
UwK9tnLBYJ3vbwWeUUx/d0v+6A4uqF7478xxqVE8Yx3VfliZC/0uxb1Z+0dx
UYS/ssI+LhSMLkwYB4+iWo/V0LARF8oDuJMHZ0aR1+/wPcphLuxZkzs5KsTB
Vj49/a9mXND7a7gmcxcHvfbtzs6340Lpp9G327w5qN68zTTViQvBUrm6S25x
cNnpzXM3nLnwtabm93ghB9vnRJ9eOsWFtOObelkNHPz//4Hw//8D8f8Ad9EW
nw==
"]]},
Annotation[#, "Charting`Private`Tag$724241#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->{{0.5000000000000284, 0.5}, {0.5000000000000284,
0.5000000000000284}},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1.4, 1.4}, {-0.8723048895982457, 0.8723048895982457}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], {479.8347252809548, -97.50736892665738},
ImageScaled[{0.5, 0.5}], {299.89670330059676, 185.72832176506168}]}, {}},
ImageSize->{
UpTo[600],
UpTo[223]},
PlotRange->{{0, 639.7796337079398}, {-195.01473785331476`, 0}},
PlotRangePadding->{6, 5}]], "Output",
CellChangeTimes->{{3.817270261356271*^9, 3.817270268199273*^9}},
CellLabel->
"(WOPR) Out[193]=",ExpressionUUID->"d79294e8-cb2f-4112-ad68-da965b8a242a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"R\[ScriptCapitalF]", "[", "\[Theta]", "]"}], "/.",
RowBox[{"eqB", "[", "testN", "]"}]}], "/.", "ARule"}], "/.", "ss1"}], "/.",
RowBox[{
RowBox[{"gC", "[", "0", "]"}], "\[Rule]", "1"}]}], "/.",
RowBox[{"h0", "\[Rule]", "1"}]}]], "Input",
CellChangeTimes->{{3.81721216084793*^9, 3.817212194888206*^9}},
CellLabel->
"In[682]:=",ExpressionUUID->"8dd8c18b-504b-469d-8072-a9fb0cc417df"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"822.9006276986833`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"", 2, 682, 411,
31478759869561735920, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.817212140998989*^9, 3.817212162850238*^9},
3.817212195088612*^9},
CellLabel->
"During evaluation of \
In[682]:=",ExpressionUUID->"a55da929-28cd-4032-aea8-5daec85d020a"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"822.9006276986833`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"", 2, 682, 412,
31478759869561735920, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.817212140998989*^9, 3.817212162850238*^9},
3.817212195092041*^9},
CellLabel->
"During evaluation of \
In[682]:=",ExpressionUUID->"d9f18df2-5058-4626-9d48-5486b1743e96"],
Cell[BoxData[
RowBox[{"0.`", "\[VeryThinSpace]", "-",
RowBox[{"6.159214973190065`*^-26", " ",
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"0.017156691619484233`", " ",
SuperscriptBox["\[ExponentialE]",
FractionBox["47573.03979762524`",
RowBox[{
"1.0039108687835472`", "\[VeryThinSpace]", "-", "\[Theta]"}]]], " ",
RowBox[{"(",
RowBox[{"1.0039108687835472`", "\[VeryThinSpace]", "-", "\[Theta]"}],
")"}], " ",
RowBox[{"ExpIntegralEi", "[",
RowBox[{"-",
FractionBox["47573.03979762524`",
RowBox[{
"1.0039108687835472`", "\[VeryThinSpace]", "-", "\[Theta]"}]]}],
"]"}]}]}],
RowBox[{"\[Pi]", " ",
RowBox[{"(",
RowBox[{"816.195973209307`", "\[VeryThinSpace]", "-",
RowBox[{"14.003222613416897`", " ",
RowBox[{"(",
RowBox[{
"1.0039108687835472`", "\[VeryThinSpace]", "-", "\[Theta]"}],
")"}]}]}], ")"}]}]], "+",
FractionBox[
RowBox[{"0.`", "\[VeryThinSpace]", "+",
RowBox[{"0.017156691619484233`", " ",
SuperscriptBox["\[ExponentialE]",
FractionBox["47573.03979762524`",
RowBox[{
"1.0039108687835472`", "\[VeryThinSpace]", "+", "\[Theta]"}]]], " ",
RowBox[{"(",
RowBox[{"1.0039108687835472`", "\[VeryThinSpace]", "+", "\[Theta]"}],
")"}], " ",
RowBox[{"ExpIntegralEi", "[",
RowBox[{"-",
FractionBox["47573.03979762524`",
RowBox[{
"1.0039108687835472`", "\[VeryThinSpace]", "+", "\[Theta]"}]]}],
"]"}]}]}],
RowBox[{"\[Pi]", " ",
RowBox[{"(",
RowBox[{"816.195973209307`", "\[VeryThinSpace]", "-",
RowBox[{"14.003222613416897`", " ",
RowBox[{"(",
RowBox[{
"1.0039108687835472`", "\[VeryThinSpace]", "+", "\[Theta]"}],
")"}]}]}], ")"}]}]]}], ")"}]}]}]], "Output",
CellChangeTimes->{{3.817212141009383*^9, 3.817212162858392*^9},
3.817212195095738*^9},
CellLabel->
"Out[682]=",ExpressionUUID->"7ce119a6-a1c0-48cc-9d86-6e7b6a1eafe3"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Xi]", "[", "0", "]"}], "[", "\[Theta]", "]"}], "/.",
RowBox[{"eqB", "[", "0", "]"}]}], "/.", "ARule"}], "/.", "ss1"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"gCoeff", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"h0", "\[Rule]", "1"}], ",",
RowBox[{"t\[Infinity]", "\[Rule]", "1"}]}], "}"}]}]], "Input",
CellChangeTimes->{3.817203455666684*^9},
CellLabel->
"In[304]:=",ExpressionUUID->"b0a27cf9-de55-4cf4-9b19-ff7b3add442a"],
Cell[BoxData[
FractionBox[
RowBox[{"\[Theta]", " ",
RowBox[{"(",
RowBox[{"1", "-",
FractionBox[
SuperscriptBox["\[Theta]", "2"],
SuperscriptBox["\[Theta]c", "2"]]}], ")"}]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}],
RowBox[{"1", "+",
RowBox[{"1.0745227484633069`", " ",
SuperscriptBox["\[Theta]", "3"]}]}]], ")"}],
RowBox[{"15", "/", "8"}]], " ",
RowBox[{"(",
RowBox[{"1", "+",
FractionBox[
RowBox[{"2.2786089295146557`", " ",
SuperscriptBox["\[Theta]", "2"], " ",
RowBox[{"RealAbs", "[", "\[Theta]", "]"}]}],
SuperscriptBox["\[Theta]c", "2"]]}], ")"}]}]]], "Output",
CellChangeTimes->{3.817203455897637*^9, 3.8172042416897707`*^9},
CellLabel->
"Out[304]=",ExpressionUUID->"d3fcf7af-82f3-49c4-81c0-3bf29938e0d1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"Abs", "[",
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}], "]"}],
RowBox[{"1", "+",
RowBox[{
SuperscriptBox["\[Theta]", "3"], "/", "t\[Infinity]"}]}]], ")"}],
RowBox[{"-", "\[Beta]"}]], "/.",
RowBox[{"t\[Infinity]", "\[Rule]", "1000"}]}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "1", ",", "1.3"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8172052654521303`*^9, 3.817205279995434*^9}},
CellLabel->
"In[394]:=",ExpressionUUID->"f49c10e4-6ea3-40fb-85e8-436bcc73196f"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV1Hk41VkDB3AjvGWJqCxDE6OUpWmGTKnuNzJNxEUqxghZK9FkGS22oUWL
UCoheymFd1IR0uqWpboUhRhladN0fot7r6Le8/5xnvN8nvPPOd9zvsfQf/va
IHk5ObntdPx/TrkhcuLmE7T7hshflvuEhh0LTOrMCJKeuLq69Y6h5K3Kefuf
CHJFwmM+W8dgH3TZ7Rz10wjBmR8CxzDY7/n5P5YEF8oyODWfMXz//KywhXp/
+vpLjNsYikQYdVtEoOwbX+1iM4bC4kg738UEe1I/zlyuNoa8jT0vdgkIun8Y
DrtXK4Og66/9PdRdQsN1767K0Ldu3sLlIKgyyS/U+VsGA6foZLkVBCdWfaN4
tFSGXBt10wO2BJsc6lW6MmXI0V4Zk2lPMHxzTUb3HzJktZVNq3QkeK+tuYG3
kCEw9JV46hqCX8W87VRTGX5U1EsPp74RGlRjMVeG5sUHpy5wIii7eHxK3CwZ
xvNDVMqdCbRvW5T9ri6DX7ix4kVXAgfVwxOqrBTzVfJk5zYQRIyvOvCuVgpJ
SUe1kgfBzcoHjbnVUtwRqMUEUx8PXKfhfkUK74jY0TmeBJ/ltUtayqU42uXF
lvxGsFN10v33BVKwpdojRd40H6W6Tf0HpKi1z/gnz59AL+ViUYCnFM3EsV4p
gMC22yDEYb0U3bkKp8OpZwQvaP5prRRjfMxaQSCBmsUSJw0nKRaf9WnsDSJo
chsNGoUU1YrmF/W3ENTopW3fNE+KKyLRn9nbCe7HaXhmfJagfPW42slYAkez
S7M0yiToyxKOS6jHOmJCn5ZKoPG24J1HHEGesKYk+6wEEQd/ua8bT3A4Tl5s
XiiBdfPRxDMJBNe+OFaFZElwa40hV5JEIBSLNBYdkOCpcNXzqhR6vuQlpXrB
EoyvSy9qyyRI1df4NWWeBH9UB1bYnCBQiEsvPzxXgiHdJbXF1H4YKEg3luBR
38u26JMEC4UtxvmzJSjYbPmNXhYBsXLyf6QjgX1sp69/DoHGG+WmyCkSHCnW
N+AKCUSC6V0t70ehz54/Nb2SoCJgZbrjlVFs1ZvCvHhAELJ3tUGO+yi01hz7
79t+Avc+TXV1xVGkqhaIJz7RfGeNnKq7zsO/s3PDBi0GAasHbMS7eQSZrbe1
MmNQ+vvKoYd2PGymeR7R/YVBUXpAhLsKj61fk5ev3MhA8HpH5J0eDqHxVi5R
MQz6V7y+o3uJQ3aKeaNpBoM9b5R2VidyMM5xLpxzgcExT9HwsBeHBAHXa3KX
QbRs4a5tVhys391ODO9hMGN+inK+JoeGuTP21o8yCK+x7lAmLKL+rXyfps5i
QM9IjXvMYl9D5PVSExbtnrV9iVUsQr6rfy2yZXFF5+GU70+yKEmxiDX1YqHi
qDP+aQ8L9bjhKK0IFsGPjeNDA1g4yRs/mnSERZp/WNiAA4vBtEOpi0tYfPG+
t1/JkoVzRXR5VAML87RJnPW3dN3j/I/Wz1kYvpzV0KDAonOKgv4yui/Ds9G9
BwmD006DwQ7KHEyuufgE0HPUnPqgnWPEocJAAtcHDBTCBRYRNhyU/xw5bHmN
gVGHVrHrOg5eRlZzTYsZ5NhrJkRu4/Dh+LZ9LM1tyP5E3Zn9HPKcxpc+S2Bw
yNnWRzWfo/k0bQ3bzmDjS6sguWoO7XYjskZfBvJK5a2fxfQearRqbV2oLYXZ
S99ySGoyl7ddweAJiXyQNIlHa3jMx9CFDNqXvPRyMeAxHX95OxgyMD8c4+63
iEd8RWFbMn0HnmHHLu104bGqdvLPjAKDfzw6QztCeCwN3PbsvJT2/uGmtOoE
HmIDidGHdwS6T3doFZ7m0WS170BoL8GnV2UTj/7mgcTuGTptBFee9fM2l3m8
WmZa/FJMEN46c+QcdeR3mYsuUg9cTeqOr+KhlHx5i4C6NcWresFVHr4qX6cG
Paa9XKC842gNj9VL5Z2rHhLY7d4y6HyTR1+ddrp7M8F4eH7Pdeo3TzobDKiv
BXS0z7nFI0aawb5uIjBztr09QW1TKdscSz19tm5e+R0ekzXDM87Sngw3PvBQ
E/E4/9VULBMRFNR+Ee6iLohdJrxL7VVptWqIWuS1tC2V+nFWgdWN+zzasyaG
jKhrQndOC2uiPbqx29G5kf6bfhWTu6hjB3o/alObrx/8at/M44KFSfarewSF
Atd/9Vt4+GVunoih9rbcP5RCnTvoc82Oeua8+hc8tdOtn6PUqMX67BO/Vh7D
tqz187sEh6bNa2mlnr039UsR9f8A7zSg2A==
"]]},
Annotation[#, "Charting`Private`Tag$58265#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{1., 1.047762865397324},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{1, 1.3}, {1.047762865397324, 1.625169762983195}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.817205280138452*^9},
CellLabel->
"Out[394]=",ExpressionUUID->"0ede64a7-b62f-453c-b5e6-06e4c6ab27af"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{
RowBox[{"eqB", "[", "0", "]"}], "/.", "ARule"}], "/.", "ss1"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"gCoeff", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"h0", "\[Rule]", "1"}], ",",
RowBox[{"t\[Infinity]", "\[Rule]", "1"}]}], "}"}]}]], "Input",
CellChangeTimes->{{3.817205463367375*^9, 3.8172054635510263`*^9}},
CellLabel->
"In[410]:=",ExpressionUUID->"67bd5207-9130-427b-afb3-21bda9c7e82e"],
Cell[BoxData[
RowBox[{"B", "\[Rule]", "0.14154259239895026`"}]], "Output",
CellChangeTimes->{3.817205463782987*^9},
CellLabel->
"Out[410]=",ExpressionUUID->"39e5dba9-9c25-42e4-8876-75a530e46ee5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"RM", "[", "\[Theta]", "]"}], "/.",
RowBox[{"eqB", "[", "0", "]"}]}], "/.", "ARule"}], "/.", "ss1"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"gCoeff", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"h0", "\[Rule]", "1"}], ",",
RowBox[{"t\[Infinity]", "\[Rule]", "1"}]}], "}"}]}], "/.",
RowBox[{"m1", "\[Rule]", "0"}]}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817205427919524*^9, 3.817205479543686*^9}},
CellLabel->
"In[411]:=",ExpressionUUID->"6db9bdd5-3bc4-4993-85d9-2bb9c2d0db38"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwtlGs0lAkYgCeXU24ThbIhDLo5inbH2VHnnRVFTDGrVHLLJaGlqQzLlltG
kZGhI5cyHxXqEDUhl5eMQ7UilMKyWBJn3Nmhmm/bc/rxnOfX8/cxPBXK9pej
UCisb/xvc9CeIEkSJSVnx0yyCAxdpiUtr5AYbi0qnhcQ+Oixhen8IomOopKb
z/kEWm5lnRqbJNGfN/DJl0eglUZC7589JFZeUHV/Ek4gc2T25a0yEg+ciMxI
PkIgm9f2YLcXiXOB+VWqmgRy2xPOnq6XodWQ+W3jDCF2d6tMNPp8xfOzrz6v
S85HvYZQTSvdL6h9o5+znnkHRcFixbV/rWAqP+PiwcQ89E6xmPkQt4y6O+c8
NlTnoDQ9KglBilu0KLt/0cnGAuqATtbQEjrOUbsD/bIw96AFp+vqIob1Wgc3
N93EuBCfiG0OC3j9HP+V2D4To+RLuBzJHP6asOyysVKAPjHtxu+KZtGy4ZrF
3wfSMbNuNCs3aAZ1q2Mi3cfS8NngVtWHRlN4w5EcjupNRZo608b19iQKHvgS
0SYpWLE9KWh4ZByVVKDmPvMqDjaXG9DpYzhQ4xeaxknEUbNMS3w6gqw2P7ZC
fzxqXCqmm68awg6nXHNjzVg0o0+b3Z3vx3f3K9ZskfsD420lHdURPViSPr4+
m8tFLdfStOMbOlHRMITXTuVgxVLz2lbjlzgZ+Tb6mXoQ3u0bvf4poR5FUoqB
ymlP9HDRfdLnW4gCJbG2hGWL1cpRb59fLAC+r/fka+998NPwKv3YYwitYXyR
PMMLaDM1y4znLyCmSVXeuvQMOBR8aDt0rBPOTZVZSg9zwI61Tn5R1ANGAl2R
q4gLfK+emF2V/VBy0knWJY6GlkN6as7rhoA/Y+BxzyQWJIZalzqzR8BGN1GN
gfFw8cIOH772GJTmaNTnuSRCT786O6B1HOziOmye0K6Cd+Sej6udJsGB5z9V
1JYMTTusrjUpTsEbhWCqeU0qmCrVjhfaz4Cwbblb2pAGerXBdopJs5BIURww
oqUDZUWumDM8B2c8uB1JJQL416XOs9lkATqT8+zDN2dC349em0wSFiGsZKJo
pfYmhLmpaxj1L8FwFdPusUcW6GT8c0xBTwohj+MPOUtuQal7/v35iGWwCnGd
MH2YA257L9u31q2AHs3p9ah7HpR7njVifPkML8u5Jyjr74BUeZ989ZGvcLn3
6LZdcfnAfmNN18uSQaeoI4oZLgRla5XG2jwZtH4QT+f/LoTGwl7HkwUy2Pjm
ME/ushB2RUT65JTKYJOYavqCJwTq5soUnWYZpEtEtn63hPAixHJEa04GLfRi
/a5aITDXbEujOpHArkpj5CoQID0n/aHUhYQmv5wMmhIBZX0td1luJAQMOls/
VCNAvyygJuUUCUIZ9UKjNgFfjhSOKUeSAEbmVZ+3ElBZsHnv6nsksKSBTx+x
CPhNbbrl3gMSnOOPR7HYBJhy69n7y0nYf8WNmDxKQMZBj8ArtSRULHRvMvMm
gDObLZDvIqFBSh+u4xCw3T1Iv+A9CZeyF/v9uQQMiX8uthkggcEIsV0bTYBz
1vv62E8kfNzT7hlwhYA1ckUOhtPf+p0+mprXCMBgbnfDAgnkjiXrplQCwt/u
9/JeIcGfO/juvICA7/+C7/+C/wD1yYEt
"]]},
Annotation[#, "Charting`Private`Tag$58884#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-0.03631704748007345, 0.03631704748007345}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.817205429041562*^9, 3.8172054394073963`*^9},
3.817205479781142*^9},
CellLabel->
"Out[411]=",ExpressionUUID->"028520eb-aee9-483d-9152-2416a8a91977"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListLogPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{
RowBox[{"Sign", "[",
RowBox[{"\[Theta]c", "-", "\[Theta]"}], "]"}],
RowBox[{"Abs", "@",
RowBox[{
RowBox[{"\[Xi]", "[", "0", "]"}], "[", "\[Theta]", "]"}]}]}]}],
"}"}], "/.",
RowBox[{"eqB", "[", "0", "]"}]}], "/.", "ARule"}], "/.", "ss1"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"gCoeff", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"h0", "\[Rule]", "1"}], ",",
RowBox[{"t\[Infinity]", "\[Rule]", "1"}], ",",
RowBox[{"m1", "\[Rule]", "0"}]}], "}"}]}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "1.01", ",", "1.3", ",", "0.001"}], "}"}]}],
"]"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]], "Input",
CellChangeTimes->{{3.81720558184165*^9, 3.8172056145702963`*^9}},
CellLabel->
"In[415]:=",ExpressionUUID->"aab225ac-8e68-4d46-a4da-600fe6364133"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.007333333333333334],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwt1nlYjekbB/DTqdO+nLZTKpEsFdkpFd8HGSIKmYRRkZCJIqMYDLJNtqxj
K1kSI/v0syTL2BUzEjKGIVsh71anvd+7PO8/Xec61/uce3vuTx7T5o2boVap
VJ4GKpX013vK5hs1Xgy2Jvjk+Ee1I9ucjb639mVwafTz8SUH3UnLk9TKzr0Y
dNO1HgtraktmZX79Gf0YdPjB7Xmv6W1J6ehp2okDGEwP8Du2qMyNDDR/dihp
IIMwj5iBm8a6kbzbo/zWD2Zg8pQt7vnUlditunY/ZxgDm6w5ZyZMcyVL0W/q
pRAGbed6vWxf40I+Nh5jH49mEOlF9OUbXci4C+6rP49l8CI5xuZ9VxdSmCJF
yGBp3WTTKw/bkC69TE+4TWLgERQ05dvCNkQObyqDwqLtxc4ebUiTdNw0BnPU
PnffPnIm8fLDYP/IgokGK53J3x3+qV+WwIAvKEzt5edMAl+Hbdw1l8Hn82UX
/b45kdy9N9ufns+gt/Fb79fHnIiY7Pm7PzHQ7a2YXRfvRJY4nBz+ZjGD20Ni
v0zs7ETe/yUdyKBL4obxLz7qSLh4mt0qBuYzXCujfteRSyGW6q5rxfolOHe9
kKQjnYxX7BiawSBq4LvZz/10ROrGlM0Myt8nphxQ6UjDsgQxZQYF2f7hdfcd
SZwcIIOkr4Ma7+10JI/04yuO7GWQs9O9v0GcI5GiK8pm0PXTkAkZvR3J4SSp
Iwx6eTU7RaodibXv2f3fjjKwG3Q8PaLUgaSJ3TU9weDTSp97KUcciHiYmDCD
w+k27Y6nOpAxUnvPM3h1tOnsx1AHIrfjgpiff/Emjw4OxFMqXyGDv+a7rgmt
sydyutfEefCt7jj1kT2pk8K7Kb4/u/OB0KP2RD7uLoOH3I471r/Yk5Ji6WHg
Pjy1fm+UPRGHJeb9Xwy8NT5OX/rYk4PDCvjmJwxin9Qt1lvbE6l6unIGz658
ri6osiOLirJdevzLoNlh1mHPO3bkzWKpIQxOHN3Tze+wHQmVD2SQ0bg5+fMK
OyKdllrJYItB5amAGDvicXq+ONJi/apck9vBjmT8KE0gA+ui3mu2u9uRWi/p
gjDop25U72ixJTFygxnkkb0D3F7bkgc5UoAM2JT0gk7XbIk0zZZqFoHbCoLy
c2zJATG6jsYsakaF3zi5ypbI18Ocha/V9MTO8bZkoXzhWHRWaTK1IbZEHj87
FvE/7j0+u5stGSknzCJjycTo7lpbIrfXhcWxVx/TJgta0k5qhzuLtiO++/T1
uZbI5evAYpjjtYtvr2iJIKXbmcW2f+3b+h3SEjm8riweVf8x9dM6LbknHdeD
xTdN74/8XC3pIz8s9pTlDYicoCVZ346KN5jF354zOZsgLZFuW1wgi+tLt99y
9dSSBfJCYBGTr1+aaq4lYrLiQLNI25ylH/7OhoyQG8KiT1baTP/zNkSavtuj
WJy2Wjm5KN2GtJ0kTTQLp9lbTJ9OsCFicx/qx7MYG/rr7SVdbAj3WFowLHq9
OGd9ot6ayOtqCgvV7y6LpxdbkzvSeokR6zHL+VpWtjWR10GcWM+Fn89PWmBN
9knXdxaLNk5xI7YPtybydfuRxfR7h9NHuFmTZHlhsWgfJ2xIYa2IPM4pLIzZ
A/sc71iR7+SBYTHPjtN477ci8rj8zKJvo3evEwusiKvU3hUsmo2379030orI
7VjN4h/dgad6DyvCSOVbz8K9wmzt5XpLIqe7kcWZ1RZx7/+2JLek8DLF+H/d
03/BcUsiH7eDhde7k8+nrbIke3ZLD4vbXbb1PTvFkkjb+ex+FnPXDQyO7m9J
5skLlcUGkzPaWVpLIlWv4oj4/fT4M/erLEiwMtDIG1M4avUtCyJtK4eTLA6s
mWu384AFaSMfyMIzzn5Y4xILIq/nAhaR67N7nIu0INXSOr3EoiTim3dhHwsi
r78iFi13J+xy0FqQP6V1dYNF7J6eHy59MSfyernNorTtis3598zJb9I6uM/i
3OP1us+55kS+vg9ZOIxKMp2fbk4S5YXPYm2/ikYyzZzI1+MZizHjbm75npiT
IfKFY7HL/em8M+7mRB6/1ywqNIkjw5vNiJOcMIsJVZ4ver00I3J7P7K4Wr7t
v4jLZuSL1I7PLBJuWXe5sMeMyOX7xsLf6YdlkxabketSujyL8palRQGTzIgc
np6F5vuE25EBZmSndFwjC7eG8iWnXcyISn44xC6zeDC00ZTMkUHiMNl5U672
pSkpk7g05VB6wspEd8WUKAuBQ8Lb9p/HZZmS4xJHWg47O7SJvL3clMh8OHAI
TH4SMS/WlCyX1r0zh6eaTD50qCmpktazG4egzBvDp3YyJRHyghbfd6tMOGhi
SuT115GD4bzZS5yrTIjiOYdTn+L3XS02Idtlzzmk38iq2XnKhHrO4dbB4HP7
t5pQzznMX/SfpnShCfWcw/V1vh36R5mQQfLC4pD/RwO5HWRCPefQ9qFF9sr2
JtRzDi4tjT8nGJlQzzlYwKPd0k/G5JPsOYf4P5NKLhYbU8/F88fFlbY7Y0w9
51CW8d/ykzuMqedivQzdOs1YbEy2yp5zaOi/1nlotDH1XPy9kX+cHR5sTD3n
xHkeFjbf25h6zqFlV0noDWtjEiQvVA7P0m5a+gka6jmHEru5/KNyDfWcw4OU
OzM3XNVQzzmEFS4onXNEQz3nMGXdsYOJGRrqOQe1xiM4M1lDPecQskrt/TRS
Qz3nMOK3spuBgzTUcw5uV5M2Xu+ooZ5z+HtRZUO8hYZ6ziHxdfrarpwR9ZxD
9uW8U9blRtRzDrtri1mba0bUc7EeqxMfdj9qRD3nUHCx6U7CJiPqOYeA6rJp
fy40op5z4LN6dvL/wYh6zuH9E/tdd4ONqOccDlWHDEnpZkQ953DjSsTZAAcj
6jmH4frYFNcmQ+o5h0geTrp3htRzDh6XxnX1KTaknnPoP2n9kMjzhtRzDo/W
jGf27TOknnPovXjXvYZ0Q+o5h0qXvLikREPqOYflMYFRzRMMqeccrGtjSM4g
Q+o5ByfntPOTuxhSzznc/73r2G5aQ+o5h9CN0efs6tXUcw659r3TrN+qqecc
Mu9UD273QE095xAVanIy+Lyaes7BMtUietl+NfWch/2eHP2DNWrqOY+3X5e5
+iapqec8XvnHzMuJUlPPebhnqnd7DVVTz3lEhLrhRjc19ZzHXYfvzebq1NRz
Hus8gw90Vamp5zxq9kfnN1QaUM95PHdU/fOi1IB6ziPEZ8KTB1cMqOc88kfE
DCs5akA958FnVL94lWlAPedx4uLWIaqfDajnPHwmZ/v0ijegnvPoyLUfkhxu
QD3nMWb4c/9rAQbUcx4TH/e92raTAfWcx5MBYWvW2xhQz3n8XlUBwwYV9ZxH
9K3RWb++U1HPeeje/BLR7pGKes5jyzSN7vpFFfWcR++Z3M55h1XUcx591JUZ
PptV1HPx/VCb42yainrO49FKi6M341TUcx5jA1r9D4WpqOc85uxbqdsYoKKe
85j5v+zaFZ1U1HMxvhclW1ZoVdRzHpXN5QOc9K1QPOfht2xlLkpaoXjOw/nk
y+dLDrVC8ZxH4PQPQx6ktULxnIdx68hI3/BWKJ7zsDg1aX1O51YonvPYfM1g
dJfmFiie8xhteE1XVNoCxXMeq4IOTJ5xvAWK5zxu5vbIdFvRAsVzHqOWL/St
iGyB4jmP6/urci90b4HiOY/FuuSUfZoWKJ6L+bwbZbXpZTMUz3no9+sqN5xr
huK5+H2XK8t/+7UZiuc89i5aEHI6thmK5zzehOcXlfo3Q/GcR56ZbqJa2wzF
cx7rR6/bFPixCYrnPD690fyzrKgJiuc8js88VfBgRxMUz3l8cSnc45HYBMVz
8T5tSlb9EtwExXMej6NdYz+4NkHxnId/lbp/BN8IxXMejlXxdXfvN0LxnEeq
2wKP4IONUDwX5/exn8+ttEYonov37aecjFFjG6F4zmOraVLRU69GKJ7z6LK2
e2C8qhGK5wLKQnwW1z9rgMyvkYCJIxP4zacaoHgu4FVUrrv32gYoC0GAfvCg
BTenNkDxXED9w56zYvs3QPFcwO4bdimtVg1QPBcQlK+xynpfD8VzAfEnTuYF
XamH4rmAtxa+hS+210PxXIDlPW3hoh/roXguYFVNuJt9cD0UzwX41w0OP+Fa
D8VzAQuPZ9wfwtdB8Vw8b0y75rL7dVA8F7As1jdqxsE6KJ4LmDfQNYxJq4Pi
uQCnXaljfhpbB8VzAQvuCrdqveqgeC7A6+t4z2RVHRTPBWQXTy9990wPxXMx
/03M4LGn9FA8F+AWeLH8jzV6KJ4L6Nw43chuqh6K5wKMOs33mdFPD8VzAZmG
fc+dtNRD8VxA6tRCo+qKWiieC7h0pXRVh8u1UDwX6zvj87ZRW2uheC7A3FS7
a9bsWiieC5jg9fJrKqmF4rkAdfcE/RKnWnyQPRfj8/zONrm6BornAta7RO+K
vFUDxXMBPwXUVXTfVwPFc/HzzN1htfNrsEX2XIDjhtae+SE1UDwXMDTV8t9x
7WugeC6gMqIg90OtAMVzAU9za1/NLBEQIC98sV8vLzwpOyRA8VxAeczdJz3E
OBXPBfzWo8h7YbgAxXMBZu++uh7pLOCd7LmAbwPHsUVN4p6WARbQV5f29bp4
7xTPBdQUzh2bn8dD8VzA7Mt5k39ZxmOT7Lk439y34QERPBTPxfetR4a98Oah
eC7WO+Tt0ehW8f8k2XOxPovY9Hui2/8HL3y1cg==
"]]}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{1.0039583333333335`, 0.6557531074626566},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Identity[
Part[#, 1]],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Identity[
Part[#, 1]],
Exp[
Part[#, 2]]}& )}},
PlotRange->{{1.0039583333333335`, 1.3}, {0.6557531074626566,
7.83713008710278}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->FrontEndValueCache[{Automatic,
Charting`ScaledTicks[{Log, Exp}]}, {Automatic, {{1.6094379124341003`,
FormBox["5", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
FormBox["10", TraditionalForm], {0.01, 0.}}, {3.912023005428146,
FormBox["50", TraditionalForm], {0.01, 0.}}, {4.605170185988092,
FormBox["100", TraditionalForm], {0.01, 0.}}, {6.214608098422191,
FormBox["500", TraditionalForm], {0.01, 0.}}, {6.907755278982137,
FormBox["1000", TraditionalForm], {0.01, 0.}}, {0.,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.0986122886681098`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.3862943611198906`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.791759469228055,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.9459101490553132`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.0794415416798357`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.1972245773362196`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.4011973816621555`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.6888794541139363`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.0943445622221,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.248495242049359,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.382026634673881,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.499809670330265,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.298317366548036,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.703782474656201,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.991464547107982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.396929655216146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.551080335043404,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.684611727667927,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.802394763324311,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
7.600902459542082,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.006367567650246,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.294049640102028,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.517193191416238,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.699514748210191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.85366542803745,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.987196820661973,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.104979856318357,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.210340371976184,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
9.903487552536127,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
10.308952660644293`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
10.596634733096073`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
10.819778284410283`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}}}]]], "Output",
CellChangeTimes->{{3.81720559874267*^9, 3.817205614807034*^9}},
CellLabel->
"Out[415]=",ExpressionUUID->"6e880d59-ffe1-440b-af8b-754c17269f6e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"tastTab", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Sign", "[",
RowBox[{"\[Theta]c", "-", "\[Theta]"}], "]"}],
RowBox[{"Abs", "@",
RowBox[{
RowBox[{"\[Xi]", "[", "0", "]"}], "[", "\[Theta]", "]"}]}]}],
",",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"Abs", "[",
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}], "]"}],
RowBox[{"1", "+",
RowBox[{
SuperscriptBox["\[Theta]", "3"], "/", "t\[Infinity]"}]}]],
")"}],
RowBox[{"-", "\[Beta]"}]],
RowBox[{"RM", "[", "\[Theta]", "]"}]}]}], "}"}], "/.",
RowBox[{"eqB", "[", "0", "]"}]}], "/.", "ARule"}], "/.", "ss1"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"gCoeff", "[", "0", "]"}], "\[Rule]", "1"}], ",",
RowBox[{"h0", "\[Rule]", "1"}], ",",
RowBox[{"t\[Infinity]", "\[Rule]", "1000000"}], ",",
RowBox[{"m1", "\[Rule]", "0"}]}], "}"}]}], ",",
RowBox[{"{",
RowBox[{
"\[Theta]", ",", "1.01", ",", "1.4462747730035337`", ",", "0.0001"}],
"}"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.817203327473588*^9, 3.81720343332192*^9}, {
3.817203480635425*^9, 3.817203492915291*^9}, {3.817203567652894*^9,
3.817203683334523*^9}, {3.817203792400964*^9, 3.817203867074172*^9},
3.817204689929282*^9, {3.817205150944984*^9, 3.817205152576948*^9}, {
3.817205223522706*^9, 3.8172052338427467`*^9}, {3.817205288780418*^9,
3.8172053029241323`*^9}, 3.817205411974576*^9, {3.817205654107472*^9,
3.817205717556713*^9}, {3.817205782518643*^9, 3.817205785669633*^9}, {
3.817205818678906*^9, 3.817205827254903*^9}},
CellLabel->
"In[430]:=",ExpressionUUID->"f01a72f1-91c7-4454-9040-b54a61c9cd07"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"714.8507679457919`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"", 2, 430, 270,
31478759869561735920, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.817205655271134*^9, 3.817205688892234*^9},
3.817205721737104*^9, 3.817205789890027*^9, {3.8172058233032007`*^9,
3.8172058313878403`*^9}},
CellLabel->
"During evaluation of \
In[430]:=",ExpressionUUID->"46cbf58a-9f1b-42bc-8a11-616c84d0e1d7"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"722.0335445780802`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"", 2, 430, 271,
31478759869561735920, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.817205655271134*^9, 3.817205688892234*^9},
3.817205721737104*^9, 3.817205789890027*^9, {3.8172058233032007`*^9,
3.817205831391543*^9}},
CellLabel->
"During evaluation of \
In[430]:=",ExpressionUUID->"c25c6435-fc6d-4b46-b41c-a3d203aa09da"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"729.3631832016845`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"", 2, 430, 272,
31478759869561735920, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.817205655271134*^9, 3.817205688892234*^9},
3.817205721737104*^9, 3.817205789890027*^9, {3.8172058233032007`*^9,
3.817205831394842*^9}},
CellLabel->
"During evaluation of \
In[430]:=",ExpressionUUID->"3a09025b-666f-454b-9a32-9f324e354788"],
Cell[BoxData[
TemplateBox[{
"General", "stop",
"\"Further output of \\!\\(\\*StyleBox[RowBox[{\\\"General\\\", \
\\\"::\\\", \\\"munfl\\\"}], \\\"MessageName\\\"]\\) will be suppressed \
during this calculation.\"", 2, 430, 273, 31478759869561735920, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.817205655271134*^9, 3.817205688892234*^9},
3.817205721737104*^9, 3.817205789890027*^9, {3.8172058233032007`*^9,
3.817205831397901*^9}},
CellLabel->
"During evaluation of \
In[430]:=",ExpressionUUID->"5b1f7808-f0a6-4257-b7ed-4acdc8c4ac95"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListLogLogPlot", "[",
RowBox[{"tastTab", ",",
RowBox[{"PlotRange", "\[Rule]", "All"}], ",",
RowBox[{"Joined", "\[Rule]", "True"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817203685047369*^9, 3.8172037150151052`*^9}, {
3.8172038305379047`*^9, 3.8172038309130993`*^9}, {3.8172053051002283`*^9,
3.817205343292968*^9}, {3.8172053927899923`*^9, 3.8172054097503033`*^9}, {
3.817205661259445*^9, 3.8172056675554*^9}},
CellLabel->
"In[431]:=",ExpressionUUID->"1dfbee5f-7e33-4446-bc10-991ba8838497"],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.003666666666666667],
AbsoluteThickness[1.6], LineBox[CompressedData["
1:eJwU2ndcTW8YAPBb3XbntpcoqSgNaWnpPBENqdCiiZCIdlKJKKWEjAYaGtql
Ukk4kZBIRkpa2kXET/NWv8dfPt/POed9n/d5t5vsvuM7D7DSaLQiARrt37/8
+rTISO5lkH+D8S6Fn6Aedm/0V5mShHHZ5U8nBQnqSFHmJY5+SUhNvm62WYSg
VnCeGOJ/Jwn8LYlnE8QIKtWXM8H0kSQ4+29M/CBBUJ5qlllFBZIws/ZLopAU
QdFlqs2NkiVBfFPrnW0rCGp32c+C+ShJkPpd1X1KhqAci5Kn+v0lQXDrrn1F
sgT1/Jn4vqm9khCZmW/2UY6gfhS7KWrYSMK7n0uFUwoE1VtVF3vDSBJaIgZz
hBUJqux21utVqpIgf0XPWnktQWlnROq2SUlCxY311EYVgmpNuSZTxiMJNRpu
AtvUCKpPrOpj6awEvP15336XOkHdMjEs+zgiAQG1l/PtNQjqfNYbhnS7BExJ
V0vbaRFU9kHDHXEvJGDb9n2vrXQI6qLnvq9S1RLQMGzcsFmXoFSyFiVaciXg
1u3TK7T0CeqB6DX/7BsSUHnt5ZiMIUHNcFo434yWgOFsU5LTiKC6kt9srQiS
gFOHKlTHSIK6HqNVMH5QAp5IbX/50pigptT6aCYOEmDjMbgyazNBhV4+9PKh
qQS0dfWYhWwhKLtI/zM7dSWg+IrOjm2mBPX0Q2kpp5IE5G4Jt5A0JyhB75KO
L5ISYF84YNJvQVDuzq0xr3kkgH58o02+JUHRnmqZd8yLQ5HSfOgRK4Jiu56S
z/ZDHI5qb/isZENQ6Zo7DCy6xUH1UIXPwA6CqqxRSixqEYc/xV/tb+4iqHJe
J5O19eIgkfImycqOoIqyAsaelovDQqON8aI9QcX/3SYTlC0OpYb97gWOBPU4
ajxi8w1x+Hm3im3XHoJadiOycG2MOHDEV+jMOBHUwmG7zconxYHmFMqR6kJQ
kZIlYyZHxeFmqFeErhv21483W4NdxYF1Y2rxB3eC8jXuWay3EYfWmm+3juwj
qKau4Yfym8UhKvurI82DoGLeP1RM1xaHu0L9368cwPHx5NekuqI4ZMuLeqw8
RFDWl1qfdywTh7pih1eFntielJ22KQSW98J+jZYXQRWv47A+ThOHS3vOxzw4
QlDq5wUPO/0Rg6jritMG3gTlxL7KwWVIDFJctoQ/PEZQjQP7WgI6xOBqyX15
XR8c3+r+sZnNYvDxl8z0PV+MV9jZqP+JGJiZzC0o+mN9Iefz9CrEQJmK23Q7
gKBEmFVns3PFoCvvxxtGEEGNiM/Hy6WKQf9NvvzwYIJ6VFwQWXVRDH7dy/86
eoKgfBr2yLucEQOtZCffXScJqi2hTUM8UAzeZFw6XhuK47NM3GfAUwx2N13o
kQ7H/qCM0hucxWDiider06cISpcj/ly1jRi8fLdauzeCoJ4cdxysMxGDnN7L
azeeISjuJ4yYj7piEGFjfy8pkqCsxuW1FlXE4EkvrfXnWYK6f1+0XE9WDJbH
T1/eEkVQEsf3vI4WFQNz54iZ5GiCmv/uYTHILQYqunWMsfPowpQ520VRMCy6
90U3lqCuSFvkffotCpeKNu+PukBQB1eXrjw0LArlOzaUtsThfLnfv577qyjU
XtJ8Ln6RoF6m9hQ8fCcK5iP1hS4JBCXs7ed06rkoqIpbH868RFA12UYiO2pF
4UKtMr3/MkH1t1bmapaKQs7f+MhViQTFP8MYVMgWhRf8F8fcrmJ/8ljeWZMi
Cn2Eyqab17B/ziuX6yaIwnszm0sfrxNUmo7SqONZfH+x8TNvEvYPLWR5zAlR
GO41kTVOJqjDA6yrGr1FQeL2Qd+AFII6x+/2Tmi/KHB53HuTk0pQ3zjeL3o7
isL5I1cNPt0kKJ7fZlGft4uCrbcHxXqboLKYdobWm7G9qw7uVUvD8dKqsvBR
VxQ86hrkHNMJKlYlPdNTDeNxSOI7nUFQP6Mk6TzyotDj07syNxPX09b0pRpJ
UaixSTjQdIegZHc1HQ/kF4WfIaE937MISiHhqTrJLgp1gsevEjkExQEgIzYv
AlpbV0Sr5BIUX1C0xNwvEbhWvqbO/C5BiVe4z40NiQAXtUL/QB5BeSuuzBr5
KgLt9HB6RD5BpdBSJn+/F4FXGfdkkgoI6vNDmefcr0SANUnscnEhQbnejl5Q
eSICHKundj8tIqjvilKhzvdF4NiKC2c+FeP+UJYlnVyI9a9n8gyXEFTDpPOr
nkwRsNh2cG6qlKBs6qedNZOx/s73u9jvEZRb442HiQkiULNqo5RQOUG1b2p+
sXBOBOTOXrFdUYHjZSzJIyBUBPY+L2ZbU0lQrI0egVO+IjC0b6/KuvvYXgXO
7rOeIvDytfd77SqCCkmtjVzuJgKWhdGz+tUEdZVjpRllJwLcyjtzjGowv0UG
wsctRWBC83AHPCCoZFv/V4qbReB5iUOKcS1BrQmMt/mhJwJf62+NwEP83rsg
oU5dBOwYhU1Gdbh+Pbf0urFGBNLGRzYZPCKo4dDtTSelReBIZpmtzmOCMnfs
uX5YVAQSM2zY1J9g+6zjK/fxiUBSLe9ORYqgpkc1GQfZRKDRQdJEph7nUw13
nP+cMOwqyvkq8pSgrjVfFY6bFIal8VZp7mcEJWWcf7loRBi+hFUSTLT6M5/x
zz3CUKW4u+hHA0FxKbkRxGdhSNpev9D1nKAqGDq9294KwxjfAP1NI/Z/KKvV
tefC0B9S0lD7gqDWxksZD9UJQ30jG9x9ieNRWTbbuFIYJH0fhSS+wnhfzu3N
LcT6jxYGhDXheiTVdkAkSxhyra9pHniN+9dPhZtxqcIQcUL7gWUzQf3+mfGD
N1EYRPU3c2m+ISi/02B+PVYYbrEclpN4i/MnhUxdc0YYasPNCSY6uEDyzdMT
GH/DqZfdLbh+nY19e9BHGNJDUh2odzhfNsfECXsKw81fCo8yWnF8b7ecfOkm
DE923pmPeE9QTNLsR7SDMHylYkRdPxCU4qyS93ZrYfgYaEEYfCSoy0kdrstN
heG/YZtBsU+4/0adKPtjJAwvRxfSJ9E1se42H3SEYV9TIfm6DdvzeZXqQzVh
uBtQ3Jj1maCSlM9rF64WBtkEqw2h7dg/wxccs6SFwfT6h6s7OnC+aLhHZYkJ
g9pSSPfqLwT1Ws67sJAhDNttT0jOo7+MWtQ+5BAGru2LW992EhTnfEPmh0Uh
uPlD63DGV6zPrH3HnykhMMw0ivTtIijDoPLaZT+FgMtuwzXjboIC0XvN5sNC
IJaolSnQQ1Dh/e4nTvcIgWXSlsJudD4jvOTxZyEI9fOvLOzF/frkhBv9nRCQ
kvWPg/sIioXvdfiOl0LAdka5edM3gtr813Y2hxKC+ar8br5+gorgmnvG8kAI
Nk6rzHxCl/DuavG4JwRTzzKWpQ3geiQgR7TkC4H9/JjpgUGC8m+xPw53hEBq
YvyM8hCed9jpIzWpQvAo4FTTL3RWm+dh3atCuH6ckLs/jOv3uvHBx3FCUP88
L+HECM5PdQkby3NCsCankzAYxfF9JSu1N0wI3nu13WGi68UO1YQGCoF3827r
R2MEdWh2760Vx4Tg5WlZ0fBxgmK41Og1HhQCaufAX4PvWP+z8rOBbkJQo2n7
ZxYdFvXIW9lRCCa2S/NX/yCoZnPP8WEbIbAQG7fwnyAorXMHfhWYCwGrq2ue
2k+s73esT8AmIejZL640ilaTaXYzMRCCxYGyt3d+4X74bXP5Mi0hyFStT3Wa
JKg9I0rO0ypC4Kn0JUH4N0HpG3ze8UVBCIL8Y4ua0G9eNZx/Ji0E9IOOf0//
wf3274Xf5eJCILK22UvnP4KKku6LzhMQgv2NBxjj6M86t/WyuYUgSe1OX9pf
7P8dFUs5rELwYsfc4I4pgqJ0tN8WzwtCrWL/cvo0zn/mjtSH/wnCjYY35++j
A1Psdrf8EAQZ5zWKB2fw/bN5tNEhQejevXtJdBbnu1lLFFevIJw4/IrxHB2q
6NWt2iEImec6HPznCOpdrRZt93tBOEUb6Vw5T1BLMex9sa8FYSnF+tYb9Ofy
N0FUgyA8jTyUGsIkqLdXkquZjwRByfvsZ/kFgppziUsxqhaEW8l/bFvQbR8H
hKLLBMGqiy4SskhQln1MyQ/5giBbQxNbtURQXltMchSyBEHAXtW5CR2xxaQw
/JYgnEt/M+xLY1CutmmrOq8Lgvdm2VoJFgZ1oZ6X1eiSIBg89fj4GK3u6QK5
MYLw4UTrBg9WBtXtFvpROFIQGgpuD3KxMSjTEo/70aGCwHuR2V2Edp1T+7IY
gN/bSCvY0BnUb+DQDzsmCL5r1R/8Rv8Xq9K8eEgQHPY637rGzqDy0mfPR+8V
BJptU4s2B4M63PjFQ9hJEAzPpdm2ob8F7tyTYysIhzLmlIM4GZSd8IyboZUg
uMQv2ItyMSjL4mDvdlNBeOL1rK0CXVp95WSIsSBI5h4o2sHNoK6+WhYhYyAI
AbNz7RPoQad5vyYtQTANSXKJ42FQQrHrrE6qCQL7LUuDNbwMKu1NI9c6RYxv
k5L/U/T3V/2pI7KCUP9Ej8OFj0H9oNcxc6UEIfTb+b9T6OjSpNVeooLQMr9s
02UC4z/cKqDBLwjU8PR3RQaDcuZoq1jkEoQ5EdlpCn3TVp7rHasgRMTf2OvI
z6DWD1hy5DIFwGLWTvUnWqJlMvf0lACcLt3jFCXAoFZGNn5z+yUAopW3vy8T
ZFAD0ZfKN48JQPcz0W+l6J1Wq/hVBgQgZ0+1oYkQgzJhekxKdAvAttqAhc/o
NE2rnTztAhA8uVHhiDCDOtg/sJb2XgDufqPdX0C/FoGAudcCUGWRX3xJhEHt
eBC9Zva5APi+WCkgK8qgzE7+3Mh8IgC63VZd99CssVQZW60AyLJKim0SY1Bw
3DqEv1IA0lL3PWxFt/XSrsiUCEAYN/HWXZxBNVw0m9TME4CRsmmrn+iJ//Ku
Wt4RgKezS0bhEgyqcEOF7+FbAmC7myWdR5JBdf3giLpwQwCkHT4dT0Lnze14
UXpZAMYSd5XLLWNQHXttNDouCMCyph2HStFjK5qfcEQJQERX1iV9KQZVNnXr
sG6EAAy2Sak8Rx9xzFM6FiIAxhOxG62XM6ga5b7Zu/4CsP1SXUM7+n2x6cdB
bwGocz39dO8KBpVuPlq+xlMADpAZG8bQQr69l7z3YfkOg/J+0gxqW7DtgWpn
AbgmKh43i954JESV3UEAzmjPe52WYVCpvy99s9+Bfm73nGMl5l9h8FTRNgHo
WzuaGo9WPPKeyb5VAN6vDvouKIvj2e6R/X7A/HY+rL2Brjwlfr5BXwBWtQRz
SK3C9h1yjVHSFoCEPwfepaGr7aTsEtcJAHUXJFfJYbzr+ocXlQSA+Yjqy0bP
uNobHJcXgEsRt9eukWdQhiUrLfqlBeDYvfj/8tAblWYZTpIC4JC8CdYqMCiH
hcxzbcICILfgyyhEm+wZybFjCECzerOb8moG5b0r27udSwBKBVhwX2ZQsfU1
ba5sOD55niSsXcOgzM1X17TO84PaygrvfLQr4TD5/Rc/cH2Peb9GkUFF1nFZ
8w/xQ3L22KMc9FS/7QvdTn4gV55Rl1NiUDwnDtscfscPWzr+rM1AV9+K6c14
zg8OkyPFy9cyqHZvrmM9tfxwRJu9Nhk983LnT/kyftCT/W4toozrlfjgHt8c
fhj+RvpcQk9K2txtSOWHSNdMKR4VBqVRseG19GV+OL6+bOc59Nr7Ox9FRPGD
ShWP2CK6qdgrYPgkP2zgtDoYrMqgsiqdhu18+KGFVczkF9pNT4R4fYAfBKwW
Sj3VGNTX99e+bnXiB2vH2wW9aF/GL8tXNvywwzVBy3Edg3oCFnY7t/KDjfch
qxb0WvuO730G/OB38PHMFnWc/9kDPCfW80M4i6JWHTroUUOuyBp+sHy3gUVj
PYOyhv7q6uX8cNr4tPtd9MaSWu29QvxQnJW4c7kG5mdjm7ggFz9oKy59voz+
XtJq92KBAWZDtpN0TQb1buXu4bN/GHCnSzb9BPrMkGLD1lEGBM/+7htHu7oQ
A/w9DNATtq111WJQl559M+r5yAC7vy2KrWgt/uvNlU0M+O3yS3WzNs73Rpmo
yxQDHrIYNVWidT9ddPerYoBNAiwq6DAoP69Z+z1FDJAoPtV0Ax3XHOdudocB
jeyn1nFuwPmnHR5omMyAz/BMNRjdVSiSoJOA9fG8fz6E3t59947OOQbMCKvO
2OkyqKSF1ELDkwzglrB/3oC+luyeaebDAL/ON6qaegyK/0RI2J6DDNinLqKR
iR46GaDt58yArJm77xn6OJ78Jxou7WTAyBpOgTB0PGuiXIUZA/gbS8ZG0Noh
4hZfjfD9yWX77Qwwn+Um63m1Mb6+xpB6tNHf762kMgMWRlTWqRoyqDctv+RP
yjKgPKjxbDJ6enajXK04A3ol+U6wbcTxr9nyfIlggPLZQL5jaB+5IvZtdAZ0
RYcYt6Oz9Ec7b84RwCaTIL7JiEHZJN41/v2LgBpvxUuFaP+3IupWwwRMPK7L
EyFxfC96ZZR2EXDpwmOPcHTymV9xYh8JKAvKeDaI3jMwPR7ZRID+7o/PtwP2
/4ueB/9RBEjpvz5yH33jqdDPI9UE8Nj9vb/cmEHd28wZNVJMwG2pp9ln0Yxg
MtArm4BVGzJ0x9DCSuYPJlMJOHRhwddmE4NiFjyyOHWFgOuapjuq0A7VxnIC
MQSsSxhtk9rMoEQdogzvniKgVMuG7Qw6vnHz5c2BBDiwDrUNosOdNksMHiFA
VlR0p4UJgyK97N7G7SNAu2VrYAn6kIp90YbdBHxu7wehLbge5KoUjVgTIL7K
9n4gWudK04u0rQQEDiy+b0c/NVCZ3b2RAP9si1SDrQzqfrCj/jItAnw0b/Om
obefco/qWUuA9D2nNTRT7K92t4/5sgRoXBz7sRddaBYmGyKB+Y8tdnuGbisd
PLidn4DvNZzh8ma4f89+SlvNQcCyaKetUWg2tivP6At8MFPKUzeI/nvOo2X4
Dx8Ubw/q3mLOoD4x79a1jPFBQcticQ465kZdVF0fH/Cz0JXZLXA9FyMUStr5
4DD3oJ0HWuEZcT27hQ8qvWnrnqF/2Ri+S2/kA1OhyirZbQxK/7VMa/ojPvhs
4PIjAu1/2iwxu5IP5K44fuhCB3y3ZpQU8oHectbDBpYMald2O1l3hw/Gtt0v
SUa/NE6QbUnhA96/zdl/0cusFUqGLuPzXVnbdm5nUFyaTr2sMXxwhUjMKkFL
rZgql4vgA6n1v4t4rPB897thpXkQH3DoLfc8iP6rmy7v780HkXyen+rRCxwH
HmR64Pc01b/LrTGfPxY7PjrxQUxH/YtgdMGwyxm+XXyg2By2/T2a3BpaYGbB
B69PVUSr2OD6l+5oE2vMB294HvpHox1ql7zf6vJBwsKwSC9a9nTkorg65md3
gpfeDgZ1cniOeWANH6QnswQmog8PXPCokeaD3wXXtMbRjfbO6vxifHB0LiV/
804G1T+T4eRF8EG21/6PN9EFVol9r+h8YL9n0/0/6Mlrvo9Umbxgl33ectsu
XE/Kzo9d/8MLHzLOpt5Bi0greLCO80LQ6uj0WXRIX6aC/zdecI3rdrKxxfkQ
6LJ2pIMXtHI7W3LROo8fe+9t5YUtLa/nmej9/2mOd7/khfQ+Zs9OOwaVnaqR
5k7xwqRBXVgeOv7Ihsihal64X2//fgH9y6Ix0aeUFwy/SvTttGfgfcPr9WIu
L5wLtcq/ix7ccH/NlTReOCK+WZmJLtgFWWtu8ML5MuNDNg64vocV6j29yAvq
rddcstH6UbeH3KN4IS4hmjGDPsnfkMMWzgtbY91PbnNkUFdOf/ArCOCFFxNH
MtPQHyejze2O8gLLycmzk+iZVRkKdA9e8AvQW2WyG9ffo8Os1U680FMVF3YD
/feecpf3Ll64ULDu6gh6bNemMsVtvNBgfvSg/h48D8lxnhjexAuasjFTceim
Xc7qBfq8sN3m1eYu9P1jaz/5aPBCxIVAKzUnBiWz1X2fwVpe+CH+XiwC/WX4
9wfuVbzg3iZ3uwXddblL4askLyzolfbJOGP7M2RtywV5wdaqZuA4ui6+cU88
Ny9MVUXmPkHLf+zQ9mLhhciyHWv4XbB//xzr2zbLA8aCnodc0W2O6bvXT/KA
qAXXoWI06XAhddkoD2gcCljNRLtL2WVw9vGAtuBEjoUrgypKX3topp0Htlys
GkxGX8wwGP/+jgcSHzOGhtATlx8rDr7kgfzVG+5queF5NOGnVB/FA45Dx5Ui
0TKOAvW9NTwQ9njmaAvaifQUGSjjgVQBQb/l7uiVJkLjeTzQ2DOtexhN2U1V
/c3gAYvW8fr76OTitkW2FB5wU1UmWPcyKAG3TUOiV3igv+fPMiu0w9LNw8qx
PKAYcnY8Be0XvC3K5AwPhKiJRwyiL84+0t4bwgN/vox/Ut/HoDKmDgSf8eWB
dTSjX6FoY5GHW3MO88Bco/nbRnToKv2M5r088HzJwkdwP55XBQ+cnt7NA+Vy
4W1O6GMjT/sVdvLAoq0USy5aqran0cEC2+/m/usnOuOW5eqLmzDftdHZeh4M
ajwtffG5Pg+cjH654iza44m/Jasm5u+Km3Mzesc3T75NyjwQbRflLnqAQXm+
lDOIkuMBxqzfWlf0C3arT6+leKDCZm9tLlp/5vpnUREekOyJEfiJtnlcYrSf
jwd+fJJV3XAQ86Fmw1lJ54FNYh4CEWjrNzpqXAvcsHn9+dpG9N/ncmVuf7mh
0vOpMuMQg+Lt/Rpb+4MbXpRaetihQ4JVaiSGuGFHobPHLfRT/74NJ7u54VG5
oko/+hDZwt7Txg1m74YeKnni+enJG2nTFm74U98s7IPOtHgQUf6CG2pn+bWq
0IOZfgqyFDdYpg0uZ6Idh7v5rtZww7W4yLfGhxmU7Y1hDa573LBul5T5efS+
0JPXTudzw6aNA/HNaL6iWDVmJjfEmwmmCnoxKI4I3sWTqdywR7nNxx69+tzc
EjORG57uOih4E30/zG59ZBw3HB/5L7QH7bNL5hLPOW5oe1lZJncE8yfqJnYj
jBv+XmwvPYSWHZVpkA/E9l1IDClE/+DyvV7lzQ1FzSKMn+jaBwfObzvIDcLL
r3hrHGVQx01Ek/pduWGAqZsciD47kVp/yoEbhks2JtSgr/4Wpa+w4QY3tXfW
82jLkHynx2bccEJLtmujN95fE8Oe7zPmhjcb9uqcRu9QqTXi0eeG1qOU01N0
E/+VhkoNbrBqPLadfoxBGbRp2u5T5oahvzd5t6L1BtrHhOS5wedo8I3zaJN9
tVGNy7khco/6xEv0Gh2xVeGi3NBe9leI5zjuf0zVRzoMbvi5coq+Da1JM7X9
w8ENCivcG+LQ1RsKBsqXuMC3Y++OZnSGfvaRwBkueLFNqYjPB893hlFD+pNc
cFhl4KMl+gFX5k62MS7wmnryOh4tNm1V/PYbF8iMjF5uRluPjf651ckFMWyX
5Pl88b5v+k7u2EcuyGV8jd6Gfvtzv/6mN1zAvLpQfQF904BHW7KRC3j7ZWpe
oX/9Vhb885gLogWOn+fyY1BbzLSbW6q5oGVKbLUpWv399f2lZVwQprP5WhT6
ehT18Uo+F2TqyLx/hn5cqrwi+A4XyCm09bD443j9ZaPvdpMLrKYTH5HoOc1i
JYtrWP/h00fC0Z3F1MiGi1ygwvpqtBZd8Z4RqBjNBVuIJN2Zf94p3SwVge3J
FHHUDsDznkjIuOAJLnBMO2Lmhz6mWvSOx5cLaouec5eiLXtNQzi8uCCctLw1
jr5wtecbfT8X9F9VpCkGMiiLt9y8HM5c8OneWW0PtKCG+09uO2z/0WjDDHRz
YMRFASsu6HPfLfoV7e/O2S9pygVqc/KUeBCDevgs9YcCcAH/McGNu9DzQT0F
WnpcMPh4a3wCemzHKYmtGlww/vB78St0+ho5rT3KXHCERfkOPRj35/qweR95
LhCcVTxMop91GB69sIILfL4QbCfR4eIS53LFsD8LaT6V6FyuRnjOzwXypGLZ
BDpnBUvGEBcX7NQrfKZ4gkEFZken87ByQRJvWcE+9LNnYhvXz3OC7rTzgVto
qaCAoD3/ccJGov3PJ7RJ1AHz6B+cUKlmas8fgvfpqPKKyiFO4CfexZuh09+t
rhjs4YTAtclJZ9DzZy5vkezghN6OhqBatKEv5Wn9nhMaydC1f9D6aheWxbzm
BO6dveXKJxmUIvOZ47MGTjjVLiHggXZ+s1WW5TEnaHqbb7qFLjWa8DWu5oRb
YTfMP6JXXk02O1fGCeJb5VfzheJ8Ll2d9SqfEzo7xdo3oxXEwiIEszihVC7R
LRR95NupTqdbnDDf9qCuHF3cIH4/7zon/Iy893MU/WlhPc9MAifwxt6aWRmG
51+nh+3mMZzgJJP22QHdqpEtnXaGEy7YdMQnoJe59nT8d5IT/Jg+Es/Rkhv2
cVkFcMLq9vMn59GZV+Xz8r05Ye8xqFgfjvmqX1nNeYgTCmUePT2Etojcpenp
zgl1q1bm30a/5qxb9no3J2Seizv4AZ330+mI+i5OEFKSnec6hesjuUEu2ZIT
GppYDxmhZ/faAutWrH9+R4E/unNlHXWM5IT98urP89CmWSF3unQ54Vz04+ou
9IJnar+VBidU6UtHCkUwqIatapFPlTlhZr2PvCn69j7TMF0FTujS/pQWipZV
n2spk+aE0yPek6Xot0ddQpUlOGGqYc/yAXTw8gtheYKckCBTJyNxmkGFRd1s
XcPLCSMK5fPb0AdVS0/k0zGeHueyCLTcp4HjqoscoKv6dWMFuijQ9X7FNAfk
NFlnD6F9DcHUcJID/LZ/7pc8g+eR82VyL8Y44KtCItMS3dz/2cx2gAOW0tIn
ItC2HH2V/V0csNAtXVuO1mueORD4mQOMh9XcBtEXta32cLdyQN21iS7xSLxv
7hO6nN7EAYyMMB0LdNilE+y6DRzw/Pa0ZxiaKVRV8/4RB+QuhgeWoJV2s+Yd
r8bn/GrOvWha341Wxj0OGJlTWCF0lkFt1SvVLCvggNjGszWb0XILMc27sjnA
yP6AWiD6v3f7U2dvc0Cr18ipXLSD25mbmUkcEHRnbcFndIOdwtttVzhAOsS8
jOscg7qz97r6zAUOCDPbd0UPra0qWZ97jgO8zRK3e6GPOM+FO5ziAGbC1EAq
ejb23AGeExxQL1Dk8BptZcIe9MSXA35ltOTMoxN4mouDjnBA8WR4i3IUg0o0
X8urfoADpK59+OiEFtztHz/uygH5M9/vx6FLTzDX5TtygNnxIb+H6IXm5f95
7uSAyDVfecfRd51VP6+15IBa9bHTy6IxfiL288QWDnA+qfLeHF12J/5PJckB
4h8fL51Ae1bfUArX44DZH3XceegXjzlPmGpyQJHjpl9t6Lwl4y5hVQ6ojPKq
YD/PoDQS8x2+reYAzxc2u7TQii7Zg+UrOeDADoF3+9DiwqlRUcs44LJug9IV
dMm6/7T3iHCAk/959ydorb8r/qozMN8dAQE/0GmHz9Vzc3HAD4W7B6RicD2w
vZEywILx/9HVMkdf1W8IrZ9nh8P1Jr1B6Ieupw9m/GWHqJ8Dh7PRFQ+NHM/8
ZAebes3WVvRFtkBrj1F2KHPeJraETr6VamHej983bdFTiWVQo2mKZupd7GA3
Zai/G/21NWWr5Gd2SCy1kIxGJ+V7mdBb2SE7L6atHF1gIgmTTewQEyzg14P2
Oqyg29vADvI35sd5L+B+flZAufUxO0ju22+ii5a64yLeUMMOMiv2hnqg9wZc
ma8pZweNH8SVy2iGmUZbaRE7XP8aGVWHfsHxMicvlx2UvrQ7jqALNb96ZmWw
Q9gDRV6ROFyfR2ZXZKSyw3uNuFskmqOt+FnaNXYo75cgjqAvGkY7piewg6/V
mPMNdPGEUGdmDDtMfhGPr0ffshw0z41kB5+2B6nf0RabLmcVhbHDW/+RGPF4
BrVxS95QZRA7pLx+aL8JvXfnM8EnPuxg+3Ub3RtdN35C7rUXO8RdKLuShN4i
tm9Zhwc7LGawLNWj6x0k/464ssPDd/aW39HXKvXL5xzZgbz3IkTsIq6Hxftt
GLvY4QV15DygDxlpvpXbzg7qHnsCvdAKX8zXGpiyw7bhgs3X0Dle5vttjdmB
ER7w+xH6zvZPwccN2MGZfHtmGD2wM/FgvDY7lK5rmRRIwP2ldrVa4Tp26NBJ
2KSPnlbXf/NaiR10FVYF7Ef/fRe4aUIO81GeGR2Pjl5xLl5Imh04TsudvI+e
YBEs0JVgBz+Rx1bdaNeWVynuQjg+es/TOS/heqPvsucCHztwGybdXIfucgod
u8/BDvs9WUUc0Ur5n8z6aZi/hB7v02jRGekAoXk63KBM8vPQjJO8Rzb/pQPv
rGnjO3RLrY1K0E865EgtNcygfdNyqgpG6TD3X0TOyssM6rTbU66+fjrU6fce
MkM7XnSXleymg2C8Np8PmpPHYGlnOx3cfK8nJqEvcDEyE97TIc1ZdP4xWpA3
ib25mQ6e+U1bhtBCfdeUeV/QQfV2kx9xBe/nOS8ELevpIH5obaQWevOjX1UJ
D+lwcuWSvxO69eN7yQ/36fC42cUsEr28Z72eZBk+3+20lIf2Fv4gvLeADgVp
fCkt6MrxsLyCbDq8dI0WnUJ3rZr++zeNDq1buwKWJ+J+W8EzvymFDlcmFKo3
oYmPZ6quXKXD7faAr57ozbNr1ny7iPH6dQ8koPe9e7VNK4YOp0WC31WiL5Ha
cjGRdEhh3ZX+BV21X6+oK4wOSUeid9Cu4n0iIXdQK5gOg4cVhhXQPVut3l70
pYMJm4n7NvT8JrYDI0foIKs0VeeDlj6SkmdykA6JNdYL19FZnwaT7rjTIeak
h+xDtEjj4/WsTnT4LGem1It2K5wP2G9HBys7hij7NZz/0oHujdZ0+HWzaUAJ
7dJL/7PWgg4/fC4nW6HXd0QpXzGhwzM9f3V/9Eqxj1yzRnRIMIsuSkLzvWyO
3adHh7LOr3x16AVjq+I3mnSwk76woxedO73BT1+NDgcVM0/SrzOo4VCvz3mK
dMhc1IpRRJMRLzol5OhQnOh40hK97e36UxdW4PfPpHf4oP1tLj5aEKfDDudU
vmtoTY4nyX5CdGgR6y6qRo9wFjNG+eiwJYW5vvPf83NG0ns56RAdzHVrEX3m
sVPjFxY6DGmIjMveYFBfiAl2eyYbBOpryGxBq3T2dL6fYoPJsQBdTzRvxnLT
HZNs8CVhQicOrTl4eWvrOBtkud5bVoImjdd27Bxig9rTLf3v0BoOnxc+9bJB
DrdT4h/08k/nK/Z0soEE88BqsSS8X/ipzPZ+YgNBc9YMXbTOr6o3nu/YoL/F
eGkP+ozIMvXfTWzg7KpjEo52LzKXCX/OBm/KJo+lo1tj9FO5KTbY4BcVUY9+
Gf4tPamWDfQN2YL60ePuuuvW3Mfvk8J2siczqE1cWqY1pWwgPM8qugbdZvZ2
yKKADdLe3H1khj79l0b0ZLOBn0eYpRc6oauxJiCdDdToifVx6LjXUqO8qWyQ
1zu7vBg9epZ5K/saG4wuf+76Fv382cEPRpfY4NZr+vmf6E/k7rgvsWzwcOLV
dYEUBvXxzodnwefYYCxYIW49OjC+LVQsgg3PE4qHdqI3Xd5fXhXCBqvX9yv5
o5W0wg86BrAB75+DH66i/X+uTpo/xgbPjBr2V6KjlA5szjjMBrOVvJ0f0Wm6
G722erCBz9B2vb/oavf7PBOubMBve/OUaCqDsn//US5pN+b3GL1Q+5/zsyqN
bTE/ySmP7dA142vrflixgcGqIw8C0fExAXo3zdmgxir25nX0U/s4ZQsTNrhk
Qz9wH70kHHplzogNWLd9F/2EDthv41WkxwaGO3eU/IfuaZa476bFBuNem9VE
buJ98+E3H5F1bFB64f11TXR66KNbTUoYXzJjcCf6luGDDZHybHDCi3O5H3oL
3zAYyLBBbFOz/hX0+GfH6r+SbPDS95hxGfqCl2zqPRE20OJlrmtBdx6xHTnG
zwZtGlEcE2gtN45MVR42UA6SfM53i0Gdu2P57AedDWRtXx5RRoP3RqvSJVaY
N8ycM0ebtPwEvzlWKE2s8PVEd5WGpur8ZYX3eYzWaHRO8+xu5k9WiGuol8hB
X6w5e+rZGCsMLv9q9gz94YsmZ/wgK1R8Obq3Dz3urfDHrpcViiTO7lv6V/+p
AGPZTlYI7Ve1XHEb+29s4+SPT6wwqhcmbYAWc09nqXvHCo/5wjsc0RHO1b5x
r1mBgyTDg9A7lXPAuZEVfuW0cl9DbxuM8VarZwV+7s0R99Cux89Os9SxgvWq
O11v0Z0hVV1tVaxAS1uQ/37733piIlN8Dy3lYcedhvvzM5uH54qwvWsHjq1G
n9+5VOZylxUEd8T7bk779/8bgUsb7rDCV/oRF3d08MHPOcK3WeFqaYJGOHpk
wDLrVxIrnCpmn0xB30lnTr1NZIWG7d3JVehjpxgZJRexve9Xr/2AfqRcePtS
DCs88fmR/RPdIcyc8D3LCs9tgJsvHePdr3zV7hQrNF9UdVD8Zy6PWP0QVnDQ
eZZggmYtbX23MoAVllvyl7mjb1IZnlzHWUG1QeZhGFrtwKL15GFWGIhmLUtG
Z5+WiO70YAUZn+cJlegj5St4Xrixgrx1kMM79BnbjZ0Ve1ihbWgVz3d07sm7
M5l2rJD+oz2XMwPv95Pxe6/YsMINIldVDn1go4xo5DZWyBhISjNCe6ReFgrY
ygo29LrZ3eh9c8K7DxmzAs9vGTIQ/YbeNexkyAob1rQeu4wuEV35eMcGVmAR
7IopRLcZCnWaabBCtcCOi43oScPRjcaqrJAWqh/Wh353oXNQX5EVtG7m2jHR
4ZYr32vLYf8U35EUz2RQoY4/WTSkWWH8m8HL9eh+rTMB6yRZYWpfxF5LdIEY
v5KaCCucNT05eBD9uPe9tBo/KxxK17M9g94ix2m3jocVvns3Fd9Ef1g23LSe
nRXuFej9vo++WVoSoU1jhSXja7Lv0IkBqX768yxQLzJsMIbuyh2+A1Ms4Dpj
ZEy/w6DuqXzkN5tkAZnqvPXSaI7raTU231mgl389oYt2EYu+tWeYBXyqBj7s
QGslNNUe+MYCHrveRR1Bbz1dJOTXxQKa52hyUegKUe+siHYW2Nt5pjAN7bDc
6mjCBxbY2esuU4OeZ088mvaWBa7wF5xqRd8aDs0qfcUCz74cfjWGvn3CWuBp
AwvcyCtaYsvC+6jQjvJPT1hA9NMp2RXocyXPY8ZqWcDr3nc1HfT08O9EWhUL
rDzHqmiN9p+Rfid+jwVYYpv5PNGvay6T6kUs4DZp33Ua/TX9Uq/5XRbo6i9O
SUEP1u8v97jDAk/CuozL0e0tdpWnb7NA3pvJT03oYrHSwdvJLDDaNWXXj755
6sGWuquYj4KZ+nm0x4UnHzoTWPB+xLZMJBvniz3fJWYsC5zXXeWqgs5NGQ+S
jmKBcGpvggk6LDP/gvFpFii68qbAGX3Z9uqrA6Es0BToWxGAtlSf0ogLYoEs
ld158dn/fq9c2XjPlwUKjlyOzUZ7mLpHdhxlgeLuVQ516NAj7IdYPVlAbc1y
wY/onTFu/ir7WWDq6/nqcbQG+5NcB1cW6Lvoa8GWg+f/rwG0c7tZYODRwKtl
6KCb7yPu2eJ4GP6urYF+7r5WvteaBcpPXk8wR9/8+vY7/zYWKO0e/eCOrrcW
7oCtLHDG5y/7CfTYhW0jfsYskHv2mfwltPzEa8lcQxbg2uemnovW8xw9+mUD
C0hYflR8lPPv97PZXn5NbO8JVcZHdK3szsCtaiwQIxrUO4a+y2qhdEqJBZy3
PkhnycXzoKEus0qeBYjVrJYSaInwgB+/ZFhg7LnToBo6acmeqSzFAuxqrUe2
oGfO6yp6irGAkYt3jxPa38PPJ0eQBTTMDcAP7X7U9WM/Hws4dm9JiEHXLtnv
kuNiAV5a8qs09FmO6u/72VggPsbwdyVa9ldHes4iDVjMjbheoxvKpY6OzNKg
hDuPtw8929Ruo/KXBu9izzGn0O/1j233/UWDrIjuL3x3cX+P1dtbPU6DjGQq
dxWa91ly3OIQDXaGaLvroj8Hjb3e+o0Gxx+ZclqhRWouyl7uosHYNMut/f++
X/4t7ks7DfgrjkmHoG/WmfKs/kiDXT7JCQnob+tlbvm10OB2Xuz3LLRj0iug
mmgg3Gyp+wCdG5M3zWikwaFN333foh1kpSnXehqUefml9KOPMuNTSutoEHRz
tGQGPaPpeJalhgYtq5zLiTyc/+79YbYVNHDc+jFrFfpbUmJUXgkN7DY7n92A
lj3WdGshnwZXrBZtLNHhf37W78rB9l9r4NuLvlXp+V9BBsan96AqED36IFWT
7RYNbuwesrqAZkZ/P+WcRAMVLvtPaWilZc8/VSXSYNRGyKIC3Tcet0EogQZi
GxSKX6CtJ/KyjsXS4Pf95MVOdEX8OcnmczS4SQUZ/fpXXsH55LWnaSC56dVR
ej6DUs2RWnkhlAZ+K1JjJdC/rQpKx4JoUKP655oKmvPP7a2Wfljflu4EQP/Z
uXegxJsGeusPBNui6bluMUKHadBTfsXKE30pha4R7EEDiPYWCUM/tK7r/epG
gwlX1leX0NFuf65udsL2j+w+moX+9UFsW6E9DZxfhC9WoRuVr7GL7KSBS1Jw
RNO/eBw7noZvp8HWHzY/u9ASlG3kiBkNftgJW02ipXQDN9ua0CDO/uVNegGD
usFdwF5P0mDwaEi7ODpyYt9LNQMazDHU6croq4ICcbd1aOBR+FfaCN1LrNpO
aNBgef4HxR1ozwluxilVGlQf+iDrgb6gqvfmpyINLMlF7mB0TqXshX3yNIg/
7dIX+6+8Tm2TNhkafAiYu3ur4N98HpmzkML6XLpdStHSCUXFlBgN7gUJsT1F
9/3467RBiAYmv9OTPqK/XdNlLyVo8Ix5SWoYXcccyVvDjf1XO54wi27hCdua
SafBGYu6Sd5CBtXNf6hLikaD5noeE2m09iXyi9r0Eiml3huljt5bpju2ZmKJ
LL69pXoTujIrd3TV4BJ5ntek3Rb92zn4s8zXJTLTf2DkIFr4Tkq59Iclku3V
utETaIpnIUSmaYm8Pa3WcQG9eemKyqr6JfLEwFjNLXRKtfmr1TVLZJL30ZgS
9B99MWvVUqzfq86UQh93HavTzl0iyYL+qVb0lYYHgnB7iTwwPXa9H7376wlL
y2tLpLhIp/xftHPv8qN74pZIwbq6LI4iBsXfdvO4V+QSCdnJQhLo0fjvdmEh
S+Srk8G+SuiY2xzSl32WSL3hvZQ+ut3zW2POIazvgvvSNnSieIj1I9clcm4h
VM0FTUtpqGqzWyL7PtVtP4Y+eufJ/KTlElmWpuwSgXYtObCC32SJbOh+53wZ
XTJfvkzNYIksEr1vmYnujM/+baWxRF6s61UpRyut0c32VVoiF7Y4LzxFT+44
qnZj5RIpL63++AP6uR1crhNfIrMLPI4PoO8ZVL4cYGB/WLAK/kXfaH7ZxuDA
9jsIZrEX4337csQD/YVF0mxVqoIY2qP5y3HP/xbJbTPZyavR1ee6ZpLGF8l3
0vpMHfS6kLhdr74tkjs+7bUxRX9SGD3F7FgkR23lrzugB+rnQ9a3LpIe72Kb
DqFlyFebPV8ukicDUn8FozvMHDszniySpw65csagUzaXkZ1Vi2Thqy5GMvrX
to7j4iWL5Kr7Kznz0JI6X73schbJuo3rflWjxS8+XXf91iJp6ivY9ALdf+XG
o7ari+Rlh5Zrn9FiBvuFl8UtksK/fWyG0RWaWupukfjccJE5hX71RVQ4N2SR
jFeJSOUowfPsJtGHEz6LZO69eUWxkn+/B8AaPc9Fcv/90DwF9F/JHPsoN/xe
ilNSG92/ZpfZB/tF8kl9zkkTtKbGnvlVVovkjwi3N7vQTKrpWMCWRXJyjaHg
frQHb1XmC8NFcipq81Y/dPOU6tXlWoukunv40TPoFLEtm/yVF0m+4Mmzl9FT
BYyS16sWSauou/Hp/+LLSPuksGyRfEzejS75V/8l7pozgovkGbsZ30do0ToP
2x6uRVLQ545VM1pOuDHfiLZISmkWL+9EH1UxqU6fXiDTDVd+HUUHm02Fsv5c
ICUU2C7OoA1t/ps6OLRAqkS4rOMsZVAHP9qvedO1QLK36zwTRTfzbeDT/rRA
qlbfMJNH534uyU5rXiCz0s490UDzP2j/yd2wQFI8XIrG6G1fWr4HPVwg/f0U
I63R67nLUgfLF0hx0x9vXNA+1ddn7AoWyGv/ufAeRUvN3WZ/mblAOvWd0T+J
HooZogxSFsh9x9ydYtAJjy4q3bu8QGpN047dQGtdLTdSjFkgF1u9/LLRb3IC
ljIiFsgo6xzPcnTc+v+8pIIXSO2H1TYUWk5o5+mkYwvkMqf8tW/ROk9LjUQP
LpATx89MdaJZndblXHNZINdrm1aOondd/VMuardA0vpYPKbRy5/IHEq2XCAt
s2vY2ctwvr39TC03WSBLC/xShNBHrOHJHYMFsmjZBpmV6CDPU3vXai6QHqJE
kir6xdfq3Iq1WF71PM0AvZVbOMFo1QK5S4zHxQx9Y6BK7LXkArl8C1lohzZd
bCJ3Cy6QdJs74/v+lXcqmGuUa4E8Y6Qv7YMWVhg8fpK2QHIKMzaHo4+bbwwk
ZpjkRJP8ngvo9I588Ts/mWSCa9T+JHTfbjt73WEmqVCv45aNpg94qb/rZpJL
veT2e+j51WI5h9uYpOvdu6qP0boHz1bQ3zLJ5JkA2mu0UEjPnsznTJK9suT5
Z7R9k0Mq+YhJEpVO4QPoaIdlvj2VTFLxbeSaSXRBmV336SIm+ef92oYFtNu0
bp9cNpNUTdizi+ce7ofdf068vMkkcxolPomhz+VXZR+7yiT3GR01l0MLqZTv
F4tjkrHlTmXr0Idfid9/Eskkz3f+4DZEt/pLJnudZJIdR5XszdDsRaO84n5M
0ktU9Lot+ufph/zPD2N9EdWN7uh7CU/vBOxlkv7W4uNH0XcWNRoUdjPJ7tUG
rCFok2hj/3YbJqmeqcQXhdY6JFcab8YkX9qNcl1B7zvGCN4ETJL18+mZW+jY
P7pNsxuY5LvyqS956Pb2jrvl65jkYb8dZZXoPRcU+b3XMEnP1KQTFNp5wXlJ
UYZJvi9o0WxG85WVBg+JMUk+Gdq3z2ip/N3BOQwmyXJs3dl+dF7QtYUDHExy
lNtD/Cf6mloqt+LiPHnDPTtt7l953jmp43/nSYvOKQmOctz/7CZLy37Mk/e6
90YLoucuPzALHpwn17weH1qOLrLU9yC75kl/Zqq+InrKoIyF+9M8+fFV4BlN
tNUNx5Ufm+dJvejIh0boRTHfJxkN8+T60y9GzNHlzA3dx+rmyUqWbdx26HXc
30ONKufJ0zbCK9zRWaebk/iL5snO4tXyR/49V5Jc/y1rnqyyj5MOQidZCJlW
3Zwna86a8p355+KZ9rir86TS4b0/4tAXbxJD++LmyUmdnvob6KWuRG+Ds/Nk
g8SL2Ey0zOOmY6Kh86SojsyWIrQGfWbkl988OXXvx58qtMu0S+cbr3lyc6Hu
jXr0ahfYUrRvniw05FBpRlee6FeI3zNPXg9zvt+GzuWJD/PeOU8ahxtr9KHP
2USY2VjMk+WWD++Mo13pbLFam+bJJ/+1cEyhDZ1dNi7TnyflQ6NcaRV4PuL+
5MGiMU8e6OvL50E/0Lu3OKo0T87Lj4+IoNOv6vF8lMX3ybtSMuiNelXRTyTn
yWUKyzcpoVc0HvcvEpwnuV9aO2uiwbq0JZV7nvwjYua1ER2373HqBZZ58v1/
PEdN0Sc4hj+Ezs6RaZZpe3egLzzwP3lsco40W+Dc5oRm9Su9uG90jizq3654
AG18e5DPsW+OrGkPnD2GzpXZN23VMUfuvhf1+ETFv7/387U0bZ0jY4zOBkei
7XjceY1fzZEa2wPk49FesaGahvVz5Mlc1+fX0WHxgg26D+ZIN36zPenoq5t9
6nTuzZGq5jr9eWi2XUNSOvlz5GrBde7laMaHp306mXNk5Urd1ofoWGs7Qi9l
jvRQddB5jiZf/LhteGWO7Bm5cuntv/wVfk00jp0jR2kTXz+jq3v9xk3PzJFX
ZXyl+9CTD1nuWofMkQtjK23H0KfpnQ2Ovhg/O9upP//y/dvGZP/hObKOWHGL
iV6zrkr++N45cn9aQAl7Jc7vDy4HwnbPkbFW/PcZ6LlDN9njdsyRh+79LhVH
tw8+pd80nyNP2cunr0QHVyruKzKeI9Nf5UcqoVULZFc80ZsjOxNj9migy3jZ
tD+snyOjdBpXG6BPx63KH1GaI120PYc3o/+Yt51Ykp0jrfgCblmit34MyBJf
NkcWaP3cYoe+I2+nuF5ojpSX7+l3QV/KfMthyYP5sDQPOojOX6Fn5Mk6R0qt
0Fw4hl79+fubqLlZsmYp80QwOiV40/3s37Nkt9PNkQj0ceGrfxrGZkn16/Lb
Y9B3lXRjhr7Nkg94N+deRgdmxflxd86Sn6WYf5LRbz8M31P9MEtGSdvpZP4r
P/jull2vZ0mpw7u889EsFQqqJ5/Nkp7bmcn30GdEHx+683CWrJW0e/AAbX29
+b/XFbPkhMT+t/Vo5uXiD1OFs6RponL7K3TJ20dsctmzZN6rirZW9ETonnM2
t2bJ3Uu0pg60pGqfbcS1WdLdR6K8D63UVRpQGj9LStovJYyit/yQ7+89N0sm
DdW6T6Kvy6enC4fPkr62Nmtm/+WnNDzfNHCWbH/b8I12n0Gpr1xJC/eeJbPO
rLjKhX5xdOhOxYFZUu66m64A2vuX+pVxl1nSR+3ye3G0u5d7k7w95ut45V4Z
dMzCp+1uVrNkeWDr4Gq0g/qfZTe3zpIzzt9d1dCO3yXXtxvNklcNed5oo7+F
F10S2zBLvldUV9+IzrhK6NivmyVbNPbHmKDPGGXIJa2ZJdd55n3ahl4++cKh
Q2aWdPtAl9iFPhEx0rpcYpY8GxpuvQf9VPrglb0Cs2SMh3jYXjTtQM71u1yz
JNelz7c9/71vxts9QZslvWaeVh5HP5FZOLxhdoZsSu2mgtC8mb26ZyZnSCXv
dU/D0XbfpCyaR2dInf21NefQAY6ityW+zZD+3uey49BKnzXXH/wyQ24KSYxK
RNde7ma//36GfOEz6pSCzhENX8b+eoac1U9Yk4HWsQ0+Zv9shqx6GDWSi96T
rM2S/3CGvPvhY1ox2jBu5XtmxQy5x/20RSW6RyOzd0fRDGlseHG8Fr0wuVIl
L3uGzDaiRdajb5znrly6NUNSBt3ES3Qm43mw4/UZspCucukt+tXCo6DyizPk
gUMT7J/+xbvGrYyIniGH1db6daI7qoXlvU7NkKJyAx/60G82mLa+CMJ8cMkq
j6CdYw9Urz4+Q77OHAyeQIuPfvkUfWiGbC7Sqf0Pvf+HsMqI2wx5c1Di9xx6
Q3T4AwvHGfIb/YoMSxXWzzwXXmIzQ7pTWZs40Z5/koKFzTHeJjsnAj3pIX83
xBjL/1B4WBidn53M26c3QxrFFHhLoj+57M8215ghx6/YH5JBP776x6di7Qx5
OanSXgE9klHjIy03Q+pvfGWgjN62YVXWBakZslguRWw9+qZbBueM8AwpNKo4
rIN2DMm6fZBvhjylGF5siN6if8ujjT5DrjqZengTen3JvJPpwjRp7x8lZYZ+
pKN59sHfaTI4d9Oz7WiBuMoOlYlpUjqrzX0XOqR60jVzaJoc+rvlP0e0yQoX
IfGeabJU8Xq4K3q33+E/Fz9Pk7ufvmTuRzPqY1k43k2TK0wHfQ+j6w+tN4x4
OU3q6v78egx9V+LjnVlqmmSIjG8MQN/rGNQKfDBNOtt3XQv5lx+2zsnJe9Pk
r+CmvlPozk2KHccLpsnuiSr5c+i/1zeNTdzB99XuusSiSat0+eM3p8mR3PT4
BLQSf+X5X1enSc3G7HtX0YtvpoT846dJg+na5uSqf39/0vV86tw0qXhnqOs2
mqjoSQ8NnyZDVFQG76DXOvlnsARNk19mLn27+z9H9x3Pxf8HAJy+KEJCKSml
ohKpVEReUZGkSBQNMisRykgoys5WRiW7KHvPs/fee++9hfB73e/P5+M+n7v3
3b33OvQXKqZiB328P53dTX/Qly7ysezUWYZTjflEHNqoWeKjv+oybHz79iMZ
/X1r6d6j95fBc3eYcQZ65ppQfazcMhz26RXPQXM+oo29JL0MgoZKVIVoAZ2k
mHLxZWzfbM0qRUtVJtWqXFwGc/1V3SryuNTHXeNn8H0dP7OzHn2j3d/cgncZ
duol/GlGi3S9othxZBkarGzEOtBlc47hwRzLIB0UUtSDvkV7/8WFXcsgx7rv
2iD5PlSV5SsZluHersm0UfQDa1pFTZpl2N29/+gUWl1ywOTfxhJERsTZzaEz
67WSPy8vQULkn64lNMtXOhaBmSU4sYuFbw29R+X2p/KRJXi8d9RwE53MHnfo
ae8SXB08E/VfCmPOqzNRddRtS8AQutC1Fe0skRsQWrcEDlZnttKjjS/o2l4t
X4J2/5mjTOg/14/bDeYvQTjHWRFWtMPfN4H2mUtw9OiG5B70KktH/YmkJeiv
U5TmQEN8FWd11BJsiItJHETnCtZ+eB2+BCyfMk4fQf+U1Nhk/7EEUFLLdgzd
2UHlmeezBMe32y7won+cOy+i674Ey9qtxafQ11tMV1kdl0BmvM7jLPrW5xvV
hPUSPA8zvnOBDJ/tqTRd8yVgDSykFUGP0v1K2fNqCdz7i1LE0KVV58qKdJeg
w9jyoQR6IU9lxlhzCW6qTC5fQzMd8jvO/WgJ5jzYnaTR+5+/Mm5WXALdfbQs
smhr7Rf1jreWoGcu01MOnX5065VLUktwmvki7V30xY2i/FlYgt8GH03uoYc/
nVL8KbQE6v8FtqmgryYVLD06vQRLme7nHqOXAul+7TqB79NFxf4J2pWwfVrF
tQTaGpQ1mmijovQLDvuWIPW4446nKeT6Gf5dV1iXsL6/eE0XzZOtTbFJvwTv
Tsi80kc7vR75m0G9BEoCLj6G6J7vwhtvNhbBNIuIf43mle7ZIby8CHVxQwWm
6IJSdb6V6UVoHqOuMkcfTZFSSh9ZhJErh6os0SsTu5wseheh+7No4Xvy+Trd
LYG2RXiR8iDhA/rsvBMTVf0iDFrY+Nqh/1VcVi8tX4TXqYmvHdE+lBuZbgWL
0Ci8JPWJjC9ZNw7ey1qEX1U3mN3QBw1inDmTF4FXIrneA81fnrgxEr0ITx+J
fvImn19ev1nCz0U4Ndwj4oN2cSlcsQpcBI7Qn31+6Cch/e9l/PD+lLzff0Mr
Zhcz7PVcBO3syF0/0COtaz+GnRYh328qKAhdfYbuQsqHRbgcqnE0FP2flGWd
vcUiPPJhCAxHSzR2GyobL8KzEzM7I9BbOzNZT+qjmXe8/U3Gv4Af6ZvaiyC3
Rb89Cm3qx6LRoLoIrZFMZ2PRU66hDJH3FyE4fdU6Hr1o1ZX2Xn4RljtPlSSi
v0bI6ty/sQjniATqFLSGq9Wu01cW4R6N08U09OGJ9Xw60UXQUU7WzkB359w3
GhRcBJ6Hok5ZaANpjoO5fHj9WM4wgoyPlE0V37kXQWNRIyUXfSaExewt5yL0
l9Dn5qMZeDQOqexZBNai/XmF6Nj8OyXCOxdByM4/vRhdPGnwgp1uEQwC7SJL
0ZH3bjL827II6RGDHuVohdlXkV1rC7DzXIZBJfrQiMmVvIUFUKynk6om40P4
QHP45AKIs7Sw1qJfN9zU+TS0AF+tudvq0L2KMGvUjf+PWPnSgD5986axSssC
nGRWlGlCf2OlmpeoXQCXK6LLzWgu6eVnJ8sWIDo33r+VjC9Ecuvu/AWg35F5
rh3t71gvviVzAfb+eVDSga5Y6AqaSlyAS2yf73SR8dfp+Up71AIMVeg2dKO3
M267Xha+AHpS/bK9aOb30i5pPxbg8uZGdh86jj23JMJ3AbKf5/EMkO9DgXLV
32MBpDYEHAbJ59f27aCL0wJcO3mrZwgt5sct+v7DAjBp7RcYIfOnpNM3X1ss
wHm2YNNR9A5XeblnxgvAEdOdPIZWy9h7XVV/Aa76tE6Ok/GN6cBZJZ0FEBby
4phEc/jOMd1SWwCPvzuuTKH5/Hh7JZUXYFZU4ck0etbjUcjlO3j/T9VMZ9As
F/ffE5FZgMC2i7azaD2bzbXzVxfAfn7QaQ4t5+3ncfbSAgTv0HKYJ9Nf7Xu2
0+cXYNkxw3KBjH8NN1xOnVoAm4yJ54vk83vpMsd/bAGc1tZuL6ETorokTx1a
gHM/Jk4uowNrGhwF2BdgYSWX8i866w5NxhmWBeB/9K6KtNMgbds5+gVw3nPM
awVNaWQyJEy9AIlviNurZH63p79bbGMezCuuU62R6eXUcOHV5XmoUymOJR1+
jd1XZmYeul+IKf5DW3GyKimMzkPe9bhZ0lKpLzYf9M0D1dnDdutk/iee6aXV
Pg9M+j7MG2ihw1+ZDRrm4dvFnT6kWdeC3r6tnAenZi+WTXTNt2dV9kXz0GbN
5UCahdmZ7jMxDzmvcxZIB/r9OBWSOg/+owbKFKmMObt/Xb4UHzcPs2wXkklT
D289mxc5D/bndm+nRPOfc2OqD5kHFZOd90lfCDdoHPg2D+/oT34n7Wkjab38
eR5uHnvWRlpU6jfLdrd5UP1bvmMLOjlM+BOnwzw8j7h3iXTxh09jgtbzYKO9
Q4O02poYv4z5PJTeX3pPWkFlQkn91TwQP3f4kDbhEtA0fzEPm2aPw0hz0oYr
emnNg9fM4G/SYsujJ6Iez4OHQEQk6f20vv3F9/B6yr+DSEu73nzXLzcPlY7T
7qTv04aub0rPQ1SXmRnp/FMij/dfmYeLr27cJ10xGh0oIjoP42o6AqRv3flW
oHJuHj4QdRT/P54cWGrOPw+0YW6l5P2GflGO+cozD7VHg5xIz4RoGmcdnAeT
u3RXSavlqe7r2TsP/eJVi+Tzzdw6GvgfyzwIrU//IG2SEUB9jH4emL2NJEh/
UuKUlqWeB15m5U7yfZl+oNV9tTEH6dbhBqQX9v977r88B9zjj/6R77/3zJfr
eTNzIKJo8570MQrT/8ZH54CxcPc6GX/eLVz6yto/B/vEDhiRVo1x2gEdc3Ag
72s3Gd8KKdZVnzfOgZi85zXSJ0cFP32pmoOhUapQMr5K+NV55RfPwarD0ioZ
v2cMTUxmc+Yg5PjzG6TpqHLPHkyfA+1CdU8yPYgxKZTfTpgDvrv9dWR64bev
FH3/Zw5uVExtJx3rUGsfFzYHalwOl8j0dleT4k9/wBzoSMfrkOlx3Hft127f
ORg9Y+BEptd7DZpWNzzm4GtVQRiZnr3nO3nfOc0BQZeQRqZ30y20cYkf5mC8
/lIRmR8kizgwjFvMwZFdT8vJ/MJ028ZlLpM5qEsRLCXzk7cUDDIqL+egMCSc
IPObxtF7vF5P50CGyIkm86PyVOveiidzMD9l+4XMr5Lc+PS2PsDz71oxmUAP
ZW9UStydg1+79suR+Zt5ge9/72Tn4HTVwiEy/7t88wdDpuQcVO3/MEHml59O
JY+vwBzo95bFDJPlibH1dyHhOZBeqNIl89dt8mFcZmfm4JiA50Ey/9U9UmSe
yjsHZ/XYqvrJ92fpELZyZA5obJ68JvNvRzaPYJEDc9B85RULmb9ztX00tGKb
g8N2t3+T+f9C6zbmPKY5oNq3IkKWDyv38j7Q0M3Bep1RIVl+uOQqFcn8Nwes
loQUWb7cjtVt9fg3C1VDvXlk+bMyGp7ZsjgL7B0d51vQN9SiXx6cnoWPPAkh
ZPnVJHBs7unILPzz0KFtJMv70PQr8b2zsNL3T6eezG9P02v+a8Pf9xgTZPl4
yTT/jlTDLOy73bijBv1d3H6HV+UsJM7uV64i62P2G37dRbMw63jnawVZ/uvW
zJ7MmYXiZuOmMjSjSOjut2mzUO/nREeW1/f1Dm0ri58FURevC2R5/ipsunDv
n1n4puf1iCzvy2KTbz8PmwX+xU8WZH1A0P5AWEbALHztsPEm6wu9N6oLGXxn
Qbzd9P/1CdPrhnFqHrPQE64fQ9Y3bJf+6CQ6zUL//LN4sj6SvnhiZNvHWZAw
fhFN1le+MnmfeWw5C4YdZiFkfcZBxEMy0WQWXFo9PJLI8sm7/PB2g1k4vy/d
LAHdrj5Rqv5sFn7cWrgfR5YnbN+FMtRnwZvzypkYMv7L2r9kfTgLzkIRVGT9
amvxXX19xVnQlDheE0keN4wRLL01C78GCr1/kenniXjeket4vULrO2T97UlT
4m5r8Vnoc1SlJet3j88nnu66OAvVDU/SyPqf6M4xZlHBWXh73VmdrB+ycFKm
+/PNgoJtF9V3tPzlUO5V7lnwOPE40B8dYWl1X+XgLKw30p/zRXduFbmdsXcW
mI5M5n0m6xdCtnT7WWYhLYbyhhdZH3Ld5vSOfhZimWXL3Mn4nmhQ2Uc9C1cG
a6+4ouvfPGuQ3JyBB9meyc5ow6aAgN9/Z+DzWU8usr4cPprJu3NuBlha6+zJ
+jT76su3puMzUCx+b4isb2cZa7p0DczAgc1DYtZo91nJJ5JdM3An6JybFRne
4wVL0c0zIJji3foWvUThKLundgZEqsT3vyHzI2sJLZuyGbAzwiIM/bft+6XJ
/BkY43d3f4U+pXW96X7WDAx+Op9jgH70fZq/MHkGvrOeG9VDa/KIS52JnYGF
m67byfbH08qxA4ERM/Ao4yoP2T6JeOefxBgyAxwDKqJa6I93N+isvs0A6436
G+pk/cah4MDU5xmo0I+9o0rWvyy+zjx2m4GAugWFh+jltNPvaxxm4ONC8C1l
8n1OnquUsJkBrjtZEkpkehtVak56OwMzOpICCujfP68EHDeegfnYy2xke8z2
6u9DAfozsPNn9PJNtMh/l56wPJ2BmjzPWrI990vm10PHJzPw5O10qCS6OPIb
C8WDGSiQLDa8gr5TV2prehftxyF0Gd3j2x0/LTsDKcOzy6Jkfrri4v9Uagaq
g6XjhMn4z2or2nd5BtZFuDXPo0f5jH0fXpyBTi4nJrJ9eiGaMbr57Ay0Fpom
k+1XC64tlgp8M0DrOat4Et0gQkFdwz0DWvMrU2T791l12jXZgzPgctfL+ij5
/Ju6xcr3zkD7gRwGLrK+ond4RpplBmzSbbwOoA83nVMupZ8BfddO5n3ova9L
3kjTzMBtinpnNjK9/Ngb4r05DQGvtTZY0G7HnuX4zE2D2y2f52R7/tOh/hvf
Bqfh3MzzGrK9b6I/Lh7cMg1y6X2naNFdwkOhEeXTYEBP6UiNdl248Co+exr+
Xi1pp0TvVrz2JzNuGphzLx7bSCbz11e3S0KnIbxDRX8VfRJbLo0+02A+dyL6
//0TnkW1/U7TsOdh1DDZfyG8PyVm3nIaagwH2KfRvHOPF6kMp6HEqU5qHH1R
50gwm+Y0bFl/oz+MVmHTT+K9Nw18+ztd+8n+pt5gfvEb0zAttvGrm+xvGzvO
cP8SXj+xO7Md/df3uZyBwDS4V38oI/tj3vlWLDsenoa47olasr/mZkvKlrDd
0zB2dn99NfqKs7dBLu00jO9lqypHL3GXX+7+NwWXuzryitHhmgVGG9NTcL3C
IC4ffebyKDVn/xRc5G/0I9BKf4NXLjdNAacsvQXZv6TC+EBWs3QKWg323E9B
J117S+GYOQW8PWt8CeT9h+oxx8RMwZ+e1PVodKHhN5um4CmoTpYvjkQPXTCS
2/w8Bf1hJU7h6J5c5bfHHaeAcYbzOtkf9oQje4uixRQoNSlvkv1lZp/phqxf
TsFPX7NYP/T+zMgjsepTkG1s9eAz+rEaXXa34hTAbz0KDzSV1+c4Jukp+GV8
/ccn9KOw1A0J0Sl4wrRTyIF8n8d6Qk1O4fmSSss+kP2p02Yhv7nw9wGv771D
76WfWendNQX6/7F2maNpquN/7qWdgh72yMcmZH9bGf+fO/8moYxduNWQfD/V
tTQu05MwdSFfVo/sz5qiTSnpm4T2sBuZT9H3TK5lUjdNAotP7RFN9Pzi3K6r
pZPAdEnFXhXtcNE6/0PmJGwvGepXQa/fVi0oiJkEOZ03F5XI/sn3/9i2hkzC
5nVWZ3ny+SqWZN34Mgmc/mmNN9Fu3meS3BwnIdxOl53sX31w5fd6o8UkWAif
VL5C9h+GBn/ZbzAJRh3rHmLo2xcc32lrTIK4b1+BMFosvTolVmkS3Lw7ZgXJ
6/MMi/2TnoS15ck9Amiv1Mus0pcmgX5kz0WyP3iyR/aCj8AknHFUVeRGN995
/3Po8CQ0buQ/P0Q+n3/SmhfYJkFe97o5B1qNdr+eI90kTE9PfWAj33e3bm7H
+gQM/UmzZ0YHH45QOz07Adq5kbZk/3VagtQN+4EJ8JcpsNxGxuff6ZZdzRPg
/XSbwX/oNjXj1fPlE6Au+ObhRhJjzmftccI9ewJoy/ZcWUEPOLpXjsdNgOGV
0cNkf/qN+hau62ET4Js2sUH2t1vaCRFhvhPw7OrRhlF01qEjwVSfJiB51Ttk
AL3/MVO55rsJ0J27pNeNlj5lJFxkNAGyl7lOt6Fp8rMnjmlPwPm/V6Yb0BbW
ugOflCeg7WTYz2p0C/0U59zNCaCfkVIpQx8Wzwy4f3kCrO/wby1E/yd4Uy3n
7AQwa6pEE+giQVbN4zwT8ORs1W1yPOJkhVOEF/sE8Fc5j5PjFZSZ3AKbDBNw
WvyzdQzaY/Pxsi7lBHD5TuyMRCeWRW60LowD0en1LZQcD3GyviY9Mg6F+1wO
/SDD169SntY+Dn0qbYHk+Il2YrQbb/U49ARbsnuT4WNZ9AjIGweTVTNXV/Su
W+G1zMnjoKtT9c8BHT9+8ZZDxDi4Tb3T+oAWj+TduvltHH54uZWQ4zmh72bX
TNzH4b3y5lEz9Ac/6pMzH8ZhXbzW0gjd8LD3y3PTcZiV3VrzAl2utSEy9Hwc
FCxDOHTQ7fZN7BqPx2Gt6qcGOb4Elf1neuXHYfjy7rAH5P2YBn5QuzYOXDUz
PYpo73U7+l6hcQgyE2aTQycxMleqnxyHT+fmpG6gD7llFgxyjsMixf5X5HjX
LX/K+Wcs40DVkOErhi57//DeNA0eD69JFSLHa0qvzxqvjsEWw0f1Z9BXz0jk
rE+OwcdjmiMn0bp/CvLtesegNW9omRx/k1e7ucbUOAYqgsOUh9CCvxW1v5WM
gZ+BDs0+dATnI6rjmWPA/PwZ9S60jG13Q3LMGOgxT28womNblJuvhYyBpMrq
HDkeuFtGenvTlzF4dtqldwv5viR4DXScxsDXLqLsXyJjzgtlS+pVyzHIl5KP
XiLHLx9nlbkYjkHHE7tPM2gNxWcEl9YYDOfc0BpD/3692Zd6fwwWbwcKDaAD
eTYE5W6OgfyKA00XOZ7JMJA4AmNwMZymuhndunxK3ebsGFDAPk9yPLR4Uk10
P88YXPhdcrscrXBsSSKNfQwkapm2FaLfsr40VmIcg4kvi+nZ6AV5mfoFyjFo
7jF7mop+l0D30HtxFDo9vzHFo0fE+HacGx2FSTf1hN9otZNnJ5o6RmFXeoVc
GHrL8Le5NzWj8GquYySANP34oQMFoyC59/Nbcjx4v27Am/yUURhjWN7miT5I
I7Ty7PcodERTeTijO5iEA3f+GIXAVoLFFs0wy6Wf7jkKE89PeFihBcVM1TXt
RsFLTJLWDP00N8Vih/koWJ/aZWGIvmGsnZmhNwqZbH6jz9GVttSHnj0Zhdc1
9fKa6MNybJFsiqOwdro4kRwP91E/cK/4+ihEsRgz30NrWXznMRMdBe6b3c/l
0BYubPtOCIwCc9zWbGk0a8qO052HR0GMbWY7Of5Of4P2mQfbKATf8b8rSo7n
l9jnSW4fBcXz23zPJZL7UzFeWt8YAS9vkSZ+9L73XC2JcyOQLXZ+xzH0epSk
l97QCChTr0ocQkvEburxtI0AVaqDITuabqVWp69yBMKPDvizoKlPSLwPyB2B
QxyMBD3am7Ux+UHSCPx+uq2LnH8gk7ZjO3vECGg1NyxvJGB9+bqpReu3Eeg8
a0z/l5zfcdCDzt99BPyvj++bRT+u6Ut88HEEdLqFuMn5DsWsc+YHzEZgf64q
bz+6pfXqwz7dEWhOesLbge4XfnL/p+oItH28zN2IPmNVqa+nMALWC+v7yPkV
2w8w/RCUGgGNsq/0xWgdImbk38URkC7f95dAs5w/K1PEPwIcGe+6UtE3Ph4q
cucagbWHpUQcOd+klVL54e4R4H61+jUSPer14L/jdCOwk2B9FYIOEksuWFof
hpeU7Ne+oaM8/b4Vzg4D0+p2ZnL+iJKJi9PnwWGY05lodSG9vtdVu3UYrtBm
fbNDv3taHC5Uif//+k7lHbr86IGG7bnDsKf9HAs5X4WmJnxXT+Iw/P3QW2SA
HuAfe570axi2yX80fobuO29Y7/xtGD784+RUR29sK7yl4T4MiZCcr/L/+SH6
HSIfh+Fi/XUNBbS/3t+3u8yGoV6/dV0Gve3g+MkZ3WFwLH3mdRVN3VEzVa6K
5/NbO0zOx6n8cTb3l8IwcHu7x5xDy3z+HmInNQxs+ifO86NDmP0+a4kMA3t7
WQo3usI39su1U8Mg7fpKkJz/c7ZRP5z78DB0CHP/YUOzBT4u2MY2DDJuAweY
Esj9FOhmxumGQRFiP21Dy+7bPFazMQQVK06L5Hwjq7tF+klzQzCgZ6K8Eo/5
G99EztehIdiQfp06i/6i9O/Ah7YhiBaxYx5DJ0XYOOhWDUHydJROHzl/6uT2
9bt5Q3CReTKlDa3PwGUByUNgdOvaf/Xobz8VqHkjh2D0Vqp0ObrH6qQvW8AQ
PMuScs5Hp4gLC1J7DsGExGJxBvpDCU3rvO0QBNnnbSagc3Zx2fW/GQLWs3Fn
yPlZfop7RBr0hmB+PE8tFL3QabJc+GQILtxfcfyG1uMvT09VHAKO/UrR3uiu
6eCPf6SHYEd3W+UnNM2i892gS0NQLu448hF9UZj1hM/pIZAdUd+wQNv3llK5
Hh2C1NfPdhiT89NERAZs9w6Bv0PAPj10TPZSsRXDEPwq+O+wFpqRzjnGjHII
xkr8jz5CXxuy83+1OAiOglqHyflsF6++cXg5OggHwjU5ZNEel2bNXnQOgnqG
P9M18vmxWuk+rx2EFztpKS6h95+JUX1WOAj2V+PGBNFDx1kVn6UNwtUZ75qT
aKpkUZnnUYPwMSYp7gg6PzVV/EXQIOhw7HIl5+MFi+4Revl5EBRrErVYyflv
r8b5XjkOwrzGFyF6tFRKHpeZ5SBcfplBQ4VmcuTfbWWI13c8WrMWh/VFD2Kr
rdYgMEo3ec+T8x0DaZY/KQ9C/5Xqu+No4Wjv/s+yg0C9g5mJnE+4o2W14of4
INSJBRa1oas1yuIjz+H1tN+a1aErsry9k48Pgip72NEy9KE344b5+wfh2viB
qlx09G21G7U7BwF0xwzT0JRctvt7qAdhHy/tzjj05tL42PTKAMymW/wm50Pu
/ccdTzE1APyRkuKB6KWPJUbMfQPgaf+0zgf9YbvGyaNNA3Cot/+xGzr2lGOX
UNkAHLyaPmSHtkypdJDNHgCpS5PPrNAlrvknNOIHQPu+1Ygx+nTxev6b8AGo
OfhSXQ/N57vjrof/ADAdym3WRAc+/tQW4ToAf/uMrz9Er33bei/fZgBip10T
FdCMa6ylnSYDUFHNwCGD7rt2XWDl+QCs0i1YSaCPG5z7tEt1AIyOXekURpe5
G3ScURgA5+h/50+j3QdcDspLDcCBw1yfjqFDKg7dNxAZgOPbkzo40Ueqc2zc
Tw0A+3jyMTZ0/ZfNH3GHByBc8rgBI5pz3iimnm0A+gIZEqjJ8DXHxC5tx/9b
aM3+i8Xy45FMCDvFAPCpnOFdQCfmtNnBQj/8zTBWG0dvV59X0Rrph+lDpz36
0IFFJzg/dfRD8nbtrFa0is/u+oSafnj8d9dgDfpo0E2TjoJ+uKYtsa0Endug
vo0mrR846ye4CbSt5LSDQFQ/rGXsFk9Ge/E7LD8I6odL33OVokiP5Cs4fO6H
4LkpHXL+sOO80Pckx34QvRD4+iu6ftayvt+yH14PNll4kvOFI44vMRv1A4Op
93tH9M0t9VRXtPvhhFbbu/doCdqdm69U8P/HIs1NyfnJE+YDYbf64ZAQtaE+
unvjZ2KLRD/Mb59U14ol2yunXtJf6AdJdg25h+jU4AgWcd5+mGh5KqyAjreN
CjLh7IeLWZv7b6CnhOr3RLH0Q6LI8Y3LaO6MeLOBrf1wr2So9UIsuZ5mIIfj
Xx/oNgnH8ceS8wM3ZxRn+iCy5fDHo+i2nQHb3Af6gFM8/A4HOsPg3tbylj64
YJ3HwYLW8iuYoKnsgyBa8z5acj72PavUK7l94HajKoQCPfFl/3PrpD74nJCj
Rs4f/6MjQpkT0QdOCXf2TqF/rhhYbn7vg5BU28oBdFTAvS7w7AMPgQeW5Hx0
uTKHw9Z2fXDfoeFYHXmcKeBmvnkfKJ6cry5Bz/CcVqZ52QfyDqlGBJpyuP36
DY0+UN/KvTMZ3XVNaJ/bvT7gYb30+w85H/5RT3WDTB8Y7tm8HIJu1dHX3ne5
D7wt9er80EaERZe6YB+I/XFUdUfndIdd+H2sD2zoFUfsyPBqfjRc4OiDUura
F5bobLoEZ7GdfbCysTHxCj0VXWHrSN0H4o97nj5Ha9x6odq40gtXHU161Mjz
0fDt4Zrqhf8G8xTuoQt2Rca87OuF2caiPFm0QKvV0eymXmghPvBdRXdXSb5h
KO+Ffuo1r4toC+/vkY+IXoim418SQPsNH0iLTugFaYEDd3nQ9mHaoRS/eoGp
pSJqP5qznOmFwrdeqFcX+Y8Vfck4bcdP917IF9C9S4d+1f3Pde1jL5gHPQqi
QH/SMh2Ve9MLbKysY0vRmD/YFB74qdcLPUNu/JNoluoP/BtPeqHNtE6/H+1L
fXuPklIvHDjSGdmKrlvPb4++0Qsvrsf1VaOpYt6ZbYNeqLkst7sIzX2Kc0r9
bC9kPc24lonelwCi2Ty9cHTfgkE8+pWrlTo7Ry9ox6/5/CLXZ5x9o2bK1Auc
DvXpAeiJM5XnGql6wWPRotWbPJ/onr6zKz0go7Ay74TO4vir6TWJXpGmI9eT
lOfQZc/39sCimAGHKfr1mamJu009cPat3gk9NJP/5dnksh4AqiuC5PqUHWKB
ZXuJHmg6NSesjN794beZZUIPbFOwELmN5hynWOv92QPWeX1C19Beu0Fe6lsP
7KvjPiOCFs+nehvl3gOPGqV5TqOzK2ZMWW17YC+n7B4eNMfJYCmLNz3gSXmG
ej+a+m/K6IBeD3yuWplkRjtp1j66pd4Dws1hddvQ63kuIalKPcD+4kLCRhRj
Dq3Np/TDMj1wuzPGbQHtwKcX7AY9cMmc6ekYWke/WuXf2R7o8VAR7UF/pFPo
f3asB/yN3Oib0A0DPiItHD1w7HlsSzl6498lDamdPdBYmB2Yiw57OaicQt0D
9+oyNMn1RZnjD8XkFrqhu/3XkSj0hXIjrbOdaD77nmC0mbrssT1F3eDOct+X
XK/EV81ntxHdDWrNHDdd0XY6ilZDPt1wKr9p7QNaI4OaqeZ9N7w7aP/zDfqN
x/uLGc+6gUXo1O2XaKWxres/73SD8p2aOU108nqn0heRbmBI0fVUQZeIXJOy
O9INOlFb+OXQMjffV5oy4P8tvhReQy8w1o08X+oCsWfHlEXQ1f6WvqrdXWCZ
njYiQIZHrKhdsaQLJhJlXpPrub69m46TjeuCg9+71/ahmfddYpfy7wL6FJN3
O9E/qeZZJD50wR5J5k0acn2XtmKA2IsueOSSYP7vD9Y3gn+liip2AUf1g7lZ
tIHcaXVRsS64J0uvPYx+eUnQ/xJPF9yWLmrsQG/VX1K9zNQF3f85i9ehn3Fk
xV9d6YQHWQ8iitEeqZUeN/o6wTRJmCELfWtE7598eSdY8nLrkevdJu36Z1US
O+H4Y67Sn2j9sNeGWt87Idz51KHv6GBHHXNDu074OnvL2BO9Gb2F/t3LTpCq
tC60J8NT+Omo6/1OuPagdKclmj/+ZlGAeCd8aeZWMUInuzpOxp7ohFXLrwE6
aOcIJ/8Clk4wczzW/RC93danovVfB8QIVu+784ecT7ZsMzPYAYFp7nelyPC6
zmduq+6Afnl9R1H0WGHdG67UDnhz/ln6afR6bWfqpaAOmPhhM8xN3o/Qozcq
Th0gUpTBxIHOSvRLN3vVAcs9u87vRFed6Xjr+7ADdvN43iPXI3rV62WmXeuA
rdWnjdd+Y34w5vO2g78DhhiXXGfQ8pshqRR7OoCLoyd0EE1d1m7ETdkBRbyz
yW3o3guOEbJj7SBqdKKwGm2rvfTApL4dbA67VBf8JsdD9BwDM9thzyv2pjT0
NSvh0xVh7TDhVd9Crq/M/BF6Z8W1Hb6kpjWHoG/Pr0zwmLUDI0tVnS/6qOfH
zXtP2iG1YWeZC3q1yM3R8UY7xPPbZdmgeRl1nDLPtoOJ/MkoU/TdXUqUsxzt
QKFH7fcC/Trj1yQ3TTu0xzJbP0EHMP2+9Xi6DXbfVNRSIs+nGHHYp6UNhPSq
rsmQ4Vuf1q3NbQM5iXdcl9FMEeXcDL/bYO7v0zVBdPBJR4Ub3m1wPvtTzXH0
Y2fjWQfLNviZPR5Erle9sdK5WaLdBsbc9i9Z0OJtO6zo5NpA4pCa8Da0St59
XVnhNjjSZrr5LxLza2OaYg+uNqh/W507i54a0nZv3t4G5gJP3w+huS6WFB1Y
bIXWQ1dE2snjuWbPdLpa4fCbJ3PVaH6KYtO44lZgUi0IK0DThVNiPa8Vtvx7
oZiGbvQybZD2b4Uk04eU0eiEFtNDvh9a4e2KV0Qw+n28fPPwi1YQ+8V6ywc9
53J3UUipFZQiu6ec0Xw0NebO0ApRR5ec36N/DbDodB9rhRhQPmpMrgc+ZJAm
yNwKuvvpMp6hY3sFDZ3XWuB2P63sY3I98Jt4l/6BFtBNUm6/Qx7XFWa8VNUC
6imrWlJoLW32OZ+UFrhAPzUhgj4hFS60ENgC35oEDQTQhnv4e+WdWiBLqGb6
CLph53/jsa9a4MbdXN29aGo/E8Wdj/D3N2gHGNAC0Mb5SrIFtEQj7m9Br+W/
k2461QL0N4JLlyKwvGVJq724twUMvRbPj6NLr7akBG5pgdULoYHdaAg4tbZ1
ohm8lGJoGtDT7ju/GjQ2wxDDnmcl6OfpNV/aspsh6213cSY6Z4CYvParGTaz
aA7HoWOoz/yI92iGP7Ou5mFoRjCPPPi2GXTOvqnyQ6t2jTO6azaD54+iA67o
2odt5RS3mqFN3kzXBn1C1a/H6EIzhGu5JZqgrZIsbg4dxOOL9KvPyfXhD1oY
H9A1wyjHnIgqWsOEgqd2vgmqFsBcAT12X9r7emcTHPZZTpRCD1ttVcotagLK
/ewTIuT6dTc3XZHYJmD48YtTAK308HxDsl8TfDoXevsIud69T87t7IcmEPrL
YEGul5eWFPwW96IJjDeGQunRuW3nVgWUmoBHVaCMAv1vLzbLoAkqBcbHF8j9
AX6Nhp893gRqjnvoRtFqSlILycxNYGKVdqQTPcjO7i7yrxFuHa0WqUXb7Ul9
kzvYCCaeKrcL0bu+msZer24EjbaHqmnk/gNsMWdrUxuhgqlZNwrdxpu05UFw
I4hJl70OQqf/6OEYcm6E918umH9Gm2k4WBsZN4La9oMWjmhl9/8EKFQbgUj7
aG6Jvvc0gsfteiOYJ2gbG6L3KNXqcJ5phBLa4hda6IqJuunYfXi+ynA1ZfTa
MDVxhboRKHZslZdF6/HmNTRPNYBM18glcTRHvqqAXksD/L0hy3MO3d13vva/
vAbYrXmO4Ti6fehH8tffDWAqFDzNgXa+M98t+LkBsHldxUTeX63jzWqrBjCU
YYyk+kWuR85ce/4UHbbDhtyPgeFt/8TWOw0gNuunNIFOyb3PGS7SAB9Eonl6
0HN3jD2vHW0AJXfZxXq0ZYDntSHGBvi8ZkYUo4+I0Ak5/K0HT4fTdhk/ye9/
nHvG21cPIhJm0jHo4o8vW6rL6+HQ2Vu05P4RbQd32hon1cNNrcTCLz/J+Z+v
9Tl+1INN328rJ/RBsUWvAod6WE04J2hF7l/hPbGgZ1QP4X13hgzRN7yT3Pc8
rIdZE6rPWmgbmt/aBdfqoc9M5rIy+nw7j4nhqXoQnDk2chNNd8w+m3NvPTAP
fP90GZ167AhUb6mH6w9+8wmiH15SWX43UQeyD++U86BzJj4OnW6qg0OTXlr7
yPD1bW4fJOpAn8XwHyOac4pbxy+iDpQbxty2oENolJZvedVBpOCWg+T+HNck
RzOoLeugSij1zyj6zYRoYpZ2HTQMMJzvROs9iuo2kauD86JUmTVoDi6fS6cv
1sFFiW9iBeiYYaXKicN1EL/SlJWCrn0n7RrBUAezmknCv9GGPeXvdJZrgcpO
KJ7cTyTksEgQd28tvH/8hMcTrW2/MDtUVgvfpgX8bMnz6Ska/kqsBc6Lv7a+
QWs8zDigG1ALjmIlRi/Qy/8+rPA71ELFP482VbQ8BwPlgmEt2LymAQX0YmSi
YPqDWtgRxh0oiXbObPGyvlYLPC7z68LoYIfm/TdO1YIUr/59PvTo0x11LHtr
wdrSJ+ZgOLlevSuma0stfLA2+I8VfdMqNDlyogb8BFcVtqL5dxODpk018NPr
XNBqGKZPBxdRyZwauPD18Pgker5dP31XZA3ckio83YsWEs17PORVA/Ve+4zJ
/V16FoeOpVrWwA4LnqRi9Kyp6B5nnRroXh2dTUf/UOA6qSpfA1u2a/JGoylF
/2oIitRAdPiXJ0FoEZoDBN3RGvAttvH2RjNGzIv2MdaArM7xAnv0QfP4NOPZ
asiycp4xR1v9fSR6vBBNE7lXnwzPx0iKbt9qcF62hSfo02zK1D4vqmG39EH1
u+htkyek5S9Xw9jcG2sptLxtbxkDazXwTXh9v4juCBBzrBiugiTel8l86JuX
qD64ZFTBwE/6ioNh5P4TC8lyblUwqqTXxYI2vFd3eLdGFSjwe07SoP8cUCvp
PF8FRoctVlZCGXOSKJ6E/KSrgpO8J7dMoj2v+Sa86qoEvoshW3vQdcaly+Lx
leB7tY+2Hj2snKrPbFcJ58TGthWhR1aPsQ0qV4IPeyZVGlouqHs6ja8SQiru
r/9GGzQGLrtTVoKwVO5cALmfkOppvueNFRBhsTTggda9puR2LaICxh6v1H9E
C1Y1cBy2rACn7jLCFD1ladSwRb4CJqZ1fz1HU+xZTBw4UgHj7ztdHqHlA7iy
Sv6Ww6rNQQM5dIBc7nh0RTncHTp3+wp6+rcP+ASWQ5r/Ad7zaD69FynWr8sh
wa39v+NoX2eaO/rXy+F0ol7rPvSEGB/jI45y2Lbc+JsRHbzyc0x2pgycJHe9
pUTrvBAbulxQBgXuJ6UWQjA//pC6ec63DBTyOZiGQ8j9abvO8b0ogzflQ42t
aNoPZvbcl8tA8IuzbwW62/D2/CHWMqBgor9PoBVYTppxjpQC/9FnrOR+Tyvv
m1k5M0vBOzekMpTcH4pxX8lB91KIq8n84IMWkM1xP6JZCimXks47oU/SeOid
ECoF1XmXIQt0NNx7dIa+FCQ7pLxeosOFOx+L9pSAZl+/qDraTX/S4HpiCThO
q/ffRfd63vFUcigB2slCOyk09efmXO2HJbC3gIHnIvpZgNSGmUAJ3HkkUnAS
bbxDX9KFqgS4gm4/5kR7fdztF9JSDOamMos70RG19IsZf4qBoeSUIxW5XxbV
fuWm98Vw1Xx973IwYw6rOkvB3N1imH+d9HM0mPz+TqbgzuPFUBlw/0xHMLme
diDi9HoRHOsaTqtCs39S5rpbWwSrezTFctF9GcPfzMKKIEmwikhAH8t9uOfH
myJo280jFo6+f8bOq1i2CHhDX6b5oqM6TjPMHSoCidxfp53RqwV8Hw8sFYLe
nfpwS3QQ9/Xlm2WF4Cgys8cA3f3qtpZlQCEcV6NwUEffUmSujDEqBOcQqoW7
weT6WFW+AUn8/cj6QylyPzF7Glv2fYWQsXMyTxi9eaGp7s50AbygrD96kgyf
aMAul/wCeOwXa0vuZ+Yuw3+z1KcA+DPs+pjQnHJKxltfFADzdSXR/8jz6Q65
SV0ugIGDB70Wg7B9Ohft78haAFe4B4eG0TsM3ntXjuSDplD4hTb002BeC5as
fDh0QdO2Av3dwlrugUc+0Gw5WJONbjqqwBSmlQ8qZm1scWi1FcP0GeF82DTz
fhiCtrWNkRVjzAe3vlsBn4PI/Vc6S1z68uCSF12nfRC5/1zVie7kPJh6WrLH
nNzvbbeC0RnnPJAXd5R/gW7mgAB71TywXZG1f4z+FK4Z1XU2D37ps6XLoYte
fwm4sC0PzlkOjUqgb5n/NPDsyAUDyszd59AUnc+5pmPRzb6XedDv5xPiZW1z
gWiz1NmL1pJSOhitnAv5Q7rO29HhnkefM/HngmaTxp/1QHy+eYuur7fkgvpH
7bJpNDHn79LWlAP05a8Hyf3vpI1GNSV+58DLj27r9egoIonlz7scuOqUwkzu
l+fi1ODLdjcHZpMmj6SiXePZ5z8eywGbnjOCkeget3SJkRUCKvrsL39DZ+3q
v1oWTAD/50lpV3RJo/JYjAwBVdWacu/Rb3eUCfgtZIPr8ykFI7S5Wvcuu+/Z
UCzqfFcTPV9wzcdEMhtK94veUULL+ETEP5/OgicDlLLX0SNuKVrqvllwSKfz
6kX0Uj5H9CPxLLhlUS18Es0Ybuf4cCwTSldaeA+g31GFLD72ygSxpFV2JjTl
9oMzmqKZMPnh3NYt6N3wx0R/MAM6LzrNzP/A9rntkt1b1wwoiF5pGkQb7I0+
8OlCBiwlfExvJvdD9LIRCexJB+sDJ7+Wol8PHW5PcUwHobwZswx08yOJtboz
6WBvVK8Qhd73w9Vvtj0NPm9p5P2Bro5IS2CxTQOha0sUHmiHhtdSwvxpMEAv
VG+D3qg2vKPenAozvF+DX6PFQtTrXN+nwoXXB19qo4OjVwqyj6eCVkqJ0H30
yq9Rnrm6FCgr8t6URqv8GPx7zCIFFF7Z5oug1xYDz2kcTQHC5etHPvSsTnV7
YFUyOA41S3CiM6mOjvaaJkOarMgGE1rntNID7kPJcMCrKHkLWjuCTUC/LAkk
7cxfLARge878gFbaqySQX7rHOYS2oT34d+v+JLgYr1rdjL5EXzekXJQI3g6e
FqXoGNcx/piXiRApNcudgT46xVm1dW8iuGRZVP1Bm7Qfy9PIS4DOlHOvAtCe
ypnb8nUTYC/V/l3u6OdZHj+O7koA5ZdnE63R4tFqH52z4+F10Ru5V+jOw72J
CzrxMNg4M6qJbtEu53+yMx7Wnvm9V0J3MbVM16THgeut16zX0UH0OYtXNOPA
+LZNmDB6zkNULJ0hDtouFJzlRQvxbi0+mxILA3UXCQ40d2yrS6xaLCiPD0kx
kuGR0ncXoIuFGJnSys3vWH8v3/DV0YmBQ9l9crNo9+9u716nR4MrvWBtH5qa
m7rGniEaPCmybzWgdQ412QapRYGThnVpIfpz/5tvuQl/wHDDSjwF7av6dMcI
zR/Y65+S/Auduou9jVXlNwxu8B73Rx/i3fZXKioSdi92+Dqjf9z5o2lNEQmW
V8upLdG/m9/vy1WIACJx+aU+Ov4rxZ6tP38BL4NGsyp6566figqrP6GWlVFU
Hr315kx1mOxP0PRc+S6B9uq8b7MRGA4GN7nXz6I9Vh89fbQQBttoPysfRQeq
W1rmSYXBEVfJhN1o5afnsvi+hsLjIBG6bWiFaarDP6ZCYPc248cr37C809GN
3C0RAjft52PG0C31I7e8PwdDbX/KRjvaMm99+57RINjXl3ejEq0hz9sZJBoE
upK7vLPRr4/PZ512D4TYhpi2GHTNerSCW/EP+CjndSAIrcmdLFSsHwAvLHNU
PdG7Vbdwbd/9HW4eEAr4gL73+CvNg6yvwL202voabVPr2Jms6Q8mxbQs2ugr
7s3fD9D7wce7WtL30PDKTcwzwQfUVBktr6PFdLKSdz74At8jqKOF0U4a+uvf
tnyG/gWZjhPo1aextIKRXnBkS99WDvTDj551TfKeYOpZIsCAPlt25Lbtijuo
aVPc2/jKmOMYNTNhJeEGj8SczKfRzZ/F3tF5foIHbdpfe9DbvZWvRPU6wuXV
L2m1aI+/z3h0TtvDp0f7GvPQoXv89wpZf4Rf+QuTCWhtfNIHa61Bf/wwVRh6
xHxv3iUJKwj1imD7glZPeHD0WZ8ZFJvbHbNHm/26tzvP5hVsU804b4Z+oDXe
5y75Am5uXJd4hl43vcr91/4J3N4tIKNC/r/9WfYQtwwoahrKy6BzHO+IKwUB
8TOMQVEU/a5RkElX4xGx04daiQ/94qtY85D+M+LwovLdA+T16G5ade8yIqQt
tsvtQN+/4c7J+dqUeDPCLk2BNhQYNDpTZ0E4LDrArD+2z1h7Kun3WBPbVJXO
9qEVTUsfjxV9IC73fDhS709+D3hwPc7YjtgnyMxSQB6/PJapccSRcNq1ZTMR
rSfhFLVZ50wMiN0dCUOXPDXttbV2JXSe01Z/IfdLzhU4t+bjTjDd4UqwR/vL
rv05Nu1BBMf88DZDV5nNqslIehHGojavnqFp7UeUNb57ExVxZbdV0P81JQYa
LHwmPpe8OS6Dbh8/LvZKxod4LuxOIYr2M2AX0Q32JUoyGRtPovuO3Q+8v+JH
tNEthe9HK+xINBGR+0potkuaMKKPX9goYvn5jTg5RHll0w/LlwFq/97174RH
Hw/DDNrR2u9v6N0fRIJ9WkMPmksxfzFaMZC49ynFrxbtyVR5iYYyiDj/k+th
Hnp5ovr+/T9BRJTr2r4EdNvb0zJh94KJur8SrSFomWGlvZNbQgibryte3mjN
hdDiU9EhxOOTB2/aovs33qnoKYcScWoplCZoKsqbTWFUYUToJJGojV5xfgGt
MWHEVoeLWvfQZ+uu+m99EE6YDPCwXEezBVwYF6D5ScimOGQLoUVVfp5XjPtJ
BCc+0jmOFtix9P71w1+EmPtPBnZ0qIZtlevWCKJlXTuODm35PflwaHwEkRr7
7c6aL6bnsLGPiY8iCcqH0rPjaNVN6yVi22/COF7PpQNd0tRhUZTwmyjTpuOp
RF9bUuEoefyHkOc9mJ2Fbq940FpAG0UcjY+5E402eiGWmpkYRXBGpQ0EoH2d
nmTFqEYTs5Vir93QHTaHJ7/TxRAthUD5Hq2i1CdjnxRDHJDMcjZAhzetT50T
iCXMNlNYnqCzng/Vh9nGEvHBAn7yaG31ViWW9liCp4eHQwJ9gYHa3EogjujS
Cfh2Bs3s5gPDtnHE6Kg3+2H0r57sCNn2OKJ5F/0XFjRXza/0OIF4gv8r1Q4q
tBnlh9csdvEEy/F3tgs+jDlKk+atRu3xhIa+xcoAOnEga7xaIIGY2Lv+vBGt
yfgm6oRdAsHcRtlW6EPuT9F68EN7AsH+yFkyGV2Ys/16q0AiQSnvHxuOXi0X
Pcpnl0iYaJza44N+ud0v3ao9kaCRkLG0RzN33KSrEkgilv2muk3Ro0Yfd++z
SyLE97Bffopm6NLt1WpPIkqeVX2/j6aiOaUXLZBM0IrQr1xHK/5eyViwTSZk
hBrkhdFbni9XC7UnE78ZeH4dR59KUfhtLpBC7NGh/rcXrdovLJdum0LsmHkp
S0eGh70xZ7kthVhX0Pm2+gXbSxpym2cEUgl6sYmRMfT0jyaGF7apBJfy5pl2
tKeb51RwWyrRdDvIvBwtXhkd0nwqjcitqCMy0LdrFE/R2aYRK2+8t/whfz8Z
53WxLY0woRyW+IauvzdZ9/RUOvEfQ/n7T+hMzjPT3h/TiYOS4pkW6OTTkWPZ
rekEl9KNxRdojQfviof4M4jlwSHeR+glqXZ7+o8ZxJcANjVZ8nzWw3wCrRmE
/rFOj0voHKPKDHn+TGKFVyiXD/1XM/ms4YdMQkH++NR+dL91uY9rSyahfjlu
DyO6tf7cWARfFpEdWHOZ/J4Aq+QBvnybLIKC3UF7Cp0cGqXe1pxFXFZocexC
V3+nd5k+mU2Yz+dGVqFf52hEb7HJJj4FXSvNRndZtZewNGcTi/9pDkajK05+
6+I6SRDTOfs3A9AhlFWzp6wJItXq1W439FM2PyqRJoKg6NfifYeeSPKkD96V
Qzh5LV56iVYyqPQ9ejmHSD93+JYqWiOA6div5zlElP70g9voWBaDjOOfc4jX
/So6gLbz21SIJHKIBCFtg1NohtG6ueNjOcR2FmZTTrRlzLrvL9ZcImm36tsd
6J5PXlLckEskD8tabnpjeFl+bQY/yyVYT3RbTKN3ld/KO+CdS4hbs5h3owd4
v7r7ZecSGe7jr6vR1KGBuiyj6DUdPQL91Nvo7ieWPIJHy1Ejhvx+xJ0jN6nE
8oiil3L3fqA3jpYqvH2aR3BnZ113Qy/Ivn4x65lHfJ+rvfCO9JqQj3ZWHnEg
xuXIS/QppRONbcN5RNDnWUZV9FWzBzy3mPOJRqmNJfL7FbeNul1zRPOJIzqJ
HWLoLulS+jM6+USGN2sOP/rTCm9wsEc+EWPIGXTAm1y/wS7HnInHAxrfMaJ9
fX+yWQ/lEzqZFx5ueDHm+FwfWpliKiBO6Eqen0I33h1dfiBSQOyS2cLYhR74
kM9colVAMP3T7a9Ei3vby5x1LyC6939MzkL7Xrwe8j29gKCTk7GPQrcd2rNv
62ABkXo6T/E7WmeCNvHljkJin/roIRf0whmBl83ChcT0u9xxC/L7HrbfZcU0
CwmKEzIJL9CnX2jKhboWEv4bdmYP0Ve0fMxo0woJmm/GIjfRtcPXi/X6CwmR
QLZ/IujxJ86XahmKiM1feum8aLWLhh1nhYqI7XfNTPaho6rpwz6rFxH+YkIC
29GuZga+S5+KiC7q6OFVT8ac3o/RKUopRUSjZNu3MfRD0db/knuLiIsBWbfJ
75mU9myxYqUvJtx/3acoQ4dGXuIxOl9M8G75E52G9qr6SlGtVkycl0pViUDz
mZ3azutcTHxmsaLyI7+HUkl33S6pmFjesvHbAV03Bak93cVEQayQvBlaabHn
4UW6EsI4lX9BB223sHneS7CEWE/s8b6HvrYaLTX+uISQFL99VgqdzkjhLuFY
Qqwtm1efR9sKUu/0SyghvF5pPuNGrz2tKZ/qLCEUbtFT7kabhb7KvbKtlLjI
9eoLNZq2jWLe50wpwefod3zRgzGH56/jk/GHpUQ7x/v0AXTXyEFGMftS4osJ
j3QDWsujecUtrpRIO+XemI+urCOO9raXEtd601UT0FxO456nacqI7Ud+DQej
td1fSFgLlBFx7vf1PNGp6XfP1aiUEc5ExYw1ebw96cUB2zJi7Tq1kSF6GxE0
qhtTRvQVbJlVQ1ueORGV2lpGcJcX6smhRf6ppVJRlRPa87dGAP2j9x69HH85
QdMYoHYK7R16MNL/fjkhsTW56QC6larSc8CmnNh/6PMNRrQUoV/MF1VO6KSJ
Zq67Y3p0ZZM2aS4nmrSjeCfRJidb92RTVhDxxLBvB7rhVuEF6pMVxC2Vif8q
0C2Rk+EyShVEUEXGiww0LGjoeLyvINz/KNVHooU7hc2bIiuIn25ZF/zRL3db
97A3VhDPt8/6OaK/35b5+nizgtieNLtihu6/EPk76Hgl4X0o595TtJ5lDPOA
QiXRMfgw4R66qfJF7VGrSiLgSwm9FPpy0/yI9q9K4kjJf5rn0cFXlFR+1lUS
dYw70o6i0/LDuIf/VRKxG2Pbd6ENtizc4uapIkJ4fR9SoVOj7jRoylcRt46z
/Z53w/bKq/qU4LdVxEHnp8t9aNYtDqvdYVWE9cAn8Tp07Dab7xw1VYR+yUfH
XPTMhfqg+6tVRHOpXHUs+Xtxl23eR6oJi7ezzIHoqabcuqpb1UT1S527bm7k
92ptKGnfVBMnhBO8rNzI8avezxIh1UT6s8YaPTTb8rT728pqQsOravsjNzI+
EPMJy9XEoNSPqzfRo4Zx3YtMNUTfnutvRdCiOsbmO7lrCC+f0pgTaL7oxLKT
IjUEKB7p24s2OPa3Rkquhljtu89Mi96bVuKirlVDaNXqXP5Lfm/qagylpTn+
Pk7+xTBaOV6Qz8ethqhlZvvShI4f6WWKC60hLO1SswrRHnUQVZZWQ5z6dr4/
Ed2p0rxloKqG6O73oAlF3355mnm9v4bgnCzj8UJ/3mxq37VSQ3yU6pO0cSX3
45RT42esJfhtWjQM0ToPjwVKHq4ljE5GW6mhB5mHvj4WqiUON2r43EZ/38ty
10S2llimW40SQwvpCpW6qNcStg8N8/jQDtTda6GmtcSh+2UNHGjPEbeJjE+1
BNMn6sHtaH22hq91QbXEJbvD86su+P58BOlGk2sJ3YYjm6PoBcOLQpvltYQy
FR1tK3o4Tp97V28tYRxSz1TiQu7HqtJ4YqmWmBWz2Z2Cdgi0u3Z5ex2xoLGb
PRx9yMTCVPFgHaH4w33f/zi673gsvzYA4GVkZhZZhSSjbBkRkkiIrEIhKhSy
R6GQXf2syExkpiSlNC4zK7L33ttjb72X98/v5zz3OdcZ97nP4bmfE43m/Vd+
z0ayCWq8Flj998oznOT2UW+C2VCZI05o5yTHxEjTJljTt2a8tXf92mR3hnMT
iFs9odbZO28ssKPve3ATRGv5Eu+dN/afZ2X636QmGIq6vy60F9+OgsTwpyb4
8VtxmgP9V7k2cLWqCWLs/3VTowN9F1Mo+pogmzWrZiuMpphj+Zwf+1ITiOqe
K5zac7vMKWHyZlhLhZRONI3d/UQljmZ4G3M6pAots8+sXVesGSa+Bj0oRG91
JHbdVm0G4ohGvXS0j9qHDDeTZpDJJZeKRjukcigEOzTD8yghZn/0ZWXHlLiA
ZvjdqLziiNYJOPM3J74ZXsypNZqjA/4uVf3IawZ753M52miWQPEXdRXNkD3D
46eAfsTqw93X1QxXB7avCaGvbZn6zc03g13H71McaKk3pvm7JC3w84bfLhX6
YihZHg1rCwyti9VvhtIUn5AZfHRUuAVOi7XFT6K/iLuyCF1ogeVw27sdaD9y
7QD56y1w4fWGSCX6ufp6mYZdC+yOeK5/RjdGrDcZ+7VA5/jCzzT0mcddn2xi
W8BGxPRJJNqu8ORdj9wWoLpYdt4XfW7YejawtAU2PhwlckCnFAiovmxvAbYV
BzBFpw8tOafNtMCDhJ+eWugBgStu+ftbIeIUkYQ8+rDOb61iplY4cEpxWhCd
emx4q06wFcS53F+zop/cFfbpVmwF3ohsXQq08D7Jzgn9Vlgk6SBZD8H1f5UX
5apNK5j/21cwhj6TFslI/LgVWMh4zVv3zut7sm+FNroV4lJUqcvRx3S0PrBn
t4KY3p3P+WgbWjJlfmiF7VRfkxR0z4+CPMmWViBjSty/d97fmVuD60qTrbAp
9CXNG51Gy8yutYvxO9Wr2KKbevpZjRjbQMFqbMQY/W2iYuU2Xxvoh+8+UUdr
GenmOsi3Qa8jM4cMmtKM4bzX1TZo/U/0y0m0kMizgqC7bcBir6nJhOah0CKN
etQGp8LvDZGgaUX7JZLD2yDeM8xlKRjns9Ua5ez0Noh+n3dgCJ33IV7s8/c2
OJ/XEd2Abv3evb+4oQ0yiEiPA3r2yeH8mtE2cOE78z4XXefQrNy62QY30u5L
JaAziV8X9tO2Q9l65q8QtO1XUpopnnZYy5hW9kBfZ3mhuizTDswSkpV30Wbf
flvuarWD0LEANQO0n7jUHXLLdmid6qu8ELz3vsc9DQaPdmg/oqgiji7TnmVm
f94OyQLZxVxokmtq1SdS28EjhUOWDj2yn8xc+Gs7hOzGfdwNwucXc0G/dF07
/CnlPjmLnrrXpXJ+qB127T7HdaMZu0miLq+1Q7efLnUNWuTyrxo96g7oebLz
8Ct6Iid86gZXB8hOfppMR6esUizfOdMByrJu+tHoNaH8cfvLHdC+rAp+aLVb
h3+7m3VAfyzvSUe0VOavF09cOoA6nfGZGdqdW0YlJKQD6uJpF7TQwju04xHJ
HfB4g1VXHt1gV+8SX9ABd86d+SSIPv3130JqdQe4T5rTs6L/8QibvOvrgESP
JFty9AjlREHBUgeE2c5UrgbifFL7efsHeSfUKmtwju6dx9l0XKKCoxMKPX+5
NqPDon8a14l1QvZ/yrUl6IAYGudW1U54TdzDkYcesnzj1WvSCX46QXZJ6NZo
Eo9Rh05gWVf7GYbOqCu+MxvQCRvORykfogW+31Jdie+EVBUKfWt0yRFXtp28
Trg8TpFkiDZ/FzBM8rsTONs5R1XQD1U5X1N3dwJjhJbA3nmhwZX1OocInbAQ
FWnLja44fHSDjbQLrE0I7+nQj07GvTzO2gXblrfndgNwv7xTLyAo3AU0gkuC
s+iYdLUvYhe6IE8g7m43mvFspIzs9S5Y6zdKqUanDcp+VrLrgsbfkp2F6Oo/
tfyX/LpgwUiQNh0dfbYpRju2C5qY5ZSj0EEeXf8MczF/DysXXzR//4NbpqVd
ULCR9/YB+lcjV/Gd9i7Yf5ip5SbassyDxW6mC/6oxO7TRN8TJ7V32d8NRGTS
gmfR/3K1Sx4xdYNc84ouP/rznwk6f8FuWOZp8mRG658xuhmq2A32rnXJpGiu
ZNHsCH1cpChNlC49xfmzamv5lU03BO8/PjKIzvNVUUjx6QZKYW/iBnRSVnxw
ZlQ3SF/Y5Py1Z77Qlg9Z3fCqKEbuHZpx/TVn4a9uSKIyNIhDjx+1sfvV3A2Z
edJ2QejnH51+VUx0Qza3vL8rWqhZnb5upxuKuyxjLdFQ8OhuC0MP5OvkZV9F
b0a/LOk+2QM8+zi/K6IvlJ/gHJbrgTc3C6qF0EcTC/2mdHogYtS2jR29L7Rz
ZuFOD7Ae1BykRLOTs5hsPOwBe82rU+v+OB8mEjftC+8B/aPeC2PoU0O8V8jT
e+DtWsNqC/qbF10L7fceYNS5vFmKHj+hZc7c0AP73sxu5aHbkm3Xjo72QKn5
160ktGjx9kvezR54QfZuIwy9bBOsKETbC/aU1Sue6NTIlGVJnl44P0hLsNo7
n1e++ZO8TC/UEj2ZMEBLP3znraLVC29H2fsvoAn23/U1LXpBct9Isxj6tNZz
GX33XuipavvNiS649kngxrNeSPm8UkiDNhr6yn/7TS9kyillbPvhfKd1Wsq2
sBeg+VvUFFqQLlnX5U8vRBNMH3egK3ISfLwGe6GVXMLmN5rtc8H3p6sYT/iZ
qwVouiYX8udUfTCwz0r6Dfpbod2dl5x9wF5bxf4f+thpobYkyT4Iv339nxe6
lkL5WoZ6H9CpsA7cQ986Izf7wbQPVPqo4Do6/l1m9FfnPvjzVihBFe3pxny1
JLgPyOn83CT99t7HZT5ek9QHCuEUOsfRBs+lKZo/9cGLxFI+erSDKgVpT1Uf
7M96v7vrS1P8SZiFebS3D2xP1jfNoImy1xTmFvvALYzrbRd6UkDi8RpZP3y9
nOVShSaTudmxj6Mf0jtuX/iCHrpPeolSrB/upxvSp6F1HL41Mar2gxSfT084
2paY0pXDpB8ON/a89UEXLAaIn3Toh05GB1tbtD9nMZVoQD+IWMiJG6OpfVX+
ycb3w0dRhTU1dBpHBo1KXj9ULnh8O4NmonGRvVLRDxWHZz140E4+Cn7Xu/qh
ivaVNAO6/+PLSYv5fmjW8V7594SmeOMhqZQU0QBUaSbmzaL3mbwM+kE9AJYu
q9bd6HDJ35NKzAOgJBvCVY3mu9JrVMk1AL8PXm//gm5eP96jcWoALplbhKah
g8OGbJvODMDi2yz5CDSLnTndNaUBGNM49f/zsfmpJst6Lw9A++/pBFv0/e6S
IAuDAaj0n7hkjP7PTMJ00mwA2Ne4V9TQxrzBqvb3BsDjeXzSGXRGKfn5FZcB
EPh+9SIPOrF1S+vh4wEwnFWboUcLUuTY7Q8dAJFo7//+Pcb2ZjBNCYweAD/u
ZbFZdMgHs/GDrwdAijS7uQvtmr2uGJU9ABvvXjtWoePa7N+zfh4A2eAO2i9o
QQZakRQYADuKqzmp6HmVY79P1gxAV8JBlXC05u3JB+9bBiAqn6rXG61m90VE
sn8AIr9pON1HR1n/Jf0xifXjbCQzQqfbeBHOLw/AL4NXcarolhcUC9W7A6Bc
81ZQ8vHe+1c/yXQoBuH95GoRN5pndUCig3EQFI8/U6NDm2T/cjc9Oggqo1Yt
Oz74PLdObh7jG4TSxJCb0+ivgX9U7MQHIapocawDfePOi78r8oMQmJVi+xud
9EDUwUttEBQ6YhY/oRU4tgVIdQdBo6DVJQX9eE56J+zGIKxlG689R4c5iE4c
shqEOH4Bt0fo5wrCMwmOg3A5UWnFGv1y+yHFCa9B2Of0xsEQ3XHNXDE3cBBi
mTVnLvjsfZ+AP1wyYhCq1pRui6HfjbNv/0wYBN7HT3qOoVUKAp5czBiEkxzU
Vw+iK3TzuP5+RJ8dqtj0xuvzhnsMf2B8F0mkJ9Bvi20+DfwehPxsx8xW7739
wou31o2DoNZymrlsL5024dNi9yCUC53xz0N/cO3qfTg2CKsnwuYT0bmDUTyk
C4OgfkLkeih6y/dw0POtQdCK5S5xR1O9Sic/cmAIOKcsTt5B59lFpKfQDQFl
wHKoLprE+PgtQbYhIGpvmVNEJ5Wknv18YgjmVUm1hdDMDDfFFUSGIFE54AMb
+nh1wqVq2SHIkrh2kAKtZZ/trasyBHFPH1qveuHzP66xqffKEHS+JpQNo2Nn
TC5aGQ1BFKGQvRHtfCimc9FyCDb6Gp1+of/U1YR52Q/BgbZz1Tlo2sHzZuSe
Q5Cq8I/9FTriuLpepP8Q+DxltA/Ys5ug9dEXQ3CG/hE4oW/+EU3OejUEVhoy
NOZo5aOZqxJpQ6Dy+rKxFvqba6d98fshEHD9lH4WrTNDR6XxbQiEpBwIfOjZ
N6+q2suGQEnjqTQT+nXtr0yL+iHQPUrwJkavptXmzHcMAQVTfhnhEU1xsSdV
08PhIaBJqD3QhzZPr2YjnxuCriPyarWP9n5PSyc4an0IapYPBH1Fy2XOsXIR
DwNrLP/vt+gG55mG3IPDMGHzligSHeP/Mkf2yDCItnrKP0b/dJbOqeQehrZz
2a62aOIFjga908PwkFbivRHaJj+CdUhqGPreHxlRRXM8HgqxPz8Mt/2vHZHc
i0f4OteOxjB4rS2pcz/a+/39830hhsOgYT/9kBadVTdVcuTWMNDqKuRsP8T9
VW7in/T7w/CDgtAxiW7UztiVcBuGY5s7JO3orGbda2VPhuFgqLVwOdrBbL5T
J2wY2I6LX/uIphL57Tfwchja+Yx9ktC1wTwG9inD8JJoKC0U/ajMQGc3ZxhS
maqq3NHpSlkuz74Mw4nag9O30XZuVmXsJdg+AZ+odPfKGxuQfVc7DJa53wQU
0Qycpj1n24ahMZ1T7TT6aJlwZu3AMJB2TFiwogleyUnG08MQkM7gTYa2oNmC
6ZVh+OqW9HLZE+cLxRfUj/aNANHHsNxBdO98pj811Qg4FPaW1qOPkkXzJR4e
geOE8LbvaKHHr9dPc44ASXHWROaeLY+s/BIYgbHQExvR6LTaS0e1JUfg9ldS
cj/0zb4nzoMKIyCdrX74gefe9w0Orjuqj8CXimXOG+ipRdksEv0RULYnEVRH
U0QYBL00HQFmKk9xKbQj8/toPpsRUNnRl+VBj60/byxyHoGSrFgFerTAj4ty
mj4j4O58XnnXY28/w93WHzwCbCW6KtPoZk2HZMeoEdBb+qPSgaZ384klTR6B
F3bvL1Sgu6XiS2KzRkD75bpSPtrpNgPbqYIRqK3LkU9Gb42KvYVfI8DpXiUV
hh58r26mWz0CtutaIh7okd8ZGuPNIxDyUeHkHTT/hVibh30joH8gnl0X3adp
U0Q7OQLW183pFNFBbPfl0pawfQ5GEp1GM61ME6R3R6DaX2SJBW0oLt1RRz4K
XVyyQwfQcQrJi7cYR6H+Yt7fJfe933ewV1znGIU6/cjvA2ix72slz/hGoSFv
+G0d+rpOgNtx8VH4+i3leRH6ALGN+Tf5UdBoqnPJQFM8X/C5ojYKx0ysjKPQ
PCX3mkevjkLbVweFJ2iPRydNHt0YhaJLU1x2aI6PTqyMVqMg/qCJyBgdYp5M
k+04CleeCQypopNSNqSVvEZBm2gJJNDZLxtfdQSOwlGRUwlcaHY3V9EHEaNg
79bmSoOODpXaR544Cqwyi1e23GiKQ09bHnidMQo/W31OTqCJqi9fkM4fhepc
n50W9FSXfFHDj1Eo5VpsLEE/Wwy2sq4chZrw9rT36OY8nytETaPAeVPENR5d
WWVnH98zCpVj2ypB6Ov/0qskxkfhR6j8IRd0nKC7cf3CKJS/WxwwR1efEeOz
2h6FpCz2d1poNfYTwkRkYzAx+N3lLHp28vWDBPoxYPvcIM+H/gErM2fYx+CV
rzHJYbR6g1NaI+8YpGeZVO/fy9/sXsx90TGwDm4Jm3PF53fVqd9kcmNAeFym
1Y3OdyAXTb04Bjzz/LRV6NpOrY5zOmPwR4y8vgBN8Z/2jy7jMajLvhmagraU
utnremcMYj6fVn2OJntadZbRAcv76LL/IbpLaaD9w8MxcNs5U3QXTX9p9aNG
wBicWXNw0EMnBhvXTP43Biw7vCeV0BKk5lyB8WMgaGvQfRot1WhYyJM+Bjfe
7nvOulc+U3hYad4YBBLzKpChU2lvpph9HwPT0d9zSy44Hx6kW92twPIyhxMG
0GGO6yGJDVjf7EeX6tCPPluZyXWPgYNaxPI3dJBZvmv36BhQD/AkpaOH6U/W
exLG4EK9xMVItNfDI3dZt8ZA+UHpjA9a0KJDqYh0HAa568Pvu+ydH/71phHd
OJApX5O8jjbno/q1yToOAafN21XQCytcZvEnxmHs3KSbmMve/8+uqMiJjMPX
ZgLTMbRb24htr+w4OKm5F1Chd69KdnmrjIPpho/2ujOWPxURwqk9Dh/Pk0+P
oCVJtX1KjcbB9zG9fyNa+xh8tbw9Do00CWy/0Aw1YlJkD8bB81Lmx2z0hZyd
zSxPzC/szMUY9HMvRxLNp+PAJq7a6beXP92ILuHFOJx71WXzYC9d7e1kZNw4
SLAubJqg5Y9R/JZ6Ow536UODL6ElUm9Ndn8YB/auTKYze/Gsk+g9LhoHn7/q
b7jRVobKB05UoDUcTtHuxUPrsK/m7zjwvGP/vOWE62+/wfP2XeNw5pKm3AS6
4tRE3aFRrL83cWkLeiSuI6Vofhzc0xUulqCPOB4As81xqGAjqs5FK9yvOEFG
OgGN0pfV49Cl163bcmknoNWQrSYAfZTzYqMe6wQcb3ZUc0IHff/AtM0zAd9I
rlaYoq3kN9NThScg7uI3RQ00W72H72XZCYDFzCJptGeOb9bShQnovMUlfgK9
xG/NnnBlAl4TuLPp0ZcLnnRfMJqAzyu5x3YdaYojaznHZy0nwLO2NHIK/ZQs
XiHGfgJu15ofaEdLMqmMKnpOQJpWqFsZ+tUPp44p/wlwe68w/gEt3/aQJfrF
BCwo++gnoB/p52cqxE3APiv10iD0W+X7AVNpE+DulHLaBX2gZDc/+sMEcIF/
jDm6jQSElIow/tTlf5rohBtEmzPlE1DosXBHFr0rcvTwq78T8PzVwz+8e966
+1ilawJijCNFGNHxVyXlFkcmgOeITOQ/B+yfwW615PkJ0D1puzyN1rH5mK6x
OQEig8J6HejwaiqDTZJJ+Jj4JL8crbCgaJhJOwlpBbdoP6LbptOzDVgnodar
2SbRYe980Uht0hOT0KPdUh6Mztu8calAeBIuPL3N4YoOiTeOtpCdhBjHQOdb
aD2+YQlGlUmgfyBbo4UuP36Zr+zKJJC1eh89i37JN2XvZDQJL9f1HE6idyaZ
qHluT8Jv0Z+ljOh34nw7LfaTENBeyLDPYe/3hZ2VAzwnIU9RxXzmAa4HKPT6
pZ5OAmP57fcdaNEM9sbJF5Og+ZVlsxyttHiCJSFuEgadzC98RBuLVhZqvZ0E
aU35Z4noonLD3P15k9AZl9sSjHY+IbxZUDQJvfn5rK7ohNG0JKuKSfCe1jC9
hV7Oo4tnb5iEwrhHb7TQc5dr5hu6JiGB6fyILJo6mj/x6egkTBQk8pxEP/UL
SJUlTIJX7QsLRvR3PhliwuYkED4cSflnT1P84MOrH29Jp6CjULp3Gs1tsq/B
mG4KvkgTmDvQYs8q5BnYpqAlUEGnHN1apHSg+sQUhG7yBuehNd3q+B+LTMGh
sXRIQI/blWRKnZ0Co2RYDtrLz8rVb15lCgIeOvC5oH8pqxRlaE+B1d8fRubo
yu0ATTPjKaicTwnVRH/PjJJnuTMFxqJc32XQ4FYZ0vRgCsomZCdPoK8WuEuG
PZwCd5v5wwzo/eX7z10MmII2SgWlXTvcj/L+SNsXPgXqRwXuTaH93PbbfI+f
gp31vMg29K37gs9d06fg31xzUSk6sS2SXuzjFLjpRQ68R3O9iVqe/T4FZ7zm
SeLRgW2BUtm/p+DIz4mTgWj/l5VddxqnYOiuzyUn9BXO933He6bgSuMna1N0
aV208uDYFHzWCAi6jGY+1EmRvDAF6afX3kqh7fybRG9sT0F45YHS43Z739/t
+c5GNg2vbT/30KIF8q9mdtFPw44j8eqWLU0xK8eLtVfs09AgsHBwAk17cDbr
+slpODThzdOCpkquBBYxvH7nnUwxWo3aU6ZLbhrUfz3UfIc2zjZljledhm+P
pk1j0eemm6+bXJ2GyNDtB/7ouBti+4/emIa78h8eP0D/fNd2cODuNISNEL8w
Qcu/Zn/8xnEaLJs349XQVhxm1257TQOPSVSGxJ5P7LzkC5oGosaGj5zomPYr
cjMR07Dhl1dEbbu3HyxQy0ucBspK8dL1+zg+VAJ/OGdOA/mMUdUI+nMjT6zM
p2n4fYG3rgH9OH2ye/fnNKxzv2z4gU5wEQsqr5oG1o7spkz0xkGTxJBm/Pxn
y+YotIhJGZtO3zQYHSxveoxOs6kgPjI5DXwi1Q330SXmoN+/NA2O9s5119C/
AmkYMnan4TL776oLaGYlOhl7ihmoDPxVKoK+S8ddK3VoBvqJbn5nR8e8TKna
d2wG7vel5ZOjFyNmRGv4Z4D/XmTm8j2aYvthM7IoiRmo3uBPHEAf9je5dFNh
Bla7rP77g7b9T36dT30G6Ey1fb+i15VuHVrWm4HYtgHHNPTAAl8SmM7g+o71
1n/o98yE6FCbGVgb2LnyCO2gzrRt6DIDwodC5azQpxQ3G3gez0D8w9KTemjD
+s1DiyEzQHw3jV4RXTnpWgXRM2DLK7opiO5Mr5t+9noGIimsB5nRTjI3fUxy
ZoDbTKOSGK2/Eugn+GUGijy6c+ZtMD7N7PXN4hlofcv0ohvd2MbTX1M7A2Pi
uw8q0ZrKhlLxbTOg6BSh8wnNdDdl//3BGRD71CySjN5/xuKc/MwMlJ8vpQlF
K5Vvz9KszYCAw81pV7TvxXq6wf2zoPIs8/ct9BK9dMYn6lmgGnv9WgsdkRD3
MYB5FuRqVD1k0SWPDESMuGchNihRmxdtZfPnuNDpWfhu/4aXAf1F/kYYkfQs
CNcbbO1Y436IYG3Tfn4W7BeL6ifRRYm6v95pzuL98/d1K1rmycMg32uz8LYi
0qEE/W39fPU1i1lgoqdQykWf86N6Imw3CzLGwrSv0CElZ/IOeMwC++KBHn80
myuvYZ8fXn/8v4wHaPWncq5fns9CjnytgwnaZKXr4ItXs7Dv+VdZNfSXOYuj
VmmzoHDrGpEEevi7TKbSh1kgJc+pOoZuqf6Vw1Y0C3//5D2jQv/I0OdfLcf0
XWudNSu8H8jMuRr/zgLRZBvjsNXe+TPKUe+6ZmGha62lHr1TbOYbNDoLlFx1
UUVogiDbjCVhFq6RG+qmo1+cbWtU2pqFyd5ough05pUV8WMH5sB9LviPF3p0
upthh24O1gLEA633Pv9l1q6bbQ7YlyMU9dF8ns/VinjnINA3c10RPXKc+/Ur
0Tn44e384RRasoLa1UNuDi5IrlkeQZ+IzK+5rjoHvosiLCTotDG3JNmrc/CT
iPvP/F0c33IlC2w35oAjv8arG61zZql85+4cdGsIClWie2Mdjww4zsHBYxd6
89HkWmkzpV5zEO58ODQJPWwxq5QeNAeKr5KlQtBaBz8dCYmcA/LOoSEXdG6K
kYNd0hwE+PSHmaN1Ey9p6GbNgU1HtKQm2iNlNEu6YA7EhQ/0SqM9naNCjsIc
GP8V8eNBT+7/MUdSMwcXSZj46NAWRqVt0y1zoM7ypXbrDs7XBQeVm/vnIOw6
vd04OukeicT3KcyPjo+2Gf1u/8Hs1JU5uBq0+f4X+hXH87dh++ahjjpYMxv9
O2yO15VqHlImmqei0Sbno4XMmObh0Z3ugCfoBsPJH+pc8yDUmMxli/5LfbVJ
8tQ8aDhxfb+Gtqs8Y88lNQ/mMWa6F9AXDv2LPHh+HpYCb0wJo/PSGZQ2Nebh
/osjj9nQZdc6XccN52FxLfwQGdpM8Ltk6615GKGqyVi8TVOcfpHTu8x2HgwO
l8j0ofM2Hmjnu8+DzU23mmr0ZtHh3BS/eVgQmb3+GX2bzy0q/Pk8HGjnnniN
NiHbPeD7ah4M4464hKE3LjCSOqXNw5vy+n3uaP7VYy8sP8zDy2SVUAu0s+Gz
twZF89Dr7HXoCpq1vlztUgW2zzPXBFn0tzFhD7mGeegTFz3Oi2Y3lJYS6Z4H
27zcTHp09raqH8/YPORqzJzasaQpnu+tusGyMA9tOrMfJtCD/CcqabbngYzi
o2gLWilh2NSXmADHvkvlA1qjgjpth5wAYh+fiOagqW8ri3jQEGBb/MWHl2j2
0R8kK4wEuB9mdsoXXVr2nsuBhQDkxKsZtmiiKK3A2aMEcB24wn0d/WGnUdKG
hwAatnbxF9C+P+1Oj/MTYHVBh1EEzfvWyM5SmACdXzaD2dAX42vXByUIIEVi
/e8AOit+7Y+pLAGUuROdFi3w+V14aLpXgQCS12PGetGMh67rmqgQ4MCC4bVq
9PfZTdJudQL8EO2vKkD/iRIhNtImgKzFaenX6Dx7kcud+gQwqDufHoqe3xDp
u2ZMgOLCY4xu6J5yqx8dZgRQsCn3voW2cKMZu3aHAFdPiU5qWuz1xzXjzntY
P5U7V2XQRvHe7EYOBODdsSjiQd+p/MLf7Yrlxwlw0aENtKX9TB4RwP12UcDW
LVwPqcvy9z0hwMs0xukxtGv/EptZIAHOJp/RakKzaCcYD4UR4HLC8byft/b+
H2QzYRlBgLmhLrosNJ1ETOl4DAG6v5k8iELLx1ybskkkwO7drHofdPXnMdO5
NwRgkigRvIdOV/A47piJ8VimBRqgbbdUJVdzCeChqDukhDb4HRLt+YkASwfr
z55Gs0d5XPj3lQCOjIejjqBT7DXO+/8iwO0YvmlitLDn2RcU5QSgGSBXmjfH
+s54C76oJkCs+JfoLnTk4SvMh/8SgKtDZLICrWQycjW+hQBFjB5nP6KZz7n1
cXURwPrUi7AE9NwVxaLMfgLM33XqCUQvy7uPCY8SQIWaV9AJnVVraFE4RQAq
0wz3m+jDLcyiCgQcP2/Xyi/tpV9auFK5QoAsXmY6SbTXGY7iK1sEeMJ7wIgT
rf+j5UnHvgU4Ol3+hgr97ZBOtPmBBfj+TXdq1Qz3Z//Vbk5RLUB+e77IENo8
zivfmX4BzoYMudShj+S//rHLtAD3mYa/fUW7OdixBLMvgGlJwXYq+lcwZzUj
9wLQNRiee4GuLifUJp1cAPPAP96eaGUSFm6B0wugcIrx1230h/PNtZ/FFkCf
+NS2Njoz4nq1kvQC3NRhlpFDWx4bY62XXwCCUavzSXTzqU/FRsoLkGF55wMD
2o95q2hcbQGW8msmdkxpir/qrVO4aC2AdAgR1yQ63XE0l0hvAUqEaK61oPWO
7KT/d30BekZmnwF6hNRz5ajpAqQTUkqz0V6HYl7lWi6AzEuB1Wi0+5kXkXI2
C/CNJYjvCdrVLXG41n4Bxn8VXb+/l9/2drCxywI0VZcGG6LvE08GTHsugIj3
66/n0ZEjCV0PHy9A5TG9sdNoIXq9p9QBCyC32MvAgjY+pB6YGLoAXDLnzpHs
xRNRNCAUvgBE0i5W8zdxPF4eDC9+uQBXxfzCu9C3mDbjriYsgNU9q28V6Ptj
itsjKQvwkvfEQB5avmrhs1vGAlBnfCNNQLsMqVVR5i7AmjCvQCBaxNVXPCl/
AVxI7mk6on/3da2Jfl0A97tB9jfQ2+HPD//+uQCz8d7/qaG5ObvCjMoWoGJE
M08cTSuxeWO+Cuvjv1p/FK0fKRjsX78AMb/cZyjQskdzaFhbFmChpYV85Qau
f/9+nvvQieODkopnAP3yVxD/xX4cDyls52rRMmzm2BcL4NxzwPAL+ojYozyn
qQUY3fljl4LOtmHeoSQswCE1u6dh6BTVB2/frCwA685UnBua4W55luzWApww
Vf5wCx3pq0PZvG8RbuS5lWqiL9vrV947sAifxYJapNHVHDSDJNSLIMnnMnoc
3RT3zTCJfhEims6t0KAdaF4KSjMvQqHTKPGmCe7vfg6aNLEvgoGmNf0oeuVA
9/R97kWgS6nhaEBfsSruIONbBN88Cv7v6DyPhuOppxdB9CeveDp6cv5S3Tnx
RXhOzi0Xjj6RcK+1S3oRFpq3lB+hD9x3lnM7twglZgXqd9HfrVOJDl1YBGbC
Ze2raO4fUnwfLy0CX1mpnjy6Lv1BrtaVReBnY7nGhxYJeRYxo7cIm9JXjBjR
b4br2kOMFuHrjdvGu8Y0xT6aDl78ZovAW2NsPInW9Cn0q7q9CBwgZtSCrtMc
mLp7bxEsvaYMAU2ZI/iJzGERPqj46WXvfT69syfDdRECr+1ciUYX3xewUnu0
CAGr19Qfo7+o3dSffIL5m71UvodOefM5LSRwEapbP581QN/e52Bw6tkifI8p
FFNCL5M22tRHYHlj8Xyn0HIuTEMPYhehYr8FBzP6nJDvD8akRRAQOEhPhBYQ
1t/8kroI8clxxLNGe+frNMQbZS0CzRuqlXb0Qqxkyu77RbBzMBstRf+LrqBM
LViE15qvWnLRAcSlHapFi3DX9UtpLJrL/T7VLCzCf4JfP/ihxbIOpEZULELs
u6R4O/SWTVOydO0iKMjYBFxH/86jJ+pvWAQierYHF9BjYQdqnrYtgpbTx2vC
6FGRpbVTPYvwNPm0Iis6dpYlrGVwEXZbXvCSomXFfwY8Gl+E5asdVITrNMWO
4ccmeGYXIfEaGaEL/aXQL69ucREOn+BorkBPOp8acF3H9llj+ZyHJv1q4sa5
uwghNLvR8eiCF4auNcRL4JRV7RKA/i1g1utMsQQbB7z0HNDHOr69O0a7BNO3
j4iZoKcPZI7UHFqCXpIEGlV03EW7p66sS5DLTT4limZV1X7BzbkEbTsm5exo
Qkc40d8TS1DWEpdIhhaede1/KLgEnGMlLovXaIpro5V5+UWX4NiDJo1etBep
XHvbmSUQ//iHuwp96L+0RX+5JXg6nreWj76dXeIufn4Jruv41CaiH021Ww+p
LsGnU9JJQehislO/wzWXAAq77Z3QZN1Ez5V0l+CWiI3iTbTjzZSShWsYb8sw
7SW07HsN8zc3l8BwSK1PHD1Opm6ra7kEl2Ne5RxFn63tGyWxWYJTom1uFOhc
D+3aL/ZL8GZ29/yyIU3xzJcRDmuXJTCnPHSwH92mNtjL9nAJOsoPt1WjM5jD
qP4+XoJoI5KkAvT6acEM3wBsT/IBy2T0zleSj2fClkDtYJZACDqI3JR/OnwJ
JtJM553RUi8e072OWYJ5apJPpuiwoQ939BOXIMr3pYs6mu67+Cmq1CXYPM8s
JYm2WL5qXpK5BJShAWvH0Hef6R1wf4/9ETPyhRJtlenDJlywBKfTRV1WDHB+
DGVLGfu2BH2LtmID6D9J9jFJgP1V9GquBh34oGzXoGIJfGQ/Z31Gq3y82U5b
i+39vtjiNTpXMpirumEJdnR/sIeiO1ZDen3blqD5TmaLC/oD/Tsq+Z4leHf8
aagZuqlS4t3a4BIs/76qdBk9520L+eNLMBxGvyqJDihJUrGbXYLWjyVZnOiM
c/QKAktLMORgYUKFlqo5+G5sfQnOUqwdXNXH+G/0hqXuLsHKp0e/BtDch6sH
zUiWYf/7Zdta9C1J1pyjlMtwS9yU/Qtaipd1sod2GXp8flS/Rpu7MCTEH16G
a3+pXUP1995f0Cg3YluGZze0uVz19/6/wXiLlWsZxO8E1pqh1ww+uHTxLkM7
T77zZbRu3L1/caeWga21gf0MuvJMxD9jsWXwzh8u40TfTLR15ZBeBuv1KWsq
tORtNct++WVQHhqjWdXD6zVsq1OUl0Ejpz1/AF1+5mS65aVl6H/+U78W3SJc
snnyyjJwVMWufUbLWAdUTustA0+Edexr9J+zpdR5RstAzSciHYoOOFlc42y2
DH/LZ9pc0P7Ntftl7yzDjdRkZzO0IY1o/r97y/BxV43+Mnpf/dmeCodleEo/
+U4SzSMi/TjMbRlSmB6rcurtrUcdk3S9liFfjWaQEu3AIiXF5rcMBkORHiu6
eH+kNqkPBy2D5FF6+gH04dbwzpzny1B5JiCjBl0XVTLsHLUMPneW5D6j0wjv
rc/FLUPt+LXGZLTrsYx75K+XYWv5i2UIuvrx2mTT22WQrjq45ow+kDg7kpiz
DMPxN4JM0a9PtJtYf8T6ZqcfUUdvLu+/Klm4DA2nJjMk0Oy0P8r3/1wGvpsn
zhxD70vR/Vxfugxc7sZlFOj3+5l5EqqWIbIg9MryVZxPPurR29Qvg5nml64+
dKSRsZd0yzKYPOq2rEa7NHpYkXUtA+/DrdlP6MBD/5ra+pfhvh+TaxLaWkP2
Z/roMhDqT+0EoSX+eJ50m16GgzHn/JzQCfR0DGoLOL4Oa5DfRK+WX/JiWVsG
eT/9MDW06zc36+ntZTjCakwrjr46O9n2k2gFpBhvhHOgx4MJFf+Rr0BPhjED
ObpluPuMJc0KyNIbRizqYHkPt/mlD63AnaAr9L3ozK03ydSsK+BzUeVFJTpH
jjN28NgK+PlLU+ejvZQqGAtPrIDTQ/6gBLS/zDDDM8EVYLQ8QhyIZn9cG20h
ugJX3Ui9HNAWiX8TZKVWYGOWsGKMfqKixMcgvwJf93XbXkRnXHeUnjq/AmIT
ZSMi6GfjBXWlaitA0ZtjxIbe4TeeiNdagV/MkX9J0SNBhUEueisw0uChTNDG
5+8r9g9XjFagQtHsSxea72ivsYDZCnQmX+SrQF8g03hBemcFTHhPv/qAznT8
cWnw3grEUR+iiEMff/ck9KfDCjSEbLn5o5NPz+vFua0AZefwqB2aM/laupsX
1ke47up1NFc7/WN9vxVoqSj8pYxO7bIbEg9eAYuWVH4h9PXesjqGFyswHREe
eQRdr3T7/GIUXi/zZJtor/xXGYpNcStw45+j5ewVbI+3/VX5r1fgO/vd2nb0
J/1b3ZHpK8BZfUO0FJ1a7e/u8m4F+OUMX75Dt2onvDbMXwHTXN3Nl2gjm11d
2a8roKmne+MJ+m7FvkiOXytwzcoA7qH1lDZu7C9fgQXOG5wG6M5Z+c+j1Stg
+PnuY0W0DNWJVzV/V6DXxLVfAG1ASUqZ17oCpVrB8ofR+59JkL/sXgGW0tdx
/7RoisnvUEY9GlwB8rkfq5PoO696cy3GV+A/ij6dFnSwCanB5dkVgMsk736h
DZk6w8SXVuDhtDBpFtrLNO8q+8YKxB4zvxGJDiQaziD9twJLR2MLvNAM21Vh
8ySrcJWzldIKvelZtL+LchVMjI6YXUXHDtCSVdCtQgnxrQI5dHUxV2Ie0yqw
6eaTnUQzD6mVJ7CvwoI3hRE92vRc36Ng7lX49vNuzpYmTTEv0dlKV75VGFGp
2xpF/372NdVSaBX+aMpebkDHOOcx6Erg56k+vCpCL3k9OnRedhX2fxEcT0Nv
p7lmiSquQoVvnvgLdPORjUaui6sgmSnv44EmyN18zqCxCg4mzdUW6ENZ+/qJ
r66CaasDoxY6m/9s+YrhKjBfYjGRRuPO6dzEjVV4Pludyo2mejOi2W2xCgHr
flPUaOOzlEv11qvQm6wqsqaBz+9TkkJl9qtgxHLYZRDdebnkX6HLKryJm/la
i5Z5S2mV+3AV7l2v3/qMDve0vZv6ZBXkQ4vkX6OnlS/uvgpchfe3P3qHoN0/
LJwKf7YKckc//XLW2Hsf589SUOQqqE3Bzk30XSkJ3SevVuHsv/azl9A/S55e
9kxeBauILXdxtGPN0V6nt6tA1inwmQN9j+EGuV3OKhiS3yGQoYfCk+qsPq6C
p36uwOJlXF+5K522LFyF2JV9lj3oDqG0k2Y/V+Ezh3nCbzSl3omfJmWr0E5U
35yH9is+Pne9ehVaO1Up49Hj/rtFhn9XIbW9XuEpOnTqEI9B6yqwiFo426M/
Of3m1+9ehS1W0szr6Dfdjn/0BtHVBV3K6E0mT2r9cczP0ZFaCN2vKzelP7sK
TOrn5I+geTZZ7hgurYK+/xFbIrR/jtPj6xurwGmwP2FGnaZ4XjlbxuTfKjQu
rVe3odM6j0aYkq7BaPi/1WK03E+xEAuqNci0PHw8B+3tqcptRb8Gzq9ltaLR
n9p/Gdkyr4GHh727D7qybVPciWMNJo4XpFijcwpuvPc4vgbDzeQ1umjeqUs1
j/nXIOSn7YI8+pcgd1CQ8BpMHRpm5kPT2Vya+E9yDeYPWsszoCmauKdfnV0D
755/5tuXcH/4hz48VWkNAgsyno6hl/Z5duWqrkFLtVlmw561ofKr5hrwaQvW
FKGFelWul+uugexDsuk0NCex44uG62vww3uF8gV6+kamTa/pGpx7vsLvgQ74
rTk9dXsNtHvJ1Cz20nUr6TfuYX2TT93WRFsae/aROa7BKXLLJ1Lo4gd/dJjd
16Ba/X0CF9rszvH7J73XID2OqpAKPaM5elrafw2YBR81rKjRFPe4ucdcClkD
c+F9k/3oJ87KWcb/rUFcV8y+GvR9xlwLu5drQGSmzFyAvmLJXvkkYQ2yFolO
J6ntra/Xm6PfrMHTijalILRNfFZIdib2DxXoO6IDhl5Ow3u8fv27lQn6dyLf
WmvBGtz8Wed5Ed1/rDJ3pmgNXj9fDhVBf97uoiUpWYNnSSIJrOguijoO9so1
aD/mm0OCfnnzQIdEHbafyuS3OVWaYm09wjmt5jXQV7pT2YFODVi+atW5Bm8v
bjSXouubHx3y61+D0sA3/e/Qv0yW/JJG14BN6tbUS7TT09KUouk1YA+UXn6M
Fl7Rs2tfWAPF7BM7Nuiml4enltfW4E0TP6k+uizW/jDjLuYvpkKtgG63rSeI
kqxDxLYbAz+64E/iIx3KdXC8VcrMiKb8eOmbA906uLzkYd+5iO1tdC4jgmkd
4muSjo2jfa9MXCxgXwcqUVHuRvSL6wWxbdzrELnVffw7mjuYNnGDbx2OmyTz
vEUrStzV4xBehxz/hzwv0POrfKAkuQ6r6Q+Oe6BjPpX23jm7DmXL3lwWaPXI
N3lhSutQmJx+VBM9TCol/Ul1HWI6x1ml0C6lc85dmuuw3XyeiQv9oFL6LpHe
OtwoLqSjQhMZ+9MKGq2DfsNFyhUVLJ9KyU7PbB20JQlE/WjP931+3nfWoYiz
YLNqzxZ12ln3MZ6yiIV89EC4V2uL4zqoaIeNJ6D1pkwZ9nusw9Lq654AdMyd
UTIhn3WQn2xoeIB2Vff5Yvx0HZSusZcboWmPJx8NCV0Hdhe/LxfQSlVfFL+F
r8PygwOZQug/xtIckzHr8OnR29gjaH/1lwUsSRhvtVkQEfqohjLZ5bR16AqU
dpu5QFMcYZF/2Ct7HbYmTt1uQzv0Gwx8yFuHVI5zV4vRIkZpd4e/oA3un8tG
WxbRvGP+if1bXsgfhaYUp3yvUYbxxXIe8kZPKVPZ+VavAz9Rxs5d9PdvATNf
/2L9xC6P6aCT3y/wE1rXQcz4YP1Z9MWQEl6+nnW4kDNbcAKtQHR/2GxoHZJ1
Z+Jo0easd83iJtbhoz/F4w1lmmLGE/xJLXPrUGKnYjmMlivjS6RdWYcT51+r
1qGNR3tuXN7C8SPMKlCI7qz5MRC4fwNyb3+iSkFfJVbkrSDbgGNM92dC0Cu2
fULENBvw34MLf5zRcbJ0W0qHNmAzTS7nJjp2UjP0CesGGA/rBauh5TXoBko4
NyDd+NkdMfTppw0bRCc3oEJ+7Dw7+j9y8s4LpzH9m+nRA2iXBBHvQPENmNvd
WJ8/T1N87Hr5ZI3MBtjJf27qRDtmybPTKm7AUFp4Thma/DIzk97FDZi1fOGX
iy7V+tP+SmMDJHLfG8Wgl490mA9c3fO8yJO9dPMvBSevb4Bv1NUD99BuksMN
9qYb8CqivUsPPb7c9eXr7Q2ob/N+fw4do896l+j+BqT+p/aED61/6+iQhuMG
nJ2X0GVAH39oyRfrvgFU3Bd4tpVoikUNbGRHvDfg4jXX5VG08b/cI6JPN4C+
pLbsL9qnM7fMO3QDQkIvRHxDVyVOnK0L34CmsQHTVHSnSe8T9lisz/6UU8/Q
n7ypXt5P2oApqqfrrmipskX3n2kbkC3+rMwM7XKeUZA2ZwO4Mr89U0cv3599
Z/5xA9hiKQ0l0ELURP8KCjfAT+zxsaPolvNNXBS/NoA4nXWcDM35rP/wzfIN
uMbVlbugiPdHSU73p5oNkGr+5dSNfk/7zYmycQPOTFVJV6B9iUP6zNs3YCJq
ffs9uss3hb2odwO69msVx6L5//oKMY5sQKhpta8vOvvpx0O2UxvwoMfmwn20
f/LHv5UEbN90MVIDdKojmdnxtQ3gneWsUEDrfJT67bOzAV96Jf350c/vVRL1
Em9CTrrDeUbFvb+3yjGdpdwEU9eWf9sKGO9ttv1xdJsw4Xnzxxg67NV02QbT
JtwconVvQAeJi5sacWzCSNeEWBH6FqtH8/fjm2AdMTmTih6PusB1VGATVs8w
pD9Dh1/iuPREZBO8V2/ddENzKIReHj2zCdO73YfN0X09TPzq8puw4eX1Rx3N
M6029EF5E4JTVH0l0M8js92Y1DfhRoys1NG9/MwrJr20N4H7mcE0GTrv/HGZ
MYNNCM2LT1o4h9cHat25cgPThSl1utFDg40O3yww/cwbogr0TWtpEx6bTVBd
tvj0Hl0Rc5D3vwebUBt9xSIWrXS59++26yZEqd1m8EU3/xY3svHaBGLZt8X3
0Az5iRUdfptwO4bWTh9tzZrJoBayCUeep7EqoCMdB5S+/rcJGpctf/Ohf0e2
6PLHbILktpYDA7rwJ8Ol+MRN4Ki3ZNuWpykWiOHnpknbhH1zb8tH0bpCmf1P
sjeBKpjB9i9aboPDdzVvE2T+ZB/6Jr/39xZWyvuFm+AyYvf9DfoBtbD70M9N
6Ny9aR6GXrk8/ed6+SYIqT084IqOej9A3lSD/TNblm2KPvz19anLjZtwjk1G
6xI60eCndEX7JrjvdhHE9vIfrjqt2LcJXWVZEexoM24D6h8jGE/sW/EDaLYL
6y3S05uQlVHfPC+H8+vI+aAvC5ugd+yEUyda5WANr+T6JsQKZtGXocPFuT8W
7G7C1LrRh3doq7MDJyVJt6D2k6zGSzS366vQL1RbkBikNuGDXk0d7pFm2ILy
VH8/a/R/S3rsP45sQazoPIcuWpHYX13x2BZcuxlUKIdmHCSzqjixBZoG2tq8
aH0qd5fLp7bguYrqBO1e/g73nZrEtuDeNVufjbMYr6PXLSOZLRgsKj08jOYc
UlYeVtgCkleqOX/Q1sTXmWwvbsH00W2FL2i9ZwY9axpb8J/7QHMyujSrLdpP
dwuKG5fvBKOPrTop0xltgY+BzIYjet6vejTRbAsyxN6HmKC1Ox29Tt3dgvVw
XbaLe16govphuwVXX/PnCKM/yIm+0HDeAqVgEVkWNCHFh7LPcwtC3a2qiNBO
3lFeD55sQeurRv0ZWZpi2fSDk8RBW1Bw5P5QK/rs7WDN2OdbkM8pbQdoBp/0
nNPRW3CpV3IjE80oQkJSHr8Fux63/SLQ/qfPGxq/2QIp7krqR2jt9H3pS5lb
oLvfOPq27N75xAOEsA9b8P48F8cVtCCfr/TJL1vgR8+aJi27d35HoFfpjy04
9kpFgBtNCpHFN8u2oIwk7QMVOplLjWi7egu8fSQlVmTwfhdSU45r2AJ/ic3C
Ppm992Ok/GXat6BXa1G2Cm1BXFTR2bsFyRscPz+ide44kz8c2YLvpl7n4tEu
mVSaHNNbIPqODvzRUnonoooXsH8oOs7ZoYud7vZZrm/Bp9Tmn4botnD3U5T/
tuBZGrGcEnro2z/vPNJtIJOy+iaAvuqR1mZIvQ37A/afOYQW6KeR2Me4DaI/
/n7ckcb1rNd4TBbLNkiTNJ8aR3tatxPpcW5DYRBVRoP03nk6QS7/eLdB2dmD
swhdRp9GyDm9DTcW2F+lon2ftTpfl9gGP4FVumfo1LZKIvKz2yCjThrkim6O
440vVNqGJk/1XVO0KU3SOSu1bagcq3C6hK6d6ZplubINul/dJsTQth4hWX/0
t6GPxcyEHT3vY+T42GQbvCV9/pJK752HvqEmabENUZKtSvNSNMUn2g8LTVtv
A9eFW5860H52ptxvHmzD9VBenlK0J00Ar5HbNuhIckfloLMlZc8yem8Dw319
4mh06Nwp8zr/bYi9XuzgjfZtoH0VFLoNHSct+u+if/yLGr4QsQ1V+85p6KB/
CdkrEb3aBkkana+y6H1JOp+Kk7eB2DPhOA/aiIMg8zh9G5ZsOZ8fRGtQ/2tV
zMX6MPaurZ6hKU4xEg8iKtgG0+gmswH0seDzOhVF2yDAvr+6Gs2bPSQaXLIN
841WIp/QRrdqBLSqsL8GKGIS0IqTeXKH/m5DyIOR7afoYQotq+7WbXB/t25u
j35+3Oh9as82OP+8+Psa2lDgOa3t8DYs/qnnP49uzEgNk5raBlWS8DBB9J/v
erzEC9swFPZs7hC6l92k9+/aNhD9V35lVxLjYXHJT9zdhokzZ/LGJffOazNO
v0+6Az3ZQ7SNaPvDf77JUe8A+eEauyL00Vy/2YOMOxCYNPMnFc1Hr3h+gGUH
wh6oCzxDH3oBXz9x7gBHwXCAKzqWrkQn6OQOKEZ8HTJFC7GR0NwU2oFF8Wr5
S+jXjWpzEpI7wFt6OFYMrb58ZYlabgcqbyctsKH/DXZxjJ3fgRJVC3VS9IfY
HLviSzvQ8J/lmzkJmmL2L/5j8do7UGX9ZqMd/Z87f4C74Q7c2WLXLkGnww0t
g5s7YG3X8jYbvUo9piB5ewdcp6s2I9HN/oHGh+/vwMX4TS0vNMU82ZtVxx2Q
S7d+cwf9tvD0oU6PHTgmybRyBf1sHvJ/PN4BjQf7VGXQTpoB3imBO6DzmC+W
Gx0kdMk98PkORD97PkGFXnvZ+Nouegd8isWkV8RpilXFJ9cNEnbgvtLhwD60
2jWjJ4qpO5Ahfaa1Ev2bhCArmL0DvvXR3B/RZoMuvMwfd0BCUMI+Dn3o/NcL
JF93YNmV/rsfOprX/+Xirx2Y7jx9wBYtezaDfahiB049CtY2QP/pnG9v+rMD
M0954hTQVylPV5c37wD7sX9DfGjwE1oo7NqBYnsWQQb04rty7XeDOzCS7OS4
JYbjO7F4ImViB4zaD34bQZdzLH+Lnd8B+nMTu3Vo9yzRiv9Wd2Bui+hCITrL
ToMqZGcHvkvfDHqN9rhy5Jk/yS6IsG/WBqObhqwvP6baBZ76NhontIgLk6oX
wy4ouC5rm6BdKZYfP2TZhZNyuhEq6MHrnRuenLvgprrUJIR+2ZGY//DkLtRB
C8MR9MGPLO+8hHbhy581nf3oc1Unxh9L7kJ2tMl/U6K4n/gVb/lUDss/T1zf
jD4+p38iVHkXMjamKX+iyR4IC0So74LLMJNqOpqOhcQ5TmcXqE76+75A/3qU
R5x2bRfeTIv/dEcnzdJ3vTfdhZhrvGvm6AveB9aL7uwCcbSxyGW0CJHtzSrb
Xbha1WwlgS6jOUHT7rwL7iwvXnOgmbZpyMcf7kLBh2ftB9B9o1Sa6767cCT/
70GCCD6v3+30UoZguqq+cif6zcrv70fDd8En5qh7Kbr+9OVx8dhdCKsSfJeD
jgqyM1dP3oXP+736o9DEREyCt9J3YdSagcF7Lz/TkyoPc3fh38kZ5bvoeyLB
edEFu9B7i9JFGx38l9vu4/dduKxk+1YGTWTZ411fugsLk4daudFZg0nDM9W7
EOu3n4QavUqpl0jduAsrEuJiK8J4vziMvTvdsQtZPNmmfWhbFyVG7f5d0PS4
E1aJfquu0+g0tgtG162+5gnvfT+VaCJ2dhceTX8YfoXW1bxwDZZxPBjI0/ih
PXeJj49v7UIN0EnfR7cEi16iI/4HfVoC5vrorIs/a2Up/0Hm/yq683iovigA
4LNvZiyVLJVIZEm2EkLZlxRKCpUle5QKKSRCka2QJQqVkhaKUpY5ChFZSgjJ
1mb9pUJJ8zv9+f3Me/fed895953rM97Ix8XqoV0OZBR5CPG4mUEqJWuU/31/
r/RriiiPS9i7olsQ/bCYevbZSh5XgmDz99c6XA9CTkVNy/K48rFN0sNor/eL
h6XX8bhuKxLMmtHSZhXX7DbwuMNDab5l6Ca+gy/idHjc97yPSVfQcXbiVmDI
41pnhT04i36jUbNp1oLHdere2+GP3n55T6LyDh6XNXDmpz16+a4eU297Hle/
a1rYED0sou993ZnHpYwUbliLvhZy7vuAJ4+7cW2hrfC6f783f+ezxGEet/rt
f0f/KuF6Qbxjsj+Ix91Hi0j+jOa2nxG6Gsbjjg7b321Dl+armw9G8bhKqSGN
T5T+/R5uxeTqeB63V+fTSD66rGA52SeFxy0kZ/HOo9M695wtzuJxNfjTxQLR
o6RjoXN5PK565Hu1/eiW+UPD+oU4X9F+W02V/r2vyKYqvpjHTdAxPaCCXmko
yffuMY/LbPE5KYbOHhl8JcvlcUlO3ckktNJ8Di2onsf9b0lywdhafpgU3Peo
/hX2J3yxogNddUOuX/Qtj6sQ3d9ahf5PmS/ct4/HVYkLHC5AB0sIZtUM87gx
5rtnktCC7wxVRMd43KAvZxgn0GeePTTwn+ZxDePnxVzRc5qHXjf+4nE5DtUK
W9EUS33/iwQCzAQ1a69HP8kmPN5CIYABQ9ZiBdq5YqFqik6AQbWmPTS01Nua
6Kt86GWVHlOKGL+MTn5rAQI4fJk71o2eXV9vT1xMAK2qiNM16Mv7lnk+XEoA
T65d/G10g6nLRg9xAnQuDk5PQbfdkW4SkyCA34ePeaFoj5eTq1qkCDBvklvk
jt5/wGrzGRkCWBy+WbodbQavJbXkCSAeNl+5UfHf+9ZpDVNrCaCdll0r+c+x
JzbcVEH3xTUx0avkn3o7rSdAf1B9+7QCXt/MbndRTQK8iLXq6kUfGRySe72J
AOFasn21aL4DY6XxmwmQftti4C66IJzEMjMkQB6xavgSurP+iRzFlACcA2Gf
wtGatteEaiwIYPv9/BcvtFKbTd2p7QTo6Pzy1Qad7b/HSHcHAf6qpo5qo1N+
WST92UUAJfnEUWm0RnVVQaU9AW4PdH5lo7fkGZ8P20eAJ6GHvvyUx3wQDtbd
7EKAm1K7PvWjH0qOVRHdCXDxe9zwC/TY7g2cOi8C1C4VHChGl4xMKMb6EsDs
/khvJjrzzB3x7f4EMB5kdEWi/aKZPYsDCPCyLbT9IJq/Lcen5zgBBvK2NNmi
xT6QXuWF4PUH29bqottrXxN9wgnwKri8UhZdrnCLqX6GADH1vqUC6NIdEh//
xOD8RB8pmpPD+kqkPfVFHAHIPfV5g2ibib1iKYkECPnsm/4SnT68/5jTRQK0
tx+If4h+cD3g2tpLBHhbWXQ6G+1wXOf270wCbGg2CohGW27eda4xhwCPpJU9
D6GVTu3Xy8wjwPQnH/vd//qznWv2vkGABK05iy3/2ot4vn5TIQFWbu7aJI9O
9nAJ4twlgP4yxtpF6EhKwMWBYgIc+ha3bH4Nxo+XE1taSgCFj06sEbRPTuTe
2HIC/BI7O9eMTm+s43OqJIDcQ8KnMjR7MTtjAxDApKP59RX03Xu/iZxa7D93
rPos+tPxjRYfXxBg36Z9t/3RXt+8jlQ3EYD3QirNHh1gohGc0UqAZ95a4QZo
xa2mTsfeYDwMr3spotecMlpj1UUAlxOuNkvQ1YyuNsVeAmQrBWgtyOL44NZe
5gcCFJ15J/kJfWKNW9PnIQLkXrlIb5X9936T0hUvPhEgMu/qxGO05jFj25uj
BPC6T3iTiw6te3743CQB9MbKHsei9a73+ftME4ARzL18FB1O0NuzbYYAhcEr
wh3R78Iuyar+JoCMYJuLETriWFqf8F8CrHPpMlRCb54YPTlPJMLDRHWZpejD
d0xJQ1QihFWMUHkyWB/J7TvWyCSCHmvs42e05cX3LSUcIrzMMalrQ59qCxG+
LESE5ozZa0/QetFjptHCRBhd8TciH93AHvTwFyPCMysHp/PouVNCx/auIMKU
NVsnAB1ZrOZnLkUEutES0X3oXPX5XRtliFC49eh3Y/QF+1XrZOWJoBAn27IO
vU7deUZYiQgrVqneEkF7X/S7T1PF9jZcjCCghfkoDnPribDw2dzh62qMx4/3
M6OaRHjssEftNbrC61FMvw4RfIurmBVoGXNz1pstRHDgOzlwDS2hszOywYgI
3xMSHsWj392/MFVtRoStDnPnA9Fivc92PLIkQu7Fp8770U7VN+7csyaCln3H
elM0v8zvhZu2RFjWZsxQQUcWnDbN30OEADGBXlG0/s3fsTl7ibB3t8pdInq5
g0J9pjMReooKT41K43655vWfS25EIGuFWL1Bbyp+vC7NiwilkjdWVqJ3NeXs
TfUlwnTUmqnr6Og4i7Op/kR4cJZUnYBmakfdTwsgQoWFRnwQese8UGd6MBEW
//fM3gldV18xnxVKBI/MW7JmaG9fC6mrp4mQ6vV5WgWdmHbW9HoUEbzCw6vF
0H11uodvnyNCMs8/loTO26uZWRJPhEpW5c6xVXg/XTKsf5JMhFvPnFd0oCPj
184+SyVCt5nTp0p0i1bN2lcZRGBwH9+7gT4b3ObZnY3nm/gEJaJNqAqFI7lE
OEU8rnscTT195du360ToFewnO6N9/Hj6hEIiaF+62miGFtVceVngLhFWP6xI
VEWT1doXVpYQ4cc5tZ3i6KG0rz6qZUSgaFFEyGjfc7rDhk+I0D6i0jMmxQ93
xK557q4iQtLd8uwO9H2Tb3MHa4gQV3p5fxXa7zcvPaKOCNLLelYWoIsFbhln
NBLBiRQwkCj17/3Rz0nFr4hw57x37nF0WvjatoZ2IrC7nzo5o1UsuPeG3mL+
MrwkzNFU+z1XF94RIU3vSJ8q+pf523yxfiJwLndmiqPFHi55qjFEhDm9DDsy
evnqmY+2n4jguvXRonFJfuhZ47AmYJQIaoMqLR3oFuNV4amTRDghxYitQieT
VSfLpjHflHQMC9Cen7wDu2fw/lv96k+i5L+/15QI//lNhNfyFWXH0Y82TrRK
8ogYR9ohZ/TjSvINEzIJlPvvyZijiel9aX50Esi3lvapote4OF9L4yPBDmvR
FHH0u+rglmoBEgREvjMjo1fsFxT9upgEy2PmFsZWYvx/LYpYIkqCPyGBDzrQ
NHs/lv5yElRFWXtUof1sOWWHJEnQB7FiBeidHYMROatJMG8t1ZyIVuzoOfJK
jgSXd4mcOo5+feBr9N+1JFCdOqjsjN5UyKtWUSWBtt7KATP0miFBCbcNJBA4
oJqsim5zF7qeoUWCLafyN4ujSwpmbFp0ScC7f3SShNZc/1iOakCCWtH87DEJ
vH8qLeR1TUjQ0a1i0YGW579tG2RBguOCK2cr0XzirUXF20nQ9cH32g008Wep
8vgOEmz1FLdKRHPf7R6U202C6fo1v4PQhQplNR6OJJiRSLvuhM481tR+w4kE
iUmu283QuQezFn06QIIHmsmzKmjd2VXRa7xIEKItkSuGvi/vqeDjSwJCGduM
hI4w9SHf8yeBcYPj1OgKfqh5oSL0PYAEeql8l96gg+3AVusECdo1l+tUoi07
V7aeDiPBj7cJg9fRqa67IxojSJB13jkmAa1j4++7OIYEoSdSFYLQz9YHXtgf
R4I4rnzLfrRx/5FvtxNJkBkmecQUfdTpWMLcRRLYvAlerIJOYp/zME0nQfiA
Wpko+sopblj6ZRJ8qN1uR0Qbpil0fLlKgqW5zTNfl/PDt+Ben03XSdB84c6l
12h6zkeDpFskyH8yuaEC3VGzb9/IHYzvxpSOa+i6GfsK7RIS8CtkHY1Hx2d/
23exjARQQhYMRBt56pqMPcF8mmi9sw8d4bw70LiaBLELf81Mlv/7f3GH8dxn
JLhKuDCyDh1d7XZnoZ4EDktjwkXQzjMXHzk2kWDZ/n4xAtqRTmVXtJLAcTbz
4ZdluL429N5d1kECI+ITy3a06DGtnLBuEthe3vTxCbqmQL93oI8EGSNSYflo
jo+Yt/EgCc7/ObjkPLpE6bNp0UcSbCSJFx1DF7S8Dl40SoI3S9bq7/3nDOrC
yUkS5O3M7zRCHza7/XZkGuPzPvSgEtqWf4JsPUuCX+0VPGF0VPL8ucp5Ejy3
ckr5K475M0HxUCCQgRHkKfsZLcrVys6kkOHJgY7yVnTzsua1LCYZ+jcWWJSj
j2ZNiYZyyHBc6H1vLpph+85lSogMDgInfGPRbZ+4DLelZIiwPvnnCFonuJe/
R5wMld8Hzjug9cvdA21WkmFC5K64Idp4OFP3pTQZ+nr7bymiLepKvYzkyLBr
f5DGErRV5Y9Z7loyiFQfe/5HjB/kKjLHdVTJ0CPWZfURvdjyo2nFBjLYJuf2
vkKfShHn26RNBtUtbR6P0AM7Tm2s1CODrJnHtytopzG7Fj1DMlyudw05i37o
PN72zJQMjj11FH/0J8dzW8wsydCdl5SwB226Lkii1ZoMDzeBsD5auYPku3sX
Xm/97hx59MJsqMKgPRnUne1WL0J//7He0Xc/GV6uqbz9W5QfNvaE8uZcyRC3
KVZlGF3qd0v0rCcZap5UlTWhtyhzbi31xf7AXrsUbe9Iun/TnwxSh/dVZ6Mf
TA6s0w4kA2G4QT8anXGLLN9yggzp2tm1fuhW/hdXDpwig2Jql4kd+ufh2Au/
I8nA5g9p0EPrf75NSjlLBpv6GPM16F1OCd/XxpNBpfd3owD6elqqe0MyGd74
dJnPiWB9tELWwT2NDDopyxsH0PUHCl+Ts8iQf/SlaSM6rORs27UrZBiTHawr
Qbcor91lfA2Pb3E2zEITx8iuX26SITHGHCLRrM6wufg7ZKj1u6xzEN3wiiWu
XkKGd3l25TvR17JXNPSUkaF1S4i6Dnp6QYES9ZQMQV7Me6vRvnmFreu4ZMjV
IMpx0LBu0dre52QQa3TN+7mUH9aafxCPbcDzddeJ96OFUxJyNF+RIerBgYv1
6EMll8u+tmO+GJFZ99F9VnFu2Z1kKFrEiUhHv5buK7LuJeN+IWI2HP3xP+EE
2gAZDLqc/LzQE+ermdUjZDBhFg5Zo20+7Jc+/pUMRyb27tZCX5+M6FWdJMPq
vJAmKXRoT6n65DQZjAyom1lov5EYpTuzZPCb+FUyLcwPI0djXx78g+OrsV/d
i1YVtmYrESlwvGf1pefC/34v1v/HFJUClrsd6XfQiY8io0pZFCi2XTieir5S
K1l9UoACT6dYX0LR6ezP+QZLKJBuHLXbHc2VDVjPFqMAOdC7fhu6YNwroGsF
BaQyn67XQN8I83K7vooCGu3H8yXQ3QaitGNrKDCqlSdARwd/X+louJYC4v9p
hE4twfU5U95dWJUCrUJaX7rQ99IGZb5uoMDbpzd3Alr0+syVam0KjDDPVN9C
XxgQe522mQJPxJvkLqB3NP2FQ0YUqGCdvngC7bTN0c/cnALOc3nzLmi5qs/d
MtspkPxXxc0CrT68n0rZSYHITUrNauiyv2E/hndTIL/5kvoytM9Lyq26vRQY
f+WXRUZviCiTKnShQP3eB4TxxVgPDdkeSPSgAOGSm0cH+ozW7UOBBylAvBTV
VIl22RduvN+fAvdOLlK5ge56mvvVLJACNs78qQnodrv3ezecxPk+EDwbiKZ2
0PKkwymwkGvtsB/93/FvjxdH4Xg10itN0CyVgGvUWArIbrGUUEZ/v+Tl/iuB
Aqt6DoeLoE/9us2bvEiBQCnSAG8R5sNe8YBP6RQoUSNv+YKWicio/ZBNgUUK
x662oZvGmN978igQJ7Pjbzn62+ddxO4CCujo5+7NQ19J9PjWWUSBN+n7nsai
7zXJ1XUVU8DFLE7kKNrpQPypnjIKBB+SDXBAz82eWfnhKQU6ZNTaDNBpAtTb
H7mYb+fvKiqia8UYkpO1FCirzIhZjPYPPHdmrpECzW++D8wLYb0XFNVJaaVA
/GS19gh6wndBfHEHBQrlf6c0o91vze6QfkeB7Nwb46Xou6dPnt7QT4HowzVG
Oehsh+Qb5sMUmHiwLTsa7XnPpNbpCwV+nbX47ofm57/Xf3yCAvrMcnM7tJ5i
z8yFaWx/56Wreuhd/YP892YxX6M+/pBFzyh+kGv+Q4GLZTfMBdCullMm40Qq
TFK6cmYFsZ4rUTvIT6fCdMKJbx/QGexX6WpsKlT4Jhg1oLN3f2zZI0SF8cpF
6cXoFe9uLIpYSoWYLObXDHTwWh33omVUqJU6qh2BjjZ719AlSYXsw5bnvdG+
MSWbabJUeH4lo9cG/eLWnyYNRSq0v7RT1EanDP087K1ChW8CZ0+uQkf29ypd
2UAFmfPyjSy0RP1/9LfaVNhppyfyXYAflpifJPBvwc+T6tx60fnXa8TMjang
ac0teY4mFy22i7GggmOZ4t8iNKkJHtdZUSGhh2WRio4RWaFP30UFq769aaHo
fVanf1g4UKG1Q2rADf1wxLgj2YkKPz/YK2xDx1FfDXW7UWGjODVgA7ouP3iV
tA8VFl+RrlqBVj9xP+3wYSq8PFtGpaELRfv0qgOooPj96bZJftwPjftKCpyk
wpJ59bRO9CHjDh3XcCp4VUj2VaMV9p+79DiKCqbWEatuou95klUE4nD8b3Z5
JaHrkp7zeSdh+85X7h5HL2NtXVuXSoUPSxynndB9opKp0llUeMeK1zD7d77w
K+Ooq1Sg7FM9qYJ2Ojlg+Pk6FRhrtlaJokmj48mWt6kgEv2OR0Dzaccql96n
gk1yn/5XDj8cCLFeJVFGBVcP2zPtaC556GDcUyqsXaVf+wS9+Pgg/y8uFajv
8yn56KdtMxyfOip8f3jCKI7z73ndcvD9Syqo19SdOYo+JCymuLMNLXn2mQM6
hRK/vekt5s9YFcEQ/ebnQLdxLxW2bvbRU0SzlTqbnw1QYemG+JDFaOfT65QM
PuF8fZUun2fj+nmg5M/zMSoUBqn+GEY/m1LQM/tGhWezpcrN6LTpgz9aZqig
cPaeTyla+of5qj1/qFC1ReJGNvqz4dWXw0QaPNejfIhCS5G3/neETgNmtrOo
H/qFsuolEocGxAB1m13o4/e1uWmLaNAyEBqri65x2HVIUZQGAQs6NTLoHYyA
gucraPB25NgcB+2ckeizX5oG0yVSyjN8WE8S8qvm5Wjw+ZSJez/axK44//I6
Gkh4DmXVo2f7YLneehrG42frPfQxgYF1w1o0cJwOp6Sjb99d2Re3mQa5TRGa
4eiZF5fWbDCmgab8/EFPtHSzy5IhCxoorxm/YvWv/Qv5Ny5Y0+D3B9v2jegO
t9P9hnY0GPfbQJZEy4vIPZtzpIHoWMJ6BjqJ0byz2IUGKUf3u//H4gctjeuX
fDxpICZxM60bnWA6mbDGjwbbmF51gHa6PKHz+Sj2vz3vxy3Wv++jjRUUBtNA
kbZT+gK621ej9dApGphbhtmcQBuUSz/RiKLBN23JcBd02ALHixiH4xvfdMcc
3fF314eWJBp8ONnWrYoujXVddTWNBjWEfoo4eigqd/3RyzTQyHBTIaF38yLF
zPJo8MjRzXGUyQ+EzWc6JG/S4Ij7++jX6Detkt5/7tCgq6X1/lP084uDPT0P
MJ4PNr3LR198ZaNUWU4DXQUp0nl0hRbFLbeaBmE2pxWOoXuWXIw8W0uDkC32
OxzR88qX44+8pAF78Z0ThuilhPro/W00cB0MzlVEG9zjHtneSQPBF9z6xWg1
OR1b/T4aZL4/PT7PwPpFZUZl4xANuvUqhUbQZ47c51P5QoOt5KMazegLcSpf
FCdpMGOa71CKlpAxf6nwgwal0ttOZaPdKW1la3/TIPnB0bwodIDItXuqBDpk
cRbX+qJVzt8s16LRQWbbuk+2aNe+xi4jNh12JdbSddGGowsCOxfRYfXnt3Iy
aBJzs7ubKB1cA1zNOeiCJcm9wRJ0aNju4/2TjvX8mfmg5NV0KEucOPceLR2a
sqlIgQ6zVuM369DTw0eUGlXosOa2R/1d9PLgcutRDTpUlO8dSUMH9ScX8uvS
wSu1hXgKvbpirY6GIR2ouyslPNCJtXVsF3M6qIvJbtqODu3OWZlkRYeFn3y7
NdBLhXjBsIsOsbRDRyXQij2bVvx0pMPdA5YJNHQ37b6gkisdTsrevDlJw3z6
XLHby4sOn7xP1XSiW5xaZgoO0aHR+HVPNdpiwWH6SwAdjr3N/16AZvB/2L4u
hA42Kv/xJaHvPB4QPB5Bhy1HnkofR9fzT+k8P0uHkfvETU5o33X5XYsScb7o
9TamaGnryx/dU+lwIonupYzWGok6WJlFh+eu9WEi6E23Fx1amkcHchYphUf9
9/84xOljN+nQta3y5mf0nTHRPx136ZCS/r2iFc22lbugVUoHgwu3Wh+jU+aZ
j/Ke4vh39g5dRT8uzDvMqaGD8uz5n2f/tSfw/lnoCzoopT2l+6MHhh6WTr2i
wwVTT7E96OK5NRYeHdif7EWFLei7LsbnBnrowLXctEkO/SR6VcD+QTqYtblu
FUQHbRlYNPCZDnrNDMc5Cj+MLhR6u0/SQc5ByWcA/aqrLGzyBx0yk9uCG9Af
HxjZhszTwShuOqYYvWJf/jQfiQFs55TUDHRlkcz+XAYDGuUf5p1GG2SpZGsK
MECauOOeFzraW+VBhzADJv4efmqN3snNuRGwnAHnN3HqNdG76/+EiEozoK1V
vl0SzbF6rw3y2F5HXS8D3TnV8/mgCgPkDwx+/I+Mz6s1OeeWbWRAWGroVDc6
PqxrVasuA6rD0+cA7VdgXhljxACinhqxEF18netgsJUBql8tmRfQMhNCFNIO
BpRlfhY8gd4aJ1Ndt4cBmz1Ioi7omi3jiQlODCB550iYowVL3ULtPRigUlG+
WhXddT4rXt6PAfXHbBXE0A2ZBXULxxjgVOSvTEQTCPeVOk8ywD+Es/4rCdeT
3Z9fPohgQPsfBc129NS75Gsp5xjgY9K46QlaPPp3VXASAxyOfNHLQ9PMIiRd
LzHAN/2cfix6vUJyu1UOA5pbCg2PoKMDc7v0rzNgm4qlsT36x4CWlmYRA9a/
PWyij95SMf1H7QEDzN8uMZVH64n4y6s9YcAl802mQmitWfe6DcCAXLNhk19E
fB6dTO/SfcEA4Qm2ySDand3lYdHCAPtt5UaN6FOJtJOObxmgHfnRoAQtFC8i
eqSPAZ+upW7J/He8J5/Z+WEGCL6s041At8d9F7w9yoC9nBPa3ujozG8nXn1j
wEj0PQ0b9JO8jXE/5xjQbemhpoVeZMUwX0VgwvvjuUpSaFmJx1U76UxgSu2T
Y6IPJ9+aiuVnQqNT9qpvBH4IcdnxqVaYCce27l/+Du1duamQsoIJOxbyhWvQ
VUcXNpuvZoJkvA9/ITpc3eDBRUUmlAmW0S6gy5/X0wfVmNCdH/k3GB200cFs
vTYTmu3f/HRG9yj2h8TrM0Fq+81xM/QTountr2ZMMMr4O6SClhDP7t1qzQSX
7e+6RdGkRXMiD3dj/7EbWwhofWKs50onJjx0Fnv+hccBYnny62QPJrwbP/W4
Db2H5+ZCP8TE/ahXUTna+93h5WcC0RFvr+SiXZ8rsylhTIgrr79wDk2d26gV
F4XjoehE+aMLHqrcEY5nwuMTG4L2oN8Fd/kVpDChR/Wh5xb0FTtejM5lJhww
Ktsjh45UvkDozmdCYcMmc0F0CTF+OPg2E+CtidbcXw48VKFqrXzAhICoTrkB
dFerHKvpCRP3WaMiDejNk1rOoTVMCJaOohWjnw9fNFJvZEKSQf6PdHTs1Rsw
1Ybz62w8FI4+MDv/vqSbCbWpfq2eaN9fGwtODDCBMSteaYXer7tE2vQLE9qv
bLu1Ee2u5bZf/D8mBF2jpq5Ei1xa4vp9lglflhuG09HUGEXN1zwmlEvRfKYW
ODC2vHH0EZ0Frg3bbbvQ2YVrovIEWBCqsEKPi34nmM1/UYQFdvuOrLmJrpa/
lHpuJQusgrcKJqEJy/Mko9ewYEtq0VwQ+gb3QNVZZRZEvrgwsB+t/Dc3MHkj
Cyrk/r4wQX/coGl7dTMLrrf9d28d+tgVGbdSUxb8euOdthRtcj+yuNWKBeWW
3iF//3Bg+bkYo2+7WfDCasr5E7rXIUZRzJkFtT/mjVvQlV0//U29WLDSNknh
EXooy1My1J8F5yIL+a+gU7MTjB8Hs6Azw2I6Gr0xX2t87jQLhu4efeuH9ni4
T1I/lgU53VLlu9CWiezJpAssuKqyJ0sX/UPypMvHTBbkNQqHyqB3k/7E6Oez
oJLrsI+DTpliHrx+mwWaMmv0fs5z4LW5njj/QxaYLwmReI/OT7fLO1XBgoY8
u7+16BH6es7McxaEjTx5fwddM9vrE9DMgvs/r1emoredDH7xq4MFB7+IXA5F
Jw/vUYl5z4L0rkUn3NABu6YfiH1iwUhnmp0l+pzVwN7SSRb0L+Sqr0eX6H/c
ZDfLAg239YLL0SJSY/t4PBackbAeJ6O1CZT2+ww+TNcfL8Z+c4B92+eapxAf
3J+WvPYGHbz5zLCsOB/c3tAZVoH+29V7dWIVH8goLNlzDX1YVulzhSIfjA73
qJ5H50o4NlxYzwfrwxT4jqGX5wXuOKzLBzcZ5BEH9Io1T1JtTfhAMtet0gB9
KyDpir4VH9TttkpV+Ne/ZXK4xh7s3+T5wUVoSdlIU3UXPvgVCQa/f3HAZsKB
punDBxmrTcWG0BJVW5qNjvHBdYPdU43o+9fjCu1D+aB96r/aEvRNv5p7QdF8
QDJZkpWJvuGRO345kQ9o9jWHItAH1ZYGNKbzActgzsAbbZllbMfL5YMu4SdL
bdDZ7jHXdW/zgesoeVQTPbrewz/qIR+wu7orJdHSroVNbyr5oGh6YxID/Xtk
a4NiPR9k20i5/DeH+a4TGRzfygfLmWlq3WgXx6eTP7v5QEs9hQzo5pxsXa8h
Prg0sqzjJvpbNTt4eIwPnNWVryehD3UqlHj+5IPX6q+OHUeDo+2fH3/5oGzh
p4ETummtjN95BhtItwqFTNHLs4NFFBex4Znplw/r0N5nfAQ6lrGh+XvJ3aX/
zt+7xztGhg03n9FC/s5yYIPLkJaBMht+1H8y/fTP98bT6FpseLxsx5IWdLR/
7sVOAzZYvDYbKEPvWepnfN+SDbfJTUU56PSzzNoLdmxwqu8Oika7uweuPuXM
hg1KR/X90CLWv0MDfNhQbJ3Otwtdu15pJCCAjfE1e6uD3pY/5R9+ig3HpaOv
rP53vswR7dRzbFD7u82Tjf5+R2XPw4ts6JvIV/4xw4GZnwuDfdls2EeJmu1F
BxLmpwRvsmHa8Vv1c7TM+ZwsqxI2vKGNRRehRbKKf2dUsKFI4ohlCrqObCc/
UceGLaVnFoWglZmMLZZtbGgcWtXtij4/k7XnUQ8bRiu251ig3V7pJSh+ZIO5
Hd1VDc2bOz1XNMWGzQ2WsuJoJmd72cbfePyalaNEtE3i9/4WCq7r50/d/fqT
A1H1UheOCOB1Ug/6t6PFr018XinOga33R9SeoB2uvua9W82BhMtjP3LR2k9L
f15V5oDmQPijc+is4KFPR7Q5EJeSd9wfTfm+9JuVMcal2VpzD/r4txA1bWts
50rC3Ga0yOI7jSqOHGhduad8DZpJKXur7oH9ehQfF0CH1ogFGR7hwGD0JY3Z
HxzoHO146RTKgX3prJ/96Gxpxx/nzuK6cYf9sB5NjcxZzL2IeduX7X8PLSXI
tiBdweeQdoXSJfQyh4wnOwo5YPrBczQM7SlQHlVcivdtf36BO9qu1LNlGWDe
Wfq6bkPXuik9TW3CvDeoXbEBXVG4zHdZF8a5/Xb3cnSOSwejeAjXdQHJFAra
oeJ82Y5JDqgvWb1t/DsHRE34Msi4LmT+94jWgVYWLut8hnW3FLebW4EO/hWT
kSzED7HJscHX0AZtK6h+K7AuDW1UOY92+lputEce675LGV+OonWidE/v2ID7
yJ8zVx3Q6u7ag476uA+7N2JngA47M3YhYBvWXR0uHAW0YbtuVbY9P9SGH3ou
hNaWeJPY8e89g89YJ35N4/wtoakvP8oPv4o11g2im20nO4+dwjr7wPRQA9qm
yO1Wbxw/0Kd004vRol70zp3pOF53sa0ZaOZrvaS+a/zg/z7qbzj6RpU+JagY
60y/0yWeaGNDcQ/JKtwnyLLdrNCmmbc/9TbyQ4KU3NKN6H7BB+W3OvH4Ix0v
JND1mq8Fzg7zQ6mi0Aka2k82VfL4f9i+W7/85DcOfP7oJ3liAet4VZ2et2iz
JQ3GCSwBiL+pEFeFfnqN3PBQRAAO9BRq3UDPNIV/GF8tAGofnnyJR4fL5dZp
qgmAz0uH9AC0Iu1NafpmAZh4GG+8F71yKP0Lc5sAZBZZfTdEuy6LyUlyEIDH
DddyFdEh3TuF5L0EwEYydttidIHs+8jOQAF4X8/79fs/fL5tU1TLOCMAGq30
giG0mGuo86ELAkC3ybN5iZ5evNXa/qoAFOxv/lOC/v3Uztj+rgD8YcfezEQT
bhVFHaoQgFb/LpsItEB5kW1mowAsvvp43gvtqyKy8K5LAETuyt+wRi8dEX6h
8kkAou4obddEL9zYspDzQwAUHz2fWYlOin77M5koCJ49Y1foaCOYOdzPEISn
ygUmU1Mc2NKbnrpRUBBqX05PdKJvPxSLzxYRhDvV7anVaIGq++GclYLQJ2m4
qQBtWOueGScrCM9opoMJaNMRGcqSdYJgGfE+JhA9Wlw9VrhBEOYKaWv3oe+l
fw211MXPk5+1GaFTTtp8nDcShAALocC16L0xmTvLLQXh5cS06BL0RjO32Qhb
QdiS4Fk5j/cRl+RItN8rCFzdw07D6EGzDdd03QQhZzGL1ISufw8CKr6CoCOp
ef0B+tDA15MqAYLgHvLLOAsda/hcbHOoIERpbv8cgd52KWnV3ihB4PhpnPNG
f5B62Xw2XhBm5B/I2aBf71exeZYqCL/P1jRooj/VN33lyxGE/lQ3L0m0J/1P
u9sNQeDzuUxnoCUzIkxe3RWEcTGPgqkJDpRXnos2fiQIZ8trjbrQ376Xtryq
FgQtu8dD1egHvWsPeLwQhJ0CeqcL0E8SCqIF2gTBZXrPikS0a2jAycZubF+I
8TQQndJx8WzqoCD0xGy124fOOFj2w39UEOJcpaeN0NH6dnxO3wVhdVlSwlq0
xuXapU5/BKE0K1luCXqqZr3bEaoQeErKPp8f58Ar7zaDS/xCoLrPet8w+nrL
C3KLiBCoewrMvkQLnz/wW1RKCBZvO5D8AL1NQyT0uIIQ6K6ylM9Cf36dOvBV
XQhm/jbWRKDHRAcj/HWFYHamz94bbXLTq5LPVAh2rIj+Zo1Wk186VWEtBCcj
np3TRBeFeodEOAjB5c1pKyXRnl+S6va6CUGuy0IZHZ15OGz99kNCwKHMb50a
w+eZLV3NLlgIPqgmDnai4R1PITAS+6M/DqpGZ9vtTCqKF4LQtEC+ArTOPdnX
vy4JQdtE49UEtJ3BrLdznhDuV0rVA9F6gZVtH4qEwGHr+hd70fxvWFHBj4Rg
4qSFgxF6z4ImVbFGCEKezYwrou/6x7ybbRICgQWF8MXoQWOjuA+dQhDLKPad
H+WAKpNwY2gQr++v79wV/Pzaq+IK4oQQUMVrNr/MYMP/1AvlbQ==
"]]}}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{-4.944169661387873, -3.860605720000853},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Exp[
Part[#, 2]]}& )}},
PlotRange->{{-4.944169661387873,
6.5092869103086874`}, {-3.860605720000853, -3.574604509430403}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->FrontEndValueCache[{
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledTicks[{Log, Exp}]}, {{{-4.605170185988091,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.01\"", ShowStringCharacters -> False], 0.01,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01,
0.}}, {-2.3025850929940455`,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.10\"", ShowStringCharacters -> False], 0.1,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01, 0.}}, {0.,
FormBox["1", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
FormBox["10", TraditionalForm], {0.01, 0.}}, {4.605170185988092,
FormBox["100", TraditionalForm], {0.01, 0.}}, {-6.907755278982137,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-6.214608098422191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-5.809142990314028,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-5.521460917862246,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-5.298317366548036,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-5.115995809754082,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.961845129926823,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.8283137373023015`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.710530701645918,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.506557897319982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.2188758248682006`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.8134107167600364`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.659260036932778,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.5257286443082556`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.4079456086518722`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.2039728043259361`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.916290731874155,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.5108256237659907,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.35667494393873245`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.2231435513142097,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.10536051565782628`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.0986122886681098`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.3862943611198906`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.791759469228055,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.9459101490553132`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.0794415416798357`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.1972245773362196`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.4011973816621555`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.6888794541139363`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.0943445622221,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.248495242049359,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.382026634673881,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.499809670330265,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.298317366548036,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.703782474656201,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.991464547107982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.214608098422191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.396929655216146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.551080335043404,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.684611727667927,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.802394763324311,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
6.907755278982137,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
7.600902459542082,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
8.006367567650246,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}}, {{-3.816712825623821,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.022\"", ShowStringCharacters -> False], 0.022,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
0.}}, {-3.7297014486341915`,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.024\"", ShowStringCharacters -> False], 0.024,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
0.}}, {-3.649658740960655,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.026\"", ShowStringCharacters -> False], 0.026,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
0.}}, {-3.575550768806933,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.028\"", ShowStringCharacters -> False], 0.028,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
0.}}, {-3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.8873303928377747`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.863232841258714,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.83970234384852,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.7942399697717626`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.7722610630529876`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.750754857832024,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.7090821614314557`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.6888794541139363`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.6690768268177565`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.6306105459899607`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.611918412977808,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.5935692743096115`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.5578511917075324`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.540459448995663,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.523365015636363,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.506557897319982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}}}]]], "Output",
CellChangeTimes->{{3.817203690916932*^9, 3.817203715261232*^9}, {
3.817203798123995*^9, 3.817203867889276*^9}, 3.817204691973131*^9,
3.817205153773066*^9, {3.817205225742158*^9, 3.817205234468196*^9}, {
3.8172052905369062`*^9, 3.8172053435137053`*^9}, {3.817205395371584*^9,
3.817205412720125*^9}, {3.817205657090682*^9, 3.8172056899382067`*^9},
3.817205721948454*^9, 3.81720579133876*^9, {3.817205823516931*^9,
3.81720583160579*^9}},
CellLabel->
"Out[431]=",ExpressionUUID->"e57fa90a-27ff-4013-8fad-ca7e3c98d348"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"testSol", "[",
RowBox[{"[",
RowBox[{"All", ",", "1"}], "]"}], "]"}], "/.", "ss1"}]], "Input",
CellChangeTimes->{{3.8172003240680037`*^9, 3.817200332875305*^9},
3.817200491854622*^9},
CellLabel->
"In[134]:=",ExpressionUUID->"8499af31-a50c-4059-afac-b628095fc761"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1.2224099537167044`", ",", "0.9625817323086974`", ",",
"0.9863025304522565`", ",", "2.507988676370416`"}], "}"}]], "Output",
CellChangeTimes->{{3.817200325692165*^9, 3.817200333083724*^9}, {
3.817200484546897*^9, 3.81720049228555*^9}},
CellLabel->
"Out[134]=",ExpressionUUID->"9aaf347d-0fae-4cb5-8920-f15fee437a9e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"D", "[",
RowBox[{
RowBox[{
SuperscriptBox["h",
RowBox[{"16", "/", "15"}]],
RowBox[{"\[ScriptCapitalF]", "[",
RowBox[{"t", " ",
SuperscriptBox["h",
RowBox[{
RowBox[{"-", "1"}], "/",
RowBox[{"(",
RowBox[{"\[Beta]", " ", "\[Delta]"}], ")"}]}]]}], "]"}]}], ",",
"h"}], "]"}]], "Input",
CellChangeTimes->{{3.817124847184207*^9, 3.81712486296763*^9}, {
3.817203222166533*^9, 3.8172032400147877`*^9}},
CellLabel->
"In[186]:=",ExpressionUUID->"fecf4a67-c7e8-40b5-8e36-582a0bab9fe6"],
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox["16", "15"], " ",
SuperscriptBox["h",
RowBox[{"1", "/", "15"}]], " ",
RowBox[{"\[ScriptCapitalF]", "[",
FractionBox["t",
SuperscriptBox["h",
RowBox[{"8", "/", "15"}]]], "]"}]}], "-",
FractionBox[
RowBox[{"8", " ", "t", " ",
RowBox[{
SuperscriptBox["\[ScriptCapitalF]", "\[Prime]",
MultilineFunction->None], "[",
FractionBox["t",
SuperscriptBox["h",
RowBox[{"8", "/", "15"}]]], "]"}]}],
RowBox[{"15", " ",
SuperscriptBox["h",
RowBox[{"7", "/", "15"}]]}]]}]], "Output",
CellChangeTimes->{3.817124863164054*^9, 3.817203240540386*^9},
CellLabel->
"Out[186]=",ExpressionUUID->"742a0341-4af8-4ba4-a799-e15a1e847a9c"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{"\[Eta]", "[", "0", "]"}], "[",
RowBox[{"1", "/", "\[Theta]inv"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]inv", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817123536056196*^9, 3.817123556576008*^9}},
CellLabel->
"In[202]:=",ExpressionUUID->"9884f3ff-ff57-4cf7-b122-2aebcb709801"],
Cell[BoxData[
InterpretationBox[
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"7", "/", "15"}]], " ", "t\[Infinity]", " ", "\[Theta]inv"}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}],
RowBox[{"8", "/", "15"}]]], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "\[Theta]inv", "]"}], "2"],
SeriesData[$CellContext`\[Theta]inv, 0, {}, 1, 2, 1],
Editable->False]}],
SeriesData[$CellContext`\[Theta]inv,
0, {(-1)^Rational[
7, 15] $CellContext`t\[Infinity] ($CellContext`h0 $CellContext`gCoeff[
DirectedInfinity[1]])^Rational[-8, 15]}, 1, 2, 1],
Editable->False]], "Output",
CellChangeTimes->{{3.8171235297148933`*^9, 3.817123556761306*^9}},
CellLabel->
"Out[202]=",ExpressionUUID->"5f69419d-b0c1-4cd5-9616-460f429c823a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{"Simplify", "[",
RowBox[{
RowBox[{"\[Eta]", "[", "0", "]"}], "[",
RowBox[{"1", "/", "\[Theta]inv"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]inv", ",", "0", ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817123200393565*^9, 3.8171232461064463`*^9}, {
3.817123515479413*^9, 3.817123520791197*^9}, {3.817123588104834*^9,
3.817123597584608*^9}},
CellLabel->
"In[205]:=",ExpressionUUID->"c18d621f-7e5f-48db-8ae7-0fda0221c79c"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"7", "/", "15"}]], " ", "t\[Infinity]"}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}],
RowBox[{"8", "/", "15"}]]]], "Output",
CellChangeTimes->{
3.817123208606057*^9, 3.817123267470529*^9, 3.8171233432472973`*^9, {
3.81712351283296*^9, 3.817123527892489*^9}, {3.817123594979403*^9,
3.8171235978221827`*^9}},
CellLabel->
"Out[205]=",ExpressionUUID->"b45884b0-ccdc-4e99-ac15-83498ea86eff"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"eqMeta", "[", "3", "]"}], "[", "3", "]"}]], "Input",
CellChangeTimes->{{3.817123015487031*^9, 3.8171230339984207`*^9}, {
3.817123072431489*^9, 3.817123073231268*^9}, {3.8171231656411247`*^9,
3.817123165736641*^9}},
CellLabel->
"In[206]:=",ExpressionUUID->"8e16b08d-33f5-4a51-9850-75f98a0e6a08"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"-", "1"}], ")"}],
RowBox[{"2", "/", "5"}]], " ", "t\[Infinity]", " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"8", " ",
RowBox[{"gCoeff", "[", "2", "]"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"15", "-",
RowBox[{"8", " ",
SuperscriptBox["\[Theta]c", "2"]}]}], ")"}], " ",
RowBox[{"gCoeff", "[", "3", "]"}]}]}], ")"}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-", "h0"}], " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}],
RowBox[{"16", "/", "15"}]], " ",
RowBox[{
SuperscriptBox["Dmeta", "\[Prime]",
MultilineFunction->None], "[", "0", "]"}]}], "+",
RowBox[{"5", " ",
SuperscriptBox["t\[Infinity]", "2"], " ",
RowBox[{"gCoeff", "[", "3", "]"}], " ",
RowBox[{
SuperscriptBox["Dmeta",
TagBox[
RowBox[{"(", "3", ")"}],
Derivative],
MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], ")"}],
"/",
RowBox[{"(",
RowBox[{"30", " ",
RowBox[{"gCoeff", "[", "3", "]"}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}],
RowBox[{"8", "/", "5"}]]}], ")"}]}], ")"}]}], "\[Equal]",
FractionBox[
RowBox[{"m0", " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"4", " ", "B", " ", "\[Theta]c"}], "+",
RowBox[{"2", " ",
SuperscriptBox["B", "2"], " ",
SuperscriptBox["\[Theta]c", "2"]}]}], ")"}]}],
RowBox[{"2", " ",
SuperscriptBox["B", "2"]}]]}]], "Output",
CellChangeTimes->{{3.817123021370584*^9, 3.817123036214219*^9},
3.817123081247479*^9, 3.817123173582923*^9, 3.817123603151895*^9},
CellLabel->
"Out[206]=",ExpressionUUID->"21b799e5-0965-4692-b4ba-6083041c0cdd"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"eqLow", "[", "2", "]"}], "[", "1", "]"}]], "Input",
CellChangeTimes->{{3.8171227644902697`*^9, 3.817122781401775*^9}},
CellLabel->
"In[178]:=",ExpressionUUID->"4c8cb259-b56a-423e-957f-9a65ba700a16"],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"2", " ", "h0", " ",
RowBox[{"(",
RowBox[{
RowBox[{"gCoeff", "[", "0", "]"}], "+",
RowBox[{
SuperscriptBox["\[Theta]c", "2"], " ",
RowBox[{"gCoeff", "[", "1", "]"}]}], "+",
RowBox[{
SuperscriptBox["\[Theta]c", "4"], " ",
RowBox[{"gCoeff", "[", "2", "]"}]}]}], ")"}], " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}], " ",
RowBox[{
SuperscriptBox["Gl", "\[Prime]",
MultilineFunction->None], "[", "0", "]"}]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"t\[Infinity]", "-",
RowBox[{"t\[Infinity]", " ",
SuperscriptBox["\[Theta]c", "2"]}]}],
RowBox[{"t\[Infinity]", "+",
SuperscriptBox["\[Theta]c", "3"]}]], ")"}],
RowBox[{"15", "/", "8"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["\[Theta]c", "5"], " ",
RowBox[{"gCoeff", "[", "2", "]"}]}], "+",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}]}]]}], "\[Equal]",
FractionBox[
RowBox[{"m0", " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"2", " ", "B", " ", "\[Theta]c"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ", "B", " ", "\[Theta]c", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ", "B", " ", "\[Theta]c"}]}], ")"}]}], "-",
RowBox[{
SuperscriptBox["\[ExponentialE]",
FractionBox["1",
RowBox[{"2", " ", "B", " ", "\[Theta]c"}]]], " ",
RowBox[{"ExpIntegralEi", "[",
RowBox[{"-",
FractionBox["1",
RowBox[{"2", " ", "B", " ", "\[Theta]c"}]]}], "]"}]}]}], ")"}]}],
RowBox[{"8", " ", "B", " ", "\[Pi]", " ",
SuperscriptBox["\[Theta]c", "3"]}]]}]], "Output",
CellChangeTimes->{{3.8171227688834267`*^9, 3.817122794227809*^9}},
CellLabel->
"Out[178]=",ExpressionUUID->"312f09f3-55f8-4f9d-a42c-05ca1c4aea27"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Simplify", "[",
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{"G", "[",
RowBox[{
RowBox[{"\[Xi]", "[", "0", "]"}], "[", "\[Theta]", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Theta]c", ",", "1"}], "}"}]}], "]"}],
"]"}]], "Input",
CellChangeTimes->{{3.8171210214179373`*^9, 3.8171211416354523`*^9}, {
3.817121307262643*^9, 3.8171215023948812`*^9}, {3.81712258147068*^9,
3.817122585574129*^9}},
CellLabel->
"In[172]:=",ExpressionUUID->"069edadd-116a-4ccf-831d-0fe6e07540fe"],
Cell[BoxData[
RowBox[{"-",
FractionBox[
RowBox[{"2", " ", "h0", " ",
RowBox[{"gCoeff", "[", "0", "]"}], " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}], " ",
RowBox[{
SuperscriptBox["G", "\[Prime]",
MultilineFunction->None], "[", "0", "]"}]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"t\[Infinity]", "-",
RowBox[{"t\[Infinity]", " ",
SuperscriptBox["\[Theta]c", "2"]}]}],
RowBox[{"t\[Infinity]", "+",
SuperscriptBox["\[Theta]c", "3"]}]], ")"}],
RowBox[{"15", "/", "8"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"\[Theta]c", " ",
RowBox[{"gCoeff", "[", "0", "]"}]}], "+",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}], ")"}]}]]}]], "Output",
CellChangeTimes->{{3.817121094109949*^9, 3.817121143267645*^9}, {
3.8171213363219423`*^9, 3.817121519328246*^9}, 3.817121561056994*^9, {
3.817121593382764*^9, 3.817121596725091*^9}, {3.817122581937236*^9,
3.817122585949751*^9}},
CellLabel->
"Out[172]=",ExpressionUUID->"e6426e3c-3d4d-49f1-becd-dfef45704088"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Simplify", "[",
RowBox[{"SeriesCoefficient", "[",
RowBox[{
RowBox[{"\[CapitalPhi]", "[",
RowBox[{
RowBox[{"\[Eta]", "[", "3", "]"}], "[", "\[Theta]", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "1", ",", "2"}], "}"}]}], "]"}], "]"}]], "Input",\
CellChangeTimes->{{3.8171210214179373`*^9, 3.8171211416354523`*^9}, {
3.8171213154472227`*^9, 3.8171213244868927`*^9}},
CellLabel->
"In[157]:=",ExpressionUUID->"3cd180b6-0e22-4832-af2b-e9ecec7e0a49"],
Cell[BoxData[
RowBox[{
RowBox[{"(",
RowBox[{"t\[Infinity]", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"107", "-",
RowBox[{"75", " ",
SuperscriptBox["\[Theta]c", "2"]}], "+",
RowBox[{"t\[Infinity]", " ",
RowBox[{"(",
RowBox[{"17", "+",
RowBox[{"15", " ",
SuperscriptBox["\[Theta]c", "2"]}]}], ")"}]}]}], ")"}],
" ",
RowBox[{"(",
RowBox[{
RowBox[{"gCoeff", "[", "0", "]"}], "+",
RowBox[{"gCoeff", "[", "1", "]"}], "+",
RowBox[{"gCoeff", "[", "2", "]"}], "+",
RowBox[{"gCoeff", "[", "3", "]"}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"gCoeff", "[", "3", "]"}], "+",
RowBox[{
SuperscriptBox["\[Theta]c", "2"], " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}]}], ")"}]}],
"-",
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{"1", "+", "t\[Infinity]"}], ")"}], " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["\[Theta]c", "2"]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"9", " ",
RowBox[{"gCoeff", "[", "3", "]"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"gCoeff", "[", "0", "]"}], "+",
RowBox[{"gCoeff", "[", "1", "]"}], "+",
RowBox[{"gCoeff", "[", "2", "]"}], "+",
RowBox[{"gCoeff", "[", "3", "]"}]}], ")"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"gCoeff", "[", "0", "]"}], "+",
RowBox[{"3", " ",
RowBox[{"gCoeff", "[", "1", "]"}]}], "+",
RowBox[{"5", " ",
RowBox[{"gCoeff", "[", "2", "]"}]}], "+",
RowBox[{"7", " ",
RowBox[{"gCoeff", "[", "3", "]"}]}]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"gCoeff", "[", "3", "]"}], "+",
RowBox[{
SuperscriptBox["\[Theta]c", "2"], " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}]}],
")"}]}]}], ")"}]}]}], ")"}], " ",
RowBox[{
SuperscriptBox["\[CapitalPhi]", "\[Prime]",
MultilineFunction->None], "[", "0", "]"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"h0", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[Theta]c", "2"]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"gCoeff", "[", "0", "]"}], "+",
RowBox[{"gCoeff", "[", "1", "]"}], "+",
RowBox[{"gCoeff", "[", "2", "]"}], "+",
RowBox[{"gCoeff", "[", "3", "]"}]}], ")"}], " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}],
RowBox[{
RowBox[{"gCoeff", "[", "3", "]"}], "+",
RowBox[{
SuperscriptBox["\[Theta]c", "2"], " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}]}]], ")"}],
RowBox[{"7", "/", "15"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"gCoeff", "[", "3", "]"}], "+",
RowBox[{
SuperscriptBox["\[Theta]c", "2"], " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}]}], ")"}], "2"]}],
")"}]}], ")"}]}], "+",
RowBox[{"30", " ", "t\[Infinity]", " ",
RowBox[{
SuperscriptBox["\[CapitalPhi]", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "0", "]"}]}]}], ")"}]}], ")"}], "/",
RowBox[{"(",
RowBox[{"15", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "t\[Infinity]"}], ")"}], "2"], " ",
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"h0", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["\[Theta]c", "2"]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"gCoeff", "[", "0", "]"}], "+",
RowBox[{"gCoeff", "[", "1", "]"}], "+",
RowBox[{"gCoeff", "[", "2", "]"}], "+",
RowBox[{"gCoeff", "[", "3", "]"}]}], ")"}], " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}],
RowBox[{
RowBox[{"gCoeff", "[", "3", "]"}], "+",
RowBox[{
SuperscriptBox["\[Theta]c", "2"], " ",
RowBox[{"gCoeff", "[", "\[Infinity]", "]"}]}]}]], ")"}],
RowBox[{"16", "/", "15"}]]}], ")"}]}]], "Output",
CellChangeTimes->{{3.817121094109949*^9, 3.817121143267645*^9}, {
3.817121316453334*^9, 3.817121325487088*^9}, 3.817121616050745*^9},
CellLabel->
"Out[157]=",ExpressionUUID->"45f19748-f63a-49e1-8ced-a4f5c5dda272"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"params", "[", "n_", "]"}], ":=",
RowBox[{"Join", "[",
RowBox[{
RowBox[{"{",
RowBox[{"h0", ",", "t\[Infinity]"}], "}"}], ",",
RowBox[{"gParams", "[", "n", "]"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.817120640956625*^9,
3.8171206641227827`*^9}},ExpressionUUID->"3ffc56f5-fc40-4c69-bdce-\
f91a4aab1c67"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Limit", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "/", "\[Theta]c"}], ")"}], "2"]}],
RowBox[{"1", "+",
RowBox[{
RowBox[{"gN", "/", "g\[Infinity]"}], " ",
RowBox[{
SuperscriptBox["\[Theta]",
RowBox[{
RowBox[{"2", "n"}], "+", "3"}]], "/",
SuperscriptBox["\[Theta]c", "2"]}]}]}]], "gN", " ",
SuperscriptBox["\[Theta]",
RowBox[{
RowBox[{"2", "n"}], "+", "1"}]]}], ",",
RowBox[{"\[Theta]", "\[Rule]", "\[Infinity]"}]}], "]"}]], "Input",
CellChangeTimes->{{3.8171124154028482`*^9, 3.817112454613448*^9}, {
3.817112487487479*^9, 3.8171124889053288`*^9}},
CellLabel->"In[2]:=",ExpressionUUID->"e131ab87-4ef6-4852-9ddd-e4499b39559a"],
Cell[BoxData[
TemplateBox[{
RowBox[{"-", "g\[Infinity]"}],
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"gN", "|",
FractionBox["1",
SuperscriptBox["\[Theta]c", "2"]], "|",
FractionBox["1", "g\[Infinity]"]}], ")"}], "\[Element]",
TemplateBox[{}, "Reals"]}], "&&",
RowBox[{"n", ">",
RowBox[{"-",
FractionBox["1", "2"]}]}]}]},
"ConditionalExpression"]], "Output",
CellChangeTimes->{3.817112456722063*^9, 3.817112491017767*^9},
CellLabel->"Out[2]=",ExpressionUUID->"86a22957-07a1-48ab-90d1-d142a27afe22"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{
FractionBox[
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}],
RowBox[{"1", " ", "+",
RowBox[{
SuperscriptBox["\[Theta]", "3"], "/", "t\[Infinity]"}]}]], "/",
SuperscriptBox[
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"g", "[", "\[Theta]", "]"}]}], ")"}],
RowBox[{"1", "/", "\[Beta]\[Delta]"}]]}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "1", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817113144203745*^9, 3.8171131899556923`*^9}, {
3.8171133354068203`*^9, 3.817113340206203*^9}, {3.8171147270042553`*^9,
3.81711472915556*^9}, {3.817115345578602*^9, 3.8171153483540163`*^9}, {
3.8171153872352037`*^9, 3.817115414338681*^9}, {3.817119661417726*^9,
3.817119661505088*^9}},
CellLabel->
"In[101]:=",ExpressionUUID->"22a30e99-2bd5-43a5-9353-3a3be14232a6"],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"t\[Infinity]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"g", "[", "1", "]"}]}], ")"}],
RowBox[{
RowBox[{"-", "1"}], "/", "\[Beta]\[Delta]"}]]}], ")"}], " ",
RowBox[{"(",
RowBox[{"\[Theta]", "-", "1"}], ")"}]}],
RowBox[{"1", "+", "t\[Infinity]"}]]}], "-",
FractionBox[
RowBox[{"t\[Infinity]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"g", "[", "1", "]"}]}], ")"}],
RowBox[{
RowBox[{"-", "1"}], "/", "\[Beta]\[Delta]"}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "5"}], " ", "\[Beta]\[Delta]", " ",
RowBox[{"g", "[", "1", "]"}]}], "+",
RowBox[{"t\[Infinity]", " ", "\[Beta]\[Delta]", " ",
RowBox[{"g", "[", "1", "]"}]}], "-",
RowBox[{"2", " ",
RowBox[{
SuperscriptBox["g", "\[Prime]",
MultilineFunction->None], "[", "1", "]"}]}], "-",
RowBox[{"2", " ", "t\[Infinity]", " ",
RowBox[{
SuperscriptBox["g", "\[Prime]",
MultilineFunction->None], "[", "1", "]"}]}]}], ")"}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "-", "1"}], ")"}], "2"]}],
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+", "t\[Infinity]"}], ")"}], "2"], " ",
"\[Beta]\[Delta]", " ",
RowBox[{"g", "[", "1", "]"}]}]], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[",
RowBox[{"\[Theta]", "-", "1"}], "]"}], "3"],
SeriesData[$CellContext`\[Theta], 1, {}, 1, 3, 1],
Editable->False]}],
SeriesData[$CellContext`\[Theta],
1, {(-2) $CellContext`t\[Infinity] (
1 + $CellContext`t\[Infinity])^(-1) ($CellContext`h0 $CellContext`g[
1])^((-1)/$CellContext`\[Beta]\[Delta]), -$CellContext`t\[Infinity] (
1 + $CellContext`t\[Infinity])^(-2) $CellContext`\[Beta]\[Delta]^(-1) \
$CellContext`g[
1]^(-1) ($CellContext`h0 $CellContext`g[
1])^((-1)/$CellContext`\[Beta]\[Delta]) ((-5) $CellContext`\[Beta]\
\[Delta] $CellContext`g[
1] + $CellContext`t\[Infinity] $CellContext`\[Beta]\[Delta] \
$CellContext`g[1] - 2 Derivative[1][$CellContext`g][1] -
2 $CellContext`t\[Infinity] Derivative[1][$CellContext`g][1])}, 1, 3, 1],
Editable->False]], "Output",
CellChangeTimes->{
3.8171131901632423`*^9, {3.817113336562134*^9, 3.817113346309887*^9},
3.8171147295944853`*^9, 3.817115348650196*^9, {3.8171154064111156`*^9,
3.817115415021256*^9}, 3.8171196617654963`*^9},
CellLabel->
"Out[101]=",ExpressionUUID->"470e97c2-b944-4611-8c77-75e5a0915c04"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{"M", "[",
RowBox[{
FractionBox[
RowBox[{"1", "-",
SuperscriptBox["\[Theta]inv",
RowBox[{"-", "2"}]]}],
RowBox[{"1", " ", "+",
RowBox[{
SuperscriptBox["\[Theta]inv",
RowBox[{"-", "3"}]], "/", "t\[Infinity]"}]}]], "/",
SuperscriptBox[
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"ginv", "[", "\[Theta]inv", "]"}]}], ")"}],
RowBox[{"1", "/", "\[Beta]\[Delta]"}]]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]inv", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817119695521706*^9, 3.817119719402121*^9}, {
3.817119757242896*^9, 3.817119760810754*^9}},
CellLabel->
"In[104]:=",ExpressionUUID->"3752e4d8-bc7c-475c-b88c-a0d99559d99c"],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{"M", "[", "0", "]"}], "-",
RowBox[{"t\[Infinity]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"ginv", "[", "0", "]"}]}], ")"}],
RowBox[{
RowBox[{"-", "1"}], "/", "\[Beta]\[Delta]"}]], " ",
RowBox[{
SuperscriptBox["M", "\[Prime]",
MultilineFunction->None], "[", "0", "]"}], " ", "\[Theta]inv"}], "+",
RowBox[{
RowBox[{"(",
RowBox[{
FractionBox[
RowBox[{"h0", " ", "t\[Infinity]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"ginv", "[", "0", "]"}]}], ")"}],
RowBox[{
RowBox[{"-", "1"}], "-",
FractionBox["1", "\[Beta]\[Delta]"]}]], " ",
RowBox[{
SuperscriptBox["ginv", "\[Prime]",
MultilineFunction->None], "[", "0", "]"}], " ",
RowBox[{
SuperscriptBox["M", "\[Prime]",
MultilineFunction->None], "[", "0", "]"}]}], "\[Beta]\[Delta]"],
"+",
RowBox[{
FractionBox["1", "2"], " ",
SuperscriptBox["t\[Infinity]", "2"], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"ginv", "[", "0", "]"}]}], ")"}],
RowBox[{
RowBox[{"-", "2"}], "/", "\[Beta]\[Delta]"}]], " ",
RowBox[{
SuperscriptBox["M", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "0", "]"}]}]}], ")"}], " ",
SuperscriptBox["\[Theta]inv", "2"]}], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "\[Theta]inv", "]"}], "3"],
SeriesData[$CellContext`\[Theta]inv, 0, {}, 0, 3, 1],
Editable->False]}],
SeriesData[$CellContext`\[Theta]inv, 0, {
$CellContext`M[
0], -$CellContext`t\[Infinity] ($CellContext`h0 $CellContext`ginv[
0])^((-1)/$CellContext`\[Beta]\[Delta])
Derivative[1][$CellContext`M][
0], $CellContext`h0 $CellContext`t\[Infinity] $CellContext`\[Beta]\
\[Delta]^(-1) ($CellContext`h0 $CellContext`ginv[
0])^(-1 - $CellContext`\[Beta]\[Delta]^(-1))
Derivative[1][$CellContext`ginv][0] Derivative[1][$CellContext`M][0] +
Rational[1,
2] $CellContext`t\[Infinity]^2 ($CellContext`h0 $CellContext`ginv[
0])^((-2)/$CellContext`\[Beta]\[Delta])
Derivative[2][$CellContext`M][0]}, 0, 3, 1],
Editable->False]], "Output",
CellChangeTimes->{{3.817119714939983*^9, 3.817119719611507*^9},
3.817119760979968*^9},
CellLabel->
"Out[104]=",ExpressionUUID->"db6b4f65-90c7-4c37-9945-5690d8472368"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
FractionBox[
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}],
RowBox[{"1", "+",
RowBox[{"0.1", " ",
SuperscriptBox["\[Theta]", "3"]}]}]], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817114731164422*^9, 3.8171147570601673`*^9}},
CellLabel->"In[15]:=",ExpressionUUID->"6a34969c-5bbf-4acb-a54f-a9bfbf2c9f87"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV1nk4VdsbB/CzOYdzTOVUmsynEOWqWymV9UYos1CRKWMUF0mSBlNUlIpS
5qkIReFGZW8hMmUKGcrNPGQbk/m3f/uf/Xz+Wc+z1n6/37WlbP857sBFo9GO
YjTa/99x12x5dtrfUb21vEI9JCprktQ9KemMmk5UqY9SXvlUHCgpeRmZPDLg
y6Us9KAgh68tAK0x1NDWpxxHhEswJG+h3MUz86XLJNpO2t9dcbqHbrpaCrMp
dwnFLy+2PkAjaCJ43xKJtjxj7Z1fiELVht/0lRdJdP7QRddZiSfIQKnZVmiB
RG+au1On1WPRt6iUtx/mSDR/TrdzwikByTQLaGn8IVEi1nlrViMJJep9o6f9
JtGR2vtbf7cmI8ZQy2DnNIkGo7VKpp1T0aqbbUOjkyQKs1+ymFpIQz6eBcvN
4yRqWjgbOS6RgZ6b3kQ7RknkXSGuROa+QF47jprFDZFo08Pm6l/qWWg1V4ht
Xz+JbOWBe8TpFaLLukosdZOIa8H3y7RfDnKRky6p6SJRc7ep2LRGLkq76K7o
1U4inyz+wsnW10j3H/Oj2k0k0n7QzzOZ+AaJnjPs8flCIlGfEpMJ5zw0gKJk
rleTiFC/NE4u5KP1qSqB7FIS8Xb8lP0lUYg8kqZSjHNI1EZ8uDg6WIj0h9gR
qpkkevEsunQktwjVHvirm/aMRPqe+tbD6u9RYZD6Hf4YEj1iFT0acMKRn2Ky
3L5AEuVd0va8sIFAc0f5DLv8SBQ7rLxxyo9A6aeHn5p5k8itnu00qVGC/HZt
9Ws9SyJ2bCXXROtHFDjjED2gQ6IFoYIM94Ol6Hn4KI/GERL1+qcYjieWIpdb
Wy0vHyRRgdO1eNK5DD3JcU513E4i8793q4wtlKOHrDtdx/lIlFSV4DEi8Rl9
3F6sdb54DE1H58v/CPuM4ui1e0++GUOaTtU9jXOfUR9+/Yxw+hga5Z41LWqq
Qr+7r+pPRYyhfYf0VW6F1KBdCdIN523GUP2rRS5Z8gtiVwye2fn7F2IjlpWg
Yj1K3Om8R3DwFzogE6kSYl+PloSPjP777Re6O50x5dtQj5pcm6Yvv/+Fdt//
6mCb2YC6QofZOdd/oetV27V3WjehO+EhOj8XR1F67r8ymVFNyPZON5Y5Mooa
o9W4t9Y0oXShPh+19lG0xenU+w37m9FPs8z0roJRVMUdpEhb8xVJ/ineXO46
ikQOdbC/fGpBWXejIs0aR9DLV7c6ziu2ozd+I1W53sNomD0cpn2mHRlF/WvU
ZzOMZL21VeUi25G10U6rMe1hlHiQP6lnrh2tr46T8RcfRg8+hzmal3egtTr5
p16UDiHvnnsTWhZdKHx4rfIaniGUwF8dKKzRjWIHAlPCzg0g1UNXLG5YdSPF
Ffe4IMMB1OmmsIe81I2eOXo+NN4zgDY03umvedGNvjk65Xsv96P70brHQlf/
h6T4n2U33e1HgVvrhFY6/kOcHhWDP8/7kBNqeDLq2YMO7b5neOV9D6Il/y7q
uNODxLlqLmyM60HRdNHOqtQe5N2i9frB1R5U+dlRPKOlB+03nekRUe1BciaL
yQ4qvajFwfjH2Q8/0eBZ2azvWB+68snTVDv/P+Ty4GpxfUQ/Otg1t+/xuh/I
rW9bT97LIXRbxD9q8flX1G31jVnyeQhJ3+DBxoy+IuO2UMXa3iGk4fXhRuxC
M9pXPXC5b9MwGvuS47lLvxlx56atFgkZRjMfXhzWH29E0X5SqpesR9BtGGlJ
l6tHJWs2Ptm/+hfy2DWeqNdehvikgmR/7BtHi54Wz2DsCX53dbV8ks0UysBX
DJ5afsNtO0xw7prf6MiK0gvl+0O4R3mQ7T+y86jtXVdZbPwkLt6ryfP773mk
/OSK5szrSbyai/XCD+bRprTU6sMVk/hWCJ+4ZTaPWsfmXxSQk/i3oqgbqXfm
0bkDcfpCMIUfznkW/42cR4Pnnym4fJ/ChWMq29XfLqARmeSxQOEZPNddwHjD
sSWUlurAv8dgFq95uuZy9okl1NXOJZp5ZhbvL9uUoGa/hJJ9mz1Xe83imzZu
Gzl/fQlxof2d6dGzeFCJRmBJ/hJac4rgXf3fLH6Cff2Ni/QyuiW2NeGN2x98
/s3Emg8Ly0gxzfW88tU5fO33P/uPs1bQNyUbq7vhc7gik2YzILKC5LVuKzXH
zeF2FkJZwrtW0CCmcmF78RxeQ1c44nh2BQXbCrusWp7D403tvVZ9XUF9UfEm
Cb7zeNKVc8NKJ2nwzjZ8lHRcwJUI1p8QSxp4Culq/+21gBP0dMYPOxpwtjT0
Ovkv4N3hvZLh7jQYjinvSI1ZwMUTLU8O3aKB9xkk6/ZlAX9aZlCW9J4GBXnW
2w7vXsQfCO6OZ0tjoMYMSKRPLeLSxxszneUwcOuXKPJeXsRzH7kXEooYFPol
PWxnLeH1EtnNbgcwiF7wjrkkuYQL7ZLhrzbB4PuGlShevSX89okNPoEhGFh7
DG0NSlnCAxIWjaZHMeD6oim1SXMZN1R666EwhQF/08uaeINlXLzkwn3bOQx8
HTYHipgt40U/h+vrGVzgUmyg8OPcMj659ZtBtjgXiKS7c1oilnHbrHw9R0Mu
ePdjY6pN2zJ+uNDtWNsbLvBfd0Rlo9UKLqQt77yqiAu4SiRfCTiu4J3tfaGa
BBdUbGaxp11XcJ9Fi8q8Gi6IkjxGxF9dwXOQjtb9Pi54drznoX3sCi75SVZD
ez03vFxr1fy2dQWnNXXDe19ukC8/pd8lTSOChoqTfP25Yb7w0IidDI1g0eK4
9odyw9DTRqx3G41g7zAry4/ihlLRkpx6JRqxNaRB61UON/wjSX9uoUojtA98
1E/u5wbHidQg9VM0os4o8ZXNL26Id5nebn+aRhifvbZaYpob+n67J1+zohEW
USqNMRgdMpxmWUn2NMKNfG0aJUqHnYW3rWLdacTDlBSL0ON0aJqcLPQIoREb
ivw/aJrR4XvoUNbO2zQitt5anGFDh/H1p0tGwmjEs6XN3f6udDi/v9JO/wGN
eHsy0u5KKB0KcDfpulga0ckf7OJWTAeJqk7p9zk0QsbL0cdEngHLR4x+eTfT
iB0qP4wTlBjg/23gL9sWGrGbduqv4b0MCC0YHTjaRiPUwo71X1dnwKI532dm
J42wSt1ukmnBAHn1xrLjPTTiUfPkX1z3GBCXY3p0zQSNiHt6jl8vigHfrWta
/p2kEak2vf2PYxiQpHVY7NQ0jXg9+jVuRzoDmPnRP+/MUudFL+Q3K2HAf6ya
EmKJRjD2XB94NcUA5Tfn7OxYGCGwMPtxfo4BJQITp8v5MIJd4h6vQeMBQ6Mg
PY4ARkjq2Zp2CPBAnGGnQpMQRhx00CjlkeGB9dukNLjXYoRXFH+C5SkeOLzu
iG26GEZcOR3km27FA0WM7MpqcYwIkFoynbLnAaEMR6cRCYyIyB4TuOXBAzdi
T1pKSGNEVnmDb95tHkgJCX9sLoMRvTOPT/B/4AHTWJ0kKUWMSD7894WuUh4Y
ed76TuwvjLAOr7v3qooHQnbmZK9Twoj2LYzPxm08oNFiKz+3EyMajD0PxE7x
wIOXfQL39mDE3QTBU27zPLDuBJeTy16M0B1J9wKMF6DiePFhZYyoDPiR3SvE
CzX9mpd692FEca6u5A55Xig7VB85fwAj/JYGDq4o8cKVyzPmBQcxYv+xQLMG
ZV6o/uKi7nYII/K6Cx9c1OAFc/dH4Y2qGPFilSyj2IYX3lq73XQ9jBFnT3+U
inDiBTl2+nc+NYzY+txS1daNFz4kX72aSjlRNfISjx8vfDbqSaxRx4jHrtiw
/mNeyAHFhXENjDApjOWRiueFIv8puocm9X0Y+zhTqbxQe7ra5xflu7FuFo9f
88JpRcWcDi1qf4Osy86FvBBh6uandxQjWLvTog4QvHDVXaHsHeWg6o66H7W8
EOdxpjX8GEaorb80ktvMC31aXpkTlFds2cygDl4oJpUFjmtjhO/80cNyQ7xg
OPkjiKmDEfs0ey3nSV7Q/qaWZkV55v5135rfvOCabmyXS9l9W8EbdzoT/tE+
8VlXFyMULxrVq/EzQUc283IU5RFidHQtmwnVyxfa2ik7nuLIFEowYctH7PVp
PYzYklqsdkeGCbiY0J7HlH+SZtaWO6j1jotd+kLZMiQiGjvAhH1i2Uf36mPE
piaF/KbDTBC5ZNZtT7lNvKIh7SgTGpRstCIoP3KxHbtkwAS7wDr/t5RNCpb4
tE8w4ZLSy4ddlNlcT2RFLZkAAQz/Fcpf9HYfGbNjAtJp1RM3wIiwJ19sCBcm
7OiXXt5PWbvP5eoDDyZ07OmNOk5Z8yon64gPEwycXd85UVZb19n++xoTzO8V
jF6mrJodycoIZsJcu++OW5RVNPT2nQ5jwjVNT/8oynu7GE6CD5nw4qHRaDzl
XReLo/AnTKjTqfJIo6woeKnMI5EJv/Hb6zIoy6f9NcV5zgQplmrH/y1zaFCq
JZsJF5lhn55Tlv6aaBiax4R7Ths7kimLu5pdV3nHhIroENEYypsY7JejJUy4
3ep1N4KySFxVZ3wlE/Ll/HYHUmbvCeQ3+sKEZfM97AuUhWoPqHC3MMGSd4+C
DWV+h+mz+Z1MuHlfIFCbMnMp67FTDxNs5bTFdlGmRzl82jjMhKhPPksilGk7
xGeqx5kg+Lek7Bx1votlLZxrs0y4j5XHtVH+Y3HvuNIyE6wfDtrnU56e1vL/
SWdB7XrWjXuUR7cUftdks8CI2EYcoDz43kNwbgMLUg1ERgUp95rIH8yUYIFf
RtvlLmo+OoNinqzawQKtiMhKL8ptoiaVJX+zYGbdmYiDlJvzBGYvqLBAzyyj
AqNc03vVpE2LBW4KSg+CqHms9NsbeFufBSKn5barUS5bS+YeNGUBd9gq9SVq
vt8fsVmVZMuCTL+F6XOUs1LVqpyvskAG1ZYrUHlJP7jwZ3MQC4j9rSlfqTyl
Nr+RrbvNgmPJEhuvUo6lbw3eFc2ChqWTLWVUHsPteWHhNQsyXBVnlKn83l7E
3bILWVClyRqoo/J9M9InzppgQYrRi1t2lK+VDc2X1rLAWKzyVzDVD25bavLD
Blkw7HUz9BXVH/q9EQri4nwgxEgviEbU/hR6my228EF6QFHOOso6F5Svxcjz
Qa5BfWME1VdHub7Xb1Dmg9J7kdH+VJ+pSSp4rzHkA1XnwfN6VP/tsSgnmAF8
sNoj40gE1Z95KRtctEL5oEGS8W2c6tddI+fW3LzLBzauMUUGlBV92Y7cMXzA
VPFxY+7GCLloa/7lN3zAw3+l1YHqZ9HmOdOpPj6wnK2NaVTAiKeb9VZ2jvKB
7CcbwY2UN9olprtP8oFp627SUp6az0nNhV/LfJCStV6gRw4jVq+OTBxczw+e
kw/62rdiBLeu4kjXMX5gdv/oD6Dul+FS2xuV2fygu3vL3x+FMULifpvL3Tx+
2Juh/+fTair/VvqmJu/4YVraZ1fVKqrv/+yX767kh6J9x1bVCGLEgx3CzbM9
/DC1vSXrA3U/HniMy8puEoAACLpmjlF94CL6JfimADAs0hRukzRCUbhFTN1a
EFxEBLiVK2lEf3h/QJSDIAwoXTSnVVD3Nd/swMA5Qbi7WrS2spxGCNA3vA7z
EYQwySHWyVIaMfzbTLPlviCc6r7Hci6mEWmdXW7OZYLgvUXbwj6PRoim9+H3
tgnBJ6s1rSUJNIIPzZzpnBICi++rvK29aITWL/NZadPV4GVJ710RohFtH+0x
8+3C8LaifCFKewXPDy2zkpwRhkcbCjREbyzjjoyL3XV1bDg1/H6dOfW/aed5
JV/g6Rpw0PULWWlZxP9yUqjTPbMWXNa/st3DXsS/sLfzX9y/DoLLReYl1Bbw
dy8DYrZzi0DxK/srP4Pn8SuYvGFNlwiYfL2+iiTmcL5O36NueethpG1fEpN3
Du97JhWZ4LcBdLgY7+xs/uCRchvphaYbwVEsUWr59Swe8dSx4ozkJmiv5Qnr
Xj+Lm0da1gkMbIKPVje6ZoN/43+OpM0lFG+GnRY3fHTHZvCePjWfjyGiYCwV
alntOIMnH9q5ufaMGFQUKb/b1j6NZwdfFHbaIQ7SY5IRFy2m8RBTOx3uGXF4
n3Dh5oH+KXxPZ1JGSK0EPOqtQCbnpvDobTHZtTqSgFr0BWyXJvHrRHi0TqEk
qF3yEpO7M4nrbTZNq9oiBdYxNJ0iiUn8sFvFaeFbUoCqCoX88Qk8QdR2S82M
FBzwPZaofXoC31L6/JH+aWlYVtub54RN4BE7Pso3FkuDGvvRdFjWOO44RW/4
LM+B2hQFyRnjcdw2d1Ly1j0OVBn8E3CGPo6fDzBe1L7PAW/JkCI69zh+0Tiv
VeAhB45KsxXSsXE8dObi3YhHHNBgxrv8WCLxl/vnFh7HUeajt3NNkfhcyUrL
s0xqvfY77626SDyiUSC8rIIDLdc8/nN+TeJPU1zP3vzMgW09nw8VvyLxFK86
9aPVHDjZOMS7JpvEC0Qi5qvrONAgJ9734TmJd5qvOdv0lQPnuDKJDXEkLtuz
Uf1nDweyShf7f4aQuFKer3hqHwfKT5qvVQ0mcZXgjjmHAQ7sLprLfhJA4rqy
cTlDwxy4bBa39fhVEvc8Jyk+McGBMbevnEpPEvc76D/3eooDJQXxOTLuJB4s
+LPZa4YD7wyG0oNdSTz6VcqdP384wH6Z3HHkLIkn36A7Fc1zICbhv3VpDiSe
aeSg5rfIgTgVtXcMOxLPk/4kprrMgabUrGpHGxIvnpKZW1nhwD4+llalJYn/
DwGww/8=
"]]},
Annotation[#, "Charting`Private`Tag$3796#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {-2.1638981941515714`, 0.9999999999999584}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.817114750430457*^9, 3.817114757239752*^9}},
CellLabel->"Out[15]=",ExpressionUUID->"70cff46d-010d-4a9a-8cf5-3901b2a30edf"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"x",
RowBox[{"(",
RowBox[{"x", "-", "1"}], ")"}]}], "-",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"1", "/", "x"}], "]"}],
RowBox[{"ExpIntegralEi", "[",
RowBox[{
RowBox[{"-", "1"}], "/", "x"}], "]"}]}]}], ")"}], "/",
SuperscriptBox["x", "3"]}], ",", "x"}], "]"}]], "Input",
CellChangeTimes->{{3.817118655752342*^9, 3.817118685640291*^9}},
CellLabel->"In[81]:=",ExpressionUUID->"6afc45fb-65bc-47fe-b120-408f15ede40b"],
Cell[BoxData[
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
FractionBox["1", "x"]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "x"}], ")"}], " ",
RowBox[{"ExpIntegralEi", "[",
RowBox[{"-",
FractionBox["1", "x"]}], "]"}]}], "x"]}]], "Output",
CellChangeTimes->{{3.817118672704093*^9, 3.817118686099999*^9}},
CellLabel->"Out[81]=",ExpressionUUID->"4cdf78f8-6821-4e67-9385-8a091cc9cf9d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"R", "\[Rule]",
RowBox[{"2", "^",
RowBox[{"Range", "[",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "]"}]}]}]], "Input",
CellLabel->"In[21]:=",ExpressionUUID->"b66a0012-a40b-4041-8ea9-a9cad40db85f"],
Cell[BoxData[
RowBox[{"R", "\[Rule]",
RowBox[{"{",
RowBox[{
FractionBox["1", "4"], ",",
FractionBox["1", "2"], ",", "1", ",", "2", ",", "4"}], "}"}]}]], "Output",\
CellChangeTimes->{3.81711492411154*^9},
CellLabel->"Out[21]=",ExpressionUUID->"9744135b-7d1f-4023-b02d-1bdf3b29d60f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"D", "[",
RowBox[{
RowBox[{"x", " ",
RowBox[{"Exp", "[",
RowBox[{"-",
SuperscriptBox[
RowBox[{"(", "x", ")"}],
RowBox[{"-", "1"}]]}], "]"}],
RowBox[{"f", "[", "x", "]"}]}], ",", "x"}], "]"}]], "Input",
CellChangeTimes->{{3.817119205409995*^9, 3.8171192327379303`*^9}},
CellLabel->
"In[100]:=",ExpressionUUID->"7ceb4bac-ce7b-4adc-aeb9-95a215777744"],
Cell[BoxData[
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "1"}], "/", "x"}]], " ",
RowBox[{"f", "[", "x", "]"}]}], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "1"}], "/", "x"}]], " ",
RowBox[{"f", "[", "x", "]"}]}], "x"], "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "1"}], "/", "x"}]], " ", "x", " ",
RowBox[{
SuperscriptBox["f", "\[Prime]",
MultilineFunction->None], "[", "x", "]"}]}]}]], "Output",
CellChangeTimes->{{3.81711920936974*^9, 3.8171192332338257`*^9}},
CellLabel->
"Out[100]=",ExpressionUUID->"9c7df971-6bfc-41f8-a68e-fb9921c0b017"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"x", " ",
RowBox[{"Exp", "[",
RowBox[{"-",
SuperscriptBox[
RowBox[{"(", "x", ")"}],
RowBox[{"-", "1"}]]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817116910643228*^9, 3.8171169972761393`*^9}, {
3.817119152970964*^9, 3.817119183489099*^9}},
CellLabel->"In[98]:=",ExpressionUUID->"07932986-b2e1-477a-9d99-1b9701e3af0c"],
Cell[BoxData[
TemplateBox[{
"General", "munfl",
"\"\\!\\(\\*RowBox[{\\\"Exp\\\", \\\"[\\\", RowBox[{\\\"-\\\", \
\\\"4895.104895104895`\\\"}], \\\"]\\\"}]\\) is too small to represent as a \
normalized machine number; precision may be lost.\"", 2, 98, 20,
31478186269791883738, "Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{{3.8171191729103947`*^9, 3.8171191839132*^9}},
CellLabel->
"During evaluation of \
In[98]:=",ExpressionUUID->"f0c4d2f9-9d6d-48c0-b78e-b8f84a7f6bb2"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwtlGk0FPzfh4mURhgiSmMWS4S0cEfM91eW7KWoblkiWVJIydodlYiRsS/J
TmRLyVJ2Y2fsFCpbtmxjLAn595zzfM65zvX+evEhWDldvLmDhYWl8i//51f/
WXEcsw4is/z/aN14vSt4e0jdO+6w15eNuF1f8QSP94CbzQLTV9nr5V9VBYvu
xD+HQt6L10tfyp+6rep6Z000FtSmRNL+DM+eft8znLasFg9q3nS3ed8rKr8d
9IYYtonwDRcmERqSp5LEOvR8TSMZ+ui+9TLXllXU20LFV/tT4N+ScN15O3nV
qZhz1cv2aRCfVp6btGapSrHeMmVupMMDPX11SfZgVXn5978Ywa9Bc3E33vva
O9XuDbuIRdEs2PNQkRaH6VZ90ICTXyh4A/fuzr82rF9UPRDe0zKnlgO/g5k4
p3pOcoV5oO1sby54XeCwoKYTyFbSiO2nbT7o3nuzVjWpQN6x4dm+7P0WLlxv
Hmz4o0XuGTY+tKxRALD2dMDpqQk5o17egcn9Dj65czpJ2N4iu+dgSpf630GA
+eGIfd/cyTphExxLSe/BcPFC4wn9Z2QR92ojhn0hsKUE3kqWCCfPm8WnLB7/
AEd8DAfG0xLJVWpuiwsbH0BhaTjQ90wWOUzqInmBVgQ6u6LzMwLfk615ZCnz
wcXQL84eKWxXTlZc2TUwd7kEikPIcnVhdeRdg6OSc6KlUF3rrGu6QCd/rip3
nZ0qhfrHOS2Ukl7ym4yY2p8FH+G9vvL83rmvZG/KPexPz0/wZh4DImfHyQYu
BhYzamVgRs31LdyaIeOvSuVOc5WDpeHU9aRiBnlJlX1jqrccnL9j+DcYq2Qa
6bvWVEIFoPwZhsjVLXIU58eoSdtK+MMY0vsWtAMK3XRc7glVgfMQf9OG/C6I
n/lHmOldBXkBR6OjPnCBn5l4lctIFdCS/kkojMOCYwef7ZJGNdxi+mA7bATg
ihoLt8ubaih4pUywoAsDKporZHDXwPVagTUYwYGU1OC1u/dqYHr8PN/CFSLw
xTfuYPTXwC1uH9fQdHHY4C7KclaphUf+8qnHraRg3Df1wmJSLdxQyF3NiZKF
tmXqmtNOGhg/qx1kkTgGRbb/JSzY0+B9rFp6Zt0JSBxw0HCi06A9Q655Ok8R
AvT/nZ0/XgeXvTP07SaU4G6VZrhjdB2co10rbXVWBZMTJ5XnN+rgtpKO+fUs
BGoZhJE71+shljG64dp4FmSEeQLmaPWQ2xfl9Wu/BghQNuXuSDXAOpXtqELc
OfjzZ7p3NrgB7DNTCfcNdWDybr/37aUGYGQKDq+CPnSM00izlxuhLOtgzsaJ
C5DcnHj3p2gTDBWceBRVdAmWYz5If6c0gfvJF3mxXcagadsy1rXeBKc5emWf
CFyFWIWR+HqbZsgO05WI9zGBWbY144/dzUCvlhcSFzAD6OLiyUMtsA8r4GXc
YwFhScTG5NwWaOegFOVaWMIpVQPl5/6tMIPdc6DkhTUEYayZ3sutQMlOVTTW
toFvXzxynC3bIJaybbJbxA6ePkjHXT1Nh1dG0w/SMLehX/1Tv24mHU4G+jz1
lHIEaf5OKgi0g+bNpRtJ8s7Qkb+5Q3KhHSZGMDx4qgvwAaf5XrkOSL8Y8hXX
cw9OS0Qo+1t3QFWkoMWAuCu8WM5ienZ2QP/XMK5jTDcoGTzZsbyrExzd2XkP
OnnASE1ljiO5EzCSt4Ms1j3hZGjvTavsTsijfbLzVvoPzN2vnx0a6YRzZZSQ
0IVH4G/xE3dZqAs2ZbXtVQd8YECW9bO2XxccLfqIi/rwGB41y+gcs+gGLWfF
HsmGZ5BZUCyRHdkNO3JNy3O++UNXzFk28dZucHg03P5jKwDEbK+WCSn1gEGo
PefzS0HQzPZUjoW/F2SxF6c2ZamwPMON8dTuBYmrbrN1n6lwqCt2kvmoF3r8
dE/d9w8F56T8pMnZXmAe4eX0WQwDQdVBvvb6PsBFu5YgRiQgMZsFra0++E39
cp74KQrsMYyWmhP9cPD9JN9IQDSUfeHwK0rqh/nliLC5o7Fg9eD42ivPz6DF
ea55Izse8vKfD96WG4Ce0+p2kTIpMMM3Q9GxHIBxZ2EP1tcpIPlAh3w4YgBS
DPiLdpJSIUkFkzy2PgB9EhFB7aJpENZEsTGpGwSZrou0kzIZ8GAshHHO9CsE
cEsUUV+8gXeaiyniIV8hK/WtQRwhGxayLhix1XyFY3HPA0SKssHOGVtcIfkN
KJY468djOWCyFeatwPwGD3luDUSfz4dETMsTrMYw1D47suOJwjsgq3qZ+pgP
g1h434hu4DsYcjyisOA2DFFJEa2V39+BUFfQROubYXBZunYnjfIeQmP0tAN4
R+A0e3Xc2flCeCJO594eHAHTI5MZo+3FYAudsbMuY+AXVFlsubMCWFJWPw4G
jcGdt58p9x0qIIZdZKg5bQy6Ik25uboqoLHJBpfVNwbJDRifuqRKOGy0mXJT
eRzGLneki6VUwZSdZM431h/wdKxWyd7w7w+FPazooE5AgkXcLHaoDhx/SI0V
5k1D4lFkwBncBsPmX3ZXN00Dh+JQ8e7uNrj0OUCubXwafJzFMpSF6XCqZdLj
x4EZcJ9QSTiZQQe2gnReQf8Z8Ki15nCraYcYbwLZzeIn6CkukpdZO6GaXzhW
iXcOXAedFkSMumEP4ank91OLMJ2D3mqf+AwveFukk68z4Z+Vhv0tv4bBatCo
kq11FdSwjSX3Yifgbt1TKyfJ3yCqV39V3GIWCpy5Lglpb8HugFJ17ZVFSPZy
mJG/woKwmc/KknYtw+PETcPlWVYkdOpj9hfGKrB0D6MyTzbku5blY9y3DhL3
bdyNpHciwYdX9JpYt2B8JfoyppwDKSkRRbBb26Dz49bDsLu7UY353pvLCazI
YJx6BIfbg0zHtY14lNnQTK2VT2MuBsXnqVDkPrEjOWzfITWLvUj6lF2apzkH
2gMrlkNMbnQHb2UmOrkLnZszWSMa8yIBSrRwYygn+lxjzWoig0UHGPq1pQoY
9CGAZo5fwSKXQSd0oYIL2ex0HabT+dDEdsRchR03uuHi9YErjh/t8DLfDFzj
QUdtj9D1LPeh0LHVomeVvKidTwbjqiSA8EPX6qQisOhT3uOXMmyCKIY5utVl
woe8WKUvtH4VRNydStKmx/nRniFPLcfC/YjZsmQmzbEP/cggRCR6C6GIK3OD
oy37UMRhYfZSY2EUhQ2YcksRQNQ4mwZL/AGkxknbmrkliEwizOhckweQCUe3
QuDR/eiXevp6YsVBNMceF8q+UwiN/TjrXuMvgtzH8G76rUIoRfXYwTbLQyic
x3KnS5owyvVzxdrK4lCMoWujmeMB5G98Q5dtBYdUtvWa7E4eRApDyVn+baLo
7Xav+nmMCIqRepnbpotHVpkamsxuEfSoKjhGtxSPzOZSPe/lHkL6B43Tm8UI
SFIiOpL7CQ6dcWy4hn1OQEFleS8tdERRooiVWOsKAVU0Z4ZoYvFIrPZ1lME1
IvI+ctxT8QEeUWVrpLsqiOhog5Si/Bc8smGydzZJk5CNZYl9jDoBWRUs4Z+H
kFBtz+uz/ZkEdPvxpU2dUBL6wlH9M+oNAbleKuznCiehatrpyMs5BBSw4vqC
GkVCsf8ZT/fmE1Ce0vpG9CsSUpfYH9VTREDr1dt9GdkktO9MOWsXjYCoXVzB
tAYSCtScwLcNE1Bc6h27Z00k1HqfpY8ySkCp9+lqWi0kNMjvEaQ3TkBFgtTf
LXQSUlbzW2uZJKAhE3677l4SKq7i6Gme/9thTFhtdIyE4kVjExo3CUi+0BOX
9oOE5DhD/g34Q0DKfoPrNydJKG90ZJ8WCxHpSb56Oz1DQlc4EigNbETk4oDH
MRgk5OB+x6d+z99OKr7r75gkpKStRX7GRUR+e0d77q+QULjeo00NbiKKyU8N
+vWLhDoorJ51WCJK8WG3/fibhMri9JT8+Iko2/DmWe9NEjrzkPlLXYCICon1
h8h/SGhDZLWEfT8RVTAl1re3SSjAysiDJkRE/wPKgK3A
"]]},
Annotation[#, "Charting`Private`Tag$37696#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 9.048373977232828}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.8171170011216297`*^9, {3.8171191612154016`*^9, 3.817119183930393*^9}},
CellLabel->"Out[98]=",ExpressionUUID->"82bf5b22-f54c-4da8-bea6-61b7c42c3450"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
FractionBox["1",
RowBox[{"x", "+",
RowBox[{"\[ImaginaryI]", " ", "y"}]}]]], " ",
RowBox[{"ExpIntegralEi", "[",
RowBox[{"-",
FractionBox["1",
RowBox[{"x", "+",
RowBox[{"\[ImaginaryI]", " ", "y"}]}]]}], "]"}]}],
RowBox[{"x", "+",
RowBox[{"\[ImaginaryI]", " ", "y"}]}]]}], ",", "x"}], "]"}], "/.",
RowBox[{"{",
RowBox[{"y", "\[Rule]", "0"}], "}"}]}], "//", "Simplify"}]], "Input",
CellChangeTimes->{{3.817118954501877*^9, 3.8171189919657993`*^9}},
CellLabel->"In[91]:=",ExpressionUUID->"13e1541b-4ad9-4a40-89f2-be40a0e4d6fd"],
Cell[BoxData[
FractionBox[
RowBox[{"x", "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
FractionBox["1", "x"]], " ",
RowBox[{"(",
RowBox[{"1", "+", "x"}], ")"}], " ",
RowBox[{"ExpIntegralEi", "[",
RowBox[{"-",
FractionBox["1", "x"]}], "]"}]}]}],
SuperscriptBox["x", "3"]]], "Output",
CellChangeTimes->{{3.817118982445229*^9, 3.8171189921596518`*^9}},
CellLabel->"Out[91]=",ExpressionUUID->"dff49a57-ddf5-4e9d-aa0a-55006221f3c2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "+",
RowBox[{"\[ImaginaryI]", " ", "y"}]}], ")"}],
RowBox[{"-", "1"}]],
RowBox[{"Exp", "[",
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "+",
RowBox[{"\[ImaginaryI]", " ", "y"}]}], ")"}],
RowBox[{"-", "1"}]]}], "]"}]}], ",", "y"}], "]"}], "/.",
RowBox[{"y", "\[Rule]", "0"}]}]], "Input",
CellChangeTimes->{{3.81711900192594*^9, 3.817119038278656*^9}},
CellLabel->"In[93]:=",ExpressionUUID->"6def2df0-3761-4f37-b66f-ba9071b93625"],
Cell[BoxData[
RowBox[{
FractionBox[
RowBox[{"\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "1"}], "/", "x"}]]}],
SuperscriptBox["x", "3"]], "-",
FractionBox[
RowBox[{"\[ImaginaryI]", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "1"}], "/", "x"}]]}],
SuperscriptBox["x", "2"]]}]], "Output",
CellChangeTimes->{{3.81711903374153*^9, 3.817119038467194*^9}},
CellLabel->"Out[93]=",ExpressionUUID->"175a2c7c-fa54-45c3-bf4f-c4ed89dad110"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"ExpIntegralEi", "[", "x", "]"}], "\[Equal]", "0"}], ",", "x"}],
"]"}]], "Input",
CellChangeTimes->{{3.817118531078148*^9, 3.817118533157342*^9}},
CellLabel->"In[74]:=",ExpressionUUID->"657e079b-66fb-4614-816e-af41b7fabf10"],
Cell[BoxData[
TemplateBox[{
"Solve", "ifun",
"\"Inverse functions are being used by \
\\!\\(\\*RowBox[{\\\"Solve\\\"}]\\), so some solutions may not be found; use \
Reduce for complete solution information.\"", 2, 74, 17, 31478186269791883738,
"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.8171185334968357`*^9},
CellLabel->
"During evaluation of \
In[74]:=",ExpressionUUID->"f6532f4e-d02f-402b-985e-f8964b91f90e"],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{"x", "\[Rule]",
InterpretationBox[
TemplateBox[{"Root",
InterpretationBox[
StyleBox[
TemplateBox[{"\"0.373\"",
DynamicBox[
FEPrivate`FrontEndResource[
"FEExpressions", "NumericalApproximationElider"]]}, "RowDefault"],
ShowStringCharacters -> False],
0.37250741078136662132180845219409093261`15.954589770191003, Editable ->
False],
TagBox[
RowBox[{"Root", "[",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"ExpIntegralEi", "[", "#1", "]"}], "&"}], ",",
"0.3725074107813666344619918665801190408544781383913929553002`\
33.599986712079"}], "}"}], "]"}], Short[#, 7]& ], 0.3725074107813666},
"NumericalApproximation"],
Root[{
ExpIntegralEi[#]& ,
0.3725074107813666344619918665801190408544781383913929553002`33.\
599986712079}]]}], "}"}], "}"}]], "Output",
CellChangeTimes->{3.81711853353478*^9},
CellLabel->"Out[74]=",ExpressionUUID->"5f2bc73c-3ef7-4874-86b3-dd3ac3e99858"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"ExpIntegralEi", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "3"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817118477157076*^9, 3.817118512925106*^9}},
CellLabel->"In[73]:=",ExpressionUUID->"49f74264-7484-4d5a-b52f-d0892384e631"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVkWk8lPsfQGeM8Ywt2WWNJxN1RZSi+P5EpH+K3CgkS+RGQlmzJVSTEaZb
kZJk7yope55HhVHZkqYUSrrXkr0h+73/F+dzXpyXR93j9EEvAQqFkvYf/3dN
77WxNTp7YFRKsNY3Zy2ZeHy9VhtzP3BEzb89y1tDtowNnGQzXeH8E7E+sS9y
ZLHsp7sfM70he0ZM4gfIkhNl5kl+TH9Q0DN446UgQypqv69Z4QXBZbUeY76+
NGkSxtrcnBkChp+tY+1CpUi3JtP8NPcIECkyOpj4QZKMk5tWdmFGQ1XosuaH
/ZLk28f2zWn8WNCr5Knv7VpNHu/WiZ/lxUFMw2jgWZ/VJJ/KAJfqeNjfx4Ah
+moyUbt/jsxMhNQ2AW61owQpb1f7RDPmEiRqWXoNlq4iC8Kun2a5s+BvyTZz
E4VV5Oumvd/tmcnQEvl485yAOFkSKmXrIpgCB7dnRw7Hi5GhV2L+SuanwIni
1V0/xcVIRtkRn2leGjjoFcW66YuS7Y2NDZrNHNBVMYhnvxEh07sN8MPV1yBe
1z/OzVeE3CCwqrc28zqE5iWxXZ8Kk1Oy53aMs2/ASueI2edjwmSN9uBN9Zib
YNDYYp4tLkzus3tun+ieAb8qm1JFghjk6bshzQeYd8Bo7P3R0cMYuf3JN2ac
fBbI08/HLctjJOW41i4nwbugmzkiO/lBiGwO/TMriX8XuMuPNom7CZFOWaed
Jnn34HzVqYMZsXTSVJt5mWWbA1vSsDblfXRSo+xzBd6cA8XVH8R4CnRypNFa
1qH6Prz9w1q66qkgGTmGt1dn5kEC3Va9c4FGuoV1L9vL5oOCfa57cRuNtBBI
1Rll50MX/WHb0fs0UlxumaUWUwCPqFFKurY08o7Jh93x7kVg6toxUvJIgKxP
SqqxYZbArOY2//KrVLJu+OMb0cISuO+ZNLnFl0rW7lnf27zxIdAtEx9YWFFJ
ZwF3So7CI1D985UCnUolD9UtaKiplgL3fc/3tAgKuddws4+8dhks0phhUfQV
Ys93XkDIyTLws73TIfh6mbC6Fh3eVfxff/hewCx1mbCYes3ibHoC+tO+Hg1q
y4RpifdfElueQqubaFeCxRJhwMycwqACIpF53e3CBUK/a9eCd2wF7NRTGL4e
tkDoxQ/RGusrYPsR0UOiexaITf2GsvEWlVBJveftPDhPaN3p2EbZWwXG01oB
9pvmCWU5LOrX7zVQu6BlWd7yi6ALBWFDJwkIlI0xabeZIQatYySm8wmYP2Os
3LxhhnjFTpJfGiAgbSBnbhGbIZpYnZxLuiQ0jbdoS73gE1ekxnIyC0kQrTZ+
3r2DT8ho4C9f3q4HVm3/JcNtPwmmGVtQNvEFhGS25/vaThHy3ziMjPsvIFdK
Y9rFYIpgJGSIqb14Ac2MM0fPyk0Rw9x8GW3KS+g+pvxUumeSeGj7fJ1JxEso
cQkex/wmie1usxZe/g1gVHCkzydlgrCOcU946tAELOkp/tiXUUL/ar1l9tkm
aGOeKWh5OEooZ6kz2GlNkKhyIaAvepSYqPvKOt7aBPqDWgYZKqPE9WX3FGlL
LmQEnmC5Hv1BDER53Arc2gzFuzfkVH4fJmIjPUt1ZF6DeVbchQq5QaIi3Ksn
t6MVMk8pdZr93U/kmfryFKdaIThfqCeopp+4TgvsuCrVBvYXng00pPQTIezI
hnD7NujCxLjtO/oJw2zOXzZdbeDg08YI4nwlnAe+1EX4tYOG6KaEvD1fiG5R
iasaAR1QsM6FA2mfiI9OvrpBoZ1g9sfl6YM6bwlJK7Z3PeJBye6zlYzge8Tq
d16Ptzl/guZE8d9lzF4BvtavMMGjD4qKJgbXMj7B9p5Tr83SvsJijef3A+nf
oH4+dt+7W9+AoF5LsO4bAh+Cy62L+w4xlg2HymPHId0zX1HW7R8oc8XJRv8p
0Dn8dWbZawjKdlvFrbHiQ+/0gVZkPQJffqvf8e7bLEz1rdGTOzQK6U3OlxVL
5yGlOOKEo+M4vLHhvVp/agmYEgybsFsTsPsGd1l5bgXKA2KLk7Mm4VKVtvyo
KxW90+RgdmlTcLMowfxisQBad6FT62j6NGyTpkWLyAsiI9u+LVm3foKqMKNT
JZaOegISTNlJfLASFlNN6RJCj42OiDekzoDd+og1xTYMJOfQ9LEgYRZybELe
apcJI+inpD4/+wtOPbxnZqMgitLlfMSZYXOwZDZ8ZCVHDMXd+ePi1pPz4HrD
X6NOZRW63XqzMTlgARyV+J5G9RIoyp8zoRK0CKa3S3NFnqxGI+5aCkc8luD8
ZH0oO1oSXVkaFuz1Xga9EfWKY25SqPqH1fgqpxU4WGxF8TaSRu81t/cbr6Og
s23/6LnIyCAfbU9dTi4FlVqIdhwWlkX1Ds7nzFSpaLZk4bUVXxYZHB4ulMmm
ooamzReTl+SQ3wVLnomSAGr1t7v3alEeXfJmzFM5AkjNxzjKZ0UBPVNxXxmW
oSGkXlrAU1dEVcuJtA3JNHQ/w0ui2lgJtZaZD7MlBdF6O/uxkyHKqGGtd2NS
miDatf+2pX+lCoqvOJT9VYSO/vdohrN5QhW5aHx2dWbT0cVybbfC9WvRQrmu
0kZMCJU9G04TfrsWRdKG3vwZLYR00rduDopRR3LrjNw1KRjaKarwWdFcA4X6
O/wUCcfQNVUnjiIVR8qGx7nMcxjK8ShpPSeII3IpMHNXFIbki/zu9mA4EmGz
LSLOY+jN22IsZxWO7hS/vDZ0GUPRi12DW5Rx1Diov5WbgSFz6UWp4G04kvGU
CEmoxdBPKanJE/44qtqgsje7DkOXt7oZfw7EkevUBtVnJIby9Paq2gXjqOC8
ZePPlxjCGsLLd0biaMfdKLnjLRjSvEj9TYmFI4+ekfJdvRgypGVa83NxhOXO
sVy/YIgzUbDvTCGOHvhhxyL6MdRiHfxj8gGOZhY0sMd/Y8hR/b3AZBmOWIpO
jurj2H+fY5Jn6nGk239io8kkhpIp+8+FN+DoXWHwyuFpDGk1TdCXuDhSNUrN
T5nFUGr/Tj69HUcvKFnnHsxhaKpko9OVThz5cB8c4C5gyNkh/KgkD0diKdX4
wBKGevL2rNzoxlGpI3d2ZQVDs8G1oNaLo38Bve5Jsg==
"]]},
Annotation[#, "Charting`Private`Tag$28797#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 3}, {-8.31918132352572, 9.933832160716504}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.81711848451934*^9, 3.817118513133811*^9}},
CellLabel->"Out[73]=",ExpressionUUID->"26e2807e-1336-4751-8e74-d4414f081679"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"\[Theta]c", "-", "\[Theta]", "-", "1"}], ")"}],
SuperscriptBox["\[ExponentialE]",
FractionBox["1",
RowBox[{"\[Theta]c", "-", "\[Theta]"}]]], " ",
RowBox[{"ExpIntegralEi", "[",
RowBox[{"-",
FractionBox["1",
RowBox[{"\[Theta]c", "-", "\[Theta]"}]]}], "]"}]}],
RowBox[{"\[Theta]c", "-", "\[Theta]"}]]}], "/.",
RowBox[{"{",
RowBox[{"\[Theta]c", "\[Rule]", "1.3"}], "}"}]}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "5"}], ",", "3"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817118259896755*^9, 3.817118285169368*^9}, {
3.8171184560131187`*^9, 3.8171184560921507`*^9}, {3.817118596543433*^9,
3.817118612159177*^9}, {3.817118697976997*^9, 3.817118718273074*^9}, {
3.817118754442111*^9, 3.817118789499082*^9}},
CellLabel->"In[88]:=",ExpressionUUID->"3bd71288-3233-4171-a393-57251fb3dc52"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVlnk41PsXx78iM2XNEBHKrW6WlK2ynkmMtVsUSSWpUEqb7VaWKCFttyxt
WkSUbEUkPt+yxy1cLUIRhpF19pnvjPnN74/P83lez3Oes7zPOZ/nszzouPeh
eRiGMaTn/3eWvgJHIqHgHVvXTdzy5UKVaFHDOTEFZ8zM2Zj4cOFbj9ZNgZCC
q6bmHq7fzgXtW6vMWBwK/iF6Z/DsNi7cIzseo/+m4NtHm/s8PLjwcDZmpP2r
1P5xeZUQuPCsnv75dgkFdw3MlqUacuFtyPtKi30U3LIkKyuE4MCR8fmcgVI1
fN7zL9w1mRxQGdiQpqOshveYKkZ5WXGg1+pX4qXwRXiw3t/Bit1sMGvS4h99
p4rXZIbKd4awIbbVvuGnvioeuUhE6GFsyFP+sSR7UBk/W/qkOD+dBTnuZqf+
S1XCXeYpawk1WXDh6P4YQzdFvJV83F22gAmxss+iT00uxIMS5P4VGjHhQMKn
FV8KFuABC2ptn5TPQlbtSPa9I2ScnVZTt8h6Fn4cV5f3XUTCr8fbpfeXzoAa
edlyo0/z8bRk1uqYNTOwS8PJavakHN4LZT/nWU7D9C8/VR0dWZyelJp/kTQF
JzPdb+/rlcGZq5Tl6oYngIR26GQlYPjOPT83TN37DZS70Zldf8+hxqPr2r0D
xsHhcdTYnrcEEj1FqYu5Y0Ay2tlSpCBANK2kix1Jo1AYOytrnspFgVr7FJZq
0+FkzVuz+x0s5N1AexsQNwxqjZtq7GmzqGek69dtxi94lLMtz+XGJKqcgY4b
LoMQdim+6qfhGLrmutiQ//EHjJIMkn7pDaEV+32WvVrcC4HVngeDtvYibQsu
VtLyBUIP9Qo0bnUgxNbpcbTvAk9ZZ8FZ2hs0FJQQVe7bBo8nujuxlWXwIvzT
G9mbOCSoFM7c/NIOagPXdJ7S8mGw88UFe/9vYF2XEdHiUIgqqpc/ab8+COGY
/bugNw2omRnzUSWbDktXbOBlzutC/i3Xn/e/oIPzH4ZWOqu60NT9gpTn9XRY
VeNbUeHWhdTdvjm6TNMh7k+Ms+ZGFwp8sOF1HG0UQnQU2k2X/4f4HtwHk+xR
WKn+Le2Kczcyyjt9ss2LAQeuEB+eP/yC0neGq19SmACl+i22owW9CA8ooA3p
T0CqKdX5r45exD70KwYsJ6DE5GtyJ68X7Y3w7eftmQDGT3HQGpc+ZHrDIT+0
eALyv+yIgtE+1PlBeaO71yTUya535Zr8QIsdSnYrZU1B7HnO3QWhA8jdmXHl
8HPpHPiv9SmNHUBxnn/gjWgKtpicCg+9OYBG/bNWxI1NQdGzS/ZKaABVRcdP
TllPQ0qyWquJ5iDaXbY1vqNvGh4cTigc+DCItqnFdLrdmIHK5uz52puG0Ni1
vd1Od2eAUk479dpvCCUobf4KeTMQlr5E7ciJIVRCVu63qp6B1zxJlsrDIaQs
yR1bPjgDXnOxmYHYMGr7/UkiWDcLOWeert7cOIxojX+aPuuYheb+nPGI/XT0
w1HJLO/7LEwWGlZqnaOjKJxp8XB4FrJzzcO+ZdJRXk2tdSZ/FrDnXY+K2ulI
rny7c+IyJuwWbpgusR5F73Li9/ifYIIf6YL/gSVjyC7ma9pCVRZ06SRs75hl
IGNzNqdfmwWiRe5thpRxpD2hur9sJQvConqcyyzHEX+f+wY/WxboPEgq9IwZ
RxUutUN5wSwQaD2taZL5jUw1c+021bJATXbrqf16E0i3Ez1Vb2EBKLfO++04
gRQv96mNdbFgbVKKbHHIBBqf02BcHZP6k83oGyqbQPn0lIw+ChuuaxqJVrtN
Iv3K8KnoI2ywiplYLHNhCimfuLzLI5INiV8DRLeLptCcYUGDXgIb7ldEdcV+
nkJ99wfvNGawQSSrjpmsnkbZF3e4UN6xofZ8GGVL5zRS9bF5WKzJgTvMf1Ys
vjODJMo7FRINOGDxNPCIftkMmmo5HeWzhgO07TcP7m2ZQe12LzxFjhyonDww
e443g1JXLBO4hXOgn/bIJtJvFs1jz/ceaeCAeNzAUu5PJnrf9HJU8pEDuZ+P
RR2iMlHi7f2x2j0c4Hw6F6vhz0QyUFuwdZID5eo6W09cZSIsLUJSrcGFp4GW
j+IJJsL3GGR063NBTuwRVa/JQvFrO4ympe/22tHo9khLFprrNvZd4cCFTxHu
fZbHWUisP1R0NZgLSYLqpFPjLPSWed2x8AQXmrcsiTm/kI3ONTp8qz/DBc8d
f5eoGbOR6MgdWcFVLqyO2ej39hgbCSu8/A+85gKFsnmXioAt3VectJHMgybj
iDsLVnJRlV74fW81Htwrcwsx8eSimFkdi2NLefC+7v2j7NNcxMuMDni8jgcD
jxNHzOu5iDtoWqG4iwfdRV9Hig/yEDv6ftBgIQ9syVsfv3rGR6/cPfjESx48
Dd6YZvsfH0XoCq4sruPBPI91lx4SfMR6v6Pao4sHYkTbM+khQEwlRdVKIQ8y
8zSUBQwBms49U5vmwQfPnLOm5ZoEkn+5rybWlw9a89dtee9AIL33TtUn9vNB
rrBvwPcQgTwHlCt8o/mA2Qz9IyklUMHS3CKDXD6cJUV+JjaJEDJOeaZRzAeL
+wlnvx8UoS82xwrI1XwY9zaR/HlJhOR2bXgy9ZEPduFyo+QPIhSY0Xb3jZAP
Qw3d8bWuYhT9pPT2i/kCcI3IHZsIFqOrLzOyHqoKIMbc2Cvxghi97dx3M3mV
AHKqRor6a8VoiTI7zdtbAA53P97YbjiH1un2pDjvFYBd90pWseMccjWpS94Y
KgDt9YP/nNg9h6LcUxL14gRQbEcUrb48h7qSl54ZLxRAkqJxc/zQHGJkyMT0
vxKAfdEyhj5/DmF59MgOJABNDY1UE0UJMq0vPVn5WQBN3/VzrplLkHNXxvHC
AQGcjesLHHOSoD2DZ47d+y0Ao0vytuW+EnRZ4nQ4UUYIes/93XNiJOixslFI
pKIQlhqYLK9PkaA3uiqHQjWF0Nlp5BWQLUFjtj2Bf60RgnqFiq+4QoKcYo75
ae8SQnLPn1HyvyVo9yVvX6WDQqCdWxIkz5OgU5kbdmDHhbBGxt7cSQbDH76S
2Ua/IIQIGDisqIjhr+vpW3quCSG1t9xEYxGGf+xq82i/I4Q0T1XKLw0MF81k
uJSXSuOFKhxp08NwCnbWOa9G6s9BM4xhgOFGKoGbs5uEwLtqWfpxFYZv0nPe
dLlTCHa0czLnjDDcb40RxPUJweJR5SrmGgw/bqdif3JUCIFZG0fNzDA82YNt
c5AphNkD9QvsLDG84nDdencyAd2L96eXW2P4B2aY3kIKAfTSolsadhj+4+wS
+Q+6BMhljQ+6OGA4S655MnU1AbNRM8buVAwnX4347GZBQKPVWUNdRwxfqmlQ
u8CBgJx/ll5/txnDzR5+etLqSkCEppH6RmcMpxnGpqduJ2Ct64vQ8zQM9y83
inALICAN84EcF2m+tt92LzhMQDAzxPWaK4ZfaLi4ufU0AYbrq8x93DA8e4uF
cWocAd9/Zj2fkfKLLwNqbqkEjF/+GBDkjuHv910Vkm8RAF+vcZ9J+cuY7a+W
HAJuVZ7SaZPy75OM1pRCAiYfHY6olzJGZJa5viKgNaUm/5aU1S843SYjAhwu
in1AyoZKzISWVgLcNyutaJDGc8h8EJrSTcA2imLZH1L21t+yzfUnAVty/O8G
SPMNKRBuII8ToG+RER8preecWYF+C5uAxCfX+aHSeq+/8SGlSAioLtn5wFqq
R95m2WmXhSKwGV6tMCbV60176ReShpTnR3ZGSPX86BNQ16wvAnZ//8UBqd5D
PxTyLxmJYF2i1RtjwHB+SPUVFysRXGTHzvnaY7jibHAkiSqCbBPGQJAthi8/
o7632V0E1Oieya3S/rqnHzdxCRTBzxctJZ+k/Q/Q0FUnhYkgFL8YccAcw0/n
fCCaIkXSf6ZL0ve1GH6vdGUb7bIItKmP0iKk8zXd3XuYVimCDsJiXbB0PuUC
Ur3k34mgwNx4k4EOhmuNrrduahMBX1s1uVETwx0FN8i0QRHEWLXF16ti+C1d
16fOimJ4NhT1uFC6HwX5nKvzNcUgL/fg3k5CgmrX5kY1LhcDZl7pa8aSIPqm
OWfnDWLwbpGYhf6SIOvgV8NOQWJwLeRnCuok6EfxMgOnKjHYbHrZ63VSguq3
7bP0eC+GZcNWidUhElTAvE/zbheD0/n5pvIBEnR6vU5Y4IAYQlUYT7a5SxC5
TuPVOfIcHFUQKFctlyDzfxfSKvzmIL5pTYVN+xy69Jt9eJVgDvY1NHnIUeaQ
1q1hPzldjBqduj4u/YwIvdj98CkrRobaIUm+eq2Fj3zt411baudR/SKec0aO
cVBpwDEDG5EsVfvfvz5fPsBEvIWbZat95lMnqxIjHrVPIa9O2/W62fLU1hb5
5L2NDES2VXj39r489eZPVx65lIHwJ9899uTKU5mhSd9r7zCQaczf++8Wy1Mx
jYTBzScYSFH/dfqSRnkqqPfvxnUYqOWo+ZAGU5561NBoR1TEGKKSDa8re5Ko
C3NL2KUmo4h/kq9d7EWihp466JmgNYpKepvztuwkUf19MsP85EaRXklwTXoQ
iXrPcc9vgz46Evk8oS/8m0Td+spk77J0Onqdq29PyidRfb+3RlRNjqBwpenm
/OckKvMg9+Oi7yNoVXSdN62MRLXRxO6fbhpBt9z3hl58S6L63ZTEb3swgk7N
3rkp+x+JSnkZ1hnuNYKMdh/Ry/1GosbSzGwUHEbQYIN1oeMPEvVsYOlkidEI
2pb9re48g0S1xk4sU5MbQeR5BW7Lp0lUO0jI+DQzjFBYdDfOJlHlkxjUjP5h
FPWZti9QSKKeVrmte+DDMDKFxeMSCYl6ZXfcKuvXw+h/dZ6DUw==
"]]},
Annotation[#, "Charting`Private`Tag$30283#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-5, 3}, {-2.0365202087767305`, 1.3961381174203673`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.81711826124573*^9, 3.817118285378669*^9},
3.8171184563554583`*^9, {3.817118599026042*^9, 3.817118612354436*^9}, {
3.817118702491795*^9, 3.817118718504663*^9}, {3.817118754989955*^9,
3.817118790104854*^9}},
CellLabel->"Out[88]=",ExpressionUUID->"203873a1-0dd1-4567-8d12-97eeeed127f7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
FractionBox["1",
RowBox[{"\[Theta]c", "-", "\[Theta]"}]]], " ",
RowBox[{"ExpIntegralEi", "[",
RowBox[{"-",
FractionBox["1",
RowBox[{"\[Theta]c", "-", "\[Theta]"}]]}], "]"}]}],
RowBox[{"\[Theta]c", "-", "\[Theta]"}]]}], "+",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
FractionBox["1",
RowBox[{"\[Theta]c", "+", "\[Theta]"}]]], " ",
RowBox[{"ExpIntegralEi", "[",
RowBox[{"-",
FractionBox["1",
RowBox[{"\[Theta]c", "+", "\[Theta]"}]]}], "]"}]}],
RowBox[{"\[Theta]c", "+", "\[Theta]"}]]}], "/.",
RowBox[{"{",
RowBox[{"\[Theta]c", "\[Rule]", "1.3"}], "}"}]}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",",
RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817117020437071*^9, 3.8171170338371983`*^9}, {
3.817117398498486*^9, 3.817117468187888*^9}, {3.817117512932067*^9,
3.81711758131702*^9}, {3.817117681614869*^9, 3.817117690510559*^9}, {
3.8171181424068317`*^9, 3.817118190671282*^9}},
CellLabel->"In[63]:=",ExpressionUUID->"39644cf7-65fa-4952-a674-714ff8619dd6"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwtWnk0ld/3Nlzz7FZCg5BCyJAGw36LaDCVKTJESEiSREoqpFKSWUgpc4Ui
SZ3XLPNw7/1IZJ6ne433XsrPb63vP+esZ+3nOXuvfca91tnlfPWsKxsLC4vP
RvP//Z0x4/n1dSJuVHC8++NHCowGbVn6vUbEN1W6P9j8gQImwn0rXxhE/O2D
UyGB+RSQOuzz9+oCEVdoYV7VzqFA5eMX3P2jRHyXfTrrhzcU4Fb+bwfeTMSF
rkT/0I2jQKzfhdMhL4m4vtneQf5ACvzlljexSyTiI+dv2By5SQG3VJrZoTgi
zvorc8X1BgUO1t63oj4j4mZZ1W++XKNAt9g7pwv3ibjw9b+P9D02/H+buIld
3oiXze0E+3kK5LFef8tykIgXPPJO5tGiwCHzXM4kdSKuVvHBuekQBWrfDrir
7ifi61haVaQmBfoNzZSc5Ym41n1uQ041Cmx5plRSJbnhH/8n1rOXAvclxuvC
WYj49KUhpvAWCpxTt5/ibxDF/Uz9RJ7PkmE0NNb4Xa0oPn1dN5N1mgzXKY0f
dapEcV4pyyc+E2R4FnjEz7tcFBcrL9c2GCZDFRL72/pBFBdXP0xv+0UGZaMO
wZgYUVzlfn6WUzUZOFwN1cTtRfHZhQl+hwQydDioWk/ZiOJp/YcNMmPJkHZO
8vZ3K1E8KfZs/1Q0GTSN5mqczETxnQVjSlcjyeCmnmCTqyeKFxPd5izvkaGe
dSxES0EU3/zhNu8bDzJEpoW32q+I4JfHB7fLapGB2FXj9SZaBF/2cUzQ6yQB
rvg6IvSZCB7PtnxosJUEXndvv3V7IoIrPLD/eqeJBLVy6j0KYSL4qmv16bwa
Ety6kX76U4AIbvTpvEf/FxIMigYpVDuK4N4sfVIFL0lQZLx/fERJBLfit/Vu
v0ACx9d8hHoFEfxB1TtfTnsS8C+N7szdI4IfKfRnHLQhgVtKqrX3LhF89pzl
/ednSCAxxVu3vEkEb2cTVhA7RoL7ESPvuNaE8U2pmkIB0iQ4W5V8Ub5BGE/C
Wq9e6+8EWdLwn7paYXxsPmQL6XcnLA8r27pVCeMEHl45tf86IYmzyiyjXBgv
/e/Llf7mTug/OaWz/aMwbhfJkOL41glX2rS2isQK4wZXv4t4xnZCRG9PE91e
GPfoNfrvoV4n2M7KnUiwFcY9M048NNHthH3rPlUHrIVxrrlHnMKHO6FViqPM
10wYv+ao7PBAuRO2uChlTR8Txnv+DfcpiHdCxuSde/17hPE1UcGIgJkOCJrT
8Xo+JIQfe1qzNBbdASlOB8exXiGc78fMyYuRHVDeud+FRhHCz7oFBv8K74B/
X2TszjYI4TKz+jdKgjrgfgiP0aZCIfyIx1FhNdcOeCxCVkwMFsIXzp1LUzzY
AcnqXlOvxIVwaxJGIPzXDt/euV4yIwrhD2Jin7a3tUOPmOMQi4AQPrWKmyU1
tMOOtTO/nViEcB0meIv9aIc31QcbZcYEcbWQkkvNb9shx5I9L+uzIK7w8pCJ
5LV2KL2Z7PHRVBB/tt/eejNHO0i7XHvXdUIQx7+/0Hn0tw2emp3oZz0miP8O
qQ5cWmoDZ/llSwsNQdw5RqOzZLQN+H6fOcrYKognS2Xv6qlrAwddnq16gwJ4
8BGFmpyINmDnCKih+Ang8w7GOURCG3jTTFhYvAXwtPqi3ewrrdDVu1tL/pIA
3vb1llfzSCvkl3QWBNkI4Go7GVxKVa1g5a6SIqUrgEu4mltuudMK2Y2jvh5c
Ang+5/GpuzMtYPLCUupfEj/+MfhS/sZBBbfUhE4axvDj+zwbutfymyGzo/7a
80h+fFvDs5S6pGb4J6pdJX2XH49SuBQqfb0Z3sdIuxm68OPrct7hU7LNwB83
l/dcmR93lAtdLwltgoaERwdlqvjw5c1W22I0GmH5oN4Fr3I+fNrsN2vXjkaQ
7lqLKC7mwz/NSMVy8jTCra0+3YbZfPjVKzM2Ur0NIJ9kdcfrKR+++7ZWul5o
A0Qky1QVW/PhnGQnS7WWn2CY+t3kxDQv/lnST2TBtB6oT3vWCKO8OOGzve7w
oXpIDl7Nrejjxdl+pXCiXfUw7XiYS6uTF39EdeVWXaiDF9LFSKmMF58wfbCb
EFcHf7Ly9xMjeHEHpYvsZ0i14F/0UvSPDC+eqZiQ04bVgFRGGZ68nRdXMSdu
qZargZ8xv7ytxXjxL1f1fqfy18C2G2KNbby8+IecZ//Yu6qh8mDMgyoaDy5J
io1IuFINgt8fL2YjHrykb0GlMqYKMusCKdfP8+BnpUjKZxsrIEnNXy/Hggcv
FDUXt8mrgMhU34I/xjy4oeqHczpPKsD3uufjkxgP/rYucV/qqQrQ2Wmvu3M3
D17hknOruA4Hkj+W2TDLjePFRyf1/RGwyXH577rPjaeb7Ax24PsGS8/Zh6yC
uPH4y04XN1WWwfjqummkHze+f/cl78CAMmhpp8uvuHHjfm9inE2Hv0LSncne
ptPc+FlBm7SdpaWwn9x8PGAzN56rEu28bFoCDqGxm1uzufAeUkpMuE4htMAy
V8AbLhw/5mg8O1sAsGrNlErhwvk5dd6xpxeAlK9kn28UF/5cXD/nAGsBDDq+
yd7iz4UnfjYMPHf3PbhpFWg56HHhJ1yYAWI22eA93+g008uJh1Scqp3gfwl/
3itZxP/HiV9gNUvTyUwC08tRBtDOiT8f0j5K1E2E/f1nFaOrOfH0d5MV2pfj
YL7516JG3gZfR84k3zYK/HPGHt4O4MRZhjn0NM9dheAL7B/4iBt6r/h4elss
Kmg1fEbi58R91l0bVpzj0aBupHcqJyeO+SXcfr2cgAy2b1ZRYXLgPhLtGmvS
L5Fgt1zB2QEO3Cwkbj97fTpKMz9VlPSRAz8nV3sy0SELIYPokj1GHLjw+B7t
lylFaL6YHE89zoFTA+22XBH6hGR3S9z8Chy4e3mdbdn9TyiCPePgaXUOfP93
J+efHp+RGf651FuCA+/nKDD+iZWg/sNdZcXjBJz6KvJ2O6EMsSjtRHphBLyD
uXsqho6j21uOOoQFE3DfqEPbeqECraw7/629ScD3Sl5Qv/WwAs12ZGqd8iDg
O8QsCwrFKtHvAOVSM1MC7vJOWHeXdhUqqdYptBcn4GW0tUCHuBp0xc4u4+Z7
dlzuvlekbmQDGj8efOxrJjtOutXZ2P6nAbmopA8wX7HjWMhr21rVRmTLNrwz
+AU7fm53tBS5qxGdyPZMCb3JjvtqhrrHKTYj2cVbcdFH2XGLWRKJdbgVdT9J
ephHZsPFz8w31LZ3oM4aqfwLrWz4R1DvOv+vAzWtZ7Vt/smGW2+tVt2l2Il+
XC8RDylnwzl5w6/rhHWiN+c78ywy2PD7Swn1uBYJeSgKtP31YcMFHtdGbyki
o9WGkK1m/Gy4T47SP96aLrSN1z1n8RgrnnXfUT3pcR9y+NEUKa3Nig+Ew0Wp
n33ota+qj9kBVpzAtVqzwN6P5H4zNfP3sOLRf+1qJPT6kUr+0+qL/Ky47Meo
tdHKfnTM5FNfB5kFN5XwsPCoH0CXX/zbXOjOgnc9lRw1mRxCngcUOH5vW0fu
JmH572+NI1+Or1n+QutoTa5ZNPvVOLpFNjwlyraOSiSlpPKrx9HjG65RJ8f+
oXM/V740C06g3OJ08dLCf0g9DBeyz5hAEwfElOMM/iHiy2mLmqZJdEmTYG3q
8xct+22r/io2g7w5YxiTzn/R5PuDSelaM8ifsisl3PIvstkun+viOIPC/WHg
+5G/iMq1xnU7cwZlltzy3MfxFw2vlpvmqM2iEU3aXZ7kNRS5PL7tFzaHpjlD
pN9FrqHSoksf/Z3m0CJFsAa7u4H7prPq780hws19vAEua8jh+3v9OxVzSPbL
pdhR5TUUJt7ywW0HFV08+Ce7qmoVbT6bM7IYRUVu2QetDL6sItWUOVPNFCry
EI9m/5m7io4ryBnqZFORz6qeQ0v0Kjqdzv81FlHRbZRD/OW4itzvyo4cmKKi
u/vZK86br6LD7JKKPktUdP+1nfcfg1VUfb2v/8I6FUU8EPo5pLSKwCj9mr0o
DcUa3gieXWWiox2DehEaNJRQ2qJ4bY6J5rsOOmhp01Cy/N5fC4NMNK1+5GeM
Hg2lJt8L96cwkQtXBkSdoqF0vt/qjJ9MpOHrcUPxDA1l3NYYCPrORFN1/Fvd
rGkoc+bps38FTBR25b8WbXsaet+KTbAnMtFf7oOMz5doqABLjg9/wkTBt9++
OuNFQ58LF/R47jLRDodKPMSHhr5IG9Oe+DKRg8mbSfCjobKYzDRBNyZyHSrI
irxJQ98JLEbRNkxUkG1w1+UWDeE3bBhE4414dI8vV9+moarRosx4jIlCjlVE
5QXTUK01v4W4BhNpln1t3hxCQz/rXVlT9jCR1fteVdZ7NNR0GH3YIclEH0ov
6Hpu4NbcrXavBZko0brP/8wG7pD05ZFlY6LwAnOnwg09ObKxJHOJgb4VST6M
uEtDXX9lXeQnGOiUjYg/6Q4N9XgHi+T3MJDHVHHFiyAa6uv774dyGwMNbLpG
qAigoUEzVa/CKgZifB7ut7tBQ6MVj8U1vjDQ8jErdpdrNDShNlxbkstA1Cxl
GdJGfqYzdPwOp23ovaIJeRv5m9uUsKs8moEStvLfGnWiofkwaotuGAPlxTm4
hZ6noaXlk7crAhhoyMf+x30LGqJfypDX92Igk9LZx31GNLTatUapdWSgIk3p
qUR9Gvp30ir0pDkD9ZW6bnmvRUOs3z6qNhkwUMcy2UFCjYYI+3j6TI4wkOK7
fPW+PTTEleoc2a7EQA5iTTLMbTTEK1h+2GIXAzV/c++/LEJDIlTvWBtuBmK+
NcP06FS0yan+aM8qHRluPsSXN0lFWzt2zTnM0VFLMn3lYg8V7fhMOulCoSOe
eNaouu9UpBBwZN37LR1tL2a7ZBVARXivicJQPB0NJ08tvL5IRVZ6Fy2tH9ER
QebmMRmTjfUuGJkH3nREDQ7qapWiol9ve62FD9ERubHMw+zWHPLmnb8fqkBH
UiuEyGn9jf3pw/mBvo2OSu/0NuwXnEP7tVQIA6x0tHuJv3s4ZRZFtIcUFDau
oMIo5lRm/gzacTDu9+4fK6h+N9eZPd4z6HNKDmdywQraUXn1E0V5BvVf6rC7
H7eCpF57RGz/MI0O/pPhMXdcQfmH+5y4sqbQqEKd0+L8MuqO3nSlJHkC3X7+
O9J9ZBnJLe9Jf3J+Aokuz33p+W8Z7TzxLP/Y9gmkW7FVsKZ8GR2JuW37KWMc
xVl7lMWFL6PXzayiuT/GkML34BGewGXEUOXIyIgYQ7h0jHCw5zIqjcg9tGw+
hqZnvrm5mS0jO5FfDVmzo0g/VIB4UGIZlflI1SWpj6LuiV26efzLyGrpuS6J
axT5mGpe3rm+hPjv1a7L9I6glxKOiGt4CS1lC45VPh5B8wUFnl3vl5Bt7Aj7
Geowet1rXh14dAld4u1jb+geQmrDakySxhI6dsjje3L5EKqeFNm/f+8SCj2Q
39SeNoRGV1pfjgpujPcc83R1GUIKokbXzXsW0etH+W0tC4OoyEBfWunmIsp0
87ofumsQ6RnLnIvwWESV/5SrA7gHEcmc7dmQ/SJiYSe0v58bQMsXcEaS/iKi
BB8/QPoxgLSCtNs5RRdRilVy+aTjAKr+qBHSn7+AXK7guYr5/ciyhFiilb6A
3H2asp7H96PR8vmp+JgF9F2Q97HMvX7E3VBgbXxrAZ2j7wtrtepHxsP7VMoM
F5BkvPp1eUI/omzd/SdmcB5tqTx8817THzR2b7O24dZ5pH9y4POjhz2I987H
uRjeeeSU2M1j6dyDlANOZvSv0ZDF5UOVjjo9yN/7Du+tARrKP//otsrib8R5
fqQrP5eG0kR59qW5/EayGsU3RHVoqHGyMY9h2o2cRy0+9jpRkaRadVrU6S4U
PjDrrGBBRU7mmqY/9nWh3J6ILTcNqOjCx4rEzYJdaL6j/I6wIhXdytq/oNX+
H2K7ezIxfHwOPdR8s8fW5j8EqhPtZwTmEK1c77q/DwWVxe09Pm41g2pl1i3t
vpAQ9/mxi6zaM6gR3xGvn0pCVlKZ9yV2zaAacGk2fEBC87kyuNHUNDI3VvmX
akpC8vgOrcK708ig3zHv3kQnSpzcpHorewq17nXznNrViW4A63Z+5gSSu17e
lZbRjvZP/FpUSR1FKfrC56d+NCP9st88fzfyzM38Mvwiqhr55HykixA7EXf9
5bSrRl+QlZvM647bX1H/f1IZU1/TUF3Tr8fq5qUQwueYz3M2FY4oVRSZJXRC
fVnf9/X5L8Dmv7nHRbwf3I/n3OfTqgbbC7kdpRr9UH72WtS9C9VQdAp+8pv1
g8aQSi93eDU477xc8jm8H7qky4ZPt2/UI/XlzwmL/RB6R9kq270GHki6HH/b
MgCR/J+8B5JrgVBR9GHowRAcOykslSr4E7j4ze45z45CyaxrKU23Bc7tscU1
ecZgTdHm1a3LLZB7zGWdV3YMbj3tS9sVu1FPBgbc+WQzBnJTfwiNEy0QP5oe
SKgZg8Gq0Ysx8a0gV0G7lvlyHMRVJl12BLXBcf8Y58kTk1BKL+wWH2+H+OjU
1z8ublyFN4SokevtMJ6f1f8ieBL+ujU4bhLrgMihbw5anychaKFM0smgA0hm
w7aRO6eAbJxet/KuA1wUD5grL09B9nVtvVOXO+FBP0XPN2MGxlJnxVTYyPDn
6+krAeUz8KJrIosiQYYjMXh8MHkGWtYa6uLVyUA9njvxmGsWBHhHvji5ksEh
705UhucsaPjNPJdv2OD7y/4mqc/Btr9nhH8kUoDBcfirpDMV9HOaH0kadUGm
70JzmjcVqmx/bXd17wKLvveDu4KoQL53y6U9tAsKSqX598ZS4YykcR7xRxe4
efI7atRSoThSj3ZK7ReQ2voIxgo0+O/7i/MTu7qh4GW4WfA8DTTpTcbhu3qg
kRg+JsQyDxrMLA/a8R4YfRIW/FpgHng0BOhJHj2w7XZofvXeedD0O30463MP
RNjd5+ZznIe4elX/ltO9cGF7MJ7QOA9adfMtBg//QFDcHWv5X/PAyUj04Cn4
A/ECd2bLRufBftvFcclff6Dpb9C2P6wLQIryO625rw8O/QkMkD20AI139pzx
pPSB8Ksb+wvfbtg1PKbl0/pBUexG3bGiBTh6mEC4UtwPBlF+DiS0ADuOdvmN
NvXD7bvXI1e6F0BuYJv4vbV+GHe8Nq4jsggvuPR6AhwGAJe6kt5wZxHGm18H
f1UehN+JXgftniwC1aBGh/fUICwLe7XMJC6Cia3V81zXQdjH6rkm/HkREl6o
jw2mDkLigPs568lFKLDR/nBTdAiuvnERHrZagmGq71Sv4DA8C0xKeXZxCZon
/moeUx6GD2Ytew/7LMG2aK9D20yGYfbfwaPPHi0B3fCA+fGoYfA6z+d7qHwJ
jDITpMS2jkCkGvZvsH4J+g38czq0RiCf58bjp+QlOLGmkqxzYQSmvvx5Mzi7
BB5Te6+Y5o2Ax6aizshdy+BiVRJTe3oUHk+NOh5UXgbNtpfhVv6jkFspOT1w
ZBk2hfln01+PwoRPGOGgxTIk7jDISFwbBffmcwcGwpeBu2B1vBuNQcTbpxVP
YpbBQGnLXNLCGGQHVRprpi8DpVjm6O294zAmv8/tyddlMJ7QgLC4cXALX48/
ML0MdhVSL/YETUC4vYZMP30ZWP44EWJKJiBT4/LHxxwr4Fiq9ixjfgJGBjvq
+nasQHnEOsnGaxJcIJP+6MwKbMmI3xd+cQqc6Ua2f0pWwMJtefCw0Qzcb703
GlG1AiUXTTZtezgDbzJLfNXbViDm1iILVjEDAxZSTyImVmC2qmqFR30WLhQu
fFPbRof7Z837OPnmICRi74nevXSI9U3NN9Odg3RHe9LDA3TAT1/fctVnDvoE
6qZ7TOhwoYjGxdE+Bw4eydsf3qPD3f2nFJ2PUmH1F08L7SkdWG60NT+0pELi
ycBgu2Q65B5dSiFcpkL73nN9qp/o8NKRfeu/p1TwTqyLSkF0WHQOyQl4RQVe
7oMYVxMd+qTMFQ0KNvbx2ObXPcN0wAx1P3S1UqHfKuyMIY0ORdxSKal/qHCn
dpG16C8dTrAwjYqnqVDyrtP54RYGBHt9Ee/jpIH5Zj3ivDQDnnVRy+ZFaUAN
LaqyU2EAgZQlY7eDBvIu0bJqJxhQKZO+6YA6DWo7WcgpFgzQ1wg6l6VNA2c9
nzAuJwa8PlND9jtOg/WivgO+VxjgYFJ24JUxDVKkTUd7Ahkg8NpTa68lDQ69
+BFvGM4Ax1MPKkTsaEBmVTYsesGAT5bSpfbONPC9lrqy7RUDCuy7pQXdaSA4
wJ/9MI8BD69UbNl9hQZ5ZrfPzX9hQPijV6Vvr9HgBD7FbV/NAK4dB7SibtBg
WOX817q2DRyZ1DsaQIN7rxouq/Uy4Dd74cT7IBrsEDoikTrBgPru0qLROzQo
C85p4FpmgE/YREzMXRpYz24N8mVjgusFpbmSEBos2kco9goy4Z3PlKL5PRo8
b175bSjJhASDkWKPDaykcymyaA8TZlX3rK1v8BvyKdrbNZjgtszjs1HPgNs2
g5mHGBO6NY+Hvg+mAXtkceq8ERNetYrkN9ymQfqqrIm9DRPsHM7bXr1FA23P
2H91rkyQ1mJhTbtJg1/d7B/VfJmAK+4UtvGjgf+p646pwUxY2Om79MaHBqJl
g0LcT5iwerpYMtiLBh/lz+K+CUxoWhWfnL5EA6OkCp/eDCbsDKmuom3kd5xb
ddeJAiY8TLHgirKnQVhAentRORMshm4K1lnT4If1XbUIMhNKIqU/CZ+mwfm6
2cH5ASbwhM+NyenTgK7pEGM/y4T4OG3BgY35V92is6jGtQqnrt8UO6VEg5aw
/LepxFXocj5g/1eWBh5LkpbcUqvwSu+9jf02GrwlMYt7D61CyGa/aUVeGmD6
Hm4njq9CwZus3DQWGvR++rXl05lVyD0jc7V2mQpbYkpvRnisAlV5B4fOIBUe
nfE/rJ6yCv9l7QxeK6bCiyYFr/ycVbipKX3NKIcKKYZ9abu/rAJaq99ulUKF
Ap0ThK0dG/zKovBX96jQJS/Rusa1BpM1/vYGJ6mwl+2HS+31NTimt/eFTuoc
1BZxPLc5/Re0g7QuBN6aAcKmuNG7zH/wbJNFa+qvcRCdDRYU5VoHjZQfFb9K
xmFXvbvmW+I6dBNjyrfHjoPube3w+n3rQFpJScBNxiFweGi3iOM6sBn/uxBa
PQazn9Vc31Stg1yEDyOiaBSmFcavORuwYH3H+aK7Xg7DolhvWJ4RC8b4UZey
I2gYVgkdSYtnWbAhkT0ng2yHgbfvW0W4IwtWuv75XqD4MOyJiRLJC2DBovPq
+6MSh8B5VbNwIZcFq9a9V2r2chD+awyjhgqxYvH6nxxlP/dDrG7qccstrJhs
6UT01th+OFv4OXn3dlbs4dYj/vv8+qElfki/VoEVGz0n+vjTxjut1uloEpcB
K7ZlzJc9xLsPSlbWjj6+zYp9dsnZ+iG0F+Jl/GKiJlgxwVcdx//r/wUW8U/G
Hakb+gtXXxRl/wJRngyd/SusGNIwtW/y+QXPZtvH2ghsWGHhjtEy1l8Q/lVF
W1SKDXvOGtZ5V64L/E2nhmOt2LC5AotH4UEUsAxy1kyuYsP+hL7zPH22E+JT
N3Gu/GTDJo6xT/yW7QQKqiWbt7Fhllc0Z1JXOsCKoHhDoJcN4zy2s7s4tQPO
PV34FLLMhn1jKfDYP90Otq9CVS/Js2NNLWL/9r5ogwtVmfs0otgxYcNi72bW
JkgfObf2PI4dq7UeNkgvaoQBLr6mmZfs2LjW59KGi43gbHTVMyubHQvnf7kk
W9cAF8kHcyUq2bFZ9d0fh6N/gttY/R7WJXbMO7fZEDtYB158U9IttgRstGa2
ZfxHJUwFlhH4nAjYW/Oco1ZBleAx/mjU8BIB6xYOZxE4VAmXavbmVlwnYJU2
h8UtiyrA+a6banEkAXPQoFYY5OJgszAAKT8IWOI200MdJt/B4HeXnYc0B4Yd
MZNhyymGmpPZull7OTD9k/uimGrFoF96U2pYmQPTWDJmXvv+GY7GbRm21+LA
zjk+DPnd+Qm0TS08z1hwYAQ/P6NHnEWgVtUaeCicA+tPXYjL4HgPO/Nq4zkn
N/DLJ/Kixq/A4lXp1wYqB8ZyM+2v3tNUeByT2/NshQOTmtZoD2x9CYtBz6TF
ODixtr+1GmM2idBgZPVhjxQnZuYw234vPBr8Z0dqTlhxYnjazZGd8z7QrMqx
9LhyAz/Y/Xt5MRaxya2Imf7kxLDW46GsgfHokMTEEWIbJ7b/dZaBxWoCesPW
HPKyd8P+kr+1m5mMAjpj+fPpG/40rORJvulI9oasbLMyF7ZXlP2qkGYmCirV
Mxd6uYH3DB97/6IAqdm1UR1fc2F20YQOy4ECNLlu96wgiwvj3hEfl69SiGwN
/X+e+cyF0cmDh9waC9ERSjbENnNhswuaxpvWixB9QWCfOAs3phuRyvPeuhj5
q3QRZFy5Mf++/QV6bV+RcqfLm+ue3NiH5isBFzeXoVF/GlRf48bspPdGatuW
IcsfvEGuwdxYOGr4LTlUhjSMdWhZCdzYeHnzdALtG1rweNO7r4EbS353gq+R
9QfyyfQq0VThwfyVTqgm0XH0p1UyTlCTB1syR9dixCuQMaPh+qg2D2b8NuDb
5SMVSMFIXjX+FA+2UkiSyAuqQMO0kbwlVx5MeUdlU9haBbLWcXz9OYUHG5fJ
tsBXKpEu6UykGi8vVpNcU+dOrkb5f1k8eUV4sbwFCbkD89VIck/ByUExXmxy
68qrQcEaRA8U5HqxmxeL4tG9NWBYg4p2Nt6jYbwYSf/7T9/SGrTbU/9mwU1e
LCLOXpM9thbxsx10Vh7hxZz9zfyaDtSjrzfZzUeneLGQ91H0xyb1yG2mVS9t
nhfbMtDRrnKpHuFd7rsFWfgwsXgrxr7EenT9Y/L4jAQfRtpla0yn16Nuu3/e
7834sBOLp4nTxT9R9peaoH3lfNgxcZuf3DsakaXSC6/hSj4s/oPR8Xr1RsSW
4WCf8pMPc7AeDr52shHZPVvR5f+PD9OjTD2759eIhFzl2aZpfJif4QdK8s9G
5C/6NCJvDz/mbpysW3e1CR2/YhGnEMOPZf60G8vNb0Z+L76xXE3ixzZZhcU9
3KiX336R9vr0ih8rz5FwN29rRmxstGPa+fxYh1c4Kl1oRnj8U6pxDT/2ufn7
5vLDLegIXnv62go/Bibywp8rW5Ay8TBb6XkBzFFB8Ht3fSuyP5R+Zc1JAHvK
HTr5rasVRdpz/cLcBbBIrW7dZ+OtaCqL/PGnnwC2f6n5NDuhDWVr+9r/fiqA
iXyY7JCRaUMybnml/5AAtpLES+W70Ia2ft1+9bisIFYYetYxh9SG/l3MkhRR
FMS4Zm7bnu1pQ8OCqvU9qoJYWH1r+sJQGypw0d/lB4JY5uN8lZ0LbchQ2LPz
ja0gJmh1+LCkSDvyv1R6kCVaEONUSpl/f7odkTebs3z7u6GP0C+//q0dleE9
+eEEISz4+T44UNmO0j3dbM7yCWH1DJyFWt+OvCoCiya2CmFlLn/Pn6G0I8KV
dJetGkIYzxXjA9XUdqRRPVN/w0MIK9ou4+Uj24Fe+EZE7/9PCKsI3swj8rAD
MZvySyN6hbBPm7pV30R2IOc97X39Q0LY5hV5JeUXHUi9R1w5miqExZkJf9RM
7UCTbyxH6ARh7FmuoTvvpw4UyT92z2aHMDYkYTmA93aglj6ebxJnhDEWsrzr
Y5VOdDbcVCm1RBg778Fwf1DTiTJtqCe/fhXGxE5kR1B+diLGvmg3crkwxiV0
8cvulk6U3tnxSqBKGEtV3WRWSulEM1JWosGtwpjCLd22D2OdKOKb3YrDuDAW
yJUtOMxNQj+olyukJESw989th8JPkJBoNe8f7e0iWF/FoJ+zEQm5JuQxz0mJ
YPScB3ePmJEQv+6MerScCPbjwjX+fmsSsnnik8mqLoJ9FKDbsl4iocXdN58M
nhbBBLLsfF6FkpDC+VDLt3dEsKMdWnwO3zf410pECfdEMM/z6oriFSQU8XC8
9WKoCBYmdfVFWzUJjXwyOiXzRATT03ylr9FEQun8m+FNogi2dvleYms3CW3+
8W5v+icRTPqO1Mq5FRJi2VW3+nJCBDvi6Z7UrERGKgcZpavTIpjvHhnJrapk
5GCs6H+eKoJFJLw2ctQgo2+BUVSJFRHsrdamxqEjZOTfYT2SRBDFvPMNHtcY
ktHUg/GWhJ2imGKVXN7sBTKijPK8ibEUxWpV9V5NPSejWotHKV/PiWLN1OLD
6TFkVFLJndB3XhRbqec/ejaejOLTuCIVnUWxwD8irz68JCNLKw7/Km9RLLO2
kHQik4xINSynFh6KYm7HgJXjGxl1vF2hnS0TxXq+hjXnDpJRpejN6YDvolin
frOwyAgZFYUsj6bhotifM4FsN8bI6IXd0u/JWlFMmPUD/cA0GZ3ZtFBzv1MU
Kx2fdk1ZIqO2B7NJRdOiWMez+fE1LgpqcR45KrqTiBnwZzqIK1LQACGLHidN
xL7Ec20PUKKgxUz3j+JyRIxH0wkjqVCQ+NTUtl1KRMyJHohCNSjI5fr8iooW
Ecs/KTtQq0NBzAfr742tiRgvNeBruykFyb0Tl3gURcSotTuCRHwp6LDh7zb+
GCIWL7uit8uPgowmUh4+jydiRnL7vyr7U9A1JamlhFQiNnpXovDYLQoqL5Zr
y8wjYpQnJcKm9ynobK16eHUdEav87mC9Gk1Bru5L2icaidgRLp6e0RgKCuD9
stDYQsSs0oKU2uIoKNXkiFMnmYhtvhipm5JEQeMUTHtwiIjVxReYSrzeiDeA
bcF1jIiVvVz3WXxDQQKS1TkTk0Qs8cQj76a3FKTmaChGoxEx0+V+Dv9sCjrO
ytPit0TE9jv5ZRjmUtC5jIZQOp2IhRs1y4rlU5DH8Uit22tETP/TzyfD7yno
f//dsP/9d0P/BzbuEvo=
"]]},
Annotation[#, "Charting`Private`Tag$28367#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-5, 5}, {-1.0940964161523357`, 1.0940959077164842`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8171170262142076`*^9, 3.817117034051578*^9},
3.817117468553701*^9, 3.817117526971801*^9, {3.817117557928603*^9,
3.817117581532714*^9}, {3.817117683076977*^9, 3.8171176907835217`*^9}, {
3.817118142969657*^9, 3.817118190961885*^9}},
CellLabel->"Out[63]=",ExpressionUUID->"16b2f1f1-4bda-4b9c-9a2d-c4721af32a8e"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LogPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"Det", "[",
RowBox[{"D", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"R",
FractionBox[
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}],
RowBox[{"1", "+",
RowBox[{"2", " ",
SuperscriptBox["\[Theta]", "3"]}]}]]}], ",",
RowBox[{
SuperscriptBox["R",
RowBox[{"15", "/", "8"}]],
FractionBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "/", "1.08"}], ")"}], "2"]}],
RowBox[{"1", "+",
RowBox[{
RowBox[{"1", "/", "20"}], " ",
RowBox[{
SuperscriptBox["\[Theta]", "3"], "/",
SuperscriptBox["1.08", "2"]}]}]}]], " ", "\[Theta]"}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"R", ",", "\[Theta]"}], "}"}], ",", "1"}], "}"}]}], "]"}],
"]"}], "/.",
RowBox[{"R", "\[Rule]",
SuperscriptBox["2",
RowBox[{"Range", "[",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "]"}]]}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817115088249651*^9, 3.81711517985719*^9}, {
3.817115793511944*^9, 3.8171158188557177`*^9}},
CellLabel->"In[47]:=",ExpressionUUID->"72bac293-cf66-40a9-809d-4d0874dae037"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13c81d8fB3A+93Pt7VJK1lUyCm1F56AykxlfmjKiEhUhTWWUlVKSrSQS
iopKbxKFZO+yR/bO9vv8/rqP5+N+Pp977uec9/ucl7TteVN7goWFpYuVheX/
nzHXbNlU7e7txY+4fh0rI6GoRsrQUsoJPZPfWHaU8kpxvq+UlBfqlBTaak2Z
L/xdJlfjLfRdS2ebGeUYCJakSwUi1U+vFnUoK43ahaw4hqKgqLS8nZR/88Uu
LzaEI9+FQzHSlGWTOXfML0SgLQ1OtSTlsxru5/5JPkFa9hlh7aUkvK1tfzal
HY2MGR20bMrzZwxbxx3j0Cuu0RPXKMeztgb+25+AwjdIte6lvO/n/fUzDYko
6MLutKkfJPRH6hRMOT1Daazp9DjKQXZLRyYXnqOv6z/KalBWUXk7Ox78AtWM
pWhXfCehZuH0wzHJl0hxvD/OhLJHiYTKaFYqKhE18CouIWHNg9qyYe1XaOy1
kpAS5fxjdx2H6tJRzcmXGTeLSbBVwLRBxwz0UPznk+JvJBAL3r+mfDJRc2Xx
2vkiEmrbLdZN7c9C9eNrb6+l7PmKO3ei4Q36sa7RbH0hCfrhvWwT8W/Rkmm1
M08BCeKeBebjTtlIsfRDyZ8vJIwcjU4c25KDWm42lj/NJwG0L4+NLuQgjfvC
HVqfSQiXN907WvQOvSgTda35SIId/6agkeD3yGdn6IBhHgnsLZ1yw5K5aLVW
zbXZdyQ0wmf3of5c5M5d/1A+h4TU5Mivg1l5yGqSGar5lgSjC0bHB7Q/oaLI
JifZDBKkrOTT//J8RtUlDz1GXpEwoUEu9Nd9RhezEiAmlYRHnHmP+hy/oO+G
nq9Tn5OQfVn/wsXVgJLKX2SzJ5EQPbBTbNIHkKqk7mfdeBJcKoUcJ/YXoAJl
qUH3KBKEor8T4w2F6M+drMXLwSQs8L176ar+FYlNP98wFkhC980k47H4r+i9
BZ+egR8J7xyvxY46FSE+s/1BqddIsN66bffIwjd086LEZX4XErSTpTvOnShG
BfstIxKcqPUoxh8wXFSMWl7MZa2yJ2F5+W/dUHAJurphjCvLhoSE0ji3Qckf
KHkwUihRh4SpyByFtqAfSL0+Q2VQk4QDjmVd1XM/0Je/SGqVOglDtH8WeTWl
qK3glsYaFRJ2aRjtDvQvR3zcgtpdoiRUZiwScqO/kLWE2qpD7TQQQpzHeDdX
IuH05hubmmiwZ8PD3f52lUjzv77ty1U0CJl6OeldVYm+LIV5XPlKg2336+xt
06qQ27KHGmcyDa6XKumrHq9Bb7hHXeOcaZCS9X5DWkQNSm5K7cWnaFAdqUVb
X16DrhVJHh2woYGso9Wn1Wq16HhQCrvNQRqU0m5vZhGuQ760unMtKjSYGuDj
9tarQxqRhsvd8jRYV/2kb/J6HZpZrJtnZdLANT4jvm+oDu09mlF/RYQGohot
Qr+K6xF7eMlIxAIBWNZhVHepHpUtX4ST0wQ4cY+XFW5tQOuMp2cNRgn41MR2
5118A3IaKWq/0UVAL9w/qdLQgMa+1chV/CaAP0V8bypvI1I9NkCiRgJsPbb8
i/FuRBoFMrfDfhIQdPRzzaqsRnTi1lT0xe8E5OzTzbzf14iMWyd3Xf9KAIfw
Mac75k3Iio/rHSOPgC3z/ftX7jahjTLr/sbnEGDTcVHGq6AJybVs1rbOIuB1
RmDL2c3NqN2oqtnqJQEDQgNB+iebEatv7J/fzwmQ89Dfu/FhM9KJlJ4NTiTA
ril1lF7SjJYPGK84xREQr86d0DXXjLoPo+8XoglojTtjWqDUgkx5JJkvnxAg
RiunxR1vQTMfd7XyPibgsINSjk94C/rqPfwx4SEB4T+CHKy/taC2thw/+3AC
KpSGV+2abUFHK2SW/gsjgDvs4A8RxVb0TL2t5XoIAbqT6d6TR1uRx+ibloYg
Am4f5lOqCmtFbyT8smzvEQC5Lr9ff21FbPP2fNJ3CVgS/xUSNNOKRmh344QD
Cdh9Qxk7y/9GN9Ss+fYEEODRFTquc+Q3+rDkzhLpT8CbA2OJ60N/I+UvH1cp
Uh59aWxOK/yNdh0ymZjyI0CJN4veMfUbve14pTBD+bSr4Pt8uT9IKD3WUpm6
/lmN2+lo6z8Iy9jwJFDu2FEt5h38B2lk32k0oH5PImpLmSX8QRly6roq1His
l8J9tk/+Qcm2Mt1G1HgfnZjcJLyhDanmuKimUP+n5qtZ25hVG4p8MJOlHkyA
gFx2WMW9NqTycU83TygBhncZWq/y25D0Ry9tsfsEBAxfmgwcb0P+zW91bB9Q
6yfFuXqrUDt6bvHVvj+CAJbmNWmJiu1Iecie/1UkAXHcZb6C+9vRyzzDt+lP
CdirceXIjWPt6Ph/ip+HY6n5dFHcPnq5HV3cUxJxlpp/7/gW3mP321G9LnuS
QjIBq6vv9ZantiPF1zTdjakEvKOpf9lT1I4+/BbpsX9NgPn2ocepv9vR4Kf+
hq43BNyPNNQLEOhA9bfdNyZ+IkCldFH6n3wHOiufua2rgJr/hVfz9todqFW7
YtK+hACu47yvtD060D+ayU/VGgJ811fwrbR0oD9pQtqDwwTIWF7rOzfdgS60
kge1qHqDgM3QyteJ7Pq3Wv5eJGBxMMQtT7MTRcsGnmvnoYH7m0O17i86UdgM
w1CaqndG98qrbuhEOm9V+OPUaPBGJPOOWXMn0uDnSbPVpsGIp8BOVd4ulDMw
rfHJkgaOqOrJ0IUuZP9y9YF8XxqwJM7ktdzrQhGfA7q2hdIgkhRvLX3Whc6c
ebd6LIoG3384SLys70LW1n7j297SYKP5YqL97m7E8Sr452IvDeCddJG5WTeS
vzocGz1FAysxnR7ts93oZuIx3VsECQF/7svJxHYjhyGxT5KS1P59Wu7VH9Ye
5CfQpPeC6s83ygx//lzTg8Zypli8z5CwevOFkU9be5AmcTv/wRWSqpdPKk/t
e9CTu6+7o6NJeHnVNMfyB3X/yjoBrk4SnMOv5leG9SIDZvDnC950IKYT2768
7EX6ON/6ewgdoiy/s2QU9qLAkOIgxyQ6lIoLawdP9aLn3fecfH/SQfFFSome
VR+68y3LeMd6Nhj6WFNZKNmP2k/73n3XyQa3JebGs3b1I8WUR1afF9hA/KaE
cIJJP/pttWqdoAg7GB5wsrju249UkizvxeuyQ3rlctOevn5UKXfS3OEtO7j0
yHdlv/6LjquOZJU/5oD2Y00cBT/+Ip8UrQqTDxxg1hiw+Wf3X8R63HdqRxMH
7Crr8+pZM4Bu5CoKMsU5gZb1XEDUfwCtebf3Q0gyJ0T6SO+9fHwQ9R3hMVld
wQVcM5WnfL0HkdtV0bU1U1xw9fyNwNCIQXTweKrI9FpusLVtq31RNojGz7Pa
uJ7hBiXdmDONO4fQOn1mxSF+HigQFnuiJjCMhvQnD7Oe4YVtwd/z9ysOo4pq
wX02kbyQzObZbXJgGPlc5xKXLuaFoLl6ZWefYfRi1ZTrmAwfHG57WBzVP4yq
0+T5nnTwwUCqwNQCjKAX2pt3HVITAC7p23Jtu8aQnePLT1GDgvBd/b7ytf1j
aLXch2t1dCHws4rduc50DJnfZbESkxICIuyDjs2ZMdTs/uNVurkQzC8POTbE
jCEjvVWHHnwWgg9r5s97pI6hypSNbYkNQuCxg91T5P0YuvnRvefRuBBMnJMO
MKscQybH94kx1gvDYKtFyi9iHM28W1FODhSG1FnbTBf+cbQkMNsukSgMpxmu
H3jFx9GWVIcwrTxh6Da4+91g+zhq1KvPdfwrDImOjysHNMcR06uo8TALA074
PmsMNBpHTgJ7DcpFGdCal99f4jiOph/FJsloMSCqvmzM4dI4slbyPTh6mAFW
E42z9JvjyF+8tV/sDANq5Sc59kWNo/qsXIfj9xkQvp9FsCt5HD2xO3fPPokB
xid5xW69HUc2OZkH4rMZUB4pJw/l4yigpfjJvVoG3M3epnq8iXr+hqrZjV0M
0K3UVFvuGUfHmCee1Y4xgG3ISDNmYhx1WCkw/JYYUMR+RE99ZRyVFW833c4p
AreYTiYt3BPo/R0JvhZhEcDI4z/v1RMorcUtw3WdCCxb+54UWz+BkkULHcbW
i8AnjzCnD6oT6OMXMQ2LTSLgHR7jZrl3ArVMeEk/3SoCu16nes3oT6Ctjaum
8neJwMyP9zcjLCeQ1I7VofnqIpDdUxS4zW4CbQ+IKI9EInCBtfp+jesEol8v
DzyoKQIq69qeXLg6gZpzbF78pjyyayhB8O4EilgTwWZAOd187mXmowm0E4/7
/v/+s65sbw4lTSC+kW8jP6jnKwQJ541kTCCFJdflLur3+19IFQZ/mkBt53bs
H6LGl/x1U6nSjwn0mlNc+i81fru23dVldRMo+pFIWscGEZBZ0Gl27pxAO2ya
n/2WEIF2UYtOztEJdNz9i32PiAjEbrEdSFmYQH2OE8WsPCJwxOj8hA7HJLK/
epZfnVUE1jj7zPcyJpFK0ERbzDQDHiU84lq/eRKd7mzvW2lhgPnnJKGi3ZNo
feyOS4wKBgg1Za45pTOJjJEov9cXBoQIlCkknJhEsdc23LOJZ0DuznU5Ri6T
SO/ta1v/EAZ0HzuPFq9MIgn2Q1jEhwF70oXNLR9PIt2Y80YBFgzo1ztylbdi
Eg0G/1fFT2OAtu/wL689Uyi4ymPloIkwzE7zu5uKTqOnxzKvXOoXBOY625UV
5jTKb7iO86sFwWhfdmC66jT6tWgmv/mzIDwPt4rlODiNzh703XYnXBBMlRNK
8n2nEbt5wz0FJAjpp7esURyfRs++he/+FS8Ati3mX2jlM0hwKtdOmIcfuJ52
nHNrmkGSay592THEB2+sXcTbemcQXeukaWo5H9Ca/b3yWP8hVRfZnddD+OBZ
Y95Wt53/kNjeQLEyET7orZNK+ZP4D3GeDnDAW3ghJCL9sGHmP+Srk9/Bs4oX
dljspud9/odMxZYurlvkAf9aM9uIxn8Ilaf/Zi/hgY01fuKGfLPo3hkugeHj
POBcORSW6zWLVNT2HbOK4QahMC8k5z+L9rap2PL7cUPeIbaRhw9nUdXja1tX
XLiB+5ekgWvGLDLS2pHmp8kNr36a0uV6ZlHyr1OWzL9cMFL6weuh8RwK/X7e
kFeLC9y+3bY9LzePkm00lWpFOUGi+wDbzNZ5VLxfbS6LjRPKCM5UHzyP0BlT
pzczHLAeB48H/jeP3oyP1Yo1cEBTXsSNZ/fmkQl5yM/rCQdoZibHNo1S1xeP
btkuywEjFae1TizOo9Mfpk+LinLA02GF3l6OBbSXM2OfCAcHTCtkbJqSXkAh
zsqVzkPs8PL5+0985gtI4eWvmHPv2EHw6fdm7Q8LaP0dN/7IQ+yQn3v3WmnR
Ajr+hoNlmzY7nGk0lDGpWkB3pHN9/+5gh28iVU7HBhYQ9+cl63gJdvAKa5r1
FF9E4dExfDtH2aDjzoDo6xuLKFp180DjQzbIcuUxW623hB6Hx6XdH6NDeZSw
V/rhJcS383yPUi8deovWxGnZLaFIv/zFPy10WCMmP3j2+hIqPjv+z6+EDrcL
9vsW5Cwhab/DGe1xdDgsdP2ts8wyKvn0/dp9czq4qvs1rSgvI609qNPXgA53
HYJXHmoso/61mjvuatHhS95Tgy9Wy6jBaA97tQodNp760CUcuoyMnMTL9Pjo
MP92XPjzwjK6Faiv/76cBMafWTVTzhX0tmi0t47K65s5WE70ia4gN61BOhuV
t08d4XsluGUF9V1a0ohKJ6GcVNzncHoFCUyfrQoJJSHWwu4Sf90KCrOzDbp3
mMqXV84MqFiy4FnOovnFURqoAOes/1EWLBuqmH5hgDofkSn0tlMseC3paDPV
TYP24G6pYFcWnOYyb7W2mQYS8Uct/way4MzsE4nTRTSIKjpUlPCJBdfHfjMt
jaaBAudI1WwhC846M+I985gGuQeD2g79YMFPPrI5b3pAg8b67/NLdSx4Y0y8
xcdAKs/91VS1HmXBZ4z1L1tcpkE477ZYIRlWbM/gY79kTgMZ0+o0p42suGHW
NHSfMQ2yHrnmwmZWLIf+VUkY0qBSMr3WZQ8rXlfMqztGnR/5tmzgLjNnxUIO
dvr0bTS4e3i1p68/KzbcFZQ8QOXHW3GLJlNDrDh9dP9H3E6AscoHN8VJViz7
NYZHncqDEgUX79vOsWIlpWg+1ExAXudAZSWdwC1/p2ZsagmYWN90KF2CwOxl
jyXGqDxo+yrnoIMxgcv3Wql5vqXO1xpu52IOE1jpp8Xpv5kELP9UCq49QmBr
t+6ok9T5PGo0qVzLicB3M1Z1OlD5r3pLuIHkLQLnSNxs/0rlO81cF73GtwSe
Ji8wvlD5g09fwYk/j8D1Id/+PKXySWtzT8ABILCunozQdSrPeC4e+Z5dTuC/
LE9Dre4QkIkMdO73ELh/yHng8FUCpIrl9uuvomHdG0xPLxcCRg532d1cR8N3
Dn3M+HCWysd9sbc/MGk4WTvv25IzAVacokUbVGgYVamdfeJIQJghqU3To+Es
+/0FIiepPFPTjj950/CllEfJay2oPPg3P8H7Jg0vXXpQ8ciMAE6WGEItgIbX
nnczWG1KgNCm/4pyImjYu1hSYvMhAtb7V+lkZNKwZ960zDM9AlJjMlLOvafh
tgc7h411CdicHcyplE/Dnz0eF9J0CNjVoVeWUkbDJu/+OV/ZR4D+nkKjxF4a
FhJ1+ZiFqPxiEp9xYpiGO11P9wXvJcDs9DUBySkavqEV2nheg4AjEburn7KS
mDPKp3/fHgJcRt9YRIiTOPnQ09otO6n5pN9/Z8YksfdJa6S+g4DL4udXCSmQ
uOxqh5LBdgJu6Ck2hewk8VKpiKvXVgIeJCUdCTAl8V+rsA+iKlQey7v5+cB/
JPbhfGVtoExAdOVxCfoJEhPG3vjOZgKSl9a23zxHYvf68A8cmwhQYMxjfInE
jMz0PaZKBGQoNCYse5PYREK8O16RgA+WD09dCSBxT9tq/4MKBKi7XChSCyXx
bs2GC2nyBBTcNl4/G0GNT0rPgY9yaRZP36UkEn/hldPpkqPWB/cdZ5d8EvMu
2Ml9X0/ACZlTZUrfSJykw+5/kHLPLk2lwTISt+bhnAZZaj3YLw07NpE4tebj
yXkmARd9Wow2tJMY3VOrDqc8G56b0d1L4nMni6eVKbOCu9vJKRJnbJrb7SlD
gF+9WbXkAokr2jYfYlLmGlbd+oeVjq8shy9USxMQShN4GM1Bxwe7/NT8KTPW
jExZ89Pxril3AlOOVCm3EBOlY9XQukNLUgSs00l91yBOx9tmZNd+obzhkoOn
uQIdW28qEDSmvGl3m1mcCh17KDubylDexmKlPLCDjjtkTBxmJQnYU1zJtV2D
jtlFzXWrKWsF6fVe16ZjwFaTGZT1TAsLSvXoWPCfnu19ysar98SIGNOxYrR4
mAdlyz9vPU8cpmPviNLLxykfe6ZknnaEjrs0LBiGlO2dnyvP2NLxqqaiE+qU
z6pIcGs60THhv9FKhfLFmUe9987TsevOR9NylL0/8RfWu9PxmxiFbUzKN28F
xEj70PFVWU5+GcoBuqxeZ2/RcWOHzU1ZyqF83ubvA+h40z0zPwXKj2onlIlQ
Or7oJCe2jXJM1BnugxF0fOOgyHZNys9OdPc+fkrHTrdP1plQTttwtLAzgY75
yw9P21N+M1QXsymFjnN1DoRdpZz7xsjL8zUd113yT4ikDJ4l5l+z6fiXpKfs
e8ole7EK30c6Jv/zYTRRriBzuf8roOMqp+Wzy5TrSlX7kkrouOiHi7wc9f5b
w1ILR37Scanwvv1mlLsOM2PVaun4xcL8x1uUB8SjvW430/FRbdHAHMrjnQyL
X+10XJgpkTJIeTYlWGVNHx0r0JIY66n1QN9+vS9jko6dZy4XJVDmWfhXOD9H
x2lPaCvdlIUKXGP3s7DhL0I33RWp9SZ10NaihYcNy59gpxdSlhNuUdkgzIZt
3LxEhKj1urnJjMdNjA3X52cY21NWt9//lW0DG/70xmuHCLX+tRXzY02U2DB/
dFKjG2X98R3e0VvYcOe2/IdVlK2ublTdgtiw1N3N+lFU/VyK4I47asWGE525
dhpT9XbF5rZ3yjE2XN2csP0b5VvSSxaTdmz4arX/Jo2NVP9MH+EJdGPD5ZGm
c9upen31rco7+y4b/rP7brg+Ve/d048Pc39mw55bNZ0Wqf6RqLn14u+vbPjn
tuzJV1R/OR5cEZpRyoZj1jKzT6gS0CxL/2HWyIarKjSLqrYQUGV2YU/0JBsO
zGSLb6L6VX6WodQmBXbcXnrOyEedAJ+lPvUVFXbszAaMY1Q/VNPz/a9qJztW
PyL2Q4vql9ntueHu+9lxyZ/3AwxM9WN+OXr+CXbsq1Qc1aJNwONzrANGj9nx
vcU6zlEDAsxzo9mkY9nxJvGg3CVDaj7ou5iTz9hxr85WEX4jAkKiXY48fkM9
Pz0E1Iyp/aGspaLtJzu+9Xab92tzAlzl3711JTlwlNyMpNAx6n33OF8Nd+PA
qzZan0+5QMCBq8xX+zw5sP4F5Ynli1T9irQ2z1zjwPUL+Y8t3QnYvf/gLpsg
Dmxv4rCX35Pqp8+VJ5kvOLBvtULiY2q/47afOp3TyoETyncIc1H7Y3n3VfNG
HU78nCndeSKBAKPuMEUJCS6sFBS+Rb2B+l6xu/aILBd+skqY7G0kwODizmtP
FbiwsMug2H1q/9cl/lSu3smFh2QVuAep84GWlKKHsDEXnnvKUZneTcD2I9+A
4xYX9gyJMzg3QYB47ZzFZA8XbrCKzyvho8HAV9sb39O58T2+KI8QfRpsFqxf
p32cF98JF6MbNNCAC02fbJ3kw9lLWx7z2ZGgM2z9T8ZCAIe4eGhdIejQWGjH
aq0kiH2UtMyr4+mQE1B0TGpaEJepvDYlt7OBA929vaJCCKu8Gf6RVssGpy5c
yeGJEsZjVmptpY7soOyoWGF4koFPHolIeDjNDr+ElLjd1UQw1/Zavx1BHPDx
9a2nSjRRbJcp/ilAhBOusCoYl/8WxT7npW+nJXMCV6u3rkv2KnzKxz72iCoX
9CRLP4zzWY1v3DTXscrggocbxchcCzGc+KVG1nIbN4RFOZSclFqDN01E7VFI
5wbrh0crePrWYPs+3/EIKR6Y3fd8Li5/LZ65oKcREsUDXT1anoX+4thw1SYt
e05eSNRQXfvz5Dp8ttaOdukaL6TfcRd03CSB5e7UKP/r5wV/i1MGtGkJzOI3
pNVhxAfbWxNe+v+UxLXsBp0f8/ggUv5p+k8DKXxsuy9zTpwfrkNwpEGuFE4Z
2kr03+aHg2stnpfKSuP8Pw8Hr/fzg6ZLiY1goDS++2CMM0VaAOLEbWXLp6Ux
p5nl2XITAZD9+uKRkY0MfjK443HhVQEI21SoUJ0vg9Fr++XZFwLgMElW/VBg
YpfdyuVVtVS+zJqQCgxl4pzWHvlfSwJw9pbZov59JrbzmLO5vSwA7mbZDTwP
mJgvXfma2ooABEy7h4Q9YuKNJXwPklgE4bXa3MLjGMqnupY9aIIwV7BSn5zG
xAHfNDvWcApCWDVPcFEJE1uKh3QdZghCVNK5034/qOfVbZTkEhGEpEsV2rpl
TGyTuMfgM+V3omHzZRVMfG6l5hJzlSC0Wgufrqlj4seaYnyjYoIg1yWm3dnF
xA0/kY2vpCCoZHtLPOthYlXGo7jtUoKw+07LnH0fE/PsDqnto2woF5P5d4CJ
bW+6CBjKCMKFM1IS4+NMvPf0zkrh9YLgo35z7s0kEweu7nnyjfId3s7aS9NM
nGmqZ355gyBEZiTdm51lYoXX6GmznCAk3iAd8+aZ+NtEvVzQRkFIM7HX8llk
4mJ25eca8oKQLVO8bu8yEx+8qi88Sjl/csPcygoTd3YqXohXEIT/Ach7H34=
"]]},
Annotation[#, "Charting`Private`Tag$6593#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3c8lt8bx/Es+xEaSshTCWU1jMY5klBCRkqDZJWISiENKaPIyPpaRYWK
UEok5zYatoyy90o823yM3/376369X+d1X2d8Ptc517XJ8YqlswAfH98QPx/f
/7+pdxzJmk6PD6jHCzeeq+WiqhYFU1uFi2Cu1PDHGZxXvpcFKSj4AZ/XMgk2
OIvHfMoXbr8PACPoPyOcU7EIeZJCGJAYNFPRxHk7w+nJimsk+JFmmimBc494
2vLinxjwySHOfbiGizZnCu1Z4MUByXXVHW9wvrzfx2NW/j+we5e1pSPOH1r7
X3INUsDxmCIdIZwX3E27Wa7PgODdFnZqNRc95+8OmzVMB82fdv+Vw/lQffSW
mT8Z4KfZpZBHP7loPNGonHvxJSB6mO/r+8FF4U5LZzi8V2D3R3f/DThraHyY
Y0VkgRNHjT7v/85FLTy3WKb8a0Ay/eF16BsX3fghp8EoeAP2JTymqVVx0fqn
rbVTBjkg6oeZzXwFF5Wde+Q62ZYLbHYYR70s5yJHFUj455oHfmdEOqlhXCTA
82/kBuSDCyJBbnFlXNTab7ORa1gAzhzbodteykW+OSLF7D/vAXz1qv3fZy46
EjNKZj//AF5Tk8gln7hI1rfcmnWxEFCWXbBzhVxEP5uSwdT6CJw9MmvaC7gI
M7jJZPA+AuVwWc7WPC6KUbY8wKj6BJb4aKuMc7jIibojnB5RBLLbpch7X3MR
pWtQaUq+GPROJavFZHBRO/bVZ3K8GPx3L92Om8ZFbzITK/8VlIDzFvvNNydz
kdlVM/sJg1KgnZxNnIjhIoWTyrl/Rb8Cq3k5uTtPuIi9n8gbb/sK4ut03neH
cVG8UEn8mCsCgDAaMXOXiwpvHrl6bR0GpgUMk/L9uShlQluGE4AByeyHb7V8
uMizSdKVbVgOtKp3UyIucpFkyk8B1p8K4O5zUiXanIt44p9ee+2rBANW+ncC
jbloOPCFBfN5JZBbLVmprc9Fn1zvpDEuVoF66j2TGU0ustu5S4/O+wYKLLTk
MQkuMsjcNODh8B1oTb84PUzB/ShDDZ2q+g6ci8djm5Y5aHn5b9tkxA+Q/ant
MGGSg9Jrnnn/k68Gi1DpxEglB3ETP6r0hVcDpTU2MTc/c9Bh19qh5vlqsGO/
j3djDgdNEmZtSlpqgMfUwtu2WA7S2W+mFxZSB2ruri1ydeSgprxFASVGI7iQ
6WoPptlIEgidE1NrAr8r32gtjrLR3q2xeiFOTUBTtioltZ2NnnBfc/x/NYEd
zmvlEr+w0a7oNmfHt7/AU5ehFx/usdHdmu1HNO1bgFRgi2S/EBtlFxRtfRvX
AniyR5cVeSzUnHiQsKWuBbxl7/rnM8lCm11Plq7TbQUe9w9D20YWqiE8UOOT
agOfvJ6JnoxnIe6EuIi/SRtQSXqywz2UhTY2/zfGudsGUi6kb33lz0Jez/Oe
j022ge2brXsT7Vlozf4uycbvv0FpxAPxelUWgptdGMZLv4Gha0+BkzwLXRRh
1Vbs/AP+CvUr6kqxUGkH+eGn539A4OG77AweE41i0ec1/vwBkdMp9/YzmYia
LXvgjVg7kNxaoyc/wkSON7RmU/3bgcqknm5FIxOFn/3asragHVzx7L0U+o2J
Ph4yzo8eawfmij0Zz74wkaDUuYsPrTuAQ7BQak02E2ktjBuuPOoAK7nqhKFn
THR64JqiX3kHWJa3KrJJYKJ3eWFdl9U6gTclcdQyhIkmJCfCj5zvBO+vaNHP
3GMipRtHDmyL7QT7k3Q2ffVjIqeONwzSj06QMxun7nONiZ7vE0kfmu8EN9de
Lw/2YKLuZ+6W5du7gPX9nTc5rkwkQ6gjPLPvAikDLn9LHZnohMv2jwExXWCP
fVP28FkmiqkOd7H71gU8lM8fuHyKiRq2T63VmesCl8h7VW1smEgk6lj1atVu
MD/4Yfz5cSYy5uT6c852gxTj0+MWZkz04IT49l9R3UA6iz/W5SgTYcWePe8q
u0Hp2fJjQ8ZMtCTb+CR8phuEewt5/TzMRHr31OEl5R7wrvv1sbWGTHRjKJJl
dKYHyDsPaP4yYKL3h5kZWyJ7AHX8ssPsQSZivLawJlTg44KJqx/jvF2sgDTA
7QHSO8yDI3B281pVVKbUC1ortfpXcH7Z4u2WYtcL1N+9NRnC4w3saZbxj+gF
ys18gzr4fHJJWrW2WC+gFnuU8xsxkd1STMBuTi9YVNObP2DCRPEOnB1SW/uA
ZGvzUxa+n5ZKqz7myT7QGzUYu96ciSSUCqMaHveBVf2X50ssmcj0kfTBnLI+
wO4bL2o5wUShU9c5Yaw+UCZ3FnM+jfsn+1LzTsl+MC8dsOjtwER8nevfZqj2
A7GD5ebzzkz0TKQ2aJVhPxDoe5Kw6M5EB/bfOnPvXD/wkDV9G3AV19NTdTfj
Zj+I6w8644/r7/+8S+xcdD84zSPcnMH9sa758Wjdm35A/L6IsUKZ6BNhH9pb
1Q/kt2ziXY5mIuvdkwlvevpB8ND3frckJopONDUJlRgAZ6/1B47kMpFGzeKm
WeUBEFpqk+T6Gdefl7PgbDAAXFjR6zwqmUjYXizH4MYASPNOqCV2MVHQlgbx
la4BcLl8fdFNCRZStL0z5jE9AGIUV2q24PmGhaph3eKDwFfvbN9pNRZa/PfE
u0R/EIy9p4g6mrGQz3vzVp+sQdB4Qr56KJaFpIdXcoaxQbC/6YR5XxYLvV+d
/9CqcxAoh4qFuHxhIbqvhLam2BBYDwZyZIZZyBX8+m/y6hDwK936deM+NuLL
mCnpejwEOobJc8JWbJRIlO2ueTkEQqCjY+AlNvpZ7SL3+vcQcJITkBZJZqNt
1osZznrDoLxcoi5JgIOwT5uqrK2GAb9Tk2fnRg46KWM0YnB5GHx49778lS4H
hfZGKymmDYOAg8qv+69y0LibUk4v/wgoe5RVxfjHQfdqTevr14+AqLZerTgR
LlqndpVeunMEaHku5f5U5eL5UqqR7DwCBu9YLnR6cNHr25YfbatHwBc3zeMf
57joUsztsqaoUXAon5oTrDyDBKYz+tDrUWAw4T2qaTmDkmx/8uVVjAIs+P4R
r1szqEZWyiCCOwp4WmLE7MYZpJqV/cPk5Bgo5p5sFrs7iya/tDRVyI8Dz72L
huILc+iB3DyrQGccUEoUBzdsn0eygXJS6cfHgduGze6V5+aR6eGLNneDxoFY
/kujwW/zKLdpuWPv2DgwLy7q8EheQJ4jykOF7/4Cj7pfsXpOi6j/XIdgefVf
kF3iX3/o1SKyag9Vqx/+Cz4oLcpQxxaRTu2Y38j6CZDfbWo1dnkJEQpeSawJ
mQCjbVfTywKXUWLApgM37f+BslUhf93c+DDhmaYLQf7/gLFW9AdaJB92+8q9
sMi4f4AmveWd4Sc+zNGxrzWr9h+o3hzAwUj82HbjVPd27UnAXU51ef6aHyuX
kvlPV2IKVK14MI6TCNiuiJ9lhqpTIDMkvPutFgHLJPsOHz88BWx2PSz0diBg
4fO/1S8FTIHAOk8h/a8E7ERf7Pek8SmQ5fAy8+8tIjbxRoLLw+hg274/ggxR
Mia86YFSnw4TvAiqXxXsLYT93BetfseQCUQJ/+J4r4Sw4JNp2hstmeBu9S3j
oE4hTCDqs9FpdyZ49FyM/dZAGFtYnnT9k8oE3kav99xcLYJ9Xr9w5cYbJvAj
152INxHBbuyh+K4uYoI/qi4X7twWwdgem0KtmpjA5xqh1ndYBPvXbZPdKMAC
FYr+cym5otibOcd8TyoLdP6+ZPekVxRzk/b6LCbLAgZCxsVt4mLY8NFHP4/u
ZoEQYyVRBQ8xLMM1oWlCnwXWZRGOLCeJYQ5BL9vDzFigoG1G7e8PMay7pGz8
hysLlA8W9cXJiWNJv2uZLtdZIF0scKe6sTh2kt0+Rwpk4fWZ1qUHXuJYqzJH
8FASCzxZR3emfhXHYgz5Vg1lsoDIHZu8DQPimMV5MZn7H1jgrnz3lmgCFatL
VFLG6lhg0l2wztWAij0q3KVp38EC0fwbH2U4UDHjJn3d5REWiOHpDczfomLk
STP9VDYLJLk0YmfiqFgV5YzJvhUW8D04uu9LDhW7T7t4vEuEDU5hRYXkCioG
wY1T/uvYYNvlc7OabVRs2S7ovMwWNlAeXHbWHKVipTeiLn7WZAPrXe8keVwq
5h+T6m17gA1MjhV5VPJJYDrv3vjNHGGDVC0bOEaSwGaqiwLjbNkgPMqma1RI
AiscqQrb5cQG2YPN68pFJbCr/M3RLV5s4Nsh9NtHXALT2Nj339XbeDyJ/zgk
qgRG15lMX/WIDYg+zZbX8PFc6/nX+fFskJak1oTh/1/2Ir83f8EG/saEvWw8
vkq4VAk9D5/f9t0RUbIENp6lUBFRygbHf16LluaXwDIrd9Rsr2YDlZ/vOxVn
qJhTn15zbRsbKAy+okuNUzFFnlHnpUE2MHVXHxRpp2L9a2wGhRhskPJs/sKG
71QsTctxIpvHBq8e2G+1fk/FzphdYRsJckBinlXRzxQqtv5SwMKoNAfo1duf
DH9IxeLT44W3qHFAjt8+NwtLKmb99YVklR4HSLDG7vntoWKSHfnrLxhxwK2d
WZ8OylCxJxK1KukOHCD//sc7Spc4Vqy98aOZJwe4bmg/a18kjg2fuwIWb3GA
VOU6mVsx4tjeXClr2wQOcGec2n3eUBwbNzlzW6yBA/Kaduz1ei6GGQRNNfrt
5QKOrVvC5D5RbG6a6mO5ZhpIXO2K1HUXwmgbHVdWaNPgnJO/TD0QwswOFYbl
ak4Dv3eK/3KkhbBXMSfTBI9NgyLzQP7TSBCzVE//URY0DUbPKOe/WieI5bpp
rVdlTQN5+FyM0UXGHLusEaFuBvzL3rV0IZOICScPeHh3zICFBrptSDARe2/n
Kds3OgN6ZromFlyIGKEzxK+EfxaQac8aG7cRsZftJTu9tWcBm014vyGfgI22
KWT3ZsyCAVnCSlSdAPYkLveEaf4sOLWo43+2QADbY6NHKvk6C1Qbbop6xgtg
Ia1WjnHts2BN4LYbJ88LYNtagmVNxeeAi8LD7P0L/NilpsmoYr85IEQvm8nW
5scko/yAUsgcWBv7dsFegR8rMSfTY2PnwBvT+VpzIX5MpFH+qFfeHNgym2/w
p4sPy6m3JCmNzIG7D3oZ14L4MHrNZ79Yi3nQuNBa/eXzCvL+9sDxitICWFLw
DTNxXEJyw4fJMzsXwN5pVxrp4BKqFRB6EwAXgDpMIpAVl9AWGMEKO7UApI79
6WwdXEQdJXH3Xj5eAJZXn+6PdV1E+vmZaR2MBaA20xovcpuH6A1uBx0WF8Cd
zn6BBgceSp5SGR0V5AHNAKuS2kM8NK2St4O7iQdqDlj/uiHGQ69fFZWKW/PA
ypfYywHpC2hV8s9Og888sHCt3fxXyzwqK350p6aKB640kDWFvswj93ZTxeO/
eKA0x1XnesY8+rb618VzEzxQP8QcHfCeR35RHXO+sougNUPDjCo1jwYeTqx5
d28R0OuOk6zOzaECL1GrdSZLoOfJrtCq1bOoLknKL/fEEqj708Jb4JtFo1Xr
nx10WgIDN66q2E/OoPUyyv8u310CwKBdIa9yBj0oNwwq/7gE2D4ZkY7XZ9AJ
ybsfLikuAzAUrFbVM4289gV3rKgvg93916aza6fRI5eIldj9y+B++s3Uj8XT
CJUkH0Unl8F5ymVgGD+Ntl34PCQVuQyO7lP7sev4NFr4wJL6ylsGHwMefaM2
cJF075yupdAKWMdpXTbF+3c1QT6HsTUr4Cm9dl/uOy66cEY8Z5XWCrhlxcxp
i+SiOqLqIRe3FdBg1dhSZsVFaTZO16ltK+CXVonJ5wG8v7zlPqFhywczbt/e
mizNQRqY0FzIWT44F2L6OFgIr4+I2aS+C3xwzLtyLGyZjfojhhUivPigkNHE
4J9xNpJ7ftb2bxgfFG/55BNexkZJVeZV6aV80C7r3u/dnmykIkT/NVfBByX1
m7c+cWKj4mPhfebVfLC/X4C0aMdG7b9/Liy18UHiyz3da43ZaM1ffU07Bh8M
Fn4kb0pjoxixXWmSivzwVswqENaD15uWzW8vbuOH508nm6u0sVBBvFcxpsYP
+ceHWnvrWKhJPrfVcy8/nJiWKA8sZSFxra0itdb8sGV32be3KSz06MQ636AQ
fmjcKXbnhgML3X+2eJw7yQ+FTAKzFKeZyELjs7cqhx/OMTSOyDDwfqH8WrTj
PD8UqdhhJv+XiUoGJ5qaSALw4v4+uVM9TMTe0mGeKycA0cpmz8DveL2f8/GY
i4UANBl79SI6Ga+v93t7pJ4QgELEdP7r8Uy0XL89ovWMADxvWubihNfnSYwX
dQcvCsCqn5unPfH+r1kr5qj8fQG4PmuWte06E+kXe5q0fxCAKdc6TslbMJH4
EZWL1BIBeDbkHr0d70+6O0dCD2MC0GBR1+YZ3s/4Lp75WVgnAIPcVS0sARPl
g6NG0SM4G9SSzNWZSOG7kuGRtQQILu3bFLuKiegnhpwCNxLgV8HLUZLiTFQ6
lvbgM40AV5gXS1OEmeik0JqqrRoEuEP0olArgYmiTIkGBBMCpF3ic/1vioH4
WvphqT8BavkYLuZ/ZaAHf8vS/QMJ0CZLJyW1iIGE+FIFdEMJsC4yP/JFAQNJ
7jhV9TGOAM2nLnYuvGKgLSG/jPLy8fV8LZ9qjmSgN6l52R5FBNipWL0m+BED
qRVGCG0vI8CT74wvH3/IQDoDJrXZtQSYkVMtpnGLgY7srTDLGCXATNUX5kJu
DNRw/HmewxQBjseHr/hdYCArtzsS8lwCdOxRquK3Z6AzcXrNyfxE+GBvD+HE
CQbyZLy3iZMlwvlVJwvFDjMQmxT9yYpGhEdPWdvvPMhAN2WvrJVUIcKHNV6r
rxxgoHsmqh1PtInw+Iq+4jZtBnr64sWZUEsiJGhvP5SqzEDrSgK/Hj5FhNbz
SXVXtjJQSpO9HMmBCC9LtV6wpTFQ5tKG/kAPItTZseeQ80YGUpFegPA6EX5+
mm7xeD0D5am0py/7E+Fb09Psb2sZ6LNt7IVboURItzS74yvJQPs8r1bpRhKh
UbvRDiaVgcofWGyZiyPCyBNU3i0xBqopEB27/oIIzwuH3GkUZKBukYeXPMuI
8D90Z8WRj4EcFC/Ubv+Gx2NR7vgu09GIjv72f7VE2FQ2tSd9kY7ozktTrh1E
SFLsHFedp6NrAV1mW/uJ0JHv15uIWTqaiynOGx4lQulTRF2BGTrix3y8z3OJ
cMOjxmM0Dh0F/7ZqlucRYbJlZloji46EpzR39vKToFH9HosnTDqKJEjEpgiS
YKID2dieQUfS6+lcOyoJwpcV7gfpdJSoUWcjs4YEt0nop2tP0dFGozef/siS
oEbOnYYDk3S09bqLr7UKCdaHMrLvT9DRDr0+q2caJLg/+unb2r90tIvvpPrE
HhIcPKfOo+G893uT8O79JOirujfo8TgdHQw3Gb1rQIKnfx9VF8DZxLKivMaE
BF/lSf4LGaMji3V7U1dbkKDgobMZsjjb9n7wdThBgkeUV+tjo3R07uV267dn
SJBRAz5cxdn50iv1GUcS/Ky9PLwT58saciL6F0nQnRFeQcD52kz86OMrJLih
wEBncISO/EupFb99SFDxSJxWI86B90NTNwWQ4ElnaloNzqHG/H6X75PgNzs7
11acI8X9rYtCSVCaT/fWJM7xrWx1gUgSVPcL/S6Jx09Nchc5FkeCDkJwjxHO
Lx2GRxOSSZB/xKsoDOe3W89WDKaTYArhsHYnzu8n21J3ZJMgYBNe6OD7K35v
5uf7jgQLMgXHX+KM+f6wriwk4frVcuTw8/lxAGqIfyFBb+3uD5k4NxCLRU6V
k+Ab/+HV+/DzbavRHHvxgwS9Fl5R+nDujnpTQa8nwRBF3o1IXJ+hE7Q03VYS
XC7/ffzYPzqakE3xe9BJgq39BsHrcD1Zg9I2jf0k6BbvLMDCeS47QmP9GAmK
998o/I3rT9p9dyyPQ4KU3Jpr1bhfRHmzFQvzJCisN3/2N+4nyXKvNEM+MrST
Y2gzcb8pHHO06RIlw2UrwRtHuHSkJNWlsVWKDKsTm4oeTdORWoeVqLcMGRY3
vH75B/fvPmfDSvJWMrRJ+7U3Afe7gWpZ2vHtZJhi4FclxKOjI6w9/ilaZDiV
OVQYiufHydvbNLUAGfbwXj56u0JH1+NEnp09SYYjt6UPBJEZ6NbpB/7Z58gw
68BVHVs8/+5vWrLhOJHh8Y3C67SFGSgqly4a5k2G4Xt2G60XZ6Ccb7/8Cx+R
YWeZVM7lNQw0PJ1wQuQrGRqnM8i78PskQ3/ntZ5KMnya+UVjRpWB7CMaIvNq
yLBN/6bWNzUG6txMqrZqJ8N0cfbVsF0M9Mvq6t4UDhmGxpEGsyEDlRWYKuxQ
ocDe5fTknacZKGBpbN+KBgWKT00UlpxjIF2ToFO/tCnQ5pBF8DFHBirsL47x
MaRAX7Ma0fiL+H1MVSKVOVCg+0NCfb4vAyV48E+YJVBgyLeDYcuJDGRdnELe
lEaBqw5tMNZNxe93kg6N85ICZ9hFn+6kM9CTFM8zCe8p0DJ0i5PyG/x9qO1q
6KunwIvpX48sfmEgL+VPH7yIgvCbd+XAowH8Ph+5dDvGWxD2Fb+msmWY6PBt
Ws4hX0F4yMx69TNZJjq4urtz5o4gPHf+moOFPBPpGR7TOR0uCP1FK3LRZiZS
eaXOoWUJwiLxoz5N+Hsn4sx1+9gtCLkCF2w/HmaiuuHb1u1GQnAhX3va8SYT
mQ1HqcrJCUOh++vjZYbwcdXh1jObheFg4gZdj1EmOnpN+06yijBsM6xzqsTf
f2OB3iZcSPj4g4nRTSa+HgXVG1IWwjAjnfxrcYmJdp/5hgneF4bpwbt+3pJh
IdnWeRvOiDA8u2FPpoYlC01UOt77mSsCfwQry5VVs5Daqt8bDezFYPGTbXu1
h9hIGEyf7+aIQ2nn0/ZlixxkNGU3q2gjAesOD35M0J1G7RVO/HbbV8GsCr8O
wxsz6GNo1TmF6VXQqPb479dps8iF5NPf0CAJpRuaquZ65tCFq7c+iiZJwZgN
bow9xAWk7qraYHpeGl5VVLheI89DjZLbRXx0V8NvLakHxI8toi/v7idvJ6yB
N2vUXr+3X0K3+FUs6nrWwCxjHd25wGUk3O1v7Fm4Fl53xDzsElbQSOam2GcB
66Dtnsa+bBM+LHabDLHYRgb6XTf7mtXAh0Ulufw4r7AeUrJWt/ob8WN2sWcb
RMfWw70py2GjJfzY3KFX88/KNsB6paq23l0C2NDIQd+KEFlIq8vq/PhCAMvY
r7mh/vxGeDCsL7lqHQHLfeizynWHHOTTM/tpFETAQmwuHCVMy8E/eq5dmn8J
2O7u9Nch9fIwp/Sbv6gNEUtUTs6tP6oA90wsfTEpImJ3sYjEo8UK8F76uyQd
eRJ2bIPNq5rNm2D8U+qDpvskTN/zx+lVYZsgvet0zvMeEvZM1nFz3fQm+NdO
2fvvfjK2uTIr3uy0IhQKH//eFkfGonZUqDSXKULbVYfjDk6QMRcO8Ve1Cg1+
VO7Q4BpQMMcCtkJYJA0e8jw8SY+jYJfvWy0eiabBtHQPi1MJFMzHqvCP6FMa
5Ih3xlYmUrDQaZ8nUfE0qGyQWJaQTMHe6c7zElJpUOWWfvyBdAo2X77yO/Mt
Df4Dy3bBORQsqlk0ouoHDQZPxdsvV1CwpBcebsHVNDh9ru63UxUFe3G9wcC4
lgYj5llqtd8o2Kc1UQu1DTRY8EHxfsJPCtZtJ+XW0kaDFJ3cQrUGCqY0JGMw
OESDoRYLZrYdFEyj0F/u5QgN6vVk/vnSScH0HnbNO4/RIH1bgr5CNwUzVUrN
/ztBgylFtsXjvRTsqruCHItFg9YP/+r4DlOwgH2B8+85NDgxcqiua4SCPRQb
bL0+TYO6dmL6YIyCJea9eDw3R4PqqxYaSBMULOMe0bVkgQYdkraNu/2jYG+P
Ox8MWKRBx6r2wdpJClao+H3jgWUa9MmjIjU6BSvjbJ1fWcHP0785IJpBwf4H
K+euHg==
"]]},
Annotation[#, "Charting`Private`Tag$6593#2"]& ],
TagBox[
{RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3k8lN8XxzEz1ki0kWxTZNcikZwrIUsqSyhJkqVF9hCJFir7l0hRlkpF
CBXhGUvJPjNmsmbfsw6yjOU3v+ef5/V+nXPvPfdznnPveaQcbpld5WBjYxtg
Z2P7/zvlrgPnfsen2tMbrCeY7Vh1i6SJlaQr5OKr62S0SdobP8vvS0r6Q4/N
l/a+W/3aAnFf8njbQoFRtfndI7VF7RRSpARB8jHsEpLsuEjlBMVpx6gN52ig
Pe0PUnkiDH8EUtdXW+PgmpPTqT9J4rDnLc/hFWYCND2qUcm6KwM3jvncXJR4
DoctdBueRatAAa03c173JYyvgepVGzVYuW7SNev8CqpCvT2q+LXgNXvX40W9
NEgcZ75V3tCBE42xe/+1pkO5oRbHsXR9GE0yqJh3zQSKo1F7wqoxRDiu2c4x
34CA64M7ZvxnQVW1YGk28h3cHVPgv/DAAlqYLvEzEu+BLifH7+9qDb414qrT
+R8gyniVmVNpC6L/0eondbNh5n7K7bk6eyi3e+I8Qc+B7nnKgyDvK+Agj3B/
nXNhcGZ4gWbvBBzMgOb5wDzw79q2uTHOFWi9lrvn9fJhYzi2RIH/Jvhl8xUz
Wj9D9uZZx3+enmAUN8zJeF0Ax989cv+V6Q1ifhUWs66FcMEwKUOA7TZMXXyZ
PnOgCIT/7nPEP/IHku7tmWlmEYTK8k51qgdCnJyZ9nT1F7hskTBStj0YHDcr
RUxFfoW5Frs7g1tCgKuzX3ZSohiCj1ion3F6AG2kMp+JURZ3PDmkqfYIPrxN
qvqbXwJli+nDsDscTD1NL43rlgJ35JrqVc0IkLSWyxnbVAYed5t8rN2jgHEM
zxyll4G/m+ehMPsYeMZT8mzEGQPx6j2Ggh1xUHjbyNNrJwlKfzvuj1SIh5fj
6iJzgSQojD7ax/00AdzIQs4MvQowMzi44OGdBEIvf3HMtlbCSY1wRde5VGAK
fHnvrlUF2Kl9Ih8uvIbBkIwzM6+rwERGMLjvRBp8cb6bOu1aDQ/IZ/IFlTLg
/MFDmlPMH9BTwM2km78D3bdSfTftf8JvIu2G6a0sUBTZHD5Z/RPiU46eqIl9
D+vrY/SJyBqYmX/B6fH3I6TVvfL4K1ELOpZqUYm382A+qUi+J6IWnnJY13sp
54O+c/0AdbkWiHGW7Quj+TCBW7QsaamDvVErqnEuBXDkmKnm47AGMHPZH+wR
/QXIuascstPNQFtXXvl3uQyEgMeOX5kML2TXfsjpl8NRmXjNMEcyDKY57xFW
xCBq/v1cAIUMux4/D1O7S4JDsfSrDh8pMBGkYWNjWQnBdYpG+y+1wNj7b30L
fD8hK/+rzMeEFvhYx3zYHfITqEnHcXsbWkB6d464weJP2ONsXbpTgwbCryR9
tXproA73QJlNmA5kRRvhw1m1MD8uwBdgSAfZvh6+lB11sJv6fGQumA5vEgx1
Gx/Wgfvr3NcjE3QgxhY8VLGrh+3HOoWaf/6G1BOq+KjVBkB7nKZPrv0GKz/X
MfKlRnDlm62vPNgKB65YXFaqaITSds6HX163gs/d84PdQU0wTIq9rNraCgTO
m1687U2wOUtM+wN/GyyF4NJX9zeDg++BxZSANlA5G/RpsKsZIi6WtezIb4NH
r/JibHaQoejEybzYkTbAk4vyVrXJwC1s5/rQoh0qAf/rzBMyHFgZ1dt40g76
addVpnPIcKHPS9q/oh0M2//Y7SGT4VPu484byh1w92hdmoogBcaFxiOMLneA
f7L9fS5FCsj6Gmnvi+8AkxmDr4/0KeDY/mGaUNMBsQHUoLeXKPBaiy9tYLkD
nJg2h+1vU6Dr1XWzCsVOmD9teyknkgIiuAbcq0udQKNGPQtLp8A5J8WiwLhO
cO0aTRotokBcbYTT+R+dEFnw5nhdDQWaFCd3HFnqhOegHS3TRgG+mFO12xS6
wKbx/PPFYQqcnMsJmLvYBZTDZcnq8xR4cE5AkRLTBfOlxIneDQqQit3+fKrq
gjP9ewhTPFRYE2uOivjXBYL/4QNthKigeU8FXZP7A2HDoQRxESr4DkTPGtj+
gYrqTO/D4lT4rD+Tvjf6D+CLfUtSpKgw/f6MBa6SZT9SN2RKpIIifz6hb/4P
zGZOSuux2MV9y9dy2W5gGF76fofln9ni4fLyfDeEvb6zbWo3FfoOU0UCIrsh
SVC2MHEnFcSTD9RbkbqB4ON12HsLFc6vxQWqzXXDmRQdq2BuKjyzn1MSlumB
Ze6eicI1CrRUmffMWPfAz22vRwVnKcCaJqbpaQ9wtPuei+6ngMmTrcezy3vA
r/2RrSKVAuGT3nOPZ3vAqLtIcxCjgEPWNepBoV64QNA0KmDVDVuH6Md0hV7g
Pbt3LSGBAq/46u9v0esFzT9Tf8KDKKB97I7tPbteeDKyHBV+hZVPNwW16du9
MPlbtC7WgAIBrzv57WJ7gXZd1D5NjgI7qU+HGz70wn4d9SOFPBT4gtPCjlb3
QnX1m9M1I2SwUJtI/PCnF5TrBYpbq8gQm2RiGC7YB41Psw4N+ZBBtW5ValGu
DySdW6hdxmRoYmavXNXtgzf/9bf/lCAD7yX+bF3fPojd+3wXObQZ7u9tEtjo
7IM97+5iR1obQdrq7sjNhT4YTbkg+etyI5DClUldAv1Q3n0taMdoA6z+jfIo
0ekHk107dg6P1IPP59M0n3f9sMG0UWkrqIWtgxvZg6R+iFdNXWPuqoXP2/Ie
mnf0g6bHKFQG/4IpP0H1/fwDUFxstEVOswacgfJ8wnMAiprEo7kDqoEt/V9J
59MB+PZ097fUyipIwot11WUOgPGn41f/clbBr1on8fe/B8AB021LCa2AfRar
6Vc1B2HxZIoKiigF0hepagvzQRjfk4HTbysBaxGDId0bgzDgf5ces6sYwrtj
ZaVTB+HEsW12/WFFMOoim93NPgQ3PS+b9E1+hHv1Jo2NokOwY6ffw4PL72Cn
sudU6cEhyMK9kapmZLDqpVT1xdUh0O8kKC/YJ8L7ILMiq9oheKHmKqzz8RF2
LS6onBwzDFqvzpKD+oswjoX0Huz9MKiCj+/+m9+wZKtfbLmVwyDKFfx1B/t3
rE5MWDdyfhishrZmGUqTMIV3WTWG1iNgOucp6pfyA5v43kKulBgFv/ifnWUl
ZOyB+PJs/pFRaIuyN5kPpWBiIeLCaWdHwX6rk3vcKSpmou9qGXx/FFacXPr5
x1uwHPJ6+9GRUWCPKJTXQq2Y25DcQOGnMbjdJrbj1pVurNeunbuidgzOx5KW
E517MPO2cOXGwTGokh5IsFfvxY7Uj/gPiY4DKeIB9xbdPgyX/0Zwe9g4yAST
M7EbA1hSoJT27Ut/4YIoF/cw7yjG+4985X7AX7jzUkWV8mYUC7p173F0wl9Y
IAaL2hwfwxwcemjv6v9CuFOniv69cUzxZMr1NvUJONTssFq1eRKrEBZ5riE4
CYddKZv1YBY7FPmrXE9hEpb9BMaXns9ibzn9Bs/qT8JF6sbzBwuzWMTyb5Vr
gZNQxNGiS8xlYOd64n8mj04CXkH7rrfiPDb+QXCeSZoCtv6M48Gmixiv1APZ
niMzMOweY5GzYx37pRWrcldvBipu1dsm3VvHHlmnqu82m4H81YmKd2PrGEfM
N4ML12eA9kFw2/L3DWxlfcK5NWUGDFeJzTW5bKRvoiu3fD/MgPl3/enhATaS
72Euv21fWeN7e5lNO9hJjJtS4ebkGTDdd/dK7V120t8uy6xmjllIb52PmTTg
IH1Ycshz2zwLn54OMbr9OEguW92/8YvNgnB55VmZ9xykQeMnv4zVZsF6LS3T
nQtHSndOJI/rzALjwt1+UzUcyf5+Zttj01kIeeJRo+GAI3WVlI/WOM9CZuIB
v+FvOFLy7/oZJ+9Z8K5k1gf340jWjLYlQsgsfE/P4aDz4kk0uTnuE8mzYNfo
sn7JCk+K02PbMvB2FvoPkA1u3MGTzlzmFwktmAUn2rnyvhQ8qSFJVo7UMAuV
kvcdv/3Bk54UHtp/qX0WbL8kSs+t4EknyToa60Ms/7wif6PtBBLnhKlOCmMW
fHcZ2eSoEEjVXLaGWhuzcGrRns5nQCCFEl3PdvIxQMrnwCkrWwIJga9NwE4G
8Ei1R4feIpDWz9+/LLKXAbPP/NdD7hFIpb4xrt/2M0BmbN9H42gCKSAuxcNK
mwFep8e8Wl8QSEc+ffD/Z8QAMdG9IhJvCaR/tV9DEqwYMELfe1r8E4FUOFT9
+JAjA0QDJOuoBQSSJzs1tsWdAZXOUSe0vhJIqrt7nnsGMeA6PTvY9huBNHVk
Im3LEwYMpUpoq7PsORbL7/OeMUBhvPXI/8ffcOf8fDqDAR16IQJqrPnlI4RL
pnIZQHBsVXJlrT/6TrIyspQBPnoO3/1fEkhvq5TqFGsZsDVIycsrhkBy7NGk
1tMZsPhMMswxlECSZhp0XOtnAFHyQ4CtJ4HUu92yn2eaAaEW3qvX7Qmk1AMO
41lMBgRpdJRnmhBItqa3GAbcc+Dh2HRaRJ1AEr0WuDK8dQ52hnbMdEkQSM/S
nvHuVZ6DUOWvbGkTeJJFWYZQteYcjLxxEKkj40lC7XmiVwzmwGhU6vR/BXhS
lGC9fJr9HDCdjhtY++BJxeq7i0zd5kCHbPYv9yyeNGh3C1bvzMHf2//l1yvi
SUdzhC2sEufgVCatMb8HRxo1tA3ib5qDqIdZLSRNHEn3/mSz/9F5aNw0oHKs
lZ20tLDZx2z7ArScyj6zlW8dI+522NggLsCFA+NXjhauYaYnCh/n7F+Ajz81
uZgX17A3cdap3KcWgIdn6aBVwSpmppJWU35/AR4ST8ZOXGViOS4HRBVmF2Bk
TM0keGIJc+i0wHAN/+DBdzsF15B5jPdF302P9n+QwdXSm6szj30+7ybWM/wP
XK1yOBM55jFcR5h/CfsifM89SEaP5rDMtpKDHuqLEHF6Lb4tnoEN0yWzutMX
wTODqVzVOINFJeScM8lbBAcH5722iTPYYUtNQknZInBxDhkGXZ7BwmjmDglt
i4C1RmhmTk1j+1oeiZkILMG4xQZOw2wKu0aeiCn2X4I7T4e1hg3+YkIx/iAb
tgQk4nOTyvFxrOQ051R8/BLwcJJjQ6LGMb5mCWP33CVYyf3k/qptDMtuNCPI
Di2BzZCjlNDtUWyq7pt//JllYK+NXyjuGMI8fjxwuCW7AlbbOr3pSn2Y+KA+
57+DK9BSVpJlMtmL1XPwfAhEK1BhLuFqmtOL7UWRs49tViDw5vMdE8q9WHtJ
wr3MpyvA7U4sobt3Yzp5b1Pbp1fgRrCcRMHPDmyqyeW4/eoK5AnaNJdadmAv
JuWHh7mZcDuRmFMw1I4tyOcqzUsxgZEmw2PP3Y69f/O1VMCCCWXP9vn6Wrdi
W1786tD9xoQ8X3VcnRQNKy9+creumgmPemfC3pe3YNfbTKTPUpjw0cb7jaVt
C/ZjG8XVbpwJvWrPL21KpmL+Me1LfmKrwHcgabVCnIL1PRzf/uneKvQUanxO
S2zA8t03me80XAOv6tO1SuaVWEOysH/OuTWo4zNy6suuwIarRV8dd1yDKDx0
cnBXYKIicn9vBK9BalOHGOEhhj2o0LtfUbQGu1eCeLRiSrBzQsEF16TXgdFU
vWgpk4+5az1q31BZhwOp8U7p+DzsiVPkRvyxdVBzSmtsr8vBsJIXxpj1OjRK
KW9qsn2P7bvybUA4eh0+Y954rOQ1tlIwK1zGXAcO4YMbBWF62NbuJQ0zng0Q
8tS//pp4DZS52exHtm8AKnunHZcfCFdsBbK3HNgACVcp/tjqSGjAK5xwctkA
7jRy0/pICqRaOnpvpm/At1ubPpAP5UDanevjqlZsaOIJJVzzxndQJfEshV1k
Q95DvUcf7Gb1R/gsQs8VNpSi7+lt2lgKvZGDkpHubOi/eXyl275yEH990Wrs
MRtaF0mti3MiQXL16eq0UjaUdvt0tcFYJcjzTFGWKtlQ//tKnYeHq6D4VETP
6Vo2dO3jsTPb71dB2+9fK2t0NuQR9+qZumg1bB/T2X9+mg2dtsMHJqAfEMd/
KFVImh1liP8KznarAWkz6kfXfewopNWfmZFfA/nP3ItJyiz2VKNszNUAWSKH
5naUHSnjGm+N+v4CgQMyfPUW7KgJd8UoyacWnpzb6Xc/jB1p9w6FHbeqh9BX
q2fnJ9iR+jUjrb78Jjij+s1DYY4dVR5olFHsbwLxCq9Yh2V2JJc+zLm6pRlK
+sfJZAIHMqs5H6Lk3gyMve2nc8Q5kOn5Z/d9hMngkF10yukMBxIrjcs5hLH6
62MeN1POcSApw7dqH1vIsN6oGEmz5UBFsvvTxlj9efJ0RsNxVw6kfDjRGdtM
AeqBOGOJUA70u9TYu9WWAjrFboZtBRyo40k1bW2CAgJG8q6bSzgQ5ei+0B3r
rP+DjqFwfRIHOuRyfGRNgAp+q7a/Chs4kPrHQOZ+VSrkgbFB7BAH0jZe2wPu
VJD8KatntAOH9PKOfJUfocLUuQHHkN04ZHs4YEV1gQqlI6kPvhFx6GRCqBE3
rgWsebZXy6jiUPi+R9sVxFsgxgSvizPEIcJDObeTZi3A1tKLSgNwqNvtla7I
5xZ4MFaeFhCCQ7G8xThU3gI8bCkcGuE4VKxRK3aorgWElGyqixJwKPnuubCH
fS2wN4xikJuHQ6Xdb+3p/DT4kJKbdfMrDkULJwnc2kkD5cJIHsVyHHq5mnSl
TZoGR/oM67PqcYi58UxylzoNjI5WmqYP49AM++BLl4s0aDr7Otd+Eoe8FLYc
C3OigbnLXUGJeRx6mNpRcPsWDWwTNKkv2PFIrf/WoeZ7NHCb/myZIIZHZmoB
LZfSaMAgxH4xJ+JR4duQoK3vaXBb7NYOIXmWf/XJLSl5NLhnqNAepY5HKeff
LspjNPgvI8M23AyPNP9SClAHDXaWhJTp2+DRc6f59Be9NHhJviROsMcj5wOh
3g3DNHi7tqs35CYe0dfLCvIYNJDfuoKQNx617B9JdlyiQa58W9p6AB6NY15W
02s0+GYVf+VOOB7ZF0TCE246aLl5VmtE49G3rOS+ZH46VDw4s3cpAY9ks/n0
7wvRoS5/04h3Bh4FnhCDrl106OJ7eM2tHI92dCgeK1Kkg730lXrFH3jk6COK
nqjSYeiIjuLfejxK7TRtOnKIDlNX1yad2/FIaZvvNeJROngFdprK9OLRI+vw
4UvadFiKK84dHMaj7e+k6nx16MBO8vG4PI9HHHpPXx8yoMOj3+ZUCSYe8Rb+
We80pAPv5P6D3ewElF1e+sLOhA7ROMH4l9wEtCNpd3apKR22ik7Nn99MQN8F
3zj+O0OHJNUGS5HtBDR3JGuZz5wOuw0+fGkVI6AhNqVXaxZ0kPF28rOQJ6CP
BsbjPtZ0UNLsMX+lSkCth3FDAzZ0OMRmrTJ+mIAevKjXO3iBDkd/knnVjhGQ
GUehmqMtHY5HGA4H67Ls2XF/fC/SwdCssqLOkIAYy3in63Z0OLPzaMq2MwSk
SLm1qHOJDlbdBX725wiogJOtZIXFdpmKFh9tCcil6gM9wZ4OV6+9UfnnQEDk
MSVP4ct0uKEqzqfjSkC3AgS/erHY69+z4ae3CEhgMb3+C4sDSjdX/vZh7a96
43cXi0NCw1OkAgnocRQf2zCLw0+y+98IJSBShs9NKoujBQIsvoYT0C6bb3rp
LH5GY6hwRBPQuJNIriWLU5Kv851KIKBH+h+aJ1jxZNoPDie+ICAUfbLRmcUf
ZS5W9qcREJdZauNPVvyfJ+gpSlkEVOwt/Y+HxcWfTf39PhFQN5/Ijf2s/ZP8
aiyqCgmIu/A/i2MsfWq0karAdwKyHfegKbH0a8IX89lUENDslcuCOJa+9Lr9
Ixk1BHTZsVuxjKV/V8yHyqlGAtLcesjUlpWfgXPEVA0aAWnRA5N6z9FhXOyl
/4MOAnqemK5iZEmH2f6tls29BOSmeEn9OSvfS1mRqqIjBCT9XKul8SwdCGrB
I7lzBHRwI95i9BQdNjEXK1eWCUhhSP1ekzEdhCrcU/XYOFG8mElDMut7kzzl
YNm5iRMdzRc5M3yCDrLCnaoywpzovezjhqvH6aDcbr7JQ4QTNX3/zagHVj1d
1avilOFE/4mFVZto0kFXoTz1rCIn4qKqFzir08Fo9nDAywOcyIvvCtWVVR/W
Qfv2HwBOFHK5V2aPMh28E/heXbTmRD4X2UneknS4c+FBQJYdJ5rv1KtvEKND
qNSa5ZwjJ3ouvn0TvwgdYnKmNj324ETECSxHfwsdsn9QAgqfcKLYTo7BNDY6
DC4knuMr40Tl242VhTtpkK5z0OtPFSfatamgI4pOg0uRTdG5dZwomn60daaZ
Bh17CLXmbZxo46j+OZdqGlDMPY++nONEasoSfnLZNCjPN5FUkudCoReG8Vtv
0yBwbURrQ5UL7Q+2oBLcaaBheN+Gos6FUsmPVXpdaFDYWxzno8eFTpcmSJ8+
zzqPN8sSyu250BVTYrqIFg0Sb7KPmyZyIdmmTLm7zBawKH7JKZXKhSQocx+5
51jnO+EIcS6TC533KmkKGm+BqJdutomfudDrkz1e+9pZ90N9Z1NPIxcK2J77
NrSoBdzlvhS447lRnk+G39VrLWA0dC0ozoMb/fK4v/b5BxX0g4jZJ/y4kZxk
+/B6CRWOb+vq+HeXGzW12JZo5FFBU+/UkQsR3OiMrPTDwGQqyL9RmSO+40bX
xNedNNyowHd13qWoixvdPpXa/UaICg2DQRZtBjzIKsHYefo0BUwHYxTExXnR
ifR7NXLHm6FBYZBmu4cX+fy9nRsh2wzGXup3X8jzovb7jLOdm5rhJEc3eac6
Lzq0nUtbq7UJjksq+Aqf4UUObyRmNl9vAjXbHyTuUF50Myjv8M7oRhCjLVvO
DfGijNYMfY/aehivcrj3K4cPmQRyhxH4f4Hylt+7dS/xozh/SW3/0HLghYXL
XXMCKEh2eIGf9h4MJs8vSlsKonHxiSKNqBdYW6Uj+3nFLcjhB+Ot+6cSrCi8
2k5yYQvKeKehaZ38E3Mi+PQ2NQkhgZ6drc5GZOyK552iTcnCCLfNN8R+gIap
OCs0mVzeisJUz8V/OtuONQsp8vlobEO0BZPyMs5u7Pun0BeKuO3IyOVk4bt9
fdgddvkzDX+2o/eOF2gHbg5gvF0BJ90KdyDjpOvHFhOHsKG3UvGvAneismzZ
vqHoESx+nwi+2FIEGbzZY9WXMYbFJDvVXJYURbdv6XxWCvuLnY+/2LRpRBSZ
nxh63GUxiS2deLP8qnwX+s+T+a1MaxobGDruVxkmhpbZ9YY3Bc5g6cf272q8
vBupBRa6yDvNYjkPfbY4K4mj3D+xFapHGViY5RVj3II4suupGsFzzWFqXWnv
wxolENfAPZmS7jksSe5FTqOxJNqpPZt1KGMeCyZFJhkXS6L8bDMnIa8F7NQu
yzd1e6TQn5itGsc1/2E6bjUXtjyWQhFSOY/7p/9hr8Qc9jQsSKGHEieFvfMW
sT1V756ZXpBG1SE/y03sl7AYpUp5ark0uhgRckGGZxlzmsNTauWJSLTsXdzj
0mXMIZ8h+TiaiDT1Q3mC7VewG6Hmq0axRDSRTaaYX1nBfMwLWzf9R0T/hb0/
v89pBQtf8ImKeUZEa9N7P5Gvr2CfNJaZiSlExGHvd1H89gq2XLHx++1HIno0
NjucE7mCxVA3RVbXENH3E8SZlJIVLDnjpsujWiJ6JhvVfa1sBcvwbtI9WU9E
dbastoW0gn3ZHrNS30REWyiaauQfK1jXeWGXFjoRYe2nk9fJK5jsgIhu/wAR
lfOON50eWcFUCwPEM4eISHaPbu/O8RVM82Hn8tURIor4Tizsm1jBTGRT8sbG
iWi0LTPDk7GCeV6XFJ+dJSJr71/psWsrWKBWyPLnOSK6rxZca83GxB7y99O8
F4hIWlywQALHxJJyM54uLRGRQMRYUzY3E0u/h3cuWSEir1R9di8+Jvbx7NXj
gatEFMB4+++IABMrlP65W3udiJJ+bc1dF2Ri5XMyyxsbLD3tkuWrhZnY/wBu
CfZ7
"]]},
Annotation[#, "Charting`Private`Tag$6593#3"]& ],
TagBox[
{RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13k8FV8bAHBcV5YolOhnV3ZlKSrqOUJSkrJUUiFlqUQr0qJVRSFF1myF
SAsVySCyb9mufd/Xu9+5knfev+bz/czMmTNzzvPM8yi5XTx8ho+Hh2eYl4fn
/8eEW24Ceu5Pd/m9Em48WcuA8hZF6yOKXpB5sbHdhfDy7+J7iooBoHVvUcCT
sFjk14/ClLvgujOC/xrhhJIwBbLiY4jY9/tyKGHtefdnyx7PoSusip1NuFcs
8d/fjkiYrr2t30l4w1shQ+7iSwhbY10uUceA8zuvXmArvIbznJL9xwl/aR1I
Y5jFg23siTN5hLnnrHuoHkkQk2P6XqGeAW94ex6zLZKh/mp/XiJh8/qIjayO
FKD0ZkkZNDBgIsaylOGVBvFYhWsf4VD3JWf6Yjqcv56pktLIAF3dLxxq2DvY
N1g/eruJAS2LnlELCpkQN3BAJ6CZAdcq5XXnP2WB+8vHgc//MGD9i9baWbNs
kDjze295CwOKTz7xmGnLgf3LdaIybQxw00SkaY9cqH78YPvzdgbwLQY2MoI+
wi6lyK3qFAa0DjjIMSw+gXn/uPtoJwP8s0UKaB2fweXRxYrmXgbsixwToL35
AhzZG9GkAQbI+pfaU73yIHbTh96TQwyYOxGfsqCfD8aYT8vICANKzK4vzC/m
w/U3nKxX4wyI1Di8a778K6Rq0UKvTjHAfZVO6FzYN+DY8cbcnWXAiu4htVmF
AijdFXBRi8EASsnPqzMTBSCQfdmsms2ArLcxv6Y/FQL0dNi8XmSAzSWbU1Nm
ReAdcf51C4kJikc1ciZX/oQDBqzbIMgE2k7+xYm2nyDs0jM9sJIJr4QKX417
YOCisXl1pRQT8q7vu3RZugTeazSRRGWZED9lJEMPKoHn95/TnigxwadJwoNm
UQoXTve/0tVhgkR8FR+1owwMvxVd1rZkwqLY10xfk19QTGlRMLFhwkhwqu3C
m19wbx2p+4EDE7563Eqc9yqHVtmX9pXuTHAy2LJjbrEC5ruHbi09YILZW6XB
Cy6/4aKR3+7OZ0zQllkVMlv+G0wuawvNRjPh37/JtpmwSuBchSOFWUxIrkny
m1aohvTpWUvKHyYwYvI1+0OrIUCqRGRPHxP2eNQO/8Gr4dJ8kvbcJBNmSGyH
wpYaMID1tHFeFmzbabPj8aM6aMteGnPYwoKm3L98avONsPNhzq5bySyQAKGT
opuaoMbT+1xpLguMVaN2PHJvgourD/EqFrPgGSOTHtjcBJcrl25v7GbBloi2
M27vm0Hstx5XSIoNt2u09+mdaoFn702f9oayIePTN9X3L1sgfVVNUmwcG/7E
7CZtrGsBxvaBz5ZZbNjgcbRIensr6Gc1nDhbyYYa0v1NPJJtMP3jasQZHg4w
psREAq3a4FrkQ9/DYhyQ+/N6nH67DcjVl69Ly3LA903um/GZNrgiWIptMOKA
1M5uicbf7TCSGP58wZsDaMPZ+b1L7eBcYTRz9DoHvESotWUGHfBdeeuN+/c4
UNQp8ODrmw5QGHv5fn0cB8ZKIlx1OzpA3Mhf7s5bDqzKkN2VJUqB5wL7Tyd+
4oDbNX12QiAFrqEu98XfHAg98bNl3ScK6BUbGmxt5kC++d6PEeMUOCS8bVGu
mwOCkie9Hth3gulbEV76LAf0uRMWy086IeXWaGwXiwPHBy8rB5QSXlk25rHM
gQ+5j7vPb+oCvY03v3mvwmFKYip0n2sXzBcN5bpI4aB2bd8u9agucI/sCeKR
w8G9M2ueXNkFjC23ffaq4PDGRCR5GO8CjbXJPYYaOPQknTtcqt0N1lmDqjWb
cJAh1ZGSTnUD//4PeTxbcHA8q50fFNkN3vXmTMo2HCKrQ886VXSDASnv1KGd
ODRoz67bxukGI9WuS56mOIiEH6heq9UD76xc82UtcNhLzwmkn+gB/pGC/PN7
cbjvKKbdHN4DYQ8khY/sx6GkwKf3w68eGGmws+06gMOSbOOzUFYPrPkhsol5
EIcddzYjb41eoB08Z/v2EA7Xhp9TLZ174U6lwfmZwzh83rOQsvF5L0SYZ+z8
bYfDfKatPamsF4I33AzRt8dBW/QTeZDRC6HLFet0CXv6in8rVuuDBs+hnz+J
69Na/Dzjnfrg0i0v+y5ivEHDPzKBYX1w3WlN0X3iefKx+rVHSvog8vK7nh/E
fJyWIoO20vsgfakr7RYx31cudB1J1X4IO7pbuG4fDi2/7PoXjvZDaZy+UKol
DqvV8sIbnvZDhHVGGp85DtZP1uzOLu6HD9baY5OAQ8jsFfpjaj8Mi37vPWKM
g1uG9x8DiQF4u+518n5DHHi61r9P0RqAF1N2NuW6OCSJ1N4TtxiApAMPBUo1
cdi184bznZMDYLC6moY2EOvpo7V1/voArLSOMDUj1j/wTbfoyYgB2KMnrla5
FgfpP0/H6rIGIP6sdG+tKA5fSSaYcfkABK9gpNiScbDfOhOd1TsA/1nZ/LT/
y4GIGGurkNWDYF6wRZYywQHdmr9KbI1BkPbFSI59HGhYzOaeMRuEHcb3Hti2
cED4lGi22bVBIP24+ef7Dw7c29ggttw9CFvPcccsHnJA+cit8QvMQRAVlmqJ
JuKtJGRTSY/YEKjTvhW7enLg7/Qzv0LTISgIEI08vpcDVz8fbL36bgga25it
nbwcWDOynD1SMgSnnYtt+ubY8Hntxwd2XUPgn7Zi3ZFuNsz5rzbSEx2Gh7MG
1NTPbPCA5tczl4ZBzXduIMmJDTwprMLup8NQZSn29rMZG2L4ZXtq0oZBZuaz
sYk2G6qqz8pntg+DiZjkk8+LLFC3/5tyZscIDHjz/1GOYkHJV6Vye7sRSKoy
3zzsz4KjMpajZudHYO6mW8+6EywI6YtQU04cgQ1T04weFRZMeKpl9/GOwkjy
hc56Ij/fqbWur18/CuJHDM+pP2WC9KZLc0UGo+BTvG6B4c0k4qVIN+7MKBTn
lKUOqTMh8+bh/CPVozD6a9haMJEB3pE3i5vCx8A5iEwzvEAHPmZKP5ZJeHfq
t6fmdIg9UsWTWzYG/emRdgf+o0ONrKRZGGMM0vEVsWsraaD1LqPS6ug4jBkV
1eauo8HMj5amMoUJ0KNKH82NX4D78jj107YJiLtE+5HsvQCywfKSyYcmYIc4
VZ9rtADWe7wcbt+bAHV8IPtr8jzkNP3rNB6fgPSxwpAk1iz4jGoM532YBK+S
hxICZ6Zg4GSnYGn1JMwPb0mmDk2CHSVkU/3IJPQK6QueODUJ22rHA0bXT8FQ
UvjLbLsJIH1KXy31aAr8c8zxJY0xiAlS2nX91DTYSIi96ng6CMKsptP3Aqdh
Y/johZmFAbh58c7j5y+n4Yvgq3vu9gPg5tbf+q52GvRDL/fMafeB9t6EcxSj
GRgpdDeji3ZCqaTM6+2rZ6HLsxqvd6mDLWFVxRZas5A/NaC2+Wk1vBXwHzm0
ZxZKFBwzmj/8hlC8fbN30CzwJRQd6xksAcf+qN+xE7Og4x0ms683FaayVjMW
S+Zgx4maeJJMOSasdF+tf9sCbM0XEUmIGcKqTCI237JYgPbPwf9d9h7GHh5N
NJI7vACFdeWjESYjGF/4d8vj5xagSX1l6JbBUYz7b8ajI2EBbpcHJrqqT2Lf
13MvXstagE8lZIU+ziR2zXCF/9pvC7Dk4HPoVtUURrugFGLXtAAPrgzPe7jP
YNM9DhmNfFQo1ytO54TMY1kct48+q6jAH1widUp1AfNc4/tdVJYKtaOBrbMP
F7CR/U+q9m+lwnn37YF3zahYikd005QpFeKVaMxdSVTM5V4a5bENFVJvUbA1
OBXrKSyeqPSgEv9pJyWftzQstr124ewVKsTOzVS9wWnYURqFQw6mgliureH+
fXSsVYMuaB5LBX/+Sh3XYToWacEjPvyWCm6NL0sCtBiYrauozN0vxPMlUnPc
fRlYXYyaRkkdFaTfL+LiCwzsSd4WvVOdxPXtG6490mRie5tMt/8bpYJPjcsG
Q1cmJjBjY5pAo4Lfm8fDiy+YWPkKZyuTZSroH/3W/b2Mid1V8TrULUKDDjun
2oOzTAzBtWOB0jT48P6d7VtJFvbP6Z6rzEYa+EVP6KRvZWFF18K9vuvRYNHY
8tE2OxYWGJngd2QXDa4JVknbnmdh2z5kBbD20SAnAU7332FhrOpvwS+P0ODh
WtPG3nAWljda/niLOw1oJwwr9sSzsEu8fyJafGmwtE2iUCaVhenK9b++dJMG
HmsO6jqls7C5bTPJ4k9ocOndlpxVxPkcezzz4ysaMHemp1gQ95/3Ffh8MJUG
ekz2AZEIFqYZKlk4l0uDTr200MvBLGzinWJZWBENghkF76IusLC3v3RqtKtp
8Om07boQBxbm3r/jT20bDQKjDcF7OwtTXrTs8h6iQW+mlaqTDAsbkHIYEpqn
QYZEn0YAk4kl6rtNZSzSILMn88NUPRNztrlIsxSkwy39yKaWFCa23juIO7aG
DjkXsiSOX2Fir5JfCW/cRId3v0/rD4syMfufqRLlO+gQkV94ems7A5Po/Lj+
tCUdNHZsb6yMY2DPVtdqJrvQ4bFRIHZIgYEVGMnl2/jQQU44To6XQsdGTl6E
vzfoEHxMNmrbMzpmnCNpfySaDmqfE+v4GTRswsr5pmgDHTKu7KEoZ1Exs3uz
jQHGDHAWuK5k9HsW4zBXXT1M1O1zPmakc7eHMBU5t+VlFaLON8I0CpoHMRvz
vMc5ekxIdHHx3bZxEEuPPJooeIAJ0zX5LwaT+rHDm5Mri+8xoWALS9DIuwvL
8dRfr0Vlwj6bHEbw/SbMrdseI9WxgJ3PmvK8GQnCcYMX/DpZENlO/d27NRk+
O/nI9o8RdW/vOxFcOhNIXY8CCnnZsOTlM9t/KA/SKIUGfkZs4DP0btLLK4Wx
NsWMvhQ2qEZf5+mdaYRnL3McrT+yobEx9K1wUxMYOuwgF/5kg4npqzUP3zXD
o1Y7t5cUNlRkrq7Ut20B9ZaHstZE3XsrV2uL0ON28G6aCS8I4MDh3SfKPiT0
gER4AKg94sCMOCeFdaQXCg8KzEVFcUD7wBNp/9V9INKosN83lwOOeJ2TSVA/
ZNcfJquNcsDW8mPQe4VBmKv5HhBlS9RJp+9kkIqGwa/ivttFNS7YrtuhMeE5
AfIjewRYBlyo93Fi+mZOQC2fUFYQ4sIwhbnl4uQEbERh1MfHuLAOu/Gw2WMS
Ogtf3kl7yoWEK6TSwyenwPTj28TOeS5Mnr8j5m4wA3MNnrtd/nLBIs3TsP/c
DMTNao6NCS7Cgsu9yuHUGWBq5uowlBbhfXfw6zCJWchM/1YkZr8IewZ5Tt+d
mgXxuKous++L4OAXEE95MA/FBU9u1ZQvwpki2S7Pb/NwjmKtfKh5EWqXnWoj
J+ahYm2z18mpRejcu+Fb94YFCAjv5PjL/oXGxyMHP9xbgMEHU1If7vyFb6d+
xXhvo8In35V20lZLUJYwsBa/Q4O6WMmAHMcloNibppS9pMFY+fqk3e5LUJqf
cvlkFg3Wy2hMn7+9BB6TJjfFWmhwv9TiXmn+Enz6eknsuDIdHCVuf/FW/gfu
Vs8u4t/p4GvysHN58z+4YJ2csaaWDk/Ohi1H7fwHSk8TeAR76YAVxu3Hjv6D
3RszT/rzMED99Pdhyef/wGFhrD3EggHcL1TJn4v/YD73CSWnigFr+jjbDwst
w9PtKMmX6N83CfK4jEstw+pdVq6rJxhEHSWWLa6/DKqdG6jjAkyo49cyP+u5
DG0Ui5p/u4k4cXC/sqptGZpwJ3tyPtFf3jg3pXuEB5Fyo68r32WBbokQ59EJ
HpSZViVhFEbUR/wZ5P7TPKio8NBXgxgWDISNKIb58qDYUc0fozkskH9z4sjk
Yx4Ufuykuh6FBbHlB8uTi3iQ5YOoykfqbNAUmmvmlPGg59O7r2/WZ0PBgdD+
g9U8qHS/xOtSYzZQ2qu4S208KCWkrzTdhg1Sk6Z6TvM8SE756S2/y2yIFN2S
KKHMi1RjSae2FLBB+fCf917qvMisOcDmRSkbPr3yLSjZxIuSzfWq+6rZ0KSQ
0+pjzIu+GfL3GnexQUxfVaTWnhc1sBwp4lw2PHGU9r/3iBc5HV6haGnIgbtJ
fw8xZnhRzPALVmwyESe63/206Lwoy2TELu0dB+RLL0e44bwo2nv8YGIOBwqH
ppqayHzIeH7rbfcCDtA2dh7MkedDw9oLm02aiH4xO//AWVs+dNTiIldrkaiv
d/pdSHDkQ7HqV+KteHD4V68d1urMh2DA0egYUZ/HzqfW7fbiQ72nFzJsiP7v
j37kfoW7fOjRA7nsKGUcTAt8rChf+JBQgbF54h4cxPZpeq0q5ENm6VG5I0R/
0tM1GrKnhA+d1O3eK0/0M/5/navy6viQcunkgXNHcPgI+y0jRvmQ0qRVjI8H
Doq/1Sz2rSMh1zJKkMYDHOYch92D5UhoXCVT9H0IDkXjife/q5BQmvH7QcVQ
HI4KSZWr6pKQn2J21GQkDuHW/GYkKxJ6wY6aWkgi+pmWAVQUSEJCl2gKo9+I
fnCyODkwmIRYFE7jXCEOQjwJfNtDSKh4xKR9+icOEjrHyvNfktDS1gHdkl84
bHzUbJn7kYR4bbaotTbgkJWQm3HhGwltifsYGdiMw6a8MCHtYhK63rYwvqYV
h22DVrUZtSR02FE3emMnDvuMy2xSxkio/pUZ6/sQ0b8eepPrMktCOoM2iTyj
ONh53lqtwCAhxk7eIpNxHJxf7vgTx8uPBp+pxkdO4+Az/9nhpSw/eqcy+esr
HQcaOeKrnQo/Wlr2nktl4nBd9uI6CU1+5FLpLPmQjcMdK63OZ0b8iKPNCNVY
xOFFaqpzyGF+pCC+vDjHywXpwuCfe47xI3Zu5bcHJC7EN52SJ7vwo2llrRlx
MhfeLv03EHyBHwlKcReFBbmguYaL0BV+VO5WzrwuxIVcTUryv0B+ZPNwPK1L
mAvfj0SdvhHCjzRJcyeDRblg4nOpfPtzfnQL+T2qEONC6X3bjZyX/MgpOOzN
8iou1HxaOX4llR9dedfc5yDBhR6RB94+xfyos85BPlSKCy7Kp2u1K/hRloH4
qeB1XBjdZqo9XcuPth9I5LsgzYW5M0uzHp38KPG/jEy19Vy4HNRtozpAjJed
XcUizIksyB0Z40fSPC+Ci/7jAm/JVT9XBj+K8tBha8lx4WG73R+FRX7kSCpr
aCMsPKtn0MdLRksV+NVr8lx4TlodFS9IRo5/xbmiClxYs36O4bSKjO50GXjG
E47RrXOQkSKjZ2lX6pUUuSBnmfW1Q5aMnra3GSYSVr1y1t9ek4x2eSZYBSlx
QWdHv12SLhmR3fdXdRDewnN085QhGenfvPlGS5kLxr+bhLfuJKOxV9d7rhPe
HWo1dtuMjK6YXnxYRNjqcFlpjRUZNbU+zcAJ20obJ6y1JaOEJ2PWm1W4cKTv
i7+LIzH/6Cc3TxA+maZt/96ZjDQsr5rfJ3zGO30zy42MKla/ep9K+LyuvIip
FxnN5jUU/SB8mfVq7OlFMlpjTw+uIxxYtKqs/Srxfo9q+NsJB98NSVAKIiN2
gOhBCuGQvbwB5++Skemyh3cL4edigfbfQsgoOtvfpZLwq1baZr7nZCSy0LQj
j3BC7DmRAy/JiKrG5IslnOYyMhYdR0Yqhc5l/oTfq54oG0omo1bNS3dtCX+e
aUvQySCjuwYvrJUIF3y2CfD/QEb7OldrThPvX+Jfaf8rj4wc7m3e8IFw5S6k
K/aDjCZWq5l7E27gLxA5VkpG++eVXygQbqvRG0+tJKNzm3evbyC+f094Vtlc
PRmdioseukp42FElcXsrGaXUajClCE/Jxgfc7yKjbSZ0p0/EelKH1jg0DpDR
edchWQvCnIww3fXjZBRf1Gn2h9gP5K23x3PpZCTXvnmEQuyflYvsMi5OnH8u
ffEwYYlS30QLHgF0NUHubgWx3xQPuDl0rxRAKXzip2NkuaAm2a2rKimAdg1o
7+YQ+3VTp91KPxkBZGFRUnuIsMkZi18CqgLI/4Q2D02GC2ZaxYmHtAVQ0xPK
j22E91ENA+P1BZDOsVSzACI+jt5U19MHAfT5QxllnIinKy9Fkk4cFUA5s8LL
NyS5cOP4/cCMkwLogGgPbyQRf3eVlhzo7gKILbdaIkWcC+E5cysf+wmgYxGB
gR+JeM2uaA7MeyKAthwQ2ftIhAsjzGhHkZ8C6N/xhFgVPi6kmBpc7v0lgByP
fXtQxsOFU2ENz3NrBFDh007+48s4dG0gV9tRBJDNxvgR/784NNtdMo6nC6A+
VwkdLxYOxZ+sFXU0VyA9HfMmlUkcgpbGTZZ1VyC5r0lmLkQ+3G5171iz0QoU
IDzb9YrIl3kDBZFXLVagM+SP0bRBIh+vUiMXu6xAU14vjM504RB9gXfKJnoF
6q2+fGxXDQ72BfECSokrUOyTFVzFKiK/k7ep0NNWIFWDgt3/KnB4Fu/jHP15
BbruyTeTUUr8H2q7G/rrVyDq8a/+2HccfDW+fvHlF0TFlw10OOlEPh/1vhnp
J4h+XTr3rDYIhz03VbLN/QXRib6SEPlAHHav7eli3RJE5rXJOy9cx2GHxYFt
x0MFkbqi3cKSHw6a6ZvpKu8E0axcjfrsWRxEzjA883sE0QeNz3sEibq3buSm
PcVSCL2/0ZvhpICDzUi4lry8MIrP4q5I+8KBOq2RVucNwqj4Be5u+5ED+y8b
3YrTFEaNY3u3c7M5sJevr0naSBjJBNQ67nnLgd2KWtckbYURz1Ox+pIYDmx1
rigRvEv47UCb6U0OyLbiDvRRYbRHvJ8das6BqV9ud6pyRFB3+vTt5To2bBJv
lzM7JYomE2bcHn5hgTAwXXvoYuhpZcGu5ddMsJx1Yis7rEato/oTG08wgFLm
zuukLY64XnHl1xXpkB9SflKRKY6cXX9VSnKocJZ8daChQQKFnzTvLP++AKcv
3chfGSuJlJWdTohunIfNHloN1q5rkOuaKbux2RlolNAWubp9Lfr5aa745Isp
+PHhbpw2SQodLa+bXOszATd4NW3reqUQq7Kg+onGGAj3BO71yVuHnKMyXX7/
G4bRt0pRSUHSaOr2bFGHwBBEqcvwFzjIoK9ig2HfR/shPPZspavieuQW+K5D
QaEHnKJONKwcX4++NJ1SL7tHAY55Op5U/B9af8WgZvlLKwyP7vYveySLvA9J
pVrubIaUnXr/1bvKob6mj/qpGrWQ8+CquIeOPNKtqDjnG1wOjxxO7ycx5ZHC
xXNXEi2KYGtPcuajegWk4WUo/jIqB2I04nLq9ysiS9nslZJr78PtkrCY/QWK
SKSOb/ISKw078J9Des0GJZSYkfTGcO4rZupTeVz8sRIqPbamTW5DKZYk67ah
jqmEwq1mlLLUK7ENv969sjmujEKO99+8+K4OC9cp0/xTrIxUKd168uwm7Cyd
v7laUwXJxF0Re1/egrl9oik+fq6CYrC+yTv27dj5u3Z/90WooPNO0iKtp9qx
q3Z5HStfqKA1FTc2qZ5rx0KYV5+Fv1JBv85eCKoMbsc+bMcXoxNUULPqt+3/
PrRjeOly+9v3KqjBOuGUiVAHFv5nZVh5pQp6W+B2/29RBxabesHzYbUKkrYQ
26Vb1YGlXmkw21urgvpkjJfdWjqwr1Lh3NoGFcQzXRJTMdmB9ThJera0qaBM
0bU6t6UomNqwjNnQsAqKbb65/OsiBdPNC5RPG1VBxkZD5hOBFGzHg278zLgK
mo9yjxJ5SMGs1RI+Tk6poFPCXocPxlOwS+cU5alUFSThz7apraJgQSbB+Ge6
CqoP+jM53kLBHogOtV5hqqDNClLhpH4KFpOb+pTDIcZrv7FsxKRgKXf4PQq5
KihQcaHKlqcTe3/ozO6gvyoo2tcv0VOkE8tT/i23658KkqxWv3NbqhMrpqvi
y8sqyEUZfF4qdWL/A/38Td4=
"]]},
Annotation[#, "Charting`Private`Tag$6593#4"]& ],
TagBox[
{RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13c8Vf8fB3Dce861i6aS0Q1lpT1U7zdaVJKdlJFZEUohpaRvVEZSiRAi
iagkhGtVNhllZo9kXXv7nd9f9/G853Hu/Zzz+bzfn89L0vyytiUXBwdHBycH
x/8/w26Zk1ssHh4we8Zbca6EjgXVEscNJGxhnmugyoTy4vfsuxISrpDNT7t4
nrJgYGoyb50n1P0ts71AOSzHV5yQ8AEHB5tIZ8ryQxZ+i9b+sCLQtuMe5WbB
8IW534Gwbss3jpeUN8Ty7JyZfQr2eu+K0ihf2u9sNyn+As79sBRopvyppvX1
mNpL0Fq9PYSnlI4zF483sa0jYExSej9QfsXZ5DN5KBIEyfHcW5QPlj2Wmvgd
BSsyGkYKKfcGH8kds30NE7I2wWJldHxkMW88OhsDf0gj19uUlZQ+TbF930CZ
8iWjIcrVszZBw+Jv4Zqy/MLFcjpe+yGmNPQhHhpWFG+YpLzmSU3JgFoCfLjZ
+/BxBR2zzz2w7q9NhPLii4PKlXQ0l0XaP+sk4F96lD5JmWvWrWLMPRl+nNH0
zP9Jx5pWvXVjhz5A8d5pkagqOrok8KWP/P4IdYL7NYJr6KgR2E2OvPoEr+tV
t32opaOoS64u2zYFnM2Nf/35RcfBsy+jhrd+hu/x+35K1tExR+368NDsZ7AI
5cxyq6dj4CbtA0MFqTBjuqDQ10BHiyUKjwZ9v8CG8XufHJroyGhslxkQTwfv
PhXxby10rMvJcu7vTQc5SeAJaqNjfGxw/r8PGXB0D1vQvYOOmk6aJn1qmdD8
RHn7ix46ShhuSvzLnwXlFrdlKv7ScWQ/fba3NgsUblxpFu+n4zOejGc91iyo
a3k5JMymY8p1Dacrq3NgwcTu7+dROr7s2yUy6p4DlwXKWq9O0NG+Uth65FAu
tMyNfTwyR0fhl4Vc7N95kB97PvIQD4GzgqlvHfblw/1dl6+X8RPYeSdaa/hV
Pvz9Reo5LSUw1fpW+JBtAQTWVwgtW02g0bbtewdnv4FE+oT0+40EqsVKttmZ
fofW7ixuUQUC5UWWeA8UfIfvXmv7Y7YQuLDwt7bf9wdsIKWe8CsTGFkc4fhP
vAhm0P3h2pMEjgV/lm15VAQW+pZ2VboEHrYu6aiaLoI21dqbsUYE9tMm9TKq
iyH3QqBptBWBu/dr7vW5XwpPJOlnGjwIrEya45IZqoAjgk3/2acSKAw85wQU
K8HXY++6gCwClaWD9t63qASTagUbVgGBfmNvR91+VkK7opeMajWB2x/XWpq/
+wmbFcMtUoYJ9CiW19hiUg1DEtIKYvIkxn34Iv3uaTXMal/44r6NxKpgVZpU
aTWstxnH6r0kbrA2zFy9pwZUXl16Zq5OYjHNS5FjWS2s24RK7ZYkjvUJ8rmp
14J5UGFE3SUS11W96Bn1qIV3myH66xUSHV4lverpp65XWP5QuUPiyv2NwhXf
f0FIyIkkmVAScYPV0NH5X/BLIbL5TCSJtnzskrxtv8GrSTzG8Q2JmfXkvdRX
v2H3Aa2sfZ9I7M55bKb0+zckW6lcG0ojcUmc6IF4gTq4XC774lY2iebXtk6G
udXB+YsjIgpFJD46m1W96kMdqMRLcGqUk/j54NHkxz11oKUlaXmgmkTuZeds
7+nWg7oYX29cE4lbZ3oPLT6oB1feqRTRNhLPtF1Z75pL+VS30fkuEt8n+TRe
UmyAnGa1fIsBEvuE+x5pmDVAxNtrrJZhEmWuaRzYGNQAp4NGYzaPkWhRHz9E
/GiAqK6CcJ1JEl/t44vsmG6ArNraWo0ZEpsiLmrnyjfCSYkJt+XzJIrQSmkR
Jo0Q79CUm7RIor6V/Gf3wEZo/iDTvpaLgYFFj6yMvjVC3nGTVYZ0BpbLD6za
PdUIB8+NvDpPMpAv4ETRCrkmmBvakbefm4FHRxPdRs82gex+87wuHgZ66QvK
/wxogiEB/34jPgbmpNs3v89vgpCtSf4v+Rk4L1rh92iiCT5ufLjwVoCBe29v
xgubmkFiNMPfU5CB1zr82UeMm6FXMSJMagkDPx4ejpLybwZHu9P/BVIeequl
S8trBtvm/HeFlOUFPhBtY80wqGFz5QdlGwehL9kyf8DP49phP8qvqx1tXhr9
ATPejMeilNt2Vom4+f6B8y7+3xyp/xML2VpikPMH2PR6PV9qPEbzge47Rv/A
TNFIuj013memowrLpFvg8vXYSyuo56nO12kZNmwBnhdi/bep510qkxJQ/rAF
HBzr05MZDDz+YLlqQnYLeDiGGr0mGOg9cHXUh90Ca7TN9M/QGGged6Fqm3Ar
zP46tbuWg4EcDWveRcm1ghMm+QktkBjBV3JX6FArTDkW9i2ZJfHA/hvGt8+1
gkr139YKan6b7OV2DF1vBUX2Ce5T1Py7vWoUOPe4FUo6BGYDqfWxuuphd2l8
K1y7JaT/tJ/EVNo+lnJBK/zVXEwz6CVRd0f/8/jmVki9LP+9voPEx8HH1b2X
tkHxmwjntQ0kKhXPSU5uaoPtNEvbhhoSy2cTZizV2uBb7+F4gwoSeU0EEtSu
tcHbjQWVD/NJvCtVLrjY2AZ5t7nOVMWRuN7gVo/deBts1lp66gZVbzneijlN
gu2w72Db4dYXJM7983PMUGkHgvuRUrMPic4fT9Y4v2mHpTs5tF9akbi8czGh
M6cdTrt2+omdJfHjiuR7Og3tYLGOZ9RIh8RBl6W7tgh0wD8VcVNOINEafr7o
d+qAfXfnDBaFSeSImshofNgB/JcfZXgzSAymizYVv+6AHbnn7pXNElhYZCX2
9lcHHK7yS/DuIHCj7lyU5d5OCL59vzInicCcVMkCXZ1OuJ4ksygRRaChyJEu
tUudIP4gVU85iEDvP49l1od3wl6cbQu7TmCvjUzCH84uWCO6T3cl1Z9vlxwv
K1vTBcnXJMLU5Ahcreg0mLmtC0xkH7dsWktQ9ZKpFGrZBYwoq3SJGTq+van9
2aCIul9h0vdTCh0vBN7MrgzoBn0e71YNUWp/Ho9qYb2l3K+vNs6gY4hBIUdS
XjesDtcU0h+lYbHoMjXfsW6YOeKzfW8RDeXexP1QN+yBtdbnT9x3pGH/1+rK
PPFeyM1/vIyRwoVeYtPsD7t7wdnr1iGOUC4UvSO2LPJULxRUz99OuMOFxw/b
6nnc7QUHnyzhdZpcmFi5UK/c0wuV9BR1gw5OtO/a1JHy/i+ozEr3Dy9wYOu5
eu7cor8g5VVVcfEPB+rUeSuWdf6FiLLHb//L4sDdJT2uXWv6QOLK30chbhxI
+xCzdOX9PhAYSCg527oIwe6SB66b/IMrEUIhGo/ngXei8vxdt39gem6eqFWb
h5uXb/v4P/0H8SG1Sx+Pz4G5eUvNm5J/YOgq81+I/hzIHw27WLerH8hvHRGN
grOQu0zkxZ6lA3AhX83PxWAKtvsWZh+SG4CYT2RKwdwkxJIunacOD4Ca0Qr6
nshJeDT9a/MF9wHo36RqFNIzAfotQd9DegcggvO3uPqFceiLXzo2mzMIMRqO
Zw4cHQFeSS+Zlt3DoHmd54nEQjcU7nu8+dahYfjg+sRTQ74b/jMM37VOexgG
TbTS5Iy6gCsg7ciZi8OQSuMR9vncATML/da/w4ZBzCZk8Yx9K6Stmbl8LX4Y
NtSJLWQrt8C1nQyXFV+GoSbhxItbL5thxE7SW6dyGKQdzhu/s2iAf016cRVc
bLgxnjjss7YG4qfMk+2XsGFYd2PbwpMqsFnukCYgyobp3AN9+UI/ofPYg8Jj
O9hA8/eJbT9QClHWzyv7VNhQHJNfuGBaBKZ3X9f5aLIhIzPAVSvwOzRlZPf+
sGbDZJ+H3T2ZXAj5VTJsdZUNJW4NZq1rs8BwpG6KuMOGh07hD/cIpUHNplHu
gyFsyN7ntDFlMQECD3EIdcSyIaIhuDxyLhq0zAREPD+xwX+09bR39jMoDZbZ
lFPKBkmrBy5PT3uyHqRs32JSz4ZxMuD7puLnrKOVKnsWuthw6v73+L6MKBbZ
r6kSNsIG4kSbf9Syt6wChrH6vkU2eO0Pfqry7z3Lk2l7qpFvBDY1zRYsEf/I
Qrh22m31CNw0/Cni4pXCWjC6ayYiNQLyK1oHLF+nsjKvBdimbRmBZcbFd0Nv
prHcAsMcDQ5Q9zN/hy5fksHa/T7edUJjBKZdtdR4DL+yJoq+3HlqMALWE9a0
YYNMVkpXgc92i/9fzzT3EMxiOXFWPa52GIEEebfk9zeyWErrWl443RyBVx1H
lqdGZLEGd/dHCj0YgYKlke0C1PVE3em3yc9G4Klr/B476v5LDuTHk9EjcHio
dvCHUSZL9tGyjMGkEWhOe1F/zOwrq/eNRJ5v5gic7hp/cJaZwYrNVyiWLxqB
9Dpjr6CoNJZFy96qktoR6vyfw/WlNZW1fvZIw4X2EbinzL7yuSWF1bpSr51n
aAQ883clxkR+ZIVvNe+Lm6XGZzU2nbUxmWWseXnkCPcojD0cVXo1GM9ac8F9
pnv5KBwdmrniLR7Dehb5jFdKcRROiB7/tToygKWbFS1csHcUGn0OmG5KtGQJ
1yevOX9kFC5MJ/Z6lNwHv6UlspGm1PVavpHIOzGQvmvdZ037Ubh8m62QevE9
dJ67DHM3RuFqScf781WfQDlxma7B81FQwmzpV85Z0KtufFOgfBQW+SRTW3iK
QO3uQIWr8hhsO75vmj/yN0yNL3HWXjkOsVk/Q7RX9QBznfniInMc3Mf0rtK/
9YDmwRSfxC3j0F+SonDPsRdiAg3DuU+Mw4oje2tKv/8F7c2RP7LvjsNu4RCR
KLN+SLTZukaOPQ6fVFtOHaDq0LxRl0UrnQBJx1Qn3RXjwBvaZudYPwGklGqW
gN44fDSyF23pngClWuvn0kHjQGu475rBOQm97m1l7ksn4HVdxjbHXZMg0LyK
p4v6vrtWIu5P1CQo+ohcnimcAr+nifrHkycBihNdzBanYKfeXiIjaxKeSyvp
4o5puF+jY/60bhKycspvX4yYho3V/4keF5wCKc8VopF2M3Chsj8g3XWKyguR
HsUjsyAc4Aoy96cgP6TwurHkHGScJAeDgqYgdJNCrfvJOeCrED/mkDQF0TVZ
XXbxc5BQpk3IdE3BRLq57/Yz8zBYnOYapDUN6ws1ok3fLoDjNy/zyzIzMFdZ
7fjXgwPFOg+TE9tmoLG78TVfAAeWcPHEu+MMmOXmbed7xYFS6Mv2OT0DA3s3
FEWzOLA+4+nt1w9nQHPj91UH5zlQJTk2vH5oBkytpC56O3HiYLmNquncDOy+
Kr7jzW1ODB2Q7e7mngUTptXpOD9OHJdNUhiTpJ4rr6tMO54T38Z8yRTUnYVr
dw9xaLVyolBoYYNa2iy4vYn2kzrChdnpD24VF8wCuvGH++hw4cW64+tP/ZyF
NXzGa2pMuPDbip+25/pmIejyKrV1LlzoGlA/5SI6B0sCrvv/94YL2+71rXx/
ew5os92fOjlp+MGBX2e1OrUPhTiPyMXSsDRkmWui/jwEjsekBSTTsLtgTYSq
xTwwYvUj/2TQcI3Ipn+XPOahicWM3VlBQ6/cQ3dzP8+DR2z2YNMEDfWFPT5d
WL8A9ZePi8ur0tFh33/1i5sX4By79uueY3R8YOW7GLR/Ab4srbHepktHVkbo
MZbhAhQ21z/7Z0nHjefTOpb5L4B2/lTVFW86znxiL8uaXQDx6GIdspiOy/9M
7dHmWYQBa6kvPVR+V+TmMO1ZuQib+zYFf6Hy9nljwQShrYuQ8WWVKZPKw6V0
uYNWNosQsCuuVJFBYLiexdUltYuwpPCj0Fak8uWNi31KBhwYt/5UdE4sgUo5
PFP3z3Kge9jfYY0E6nxEjyNaznPgvY3vVYs+ENjq2ynh68CBY1lrDkVlEij2
6qzBXx8OHL6eMvvjJ4EhBScLIjOpdeN78tjoNIGyPIM/p/I4cDBHmvljgcD0
E49aThZxIOkouD2ARmLdr8KZ+VoOvO5/9SiXAJXn/qpsMRriwJ1NxdI24iQG
CmwPF17PiXtWM56rq1LnTe2qd7YbObFwW56g62ESPzxzSM9R5MRrA+tKwzVI
rBRPrLFX5kRPK4Z+mTaJglul+Up0OdHve7JOmjmJD/RXu9y9z4m6Y96TVbdJ
9IyYOzXWz4lj+yra3VNJ1FJKc5Qb5cQbttcf30knUSz3ymPzaU68wuHqfyuT
xIz2vspKglpnqhJvzPJIHJGqP5koxoUvzG56lJVReTHh8wkrLS6sGci0OESd
t5X2O9qF6XPhVRPWjhoq7y2UyfvWGHPh4a9KNGPqfB4yFF2qasuFK2/Of9Wn
8l/V1sBj4p5c+E8gKGt6gkSVdHv1uk9cmCAT7bNA5S9BDVnbJRlcWBR2kiVJ
5ZOmhi7vwzlcaNAx8vAAlWdc5owLU0q58Iucm6ClEAOT4diRx12UIf6TlQgD
Jb7LHNJYRcPTCWypgxsZOKjfYXFnHQ3XNp8epMsyMLMn3CuNScOZXqM6lhwD
DXlWFkgr0dDsTOOWDZsZGHCcrkZTpyH7e0XTmx1UnqluxUw3Gsp73ZqMVKHy
4N/sSLc7NIz+cqdCWo2BPBxhXHu8aXg/K1o75iADhRVOF3x+SqNi+riH/xEG
St3/eSSJqrONTuI3RE4wMD4sKc7uCw1zg5uTL2kyUDHFl0c+m4Ydn282pp9k
4O429ZK4EhqevLZum6o2AzWU8zSjumnot/JNO58BlV9PvUoyHaBh1teE1M2G
DNSxubVUfIyGEn33vp04zUDjp3urQjnp+Dww+LPLGQbaD33Ue0qdu2ebXIse
mDBwhHicqsOko3RJxrk7pgy8Lnp5lbAsHX+93+boZMbA2+py9X676Bhttqhw
8DwDn0RHG3tr0zGt2qsr1oqBqzPuZB0+TUcm01bNyZqBLytNxAhTOr5sCjm7
24aBsfNrW+/Y0VFO37MrxZaBsstnEK/S8aG7tfnFCwxMkq2LXHCjo6bgdLro
RQamGQSdv0H1gczjcysdLjFwn71TwR5/Olr92y8nbMfAXC8tqamndKzlK92V
RLn4A3/P1Wg6tokN6jfYU+uD794F+2w6PtmSfG3cgYGm68+XyH+j41ynwCoH
RwZ27VaR/1dCx2+ONb1dlAct5wesqT4yYXh6X74TA6+4N2pKt9LRNLKxRPYK
A6cC05M6u+m4vUQzzpcyZ46zo9kYHYcX1p4/dJWB//3SqRKfpWPV8W7NEMq8
A1u2/eEkUFrRM6qPsj9tadBLbgK11f0sdjozcPmawTGjJQTa7I4IvUk5WKlU
T2QlgfZhoJlDed2R+NTfogTa7Rz2XKAsfdXKRVeWwMOLOo/srjFQYW+LToQS
1Wfm44+FUt7OYbi5byfVt3gKdn2jrPy9knfHfgJfrMzV+0dZ9ZF6t4cagW3/
MuMFrjNQXTsvt1idQP8dJcrylLVWK4et0CLwesCUwBHKBn8+uZjqU+N/riF9
jvK51/K674wJzBxk+ThStrwQs3nCnMAHOlr771C+pCTGp2JLYFhM/yFfylcm
nnU/vEzglvFbcU8pu2UuyfvlTOCgX59tCOU7nt5hku4EMrn5/UMpex/ldL3k
SeAPjXTRF5T9Bd10v3gTeCUyd9UTys9qRjZz+ROokD/g5UM5LOQi34mnBEq0
LNq4U35t2tn9PJTA3XGfCi9Sfid9Nq89ksAA0+w4A8of+2vDFOKoHNtZLoCU
0z9qurq8J7Dki+/cBso5Lj9081MIrOIPcyUp/ziASoJfCXxZHezTSb2/cno6
3+lcAivyVm5hUa4t3tIT/YPARvPYq88oNwXE5w2WEfh79U/DC5Q79Jnhe2oI
nFRa076Xcp/oS1evBgLV/i4s56bMbl+uV9FKYMuNifGf1PxOxfkqrekh8Oom
J59gysQOj56kUQJ37gyrX0uZf3Yyb4baV8YDhSLqqPUknOsQfoiDxHaRoI2B
lCVOmOs18pN4vVTgxSy1PmWWNSpJLyPx4NdQ73eUFet1+B1FSCyyszxhSHmf
5aF8Upq63zXUOo5a72py2eGn5EkMCHD8doyyBnun28utJGZN6vP0U/VheHPj
lq1A4u2obh0m5atP+SLOGlJ9PZfX2u4yA2+c8XKLO0dSfeiKzRRVf56S83qj
FiQyjXwdblMOSBzk93EkseZJ3uv7VL0mfPvplvKAxDz2A74rVL13jj/X58si
UWa6ensu1U+iVLZdac4nsXrSNH4pZRPfcv+kYhK5hEb+GlsysGEDUaRTR2LF
2er6f1Q/+qnjpPxylMQV7oILHVT/yv5wXEKB6us5Zm9Oqhgx0H2+Z9+iEgN3
Suv5mFD9cI/63dM/dzHQvHK2xo3qlymt6YHOhxjYeOLspzh9qh8vkSGyqd9Z
x3GS1k712+d2nH2azxm4UgmCyjUYqJv+kpQMp97DUp9Oljo1H8Ru5uhrBn7t
bPN+f5SBfi/tjZ9/pOrE47/mu4ep/aGksbyljIFirq3MJaoMdNiU+smBzo0k
IX7r3W7qfXdduBnoyI336V8VV2xg4OGbzISDLtyol9H1Lns9Vb8rmhombnFj
sZI+aSXJwL2HTuw+84gblRvfm7wXo/ppzOZR5htuXGfUNytF7Xd8lmM2n5u4
cdHkz4NP1P5Y2nlTt+4ID85xj301HidRszNATkyMF51feV68wyKxVK6zxngD
L5IruEJ+U/Nw7MquW6GyvOiXvclLntr/j3L9qVy9ixc/Mf4FVqWRqCohd22Z
Fi++CeAvX/KRxB3G33K4PXlRJtxZW+s1iaI103qjXbxYVH21Y/w+iX355rcL
E/lwhdgNmc3HSVQU+rVOzUQA14XMBjuxCOSFcbOmUUEcVGwnk7YSeGTAaHK9
3lIUzg4/oxpEx7o8C04jeSGU5qhW/zdOw8/eBeckxoWwZtbqWLoZDa0I59by
cmG0d5OpEcrjwvNONz7zhyzD5OrG7BFFLtxsLVd+3Gw5QqXH3MZITqwQludz
3rMCn0/iqvu8nPj1vWeoPG0lgvtU2/Y7HHiDU1artHklHnHr2bahdRF4m9yO
2qeswhumJou5xQvQFSsZFOG+Gg/q30ksLp+HoI0i9HQ9EZyt9xwpLZiDgBCr
H2YSa7Dz6liBdPUsGAWdLefvWYMuD9afPtk/A1MHY6Yjstei/pXnueempqGj
S9Ul774oxslWfkleMw1R+7esLTNbhzbJpjueKE1B4j1nIWsFMWRr3m16dGYS
7uudP0YbF0M4cSo1zX8CdjRFvr1fJo4h6kHXaWnjELwpNLHsmATeG2SOe4+O
gUeOb/CxdAns98jb9Y45BifW6sUUb5DEglAOyxvGo6Bi/+OMkI8kLuezWd4Y
OwIRouYbSsclUVSg7IF6Nxs25L95pnlmPf6J12xx2MmGAIU82ars9Xjo1RPV
577DYDVK/1kky0T+loaVNilDYP5hRMLHn4mlpVKbbl4ahEueOnMaj5los+gd
XG01CM46Kb/5nzBRWOP3f7Jmg+A97uwX8IyJyq5/Wur1BuH9nunZ52FM3PVi
z50DMAjTuYu/Yt8xcfd/h+3FhQchoIrft+AHE0sqOs5A2gCERNvZ/FfExCW8
gh4xHwcg+mq52tESJr6LuC7GnzgAqSsDZkrKmSj5JeVnQ+QANBkts6muZWJu
zAPGrYcDINMhotbewcRiNf3wxnMDoJTiJva6i4njS1/fUD89AHvvNU5b9jBR
qr29+ovOAByXCUv+28dE+zetY0+PDoDTRQkxNpuJAQ4vJgy2DoD7vjvTH0ep
8Q/KvS2SH4B7Au01V8eZOC/K+0tZZgCCk6IfTk0xUU7FIFxSdACibtOtM2aY
aCEatufpygF4d8pS1X2OiYZXmzR5hAYgZf33dQcWqPdVyPHnJt8AZI9KTy8u
MtE2dLx7hBiA/wG+pPGR
"]]},
Annotation[#, "Charting`Private`Tag$6593#5"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, -5.314322104427868},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Part[#, 1],
Exp[
Part[#, 2]]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 10}, {-5.314322104427868, 2.9334021735712823`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->FrontEndValueCache[{Automatic, Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& }, {
Automatic, {{-4.605170185988091,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.01\"", ShowStringCharacters -> False], 0.01,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01,
0.}}, {-2.3025850929940455`,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.10\"", ShowStringCharacters -> False], 0.1,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 2}]& ], TraditionalForm], {0.01, 0.}}, {0.,
FormBox["1", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
FormBox["10", TraditionalForm], {0.01, 0.}}, {-6.907755278982137,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-6.214608098422191,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-5.809142990314028,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-5.521460917862246,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-5.298317366548036,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-5.115995809754082,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.961845129926823,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.8283137373023015`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.710530701645918,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.506557897319982,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.2188758248682006`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.8134107167600364`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.659260036932778,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.5257286443082556`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.4079456086518722`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.2039728043259361`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.916290731874155,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.5108256237659907,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.35667494393873245`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.2231435513142097,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.10536051565782628`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.0986122886681098`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.3862943611198906`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.791759469228055,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.9459101490553132`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.0794415416798357`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.1972245773362196`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.4011973816621555`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.6888794541139363`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.0943445622221,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.248495242049359,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.382026634673881,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.499809670330265,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
4.605170185988092,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.0106352940962555`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.298317366548036,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
5.521460917862246,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}}}]]], "Output",
CellChangeTimes->{{3.817115095977895*^9, 3.817115180281933*^9}, {
3.8171157943248043`*^9, 3.817115819385768*^9}},
CellLabel->"Out[47]=",ExpressionUUID->"d758ff21-6281-4951-879d-9a8a224caf38"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"R",
FractionBox[
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}],
RowBox[{"1", "+",
RowBox[{"0.5", " ",
SuperscriptBox["\[Theta]", "3"]}]}]]}], ",",
RowBox[{
SuperscriptBox["R",
RowBox[{"15", "/", "8"}]],
FractionBox[
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "/", "1.3"}], ")"}], "2"]}],
RowBox[{"1", "+",
RowBox[{
RowBox[{"1", "/", "0.4"}], " ",
RowBox[{
SuperscriptBox["\[Theta]", "3"], "/",
SuperscriptBox["1.3", "2"]}]}]}]], " ", "\[Theta]"}]}], "}"}], "/.",
RowBox[{"R", "\[Rule]",
RowBox[{"2", "^",
RowBox[{"Range", "[",
RowBox[{
RowBox[{"-", "2"}], ",", "2"}], "]"}]}]}]}], "]"}]], "Input",
CellLabel->"In[22]:=",ExpressionUUID->"41ea287c-9ee3-4b18-b17d-5dfc6a4e056d"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}],
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"0.5`", " ",
SuperscriptBox["\[Theta]", "3"]}]}], ")"}]}]], ",",
FractionBox[
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}],
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"0.5`", " ",
SuperscriptBox["\[Theta]", "3"]}]}], ")"}]}]], ",",
FractionBox[
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}],
RowBox[{"1", "+",
RowBox[{"0.5`", " ",
SuperscriptBox["\[Theta]", "3"]}]}]], ",",
FractionBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}], ")"}]}],
RowBox[{"1", "+",
RowBox[{"0.5`", " ",
SuperscriptBox["\[Theta]", "3"]}]}]], ",",
FractionBox[
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}], ")"}]}],
RowBox[{"1", "+",
RowBox[{"0.5`", " ",
SuperscriptBox["\[Theta]", "3"]}]}]]}], "}"}], ",",
RowBox[{"{",
RowBox[{
FractionBox[
RowBox[{"\[Theta]", " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"0.5917159763313609`", " ",
SuperscriptBox["\[Theta]", "2"]}]}], ")"}]}],
RowBox[{"8", " ",
SuperscriptBox["2",
RowBox[{"3", "/", "4"}]], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"1.4792899408284022`", " ",
SuperscriptBox["\[Theta]", "3"]}]}], ")"}]}]], ",",
FractionBox[
RowBox[{"\[Theta]", " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"0.5917159763313609`", " ",
SuperscriptBox["\[Theta]", "2"]}]}], ")"}]}],
RowBox[{"2", " ",
SuperscriptBox["2",
RowBox[{"7", "/", "8"}]], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"1.4792899408284022`", " ",
SuperscriptBox["\[Theta]", "3"]}]}], ")"}]}]], ",",
FractionBox[
RowBox[{"\[Theta]", " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"0.5917159763313609`", " ",
SuperscriptBox["\[Theta]", "2"]}]}], ")"}]}],
RowBox[{"1", "+",
RowBox[{"1.4792899408284022`", " ",
SuperscriptBox["\[Theta]", "3"]}]}]], ",",
FractionBox[
RowBox[{"2", " ",
SuperscriptBox["2",
RowBox[{"7", "/", "8"}]], " ", "\[Theta]", " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"0.5917159763313609`", " ",
SuperscriptBox["\[Theta]", "2"]}]}], ")"}]}],
RowBox[{"1", "+",
RowBox[{"1.4792899408284022`", " ",
SuperscriptBox["\[Theta]", "3"]}]}]], ",",
FractionBox[
RowBox[{"8", " ",
SuperscriptBox["2",
RowBox[{"3", "/", "4"}]], " ", "\[Theta]", " ",
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"0.5917159763313609`", " ",
SuperscriptBox["\[Theta]", "2"]}]}], ")"}]}],
RowBox[{"1", "+",
RowBox[{"1.4792899408284022`", " ",
SuperscriptBox["\[Theta]", "3"]}]}]]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.817114937425263*^9},
CellLabel->"Out[22]=",ExpressionUUID->"7b8e54ff-34ea-444e-8e78-ad376945c6d8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}], ")"}], "/",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "/", "1.3"}], ")"}], "2"]}], ")"}], " ",
"\[Theta]"}], ")"}],
RowBox[{"8", "/", "15"}]]}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Infinity]", ",", "1"}], "}"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.8172026520938797`*^9, 3.81720270842931*^9}, {
3.8172027470464478`*^9, 3.817202758542193*^9}},
CellLabel->
"In[167]:=",ExpressionUUID->"77ced036-93d3-4558-8eb2-1aeeb8345ed7"],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"0.13828470304678664`", "\[VeryThinSpace]", "+",
RowBox[{"1.3156910632310723`", " ", "\[ImaginaryI]"}]}], ")"}], " ",
SuperscriptBox["\[Theta]",
RowBox[{"2", "/", "5"}]]}], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[",
FractionBox["1", "\[Theta]"], "]"}],
RowBox[{"6", "/", "5"}]],
SeriesData[$CellContext`\[Theta],
DirectedInfinity[1], {}, -2, 6, 5],
Editable->False]}],
SeriesData[$CellContext`\[Theta],
DirectedInfinity[1], {
Complex[0.13828470304678664`, 1.3156910632310723`]}, -2, 6, 5],
Editable->False]], "Output",
CellChangeTimes->{3.817202708548201*^9, 3.8172027589878483`*^9},
CellLabel->
"Out[167]=",ExpressionUUID->"49c3b3ed-cf01-4c58-acac-6b3b7b9cb822"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ParametricPlot", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"#",
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}], ")"}]}], ",",
RowBox[{
SuperscriptBox["#",
RowBox[{"15", "/", "8"}]],
RowBox[{"(",
RowBox[{"1", "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Theta]", "/", "1.3"}], ")"}], "2"]}], ")"}], " ",
"\[Theta]"}]}], "}"}], "&"}], "/@",
RowBox[{"(",
RowBox[{"2", "^",
RowBox[{"Range", "[",
RowBox[{
RowBox[{"-", "2"}], ",", "0", ",", "0.25"}], "]"}]}], ")"}]}], "]"}],
",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "1.8"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817114761613014*^9, 3.817114948608783*^9}, {
3.8171149809613123`*^9, 3.817115008081002*^9}, {3.8171150682175503`*^9,
3.8171150688968678`*^9}, {3.817202394207995*^9, 3.817202420024646*^9}, {
3.81720249085142*^9, 3.81720252137018*^9}},
CellLabel->
"In[165]:=",ExpressionUUID->"1dc20dd2-2639-4b38-8eb3-e39481c6a15e"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
1:eJw11nk8VF/4B3BKSqFEIaRFFJKtVOhTspSECH1LhRaRsmSJZM0e2SNZ5iot
lizZmWvsS4xKqSQmJZLSKlL9Tr/f6zf/zLxf99wz957znOd5Vto5m52YxcXF
5cnNxfXv+/8+3fj/X0Y2ttZ//7JhF/elRDl4DpQCQ1x/E2seKZzYELwEt+2c
ME1cHerKdWzVClTwLG3+TpwRd2tIMXgNbOyD5kwQq236b/v3IXlkRhb9HiF2
y3d7cXiVMtzPZhcMEi8+9+QT/UgVnMUHxHqJ5Y9eurcieCPeerG3PiD+/qZg
xF9tMwLS+ZbWEd/xuuTYP7QVxcG8d4uJvSPVebYkauOCfPOPbGKTXV46u1dt
R1/crpkE4tt/JvrdfXbgUWV0VRDx4EpprcxHOgjZ8+8F2bBOmnz1KUgPO0rH
dxsQ9x54+GVJnz6SBrTHlImznJn2W9V2gctT9gAXcfBFFWG/IUOIvWauHv7D
xqN3w2LpmkZoFVx2u534ZZTg8qqEvfhwR6zvCnFjScTrHytNYSNWE+FCrMy3
SGJWlymcDFZ9NiG+99FvFb/PPux6t+n9fOJl/XpnJB+ZYcn/Ljgba842XlcM
ssAOxtZpA2LKse+HopIl5jwpk5MiTu/fwlR4YQkzv8m8hhk2dl2bOSajegBc
z1JtuIlHE9+Wcr0+iLcmDmmdv9joO31J5mv0IdiF/4pJIS7LbMsY2mINac1T
WfLEp+I8Q5hxh1Fw698Gs5Fk+9guf4UNjGR2neEmnjZ/LZXhaYMA2wnZ+ik2
5o98zY9+YIMCqYhGELcXlKk7nLeFdHrfbYWfbMxqH1QR6raD2f8GCBu6DycT
pP1PIHaq4YYT8XmxZZ5qL0+AtXakWIh4ep5viN6Wk+Ded3Sv1Tc2hOPe8h//
ehLfWudd6P5C4m0s/U2E/SnkWO6q9PnERo+m+HtXk9OQ87LcxkfMkt3263je
aVwPadNJ/shGtr12rQWfE447vWrLHWfDPrlIXbnBCfa2Dd2NYyT+LGnR1k1n
oTHqzSp4x4b/OzcXZowLZkaeaq0h/iZsnb+61gWlT1M0rg2zUc7yvxQ25oI5
vnty/d+S/fsx+tlwlytEP56O2jzERoyUq3Udtxt4XVKV7F6x4Skawmfnfg7C
YzlcSY/ZeOWfGn3igCdaDi5mvXvERtCiU1OhwZ5Y36SguoXYalCQlVPgiYWR
p2SfdbMReVfLisPjBdkePiveLjauDPnq6xR54a7D2LPVrWyg5t7pQj5vcF+T
P3qsmsTHnf47cpUXMH7UYuPlKjZWvOF3FnxzAZdXKNWUVLKh18SW/yroi/64
0b4/5Wy4jNh7lx33xRP18GMh90n85+ktk1l0EeK+xxPM89ngn9V7M+WkH74s
TPX4ls5GHX3ryEh4AAxOlDr/vM7GO5ME0c70ADQ4h8r9SmPDxkr/ZmFxAJRu
6HfPpJL35eLf4v4yAI8jwfs5iY1VSpZi4xsCYWkizJMezcYet1H7G08DYVCq
YzDbl9x/U65v+epgnLn3ffKVD4nfq167+zSCUX3k8MlKbzbO5jyzTjYKRttL
Q19HLzY+7+l1mucZjBLLjMu1bmzwrJs772VrMBp2yEHOgZzHXPV+nL2Ejm91
Y/Ms2Eh79jr+U3kI9OsShLPM2Tg03XdPsysEu83W1m00Y8NW0Hgm5E0IhtqS
b1mbkPOuxiW5RCgUTnMj7qXsZmPiotkOKcdQdFfXZ7dps7HZ7aj3Y4kwvOaL
klq4ho0NXelG7RfDIa/pbLn2UxcSuBvHPDWj4LB/zmr/8S749XA6O0yioPvd
8GbPWBciHjoVLT8ehe7ON+0XRroQJ3vNk3k5CpovzK5VcbrQuJO7621/FGxt
xAynH3ehMNTb8pH/ZYys3D0eWN6FNIGeKdH6aAx779Ap9unCuwUr3P9Kx4Jn
XvxI1PkuBI5PfSuXj8VmzS/zj3t2YaqjbaHzxlhwYjkNC926MHn40MLnhrHY
NHWB18Khi8Tp/WXXPWIxUZvZlWzVhTP7qkL622NxUzTbcVK1C+yox6367nHg
5099qPi2EwJZDpwL9fFg3Q3fW/S6EzHp/n3Ug3jI6UWbqw924sPVJrQ+jQfP
mSe/N/Z1gh0ht1NwjDjCtkPuYSe0YtdLhAknQPLLKcOmmk48vpoAheMJKAhX
f/YuvhM/F5v3bOJJxIEWpmrH1k5cYP3ilkMSqooi/nSEPsBAmuKNT55XoVXq
+ZTK60CV+XBUDDMVT/xMzY93tEPgYMyp6do0JGeGLT34og3tGqf03semI6/z
WrPo0zbsEalbE5KSjvMp3r8fP2xDp96aPVJZ6VDiufbXoK0Nx4T32erdS4ek
+kmL5RVtOGhYl+XemY6p7woGl5La8KH4cooxXwZKuM/s3GjSBv32/7pH/TKg
uqUpQ4HZimWfbl0Kt83EGZN9Zi8qW5F3Q0pz0j4Tum/O1YaVtiJQ3t/62NlM
tEf4Vr3Ka4Wu47eXahcyodSYZnIxrRViQhvo0sRM2P0QGvY93wpOifRhrZZM
uJj2N4SotMKN165bbkkWZPo+6TAzW/A7cOiuinsW5sbJLCu/1oJPc/SwzysL
0uXnnQuSWjC2z17V2ScLE+b+iSlRLfBXn1bNCcjCku45rQe9WlDXlHeFKzoL
bo8me5KNW9C+5vXukzezcPqvc+j4r2aM63pafunJgu10ocESs2ZsNgjz+qzE
wPd72yebjZoRIvdTJ0WFgYnwMVUvg2bIdSsc0VZnYPnNeOPHWs14cmhWUNAW
BoxCZUV95JrRGOrr9nMnAzwfjo8HzjTB2kf2SvwBBh7pahX43GxCvvmhC74B
ZLy9Mud3ZhOczk7/9yGIAcV8ZPlfa0KvdYL3wRAGZLLv1ftdacKK5OfeKpEM
jGo8STnt3YQTN1pc2xMYeMCjEfnXqAlr/XN7b+Uw8FnBInDR10a03b4OgQ4G
bhtvF2oZbwRzseyG5Z0M8CqUHfYdaURgJ3/0ejYDZYt0FIf6G1Hl4hZv8JgB
zpUXmYzWRigIrKg81cfA2cOCHE56I0yvCq06OsaA9cbADmeDRkxUldaLz6fw
+nLDh987GtH0c07j5AIKghmx7ZFajRiwLZXrEaBwcLy9OkulESqfi0TChSgw
UedeK9EIz+xsn5diFGpK8rdXfWoA28RzlYYchZhnCdtZyQ1YGL9dp0iHgt84
b1R+bAM8Iy81+OlSKIz7eSAlsgEecgtNDfUpDIRZ+Tv4NeDYHcGIvt3k/xR4
fkydaMBpXfMzw6YUHhiLRT1Wb4BE/NOE9CMUkuYq7nd4WI/0Y0N/o89T6OVx
FZTtqMdMBntGwoeCdZy6EaexHoGmpd9vXaCgdEDDzLyiHiouwc8r/Sh8vK4Q
viazHkHiLYeaLlF4P4udFuRUj6Eu9oBPLIXO7dx20rz12HSdJ9o6h8LXdfsS
l3HVY1zJnifhFgV6YtUFkWkWJJ+O57XcpqAranSS5yML87Y+v6KQS4G39X5x
zxMW+rfrxfffo2BbMbBa4yYL07H/qb6voPDowt4MqUwWWpj7o2dXURiW1O6c
lcpCiK2msEQ1hT+TjF1tl1n40K+VoVtLYUgoqFTfnYWdaetzAlkUInrS7Gfv
ZJE+NV82u42Cjpuc/BMtFsq2lXNntlNgjKszbm5i4cibc9ypHRQMLz7J05Fn
4XeY15mwTgrmXOu3nhFiQU+86cPeh+T+pI3rLw3UweWujUrgM/I+AgMaO57X
IVjm09qjzymM2c2fnHlUB7eeyW2aLyisvTUc79JcB+6C0cbxPgpWCaXbd+XX
oUDZab3WANn/6Tz3Sp86VFY9Fvd7S+GmnjHvi3N1KGo6W7l3mMJS04rFU051
uKppLinxjsLs7OE01aN1qHj+e929EQqLduQ5J+ysA2niLWvGyPof7pPk56/D
/eyRcMfPFKiMeYdE5tRBL6925dIvFCy1f8ttmqHBPfzZgyaOr4z4YDBII+TI
ReMF3yi4UO4/9W/TyPfTLw77QeJ1Y7xEiQaNVrNHTxb/IutD8XyOX0eDVaM9
mkocEz2vxlmCxorlywuXz1BQHGxUXfGXCWrzTsuVvyl0eSzMtm5mIvOd7o/5
fyl86xVYI1PBRLmc31V/4u6K9Osjd5iw0NEY+Uyc9cPV6VQ0E4XnlZLZXNmg
7D7E7NzPRDuP1VLnWdmwqfKs/aLHxA+10jUPiZ/GxnMyNJhoXpExqDybuNJv
/sdlTAzcWGI1SmzDb7Iwjp+JiW85Qjo8ZL7+Qj6VP7VQd2/1SCHeOrN2wJ5T
iyFX1uZtc7IRvxtVfx7VYumdtORo4owl7yLjG2uxIHDB9RfE3evG+Itu1aLj
UlHaGd5sJOs0JbSdqUXoDy0br7nZeLlHio46Wov1PKLPiok/OkrNGO6rJefY
ju8D8fn3S3Lr1GvxtfVsstU8ct1QUMpLthZzWfgcQazKKsiSF6sF9YSaXUUs
+endy/BfNVj0GXuF+bLRmBOQpDZegy36kcFaxJvcWUf7XtUgfn+Y8zFiT6u7
mgHdNdi5k14UThxkqrluVX0NLmypOnmX+OBR97WskhrYHOFybSf+E2yx5fDN
Gkg+F98wQuzCfHXoR3IN+rtjsmbPz0ae4KLYy+E1aHd61yhJfN999Im0D3me
ntw0NeLICcf1hadr8Hz9cZldxPJBicnah2uwl5Fy5CBxyrqTQq3GNUixeLjb
kbh7eCDdZHsN3romv/Wa/2+/uLV6VGpwRMpFJZj4NtUxZrG6Bkr+w4qXifUZ
2vk9IjXwYwb2xhMXlloFmPLWwHtWu/JV4uEB8RNtk9UwdDPYnEo8In3pEEar
Ib4xaDyFuMwj+Vjxi2oscZtlmkxsxjG9uOpBNY6bmh6NI66wK7l9pbYaqpNf
l0USv5+qfTtVUI070R5BAf+c46Jum1WN71sPJ7n/m8+hI7EprhqQVTM/SWyk
08UrF1yNQk//aot/z6fsHRniXg1P8/ZOHeJB9QfSnBPVqBhKi1hP/NK4pXmL
VTWyjX0/LiG+4efof2VXNWyqv/76RdY/RfrOGlWFakxtahVkETfH6gr7S1ZD
PnGjcBYxUzR8cZtANZ5dOcj0JRaxn6u/f6IKJn/HeDf8278NO32SOFU4wzqV
zUN8TUCu7vGjKhQxa9/0kngyW/AuwKC0CuZzhfZ7EQ/KN/zyzanCHIZ04E7i
rTYG4feuViF0sdw+gX/j+Xc9XeBThQzxHc9SSfwuCm68uvF0FaJ+H4uxJr62
cNTR2roKExZZbyWJRRzl9RnbqvCAK9QjmZwPns0GxvSGKqQykG9CzJTgP/Vi
RRXCzNUu8RJfk4npnju7CufCRgXOkPP1RvOcB1oqoXTeI1iKnE/TB0lWBpWV
uBUXVN9GzvNPr8I8o9xKLBAO+nCOWHBl1z2TK5WoEnn8l0Xywaaqu+IaVpXw
CxET1+PORpZMTIL8bjKfqcjNQZJPdt11CJDQrMRcoZ9iPsQH5/KVfF9eiX1a
X8pySP45P2/0QtRwBQRy+VnDJH8NGkVHOz6rQHdKdqArcWjeusUG7RX4MV9M
bprku/haQ/ef+RWI3CkiPYf4tqzSdS2PClBepRXc0xQaRXx8DGdXYI6Pp3bS
dwqyAlnVXN/L4TF79/I/JN82rmA63x8uB2v9m/7jxK2pr5VF2svBrfhpUuEr
qeePHiwtjS3Hr+0ll7MmKDTbyLr6SpXD6BB7aBXJ9zICXRy+heXoNrgS7PCe
Qn3PmaZErnJQn2fN5I+S/F2a9JYaKoOFboCHMqkXBczQiKw7ZaCtlAIkSL0J
+DB+dOXGMog3qWVGvKLw5tzgX8M1ZRid2D9zrZ/CDEMpy3VJGcw9NrffeUlh
65d+Tun3UhiftyyjSX37ZhfusKysFA5Th+sfPKXgHsIfab6pFCG+otqnuyjc
6Hq4MFT9PkLXiv9XRur1YsUt1SYy92Hdo/3KndRzReWZk0tF7uPeoRuNypUU
PBWT6GtfS6Ayrl+SVUbB7PtiD//iEkgX7JtvW0T6rVbtzxUbSvBec1r1GOk3
il1NlT7IFSNone98xxgKP5665zqLFWPWqkn2x8sUcg44RU3MK8YljR1wjaKw
rajn3PvRIgxPF4g7h1OwKY8cZuYWwTpvuNg4iIKd6GXz90pFWMfjsTzdg1yX
fbNnj1ohxnr9Rd0Pknol5rT6wupCPBMxNs8/QOaXazl8W7gQh733Kr6xJPV+
4/j37+/uIXh6z31DcwoVdz0KuB2Ic7SFfu2hYKRdpLTcsQAHPjFyRrQoHOd6
fPr0qTzwJA36fpOk0JNsvbp5Vx6iPqwSHltGYV5ySo/Eujwoz2w2GyD944Mu
OZmK0Vx49B5rqxOhkLcu2+u+Yy68w/bG2fOTeLokMFF9+i5uiW9R1/1F+tfu
Qllex9t4eapEUaOXAbFaldwwqxswaTRY9imMgf0rqzhP1G5ASkD3tjDpv7cn
2SstX3QDR2Yv+m8j6c+356nMT2/NBq+OykoXXwZqkoM6zLeQOsa/b1uDCwN1
h0U9bopTcJpu2jFA+v0Ke/HW4txMHDkSKjEmy0A41167ud7J2HHCMVKjKgtc
J9fY/t52DnulPdghGZng2nnAZ41UDK12kJn4DOlYNDO8QzGHQetUJnG4Q68h
/ET/6x7HXHqRp2JsyPWrSHT5VaK2oYTeUvZFzYgvEbHXN9d3e1bQiXOyJG33
xOKGtm+y4oNa+u+XNectzofjY3Z1kheHRU+8S+iKCr6I84Lbbo4zG+lfIRfn
8+0+BpnejEPrP7fQd/ffldGsOE1rGb62mZzVQbuG2POnPg+i9ZeyAirFu2hP
xkLTN25XaGaFP9eqpm6aaTWg8l7kKj3PYHQW7fiI1jT1khZyz6C3HTpSthc9
9N6dmjb9Adn067xE5ZWiT+nCRXbaTX9ukaFXBbuf99JBKfP1pdzz6GVyApZ/
Op/TXqWWN5Q7CmmXxbH5Dbl9tLHOUircooRurLOQ0Yvsp49+OXDw1I9S2tOn
O7Hh+gCd/uCbzYufFfTqlwIVmzoG6Rb2mzchH6vpqZ/ulrnsQdomrENTeKaa
5vibHFrRM0hrCrlfzuaroQc7jqQs6B+kWdskJTtlauhs6+GB4Y+D9G4v3Zmd
h2rojbapNwoXc+hmwe5fda01dNiPGJ64gxw61Lro6dTNWtre4pjr4qMcOtXu
8PvhklracnmubuIxDr16/wGuXlYtffJj4vJUJw5dd91Iva6/lt4d9jDzlh+H
1tx6t6FsCZOWuP6xt5fi0O2WS2rUQ5n0n7Sp3KO3ODRHlSVilsikP885P/wu
l0MLhs1yd6OYNJ8YO2bqPhm/1cqghsmkZ9SH81a2cOhRvcZd7pNM2jbk8v28
Dg5dduBq/505NN2LnFWbuzn0yLrVF14L0/TXL2qqps859LW7ng+tlWk6dezW
45f9HPqeQktkxjaaNjW+0ufwmkMbC77eO2RE06IS73dPDnNoveoFEgqHaPrD
vorlIWPkelr4Fw8Hmv4f5buVLQ==
"]]},
Annotation[#, "Charting`Private`Tag$15353#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
1:eJwt13k4VP8XB3BbZQ+lJJTK0oJWInonoSyRLUQRabEvoShK0iLKEpEo28xo
kSVluzMYW9axlC2RXWmzpfC73+f5zT/zvJ6Zufecz/2ccz4jfdrd5AwHGxub
Lzsb23/vogU7eBeWtoDt/6/YqmHKPGm+SysCfJgCWPmHJ/Qf6ZwVXS7eTElE
6cc/mSO9uqkHomayECKipmZIH736Z5c7UwH3TP/cniQ9tp0V6pC4E7w8dSd+
kF7c2LdO0EwZN3t5ncdJCwQlbirgVwP7h/yCQdKEvLfxSaYGAr/XafaS/sz5
7RU7cQDT8sY8H0nbsD9dZpp4EB4hEGwivTk4QiDV7xBGFxKMq0g/9p5I/mmq
A/vE000lpHka/zzev/0wOiwf3sslXRk62n+bXw9Vygfpj0kHs6zKxJmG0Dhe
uOc+aXkjAzG7p0bIiX8ycp202mXO+OZSYyRezVrqRHqTVregcKIJBDe2elqQ
Lnou9FHxtimujZwT1yFtJJy4X9/PDGfa2zduJL0yZ2NKkKkF2hde3RAiHddn
fSlO8zh0D09tmF/SAsYvq+cvlCwhu79idSvp5ynS3a181ujO9+73J3370uRt
/gpbHB56oWhHupPrlqVozknkqZi91SG9AVV/1qacwm2NwRBh0qmmtnuFS+2w
rU3sXxJXCzT1arbyJJxGtEDeriDSUt7GPzmFHTDnVEQ5RXqddbLNfJgDKgMF
9aVIj5vXc3y96Ajz3ZUeUZwt+Jk1m1JwzAlvfcqiXUkbuRpQMqqdsKZ9y6Qu
6astHcIxOIuuv3Cd42jBk2udo+cVzuF4S8ABC9Ja/BwMNp4L2JGj6jzK1oJM
0VOUFsIV1lPu6nmkI6q4DVMPuMFt7bT8VdIl9gxnD4YbbIV+mS4nLXrX/CtH
uTsMkig/ZRdZ2Jl1eojziwcuagkZbJ1noXbOqKl80Av2+YdYw/9YyEy8/W2l
rDfUeGu8U0l/li/wdHTyxisbBrcYaU/Z848WhrzxMs3j8vQcCwHBNxulRnww
Ta8JvDXLgrxWrDTvmC8y7P8VKJM+qRQgjy1+ODh4VXBghkXuN80DXhf8cCDW
W0CddIjrWDhrzA+G8WtN+6ZYyD7CxxUw7o+8LU7zbL9ZmErwy3P6ehnZwYP1
MV9ZgKr7xZCvV6G/eKRWgTRD0K52l3wQrEINFpnjLIz1d3X0OQShMXPriskx
Fnx6vq9S6QqCmI5Jv84oC4n7fKr6HYOhMHJAqmqQha/37hqrmF6DdVkq/85P
LDyPWG86qhgCfaUaiZweMv8quZF4gxBkp4af2UHao8N+pe6FEDQ/+5ai0M1C
+fbnm5PTQ+A1t5qQ6GRB9uQR3v0SN6C8XPBRWxsLAhs3vtvNEwpGQ1D56zoW
NBpxabrvJnKrJkbWkm5ZHZ38eeEmLicXHg19zwL/pga5mrVhuDF+rsu8loUt
sYXmseZheDC17s+3KhaeqWV8W1MThpDmGe25MhYSHkaD9eoWWihHZULesuCd
KzX3I+AOLAKtLNoKyPglp2xT4+/glSKjSpa0RmFWn2n+HXQrZTpX5bNw86H/
gVcTd6CYVl+wmMPCd41aaSP7u3hpdsPe4AULWw3E0nfohGNlW/yc+VMWpMMK
1L0FI3C/wdE5KIWFqgM29KMKEQifyZ7LTGYh/N1GhpxBBBY+1PhMJ7HQ2ftA
iXU7Ai2s+fZbCSxcLN/qy70kEvuz3UxDollQXmpjMzsXCTFen22NN8j1KnKP
OP/rPrpVBU6VObJw58c/vx8fouApk3SX6cCC9RI3To6hKGyTYP6uOs3Cg+5o
BZHJKIhu7fGttWNhV1a+laJQNHIbFA5X2rBAFFj+Nj8cDQmFY6sfmbFwncNM
3f5tNFJ1Us5mabFQx9GVYRcXg5tfTzVdX0fm17jsa6XxQzR+7InaJ8VCv/Ve
4aRTD2Gol+32W4LMx39Mx9PtIQaLTbzsxMn8Ne0+rQh/iNuf71GVRFlYPuAc
p1n1EBnSPR+e8bKw7SiLbb9GHLbf7d3VPdkMmQ8mcq/l4nHtr/doQmUzGrO7
fHdPP8Jv/W3c0sxm8J5uVNbkSoC5beThjPJm5LjKMfVFEjBSZq74kt6Mk7bd
utaKCdB59OVebmEzaiQPMGycEjDsxZkU87IZi+s2Oky3JaC4w/Tvq9hmeIjM
2HjnJuLlRZW3+vbNePG7bUr/bBLEpZ27D003YfXnRe8w9RSUbv5HD/dpwjv2
NIOTTU+R2HupXb2nEX7fzr3BzlR0e1kejyttgMDa3E1WF9Og1/az6Oa7BtxK
0NV/fDkNazfPnvLJa4DBpr0RPUFp6EvTd9KjNcDk+n0n6ztp4Pkm4NIX24CB
R61HNZLTQBCLJ4pcGmBffsI5szoNdLf4eqk1DZi2/6XJLZ6OTb+TZlJd6iHd
m9r84U065A/V3r52th5+zmu09YvS8Yh5Ptb2dD0E5dZ9LybSwbTiWCNsWY8C
VtFAQnU6NKoeNZ/Rqgf33ZO6mp3pKH1jz125ph78s67eKvPpmBk2D7dn1oE3
7OMrpmYGEN34jUusDt3RcxwGzAwYcnaq8YrUYSaxJuJJTQaeyrCXCPDXQYx9
S8dEfQYkr6XbLWerg0XXWMat9gxciNaRmR9+j86k4BVPhzNgJTOWer3gPY7X
JTxy5MlE4MIb3z3m72FndeXJDv1M9IWe9VK7W4vi0LickqpMLDpqS4/fqEWK
YuKq8+8zETfzWTThai0YZR6bRBozoaJyrOmXZy1Cxzn22bZnQmb9qjuRlrWg
TndpfhjIxIf4HcK+MrUQypaVs2anwFfmletMSQ1iYwzaH+6loNZbq9WjoAY/
lp9Tmd5HwcOLscEj2TUYcelVMAUFKdFeNFZqDa7ymn5cokOBo6qwVtTtGrTd
dRI+akoBsfVzWKlZDT46cIWed6UgJ6vi1PvRapw9emS2KpmCS1nbu659qYaP
ueRs6jMKePgn25R7qnHugWTdlXQKgr8HH3ncVA2ViMiJLVkUVCBX3rygGh+G
cgWd31CQu+Ry1dUb1XBwb9K9XkeBrNz9m68lq/GiYPwv9wwFPRj5qrK6Gl7d
S4Kf/KHA+l0cq1ioGu/O5lbt+EfBi4Z/a8s4q7EQl598jJ0K2vXejMLRKnTQ
mhx8+ajgE1qW5JBfhYXJXdWm66hwoH/ijdWvwvIpTTtrbSpWRzv9tT5UhTR/
imCHLhXDZ9zk1mlUoYhNnNtcj4ouvoUdzxSrEH/Fv+OQERX8VpLC0cJVUKlI
/MJpRcXD2RMz6z5UwtniAPuiMxVqBh0OQ3aV8FwjTx+IpMJ2g32Ft1UlhrTz
w/iiqHg8e85u8VgldnusD1WKocItfVZPWKsSwZLjUu7xVBxnExtbJ1MJrou1
RXUpVBgXWRiPjDAhPXpxKftrMh7t1mIZdyYCPTI0jjRSkf1zz9n5s0y86Z0c
nG6iQm7aLqzFjgmLrfkCz1hU/OFesTnAhIkmM8eOH21UyFsM/yzYw8SDLmcT
j27y9xHGj4b/VmB8eZzJ9AgVcRW6KRmTFfAc93gdMEaFhCm3pOO3CljFrQ9b
GKdC4PKgX+enCujYdsb8m6DC//vy3DxGBRLCM7Z0TlIR6C+DdWEVeN0kViXO
RoPn3pxnzKAKCFqWmPix08B9jDvwgn8FylITDZo5aFgVLnT/1fkKqIZ+unVl
CY3sRw805AwqcPCEy8oCXho0OE1f1glVwD5r3eKLlTQcMLzoZs1TAUmpBoU+
URoGv9ulDbFXYMsR8TLh1TSsRIzn3K9yqDEd1zivoeEvl/OD5W3lkDzw2ntB
kobfih1D3+PLcSc++WSmLA0Bf3ujyu+XQ6E7M7dSjgaGCJ9H7K1y6DLEf/TL
03BNuqFkl385Is+FSIhspaGHWJZpfbwcUbO7t+sr0cDFdiT7mGg5ft0kqHIq
NJzwj3HjFihH8jL9jaJ7aXDfx3WyhKscGfyGlxZJNzw1bpKeLMOVxzMFtWo0
nPv+mKONVQanlCKXffvJ9YngfDIQWYaXT9PFQw/RoJgT7XY1rAyMe148B7Rp
EJE+7LEqqAyr+hg1M6SX90ou03Qrg9qbLcW2ujQMdwVeDzYoQ9jwHzNOPTJf
c6VuvkNlyOl8WZxGmhBfejZ2XxmiZF1+HNSnIfzGeqHULWWQYRx8d9GABvYO
7mwKdxmyG3aX5B2lYYrSEyXDVoY7Zuxe6kY0UMvbM1JmGLi3yeYbnbR2x57T
D4YYIBIXd9ONaVBoTeRZ9okBPWJ0Ue0YDW1rZPsvtzGQL5MekUPaMjRT1raC
geFc1mScCQ17sp5EvS9igNdyqHaJKQ1NawuV9uYyUKkieNqDtHqP7TzfM9LP
epr2mdHw7bPlUFIQA+O/jZKyzGm4PeW6QtaPgU3G9NF50s191tefuzHwcfrv
ckMLGs5qFsvk2TJAzdcY7iOdm7fdeo85Ge+q2Ydyx2l4uRjYlGfAgK7ZkOQF
0pkSSddf7mPg2XTly0HSGRMepfK7GHBPcy2QsqThWLyE+tMtDKTRs2PMSFPX
pPxdvYGBYvcx7TDSL7z+/gtfw4Bqu0/tG9InUxUPsAkzECtGk/5CuihLlenJ
zYDhiQE9fisaKu9KhPct0tFXdkV7J+lArQ8xRjN01Hk3CZmT/sQ631s0Qcfd
KOXnPqQnVFudZYfoSNHiXf2ANNV/lVpkDx0hWenGNNIikdv1plvpyJ84bUkn
LXtlw+MTdXTk7His0EJ6+OBXJaKcjpn4rMZ+0maf7y2RLqKD68i4xnfSbubL
JK/l0GHmlO83S3rPM0vfXiodZ0QdAxdIZ1ZeE1Z/Sseby8f02a3J+MuuTzyM
p4NR+OELG+mohycEfkTSsWzOWHue/D7fQX433TDy+rar3adJKzFjhJKu0rGb
O9TuK+nFdVOTPy7SIbZ+UqyX9BUThbVarnRsrSmNa/jvfjYaIdGOdIzJobvw
v8/3yyj0n6Cjxa5xMJU02+yAmJIpGV98Te7t/65/O1Dnsh4dEr/DtF3+u/+v
8fxyTTp8Yx0T9ElH79x1lk+Vjp+p717LkaaoHYmMlaNDNW6PTDv5fJQ5xJZ+
lKJjKVMomELa42lpqdgqOoZ/1CX4kR51ip6K4SKfV6uxAD9pI/GQ4ZQZAlNt
dQ7N5H6RWxV5duUQgVVno/yiSfetffPrRxkBz/enWwVIV8g0z1u9JpA+LC1R
Se7HxU+J4UQygU6ZaKkA0kGnDuwJDiSglTBp3EXu5wpZcaOuCwQ81jwKukna
Pin1604rAjEGlk6KpKnxzJwPewi8tYu08iHrw0zyZNemTQTy7hQ5ivznYxlh
biIEkuYuyLwg68mxStt5ZqIUivuLKz6S9fdqnH6yN7MUbCZc57nJ+rzP6Z1y
MK4Ud7hfBMeQ9WxuGdHx7GYpqDtT30iSTnnLttP6TCky9tkGyJH1L2HWGpC2
oRRPHhpaiRnSoGna5P9duBR1pzLN7pH9xCByj6sKeykijddcWCT7zfrSfeql
vSVo5Nja10n2o6xpZe/MxyWQX6//0+0wDaI9gVs775ZgLDHrZR3ZzxzZtnXx
BJRA4/fENTnSxDxzvZ1VCWIjOM+1kv3vRMvIoRHREnBNUDfyadEgPzb6wymi
GLGLq76Mq9Mglly+7vyVYmjSQwlx0l/vL9U551KMgAoXqs4+Go5vrfa31SvG
/Z+3UmNVyfmxT81v49JiaJhhg5AyDZsqOz5IXimC7Xhji68iDY+P6F757lyE
TI/Uw74KNCzwSImXWhfB7+mNMq9tNPhrLlMz2VuErFPm5ae3kOt3t1rE4nch
bCoujkmR8+bpnaXydecK8ehTj+Uych6ZqknSps0LEXA1UaxkLQ3rdI4lSmoV
AjX3DN3FaZj0FH5vJ1mIi5/sV9aQ8+2J+K9Txc3v8DaYg9NEhAaO7N2nqlXf
4YHrn/q3S8n9Pl6au2vZWzhstznf9pUKH8lra77+LkBzjnyIGDm/v2fZTaR8
LoD2x/x/x0ep2NrjN7j4rgA6dx346wapeHF/KU+0SwGaeHXv3vpExbt96TKC
zW/Qv5fD04Q8b/A/G847HpePgfjhLTIvqUgz+L7y2418XNP2shJ7ToWZioJV
kFc+burLGHDTqJio049IMMzHy7S2gE/pVEj+WZGVxZmPtmNiUw5JVJw0b3q5
1z0PCrXjray7VLhI/vk0r5WLh9X//NSdqEiurWYq7ciFr8iERJUDFf0FDfdP
SuXiX/EDn6P2ZLwmV1pyZnPQ68NQNbWhQvX2GT7lFzk4qxzAv8eECqU5e+1M
0RxI7pKystIg4x3n7d89kA06xbRkvTAVlRz1rQ7N2chxSpE1EiTXZ6qgNrI0
G4Ox70wuk+dHGw9u+qf4bJxsPPizcgkVifnRTZaG2aDY66uqzlGgx5kpEuD8
Crse816/1k9BJ37kRHG/gJHihE1SNgVhY7SR1u0U/J545Tp4kAKHvVzbTy+l
ICT7zraf+ykI/7XCfaQrE54ZhZOzahSMZlm09t7MxBzb5Sf/dlKQsPP8vsvd
GRjdKqrduoGCv5FlAbY30+GzM1e/gjzvJ93RYfa0PkPVe/WMZ8WZ8FqQnbnz
LgFLA//V75LNRPu5hFXKX3zxzfByCF9fOla8fVzdP/yAGPd1uHlAIw1UPTEx
vvk0YvONb4L21s8QwjBd7WKYTWjFvHG4bZGC2D9ZOe5Nb4gq7lrLwMJEZNvl
9VevLiHeMH/KNpH/f90W24xKChjEBXUzztSJ++jrMr8YocUkrvbV/xZzuQEj
kfAd77OqiXAxc9/z2RfgvoXu2e1fRwQsa6RqK3oTo38FP1OXNxGbG5P0dqy6
QyxwcXzrGGwm2pZdetdZFksITV5/4PKzhdjf6Nl+9mcyseLEBe3GoTZib9GT
0Zsi6cRkfHjQkpUfCeVpnorn8zQime7YIqXdSexZ5aQSmpBN+I+YeKyw7SaE
Pv510s3OJUKdZP8NvPpEbLEJ5n6tUUCI/fq+nNvnMyGQwTqXzygkjqT7Xbl3
v4+wG7evH3YsJfhULgT8e99P5PkUTN3XZRAK5vUtmbNfiLEmtj/tpuWE73H7
g5PzX4if1uceqdiWExkK77docg4Qp4ZHDyc4lRPZ5uvPdwsMEMmnZtvOXCon
gmKaEsU2DhA+Kh4vRJPLiem6wx2ZhgPE92blgI9j5YTB5vg86dQBIkvqcs94
SAWxmTJke4UyQGzK/Vgcca+CGJ3jvdbxYoD4waf+eldcBSEm0bY7+u0AQT/d
0BFCqyC2Gbqb8DcMEBOCRkoazRXE9gtFZ0T/DBCSr7aKrlzHJMzlzj73Xxgg
BD4vPfFRnknYvh1x6eYcJHSVu98+2ckkpCxcT6QLDhI9tJ0lO3SYhEVw4IT6
pkFir1TxNw9XJpHc3c6ZtnmQ2PUldlbbj0nU8y+L5lMaJKavDEhIXmMS7SMj
Ut2qg4TQvaSc5hgm8TomYa02BonQF06bXj1hEl4rN0S9PDRILPy1z46gMInV
54Kui+kNEpENpRYeOUwiKTLn63WjQUI94Plqs2Im8T9jY5FS
"]]},
Annotation[#, "Charting`Private`Tag$15353#2"]& ],
TagBox[
{RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[
1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
1:eJwt13k0Vd/7B3AVDWhEFGVIKZQUqaR3pIEy9RFSUjJUhpIhQxGSknnIkKFE
IcO9l0TkcO81u6bcWwl9hKISlRS+8tuftX7nn7Nea59hnb2f59nPkbW5dMxu
Lh8fn+ccPr7/zhxNf/u0Bzzw/f/x+3Pzj1RiHmulWHGSKDz+PEtIIR5uk7Qs
SpLHYdvdx5OJBS1Ltt/9uAWXtlgqJRBvF9jqQktSw2czsdWxxMG/I5pXVe1C
WY+jbARxSKiPecDHvehmWmnfJj6b8cLCbb4OTOd/8Q4gtuLdqMxM0oVMtkiT
N7GfvElBp/Ih7Mt+reZKLNTmNDm3Sg/F8zWeOxAflBJzVfnnKK6zVI9ZEbsf
vfvxxEdDJPfWCRwjHjG5LVZdYQwhi8n2A8Tvt/1cYDr/GIbtthQrEgtIsmc9
kkxhPqXaKPnf++wcefz9x7FqpO2PEHGV40vpGGVzJI38mz6czoP8toG8J9QJ
WEybSLwmvqM+Va2y6CQcHU7nsIjhq/X12bFTCLfUE0smVjJtkasYPI2UPoWx
IGKT+C18aeJnwFf3sN+JeGqA03iq4gzYeQ6ie4jfunPZPAEbYEAztTWNh6zN
7fzlibYYs/q1h0GsFCtz97KWHX6p6/+K/W/8XGOk/Ac7zPDVFpoSs267DIYo
OWB27vyjTak8BL6o9tldeQEml5Jpj4lTDPPzPthcxOSuxs0BxOqdHrO3FzhC
9/O063biTb9737QaO4FT8kQ2PIXMj1uXyIF+FzDFxI+cJf7fBU+BnpBLEHwl
G65G7P91p9WulZeRdH7RyTf3eVBRHUhvenEZObMya8WIq66dLu2bdwVxPa7a
55J4kPMSWNUa746FJzLnyhNHWDZWj31zx9eqvqL+RB42tiU+XXbYAwJm1z9a
E7/ODpU/MuUBr3iNsCMJPNT7HnmXc/oqbC+Uvh2N40FKIPzNAgUfdD1Nup9O
3LU1QFTwhg+quoINDIljKevVgm990DPjF5Ady0P/LlH7eXd9YXFifJNxDA/Z
iweUu75dg6ndl2tOkTxMRFwcX17ij2YXXwgR293gZHsuuIEi25U/siN4KDrW
xNe//QY6xZwV+sJ5uNwjkvY87AbMw1M7dMN4OKydut54bwBs2gWV3t7m4e9Y
yQbNh4GIyl85oB7Ag6bd9g+9dsGgL2mwKb/Bg3DYIRXlyGBoTliPg9hQhv/z
1dJghFpoGh/0J/F61jxFUOgWllzM/nzoOg8Sf++mS9FuoaTqZO5ab7JeOie9
xyZDcHOPwvHVl3nYuX12v05YKF5cvLg18BIPJ6XnO5g/C4WldMzaYRcy33/L
713sDUW7ZOT2YmceuPZiy+5uvYvcs9gHRzJ/sZlixZ13MSXjPbDRnofJ+TY1
j6TCscrFxEL/JKkPYbU3BnIjsebHoXWJljyIMrQvDHVE4u1fC8HBEzxwZnNF
P09FwpfRqHzNgtSPP86mbuujcCbwKzP9OA8V689q2nhEoYi9Sa3CiORn9zXR
hWLR8H0Vqqi/n4fIIyPjF/6JQbBLh5evDolfr55/DjjE4FCMWv9TbR62acTZ
S/vGYNztsLDgPh6unUh/2JoRg7H0gsLyPeR5lOpBmR8xcE121xxX5yE52G1R
QFQs4ld9sn+hwEONX4v3juY4HB4XRfkGHjLXuMRH9cVB3FdCqHw9D4MeO8eH
JuKwIPyB3/N1PFRLzHOPk43HNmbxq0fSPHjFntfjecaD5jqiri9OvrdMo2ie
7D2YDKZ3cQR4eEGbU/3HLQHrpRdl0d5z4XhdsmRQJBnq/p7TQb1cdPGefbVS
SIZ4wrHzZj1cfBmw2d25OxnHvpkF/+niYsH6hWLlZ5PxaHdUsyqPi1PW/Gmu
hcko1K+J9Grm4tuSEcYN/fu4cHjXsFkpFwlfG+5I+afg0ovDQ2bhXFjumj/x
uy8Nhq6aVe13uTDw8Nx3YyINic97go+EcuGfu6VHQCgdzj+2dmmGcCG+66vA
IrV0rJZd8WRpABcWV9refwtOx00bqj3InYui15dD7os+wD2Pmotpllw0rMgS
4ZU8QF63/9OUdVx8rJfnvp94CC0vnv47WS6uvBFJT+TLQE9BbZ+EDBdZDg4D
RoIZ0B1xm4iS4iLuem5P2ZoMlBbMKXcX46LmVZarr24Gtut+pgku4OJW6H3z
4ugMuJeNGl0e7sRVRV73hOIjKHCaLOWedqLJV+Z1mEUmfuUMXnqn1ImQO+xZ
Ha/H+L0vd21i9CvUReSErnuSDam1U1HHfnSgYKNRzr9RuZC5/ja371AHgnSv
JfIb56FuRruoV7cDcQv0vx01z8PSTd9pXdodcNhW9zjmdB4C/deFtWp2oGb9
tj0rnfMwqfSmOk+lA8nGvu9n7uRBMShAUV28AxkyZ7UMWXkIU+wcuz7YDpvJ
/Lkj2/NhY+VtMurXDuMFn0THhAtgpCRc3efbDtXM3CkJkQJILbA//MqrHW4y
Zx2wqgBmQy5pRVfaIVJT0nFzfQH0TLgOF+zb8Ufao/u7VgHUXo5fyjFox9CG
anFTlwKIzVw/7ivZjkROwSI1TgEWrHnhYV/chlTpR+U7gwphN/L36BtaG0wF
OsXV7hSCL/C8iF5+Gz4/+2SqHFmIr79znBUet8GRNekscr8QmSs/mr9OaMP3
h4lzKhiFiJDeP4/ftw2Ff7V7PPoKccg66lnUvjb87ls3orOWhnTl0WWjUa24
/ePhAVd3GlKEcta63GnF0KIKvWlPGgaHrqz9EtCK33u/FgZ502CbtmO890or
Yn40PIj0o+Hv+PU/+abk+hXiC+Nu01BlLGw7LN6Kze3ddwxTaDjDVKjjprRg
3mJN7RAmDYsd+1aKxLeAa5KV182mYf6KpxaG4S34ojHjuLWOhgFLF0bl9Rac
eEMb6GiiYd+b4spbp1tgO8Oiz+PSEBigvbtYugX6rn7mop9okI848fLmAw7Q
cL702yI6dv7vJk0wiYNNJ6U0h4XoiF2xrysimoOsi2paHxbTIbvTrj06kIOP
gXKVrcvpiLR3NAy05cBH6nN24io6aowdghZv5MBUhNXet5GOOMs1b5vzm3FY
6PqI4UE6Itq10lY9boZyfGWuxGE6WsdGkmzTmiH7cOjdv3p0bNw4o/YrohnN
1K1EJwM6Nvu8nuS73IyVKb2XXU3piH7qW8lUbcbQaKLBVhs6Xu4P3D5a1ET6
tVVqN66R8cvpEuZPm9C0y1Z+tx8dP7vT+isymvC4fKv6D386LrnrKgVGN2Fz
sVfJqSA6FNIUA366NKFj3w9FyVA6nnbbHHLd1IRRwSl3rQQ6RgSCtN6mNMLb
s8VClEZHs/xQ70xsIzgR8p7RdDr2BKnYy9xthGynaZZwER2cv7YbrL0bYTP3
ksbMMzoKxy46s443Iu3Z8zV15XQEUx/EFJY04lrZwrCZWjo8FwW2WV5vAFdf
svz7Ozr8hZY3vnZvgFPcq4WSPXQove/4dsypAbmpRvd1euk4P/2tbP/JBjzO
FgsP+5fcv+CO2dJdDdApckoSGqTjjbNujuF4PSy3vp9TMkLHzB0+s4Iv9VDY
tv4S6xsd1VdHNwv316Po7S7J1lE6VOvtrJnt9Yh6ZbKl7zsdGXuK6yUK67E4
uFV97BcdbW5vip0v1OOIe7Jn2Qwdi3OrRWln6lEbKZWZ+5fMD70nfcy8HhIa
XoLJs2R9dxRoOB2sR+OHvTfc5jBwToTubLCuHvzVKQLLBRiwlNz783l3HRS3
bJefEGKA5mg6v+dVHZrZ6YxGYQaehKfq8jXV4RRnzC11MQPXD9braJfVoW2E
Ga61lIGyu/4H8uPrkO/3QuT8Cga8bT1sNxvWwdcjUsxegowvPbHFQ7cOXpYl
n5RXMWAcxml/sbsO0Zku8d+Jr02ez4JCHe7/UxDgLsnA20cX/FX46nAnfEPU
mbUMZOyM+fuEXouW8Z7V7esY2DMZeJbzpBaJbB1nD3kGlO/yp42l1sL/SWas
+HoGFq978WhraC3kYnwsj29goFNutO+eTS10HJVYJRsZcLa5sel/K2rRR7t5
b9lmBs7u9Fs/u7AWHkc+jEYT570Xnp79W4MNT7LFlm9hQCeje9v05xqcDg9l
L1RhwPX3Ae5rZg2ygq0zerYysMKiMbWhtAZpSZSJgSoDgqHvUVZQg6IDlQ0v
iKfOViyLSSY2YSyP3MZATx8GN12pwZ0c1XEpNQYUOfo+gudrMPBN550Pcfud
j0NDVuR9jzaG8Iglr7YdS9erwfoDYUoh6gxUPllreBU12JYtvq6buDxnRs5A
vQY9djE9W3YwwJB1OfFDpga3ui8ncYjzE2ZfVK+swUGhD0mrNBiY7ZWdiBCu
gdwNq5PniDP7JCbl/rBRqBAhPUY8VtKmqtrKRlJvTPq3nQw0Lf69XbqGjdRv
09EKuxjoKgtdJ1TORrXhHbPTxPHLpxq7H7OxafSAaQ3xvpfcQGYKG3pPIsN+
EctUrt34OIaNg+nb4tftJvFB/dnt4MdGxN4yMW/icepOtq47G8+snoc9IH4o
dnuezEU2PPL2d9QQ36z6eWTSmo0X9l8Gh4iTq5oD2o6z4VavWbdIk4EBMZGs
rCNsRC5memwktqmqfealzca0q9B3XWKxqk9Fehps5Kpm7bQmnhb1TJfYzMbN
21JHrxKLUq5eg3Js+DH+Kob/d39l116aBBn/8qbzAXH/CvoPryXEl3bqMYiT
KsZjwc+Gi09uSDVxQHmWHP8UCyqHKyJbiNOXstNqR1koFZ0+85Z4rNRoYcgg
C78lx6f6iD2eH7Y+8I6Ft0lqVkPEW4QKH81pZ8GwUS/kK7FkcSC3vJaFA8NV
Xt+INRmscbcKFvK2Kaj+5yiBK3MUGSxc+bCI9oV4VUH4dM8TFm6pTYx/JOY+
XdkfmcoCz9Z79j0x+69wKWJZMC6UaeURDz++7DNym4UBI+9zTcQ6mdqKSX4s
BAYuq3hJzJnwr9NxZ0E0yO1NPnF4mtKxzxdYCA9XKb3/3/fe122MtGahq6fd
MoQ4Z6RRZftxFr4UfqIuE/PHVwZ26rOQj78fzYnN+kfGlu1gge+2jbc0sVHo
JuE8JRYulTb2z/4XD7c6RA/IsqB/7/ySXmJHP6dvl4XJ9fo+GbHEqj5W1Ly5
ZD4TFgo5Eis3lV+P+81EQuCcbfuIK52qmIUfmLglfb6sn8Sb6Ut7vd1vmLii
NybBIF57zuclk8ME+CTU/YgNC4adOaVM7OH3fbiUuPifA7lGBUwcamgb6yTx
bmC4pLP1ERPfBKenEojX7B8abYhgouXnnL3ixP9oTfbtv8kkcTHp8YrkS0XY
1epybyaM0ibtw4mVlCoOZ9kyMTR85MoUyT8vezsv691MbP/wRLaM5Oszfrla
v61MmKeUj5wnpjtLHkzZwESw7snylcTf09nd7SuYiHnccMKJ5H9Q8Jitwpdq
XHismjRL6keTd6zuzr5q8GrcHNKJO3e6mR16XY1LNhZqWsRK4sPLzrCqUWQZ
V3+F1J9h04J/fe9Xw2XP47YaUr/2pGsc84uuxvrdTXeOExsXz/zyC6nGBt2c
vf2k3r3cu6/Tx60ayWzJ5D+kHmZ3pn05daQaak45i4WUGaD4mcGNU1XIn+mN
b1FgYOO0uCRtrAqjcp96tYiNK3I/xH6swssr3DVPSf39nHZroVlHFULejvr6
k/qsMiheyM6pQn3p54KlpJ5PeTxwOGJRBW+7y2mcNQz4SLBkRA2roH1v82op
4opgOeF3+6vwaunf4PNSDARWJXifU6nCoLyt8vRqUl+enyw8Pb8K9CaR3AVk
v9EwiRWecaBwushL/OVyBqLf/TqSYEKh2/BJzJtlDPwxqjDYrElB9Jd18ney
f/VMuCceXUJBzDLOQGoJAwu14vUtiishaSK8w1SQgTlPo2UzZ19CWs/oicFc
sv8t9kleHFuB9cs6m86N0TH25sQGmWsVOPmP8g8Vsn/bR6S6b7GrgJPtjnuT
ZL93f25ssVejAoFDN48Hf6Hj7xz7PUrvyrFn/5JMv4905HodvbpLrhzMxCGJ
P6TfuPV1YalCfhn03Vzk5tXQkZCRv1g7oQwzNgPTCSw6ZmcmaGYBZVgzFpyo
yCT9Q+bVfz2Pl2GuTsMqPYoOZcbW/tCZUmw+U6nqWEZHaHPA1TkGpfh8rtVm
fz4dDrPp7zYOl+CG10957Vg6eNZvB5s6SqCjn5AdHk36Q7vnWo4VJYgtNul/
HUnH8rNneWmRJdjPCLlmF0bHJ3Hnp2/VS3B/xG67XTAdYsHnBlIDnkFMx+L0
hCfp96yao8+sLMZzE19+Kws6fLd9keDjK8ZZ1sizC2Z0aB+9tiJluAgrV97f
5E76R0fDX6caKoqwS2S3WaAxHXLhOkaTNkUIPxX7Ioj0ozLjejkFBSRP8+ae
Wb2TjtPnhbdf2k+HgYHxgzgxOtJfUbsj2XkQ+hAimNNAQ4bNtSuiMXlY5Wlw
/2st+R9oMTSIts7DqNMf582kPy/QUv/qOvWUrM/m148rSX9+dWFri8pTrMs6
medVREPXqfqNvxNzYF4t+L8E0u9zhvKV59qR/7i5lXOZTjSoLZf5Orc+HU4p
HK1cfhpYKYWdbRq+kBwZdDQ/VIDulb2RW4/EU6ncvU02c/Nw7LS6Uc6vbGpJ
QoOMnH0OyrcVaS47V0RptGVP70t5DL97wYuuy5ZTP9O+LuWqPMIJtinD52g1
tcVRMWGxejpeHPwpMLq8hgqpW7OecknAvjrW2pt6DVR5Xqymxv4w7Muccm4w
41A5nKSHpVevYFrtUPz0SBs1pP2hxvquD5V+KDclbdUrqlWuWXbu4hhKaq2n
Qs1hLnXsq7F35Jo06oR7x+rzz19Tn40ZLnarH1MCyzVcsoW6qE0TtYKhm/Ip
H4dnZkczuqmgFQ/4VfIZ1PdVqQ8itd5TLMsMI7OpEkqgYpOiZ8+/lIO8UZE+
yqlpvXsR8vhAvQsbkv4iWkXJ3HU5NhXVT2nt1IyhBTEpYXV+qeP9A9Qz3/wd
ixbWUHM8/VhXLD9SKR+/bmofrqMuTcdlzKn6RI3MbNlvRTVSxt8LSgxrP1Fj
1+yDzJsbqSvL806mNH+izi0QTTV920i5thlZ7Hr7iWIcem1l/rORctDTkvL5
8YmKLdko5a/QRK1ToLWsXD9EnTPRqzGPaqJeR//qqQgdoq7eXx6nYttM3W91
XyIVPUSp/J0ICHZtplI0Xrf6JgxRAiWBJr1+zZTVrQMCWplDlNGW2HuJSc3U
q7X1u2tfDlGsACal0tpMRWratf0cG6J0SvPqhnZzKO014ktP/R6i3APyvjkd
5lDbNuX1smeGqIfsi9M/j3OoV5T/1kTBYUqZubFO0JVDLRpqTjsgP0y5dXVu
OfmEQxVLJtoyFIcpoeIfoRPFHCrN+2C5tOowtWT1u5Y4JodSKT4q+T+tYSos
bvnSrh4OxYvKlHfUHaYe5n8QCvjCoSoS3ld26Q9TFqduflec5FB99TPD+ibD
1IzczqrX81soHfnZrHLzYepdELxCRFuo/wOMZq5O
"]]},
Annotation[#, "Charting`Private`Tag$15353#3"]& ],
TagBox[
{RGBColor[0.922526, 0.385626, 0.209179], AbsoluteThickness[1.6], Opacity[
1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
1:eJwt13lYTN/jB/DysWRp74NSWlAkZSkV8ZaUlCiRhBZrK4lWRYrk075JltKG
0EKZuSO6aZumTU3TNpRWhYokSsnvfJ/nd/+Z5/Wcueeee5b3OVfx2Nl9J2cI
CAh4CQoI/O83u9EmKWWAD4H/v9qCy0T/5+KiS1H7g2RhEy94/h5x3IbCcMsg
NayfJVF6m5gxvujUawct2DeP/b1J3Dk7+8reID30zcleFUtsfbm9+myDPt4k
aW8LJ94l7B7HcDDE97AEg2vEPibtzZMjxrjYUbEhgHjh/gsHELQbh2KqxS4Q
5yzbfnrbXHNEZaTznYiLFHIE7BssILN4b4wtcUtuptWlJEtMfanV3Eccb1dv
fMfhALQUFMp3EEcUNTEYqw6itMBw+0bio4ePBtaPWKN3et4/C4kHQ2Mypq8c
gVfBY6OZxF0bI4okTGxhVyXnPdLPR3jO/kMSc+2xYdGl5Epi6wffGhUaHCC/
xyXhOXGGtLKm8otjONa32vcOseHHl9tUk47js6bKHGfiokcWS9UdTkJjyOHZ
XmL1NZN1awxPoXqWu7EmsepKyy+rV53GHOvZW35/5ONH8lHlZSOOCAtcss2X
eOeR2V2Tga4I3jxibkXs72CmOnTCDY1Wt/esJ85Y1HX0vfEZeOacEuvv42MG
P1nRRsgd7K7+bAPiole/FZbXn8P5FOsVi4kdPp0Ml9zuAe/Xd2986eUjP8zo
qWCBBwJlUhZHEU/Rop/aEs8jxTrcnNPDx6laqwu+dp74u/iWegIxM2JG6tEG
T7zQ9Z6wIx7q9NDfZuCFFXdzD3zv5iOlzvi1gIo3JPuEVs4j3pttW+Q27AOl
60c1Z3eS8cxq437z94c9vWL65Qc+jHqPOZqM+8N/4dWrZ4hZ1UfjUs8HwEzx
H3ZDBx/bJs8FGjtfwsGsectutPNRmGVSXbg6EHODoV3I5+NunVPLo8VBUM5y
qjpM/Ec6tAdWQVAYXiUz2cbHr68jp5vigpDHc/2qRVw0sKB8UiQYOlJT7ndb
+BioVNimNesquo9sq1fj8bFgaQXTauQaOtxr1FiNfOjYOHVw1UNApQ8b7iBW
bfqsauYagtmnxrKtuKQ/NYcU9PpDMPfoggOu9Xx4WuZ9m9F+HdlS9n9tasj8
G9a6p1F5A86Pk8sMS/kIcXGT6bobgU9Dof8WlPChsNE2aW5zBOZ/99utSOza
GfhFQzQSunperuPFpH93J4x7XonE1lbOhaQiPvY0hm/rPxmFr+p9Dx6w+Mi9
svzMmsRo9FsNRg/l8PE0t+x8gW0sGnPq0nSIO/YZNStejMUJNnU7KJsPDY7R
h4jEWJzdlKEn+ZSPW1/s3zvUx0J9ZauxShYf9uoGxhP6cbBQKgiSSeeD6hYS
710eD40YPf81N/mofd1N3f6UgN5hu6hDCXwcLgidbzrrJi5uvBx3NZ4Ps6aM
hgmFmzAPfnamJZYPFV3rvH3WNxEj2efuHsXHkqmDgSMVN+EhEppxNpQP33ny
eV3piWC5va5M8+XDY/mA76UjSciZYzv51IePUmw/PeGdhJCw30sZ3nzk3WkJ
9YhLwjtzFd1yT5IXVI29XVUS5Lh7Wc3nyPv8DFdbpnMbM3LfD1Q48dG2guNj
IXkHZty+me+t+ahbaSa6ufIu/GRlbj49yMfv6EVZ7L67sB05NXDRio/xf43e
WfxzD8abTeoX7ucDFdS07dZ7eLxXO3vLXj4ahg9MHi64h1S/J3f2GpL6m31u
dqQkw65t0uTqWj6OHbGy8tt0H4te6o2u/YfkzeaECJf5aXig73uqWpCPlVbn
TvcuTkP42tHSEwJ8BD+fGj6snAb7HSlb4v+0YWbQnH926qdBYUfr6o+/2tDx
UldJ2DsNghm1owcG27DrhsdB6+40mPSVrzvJa0O7gaF7DzMdP9wGT25PbYPQ
9cHRWNtMHKkzuXs+pQ0ZykzxStdMBLDPhaffa8Nb7VkHJv0yMRgsfftvUhse
PBk1OpKYiQsr6p0fxbZBozQmf059JrTn87teBbchTCA27B/9B4hwsFceOdGG
AdV7UiGKD+Gsqz33+rI23Pr+zM/t/SPUN81Lc1dsg9buJa+7Pj3CkNk5gUPy
bfDyoPosfz3CvoafwspL2iDQf693nUQWSpb3ujyTIO2lg714O7OgM71zQ4Rg
G0JT1zQ/f56FwIua36w7WiHUF9FZHfIYgSn3lfTjW3F6wdLpVSuf4qbVtt19
Uy0IUvp9/+7iXDy11xs5Z9iCdcy14rNFnyHunFjR3NBm9BV/vPfR4Tlehxqt
PfS6Ccac6R1mifkYL9l/qIzVhNb8dXsO3s2H88H1huqMJmzt0g+1S83Hj8jD
J6dzmuAQ5hvu/CQf6Tqn2FH3m1BRU1LqTOfDyeuIhHdwE6KC0hwk+/MRdaem
9KBxE85kl0wIaBXAIrww3qGOh3N3+uJVqwuw+tzjZcVVPGiH6rPc3hZAaJN7
shybhwjPWJXcxgLUegcebKJ56Bac36n2vgAB6fkt2s94kH8m+1xyiLjwhBgn
jkfy+5tjpMgLjA+NHJO15iH+VX2spvkLNB+hwkPaG6FcJXxcpe4F4koT1Xe3
NcKvum+mKfcF3sVPhok1NYJ5uCrAtfkFRL3NfRNqGlHqo/T9UccL0h6NpdGF
jZjD+8qd8/UFtr0sjjZOakR6iFDvEVEG6PQN0hWWjfh+M+CV3R4GpmUOMUfL
uDDYxBPKKGdgy7Li4IBiLlrUZJNUOAysLXJbNPsVF8musYOPahjQfXo3XjKf
i9+8m/yMRgbKHXd9lE/l4qwF/82VLgZ4xzs+/vEn3rJc8+0UA6UOP4+83cDF
nxkhtgXrmHhQrCGxXoOLV+t7l3/VZELveW5knCoXzqzW2yo6TISZBbfvU+SC
XSMeF7OViYwTvtwSES7EpVLSd5kyUSOVKu34qQHznKYLd51gYti/Q7byXgPy
zWIDr8Uz0cyY8Y9VUgO8+Une2xOZkDFe2dYd34An5rY2f5KYoNy9D0yENeDz
ccUu1xQmjPgrIqX9GhAu+qhv/WMmGCKlf5WtGrCb43XYhmbi/dR0j6dwA8lF
qUDJASbMlfZUdQk1ICHMfjz8MxPyKcn3d89sgNPSa7tnDjHRlGwgJz9Zj9en
bUIGR5iIZdyzYg7U45OH2fr0SSbsd8ZyCkrroceSmnokQmHHsH9ej089bngq
tUtsoCC6nH2Zfb4eGs0x3l5aFBbIyIg+PlOPVcZufi3aFJKN+G4uJ+rxxfcD
I0aPgnRa6eoPe+uRzPk+/tGQgsexTVn/KddjyZtuSSlrCubi7gd6Mt/ijOkB
rQt+FJxuaP60ufMWew7/Sgv2p9B/Zd6i+ui32GladCL6Enn+j8+tzy++hVXf
uu7UIArC7QFHbSzeoo0x8jzjPwp1b744rZuqQ71Xl9yq2xSON/dH/d1bh8jM
4ayVTApN1RPoNKyDwPigTBlFoU83rKRocx3aL1xTPvqSAu+yGjxV6mCw03N+
6GsKI88dF1ZO16KmuPtPcSkFOQZbb1Z2LQQSQ8XptxT0tBqkStNqITx///CG
Bgqjajb0pVu1gOjFow+4FDaEfA77GlyLAMWab8FNFL59mPkP06YW5z8saFd8
R+HkWgWn9jm1cLO4az3QR2G1rqKTz58asLabym3spxDxMnWz+GgNelYtcr0y
QJ6vomit11GDHRt+Zop9oeD/UPqsT0ENtDKO+4t/o7DRcEQq1L4GUlFR2+5O
UMho+aQnYFUD/UM6TiW/KWR3O2h7mdZA6DIt+XGSQsyx+vTDG2vQsPHQ4Ipp
CglzH9osWFCDvZzd967PYCH2x6Zts5jVWDuv8j/uPBbGfWK3eT2phm2q3rO+
+SzQjgee96ZUQ1uT0Tm2gAXX/+Q+s0KrYTa92FpYlAWzZsZjQ5tqPPujf3Ox
JAvK0cLu3VNVuO5l/DpFhtRfteS66kgVqmMcVgQvYcHePUHUva8KODMj/Lgs
C3LTVRdGa6uwUFZv35KlLMgqIfpdchVWrdDMO6XIwtpw0/nrtlVB/OVReVcV
FjL8xXTNNavw8NlORfmVLFxs3dbqurIKoxp6i94SG3F7nJPFqjDDI/P9ClUW
Ttat7+ru5IDRJ1eYo8bCe2nL20M8DiIHBUx3rWGBUd9RNlbJwbv3uZxO4v8C
dc5M53GwcTU3erYGKR/4IT4SyEGsde2GNetYWBflbtV/gQPqaoFKLrFY6sEF
7xw5WPRn5Sz19Sx8me1Y89KcA36wjJ/SBhb6bWKaH+zgYOjzTrFbxMYyyvui
dThI2ns8Yp4m6a93MfcOK3CwpLRM9yPxg/eOblukOEhVLTy9V4uF67ue5MgK
caCgL+D3gtj5pMe1xq+VcFJrMfbZyMKLzLlXlehK1DQdCWjVZoH7fZRemV8J
5/sxu1V0WPiuNXBV7WElKj/Ri84T6yUPZ6lFVWL3k4gUQV3SP6UC81YFV+KF
/1ebHcSxHbKjSt7k/stvRa8Sj/30sBe1q4RmdeTx38RqP572ClpWItptreC6
TSyc6P82MmJUiaJRXsIJ4tT6raEfNlXC/r92hQTirtybD6vUKyFj+yS1hHj5
tfG9+UqViLiTsmiI2Nn8xJWkhZU4fHZJkNRm8j7i/M0B8yqhMjuwU4dYkHPo
su00G7Hh6uttiM29eky3fGcDGqFePsQZ0t6p0h/ZaJQZfhpHPPFcKnC0jY3B
i294T4gtt7/qr6plQ/3y8aFi4hy2W2vKGzY2W2j95BKLGqza5/GCDWrpreEu
Yo+C4f3bs9jYITXUNETcuqSoU/QeG8G2CU9+Euv7Jo7xo9lYqPr9zNT/6qvx
i0u/ysb99BPyf4nlFjq+dPJho/SX2atp4qgDds5rXNlYZilqOEk8J8w+fdiO
DYfuuawfxJcZLiezLdlYyk1e9IV4siUwz2knG9N7NOw7iC9+Tbm6bDMbGddk
Y+uIp6cqu/jqbDxLYz8tJA4WmGJHKbFRwY3JzSQW/q2jvX0hG6Hb3yeFEyd9
uqzxfS4biUuFXNyJV72tz0v5U4FbcV5KFsSFj1cXmoxUQK0ulFYn/mzw1zmp
tQKxRnKPOsn4XBf0EdtSU4Gn7Q7fC4iVX/ze2kFXoGuwTj6E+Oy0nLb0wwqs
VH6oKE+8ML5IIP92BS5l8X58JPOlVN7J0iSyAhcP5j56Qqws/T7unGcFBvu+
5a4mfh+ScUXQqQIP5GVm9JP5mfDZazzySAUiN3quTyEWi9e9kmZQAY8cw9Wz
ibltq+JWalegwDHgewGZ74n/Lld/qkra99wlwZ5Y7ezGv0/EK2D26JtLDlkf
U+F7tFbOqsDm7F3J5sS1991/pI6Xw/FHe9ZXsp4CHnOFIz+UQ3xKz2Q5saCR
SLZxdjksuJ7Jp8l6TRQ1Cr2RWg57CcX742R9y2w5srUyoRx1zvYfQoh/lS7b
jEvlmJWQKHWH5MF4oLy35N5yPFSoNU0j+SHhbLLKwKAcTp7Tq+WIZZmWDHft
ciwweGWYoM7CjABBh3L5cqzxbVsWQPJHiuKM7/9Whri0y/6rV7OQX9x/5Xxv
GeaK/ZaJJnmmv6a3L6q1DHyrieGRVSQf1/tsLSkuQ/P9IK1skn8HvixYLxxT
hmHvTPUZyiwwZT4p6a0rw3/FVvYrFFiwPTZ0SGdFGcxcnsoclSf5IFzvsl66
DG553jNiSf6ORq9VUBAsg8AmF+tRks96RrbVXfWl0L77RDRemoUBN9fV02dL
UaX6apOZBAu3fliJtR4vBVtpIuqgOAs6H+Trcw+WQsHr7jw7MRZMO3d3WpOv
Lzk7iTMnRUh7YiQNYkRKsTj8/oe9ZL959MxS4s7TEgx9cJ+6LUjGx0SydFdK
CZ7lx7+yFWDB8K/58FhMCSKW2y2W/0th+UujAiPvEsR7W91PmKKQ5r1kmqNf
gvnSTR8O/aLwVNz5xsHmN9g1aRCxdZDCzzd3LkX+KcYNjueyC40UlMuXXh78
WoyKd3+lq8h+ntYj/3tndzH2H85MlK0n+6XHXbtfFcVw0Xu2gllDQav10oB2
dDFeveL6lZRTuFYyMAKlYnicPuO7jpw3cpXTKlpCi1A7krDLNZHCnMUyJjVn
iuA6Zkh5JpDyCRXHV/uLMHpYW8Q/jkJbxKwLUQpFmGPAdrscRYGaYFcJUK+x
X+L3oP11CuEfnC6IfXyFkYD7XpFeZL/uUaR6thaituamSPQ+ClYdByNNlxfi
q7DxMS1zCkc5y/7mzC3Efr2g8BYzUu4ekOfIe4k1+/yOSeyiwBHU2ffQ6SU2
TrbMOgYK9PqqGIs4FubP3/rCcTUFodpjgjY9TOw/eVhETJBC5n77x68rmZgd
4CV6dJoJD1FKWi6HiaC3134+IOfHnKVepm99mNCdDr2w7icT0elqkwIiTBy5
YK2k+IWJv0bBYUnaDCy2aGx25jFx40fz2ZTrBWjXHVubkcGE4edFO6dlnuHJ
htpFcZuZUHnkYv17Kg8KETpvONpMqMYUu4905EHv3Z/kqQ1MPO11Y9Sn5SHh
gcSYlRoTvjHNCZaqeWhaVz3RLsvEo5nFu5rcc6D0LqtV8w+DnCcfzHmV+hjW
AU+uCRYycPG413/5fWmIX7bWaVSVgQc+K24s1AhEtL6GXvxoAW6X6P9I3JdE
HxW6dinBIR8bxyx9U3Oy6TO9Y5/V454hbN6vLbIiTHrWPvaoi0kuojZE9r9V
LKZ/q5heCY14jNregXkOsWX0oPNEnNitTCw05cpcEeHQPrmPy99vvA//Uf2x
QxJ19G290xfPRcZB7Y8x59u5Bvpfiybv15G+WFtqVyOgxKP36Za8XGQbRMsa
n9IpZzTTp11DFEQnb9HygfGHmHvbaJsQEfknzRn0jLH4sZWa7+nKCfrDi5s5
dEh5wRfdiQ56TLJjYcOaAvrjklWSKbO7aH539rqXrSz6nlYPzz6um/50S6Mz
pYam9wnzlh8W6aV958WfuckvoavcF9T+eN5HH+wtfX5Ov4K+c57exdjRT78R
OpBrlsKhi5JO/vq3ZYDuX9diNGtJLR1y0FRuTcJnWk/z4tVZ4fW0XsYnoeNb
B+ktdgOm4kFcuj6j0KLLcJDuSfq1fEEYl9Zk8Y3szQbpZZ/YP4XiufQxOYGN
9kcG6ZiFDteEHnBpu8Z+FUe/QfpCn7OlfBWXbhxTtbnFGKQN/w3hP5FopO9L
BY77agzRbTUrufqZjXRH5I8qYe0h2mlwzRL/nEZ6QJaxK23rED2VlXyMYjbS
Jy8o7K41G6KPmPsMbaxqpP+IxZ5Y7TpE6wQJjpt+baQfCXzqmZM1RDvo/SvU
rMujKab6xQd5QzQ5LputNeDRCUFvigypIdpqhWVc+G4ezbKsMwlhk/9/3rXc
1I5HJ/dc9RL9OEQrxC442nmVRy/W3eCePzRE7z4+55lJJI92SFNfaD02RIez
sucwE3m0dd6C0+kzh2k/o+evEx7z6DkHvoqbLBimi1a4yAkV8OirwvJOI5LD
9I53VwP9X/PourY7rklLhmnrQrX+7xU8uot1Unb7smF6u0y0hUs9j/4/Q6u6
xg==
"]]},
Annotation[#, "Charting`Private`Tag$15353#4"]& ],
TagBox[
{RGBColor[0.528488, 0.470624, 0.701351], AbsoluteThickness[1.6], Opacity[
1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
1:eJw11nk4lF/YB3BKokQ7pchShFTSRvoiZUkRKT+RpY2oVEgoWpSllLW0WBKR
JUvK/szYwgwGY18mKpEso5Qtvaf3vd75Z+ZznWfOc859zrnPLWV3weTULB4e
HjdeHp5/3//3+Yj//2VoY2v59y8HGsa/olfnyUD5hu/FP8SSpX3fV+VtQaKd
EyaJe3Tz49Y/0kAO3/LyMeKE0Mw1K/P2wObMzTkjxBKOToJRiXqIDsj400e8
/+RtlTWPDsDlfFzaR+Kgjp1SLO1D6F5sLtZMXFzXOiycZ4ovV2rVmMQ5acfN
DTcfgc9zweU0YseFc5T9Es2ReYv/dSZxQ6igTrHkMXgqlP+KI+5rTDw3GWGF
9mC96VDiulwRiM21QX3u/bybxNN8ZrKZ2rbw3f9vghxsrnJT6sk9Aa3sQX1d
YpXuB9LuYycRztEY2ER8WVnpmdDm0+BxW2fOQxwff4a2KdEeYj1FMr0zZPxO
e3bTPjmgQnhlYhXxqzjx3gOSjvieJNb+gNj6mZrFiYhzsBEr8Hcm/jlZOPGt
7jycdKW5RsSNN9pVc/idofd127d5xO8S6JvUtC9i2f8GnIPB5G8SG3MvQytW
bVKX2P+g4u++Iy6Y0/hObjXxWp41x2N/usDk+u+UkmkOjm2wS16wyQ08LZE2
vMR+k1zBhgR3fDFyeFo9ReZv7Snho3MVdn5TQY+JbYVV7BV7rkJS3T5GgXiq
58R5r9WeSHv1b4E5UH93Q2hu2DUYyuqd4yUWSlsd/HLzdfjYjqwrnuCALm/D
Re11pK32LwXx19h5Qjvm+EDyeXui4jgHzze42Flo3oDJ/24QDjgqeX12727h
4UTJSyfivtpEpcL5t0k/fZmLiKukw0qX2d4G7yHrA0d/cnDmaEcDfb4vflYI
eLJGOfg7HpLIZ3sHCUf0cj2GOeifEzmoPN8fcleO7BYk3llbucLRxh/PfCu1
I4Y4CJz9RS4+2x8nnboqkwc5uL7ySPVimwCcsS1hlQ5w8HrmpmvD20Bs779K
T/vKwRG/uTOfrIIw3de0ay3xZZYZdzIzCNlNj7c/6eWgcIfXYRGBB5jjtT/Z
+wsHos3MA5syH0B0yDFwxycS37jz0utvPQS/c6SyXRcHxhc7Zws0B2PJQAJP
eAMHLyRUvWKuheGDxWL613oOgrNMbm2ID8OGMkWVncQz9+UFc5lhEAmwX9fC
4iDJ5bgvQzwc69iCR/lrODiemTHUmRuO1w4DLTIVHGjvGJjMHosA7xMF6xP5
5Ly+O5wk4RSJQWuzrffyOBheNfXVNTQS99YoF2Tlkv3a4KnHyItEZ3B/+8x7
Er9g5xPOgk/QqOp3wvctB5umv7yJS3iCFV4nQ01TOZjNGhNL+fgUoyKRrj+f
c8BbaNq+0TQKuqeyL4w/I+tlP+xy42oUSi7ckZt6ysHI0rJ+VnQUlF/uY01H
knjsU7Zw+B6FhgDwc8M5oM2cFvTxjcYRoyV8z+9zsCLYRSL2WAx0s7V1Z3tx
sDdjzOHWvVicezP2u8uDjIdfTedudCzyj1udzr1Kzk+hxUf/zFhUdhh4nb3C
gal2rnlgSyyyjkTdK7zEAWvpCxlv2Rco0ZKDnAPZ36Fdw/IFL8D4SRsQMOOg
PPBjree3OOyjhS6JMeWgXqRMaWgmDvom8rStJhyIm6Zzji95iU+VEa8sjTio
nY7WVN/1Ek5z/d881ufgjTR/Eef+S7Dyi+MqNTiY/PpXsmlTPHoEA1eLrOUg
rVFN38k1AQrqF47ID3fBYK2Fa8d4IhwOz5HxHuzCdRHvYzfmJ0FnzCCePdAF
G92L52QlksCq/lzl2deFjl8LRU7tSYJ6m8mTvO4uiGbdlmLdT4KtjZjBZEMX
DoW57zWUfo0+Kf3BG++7IP7I4Wm9fjJ6r2ppZ3qQ9/ltEK4ISQWfQEhfoHsX
/htd630xIRU71EfnnXQj7Q3u1mJ5qeh+2F0icqkL8sJjp493p2LbhCe/mUMX
OGM5xxkb0zBSGF0TcbQLf/5MWsox0xAvGnf2t0oXfPJPuZ/jTYeQUGSd0pdO
bJawSvmyJQP0134HMno6USq5dFRVIwNye++bqn7sxPozSSU392WA71zjn63t
neCfmj135X/E/rYMubpO3Ii5/2vb9QysGrU3KCvoxKcNEbnrKzKQ5qfa8jWk
E7WpEezvFpkw/1CkwlDrxNBq+bu5nlnIy/CfYdzpwLoWQU+729nYle3W9CKl
HVpfvLYHP32PxuvGpicZbWiMdB4McM5FRPTd5RZtrfBl8TJzV+UjpfpJuWhT
K1jCMqJZMvlwf3z1T0NdK/LkDncnKeRDme/JX93KVvTfvzD8YEc+VqmeNpPI
acWR5INtGofzMTGmqHs7vBU6clXyawLzkcV7bs9Wo1bsmhcROf4rHyo7y6IU
i1ownOlzqKK8AOeMDpm05bag+JGxZRqzADqfLxfezW6B0o5vAiH1Bajy98rr
SmnBzyevdUy6CqBc+tTo2tMWxF16o/JurAB2vxb1erm3YFPh3v3zZQvhbNxZ
4ru5BSsO37355XohZNuHtYuimyGrcjlRZUMR5gbLrnz/pBn3A4dEB1WKIPne
/UJaeDOcBzYEvNxRhBFT77DHgc3ofHni8jydIixjzamwuNKMRQaPkGlRhEv1
v9kRB5vhkX/jl/PdIjj+vXBncKoJQ+vcIl92FcF2Ml13mUkTMn1d7mXeojD2
RvN3uWETLFrT3B74URjxG1C5otuEAl1lPYf7FCTiQw427GrCDtrj50seUTC8
s07UQ64JXZvsJrVfU+D7fnLwxnQjFB/9LpzPolCvsyvNI74Rq8zMqWghGgzP
bOr+E90ISbfYpnZhGpRSEeP9pBGJJjOmyxfRIBv3pvj6g0YsO6nlfWcZDf3b
Gx87Xm0EbUTknqkEDUy+7QF/DRvh+bNXMmYjDVxFsxsLf7BRWLR7J88hGhIP
ai76MMjG1LiP9hcTGvgV31l59bExe4Fbe8VhGt4t1Fb61MlGXLNYfqA5Dd0P
2qJjK9jICIyV47Gh4byVcHf3czaclpTax52nwXLrDcYFXTb0Sy/J1AXQ0HOv
5PsfLTa415+4371Hg3DUw6qAXWzIFrqa7AqiwWKwKj9mMxsOrb0hscE0FIHm
UijOxvjapRoWj2koyErVzBtuwK2s6P5b8TQEtYRq0iMaoF8Srf6uiIbrg/yB
qQ8bsN/R6IIVjYb04HHzxwENSA1nN88qpoFz96i3w/UG6F6I2qtXRt6nyPdr
4lQDvq7tv1vIIPE5KBbYoNoAAynpvYdaaAifq3TYoa4ehw8ff7hyhIZmvovC
6xj1aNug5XuXS+YXrGrYXVoP/yvcmNFRGpTNt5uY5tRj2X8TBiVjNAw9U/Rb
G12PHzrWVgenaPg2q/bpTad67Nfcv2I+Px3Vmrx2kvz1WF7JaRdfSceP9YfC
VvLUIyGhKmiHOB3UiLTn0sk6WI7uiTRdRYeOqOFpvqE6cN+7ZN2WoIO/4m0m
u7EOJVsbRuul6bDN4chsj6/Dbmb8AUlFOuo9D0Stjq5DhnraQSklOnpXaVTP
iqyDfOLDWKkNdMz8jtWrvFeHtmNu6qs30vFp0c3sfS51MLev3MqzhQ5/9tMz
s/fUoffLm58uanRoX5JTaNxVB9nGoL5j6nTEDqrGxm+rw17jUHmtXXQYXGtM
0VaoQ391dCD/bjpMeTaonVtUh/drGA1eWuT/4Vs33OawEPvz3ipRPTKfBZzt
Wq0shB+aetVDPGA37/d0PQsGlW1XU/TpkH/VG+JczkLGd+9htf10HA3N1tRL
ZcFN44zYnoN0BE2muOR6sMDfzFjIc5iO+L0H+dsus8AOE3AtIl5unLN4womF
y/KiTA8zOmbH9T5VsWbB80Cr8eAROhZqpVwI3cPC2jGNxNz/SPyt2lcJCbGg
NjQgP3ycjhdRAseWzmHB9WnTrXvWdBzR+CO3bboWn0UOVcnZ0BGS6/9d92Mt
Mqtkxcxt6XB+4TK+L7EWPkOhr6NP0FGwNUQ8a3stdkj/1Kk6Q+Lzgo8bsr4W
PI2O0vvsyfjvCxRcEK/Fcc3NnylipY+lKmv+1mBzIXtxqgMdNa4icZblNYjO
rhI570jHz+YFa2VzauAZOj2rlZiV8/xZX1INnkq3N2k50RHz66KT/f0aCNRV
Syw4R8Zv9z1oz+Ea/GA3Sgecp8Mmz61wdG8N7ONyhT8TNz0M6Y7aXoNG8aRm
9QvEudfnDa2swbc7bTOfiW2EjESChWpQtF3Vcpsz6a8zXXDzTDU+CVeG+RKr
TctzznRX41JKQ/jqiyQe+sibqa+G4GZbq9PEUcu+BoSUVkPP/L+ZFGLW+gGh
jFfVWD4/t2rLJToitMtCK89Vw8L+po/cZTo69q+mAq2rMcRqFjhOPHR29bTB
oWpw9MY9Qojdvy1LpqlWQ6i6Z+XYv3YD4dVX1lXDTqhOV8aFDhV6WoyCWDUM
6PWWRsSrhr92+E0x8ZdrrhFLXJrgE75lkIm+GF6BD8TbXOjW7V1MRCjy534j
djv6Wt2HRZw8biTkSsdNY/X10sVMuKk5MhWJLaxd5OlZTBRzhzfoE8/cMttp
Fc8E/4CYy0li56KuY78imKiHe9Q14hThhQ/v+TGRLhiTEkb81qW/UdKDCWU7
6agk4oCRsxvSHZlotwu+VECscDMsQsOKCa213uuriR+vP72o4iATQ8XXituJ
Wb2c50aaTFwwk9Toc/23Xry72JuZMPk19niUOPEFY8BMhgkZKrRxknhfrEYq
eyl5vjJglMeNjvTsoz7G/EyUKp8b5iPu5aw4VfmbgTSBagY/cZ/k7WPoZyDP
edfdf37nGnEis40BN58DUv+eN+k2vibNZOD8oZDIv6T/HLusxAeFDGz882x4
nPjbROGXiTQG9j3/Kz3yzwnOqrYxDGjvN9zyhfidAyOsLJiB1DXL1rQQG2rX
8MvdYmDZ9u99FcTpm64G+LowIJh44v574o+qTMnuUwwsub9gwUvijoMfynce
ZYD+1/NMEPHL62e9H+gxELtC65nbv3hJJq1VUWRgfZJoqCZx+UOdJd6rGPh+
6MBhaeIiUb/FlQtIfwLSQ7zES8/M3Xd4pArls7hJeWT9nTfu8QjvroKjhwgj
lPjJAjlaQ30Vkk8tKzlLbDL/q49udhUU/khuW0z8UaFkyiuhCrc69NJ7yH5U
s9H1e/OoCq/DY/+mE5sI6TXN96hC2JTCKl3ihbdKH211rMKldu8+YeInIv1n
LS2rYDxl6Mcm52HpWYV9sbursM/2seZ/xHw7dA9SG6vg3qZmLkZcJC5k37am
Cl0Tz7UayXl6IhvEmju7Cj7BQ3f1iD+rX3bFh0rcHM5qWkrOpzEz/KhubiV8
JXUEK8h5Hr+SnmKYXAkFDz7Tq8TCUjVvjB5UAqXpCk0kH2zLe71i+9FK/NIY
++hO8keMbFCogn4lLM10SlYR67128BFXr4QqfSK3iOQbi7mCWWMSlZBKVvk0
TfKRu0C/Z2BvBfZYrBS3O0viY3j//tmWCtx71Rrxi+SzOynrF+tWVUD08lZZ
f+KQQgOX8dQKtERaXUok+S9xnfKzXa4VsMlJra89Tc7rUg8Pg9kV0GfuNKPb
0bFuQUw+z9gHsJ0HaduIS9cUXXjb+wFaX5N2vCb5tyKyZ9PSqg9ION5iEEjy
M7OeuTz74QdwBfVHtpJ8Xm6z7qLX6g849OUUV4nke9kFNd2CIh8gLt7w46Y5
HcXsc2VhPB9wyi17uukoyd/Z4V9efCrHiUyXNVfJfZFWdMc/JqkctvUrE+JN
6fD5PmgttbUcy/aOHos+QOJ/+eNfg7Xl6JtjfbfUkI7pWOWYi8vKYcUz8t9X
cn+pjXZ2Z4+V4b+i96NrDUg+t/NzWPmuDK9kzvfe2UeHi69QgOm2MhgV/LzU
TO7PlzV1IndUS7HQ0YIvndzXi5V25hvJluLi7PHt/uQ+V9o0fXr50lJkvLvJ
Z0PuezelcOrJjxJM+j8+zb+e7L+xxa7emSUoTDTT3iZL1rtCg5uzsQRJw6E/
pUi9kXnRWPm7XDHO9S2SX8dHx68ml+QLYsVYWMZ7pmoWHQnmToEjAsUo9zp9
w4mXjt0Z7Mvf+ukQ1Vql+3qGBpv3Ab1FyXQIXVkhJDRBg53oPdNvynTMP22l
aD9I2td93r9/Cw3tRVLbfdg0sMScZDxlaHhcdnQzp56GBLkPVolLaKgpdZ5S
r6NBfuvg2NhXCqbOrX+GqmnIee2axutA4WbjqQy1D6T+1chQljhbhC0J527a
59JwkqfB0dG+AKdrjXTEn9HAjrCUKdcrgNQcPimNJzQIRDxmi68vwKmgfS2W
pH5k1sjJ5vTnY07xisbwMBpS1sddeXs2H0vzz88Mknq09PaCkXzHPCRb3yrZ
do3Ud6z0dfxnc7C8uu2tnCUNYoWbk+8efQul+VZrXMi4D0vldTdueQud+qMn
GhfSoBl+Rlli4Vv8NZqeo0rqc82UzfOeV2RBSNDXvl+A1K8RNxmmO7NAGdQq
OUxToFmJusavyET5fn77x6TezzmzoiIz+Q1mPDSbJl0o+PEcsJt7NQGGvNlt
UalF4Dm91vbP7luY9FYvy54pAM8ec4+1q6Mo7ohOmF19HhZO92opJWRQMNNt
dDPJgd+pzh722XyK/vZ0fWtCNsKcp7K2bCyhzlye2BxhnYmHz3YUs9wqqDs9
q78f7UnFSw2vCCVmNTUeLX/C0TkBQ3H54Ve666inLnJ2VxY+hbvw7vjBIjb1
Wt6UX+/NDcg2Rx3bwG2m2BLuZXsd/aldBj02v2e1U+yh64Wi+rHUvuV0n9wV
XVQPvXh/VlMKVZTjzSNd9pEa8jZO91bIpgR0+2dRZ3soSe5PS/7BfGr3sePv
DuAzJZ9hKufRQ6d6UsI2SYn2Uo9a6maN8pRTZ+sfCbNav1JbtwX9eCBaRa2U
W3BkprqfspmQrKGYNZTz4oepJckDlL+74cKivDqqlGYmuzdgkJIQNdEqk2FT
bh6ssJJnw9S8G96v9vY2UTIdC3K2MUYozQKnKeHnrdTEuMuR5NoRKvjkSVuv
pFaq29vo2Br2CGXY8vnG9+xW6iPj+OP5nSOUpIjnD3ZNKxVn2cvpHRqh4re1
RpfztFFbbSNfpi/mUmwjzcMbTrVRd38F8QVbcKmHtJYewU3t1BmzExcXW3Op
g7kuS2p3tVNHJJJ1wk5wqcleZ/5H+u3U6aEwiUgnLmVQc1t144l2Sv9uXfSr
61xqnf7v9z4R7ZT4s6Hm5hdcKqT+W0jin3Zq5ulEsvUrLtX7hcv/ZF4HxZ3j
3vs1mUt979HRChLtoATFaoMm3nKp3XcrBb03d1DTqr0pUh+4lMnYeu6NUx2U
re+9tykMLhVY7xTlf6mDakaC9A4Wl2q5zF0S5t1B/RjdomLcyqU4w3nmGZEd
VOTAq4aOTi61UeuafGlCB2V88EG7Qw+XKt/jRW/N6qBExb/p/+7lUoOZv2RG
aR3U90M5Er4DXOqbvqLxgpoO6n8AQJjpng==
"]]},
Annotation[#, "Charting`Private`Tag$15353#5"]& ],
TagBox[
{RGBColor[0.772079, 0.431554, 0.102387], AbsoluteThickness[1.6], Opacity[
1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
1:eJwt13k4VO/7B3AhlC2VUpZWKoU+FRXVu40KfYhUkkRFIkWSsqWkjyiypaSU
7GVLKHKEmTPJMmPfNSOiLJWxRPg93+v6zT/nel3znJn7us9z3+d+ltlcNDkr
KCAg4DZDQOB/V9ncf2ZPiXRC4P8/EfS3pEnizQsCM78ZrsX8P7Nu/yU+LFn0
rttQB6EGUU/Hibk7QutSr+3FHCp0eJSY0RvWzDM0wD3TPwF84osfp0fF5xzC
7FnlFj//t7541DD+2mH4d8x2+EE8qQX17Z1HMaPhbW4X8V2LTssaQwt4Dpbv
6iD+1+lXjF3OSYysNp7VSBxwRKfxr7Q1Lt2CFJuYrVqUWlpqg96px8Y0cVv1
PdXAa2dgHW3D/kAc0Z+iaaxui6ZjkffeEDcvUkqb12kHWmt30RPimOXLHCIM
HbD96HvNkP/Ft63Q2XTGBWRFPe25Sbz762d76RwnRHunitgSD6WsMS+SdobU
ilrnI8Rj6hd4i787w7fn3GI9YpPNbiqupS44W1+/YgVx5dzu2OXXXFE/le43
h7jGzzTvqukV7Ns/vHxyZif4eWGGn9XcoLKjdGEtsXH8o9cXeFfR+vYyz534
xw652BgDD+zvfq1+inivi3vfV2VPZG8+nKf3P3cytqoKeCFge9ctGWKpAs1H
adneWFcn9zdGuBORf3knKqV8ESaZvdGHWPnsiFqvhy/GbfOTrIiNU+59FOz1
BdNTykCJ+IT9vzIbSm7CbBPzUqhQJx7M3Xf9xlU/5LkWh10g1s5L9A/56odF
9ar8fcT73B8tfHboNlomcGFcsBNO3VpJuWv9cbTGY+cR4jU1d1LrOu7gn6yt
Dr0CnViewb9cuC8Qx4cvbssmnhGyf2fbh0A4yY+s9ib2jd9X8GdjECzn/DaV
Jr4vz45eu/QeDGOSfqlM87C0hfnVeew+ruyZY7h2kgcpZ7kpHH4A67d7q7/9
5eGVyNMH2sEPoD370+U4YtfA2Wkbyx4g/cRHMTniZ7mtF5btDEXay0vXR8Z5
GOvf4/N9bRhGij55/jfGQ/7FOVHqQhFIsP6bq0Vc8FPkvPSOCOzu8pb6OsqD
7tvhKwPuEdgZcVlyG/GMkwKrEwcicDBK3pQ7zEOJb9J5weZIZKvaTgoM8eCd
rrXoREYUMm50VYT38VAY2BF6zeIJDKYPlKkRf6td8UYz9AnMbxtOM37woG+k
WTjIeoKqxLXz+N958D+d7mepFQM5PROeXi8Pgy1BNktknkKtZ6cS3cXDpxjT
9i3MZzheHCexoZ2HjqsvTpg+fA4DjU8KWW089N2J1gzKeo6MuKCz/xAHWL0r
Kal4Ds6L/li1Vh5M1lqMqgu/gMv4QkqhmQc8nbw1fOkFtKSlHtXV8TBf+9el
Xfpx+FjpU5JZzgPzvlogc+Il3tADPfLE3rkHjukviMf1Z+//vf2ZB4Wu1OTy
9fHw+3GuxayMxP8+g1N+Nh4Phpf86ad5uLTj44z8qnjc4ozqjhfz4KemrH0w
LgE1Sf8q38rjIYvaVKFzIAlHPM2P1OWSfIbfcw86nYR09Y+0CnF42TOHFq8k
tGokOtBveegqObnMNSsJ6i8rcqezeMhpM4gMkU9G2mE/a8PXJF/rZ09d7k/G
/LqocbPnPNQ7mvo3BKcipPKMg08sD7Gue+1XvEpF0GjGeOIzHtKU30w5slIx
1fDJdSSGB4bJqc1/BF6hpnqy/r/HJD+3zJ8MO7/Cjgwn01thPDiElC70NH0N
udmu66r8yP8P2fWlzU9H61ZJq+IzPLgYKdiG7suEs3JMIOM0yc+DJNFrhzOx
ToExRNvwEDRj29mT1pmQXdvmVnaKh5hdgcbKHpl4U6m2n3mC5EvQqDwuLRMK
aocWPjrMQ3JCgKeNbBbi9GLtUveQeK8WfOngZsG/z4p9cwmpD/VYKs4tG1WN
baE6SjzI3fqYvMMvGwf1M5yGFHjoXuVX0fAgG10FJi6nFvNwQnCgQPh1NgK+
3EvWkOXhx+ljcgc6s5GwrK3hxWyyf1akJl83eov1gR0bW/lcFPTaXHVXyYHv
xOXex0wuOpQG6KjKXAwZrBNbxuCCcmgT8mjJhZll8P6EEi407lZss+jJRU+x
mXpaERfWD4djZQXzoPeo896b91yEuerLuGjm4ZuLUEx4GheL9DYGsKLzUNBk
OpEewcXUS+vgTtt3SLuyOc/AmovNBzcVBY+8x+JlDq17R77gauT+BHn6AwrX
/C0Kcv0C84K5xl/MihDdca1+W1sHHH+U1ts8/ohWl2NHHxa2Yz6VeTq1uBj6
db/y/d+1g69kn+9NF0N+zZiVa3Y7PC/EHjUuLwb3pYGtfko7ivzWWAzUFWNW
v6QjN6Idn62+eMn2FoOipi3yHdvxuisnVVq6BEVOURVKi9qxQynvarp5CVYO
xYzGObYhJT1Uz6O3BKv3lgX42rXBUXL16pD+Ejxi2EdY2rRBjtprG/erBAxz
wUUyx9pwvm3ZSOmfEmynH3HO7mnDo52fj/BnlaIwx1qMuagNOm6taUKqpRj9
ZhZkzWiF8j5RE+65UiCsql9YrhX+pUMrvbilOCjUrD17biuCnwk1X+4qxXPl
GR8kJVoh4P/A61xvKRR9409JC7TCve3VPYNfpTgfpqc8+a0F1g/uFI0JMGCu
/D3uZm4LargTXQNLGPCcynHTNGuB7ucjTbonGODetnPRDmzG3593X3tUMjB9
RnfZD79m7Fe3WNzEYeDh6BfZx97N0Gt6YbOpjoHNmw+xfzs3I0Vq562vLQwo
L11wN/hYM4Lm7eOr9jLQEPWPjJtyM5Tt1881FmLCTTn9wuiHJthY5S4f1WSi
7PKe2ku5TahTftEitZWJyCsRN3oymlAkscty5TYmYsNcUqrjmnCsenfe/t1M
nNkqsyc0oAl/j/0ocPuXCWrtlzuFh5sQsvmal50tE1mppVafextx16yq6GE4
E9dS17f4djai5WPHtNZDJmZJ8Ou02hpRI7pjV+0jJm4M3jjwhN0IVflJltgz
JkrxZrVZbiO4WzZ1mCcz8WbmddrbrxEH5Sfzoz8wobIqxD9TsRGONem8x1+Z
aENP3+aFjRihw33+dDNx/N3D6oI5jfhrHyx9pJeJ15V/5YuFGjGR0S4ya4CJ
lJsdCe97G7B8ZbjukVEmxOeIxpx+24Ahe07UvVk0The1z44waEBvmcFux3U0
FobZThzf24ALAUkDb9VpfDvrtGrJ9gb8uBO2ZHI9jRbxqX9eqDfAl5sg4adJ
Q8JcUSZMpgFrjBmCrjtoRI5ZjC5pqIfy6aH6FiMa2oZNp7tP1WPj04QO5iUa
lsutSy+b16N3T9VPyoXGk7Fzp6YP1WOftPzlHFcaTvFj+jJ76vHmTRor2p3G
UQG570uU66HtyUrYd4OGcf4R456eOnw1bUxYEUzi0a0tUL5YB6ETE249KTQy
fmnaTdrVoU7Rys3lFY1VI6fu1JyqQ1XkSdXx1zT+iM1b42FSh0jbzWmCmTRW
H/n2K1ezDgl3fBaO5ZD77xs/+jZRC+Yy3gzXYhoPS/fFJvBr0ThYJt1UQkPB
VEzxTH8tLI+cL9Nh0JC83nW1ub0W0vE1e8ZpGu6D0m+yP9bisKnPVosKGp7u
ylhypxYGum8+vmqg4bwl6wXDpxbym6qs+hppiB0S8zzvXouXTwperGmmsSBo
Tki6fS20w+bKxrTSpB892L7KsBZPlzbH2HFpbBcyTSufUwtdKWPO3e80dh68
4nR8Vi2MNhz0ffmDRtfgqZfdM2phnqlVmd9HYz7Cncd/14DpXretc4DGhLDD
A+m6GlJHzlayQzSG1Ju6B6NqcK70kYHIBA2PiY7QkpAaOB/LoiX/0vg4V/xS
xH810AqadJw7ScN3WeWHje5k/XjS+nnTNNoo0cTjR2sQPbPo7m9BFoQFDmQc
kq2BrbvR5KrZLFi4hzuJSdYgP3HbxxniLFzUET75QZisn3/oZSNx5XNj9jJ+
NRwrHRlekiycG3wiWFddDa/6Fuv4OSyI3Rd6+jW4GlFNY272C1hQzwpz8r5T
jfm+wrz5C1mYu2z/pQU+1egRWmfzgVi6Q1F0l1M1JEoMns1cxMK3Fs+bNwyr
YaujPeEiz8KQmUar+N5qfOKETIoosEAtFrGL0KnG+dBJ6SjiIL+lc+JUq9Hy
LtImU5GFGU1iGUli1Xj+duProiUsDCe1hSoLVEMxK1Fp+1IWkkvqE2JHOShZ
tS46h1i3SdPmQTcHA/GdWbHLWFCrjZ4l2s6B+u46Q5nlLNQtUuFdr+NA1Ofw
oDfxsduJKpalHIzNuGZwaAULmqlPQz/nc/CppVUoh5gt/15jyxsOErwMiheu
ZGFbm+Wk+Auyfifz32ri/i/HumN8OFjeHBO+QoWFgOEL81SucmBZe0XiIjGH
e/zmKycOCvwFn+cS2+0qUM625KDobZPizlUsvMlef1zTjANjIb7wDeK0aU92
tiEHLSk2Ih+IExVibqbpcJCV3GqmvpqFhIFLhas3ctDHyX1hQ3woSmHbc1UO
hof9RcOJkxfFTixczsGuqcxbxcSvXSb+Bi3iYH9N7IIB4pNx6jsFZDjwtsyn
FqxhIT91K8NZjIOjt+29txEzAxWCuNNs6G+cZ2JF7LmnIdxolI0yo6XaPsTt
1fYd+QNsGJeMaT4hHtha66DSzca/bsK6OcTJ7gu0g9vY2HIo1baCeG7wev2R
Wjb8t5k95hKreC1/YlHOxuul5zt+E3/b3adBlbCxrPuQ5gxVFg5/uTdzWT4b
R6+4RksQO5mJKvpmscHM2SojS6z54phbRzIb3NBZkYuJE5m+Mtues7H0t8Ea
RWJm8c2ByCg2+AXnyhSIQyMtJH8Gs1HfQrsvIhbfLeG07w4bWzdzNs4j1mCE
z4nxZiM8t298FvH0kmH+zytsHNe9WTFJ4vMyUZPfc4ENwU9/UgaIE09svxV2
hg2Btfmhrf/7foeyGs+C5MdU3Y8mFhj7Kqdhykbt2nzvdGKNAE+96/rk96M/
+YYTi//+8bZkFxs3Aj8GuRGHbdhoJ76VDamvs5+ZESdpHwiOWMVG86V/GmYT
awnKiTQqsSHq1j7xhTy/S88LC+UWsJF821M5m7jXNmw4XJiNJbZrbx8iNlp8
61vsaBXaRCXeyxOvWhBsN7+7Cj1mXr94ZD9x5XN+/yyuwuuozLPniEuVOZPm
mVUwObn3uQrxdHt0EPWsCnIuom1csl99rHZq3vCsAlu50MSIuFRlsVHL+Sqk
R/oGziC2jonr22BehZuj84szlMnzj2JkNWhWoVbVQEWE+LDiyZaVK6uws/KD
yStSL4cPJdxxmluFy0Kx142Iz9C6DqMDlZjJMHkfROot/UfRyY7ESqTJVPXw
SP2GCF2O3f2wEmfGVJ65E5sdu9/0wr8SyatEMsWJY/MENhw/W4lAJ8euNaT+
FQ7XerxcXgkN4aO39JRY2GXKdh+UqURPhJ0YTfqJYbDmhc0zKuFxb0XXXuKl
hTrbCjsqUFuQHreF9J/UEa3LiU8qkHfz4SqBxSzItnmubQ4kTvY94UD62RmB
dS2zPCrQYKrTVSNH+tckY+kp8woo7NT4+YT0P4uanr09shXY3vGwXUqWhdXf
e3/a3i9HsoNVprM0C3LPSpbYe5Wj18OqN1OKhb4QEb1zjuVoPnD1wiDpv0fX
stwt9cvhrCZwzEaChfk62ldXiJSj79pw0qpZLKxkNjUoen3GTwvrSg3S758c
2Oc16PAZ56fG7+2dwcLULKXFhcc/Y+Uj/oMjAiy47xLVNtnyGaOMRWddpmiY
BbLmHhkqQ/LpFNWAcRrP74qsLj9XhkleA3PDbxqm2oopI2ZlCHA8Pyj0i8YS
vUPRinvKsHWXayNnkAbfWebzKcUyqOm6957up/F08W+rAs4nnBQVHznVQ0Mw
Y5MVa+snMPnxGoVtNMR/FL7ZKMrCPZeZDQJMGq6Kvov6yHtvtVR427lSGoOp
pwZiv9AQKewPqSDv+7VtV7um39HIqQmaCKJovA4RmRXmSKNdZU9VZx6Ndzrx
ylIcJmT7mrt/knlD4sW37KMPGVjxa3aAXxCNl4aD8/v9GIisO6UXd5fG4c1q
5j4uDFRohUtQ/9EYKDe4//ggA0pzwjL7/Wgo/pmXmirEgOHNAaNVXjROmrHT
tlwsxVc/USfxCzQcFf+0T+4hc7+QfHqYPo1nZSyGxj8l2Ljvd7DJfhq83MqQ
k0oleCjx0l5Kj8Rr4lWTNVaM8fzImV67aGwNOCuu9boYWjI5HM0tNDTGrXUT
ZYtx5S2tL6tM4v0xm7fpaxEOdgXjv79MMAUrak9zimB5wino9x8mBodzy4IL
iyC8/8cXczI/nrgkVtQeVQSDnLanS34zEf02jH3sYBEMfZyt73xjQl8oca6H
AwWdfe8e0iRPzfiZFSr2AeXsfg/Rl0zc+Z7SU7s+D+eaxAvOg4nTW4TX24jk
YePlbd5lOkwE/Z53sYec+840j8WobGGiN/VIbYd/LixevRqqWc/E4w32Otdb
c+D+VPmb4HImJoKLPSz930Lhvb9dJpn3Y+7qMdpqs8g8Y/bQsJQBlymV0bvv
UiDJTpg012ag/tzjBVqd/rDXy/hXfU4p5uU9YfG+Pac2nfz5Uju4GMn6cnLi
k9lUOnOk2Km2CLc+mi50PFhELdettagc+YCIP6lZF9lM6mhKqczRC++QcSqb
x1pYQVEF4mczyfnXabrO6EMuh+LPcdArlkwHt8Xsyv09dRT7diql8f4FjOYG
/fM5tZESOvrF2fzaf7ioWuTc6t5KjX1+tv9D5AOqd0LqS7L0F6r468ho/49E
akpYsL+pi0tJ3Jn6481/Q83h33zg+KuT0n0U8ClH/wM1z+K8blV3FxUeujKy
wqSE4kcF+cyc30M1/7FX3ljEop4VnalR0v1OmRzdqOR1uZJy7zG5NM+yj3Is
aGHwJaup27Yqf7+mD1DWVkbKX43qKLnfg9Jirj+pwFP9nZoBjdSB+Kte90J+
UYLLV6st6WihxDef9/j7+TeVviF+U0tGB6VmVlGTODZE7VLUOLv+HZdyO2q9
mz85RF04EEx/+silEtQ+q+4S4lNNq/Ulz5ZxqQyzpfatknwq9oXXnuctXMon
nB0tt4JPpXx/bLV+ikuNlO9vSjzIpzbNTfFM3sOjDNdEZS+L41OBP/jXxNg8
ak1St6VXEp8iB9/o9kYe1Ts+27fpNZ9SFD6ZkMPlUXIKdZvC8vhUTFaYm+MQ
j1p38KKJRCWfOtTCER1c0EmtP59/VvYPn1r5PHye8clOymyV3Sv3KT5VL6Jd
v9euk7LM63FsFRqmUtMs/XQudVJKRy5YxEsNUwK2FXHqNzupIzc8B7atHKam
WyT5axM6qWet9UIv1wxTPvlnFq5P76QqJETDxDWGqdglEau08jqp+p4epdat
ZP2C9dL7yzqpzPDH8roYppqv/+o2remkXOYvD03bO0xFCGu/sm7tpBae87kp
pz9MeSpoWjl3dVIxwVl9N42GqRZVKYFbA53U/wGVyt8l
"]]},
Annotation[#, "Charting`Private`Tag$15353#6"]& ],
TagBox[
{RGBColor[0.363898, 0.618501, 0.782349], AbsoluteThickness[1.6], Opacity[
1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
1:eJwt13c41e//B3Aq1UdTJakI6SNU0rY+T8qIipKVFmWUokIhK7TtJCOjQqFs
kqi3lezz5hx7j3MyS0VW+N3f6/qdf871uLjv67rH63m/juiFa7rm87i4uG5x
c3H977tKwd0i6gUHXP//GR+o/BVJ7Gbe2cPduws3J7JCIoh/77U6wN17EIfN
5PXDiVc1j0twGRzFtR3G0iHEpQ6Bj2d7dDFgwL8+iNg2Rj5xOsIQOW1XRP2I
DxkpCo3rn0Fr4VmVh8Ty1LC64wMT6C0cdPIg3uS+g/m75wJE4ldXOBF/7/Bc
bKNsDuX4hj03iEv0l+VxIiyRuXB/tiXxF72RwrOTl+FaJKt7lpjnhPavWv2r
CG//yqNL/Oaz5ib1dBssMZqsUSPueejpf/rBdfSb78iUInaIeDVW2mMLwynZ
8g3E4bcXpc3w2UNwmJ5YQpy9m49LVvkmwoY7o/ujORDYZDQ/KMIBRtMn1jUQ
O33J9ikod8QVy3MJRcTLZbj1vk84wddYkz+ceOWeZ+oH9V0Q0SUx4kUcdmiB
xmUvV3B9fdlzlTho9oWMX5obit9ZrlEkvp9Sl9Z3/w7QqxDJiOKgic/OXajH
EyNnxxTTibeO6ttL3PbC2F6tsSBiizXBi3by3cUMV0mKHnGjp1a7Iu5hbt7C
oxWRHBireomoPn+AE9fCU18TLzok16qy6yEm5cq3exB3WAZ0KpU9hOrA9I3d
xHtCVUN3jj9C1fs3or4RHCjkZ4XM6fqgkF/giCnxeiGLq9/7fcDLFPXdQ2zy
8O/ulju+CLv0z+nG5+R8Z2euJyf7IWFORJifeJWWmILQvQA8bbuhcjGM/P+3
zNfXOp9g8anYeeLEfXscH0nvCsJQfldGTygHbclna9leQeAxcOWcJw5ar+ys
L/EUjsH7fY6EcJBoK2clYhMMs8sfmn48JeuXzSg6Nx2C5rdhz6OJy1L162aO
hiK/+d4xbeLwf9s7wqNC0Tbj5hEfxMG8vhPF1SphMDo1Knn8CQeWF58vEXoY
Dj3zQZer/hx4HL4SfmxNJCptnLGEOCFMclGZeSQyzNb+ivfj4L+3gXMq2ZFg
8VtLdPmS85i30nGbcRQMfSNrVX04uCsSUdodHY0LNbzSTQ85eBl80sGS/yUC
ktb27vUg9/vqukL56BikLS+7kHuHg8LGyLvrv8RA4c/5URBvwc76iYEYPDZS
OK7uzoG44bkNaftisdwqfkDDlYMctZWdK6pj8T7/dKKwE6mPRJ1er79xuKso
ob/+Ogc35pua7TKKx0crq52e1zgQk5Z+3e4aD+NNT4T7bThQVuQXfhQTj5oN
/rszrcl8jtJxjd/jkWgKZVzhwHQooND0XgKmRJx6t1pwIHO0uEIwPRGCNieM
tE5zkHT6Z8wy3iQI/dLYHGrMwWcfByNqRxKaZo142ac4uNTjPGdzMgnO6eXb
XIw4YAXeW18akQQTz6HCaH0OJNlaCqYyycgoltyTp0Pq4c/Stm16KXBmPpbS
OsRBStzN10uqU3HPptbR+SAH13h3bVLpTIXGkz09b1U4kC3SsLz5KxWjdoeX
8ipz0Ox40KR5bRpGopNTchU5aB2uoIPPp+FGuL3C6F4OFn7l3K8ZSUOw4DeL
jxIcnHKa2nhyVQYOj65B7r/k/EUs/L5tyYCA87oluVs4ONnyzfK2XAYW+b5w
y97MQcQ+t6PPTTKwqzCTGbOJgzkJ6aSy5Ayk3hjeqyXAwT5haYMGrUycYEc3
V/Fw8DdsKCjRIwtbNv0Tl9rBhnILJcHsz8Ze91vTXu1saHn8Sk+azoZAiO4l
gzY2glZVut5f9gG63w3uTTSzIda7oGqX7AfEyAdUytazYUV5Sd9y/IAUrS/+
jpVsiMtZfXi9MAeXD8v1G3xgo/yok3+c6Edc+3i4z8CXjcDA0E3VJ/KgfUMh
v8abjbrZaslXZnkIzW67d+QxG0IN+yg7hzxY/9rZrPCAzK+cendFZB7Wi656
s8KDjVCFTk3JvjzcvUDVeNmz0c/9Ta7X9ROe3fxiFWXMxjoF0WdX3nzGu1b3
txGb2Xjf3Z8l45QPJcd6rRZRNryfxowIeuaTOi7pWifChtudeV/needDddju
T8BGNpacsDpER+TjQzJ3rj0/Gz9aJy8a5+djt+pAKu8iNrZ3NfpILSqAfc4P
nev9vaiOCy3KDCqARFWFsdjbXhy3lRk7GF+IsQT2tRbpXlw8YMluDC/GuHKi
cGhgD74Ec80ZPC/BRuGpAN1f3Vj+9dwbmzOlEHFtSuzS6Mas1Jl9t/6U4euM
Ska7aje8xTPozTNlWCH5M7VZpRu2Nuo8jPnl8HTf7MNQ6MZv6Ro5Yb5yTEo3
FryT6YZKs0pOtHQ5pLw8pPYKdMP6Uq/hDpNy+EixRlzZXThpXaNu/7UcF846
nfjh1oUd28zu2PtVQEd6aUGXcxf2e7bfW/+0AhsXWRxmOnYhT6xe/XNYBQz6
bKIybLuQkeM9MRtbAc0TdZaXLbrwxGXvYvPcCuz5NHot4VgXFJWTVIq+VYB/
xlXfeUMX/q5wtSj6rxKLhD7etMjsxBHDdYXv2JUwH5492pjaCYV5D3kkByvB
5XlptWZSJ6r2b7/6aqQSQ+MJ1hKvO9HNmxjtM12J2LUcw4aQTkiVXX7wH18V
/DYdmr/AuRPDl9hhAopV0DgfkBWg3Am9I4Nlof5ViN72Y+WPgA6IHxXTebO9
GhFLEoRtHnWAVgq/obOrGuw+W+FBjw7kKPyOGN1XDbOofaPtth1wvvHPkn3K
1ZgddZ1I0uuA/qnlO4J1q5F/fKlZv0AHZKn3TUW3qmFSKPG1LqIdk/9YCrbl
VWPZla61q4Pbcb/i/hfxgmosXPXWSNu3HeKHAkwuf6lGr7FN+mfXdlRdFjXp
r6qGcmPm5/vn2nFZ8q5NcXs1PD1U5DM3tePp2oerOHPVEPc79enuizaIMmzK
asDAgb93U3nD2jAgvy/X9hCD1KVys19gG4yFogZXajAgesC8JtCzDSkaSTxq
2gz4W1zR9jRrw3Kl00t9zjDw5bil17KtbbDgvk8/dWTgqbFQU2VSKzReh4X6
JDPgV6MUJfi6Fc9eTwiw0hhgjAyHmUW14rtkX/66LAa2bp3ZM+bXCuTW+4Tl
MrD9dsMk13UyfvXdKcdSBgLfOn8ulG1F7I+UsOQuBj4d8tz9I6MFKQ++bZlY
TCPwevQ6w7ctWNZjeMmXl8bv1qievFctSDfg/y2ylMY1e1Vpz8AW9PqWdRxc
QUMiSsrjt00LTKz1eW35abxtvaBxQ7IFHi5Daq6iNIZ5vJSaIpqRLhdroXqA
RqV4X/tMUDNMeO26X8rRUPSSsRDxbkaX9KawGXkaVbNm/553asblS6ZZKUo0
UkasrIv0m7FysiJy9iCNe1Q3v8TyZrgskKbVj9G49Y8nbezaBCGxyHJXExru
S/jKG+ybMNX+8IqfKQ3pjtrvulebcLOI+1bkBRqXpr/nHDrdhBxTpZL3ZmT8
okcGK+SaUPLwqFb9JRqN1qoJ2qON4JHWeVp6ncbMIy6D5MFGZNmtiaNu0Chw
+LF9aU8jus6OCGbZ0pAtNT9fWNMI4Zt+O57b03ilmFm6LqURLqqsyZOONGi7
xkzry42oXrmk0sGdxrLEgjWpJo0Q91IZ07tD9ietLXrEsBG1K9e57vSg4bcv
ef9V9UYktWq86fakcXF1mvWxzY2IrhA7s/s+DeMN//3Obm1AYKrW9D0fGqlX
9Ba2MRtwbuAR+7AvjTe+kapcFQ04n/NrK68fDVf10oMqOQ1wutmT88CfRo63
u1pScAM0ptOmbJ7QcDK7abZduwFm3x68HQ4hf19xasdN1Qa4+BjOxITSOO5T
VfNRvgEj65WMjMJouExeioNEA1pEfSVyw2k0xVx2l+FqQKaggMjlSLL+A09m
36TVQyb/roDFK3K+k56mVW/qcfjck5K/xNu8F0SNRNbjdWShQ2AM2Y/NH2N2
Pq6H1I7q9sxYGiyxH13PLtRjZ6NlRs9rGtYX7kj+XVWPFecN+bsSaZgecNsy
t7geLHubdMO3NN51LJ2em61DaU+mViXxwVetu6YH6qA4vepKyjsaN8bV6hoK
6yCmO3DubDKNVUblkWUf6qBsp1tWRMz7mGRLch08NK9Lb02hMWWat/JJeB2s
D62sGyBu6wJb0rYOJcnZaYZpNKSqtG7zXqpDz8eYqiTimkecvr6zdRBqrGjj
TqexwYHWjdasQ6Pd6qYY4s9vhLUdUAfDR3pFP4lzE2bEju2tw1DbmhdKGTTS
RW1O/RKpg7atgQyDOClk7mPB2jqs15zsXJNJY65d9I/f0jqM+ZzzMiKO7Vo3
KTbBQv2jjNAm4pH3tKwsgwWB8LOThVk0KpaN7970hYWQVKbsOHFzzuPNS3JZ
EO3+aCX5nkYw31R562sW8qP3tz4gVv5U51kYwYJv6tTqTGKRz8JbXz9hgcl+
pNVO7ERNyFu6saDw1TJ9WzaNUepRvKo9C2smerqPE7/kfzhfxIqFBoMHK+2I
7+b/PjJ5noX2uD75IOLw/EoPWp+F+2+iTNOIe/lXx8UdYUFaWPluFfGF/JIs
RxUWJCsvvvpGzJ//LUNzPwutdi9y54in19yKXredhagGHwb/BxprqBuObDEW
qnKoNkniC5+b/0tdx0JJK4OtQNyzKu2X43IWuubpfTtCHJY3GoQFLLh97+46
ReyRGye2YIqJcdPVdebE0SuKo0p+MBG/ySX/GvHIB53FD9hMDPdnxDgQ38w+
fF6thYnNXifcXIl3LEmJ4a5hIi5pUMeDeEOmZ11uCRPV0oLrvIgV0otG7fKY
mKau13sSB/DYckulM/Fo26PHd4gFk32n294wUbt7crcLcd3btT3+kUzsDjWs
vUlcPLv0A4KYWLxRwdyauP/19dvDD5l45yE/dIH4YKyKVJgbE67eQxYGxFV/
3L8etGeCNf2NpUHsGyWtO3CZiRXBRXv3/2+9z1XL/c8z8Vhw7SNx4oThcpnd
+ky8OHKregXxguDPniwtJpKHb/NMkv026BkeWbmPCSHvSvUvxDqPJZe+k2ZC
bonG8Xhip/u1a9REmfi4oEDzEfEVt6vfry9lwsx6+RI1YtnbZ6n585g4aLqi
dhPxtopc16fjtZhosHowQe7T56v5hSndtTAy9MmNIdb7ZKEp31iLj73ucreI
hS/e/lRYVYuLs1tj1Ym1k/utqz6Q8R1/lLrIfc48qZaok1yLyG2aV98SH9Ne
zmLE1GJ8+bt7dsRCh/p+lPnVQjlq1mGG1MdJpcmuQ3drwWFsOE4R5/k4FOQ6
1SL1RSyfO7G0dN7hOLNaSEvq6UyQ+nO0MHc8L1+L9wLxCTWkXrMWiJW47axF
U1ul0EPiNOsN6hH/1qJPouWTIvHP6OLWmlW18HY7d+cFyQOveyNmEoM1WJ31
hkc3ldSjU5Dqga4aVAjmMyZJnrAO2BloNNRg6NraomhiaYH+lSZFNdgiISHO
IXnUr5fc6fy8Bs+V75ScSSL5Gb1f1y2wBsUpMjVjJM+OZ86MuT0gnYbrjXm+
xJ/+U2bdtquBjrVBQxbJv3hW1OCZIzXYIHhM5WcCDWpB4b3yKZKbkZIVy0me
bp0W2JA6QmPM7Ofax3FkvrzE7iAODXOLUa/5xANR9xcb1JJ7dMwgf4Tkswxb
IKWYzHNgm2xO5kuSjzdfWB4xonFV3N2kO4LG7XVFImu0ybp+D4WAOO+e2NKW
QyTXG/8bDH9OwzM/xOmiDI1EfrneI+S9EMk+nXJuIekDenesDSHvzf4TQUtn
LElfVHlapjaQ9B8tY0dCTjBwV6HjJRfxhE7ese0KDLw34qrbFkDy+I996NHl
DHRzX3J2I+/bYqVgLaPMasSwevIWetPgfhsoGjtXheOvD2UkepH3b9nt8GVB
lQjU1rdTsiP13XjqXxGXSiz29f93M3m/Lfwi7XeYV2IsptxnIXnf7bOPG/23
vxL38/2vl9jQmOW2UJRuqQDL6eojKSuyDsejDnJiFXgl8O9LL9Jv3B9a/EEi
qQxqekdsbh2hEfIqaZlKSBk28IVfkdQi+T3zJ9XAowwOOtGnmw+T/iHWofOW
fhlYJVar9qmT+kjf2fN4phSOzSdrWMo0Hld6OHAfK8X2S53qKXtpWM5Ft2zt
L8GHjBuxdUI06s83sStqS5DJqDuqvpHGU/NspSt5JYgWam3NXE+Dz9S0Psq/
BFpfrqZ7C9D4JmD9tmlvCQzdhiRF+Ei+3rvYG+nxBUutGv72zCf7fbYy0GRt
MV65ML0TGAw47xpcx8VVDOEpeZq/kgGVoy6rIvqLkD2uP+FK+scr2mNnyvKK
kK/H+1OlgAEx34M6kxeK8C5fwjY0nQGRUc2E5ORCPMtYLur+lIFzl5buvnao
AKtjDV/s0GcgmknJ+xfnweil1POfZdV4dcHFds2TPDz0HuIaLq5GdLX2scDz
eTC4uOB8D1WNZKW9QzemcvGA2clVkEX6c4fFjGqZXJxymSzCy2o0nyndOh6a
gxqRlb5aDtWo6kvaNs/8PRSVFhj4b6rGHj6RoXmlKajgebrxjUkViiJSWPR+
b1xQrBiZV1yB1rXt/juPxFH5L9a2qKWUQffcXp2EsQ+UjHHAA2etr8jdlaGw
8mIRdaxecGtzbjHcnt37x1W0gjIoyHkoHVqAU8V66beP1lA7XBNvzpLfvx/V
f/P84Kujavmk/na4ZEH5a5HwXc0mKtjOoeXDQAKUY6esywzaKHag5zeDHwGY
3qMRPD3cSTnPeqdfMAylojUSI6IEe6gvg5yPzr6p1EbhWxJfDrOp0ohX79Mj
c6lT9rXrL2V/owpM0lK+qBZTPHz7beKXDFAbLw7NDH8qp25bZhkcfTVEifoZ
m5wVqaF+Cka+8Ff6QQVEj7qLrKqjePIkpW61jVD74Td47m8jNa35zE8cv6gk
Rc89t9zaKBFvG92pgN+Un2y2z/GpTmrp3gUb9XtGqUwRifIdmj0U9y23Ilvj
P1SbRbpo7jCbujb99BV3/jhlpxLiu+JBH3X8Z/J77ZJxqtVuxao/T/ooW753
pyMqx6lFrba7O6L6SAutYyTXNE5phQwey3nfR1lqKm28/Wucqv+0r8+H00dt
lkitXrtlgkoeKuKkqfdTDYFjbXmPJyjVDvnU0cUD1HOG/fKNgRNUmIerugz/
ABWxv4HhHDJBRb/Z7nFVdIA6e1+NRyl2gvIsLen9LjdAMYVL5Us+TVBMU5sr
q68MUP4K5vTvkQnq+prNb1uqBigVIYEVZ8YnKLVnFrHKzQPULsl37cUzE9SX
wka1eA4ZT7nvDOWdpALN5Tzd5waof/oqo9TEJym3etdvx2QHqcwNoWbpUpPU
WFrp1lKlQSrKST13k+wkFVYhtkZNa5CSyTy64a/SJCU6f6xf/eIgVR8QK35F
dZLqVWOzKq4NUnkhHZ+btcj8K+usTroMUl2lM/1aJ8j4m1zv2h4OUgfF5+Jy
DScp0wcxoVbBg9T/AbiRJZk=
"]]},
Annotation[#, "Charting`Private`Tag$15353#7"]& ],
TagBox[
{RGBColor[1, 0.75, 0], AbsoluteThickness[1.6], Opacity[1.], FaceForm[
Opacity[0.3]], LineBox[CompressedData["
1:eJwt1nc41e0fB3A8FYoQycxIqBRNKXprkIwimSkaCi2hKA0eiuIxikqytYQi
WaWv7P2Ic77Hyl7nFGWFQr/7ua7f+edcr+u+vvf9HZ+lcPzCQUceLi6uy9xc
XP/9pzXaRsUNcsD1/1+zX4nQf9aV3rw+SmkbbCO43WOID/39dfcjJUNsmL+k
+DHxg8RDCy9Gm8OBnvjzgDh+eWlIhJIt+njTVt0jdtpkJtNq6YBPUZq6wcTW
LUkVLtEnMBoUufsWcZ8Un8h0xyl4t5dtvE7cGLom/5aSC2zCq4U9iAca3gcK
O59DaHJSizPx2I638TWWrpCSOBB+lNg48ixDaPoiZr7WbjpIfDSv85NZtDs2
y8uX7iEW9DpldE/nEoqz9HZtIdaOPWT+ueMyeucW/iX+3/0eKj1tqHQVl7NS
9OcRR92Y2Opf5g37KlnPkQEOYnazRT44XcfGZTdiK4iVnLdn3rP0gdz+M5GZ
xM1S9mavVHxxvG/Nlej/vHFJXtGULzibVHhdiL02M54NPfaD+tCxjAPE0xwt
Ie6z/qie72qwifhuQts8UZ1b4LVeoPOrn5z/6rbdho7bCPKR1r1C3HhabfmR
FXfht33E1JJY1VbL7MT4XTRaPt6/gVjEt/3x6dIgXEo/JTzQx4H7grgtLqf/
QXnXQNpu4h4Ru6kUizC4x1mvlCB+Mpn4ZOXHMHgWPLnztZeDU+E9wnHK4fCR
ipMIJV6c/sIoZDIccdbBppU9HLSvTNx2JOo+/kg8WhdJbKIvHlrLHYF3Wp7T
9sRhWeu9tF0isPLJa4vRbg68977jLN0eCdE+PtWFxAJd+32z2x5AMeDIpgWd
HMRlVUw+l3sMB2rlXH4HB8omNwtKwh7jmri//3lic545ow7uaJgo/FX+uZ2D
ydLAGMHeaFi9XLjizhcOqEr9hftfxIDfD5rvWziYT811r34UD+WXzlWHif0V
t1g8rY+H/PAqqd/NHPBEb3dYzp+AN4yz3zcTPzWuXitwNQFbxWZcn7A42Lwj
R5E+nIhuO916NQZ5Xzn/mMnJJaPdtUYtr5EDq5hPkr5WychNGtbbQ+wZu1a9
KzQZC05NpFk2kHi7VLHuCddT8B8RsDhbz4Efd/HMTNdTpIk5/LGt4eDWj4cZ
jsnP4ZISW6JXzEGgmNK5TJVXYA8FLs0q4sDlyri3jN0rLBq9aqxAHLRqbbB/
2CtoaV8+O1XIwdKDlxL2T7/CjqZKj6iPHJSJZG6sqkrF93V9z57lcfA153TU
4XPpGLD8FjaUzsFnn0U41fQGjel1iVuJU7ZtSfIcfYOT5bmP/04j8ZMVXBUg
kIEL25K1RVNJPjYvOpysm4F1qk0GKi852Hff26TuRQbMFLP+lkoi3/e3Y2WP
VybUw7WvrX3AwdD+sOe8ElnoHbYPtYnk4J3bl9Qz67PgveXmff8IDkpm7+jX
GWbB1C/jPOseBw0tn9RDr2chXLTP1TWUg4gXP5796c6C2+LA5AuB5HnNXO5F
pb1D3rmCisQrHOjXV6cn78xBOu/R36leHAipGhewbHNwO+jX8mxPDmRcNZT5
PXLQaqqiVXqJA4njfX9OPcuBbMOBPPoiBzdK98QvXpQLntdtg2XOpH4YTM8t
YuTCpKFvXps1B1pamrcyT+bjqozUg1QrUr/ENxpW38zH0ZFTg96WHCzpSWnp
epwPg+2G9eKHOPAZqz3E9zkfKQc003QOcMAfJXdum857JFx9FX1Aj1y/tl1l
/dIPsG/+beivwcHBDRsirYsLsCxfe0zjLxLfqTv7FgQX4tnOK6equTkYHLrp
e+xRIYI1xopPcnGgFus7kJ9cCIc9cToRs2ww8wUEXQoKIb+naU3/JBufp74n
5Q0Xgju5dsziGxv1qofXyZp9gmFf6XpHBhsRJ/YpfBcrwvi5b467EtgojEpr
vfOoGHZ1hk/c49holaqUDn9ajOvlF4OTYthIc6988SCzGN/8JB//iWLDP+h1
8pOaYnisrHd5cY8NnAvnieAqgeailq4PfmycKU41VHcqwT/HHJRHTrKhs9gg
VWhLKVy0NPkDVrDxNn/3u001ZahnLkx0VWCTeI+RDmoqw5DJRS4bOTZO+NdF
dPSW4eDnn4LK0mykXlrz/u/ZMhQp9Z7JWMLGSUOF3Ix15dg6t3fjP9xs1Eqf
uJQRVg4f700/rNsHccfGTVjDvAI+cfGKOyMGMSVhdZzzuRIPLHWN+2YGkBBZ
X8n2q0Gqg/bIRb0B7K1PUVTd9y/uXxT+yB/Yj7zvL30PtdajIFBfw6agD8HN
FeaCk58xVXTIpiSvDykxiUapvz/DxWqD3rrsPvxqr3y8j6sB4yGHHefS+yAb
+E77Jn8DkraeKg+N74OIzugNWroBzpftlnj69eH25YBrm3QbEBpdU2xl0IfN
+82tUwIaYBb8PuJYXS82lXJ7HBFpxJqLKSsKq3ox2TLIp7+0EXzbXGNly3uR
vEBeYK1kI2o9fayYVC/KbiQc/infiOtJb1maGb24v6hP5LIG8fuTwpX3e6F1
XMh91YFGTA2NHJex7oXa4ckSu6BG0Ha5wbe/9MBcc29o61wj7hc/XGfc3AN3
GxU852GgNeJ3kDCzB3PhU2OuCxgQ8jS9ElnTA70Hi13mBBnkftSXh73vgZX0
GU9uWQZ08wvDDKJ6wB85Gf58GwNU0kbJMvMeqG7kxF7wYGBOyiZnrKQbsjci
22q7GNBZUeh3vbAbyk7txQv6GND4eG7Zgg/dcDbsjNEZZEAr9UmE6NtuhPLU
qzwdZqDUaV+/XEI3pEOe+R3+zQDjRHv/7LVuKHi5fDkpxkTxsZ92/27shlG5
/Jr+PUw8K1RfskG9GwzeheZte5nQznwdcn91NwwfZR2uN2QiyMTvy0GFbvx4
u1gw05SJ5JNXGooWd2NEcXnnYTsmasQSJJ3YXUjW6600cGdi+Fq7TEVMFzbX
dhb4xTFBZ/P8ZRnVhavRAQELEpmQMlBt7o7ogu5eCeeAZCZyXT0tpoO6kMNS
cvN7yYR+y8oQyatdEMfq0JNvmcheXPxH2bILHJ2ukKoyJtpm5nouCXbBOr3J
Q/EbE6aK+6u6+Lqg1s6wOT3MhFxcbLzxvC5kDqsYpPxgghm7W1budyc2H+TC
6gkm7mXHWOYMdoJzKy9wyRwTDnvvVWYVd+JotoGyvxCNPcPX3vR4daJ5KNNm
UIOGkFL5zXL3TsgUn1kvuZGGgJSUUMr5TqSnJb3Yu5lGrH7LuTMnO5GRo+Me
o0VDMrF4TceBTsgfZDqp7aLhdnzby7vKnQjRdDJnHaRhKuJq0fO0A5uuVYod
caPhfGfTT9voDhQlr/mg60FjwHfhsvqwDnje9fihcJmcP85pyvTugOnfp2fb
rtAQ/HL9iK1ZBx7RwY82+9Ko+/TVef1MO66+SDFzDaVxgh4I/XOgHYIvOwp4
U2gwq6fRqdeOjf/M8Pm+otGnFVT0cXs7Vro/UZhKpcG4qYZLKu2gnXzzOl7T
GMl0Eq+Y+wKjX8mXI97RkM0u156fRpx69cP9Qhramz+LFSd+wcUR0efsTzTG
1GypG4++YF5VvJVOMY2NtzlB3/2+oMkmg6+9lMaPjnl/5dh+gdyYW8y8ahqO
GvLOX3i/oJUnXqWfQWONloKz12wbFhV/3CpB0/gnP2G7yFgb9r3YyWfAIuer
KFhrt7fBekFYZ3wzjWvPJS94ZbXhgZCYs2Y7jS16I2KBDm1wNOm6MNlPI5nF
1uaybENKYsi6+YM00rqPaV42akNsunCyMJtG+PH6pMNb2jC9+HWG/FcakfzP
bQUE2mD7Q9Jw5Xca98a36c7PacU/avXzC3/SmPK6p3v5VSvk7VdZfpikQTlZ
ZPbGtaIy8tbwuykaZ+/KcvICW8Hx7BiP/0XDhM5O0bNtRcPX3Xst52gohwm6
ds+0oMhD+ZrOfBbuVUkHrB5pwdzq4HmLF7Dg4Bop5NrXgtIAy+pWYtm5Ko+x
2haExGSIXOBjQUYRYa2xLXAST3X1WMSCRrDRovW6LaiQ4x+ZFmYh+Zqwlumm
Fqj7Ri6LFWHBu0m36axqCx6tGXTDEhb0G3pcYoVbIFziVXpFlAXHug1d3Z3N
+NpxsbJmKQttkuaPhxjNyHM8fMtWnIXs+vaSiYpmlMzXvthHfNdn6/m5N83Q
nL1Kjy4j64PjIiM+zWA9lSr7KsnC+lBXywEPsl/zwI/jUiwIJ1gJtDo1w3u6
TZ9F/HWBU02+aTNSTrAu5kizMGAbTj/b04yH3S/0VsiwYCClfDBsazNi3m3b
FUys3Boec1i+GeGFmm8tZFl41uZ0TkesGf+qXVDOJg7Y9ypdho/cn8UfSnQ5
Cy6ObrcavzfBVb/oRBnxu6f8/opUE1bcnLXjl2ehYXSMUn3bhMgTHxLMiEc3
D/qrPW+C8nSA4kNi7djhl2qhTfBOnmNKKpD3U8y1cJVfE+Jdb/NaEd9rlxlT
9GxCli3DLZx44qebg5B9ExwnvMdnidXGU3u5zZvgbJfJr6HIwsmBHyMj+uT8
/U6W9sQJ9TsCO7Y1oWSlQEsQcdfrB8+r1jXBZ4dAxDtipVtTB94qNuHuGO3X
RuxietI3SrwJIvEtL7hWkOcRadl+fWETjONu8SgSc1fa3Dw6x4KTsX6YLrHp
5R4jnVEWYniCzOyIkyU9EyT7WZCSLdK7RDydKeYz1syC6KTN2SBi810fBqpq
Wcj9WlgSS5xefq4p7hMLOpaO+18TC+1eddDtHQus8Hd8BcRuWcOHdr1kIWta
bqycuEn6Y6dQDAuL2EsE64l3Xnk40RLGAv/7GQvmf/vVXL2f5M9Cf5VRLYtY
Vtwp39mLhX/dz7v951ALe5e1Z1n4Ldy4h0HMG+SQNGzPwpPZgd11xDezzzim
mbPQGSF9oZT4N8vnjfNeFubWt5XmEXt/j/NfsZ0FFY1He18Rz81UdLWsI/ty
CsaiiP24ZspDyXs88eF95S1iwV9bNXeROG7l4qo8TxzFvqk+ys/CKtHpH4eI
V/1b/yZultSV/Ut3biV+n7LmveEIjUWLi3MliDm7/7hENdGIvh0s85nsG8Dt
JaxTQ2PeT3/el8TK737taKdoXLSsWHaD+MKcrKbkcxrSVuyncsTiER+53j4m
dSMtSfEbiZdiOWdzwxAaGsePF70jVpZsu3/xEo3dZs+cdInbbif7cjvTMNzF
d56bOJJzeSrEjkb/rEoEReJVOELLN3E3jdc7bXU3/hffzavuq2rS2OGzr3RQ
joWHS5XWpa6mof7ztVM0sdqFLX9eidD4NR7NN0XyYyZ4/2bV+TS2bZr7K5G4
Nt51PGGK9PVl4dL7iK+nNAiGdDBBafLEhJB849ZfnGaQxsQTekXzT5K/D4X0
A+8kMHH0+FKRcGIpHbsdFZFMPLLU/qRKPFm8YjtuMKHsZRZoSvJ/ykfOU/QA
E24xL5N9JVhY4mK4avduJgpdrMJ5iWVyzLNdNZnojQscvUvqC8917mOlckzY
7HwifJd8N7HcyqlDPxjIPBqV7izGwtvCAV/3XgZOO7lvaCX1bOfa3r7QJgaM
m5erGBJrbPDaUVTIgPUP4WPypP5ZfBXYIBjOgNKI28J0IRZypNiK2usZeLwm
u9pkIYs8x5DN1pUMpMRuXfmAxMWoYP2ZDZIMJHqqDraS+jsWpiEvz83AuK3n
C3teUi/0j1Z31Teitbd7vsE8FgbPnV0zd6ERWWNeNdEkjh6NWwo3nWhEwPsT
t/JnaGztkKt/bdWInwNW8fRvGkadxp3WaITteb9fC0i/yAkX3R2+uBGj66Y2
GJB+8yLDfEl0agOOnOs0Nh6mUWsoWrwvrgG/Qg8brx6ioffHdHgivAGXJELV
53+joZSvn6Xv2YBi/5LYDNLfEj2l5yp3NoDr+zehvl4aqSIud6zoz2hdY5H3
roXGz0/RN0Jm68GyCOb/Rfq1cunym9++16PzrJidexG5vkfu197uenzSvHGT
Tfp9uNsT+8myetQuebKlpoDG5qYbg5ph9TDguWVxJofGraLBESjWI3xQrUGI
zBuvlRPLWIF1OND15flQMA1eCSnDmvN1EDR5WCMfRNanVZw+HKqDye0jUmZ3
aDT/M98jVL4OE/kr1V/eopE7XV7FlVsLx/htGpo3aAR3OHsI99cgalJhZdV5
0q97FHJ7dlTDMHv3zQoTGpbtViFGStVI1hlmxRnROFK54k86fzUS7E0NPfaR
ddfrb5wYVVCoNb0qpkejknvrwefOVXj/iTW9Xpvk5YaqcLP7lVBPe7moaxUN
vtrj3LY95RA9my8n8BeNp4ccUgoqyiGk4Hj1HheZ54RyJWXTy8Gl+HVmKZkf
05dfNvrXqxy1ufmeYtNMhCWp/eZaXI47IiWa38k8+kffLyhKswxfVx+9Jt3C
xJ1x+kJcQAlMm58OG6UzocdZtndO6hNmeDaoj5kwofLijPWvmULYCsgYXyXz
9+rwQteR9kK0x80bntVnIrX3XHZ9YiEaFf0+/gITV8LpSPPVhUgqE/m7aj0T
L+YV7mO6fkTtpOWSIjLvD/g+4/2QkI/o0OD9giRPvE9cvvu2LxMsIe7hMXMG
nnmtvCOuHkbmgZBLZ7c04nHRzvGHB19Squzq3qrSz9gyYX4lIb2AYu7KHiqR
rUfQwkkdmcXllERWRu2DjBqEbgwZ+FehnuLtEw05YlOB2t7BhcfuMag7z9t+
7awthrhRg5Tv4mZqv/An8ZwPBbg2tnPCZkk7dVq2+tPQcAbUZg0qf1zsoh7u
VZfMvfAQGsX2NVyKvRSVxwmgWfGUjMGpraXZ/dTvpV0BRoPZlJxPhE3OATZ1
Kj4xmi1dTPFMREyobvpG9dtvWFQtUEPdLs36qjU9TIUlnl8l6ttA9UuvEo1b
MEJNSC5rCHvLomI29zAc7o9Ses69B2ZUv1AHBRlKhxePUzoKCyW4DLuoKleB
2vHMCUrJxt0kwqmXinan9mXvmaQSNUZPDt4YoD5GOU4uZU1RPK5Tb2PecKjb
VkayayN/UfGl/Mw+62FKO5nNd2LHDBUqnFvQOPWDqk9+b9alN0PdH9KuFuIe
oTblteg7mMxQZxxin5vwj1DHZbm2ONjNUHuMY2rrJEco+8YBFaerMxRLdllj
/7YRqnFite2j7BlqMMNm8Nz1ESpezGfqivospcVeYt/81yjVHjJeJag5S/2s
fvvogMAoNSiTvS9xxyx11uXEs3KxUcrRQ9641mSWMpSL3FGwcpSaFb53cs3Z
WWpoX92pj3tHqRdc7B7el2Q99We+RPAolZuzzvvZm1nqq/Ufg9SIUSry708f
9XJnKW3G67SdMaNUnnmd4e3yWSrDO/33xfRRKrbH/7JQ/yzFdyE9fbB+lJLQ
2uj6dmiWOurm+/Nu8yh1LHGduPXELNVZayCu3j1KWb8ROJ00b45SbrBtvzY2
SvFafBcxFJijDGKmbivPjFL+gnLOI6JzlPn89XwN88aouubos1HSc5Rn9Nrj
NwXHqK48R5ldK+ao9h/LIteJj1H/Azq5+3M=
"]]},
Annotation[#, "Charting`Private`Tag$15353#8"]& ],
TagBox[
{RGBColor[0.647624, 0.37816, 0.614037], AbsoluteThickness[1.6], Opacity[
1.], FaceForm[Opacity[0.3]], LineBox[CompressedData["
1:eJw11nk8VF/cB3AkUZI2rQiVUCpJqz6holKkhV+SpZKtqISkaCWkkiSpSCgk
kWzljiWRpbEzZuYau5gZKVmSntPzvJ755877de89y/ee7/ccJTtXsxNiIiIi
HqIiIv+u//frx///M7axPfL3rxDjYlvHR+T0oXnlxpk/xLFlModH5Mzw0s4F
o8TTVB+7uCtbIktcrniQeK1gZ+kvOTvYnLw6sZ9Yg9U2My3KHs8C3/7pJs7L
FStyVnaG++nYlBZiDN32V3npCt4Mi7kNxL5eOjf75M6iw/PrxnLihJsGIsX/
ucPviZQcg9igkSf5NMoDadckEtOIvRUnerrTXrioXvwrlthDJkZpp/JFNN8z
GrtPbGP+il5w4hKqs2/nXP3n5OkBfQm+uLH73wSFiIvpvlAodxV6GfydhsSF
P/21lq2/hge0bu+qf+NL2xIS9N91iHgstRAhfs5sYu+Juom5rXkqneNCpLW9
jU/+6I8SmfkvvxCf/RSQL0UHoO/V3OY7xBb/zY/IUwqCzdwPt9yIYz+WqMsZ
BMPFUPm7CfGPA1YfnI/fhlGXzrfJxN/8FgXKJtzB7P8NOOl/x1sjRblQ6MVs
HDUkvqOyW5AfH4qJde9V5YnfXobesXX3YXZ5KLlwTIjHNhrFMRZhEGl8ZCNK
LJ+WvXzq43B0mDg+rvgthJpVlfwLjYewC/gdEkF8+Ju604YPD6G4ySFandjc
6mHvUU4EUhL+fWAhONf/nglTfAzjxUanRIl1FjHl5VMfw8+2f2nBiBBSYl+q
Y7dGIUX+VhGIsXvFyiTbJ1B80vxSY1gI2RrL0OjYZzD73wVC5t9Ycy1k5nPc
HSl84ULMnti/u8b2OfKXdadNJzZqDQmSS30O0X3We8x/kvZFNc0jjGPxs0Ty
InNAiINb2xwCbrxA/CGjbG+hEBfnZHycNRQPVc9DW6SIV95z5+tuT0DUjVL9
cAF5fsHC5SfuJ+C4C7c0iU/Glz2W+3rlS5y0LWQW9QpB3Rg8vdThFdb1XMhP
6RKiOs3UMbUxCWPd9ZuXEDcGS3lmLk1GRn3EushOIUIap2l8cE/GRJ/dSb4d
QpjIc53zZF9jjsA5aH2bENbFZx/FGaVAwu2Rph2XjP/nBI8xy1TM7I0XeVAj
xL7RJ3X6X9Lw+fCM/K5qIUw1om/6C9Kw4pOG1gZiAbW//suMdEwLdFjayBRC
f4664R7LdCytlTKXqBQiM0x2sV5fOhIdextVSoTwufzao3VqBkQj1a2P5QqR
kujCHTbJBN/64NrgHCGucVJ1pd0zEbxI80N6Nlm/ty93ykdkgnOvp3k8U4if
DtMnb27JRJ12wLEb74SwVQ7de8wtC/N8jt/f/1qIP/u7vSzvZmNg2qPzP58I
cclkRRpdmQvDExmuw1FCVEaHqEwYyEWh603V34+FuJeZ8WTx7A/QfLGDOfZI
CNp9z3Nbyw+oCYTE9wdCPP3mEl/Y9QGHTGaKP7lN4v0822GJSB4MM/QNJ/gI
ER07ppIwh4FTbwaHuN5kvYmo/ZZTYyD3qJV99gUh9HQfpdzYyEApe5ePk6cQ
J7z04qytGEg/9DT441khvjMfpEyMZaBQTxWqjkKs/u0+d55mPsp+MnolDwrR
+27b1QMGBdjBuD8zer8QGRvq3WYdKsBOs2WMtWZCHFcpbax2KEBbaXjCERMh
7KxcZHaHFMBl0q03ETvJ9//R2LasqQDM3ILYUl0h5nRWMiNOF6JVKkh+2hKS
P19NfLdEFEF9k+uhZUIBCqZm3DHsLIbjgYkqvnwBTtVuOmAzVIxtg7viansF
2J3m7Owp+RnMivYvF7sFGIoMDY5W/4xNLLPIHJ4Af8/ePc89/Rm2NnN3jdYI
wK3rzJs09BndSjv5VzIFWKJaM3OSRCk6L+jpp3kLsHDUhO+qUAZxydDuIC8B
nsQIojxXlWH9poHJxz0EOON7csBHvwy8u7zCaWcFOGBvFOBnXwadkYsSBx0F
KIp0Wu2cUob+j88qw80FcHPZK1GhW464ObFOQ1oCaCy+qpJ5uALS0o+qlnfw
SR2feq4k+CvyEwP2vG3lo0665Vjzk69Q3X57v3YLH79vayf2pnyF+Km6P2ub
+ThXp7BavIr4lm2ZahUfCTzpy4GTmVg44LDr0wc+Zr9vmnl4LxMpAdqNXaF8
zEO7QFDLhMXnPK2yjXz8FJl0vZBThZy3t8bLbvbB9JK2hE5uDTZneNQ/T+4F
k30wfySuDnWXTfcfL/uG6t+mapMONCD8mb/cYVYPpDIi3JLZjUiuiCyeU9+D
P/de3pne1giviAt/aqp6kLRj1M69pxGa4pF/DUt7oOSio7LmVyMWatsfVMjq
AXde44+waU0YGdQwvP6gBzPDfqr06DUhXfSUwVqTHqg901xd+aIJWhs+PdXI
60YwPyj46DEWTpnsM2NldyPpQJDBZwcWtrWf++if0Y1bMS8qV5xm4cstnxxu
cjcGnt49+tOLBc2ixyaXHndDS2rr/pMhLNj9mt7p49WN1pigv21ZLLiZcgpv
rO7G4jl7W9ZIN2Nxs1A/71kXrifqxUslN2PSvcXzMyO7SA642ux62wzFTC/X
lAddUJNrPxLwvhn9+33DIoK6oIj/5o0xmjGbObHksGcXSrvO3Sqoa8bZ6qHa
8L1d8HU+F/JlvBnOf11v8n93YmyI55y/lw3b0VTD2Wad8BVN91jYycbgm61D
xcadcNA3kAn9xkZ/QK+Wp2En4rPbKsWFbCjEhe6t2dwJKnJDCW+IDeObS+d4
q3aCe8DzxgUpDsT7jvOvjHXAd9ZyH8XlHFRv25ziHdeB9woS3+DKgfHJVbw/
zzow6+Ma5f/OcbD8NaJ9IzvAkQlzcvXkYHHsm4LLdzpgvrBq2X1fDnrW1UU4
X+jAMemL2zPvcFAuvi7wr3EHriT77jvzhoPvGgevyP5ox+ZdDQYJfRy83Lt1
+md+O/4MG9Qs6udAQuO9lU93O+r566mHPzh4L6u/vI3TjntbdBIvjXLAu8N6
FlPSjsTbjTlqklyctpLh8Z60Q/908AYxFS6OrL1S5mrYjqiHaw1SD3HRGlzY
90evHerzp2jU/seFzNO7XwI3t2P6LV3LwSNcHOZ/yY1e3Y5UxprQlce4yAPD
/eOCdmS8pIyuuXLxIf311hxhGxK6luxO8OeSfej+1vzwNhT5pm7iZHBxmS8R
9PpuGwZKgo91ZHGRem/YIiKwDTrNu/W+5XJB+5v7Ol5uw13uxgXf8kl/GuK/
Rk60gTlirlVQwUX53rlBNdpt6NntvKGmnYsHk5YfcKxqhUEiW+qcLI0G8TMy
S8tasaB2tbXsTBpH7mkb84pawWx7bZo4m4amxTqz/VmtcFrfJl47n4YgSiNg
ybNWXDfJezy+mMY3sa+Pr7q0omZ8xtc362lUbBW1U5RoxaPXC5N8rGj8UNsX
Nl+kFS41w5U3rWlQ/coXZ43y8GahffdtWxrb5hjbiwt4GLx4aCT0BA2Jkndp
tXU8HFfAFa9TNGyzaJV1cTyMX8gIT/WhUX1xz1P5ZzxYWGt8unWZRudC3Qqx
RzyUfc/lWvvRGB+KMSoN5sHe7w5T7DqNtulXM3a482AzmBqlEkTjVu3jkxMM
ePD7ZLeNGUFD/6yqet1mHjjiU+o9I2nE8LVj4nR4+O1tbrQwisauS3XJ+uo8
dJ5CueUzGvtFVmw8NZ30rzi2JSOOvP9g7YrrdAt461J0q96S+Uyl1+k1tSDP
WSloRzqNXrvJQ2PVLZhgU5CS9Y7GsoTOULfiFmj3Cc/fz6Rhfj9jq9HrFszY
lvhd+SONkNFk92zvFrR5KUm/+kwjbvteCda5FvTlKGyUKKUhZ5o1Y8SlBZee
972w/kJjQmznYy3rFgjPx6+YVEFDVi/Z9b5BC9Zn7fi5rJrE36p5obR0C5R/
cx6/b6bx/Kmk5ayJLbjeMW1NA5vGId0/qjpjNCyKCkZ+cGiEZt/qM2yhMe2c
+QxlcnV77j684yWNRoXvFqbtND6sDV2Qvo5GmEjglZ+9JD7Pxb+HqpF5XhlM
bugj478t+cF1AY1nO0JH3/NpLG8p0lr0l4u611NGHIU0Ks9Piz1SzMWdS2nO
MQM0fjZMXbKYrGtO7JF7J37QYGY9iep+xcWY9t3qJT9pRP864+Jwm4uTSXgR
OUjGb9cXYnCAiwnn3E8dHKZhk+PxcWA7F/wLChajxPV3Q3lP13GhODPR/PEI
cfblyYL5XEjLzgitGiXPS5tMuyfNxYtL28rsf5P2OKlSq8c52HxPXG6YeOPY
MvokjwPVvCa2zB8Sj53IGa/mwJy3zTyM+OnsrsDQIg708nro2eNkvGq90m8T
OBDJDp479S+NcP1P90tPcbBA4dcke5EWsHfLU0HWHERUvpCKIBY4yY/t2sfB
f7XuSiXEXt9mJzG0OZAt6LinLEru75KR91zKwboFH3uMibXyU6LV53IwKVn5
0HnihcIudsBvNkTNJzoziIvi/R6s4bNxtDVrRhuxjnu+dTOXjWL/kxUTxFrg
YZ64yY/JRrVvcqQy8VXTTWrKBWwsmKDiDeLD1u7L8tPZ2LDL3vkw8fi1gxus
4tgouj399Dlitzyu5a9wNswlGFcCiZNlZO8GB7Dh3ycd/4z4nXtPnaI32Re8
7rPSiAP7nVakOrOh3i5QKCJWvxoWrmvFRrl9ztka4gg1++klZJ9x23CvroWY
2Uk/MdnKxpswGcM+4vps0c21q9lQeltRPEj88nlZ70EVMr/Pjgf+EO+I0X1d
O4vMX/ayUGxCC1IzzP1MJdh4Vhj3UIK4k553onSoGbXzfYwlibsVr1uipxnr
9kZN/ef358OPpbGaYRcew5pIbMYzvaRc3gy+hmq6KHGWXfrLOx+b4WpYEv6b
9Pdt5GPHSEozriotuvHjn+PdtG2jm8EYKL3UQ/zesSzs0z3iHzZ+HGJj/UoJ
1WvNmG/lF/yVOHXVhcAb7s1wPFkYQxG3aJcr8k40Y9vuT9RrYvbez8UbzIn1
lDofEb+47OR7x6gZYlfPzrr+L16Kr5ZoaTRjbrGtvxlx8d1tM30XNuPFRp0y
HeK8OQEzSqc2w4TtMnse8ayTk3Yc6GfB8dap3AayHtxWGng/4LEgKXFa7h1x
5FRVRk01C8tDdT1CiM2mdPkZZrBwNPe9vi5xi3rhb594Fp6UhqdMJ95oYxjw
5iELhaVp8u1kvZpJG9VP8WZB+eoU8WvEsteKHq51ZuF20mVvE+LIaT1OR46w
sPVV5MA84llO6jtitrBQMMm9fB/JD/H1hnuplSxMeNGVzyL5k7dA2oG1iIWH
r29mWhNHLg5hTprAwq2KRdFWJN/aN507j89N4Mdkm6qR/DQtf2BumN2EWdmX
zkeRfB72TE02TmpCVcqnedLEMkqVb0zuNCH/qRm3hdQDnZzEeevMm6B9ynu7
zS9STxaH3Fff2YSag54HMkk9MUp09FuwqQn2AhZnMvHhSVLpgwpNkIkwtEog
9chLsudiUGcjFBKZYxn9NFqMb992amyEhHBhRT+pZzeT1WYYfmnE+oy0GcuI
Qz/uch9+3Yjlmst/B5H693KpZtTm842QfOO2Uu0bjaJZ3t67JjTCrFomPKuV
xtKp0bkigw1Qd9M9ncMj9xflub7rbICY1sW3WaT+ljxqXTXrSwPMAx94JHJp
lFeXy2XcJXay7rFj0Si2WXrGR74B5yvkWpdW0Vg8tZInNa0BrsIrCsKvNApq
T30KE2nAvMb83PRKUr8zHnQ8b6uHhv1qOa1yGil5N29Fv6rHZLOe9RPIfuPX
x7dWWlsPt71B8b9ySfzPtfzdtaQejdqWpidyaIzFaEafmV0PvROrkr9mkXo5
wOFlDNbhzNGXHg8zSD23C3Cc/74O37+M40cKDfcb0oH7depgs6+Yz4qm8aKy
atpN7Vpc3FQseuIKjRnLN+SaLK6F4cslFka+ZL9YNWYvN6sWslpeO1Qv0fBY
/oCK/FGDP4fedTV40TAbnHHeN60GnPGsJeJu5HuX6H7PWlmDyCD3Jn9y3kg7
Y6rZp1qNh4wcZ521NH7Vuye5zq3GMoMpsVlaNOItXIL6Jashp7e/T2cVjS1v
a89966nCiiTlNFUNsj9kBnbmJVVBTl5zuGkRDbs5wfu/aVbB4enpJr8p5P7S
9t271zBJXTcxruFwwZzronJRhYlGi1cX6llcxKt+tno5k4klBQWxdQ1cLFvL
Hxzs+oqyuODez1VcZCWeTxF1/Arl8F4dn09cGOu+1VRwqsRNvT3LVJK5OC5S
4+zsUI7RIYuqEx5c1IYfUSk2Kke55/vu4bNcSIZH1C5QK4f4y+OyAeT8WF6p
ujirpwyRe9eERDpwkawW6/nOqQyrVBdo3T3MRdH1qf25zl8wM2rRnY+65PzK
TF0q4VQCox3WWxaKcjH34+okf/MiFKrecy++yMEBpRxe3ZoiXC2pMx324GDr
g5OaCrJF6JsleWTJWeLk1ZOflBSit1p8zM2Bgw/hV8v2byhEabWkceUBDhhW
c87HzStAkGXghWhy3s86Oa8kLYnCdiuh+5NGNgJE9thNuvAer64q6lUosSFi
v8T2z5b7UCuhMxLCWRAxsPBeIp9C/fG68MEvohGyY516y+Pzqc2XW63e7qlH
wAlOa61TGRXraCFbxapBmNvv9DUrayhuScfWtU1M3I1aX8D0aKRkPDrMT5ws
wwtdn/Dl5Rzqmt257oT7RRDE5j7w5PEo9tYrfqersuAlsyWOn9dO6XbZSd1a
F43FDU8tV3zvotSeVo2uNkmgNu9qtRkS66Wmf3HoTEinqB1y+X7Z8wTUPLXO
fUNnvlB5Wb4iyp/6qQdrhyVLHWooScMeMcppgDINsDR687iJ2mJ59P0e/KSO
GfEdLtq3UK3JYauU5vyimobyxF1XtFNO1Q9lmE1D1JWyMzdX8ruo+apTD41X
jFCB/jeYFlv6KLcZd18XJv2mLAeEd6bo91NFjIOLtwf+ob4bhHxmew5QHt7M
sMKov5RY1Er1nL8/KRX21CydMhEG83jOsSafIWpk2P1Q0lcRRvbC2LwtAUMU
z9fEclGtCKO7bX5k/P0hqqXsaMQUjgijLPtJzaXEISr2SCfdKRBhTF+/yXxX
4xC11vbRi9QZogwLJY0aS+1hyv9XiPi9w6KM7R+DVtkJhqmTB4+dmWEtyljR
+EV67ugwdUghaVvYMVHGOWapG3PiCGUvCFN45CLK4J3lM43kR6id/lXPEi6L
MiLWyA2bG49QC6IEDQ3PSXuGBrP6E0eo8ccjSdYJoozJup7+le9HqO8TvTq7
kkQZmz0n3HxTMEJJzf0aMvJOlJFaPXnpBdYINabdmaz0WZShzFIcVp88Stne
CH6XXCbKSEmwKZeXG6UaEK+8ninKWMX/tGKm8ij1Y2CNlmmTKKNhpC1i4sZR
6lFvQg2bI8rgVEyLFdsxSpnuvdPs2CrKiFqzY5OY2Sg1Z8G3nUOdoowbbxm2
4kdHqb59WQo3ekUZYpVZclJOo9T/AIuHFQ8=
"]]},
Annotation[#, "Charting`Private`Tag$15353#9"]& ]}, {}},
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->{589.6281721494024, Automatic},
Method->{
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" ->
None},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.05],
Scaled[0.05]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.8171148487629232`*^9, 3.817114867569581*^9}, {
3.8171149189239483`*^9, 3.817114948818074*^9}, {3.817114983494927*^9,
3.8171150086165953`*^9}, 3.817115069160568*^9, {3.8172023951745663`*^9,
3.8172024205532*^9}, {3.817202505823051*^9, 3.817202522608831*^9}},
CellLabel->
"Out[165]=",ExpressionUUID->"ae6c01c8-9abd-4358-a6f9-fb8f033a8ba4"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"h0", " ",
RowBox[{"g", "[", "\[Theta]", "]"}]}], ")"}], "/",
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"1", "-",
SuperscriptBox["\[Theta]", "2"]}],
RowBox[{"1", "+",
RowBox[{
RowBox[{"1", "/", "t\[Infinity]"}], " ",
SuperscriptBox["\[Theta]", "3"]}]}]], ")"}], "\[Beta]\[Delta]"]}],
",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.817113144203745*^9, 3.8171131899556923`*^9}, {
3.8171133354068203`*^9, 3.817113365430565*^9}, {3.817114104893573*^9,
3.817114104973675*^9}, {3.817114181711667*^9, 3.81711419022359*^9}, {
3.817114245144809*^9, 3.817114245640547*^9}, {3.8171147067876053`*^9,
3.817114712355151*^9}, {3.81711550929183*^9, 3.817115509403614*^9}, {
3.817115653438582*^9, 3.817115691197918*^9}},
CellLabel->"In[42]:=",ExpressionUUID->"25d7aa57-46b2-4829-8aad-b00b9ab2ecff"],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{"h0", " ",
RowBox[{"g", "[", "0", "]"}]}], "+",
RowBox[{"h0", " ",
RowBox[{
SuperscriptBox["g", "\[Prime]",
MultilineFunction->None], "[", "0", "]"}], " ", "\[Theta]"}], "+",
RowBox[{"h0", " ",
RowBox[{"(",
RowBox[{
RowBox[{"\[Beta]\[Delta]", " ",
RowBox[{"g", "[", "0", "]"}]}], "+",
FractionBox[
RowBox[{
SuperscriptBox["g", "\[Prime]\[Prime]",
MultilineFunction->None], "[", "0", "]"}], "2"]}], ")"}], " ",
SuperscriptBox["\[Theta]", "2"]}], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "\[Theta]", "]"}], "3"],
SeriesData[$CellContext`\[Theta], 0, {}, 0, 3, 1],
Editable->False]}],
SeriesData[$CellContext`\[Theta],
0, {$CellContext`h0 $CellContext`g[0], $CellContext`h0
Derivative[1][$CellContext`g][
0], $CellContext`h0 ($CellContext`\[Beta]\[Delta] $CellContext`g[0] +
Rational[1, 2] Derivative[2][$CellContext`g][0])}, 0, 3, 1],
Editable->False]], "Output",
CellChangeTimes->{
3.817114105560233*^9, {3.817114187226123*^9, 3.817114190364789*^9},
3.817114245974049*^9, {3.8171147071829653`*^9, 3.817114712610158*^9},
3.8171154633593493`*^9, 3.817115509593433*^9, 3.817115693533884*^9},
CellLabel->"Out[42]=",ExpressionUUID->"5f0c650e-d3ec-4a10-aad2-c391b45db45f"]
}, Open ]]
}, Open ]]
},
WindowSize->{957, 1062},
WindowMargins->{{Automatic, 1.5}, {1.5, Automatic}},
FrontEndVersion->"12.1 for Linux x86 (64-bit) (June 19, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"6f6c570c-dfc0-4320-bdc7-0f1de62bb24c"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 270, 5, 24, "Input",ExpressionUUID->"e595a667-7f25-4f98-9f12-a321a236d113"],
Cell[CellGroupData[{
Cell[853, 29, 156, 3, 50, "Section",ExpressionUUID->"bb531fce-8a9d-4a5f-8d6a-ec66b9fbf698"],
Cell[1012, 34, 1380, 28, 24, "Input",ExpressionUUID->"395191f4-75f5-4aa3-87f6-ccf9cbedf73f"],
Cell[CellGroupData[{
Cell[2417, 66, 2007, 47, 92, "Input",ExpressionUUID->"389cbfb1-8cc7-458c-9f8c-1fd631f97f2c"],
Cell[4427, 115, 2664, 57, 288, "Output",ExpressionUUID->"2b3d333d-6106-45b7-8d31-f398af6dca84"]
}, Open ]],
Cell[CellGroupData[{
Cell[7128, 177, 453, 10, 22, "Input",ExpressionUUID->"377f0dcd-6050-40b3-be70-41379e9fda93"],
Cell[7584, 189, 150, 2, 25, "Output",ExpressionUUID->"02602b05-0f8e-4f3a-8e08-cb1c3aa44a3f"]
}, Open ]],
Cell[CellGroupData[{
Cell[7771, 196, 502, 13, 24, "Input",ExpressionUUID->"8c3eb7fb-65d2-4a56-a3e3-0dc6e0518fe6"],
Cell[8276, 211, 1300, 38, 62, "Output",ExpressionUUID->"e44b7486-110d-476c-b94b-28e4b600a40c"]
}, Open ]],
Cell[9591, 252, 8663, 212, 332, "Input",ExpressionUUID->"77a88da0-5b31-458a-9ed8-0b34545e511d"],
Cell[18257, 466, 4921, 136, 144, "Input",ExpressionUUID->"1f309ab1-20a0-46cc-93fe-35aed54ccb3d"],
Cell[23181, 604, 233, 5, 22, "Input",ExpressionUUID->"e7fef682-ee6e-4d26-962a-6946f28d5999"],
Cell[23417, 611, 2312, 53, 56, "Input",ExpressionUUID->"2f5b927d-f164-4051-b8ca-bad9a5ba3b97"],
Cell[CellGroupData[{
Cell[25754, 668, 4764, 78, 41, "Input",ExpressionUUID->"630fc9c9-229c-4372-8a16-eac1f2d98690"],
Cell[30521, 748, 632, 12, 31, "Message",ExpressionUUID->"20e41565-1936-405a-9504-d530fdcc8152"],
Cell[31156, 762, 1499, 29, 44, "Output",ExpressionUUID->"319eb113-9321-48fc-ad65-5700453ef613"]
}, Open ]],
Cell[32670, 794, 461, 14, 22, "Input",ExpressionUUID->"ea36fa2d-8c46-4383-be61-eff682dedb14"],
Cell[CellGroupData[{
Cell[33156, 812, 452, 12, 22, "Input",ExpressionUUID->"5823df11-0739-494d-bf1b-44bf2a14cb2b"],
Cell[33611, 826, 278, 4, 25, "Output",ExpressionUUID->"cf69a3b6-a533-4dea-b33c-8d65e371fe08"]
}, Open ]],
Cell[CellGroupData[{
Cell[33926, 835, 1740, 46, 71, "Input",ExpressionUUID->"2a7b9f00-b942-4f1e-89df-1d3081b1fc6a"],
Cell[35669, 883, 21020, 380, 153, "Output",ExpressionUUID->"155c39dd-ec1d-4900-9cbf-4fc4b876ac75"]
}, Open ]],
Cell[CellGroupData[{
Cell[56726, 1268, 966, 27, 24, "Input",ExpressionUUID->"da645597-b6a8-4dfc-83c5-3cec31d750f9"],
Cell[57695, 1297, 469, 10, 25, "Output",ExpressionUUID->"f27b02e6-f3db-42e2-b534-43e5409fe36c"]
}, Open ]],
Cell[CellGroupData[{
Cell[58201, 1312, 1847, 47, 73, "Input",ExpressionUUID->"b03f723e-24d4-4097-8ca2-9b1145403bfb"],
Cell[60051, 1361, 519, 11, 19, "Message",ExpressionUUID->"1ff6b3ff-f0d9-48ea-95df-10584520bc02"],
Cell[60573, 1374, 519, 11, 19, "Message",ExpressionUUID->"82682d18-f80c-4d23-8675-d31ca1576f0e"],
Cell[61095, 1387, 521, 11, 19, "Message",ExpressionUUID->"164319c1-a2e0-427a-9f70-94e763f48d8e"],
Cell[61619, 1400, 486, 10, 19, "Message",ExpressionUUID->"5d8fc41c-1820-4591-bdb1-29d65ed68611"],
Cell[62108, 1412, 25289, 433, 172, "Output",ExpressionUUID->"0f099d03-656a-4602-85f6-26b4b2405b3b"]
}, Open ]],
Cell[87412, 1848, 1836, 43, 57, "Input",ExpressionUUID->"868d07c1-b3cf-44ff-a070-78c2a21c388b"],
Cell[CellGroupData[{
Cell[89273, 1895, 4656, 86, 73, "Input",ExpressionUUID->"7c02fde8-7f1a-472a-9e7d-0e95772516eb"],
Cell[93932, 1983, 899, 22, 25, "Output",ExpressionUUID->"6b22737f-c85f-4c36-9b44-d9e694bee115"]
}, Open ]],
Cell[CellGroupData[{
Cell[94868, 2010, 1989, 49, 75, "Input",ExpressionUUID->"0e89b49c-ebf1-4e9a-800f-62ec63f935a1"],
Cell[96860, 2061, 21952, 393, 154, "Output",ExpressionUUID->"7cf0a89e-6d18-442b-b56d-94b97702709f"]
}, Open ]],
Cell[CellGroupData[{
Cell[118849, 2459, 1382, 36, 24, "Input",ExpressionUUID->"6c30dc25-997d-4790-bfcd-6e15ebcf7cbc"],
Cell[120234, 2497, 520, 12, 33, "Message",ExpressionUUID->"56028de4-0ddc-4ea7-bf21-a25534c5c68d"],
Cell[120757, 2511, 521, 12, 40, "Message",ExpressionUUID->"3d57804e-381a-4ba2-8dce-4428206df060"],
Cell[121281, 2525, 3161, 69, 259, "Output",ExpressionUUID->"56916602-5965-4962-8188-b6662a5aa173"]
}, Open ]],
Cell[124457, 2597, 1713, 40, 64, "Input",ExpressionUUID->"b31259b6-cc89-48a8-920d-e9dbcee664fb"],
Cell[CellGroupData[{
Cell[126195, 2641, 3913, 66, 42, "Input",ExpressionUUID->"30d0f855-c86b-4121-855c-813e9ee04f96"],
Cell[130111, 2709, 1064, 19, 28, "Message",ExpressionUUID->"f1cd282b-fb73-4166-8899-1f1b71289512"],
Cell[131178, 2730, 3809, 57, 49, "Output",ExpressionUUID->"3b7bac7f-12db-4bb2-8d83-0f02d8f19997"]
}, Open ]],
Cell[CellGroupData[{
Cell[135024, 2792, 1587, 43, 105, "Input",ExpressionUUID->"e1346f99-b8a8-49f2-9bab-d7d94b52e5d3"],
Cell[136614, 2837, 61160, 1040, 218, 39593, 685, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"24eee5ea-c8f9-4063-9d36-9e38f4d71b1d"]
}, Open ]],
Cell[CellGroupData[{
Cell[197811, 3882, 1714, 46, 105, "Input",ExpressionUUID->"8b99e721-7bc5-4c63-b150-8946bb7d2007"],
Cell[199528, 3930, 30207, 531, 218, "Output",ExpressionUUID->"d79294e8-cb2f-4112-ad68-da965b8a242a"]
}, Open ]],
Cell[CellGroupData[{
Cell[229772, 4466, 491, 13, 29, "Input",ExpressionUUID->"8dd8c18b-504b-469d-8072-a9fb0cc417df"],
Cell[230266, 4481, 539, 12, 22, "Message",ExpressionUUID->"a55da929-28cd-4032-aea8-5daec85d020a"],
Cell[230808, 4495, 539, 12, 22, "Message",ExpressionUUID->"d9f18df2-5058-4626-9d48-5486b1743e96"],
Cell[231350, 4509, 2243, 56, 79, "Output",ExpressionUUID->"7ce119a6-a1c0-48cc-9d86-6e7b6a1eafe3"]
}, Open ]],
Cell[CellGroupData[{
Cell[233630, 4570, 561, 16, 29, "Input",ExpressionUUID->"b0a27cf9-de55-4cf4-9b19-ff7b3add442a"],
Cell[234194, 4588, 913, 27, 75, "Output",ExpressionUUID->"d3fcf7af-82f3-49c4-81c0-3bf29938e0d1"]
}, Open ]],
Cell[CellGroupData[{
Cell[235144, 4620, 681, 19, 55, "Input",ExpressionUUID->"f49c10e4-6ea3-40fb-85e8-436bcc73196f"],
Cell[235828, 4641, 4071, 86, 235, "Output",ExpressionUUID->"0ede64a7-b62f-453c-b5e6-06e4c6ab27af"]
}, Open ]],
Cell[CellGroupData[{
Cell[239936, 4732, 486, 13, 29, "Input",ExpressionUUID->"67bd5207-9130-427b-afb3-21bda9c7e82e"],
Cell[240425, 4747, 200, 4, 33, "Output",ExpressionUUID->"39e5dba9-9c25-42e4-8876-75a530e46ee5"]
}, Open ]],
Cell[CellGroupData[{
Cell[240662, 4756, 783, 22, 29, "Input",ExpressionUUID->"6db9bdd5-3bc4-4993-85d9-2bb9c2d0db38"],
Cell[241448, 4780, 3496, 77, 249, "Output",ExpressionUUID->"028520eb-aee9-483d-9152-2416a8a91977"]
}, Open ]],
Cell[CellGroupData[{
Cell[244981, 4862, 1223, 33, 24, "Input",ExpressionUUID->"aab225ac-8e68-4d46-a4da-600fe6364133"],
Cell[246207, 4897, 10880, 231, 176, "Output",ExpressionUUID->"6e880d59-ffe1-440b-af8b-754c17269f6e"]
}, Open ]],
Cell[CellGroupData[{
Cell[257124, 5133, 2115, 52, 66, "Input",ExpressionUUID->"f01a72f1-91c7-4454-9040-b54a61c9cd07"],
Cell[259242, 5187, 615, 13, 19, "Message",ExpressionUUID->"46cbf58a-9f1b-42bc-8a11-616c84d0e1d7"],
Cell[259860, 5202, 613, 13, 19, "Message",ExpressionUUID->"c25c6435-fc6d-4b46-b41c-a3d203aa09da"],
Cell[260476, 5217, 613, 13, 19, "Message",ExpressionUUID->"3a09025b-666f-454b-9a32-9f324e354788"],
Cell[261092, 5232, 580, 12, 19, "Message",ExpressionUUID->"5b1f7808-f0a6-4257-b7ed-4acdc8c4ac95"]
}, Open ]],
Cell[CellGroupData[{
Cell[261709, 5249, 536, 10, 24, "Input",ExpressionUUID->"1dfbee5f-7e33-4446-bc10-991ba8838497"],
Cell[262248, 5261, 93071, 1628, 177, "Output",ExpressionUUID->"e57fa90a-27ff-4013-8fad-ca7e3c98d348"]
}, Open ]],
Cell[CellGroupData[{
Cell[355356, 6894, 314, 8, 22, "Input",ExpressionUUID->"8499af31-a50c-4059-afac-b628095fc761"],
Cell[355673, 6904, 368, 8, 25, "Output",ExpressionUUID->"9aaf347d-0fae-4cb5-8920-f15fee437a9e"]
}, Open ]],
Cell[CellGroupData[{
Cell[356078, 6917, 577, 17, 24, "Input",ExpressionUUID->"fecf4a67-c7e8-40b5-8e36-582a0bab9fe6"],
Cell[356658, 6936, 753, 23, 48, "Output",ExpressionUUID->"742a0341-4af8-4ba4-a799-e15a1e847a9c"]
}, Open ]],
Cell[CellGroupData[{
Cell[357448, 6964, 438, 11, 24, "Input",ExpressionUUID->"9884f3ff-ff57-4cf7-b122-2aebcb709801"],
Cell[357889, 6977, 947, 26, 45, "Output",ExpressionUUID->"5f69419d-b0c1-4cd5-9616-460f429c823a"]
}, Open ]],
Cell[CellGroupData[{
Cell[358873, 7008, 549, 13, 24, "Input",ExpressionUUID->"c18d621f-7e5f-48db-8ae7-0fda0221c79c"],
Cell[359425, 7023, 599, 17, 45, "Output",ExpressionUUID->"b45884b0-ccdc-4e99-ac15-83498ea86eff"]
}, Open ]],
Cell[CellGroupData[{
Cell[360061, 7045, 338, 7, 22, "Input",ExpressionUUID->"8e16b08d-33f5-4a51-9850-75f98a0e6a08"],
Cell[360402, 7054, 2269, 65, 61, "Output",ExpressionUUID->"21b799e5-0965-4692-b4ba-6083041c0cdd"]
}, Open ]],
Cell[CellGroupData[{
Cell[362708, 7124, 237, 5, 22, "Input",ExpressionUUID->"4c8cb259-b56a-423e-957f-9a65ba700a16"],
Cell[362948, 7131, 2063, 59, 109, "Output",ExpressionUUID->"312f09f3-55f8-4f9d-a42c-05ca1c4aea27"]
}, Open ]],
Cell[CellGroupData[{
Cell[365048, 7195, 564, 14, 24, "Input",ExpressionUUID->"069edadd-116a-4ccf-831d-0fe6e07540fe"],
Cell[365615, 7211, 1113, 29, 52, "Output",ExpressionUUID->"e6426e3c-3d4d-49f1-becd-dfef45704088"]
}, Open ]],
Cell[CellGroupData[{
Cell[366765, 7245, 522, 13, 24, "Input",ExpressionUUID->"3cd180b6-0e22-4832-af2b-e9ecec7e0a49"],
Cell[367290, 7260, 5586, 138, 258, "Output",ExpressionUUID->"45f19748-f63a-49e1-8ced-a4f5c5dda272"]
}, Open ]],
Cell[372891, 7401, 366, 10, 22, "Input",ExpressionUUID->"3ffc56f5-fc40-4c69-bdce-f91a4aab1c67"],
Cell[CellGroupData[{
Cell[373282, 7415, 838, 23, 42, "Input",ExpressionUUID->"e131ab87-4ef6-4852-9ddd-e4499b39559a"],
Cell[374123, 7440, 597, 16, 51, "Output",ExpressionUUID->"86a22957-07a1-48ab-90d1-d142a27afe22"]
}, Open ]],
Cell[CellGroupData[{
Cell[374757, 7461, 921, 23, 42, "Input",ExpressionUUID->"22a30e99-2bd5-43a5-9353-3a3be14232a6"],
Cell[375681, 7486, 2812, 74, 80, "Output",ExpressionUUID->"470e97c2-b944-4611-8c77-75e5a0915c04"]
}, Open ]],
Cell[CellGroupData[{
Cell[378530, 7565, 824, 23, 42, "Input",ExpressionUUID->"3752e4d8-bc7c-475c-b88c-a0d99559d99c"],
Cell[379357, 7590, 2580, 68, 78, "Output",ExpressionUUID->"db6b4f65-90c7-4c37-9945-5690d8472368"]
}, Open ]],
Cell[CellGroupData[{
Cell[381974, 7663, 463, 12, 40, "Input",ExpressionUUID->"6a34969c-5bbf-4acb-a54f-a9bfbf2c9f87"],
Cell[382440, 7677, 8623, 160, 171, "Output",ExpressionUUID->"70cff46d-010d-4a9a-8cf5-3901b2a30edf"]
}, Open ]],
Cell[CellGroupData[{
Cell[391100, 7842, 595, 17, 24, "Input",ExpressionUUID->"6afc45fb-65bc-47fe-b120-408f15ede40b"],
Cell[391698, 7861, 470, 13, 50, "Output",ExpressionUUID->"4cdf78f8-6821-4e67-9385-8a091cc9cf9d"]
}, Open ]],
Cell[CellGroupData[{
Cell[392205, 7879, 236, 6, 22, "Input",ExpressionUUID->"b66a0012-a40b-4041-8ea9-a9cad40db85f"],
Cell[392444, 7887, 301, 8, 39, "Output",ExpressionUUID->"9744135b-7d1f-4023-b02d-1bdf3b29d60f"]
}, Open ]],
Cell[CellGroupData[{
Cell[392782, 7900, 419, 12, 24, "Input",ExpressionUUID->"7ceb4bac-ce7b-4adc-aeb9-95a215777744"],
Cell[393204, 7914, 720, 22, 40, "Output",ExpressionUUID->"9c7df971-6bfc-41f8-a68e-fb9921c0b017"]
}, Open ]],
Cell[CellGroupData[{
Cell[393961, 7941, 492, 13, 24, "Input",ExpressionUUID->"07932986-b2e1-477a-9d99-1b9701e3af0c"],
Cell[394456, 7956, 510, 11, 19, "Message",ExpressionUUID->"f0c4d2f9-9d6d-48c0-b78e-b8f84a7f6bb2"],
Cell[394969, 7969, 5864, 115, 182, "Output",ExpressionUUID->"82bf5b22-f54c-4da8-bea6-61b7c42c3450"]
}, Open ]],
Cell[CellGroupData[{
Cell[400870, 8089, 804, 22, 54, "Input",ExpressionUUID->"13e1541b-4ad9-4a40-89f2-be40a0e4d6fd"],
Cell[401677, 8113, 479, 13, 51, "Output",ExpressionUUID->"dff49a57-ddf5-4e9d-aa0a-55006221f3c2"]
}, Open ]],
Cell[CellGroupData[{
Cell[402193, 8131, 650, 19, 24, "Input",ExpressionUUID->"6def2df0-3761-4f37-b66f-ba9071b93625"],
Cell[402846, 8152, 534, 15, 42, "Output",ExpressionUUID->"175a2c7c-fa54-45c3-bf4f-c4ed89dad110"]
}, Open ]],
Cell[CellGroupData[{
Cell[403417, 8172, 302, 7, 24, "Input",ExpressionUUID->"657e079b-66fb-4614-816e-af41b7fabf10"],
Cell[403722, 8181, 454, 11, 19, "Message",ExpressionUUID->"f6532f4e-d02f-402b-985e-f8964b91f90e"],
Cell[404179, 8194, 1129, 29, 32, "Output",ExpressionUUID->"5f2bc73c-3ef7-4874-86b3-dd3ac3e99858"]
}, Open ]],
Cell[CellGroupData[{
Cell[405345, 8228, 325, 7, 24, "Input",ExpressionUUID->"49f74264-7484-4d5a-b52f-d0892384e631"],
Cell[405673, 8237, 4933, 99, 175, "Output",ExpressionUUID->"26e2807e-1336-4751-8e74-d4414f081679"]
}, Open ]],
Cell[CellGroupData[{
Cell[410643, 8341, 1059, 26, 48, "Input",ExpressionUUID->"3bd71288-3233-4171-a393-57251fb3dc52"],
Cell[411705, 8369, 6890, 131, 180, "Output",ExpressionUUID->"203873a1-0dd1-4567-8d12-97eeeed127f7"]
}, Open ]],
Cell[CellGroupData[{
Cell[418632, 8505, 1358, 35, 48, "Input",ExpressionUUID->"39644cf7-65fa-4952-a674-714ff8619dd6"],
Cell[419993, 8542, 15118, 266, 179, "Output",ExpressionUUID->"16b2f1f1-4bda-4b9c-9a2d-c4721af32a8e"]
}, Open ]],
Cell[CellGroupData[{
Cell[435148, 8813, 1607, 46, 65, "Input",ExpressionUUID->"72bac293-cf66-40a9-809d-4d0874dae037"],
Cell[436758, 8861, 59065, 1048, 175, "Output",ExpressionUUID->"d758ff21-6281-4951-879d-9a8a224caf38"]
}, Open ]],
Cell[CellGroupData[{
Cell[495860, 9914, 1002, 31, 42, "Input",ExpressionUUID->"41ea287c-9ee3-4b18-b17d-5dfc6a4e056d"],
Cell[496865, 9947, 3476, 103, 125, "Output",ExpressionUUID->"7b8e54ff-34ea-444e-8e78-ad376945c6d8"]
}, Open ]],
Cell[CellGroupData[{
Cell[500378, 10055, 753, 23, 24, "Input",ExpressionUUID->"77ced036-93d3-4558-8eb2-1aeeb8345ed7"],
Cell[501134, 10080, 840, 23, 40, "Output",ExpressionUUID->"49c3b3ed-cf01-4c58-acac-6b3b7b9cb822"]
}, Open ]],
Cell[CellGroupData[{
Cell[502011, 10108, 1262, 35, 41, "Input",ExpressionUUID->"1dc20dd2-2639-4b38-8eb3-e39481c6a15e"],
Cell[503276, 10145, 71734, 1205, 306, "Output",ExpressionUUID->"ae6c01c8-9abd-4358-a6f9-fb8f033a8ba4"]
}, Open ]],
Cell[CellGroupData[{
Cell[575047, 11355, 1045, 25, 40, "Input",ExpressionUUID->"25d7aa57-46b2-4829-8aad-b00b9ab2ecff"],
Cell[576095, 11382, 1385, 34, 41, "Output",ExpressionUUID->"5f0c650e-d3ec-4a10-aad2-c391b45db45f"]
}, Open ]]
}, Open ]]
}
]
*)
|