diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2023-12-11 18:07:44 +0100 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2023-12-11 18:07:44 +0100 |
commit | 6be00219ef8e8f720bde88d7459cbd9c7bc9dbbb (patch) | |
tree | a840dbbc4339b0450eba98a930d458df14998822 | |
parent | 35f389dd892cffa997fbc67f9d1bc0aa2fb1564b (diff) | |
parent | 2e272507f5225227c477a4c1068cf72825106cde (diff) | |
download | paper-aps.tar.gz paper-aps.tar.bz2 paper-aps.zip |
Merge branch 'aps' of git:research/first_order_singularities/paper into apsaps
-rw-r--r-- | F_higher_singularities.eps (renamed from figs/F_higher_singularities.eps) | 0 | ||||
-rw-r--r-- | F_lower_singularities.eps (renamed from figs/F_lower_singularities.eps) | 0 | ||||
-rw-r--r-- | F_theta_singularities.eps (renamed from figs/F_theta_singularities.eps) | 0 | ||||
-rw-r--r-- | contour_path.eps (renamed from figs/contour_path.eps) | 0 | ||||
-rw-r--r-- | ising_scaling.bib | 18 | ||||
-rw-r--r-- | ising_scaling.tex | 18 |
6 files changed, 27 insertions, 9 deletions
diff --git a/figs/F_higher_singularities.eps b/F_higher_singularities.eps index e3d6a7e..e3d6a7e 100644 --- a/figs/F_higher_singularities.eps +++ b/F_higher_singularities.eps diff --git a/figs/F_lower_singularities.eps b/F_lower_singularities.eps index ae7d570..ae7d570 100644 --- a/figs/F_lower_singularities.eps +++ b/F_lower_singularities.eps diff --git a/figs/F_theta_singularities.eps b/F_theta_singularities.eps index cba0e16..cba0e16 100644 --- a/figs/F_theta_singularities.eps +++ b/F_theta_singularities.eps diff --git a/figs/contour_path.eps b/contour_path.eps index cb65b3c..cb65b3c 100644 --- a/figs/contour_path.eps +++ b/contour_path.eps diff --git a/ising_scaling.bib b/ising_scaling.bib index 0d0dc51..52166dd 100644 --- a/ising_scaling.bib +++ b/ising_scaling.bib @@ -254,7 +254,7 @@ month = {6}, number = {6}, volume = {81}, - pages = {060103}, + pages = {060103(R)}, url = {https://doi.org/10.1103%2Fphysreve.81.060103}, doi = {10.1103/physreve.81.060103} } @@ -377,3 +377,19 @@ doi = {10.1007/bf01210832} } +info: 'Griffiths_1967' has been autocompleted into 'Griffiths_1967_Thermodynamic'. +@article{Griffiths_1967_Thermodynamic, + author = {Griffiths, Robert B.}, + title = {Thermodynamic Functions for Fluids and Ferromagnets near the Critical Point}, + journal = {Physical Review}, + publisher = {American Physical Society (APS)}, + year = {1967}, + month = {6}, + number = {1}, + volume = {158}, + pages = {176--187}, + url = {https://doi.org/10.1103%2Fphysrev.158.176}, + doi = {10.1103/physrev.158.176} +} + + diff --git a/ising_scaling.tex b/ising_scaling.tex index a1c8205..5881786 100644 --- a/ising_scaling.tex +++ b/ising_scaling.tex @@ -181,7 +181,7 @@ use $\xi=u_h|u_t|^{-\Delta}$ and $\eta=u_t|u_h|^{-1/\Delta}$. The analyticity of the free energy at places away from the critical point implies that the functions $\mathcal F_\pm$ and $\mathcal F_0$ have power-law expansions of their arguments about zero, the result of so-called Griffiths -analyticity. For instance, when $u_t$ goes to zero for nonzero $u_h$ there is +analyticity \cite{Griffiths_1967_Thermodynamic}. For instance, when $u_t$ goes to zero for nonzero $u_h$ there is no phase transition, and the free energy must be an analytic function of its arguments. It follows that $\mathcal F_0$ is analytic about zero. This is not the case at infinity: since @@ -245,7 +245,7 @@ s=2^{1/12}e^{-1/8}A^{3/2}$, where $A$ is Glaisher's constant \begin{figure} - \includegraphics{figs/F_lower_singularities} + \includegraphics{F_lower_singularities} \caption{ Analytic structure of the low-temperature scaling function $\mathcal F_-$ in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The circle @@ -292,7 +292,7 @@ branch cuts beginning at $\pm i\xi_{\mathrm{YL}}$ for a universal constant $\xi_{\mathrm{YL}}$. \begin{figure} - \includegraphics{figs/F_higher_singularities} + \includegraphics{F_higher_singularities} \caption{ Analytic structure of the high-temperature scaling function $\mathcal F_+$ in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The squares @@ -421,7 +421,7 @@ $\theta$. Therefore, The location $\theta_0$ is not fixed by any principle. \begin{figure} - \includegraphics{figs/F_theta_singularities} + \includegraphics{F_theta_singularities} \caption{ Analytic structure of the global scaling function $\mathcal F$ in the complex $\theta$ plane. The circles depict essential singularities of the @@ -478,7 +478,7 @@ Fixing these requirements for the imaginary part of $\mathcal F(\theta)$ fixes its real part up to an analytic even function $G(\theta)$, real for real $\theta$. \begin{figure} - \includegraphics{figs/contour_path} + \includegraphics{contour_path} \caption{ Integration contour over the global scaling function $\mathcal F$ in the complex $\theta$ plane used to produce the dispersion relation. The @@ -835,7 +835,7 @@ values of both are plotted. Free parameters in the fit of the parametric coordinate transformation and scaling form to known values of the scaling function series coefficients for $\mathcal F_\pm$. The fit at stage $n$ matches those coefficients up to - and including order $n$. Error estimates are difficult to quantify directly. + and including order $n$. Uncertainty estimates are difficult to quantify directly. } \label{tab:fits} \end{table} @@ -880,7 +880,7 @@ Fig.~\ref{fig:phi.series}. The series coefficients for the scaling function $\mathcal F_-$ as a function of polynomial order $m$. The numeric values are from Table \ref{tab:data}, and those of Caselle \textit{et al.} are from the most - accurate scaling function listed in \cite{Caselle_2001_The}. The deviation at high polynomial order illustrates the lack of the essential singularity in Caselle's form. + accurate scaling function listed in \cite{Caselle_2001_The}. The deviation at high polynomial order illustrates the lack of the essential singularity in the form of Caselle \textit{et al.}. } \label{fig:glow.series} \end{figure} @@ -951,7 +951,9 @@ the ratio. Sequential ratios of the series coefficients of the scaling function $\mathcal F_-$ as a function of inverse polynomial order $m$. The extrapolated $y$-intercept of this plot gives the radius of convergence of - the series, which should be zero due to the essential singularity (as seen in the known numeric values and in this work). Cassel {\em et al} do not incorporate the essential singularity. + the series, which should be zero due to the essential singularity (as seen + in the known numeric values and in this work). Caselle \textit{et al.} do + not incorporate the essential singularity. } \label{fig:glow.radius} \end{figure} |