summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-09-08 14:33:42 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-09-08 14:33:42 +0200
commit194d0bafa2d2ede2ea86b2154d482489511116fb (patch)
tree74c8f52daf5b960f8a2069bcc3e9bf1805772822
parent5230844b8b9700841d16a26cf701762ab8934089 (diff)
downloadpaper-194d0bafa2d2ede2ea86b2154d482489511116fb.tar.gz
paper-194d0bafa2d2ede2ea86b2154d482489511116fb.tar.bz2
paper-194d0bafa2d2ede2ea86b2154d482489511116fb.zip
Cleaned up Mathematica examples a bit and started trying to implement a robust inversion routine.
-rw-r--r--IsingScalingFunctionExamples.nb3371
1 files changed, 587 insertions, 2784 deletions
diff --git a/IsingScalingFunctionExamples.nb b/IsingScalingFunctionExamples.nb
index b5b6bd0..ea6931e 100644
--- a/IsingScalingFunctionExamples.nb
+++ b/IsingScalingFunctionExamples.nb
@@ -10,10 +10,10 @@
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
-NotebookDataLength[ 627149, 11594]
-NotebookOptionsPosition[ 619743, 11465]
-NotebookOutlinePosition[ 620138, 11481]
-CellTagsIndexPosition[ 620095, 11478]
+NotebookDataLength[ 539998, 9397]
+NotebookOptionsPosition[ 534600, 9303]
+NotebookOutlinePosition[ 534997, 9319]
+CellTagsIndexPosition[ 534954, 9316]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
@@ -30,7 +30,49 @@ Cell[BoxData[
Cell[BoxData[
RowBox[{"<<", "IsingScalingFunction`"}]], "Input",
CellChangeTimes->{{3.857727185315662*^9, 3.857727193227276*^9}},
- CellLabel->"In[2]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],
+ CellLabel->"In[11]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "2", "]"}], "]"}]], "Input",
+ CellChangeTimes->{{3.8716222598767567`*^9, 3.871622264931773*^9}},
+ CellLabel->"In[12]:=",ExpressionUUID->"83b24d73-7cfc-4a2f-a727-53c609f967fd"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ "1.148407773492004`", ",", "0.9896669889911205`", ",", "5.088311186824942`",
+ ",",
+ RowBox[{"-", "0.011429456733838021`"}], ",",
+ RowBox[{"-", "0.172823989504767`"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"-", "0.31018352388662596`"}], ",", "0.2474537923130002`"}],
+ "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"0.37369093055254343`", ",",
+ RowBox[{"-", "0.021636313152585823`"}]}], "}"}]}], "}"}]], "Output",
+ CellChangeTimes->{3.871622265105771*^9, 3.871622307815116*^9},
+ CellLabel->"Out[12]=",ExpressionUUID->"db6d0977-ebec-4f64-a895-b2176143e8b2"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]], "Input",
+ CellChangeTimes->{{3.871621469605801*^9, 3.87162147052512*^9}, {
+ 3.871621790483807*^9, 3.8716217922994432`*^9}},
+ CellLabel->"In[8]:=",ExpressionUUID->"23bc2248-ea2c-498f-be5b-40dd4156709e"],
+
+Cell[BoxData["1.148407773492004`"], "Output",
+ CellChangeTimes->{
+ 3.87162147103511*^9, 3.871621526682054*^9, {3.8716217875635653`*^9,
+ 3.871621792592815*^9}},
+ CellLabel->"Out[8]=",ExpressionUUID->"108b1754-01ba-4ac1-8b36-cfe5355222e2"]
+}, Open ]],
Cell[CellGroupData[{
@@ -114,7 +156,7 @@ Cell[BoxData[
"data2"}]}]], "Input",
CellChangeTimes->{{3.857749259001082*^9, 3.85774927262074*^9}, {
3.85774951881236*^9, 3.857749541888072*^9}, {3.857749582534094*^9,
- 3.857749642863475*^9}},
+ 3.857749642863475*^9}, {3.871621938166548*^9, 3.871621938294367*^9}},
CellLabel->"In[4]:=",ExpressionUUID->"13ac0713-5c3c-49fc-a322-a9f53d13bda2"],
Cell[BoxData[
@@ -147,7 +189,9 @@ Cell[BoxData[
RowBox[{"Last", "[",
RowBox[{
RowBox[{"(",
- RowBox[{"DScriptF0D\[Eta]List", "@@", "prep2"}], ")"}], "[",
+ RowBox[{"DScriptF0D\[Eta]List", "@@",
+ RowBox[{"PrepareArgument", "[",
+ RowBox[{"Data", "[", "6", "]"}], "]"}]}], ")"}], "[",
RowBox[{"6", ",", "\[Theta]"}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "1.1483"}], "}"}]}], "]"}]], "Input",
@@ -156,314 +200,279 @@ Cell[BoxData[
3.857752444697954*^9}, {3.857752478098198*^9, 3.857752537396385*^9},
3.857752575268834*^9, {3.857753034125165*^9, 3.857753035115671*^9}, {
3.857792145892029*^9, 3.857792151035262*^9}, {3.857793200326879*^9,
- 3.857793202743438*^9}},
- CellLabel->"In[5]:=",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"],
+ 3.857793202743438*^9}, {3.871622315917389*^9, 3.8716223509177313`*^9}},
+ CellLabel->"In[17]:=",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
-1:eJwdW3k41d8TtpQvoSiRNaRIQlxFuCMhiUtCKCUUSZYWVLZIUZYsEUr2lBQS
-Cudj38oSspPsO9e+tPzO/f3VM885Z+add96Zcz5ProiVk+FlBjo6Oi9GOjra
-v+eO3l7P3G9GTtX/EtCjUlE4s6rmTr/zCAhWZ8uJf4wv3rRpWKyR6wS4u7VP
-H2ovKa6pbK0K0T8Nfb2e8WoMrcWhLEc2PnGdhdiYO0J1XgPFJnoxMr2d5/F5
-6nvB+unikJo/h3z1L0GH78GovwzLxS4T0t92ytlAYMDYjasJf4uN2CyvvOGy
-BZ1XrX/GbDahI9JhdKorV2FIcYZ+RmML4jMoi23qdIBqFzam0rsc6I/LAsmm
-yAky3j6OoKpyobmT4aP39F1AusPq7XvHXWig621uZckNfL4h7e02QdR6rfz+
-NrlbEDKoeKSVUwTlBy/yJ3O5ge0VJm/2jn0oXYh9fMrfHUyMjV8e45FEsR/2
-5h1euYP9MYhMPTuIgtTIfj5292DppHflj7eyyOu7iUFdpwfQ0amFc7+TQ85W
-ToJcp7xo8WqjGkno0sKjCYsib8zXkUwV7iMo6fH5Mnf9+0CSv2lfyKGC+FvG
-0gWZfUFUVPTY4yoyiuS/HVpW4ovzE3j06bsa8n8XfJ5N7gFoaAxxn508jv4u
-8h7PnniA8Rgap0VrIlfVtP0myf6Y/z/fv5idQHYNaPkV1yOYiPBqSRQ5hX5x
-n+rVqP+/vSNfQg+ZX2wvH/cPAE7O09w82vro1NzsU/mVQJid6ZNRHD+NKhQ9
-3Do+PAamc/1rdrvPIJX7zBc87Z7g+rm4ilsbIentIgeqO4NwPqPLjVxn0Wvz
-TE6H8GCQlz8jcd/PFAknK61ynAqB7M3KVyn05oiTZFhpXhQKkeTAz8MHLND6
-21IZN/0wKCrMaIgUs0KHG/9Lrs0IAxjfoX1FyBrdXNDjFmAOh3NZ/jbBIjZo
-Srnrd0lJOHg2P+pt07iCJCyFnXcIRoCEp6Hxncu26PKDK4OX70RAGfe3FJen
-dqjv23ztFrlIjF+23ZnpGuKjKqpahNDsBDF6Qwd0dqd31oeJSMzXNP96+nXU
-ZMEabZT8DNvFhaKqzqh0Zo9NPFc01kNehLTZTfS7c7E91z0aDNYjYfvxW+hw
-ZeWprz3ROH8eSU6F2+htnK38aspzqP/2rltazg0NPVR8vZUlBvPBGJSn6o52
-32Dh33s9BvIsWXUOGN5BkdoZDIYKsXi/R9GnqHuoQd7D1S4mFvdDsNDRag/E
-sltvwutPLO6fN8MB9F7Ia2nme0ZlHNZHuKGCjg+yS5JL3GzyEvNp1tci4IeS
-ghl3Cnx5idfXY1x++qFe99YAOaF4zG/cwYHXD5ChvqvzxZF4GI+4UFmg8xAJ
-/e15dV45Aet7eCqvOxAV3qzstL2eQOsnO5umx8h0PHPHzVcJoBRyRnHk6xMU
-0er1KJAxEe9XmJ1qD0bMGcJOeV8Twe+g+8TPPWEoVZjlTemfREjVl3xmXRiG
-1KOoA99kkvC6RG2XSTjyvF9mMhiRhPs5smgiJgLNn7Uhc5xPhhbxy3qPDKNQ
-aL2uO39IMl7nmnvBGo2kjivk7CtJhoTFmJTDtdHIVpppn6pYCq7Pkr6aYQzq
-2ZTObj+VgvVl/Sj/5Qt05+7TE7eFUrFejGdWPF4i7jn3+z4GqZiPxx6Gl+LR
-6e6TS1G5NDtP5rtAAqrKnuwp90jDem87ZL0zCX24IPNOkD0d96uX8eanaSjv
-Tfpku3I6bR6cvSf6GhUtihwIt0+HjZRoqez816jmMddbppp0XM/jvB4T6ag/
-b+31rO8bzPcZ+es3MtAI/c3RN9lvMF+32Uv436Ep3al9Nv1vMN5r4ttr3qG1
-gb7UDtW3OL/xtJb979H2bRXJpatvsV4+TJ0JzEK7zFUH74ln4P60sLGbyEJC
-qXmih00ywKF04ju/XjY6oPwm8e3HDKwfRWYnnhykYRvyKsLxHdZD2G25ko/I
-lTCNuzyUifOzKvC4nI88tjR37d7xHvf/0TLtgXzka3yKr+vYe9xv5ZWzlgUo
-ZFI1hvLqPa6XxqZe68/oNc+e6CPmHzCfp5ejfArRVL5r7Sa7LFyvQ23qbCXI
-yUJ+/JJ3Fp6fKh/0zUvQPMMcMxGVhc+nz9i8KUGrele171Rm4fOC1e91StHm
-oXPV06LZcIl1oH08pgwJcRyrbOvNxnqJZVZxqETvB0LC0GI25jPud1xtJYJP
-PRZprDl43hyz3CZRhSzN3ZdvK+XADYGzc6SxKpSc8kF857Mcml4Px9yuQRJK
-Qo/P6H7E+6/HJVZ+RQWsDibK1h8xf7xt2aRv6GTfZ9E9dz/i+6Xi/lDKN2Tv
-Z1w4//oj9vdh42NAPcqsD5oKY8zF9ZbzY7/QiOSsNihNX3Lh1WJ2O0fCd1RG
-Oslf8D0X5xuQ2dD/HZ35L3r01Vgu1uOZZyKizejWOzkfJ+5PuN7H6R6lNaP8
-5avZW2/Q7J+chnktSOVJxw69/XkYr2XyGPUH0sz91FEbnY/rP3yNp6MLRSnu
-S03Kysfz5MQDG7luNFIU5XKvNh/3f/2yWXA3eljptuXgRj7mB44oa/agqjYl
-lacXCvD8fxtUVtSLTqwVvzLZ+xn3t07v9sv96CS56spgzhd8Hxp56WYMIr2a
-tsXf9cW4/q6WlJkJZJi/TePgcDHWm9unveKTyCRNO8LidzGu14lQbstJZPng
-yyEkiUBTI0pErXkS3VCLd/R+hLC/K/vD8qdQVMHlMfpjBPZXorzdfwY5G61f
-ZzQvwfP1d99/nFQ0/zXqWdzlEtwPoRbVB6no1nH5YnmXEnxf6t721KGiO3IO
-bDYBJVhPFqQ6Pyry5eh7W5FXgvnymGpYoqJn30pH/XeU4n4x9Kxum0dfNAIv
-MdeXYv6Krks/XEQCO4+wxHSW4vvg0Khi0iLyGh7K2j9SivGVcXGjRaT+UI3u
-1L9SXH/2S8eXFlFd9Up88KEyXK9SPs1LS6hb50rP9qgynD+9+mfpZUTm53qQ
-nFSG54PcO/0TyyhhsvQA6UMZxk8cSr64jGyCBO8Z15Theeg0dC90GU3Vt/I+
-X6edf9L+dXIZ/TY4flbwYjmun3X0q2cr6III9W/mtXIcL3iT+ZsVVEKNTyO7
-l+N6V+/8UrSCHoSvL10MK8f1PcJ2eWAFsbVmRyaVl+P533lSef8qcky5qCLf
-VI793x9cUVpFTbfYh8p7ynH85Fo9nVUUufOq/PBSOZ4HW0nE1VUkcFa4WVyi
-AveXqXpQ8iryEm+4U0CqwHg+bxnNWkX9K/dETh6rwPPAxrGheBWlPG93tjev
-wPqZi1JpW0VMV/13bVypALa8B8Ilv1aRnZJ8yZObNLujoXZqFUl1hWzLDKLZ
-77iv0q+hkLcq+aoxFbgfpq5tbFlDc3cnLjSkVuB+drdg51pDhqeeM13MocWP
-1nopsIZy+bXez6IK3F/h99+IrSHuqQVjn68VuB/zbGWl1pB7UeIfjo4KPF8v
-n5aVX0NdQfqpiUMV+L7liHqttIZULf7oylFp+ekGRcIa2lexoBPwh4ZHO6tX
-Yw1tPTCh3cdSiePbmcSfXEMrYf1aJO5K7P/LeKveGupfbdN4LFpJi9/qfXoN
-1V6sV++XrsT6Dvd5abSGcqrK1Q4rV2K9ZJpInV1DcQe/kINOVOJ5coCQNFtD
-DyKzVAbOVOJ5+Vkk2nwNXd9IO6poWYnj2ww7nVtDJlYvFUMcKnF93zh/xDa5
-NuLwkHslrt/N/ZbYFpd9TDrqX4n7d//tW/g8R7SP3NOwSsxfVsGM6Rpa/eMq
-O/KyEuvb1bTeZA39srkurfKWhselYCvGV/fVWio8rxLrU1ol22ANfZQzlxwr
-o+1v1vqou4ZexBhIkBsr8Xton/IObYyX7sS+yG4avuf3GtUxXltVsYlRWv46
-9iMqGG+DvKjaYiXud9arJocxXgVJ4Si6Ksz/9U5BGYz3hbDQFFsV1mO5gLI4
-xsvII6DOW4XxSkW+E1pDa1fZ+Z7vrcLnoxOcd66hgSbGXTOHqnA/fk3yZ8V4
-j6zv1CBX4f65uTFOh/HGz+2I1anC/PGyvlhaRS82j3LOmVRhfpXlYsdX0QOH
-3m1a1lVYjzrfB3pWkcnROtb5e7Tzg6u6pasIEktYtAOqcL6m6tdyVpEEc/5/
-8ZFVuN7x/vVJq2jtRzKjTibNn77H2furaEAllj7hcxXwODhR7zmtorrkp/+W
-Kqto3xODvedxfBfPjcS+KszHauUZhVXk33FzbWWiCtdL8I6NMO4/sF/RW6mi
-1Vf23ZZVpMZ+dmFtWzXWU4hCV88KGkyXnTx9rBrX55Gbn9sK+rZNfPy1XjWu
-/499u8+voFxXwdE/ZtX4fn67NgQr6KHGlsE3N6px/QSSxzatIMn+wS76lGqs
-5yTT5AfLaMeJro6zWTT/AzetrfA8yWxqyyyqxvMPltVgGdXfK242+0Gz9/fr
-LS8hZ57oumymGjxfzmn7mS2hjx+pgfLba/D8C9/TKreElvV1T34SrMHfI76b
-jFmXkEcAfU0BqQbHE2369XkRBaxdqySsajCf9oGb2BfR12dVD4451uD7myEg
-5+cC2ionolF+p4b23oh4mL2AIu3byqqe1uB5tTYWZ7iAErvVSuoRzX+Osdnj
-eTTkFuetX0dbb/ffaTKPJLiWyd9/1OB825hnhOfRe92M4tapGjz/h8mzH6no
-S/HOwm6+WsxPiRxn4xxqfjXxady1Fs+n9+Jx2dNop4rm7Wu+tbg/c7c8ODCN
-TDtekaaDa7E+Qlx9kqdQH4fxx7mUWqyn1wwZwZNo4j6RtdJci/vLWi9QZxwx
-2ERmbJapw/mcVw2wGUKadLP2j47W4XzVTqaiQRTw4qQki1Yd1vNY0UfuQbT1
-x990Nos6rN/Qby9KfiE+ratpO57U4fitM43LvUhegpwoMlpHe1+JX+ZuRiaC
-b/vjFmj2+NCOy03IfTu3MDfdV5zfh6faFvUI/Z6O38L7FffjgFCWTRXS+f7y
-xYLOVwgddHf17/mALO/+ia58/xXrVeRRY08V2c/pajsUfsX1O8pAHq0jp9n8
-4P5S/RXz4ah4/XcDeZKS+ex9/1d8Px58/iy5hey6xyIievs3rBfhk64yPeSg
-b0UhV12/4fqqr58VHyV/KJVoGPT9RtNDXrnxGLk5L5L9Qug3jFchc+3hOJkn
-0SHIMP0bvn89y2qpk+Sk2wKPlbu+YT6CQkNvzZE/C3n4s5Prsd5Uj7d+WCKP
-OCt7ZG9uwP1j9CrnBR1Yx7F6nuVswP3SUx22Sgf9ld2efwQa8Hsp8Pl2Y3ro
-4vPwPklqwHjPOq5tY4CGiiLfX1YNGN/5AxbBjJC/ixzIWULzF7Pkk8YEASVq
-US53G3E/mv9cPc0Omyc5onkeNuL4rff+K2MH352/oovDGnH9m3jz5LaCh/39
-GJY3jTh/p9T5ndvAmavsRWJ7I/hlkuqpLhwglZv43Y6vCST+bOR/pmyHncx7
-Op67NUFq48idt+rcEGX3wY/i2YTjb5cS9+OGXbXKMpv8miASSZCmyrlB4LHR
-Q6eQJhA8QedG0eIBMbaHJK3UJsiQvDp2nbILSBzjTxeam3B8L8uRa3xguOvD
-SYr0d6z/v4nrnUIQKqFcyDj8HVK3WTwsVBQD+steCV4uLeCeT2wc7pWBQl3t
-HJfBVkjInfs9FKsAdcLP0afxVhyvoHAqRwE6Fkfr1mZbcT0WX03UKcDyi0eD
-93+34n4zba1eVwC56Squ8J0/sD59aujMD0N6sKZbzokfOB9nN3nuIxDZoK6y
-kPEDMuo2Ttf7KUJyUrj2kZwfeJ7JHOaLVYQc1wGjewU/gEdX/7dRliI0Cvle
-Z6z8ARLFXnsiehRhi1Np/I6+H3BOtjFMkqQEPtvU6EkcbVgvz6Ke/FSC6waq
-VbdutYGSNGVAY68ylDhle8bdbQMeKYMxF0Vl2B66V6HMpw38guU9/E8pQ149
-e8q24DaIvCBnctFFGf7q9N1/m9oGock9O9oLleGpprdqf1sblJnkbEk8pQID
-NguLTL1tUJ39UJjPQgVID2zfHRzE/qafUm87qkBHmT7/vdk23O/XW1ufqoCI
-mvDaTuZ2/D6y37q/VQVyjpbmnlJqhxu/xSgrRqqwyVzB4Qa0Q3alpZiPjSqY
-3HmzJ0azHTxzTjCM3VSF9fyw8JHT7ZAx4T59JlwVjitYOd+3b4fAmrsKUfWq
-0CrDKJUf1w48786XhKuSYZ++22BvYjuU5S1rU3XI4O44GbspvR10wEz/gCkZ
-BDNbWAxz8X6pd2uyN8hwRTJldOpbO7ivRNd7pJBhRUwzWfRvO3CGlTmN0gMs
-X7im/JOxA+qlTstKsGH7eVhLHEsH1oOwrhY3wCJbH+POnR0QGf9lhlcSYH7R
-1eY/qQ7Q3NRlzmcAQJV++bv8UAeed3ucjpkBzNmVR/oc6QCHY/+eaVgBzPZs
-q1xT74DQ8sK7fTcBpirS906ZdYCnnKPW+WcAk38bitMvdoBBF3/kxZcAE4pL
-xpcvd+D67y1QTcVj9t2xh33OHZA6u3U8MBdgJLJrpOlRBwRqW5ZZfAcYbqDz
-Dg7G/v1ePJPvABhiFufRieiASweAY7APYNDj5ony+A648eKsXcMkQL8NW/qn
-Tx1g23baaJxeDX7Gy6ndKMT7Jw/2FmxSg74O0w7p0g4Y/6j55tZ/atCrm8qc
-/g3Hk+CuzGJTg56HXxNsmjtAQ4xjXnYbtkuoiiIdHeDeXiPwklMNukjkq7GD
-HTDkriGuxK0GnY429GfHO+BVytFhu11q0JH+OGbHbAdkXzaxeMCnBu0C7bVB
-6x1QxF+g5CWkBm0mfy6dpOvEfSTheV4Y20/3rG9m6oRz/VxK+0TVoHWTs6Q3
-ZyeY7NzWdW+vGrSQo8qUeTpBdEDj1X/iatDsXmS+KtAJ0umaL70ksJ0zMJ8r
-2gnu0bcr+verwfcp5icuEp3gcNpss/QBNWjaJ7NHWroTBP+LMrgihW1L48IJ
-+U649JUaFXhQDRpj7515rdQJPB5naqOl1aChNXHSGjqBib+846kMtrfW+Alr
-dsLS+NW8W7JqUK89w9+rg+O5hZ85fkgNvvly5cYYdEII45vE3zS76KiuiQnO
-x1k5PEFODb4uWw5tP98JSo5r3DLyalAn+8ij8RLGV5orkk6z7TO5gmw74Ybu
-pRRWkhrUprS8076O91N2hplhW/EJg//9m5iPJa/4Z9hOdzlk8eVOJ+iEftlb
-gG0eU0uFBW+M73PYzlJsPySHsks97MT9+/d8FraXxNCwTVAndMxLTvpj24Z1
-uvhleCfEvrnx4Ri2W6j8UW3PO0E++VLMIMaj3qHjuO0Vzu/Ip+fXsJ2N7mhp
-p3Zi3Z1/2YnzEU5NF7qfgfk75xp9ENtPn7Qvf87GfCmbuNni/P+5MDXO53eC
-Z5L3wUeYL0dThdcHEMZLpL8Nwnz2kW28bSqwv11ffrphvvX2Rpx9WdeJ9dpQ
-rI3rUcRaJtPWhPksJx3+h+t3YH7uv23teH+Bw9E4STWI7djdf6IX70+TLBLA
-9XZP9Xz6ebwTYI2ZrgnrZfTJO7v52U7IfhaeRi+mBiY3utUOLHcC2/KtiF1Y
-XwqgRH3B0AX1706zLguqQcpeu9ofzF1g8szYo4hfDbjYohO3busCnQ+V/2x5
-1WC+Y/G0D38Xvo/U2By51OD9jawca1IXOFCfTZJY1EDQ7OfjF0e7YKnWJ16U
-SQ2CYKv1D7Uu/B6Y2rzEoAb2bA47Tuh1gWbFs5DQVQDxNPFbkle6gDPbeuRE
-N0BUkImutUMXeG6/ou/QAsB001/sxY0uUGoI8zH7ivsdBlvZvbvw97/gQvAX
-gITOeAVqdBcUbegcsYgC2FZSzy4Z3wVsUd2/K4MAvNJ+D1uldOH7lLJ5xRfA
-4qZ5VGtWF75/fFKyHQH42LlX8msx3vGzLx4dB4hQCy7w2sD++AtHMwbIkHXM
-0UWPvhvceey4brWR4Zu6vqTAf92Q6jSyg7WODJs0OV983t6N+2P8RmoWGVxP
-PvNe3N8N9UEk3if3yGBq+FLL3rQbz2fKVW5mMtw64/VP8QJe/0Z5UbuqCk+N
-Lhb8Z9MN50qM7E6Nq0KtiYhkqlM3zmdX7ZdaVTh6LpW9/2E3sFVFZ2kHqIKA
-TWar8SeM50S+kehvFVC8HBIsVtiN+9n0MTGuAkZXnLQWSvD+kS3uB9pVINju
-UMHTb91wwyEp1ClbBf46fIr7OkiLx67/xloF+m8XWx3b3gMGkrKy40gZUh/V
-z0k59cCQ3XB3r8FRkFPIH3e73QN9er+sjA4fBTSQMFB2rwfYDp8LD+c/Cm2q
-t1pNA3pAyWu/6pVhJWBa5Ct4kNgD1d+tBa+7KoGdpZ13T0sPZBsPOLKHKIKk
-EuPWIMVeMJggiRhFHoa8kSmmdnIvvk8/+szdOAzqkW3/RDRptjSd6enDYD77
-hpp/Gu9/3DIVwH4YnqQa/Bi07wW/XgZXVz8FmOKMf6H8shd4gvQeJl4mwYcJ
-xQOT9H0we8HnrukmOfAa1GrcxdyH62WmebH3EFB6jG5qbe3D9+PMfsW8QzBT
-71yYyNcHkdLG65a2h0AqO/2UqXwfeM4fGYyoloV0t10OlTZ9UNZ256vhP2lI
-2LT67lV1H2xoHFdderUfwoTypY2Cf4K0KeuM0jI/9P61+MDn3Y/fq5ENhy25
-CMfft7V3nPgFQ1khs4845Ilk/e8r1fQDkGHuugU/E4nwAWHhlE0DEBgSlq5I
-p0b43HbW9vlvADgT208f2KVGXIjbFqPIPgCXzn4j5k6oEbtG9Y6+2TUA8tFS
-TatpakSQV53HY5kBGHpfeWjI6hhxK7OcXs9iAJTaJg9e/K5OWKntkNxvOQA6
-jPabfoyqE6dbrAw3Ww/A0i/9JpW/6oT0Gn1ysd0ApC7c6/4leZwY01DTkL41
-AB1P1eu8/I4T53uKHm57MgBld/zfTh3SIDRY81ibCzC+r1dPDPhqEvaLLEZT
-hQNAx6pxRThGkwjrtXjBROD1w19kdD5oEn0fNh9UrhyA2J3rWpbdmoS7kTEl
-5fsAOLhSpCPktIiMl4tPXScGgKlyNWqtR4vYLivPzS8wCKm6w3Z/hbUJRd5H
-FxR2D2L9Kv9wJ2kTFxm60/RFB8HgvblZ9wlt4l2r75EHEnh/vMgxU0dtQutO
-s+k0aRA8vTVLpb9oE3fLXOIIvUGo1rBNVtQ7SfwyyhK28cbr71R+8FrqEBdO
-WZid9B2E7Nv0uwyddIieY1vCpf0HweT54N8bXjpEm7QN49rjQRC1vevq+EKH
-qGPeNRIcNQihWXPqOu06RE6Rd0Z+5iDwtBreeqR9ipD5KDX0ImsQ6hNXbqub
-nCLevekU8P04CHTtUSLD1qeItCj5EN3Pg9Byk0f1l9cpItZ51PlXxSBEflZf
-y/l4ivAV0z/M2jMIgd+LX2bt0iX+8f12nOvD+Vldrf4ppkt4cL55/ePXIGxM
-fK5YktUlXP8y8CaMDoJEWiZLm7YuYd+Rt0FaGASH/FfOV9x0CcMgodILW4Zg
-Cc7VFjXqEo2+X9eOsw8BqV+w+kyXLqF7x11uP8cQZP8tGWka0iW0rjQnL+wc
-gj5VTRvPNV3iqNrDhwEiQ6BzIVM3XkSPEF2cPpWjOASauafmVhz0iHa1Vyk/
-lIeAk+3DxwxXPSIo2ODPKnkIirTPOar56BHL+z6+B80hYIuzTGaL0CPqzNw5
-608PAVOvGJtMvh7hnbbffs5oCNzHHALGCT2CtNBVtsN0CC796st9UKNHxAep
-3jK/MAR0/P5/z3fqES4EQ/uo/RAM7Wb0jVzTI/ax5cqwOg4BILOMM/QUosv0
-coC0C8ZrlqCzwEwhNOarlW67DcGNPbnfW3goxK69wS8YHgxBdZvieV4ShSh5
-zGMl+HIIOj/H92ZfoRC322u+qCUMgafVSOdtBwohKXZ3h00yjn9d6y/vDQoR
-WdxT8fYNjs/Vm8PgSSHs5hLFFfOGIHDQ0ds4jEIIqp7xOfd5CBwcBJ34oihE
-c+CmTq8ibI8dvEnEUgiVPbaPK8uGIG/MMudNMoXgMJGaNmzE9RB+Mf33I4Wo
-TOrVdG3G8a/6XazIpxB3Z0PiY35gm6Wu72ohhRgKoOr3dw+BaOvHzcZlFCLm
-R1I6488hKPu9kBlbSSEookb04gPYn3W9TUkNhSgozMu5PjYEG0zv6d81UIjr
-zHasYZPYvjk47vKdQoga89rkzuB6WG4d5mmlEEEz93ZuLOJ4J6r4NnVSiGPK
-Bx2FVrG/BxxmOt0UYvlRX9WxjSGYjanLdu6lEBdFjrkH0A+D+6BkkcUvCpEX
-8WDfy03DQLLkcRIYpBBsTDWt2f8NQ+xtBseiIQph7c7qV7VlGL/3+wtVRyjE
-lwnKoW72Ybhk2nwuYRTzYRH+c5YDnzeTOD00RiFsG38Eb+IaBqUDF1+xTFAI
-dIxXhZcH21oiOhyTFIIr9/zEQb5hEA3WMl7F9rV9Cc/VBYdh42BrRekUhSh7
-Pqh1VngYTJJ+v3CYxvVnFV+6tgev++8eWMW2k6d9ss8+HC+s9vmVGQpRNZt5
-+tl+vP9ubuUnbAtYUf+9kRoGpl9V10ewfbOV9B7J4HyUuaJWsV2n5X6+RW4Y
-pEt7jk9hW/hz4ZYxhWEINAj2KMW224F/Bb8VMT4TQtMd2w0v1W05VYahpUwx
-lQPbYhwPd+4DzEfPZMJjjOeeb235UXXMx/EV8gjG37zIdkNfcxjYSlP992Bb
-wtZA2EZ7GPyOOd5Tx/l6d0Y0uJ8aBp6shX3HMT9tp9o9gil4fWRT6N5xCiGF
-+A4kncb+n7z4Mo759ZO90JlnhG2GX1mhmP+upMRHX89iPAZid3iGKYTszmGF
-fnOc7+Ig331cv0ePJIYWLYYhcqTm5TdcX5LDBzUhm2EwmPO6wtJHIR73zc/I
-2Q5DPffdonWsj18Gh1+esB+GvFszOxqwfkIUitecnYdhyM9pnO8HhRh+TZfu
-fxPzdeuPe2Qz7gc+DZNY12EIbWY6ONdIIcb/1uWUe+D90lbilDoKoeay9VKH
-9zD0cQT6GFRTiKjB09umfYdhab11j0IF7u+ajmvcgRhPuJFzajGFiA8bEbv6
-DO8Xtybv+UAhFhklWzyfY7182NiklEEhTrlevx8eh/nSHLY79JpCrJov9hYm
-DoMOMlSoi6cQZ8QYore+x/Wl5xZ9GUQh3kZpau7JHoYbI8921D6iEHQsgQtH
-coch1bHtX7svhXg/vc3g0pdhyLDUX493pxDM+YIsuVXDIGjc2N1sRSE+Hf7y
-OqJ2GL83A1/cs6AQVnkmWje/4fzfgRurKYUo/hTqJ9eM6+00nNavSyFu5NL/
-zeodhqLS2wesFChEd/bwfObiMNiml7N+w/Mt4JBvWPDKMHgeremYXNcjDmcL
-yV5fx/ZhRq+FBT3iadbZ61J0I5DhGPzgy7AeofGhdvQt6wgIBvPOSeB5+v5d
-Zs9rUbyuwckWEaBHnJPSufdo7wgUdQe/OIznNfO7EV5biRHoc7L+WeamR1hn
-7D67T3oEdM6dzHt2RY/Y9Tbse4rSCH7//NHcd1yP8H19uyrRYARst1Al6FZ1
-CeMk1aw4rxH8npFb2Xwa3x/ufY6f7+P9NuJZkxq6hDDF+2D7gxG4UUS5UKCo
-S0yslbzd/mQE2BLmF5iEdQmv0xqpgdEjoOR70/ve9Ckine5UrFvWCMhnc55u
-8ztFrF8wfXBmYAQSPNyfr8frED9Ja+ouwyPguZ4cNxWqQ1RsiaUPHRsB6ST2
-mBofHSIkr9urbmYEznFrTpCtdIg9Wy/eObYxAi3KGqXiYjqEbvFlRxmuUaBj
-+m5Ln3KSiOe/acqqNQru+99fD4/UJrr+Ovy3qD0KEr9U/+x5oE1wD1zJ6zk1
-Cuf+Fhum3tQmgtPNud6fHoUhjVfv3Ay1CQ8F9SYDC3xe+exbi23ahJk+p3bU
-rVG49LnS4fjDEwSX34cjIsmjEMJZEyZ4VYt4MjHJfYRuDIoS+XWvMWsQQyIz
-SgV5Y8C0w2Jf6bgqoTS6+UKpxziEsM6yc1yWI+QYLj1/qDABEqrdYrtGdxNt
-FZT614oTkP0pd/C20m7i7iMVhlrlCTCpZC0XDhIiStl2ObCqT0Dgrgj6S3KC
-hAFPIzylTMA5H27JRF8+wklKdTTGdgIcsq2Ev8rtJN6Z8B7OjJnA7/f2B5OZ
-mwnxjO8tLX8mwCD2qtmgET2I3tu1RtBNQsvrjQ8v7BlA4NRFoXeMk5AaWn3M
-z5sROCan7B6wTEK1i4lxa9pmWJdk/kvaOYm/n6+rOEyyQMNbskSU1CTQNYVU
-tOzlhFtvMzxMz00CUxxYCRziBce784kaFyYhgWuifS6TF67qKFXLXpqEjaEF
-BYokH1yYqOJksZ0EwdcFe5JE+OGE5EDa5xuT+PtX5WjKFkHge7vrO9/jSfw9
-Yv3mp5UwlLzx39tbMAkGN86+W5jZA+dfXUj4UjgJbFslFnzFxGA18gj/czQJ
-Idd21bSYiYGszzjHmQocX2U59HO5GCSY6P2uaZyEDJ29rWGRe+E+486W3JFJ
-/D7/Im8qKQ7qFik+QVxT+L2vlXxlryT0GXpuXOWZgiHTVrkJQ0m4q23ieoJv
-CpiO80cd8JGEHHlmBwbhKXC488NttFMS9mxxOOt+YArYtF7xH3t8ADbly0vb
-qE+B+6PG13Z9UlDJUd6t7DwF2QcLTeiNZCD2fILr2ZtTsJEy4qHoIQOO6Z6c
-N12noGiSn3l3igxwqymeeOsxBZ5dBWzr8zJwxSkzZ1fgFJgca+a8qSULTA3R
-gUuJU1D/4o91ZYcsdPHeFuNMnYLZmfRm0wlZeH/ZkJBKx+vPySHlG7Jg8odt
-yfo9xrNDo1tI6BCkSflaNn+ZgpDX22ymLA+B1hOHIx9apkDQ6Wh+f98h4Gs/
-2VzXNgUGGuZ3R6fx95Wo+PWRzimQzlm0qvx9CKK+/EoS7Md8HTiSzMQnByPj
-JluDpjAfa3WD8YZy8FD72LDd5mmofhNKES+SA/NIIZ8HzNPAdLOYSKiRA+n+
-Db4E1mkQ/d3mQG2Vgza3PIN2zmmYXW0J2DUtB/teHyjSFMK2VfQRL355qNrM
-HSF6ZBouXdLLy3CWh7kLukIsR6eBk5Erc/6OPPAX+L6ZVZkGjX4Ge24/eXC2
-nyWK1KcBkrkoi5HywNdYM2VCwfEaTjhtyZcHDYl/bqqnpyFP9KSWIiEPTvcV
-GMWMMN4zMTzHq+WhQj6Jl2o2DanHk6pm2/D683taTy5Pg+1Mg3TaojzEUrO/
-u9jh+EtuH4o28H6dsfOm16ZBaYLDPouBBHx/jG7udZkGiZYTWTIcJKi4JJ1A
-eEyDA/+R+yH7STDzxeZAmjfGyxTUFCpDAl6uuLwgX+zfvTvFUYEEjlX/1ZsF
-TAOdlt7mSjUS7Drwa20hYhrY7JPqfxiTQP0Bj39XFMb3MvtahTkJrvfqcZTG
-YP8F/MNPL5KgLPTLvpBX0zD06snzcjsSTI/NZd9Kmgb5Ja2J/dexP3Vx1XOp
-0yBNqtFydMHnFyPOSGRMQ1+o6+mwOyR4rlfXt/U93s9ZssvZE/tLo7NfypqG
-cxRmwYP38Xmz6z5ledNg8BRxqAdgPDnJrG8+43oxZ/LFPsH+WLuiQoswn6kJ
-UU0h+HyxVub5MlyPXj/+zkgSTHF7Kh6vxPksm6tlRJOAx/lj+f4anE8547bz
-sSRwEBXuWq7Htq3foNkrEkTdM7nc2zQNkdwpTK8TSVDaGjRX3oLxJ0hubUkm
-AfejNaawzmnw0xthqnlNArV+mXC3nmmIXarmDntDgmtKVwQv/MTnv13WVsrA
-/sJfpGsMYD38fZhR8o4EJZPN8geGp+FGDa+B+HsSTGqwEJxjWK/6ylrXP2D/
-8aCzOoHxtxyKD8/C/ldu/+ibnqb9f7VddDb2b/DOsnJuGtzLX366l0OChn8j
-rBML02ByUtiX8pEEsh9E8reu4PX2BYMNbEdcOG8lv47z3z59xDeXBMvs0eym
-fzAebkG9QWybFn8v8KCbgZCI5jShTyQodGCzSWScgaL8qHMkbAsJnNhWxTQD
-ZUwyvmLY9vl6/8sEywzQlcQdmsXnB+4WXd7GPgNK+/jvR2JbU3KFg8QxA5HL
-YgFc2E7vPFRkumMG+modLzhhPFsCHWw9uWfAIWaUPxXjd1B8vT2JF9tXv3R8
-wvk1jv4qrhKYgQQNSmYizl8uWuDq5O4ZGHqumWOH+YnUOsvFsQf78/ekY8X8
-LS+FEaR9M5DayJ4dgPk1S/1mb7Z/Blr8dHp/vSVBkdF/3F5SM1AvVhbPjesj
-tEm9NEkG4x1R3SaO6+fz0cOhWm4GdH6WaO9IJcGgVT7PlMIMSNsEXe5OwvhL
-pRwVVGYgloX347+XGL+LLa854Ph3PHnPx2H9CSdVeKnPgMRlp4bI5xivNw9/
-jTaO11oaFheO8UobVk2dmgGNlOj2q6EkWOkNcuHUx7bHcBdXEManwlBjbjwD
-Bl1nntD7Y3xTKje9TWdAPuOzy3Gs//txbkIp52ZgtkEkwAr3h9b61K3pS7he
-fgxfFG+ToCm/XcTHcQYEiSIXbWsc33Z7fYrLDHi+teJ2u0CCZ9x67rW3MB//
-TXX5mZHA/HZZw/Z7M8DzrRkU9UkwJJd5L/XRDATOPZ/YpoT9D4zuq3s8A7ZC
-V//KyZPgTZho80zwDGwYHZZVOIjnxVy0hGIk3s/B6NIuTILVTN8fdQnYDtDa
-Es1EArb9pjJzn/H+xSk74W/ywPFXTJapeAYy1A1221fIA1cLVVagZAaqOU0V
-oorkQdDziZx2Fc4vJJgl6p08SH9HCgnNGO/KQSHFJ/Kgf2evisEk1mOc2prY
-cXkwosyrXJmZASZ+p32pSvJguodQ9aBifabVzrDIyoNlvSmkr8xAh2/GyH0B
-PJ9FgtTpNs3Cpcmdz2QW5SC8dl47S2AWDI5eiU2Ol4OoeOJk1e5Z6GNnsfWO
-kIPYm0E6PaKzkOokqKweIAfJgvt0mffPgqjh7jhPFznIdTHTt1SYhaXASx8a
-1fF9wltizEGZBcH2n5c3/zoEvPbBVs7eszC+J1NkgO0Q3NL9eOa07yxE/nX+
-3v9PFhqkOzXk/GdhVvrVjYZ5WXiwICa++HgWYJxDyA3fr3MeRZNuUbPAWVp4
-iCFZFqpCJ295Z85CWdTrG8IKsnDj08lHId2zMFTwm4H3pTRcpmM0aeOfA51X
-LrwjxZJQuF3nXoH3HDgc8zkk3iQCWZ9YPQ7enwO/g/V3t30QgRTTeo8k3zm4
-9GR6nT5EBELiDbyC/Oegmiq1+T9dEbCUPHvf8skcSHgW/YmtEYbN6jaPmKPn
-gMdh6pZTwG7Qd/GKMH1PW692Ph7KDxpcapH1H+bwe0a2YMGAHxTz6Z+pZ8/B
-uazJnvrt/CD650GUVO4ceDYvqzNE88FiwJMYui9zMBHBt+SRyAsxCc9fpVfO
-4ffEf83qBA8MNuZkrPbM4feKZ9Y+US5I91c9e6VvDvp6jRnOTO4AR+Uahtaf
-c1DGHX7kc+4OWE3rNfswMAevFssPKWjvgK1ezMxXxuYge/O5a6su2+Go1AWb
-loU5aBGPl+D4zgHhASyC77dQIVV/y/ZKH1YwJUfW8LNR8XppkuoeVhBcFLoV
-yE6FjLfka8ertkD6RdJXGw4qOJSu71hj3wLo8MU7/NxUMFj3kBRMYYaJodwf
-ASJUGFJkOFM6uRmOHbMMsVak2UdLoifpQFR0+uScEhXo6DgczsTSwSbGu5s9
-lam4X2R3V56kg6qKCI8oMg3PgFa08T+yrna1fa0Gbb/zp7aJ32RTfekTMqep
-+H3M9U3WfJV8VLaQociQCibG/qKRDStkfk5tpG1ExfwrZ9tqrJD7mi8pWJ2l
-0v4elHKRtEy2MXm255kFzX9zTPDeRbKTxe9/61dp+aA7ubpzZANyYOGja1RI
-WPzsxpo1S5bbze3GdZ3Gx8Fx/9oZ8mK/zMxBZypoaqTY/d00Tb5rY91j6UoF
-dzfb9t6X4+TzmnPR025UrI9LwsJfx8iq+zzP3L1DxfxP5spujJLpxqLqIjyo
-WN+DW/KtR8gPr9UVVPlSQSlkB7e0ySDZTvfsrTMPqMB0rulzQcwA+eTBIZl+
-fyqMR/RJb+7/RWab/ZO2FkAF6Y7muJ5b/eTwG4eeSYXS+EvXSfPqJr+889wl
-PI5K+/v6QvuM72TJX6dTN72kQiT56mfVF03kPG3WTtd42n7tSYM9jeQmHi+1
-c4k0f2UHnLi+khnyrLeJvabVM+W/z9bl5FBBweNR6VTQ0Kgw4Q8pJQv4t7ky
-v6XCDYFq0pQvQVYwOtk39Y7GRwVp3r+AbDcvnfkph6aXtwcqS9PIS2Zj/eK5
-VNyPi6GURwlk39JErthPVNrvE9Y//owkxz3l8vAq+H88mae2l1GD9LrOCUTj
-69zxtuOv0bmoj16fCVp9uE/qXn2Hxv445BwopWL9W3AY5GUh+vqfvBwV/8cT
-n/7wEyJdqxzrqKXpxefA0nmESpu9BE59pemvYaspqQRRjioaFH+jxaeqDh8q
-RbYsGfmJjVSIjYk5dYCrHC0620zu+E7DMxQwv1qOfDoEdz9spuL5mUl++KMC
-xb5++tD+B00fJx1kXauQ+DadLz1tND2eLzY+Wo1yXRlnKB209UC4vFyN6jVd
-jeW7qVj3A4GXTGqReaZMYGoPDQ9lwWK9Fo1wjRfx9NHWrTqto+oQ3dA5sd/9
-tPo7D77L+4qCT+00dRz4P58ddMrfEN/Hhif9gzQ9ei56539DaXwBhOEwFc+T
-UQF5qXok73tsoWKEpr9jt/bE1KOS8fV9R8Zo+X02N/9bj3RP55q/Gafp/8vt
-X+caUGfB9RD+SSqQ5Ftyy7Ib0BVh8bLgKVr+FWeZ6RrR/KP+pX/TVDy/Ls8X
-aTUi79mY/Tdmaf7pXSf9GxHb2TMWQ3O0/WIKr4ob0XPEFmYy/3/+pwanG9He
-fVUVNQs0vrMHrVibUE6w9+rRJVr+Qp8kBJoQeUlRKnOZ1p8dGyf3N6Gv5+cv
-7l6l4vm3Nbhergm5jicmFq3R9velySg1IWHX04NmG7R+YbTbo9yE6hjo9678
-psJ6ysXkj4pN6FZo1pXIv1RYOvkve/JQExISsEw/RDeP68d+r31fE6pN3zbR
-QD+P+2G/px8P3q9AHHBgnMf9MtX2mxHvL3O8zrJ5nvb7pldJHY2ohiL0IY1p
-HvP9p1oosRHd7K6fO848T/t72aigS41IyM5T7hfLPK5fEisbH96/KHXLi3Ue
-6/1WPaprQDfu93ziZ6ed9zxac7MBCW4NWinYOo/z2eqvtxOvi0/eXeCkxZPY
-ba9ejwRyY4ue7pjH98GFEuOGb6haTefvwZ3zuL9sdl458w0JmL+5b7drnvb7
-HeG8k19R1Yhp+Wa+ecxXw/PzhXXI+Sbz5mR+Wn61vkv76lBlkG1ArxBt/4LP
-+FQNcublqbsrPI/fz4Xk0hM1iC+tinWX6Dyu56+NBy+rkSOxN9Rw7zyeB0my
-U0er0K75wWfVB+axfjr7izTLUZlXRLvNwf/7d7XyKUPXWY/zMsjQ9osyBRaU
-ojKxpBcqcvOY/1n7GdES5HDWMjlb8f/8jRl1fEbcQ9uGKUdpdnFalGoBKnUm
-9k0p0+IfExROzUPcj4Xe7gOafxaFq94fEVHUkxWnSePbLTGMMQPZnwyaVzxB
-q1dP05h8OuJqUya1ac/T9DXm65GK7GZj8zl052m/F/u4cSkBbffQWcvU+389
-nj1neYGKmdePntL/P94/96Ojkd2zNx5jBvN43sTd+3czAm0XNUP+hvM0fT2d
-1glFRe+Z6fYYzeP5syxSaBOAbJULjpUY0/CNfzJW90Xba2z9LM7OwyVWV3/G
-X3dQkRFP5brp/+NF719xRld+VTE9N///OpWlyBpxOrpqK5yfx/ProP3tFENU
-tL73cbMFbb/RJu4zh9HqK8v/25IsLzYWxE3hfxax2Fg=
+1:eJwVWGk4lV0UJTJEoYyFJCIkXGW++8qQ8fIpUqGUKClEQhlSSRSFZCizMkdl
+yPC+ZhIyT0nm8ZrHS/Sdfnn2s897zlprr73PuQ5dcTS5toOGhoaNjobm39+L
+ync3so6eJ3JwtMi03G0onl0nudNyKYA1S37ZpYiUUnr6UZEfnKdhbnZ2uO1j
+bWlddXtNsNF/kH85SFfgSF9pCLPCZh7nOdCLW95YZ5gqNTOMOv6rxwJGFIMN
+aDeWS4PrtmT9jKyB4aJT/RWav6XOU9INXHI2wJp/OVc1fCd2lvWybRqnHURH
+8XXmlbNiCtKvaNTWbsBmMpvjs4C92H7jiujmHge0/5d99lo82JbzkrxNiSP0
+/9ribo7hx+Z1Q8fvGzmjfPIfLp1D2FBv+pfqsjvQJrb19lmYCNZ+s/Ihm5wr
+2t9DNklOHKv585N8Puku+v7ddK+YFFbwYvlAEuc9uJgz6jioLIOlCu6epDxx
+h+DhdaPHIXJY9EfR/JNrHrCie1BfZd8J7DmJ+Mj3+v1/eoR61ipg3i1mxvU9
+D2AqjNhSnaWMOV1xFODU94YKbqlXObVqmPXS0ynLEh+0XtrQMYiEJQZaVLgb
+PQSl4MPGS8c0sQNtE6kCTH6Qu5NlKUtCGws/cDekoswPHh3jLUrR0sGeZL6w
+YJV7DClG+/ec7jXAtpf5NHKnHgMqXQ2dmRHmpvb+qFnSE5gMs9q1d8MYu96E
+rcZxPgVhYeFulqYz2CC3/i/Nxqfo/KYq4bOm2IVLXZWTTwKQvh/ZambMMP35
+uZeEtWdQUnxxUM3qAlal+OBe98dAaGxgrbp60gJTfchk5XU9CBzK3UoKRaww
+6b2HJGt7niN/aItdOWyNfbiQxeEQ+gJgcklqXe0KJpSktM6uH4zweEsduHYV
+45A3qb5QEoL0vSsT0XsN20gvP37P6BXCtwj4rZvYyR+MSd8yXgGPA60e67oD
+5rJkyM3PFAoCta/GVEJvYxSV3j9lZaHovPcPWf44YeKXhZz2CYSB8YbNqvmQ
+M3btse3wNY+wf3m+py13sP6GxW+75MIhfvnGJd/vrtj+BUU1y+BwyEifCvne
+eRc7x+WT83EqHPE54r827YY1W7K8OZv0GsxMX9NtyXtg5bOHbWI538CzgFQ5
+TV1v7E/PctcX9zcg7vVp8co3H+xkdbX+9743cIff6OHPDF8sPcaOsJ4cifgS
+I9SM/bARf8UPe5ijkL+dTnQee4QdvMN8QPRWFMr3x+jte4yF62TsMDkRjfxK
+7x68+gRrIjxwux4VjfxSolK57I8xHzSc8t6KRnxOWsZuPsW8V2ZbMqpjoNb5
+rTOvSCB2PVEuYafZOwgn6prMjgZjiS/ouPiL3oF0t55mKM9L7Jd7e4CcYCzy
+z8T0ufKXmImRm9OlsVjUfzT720RCMcHtvjgLlXjEf+zae+nXWLFLdY/drXik
+v3Vh7t/XmPlk1j6XuHjET+FCY2cEFtbu/fQZXcI/fZYz3kRiTBlCjvnfE5C+
+SjwGdm+xFCHmtPKthH/9oCjo8A47FbEw1HA8EeF3M1y4F4t5PawwGw5L/NdP
+jwJN4rHFczZEdoskVN+WgPOZiVhIo4H7geAkNE8yhN0MkjApjROfjpQlgZ1t
+LGPIfBJmJ81wRE0kGfFVJyxrpmB99Km77SnJwMHhYXpKKBXz8Hx5+q5gCtKT
+33JtMBXjnnd/6GucguplPymamob991N3JeJLCvI7CEifysBqcqf7Kh+8R/rQ
+vInLzsY+Wh3PFNidivinFGmrfMby01Knu1RSkf95A5yLPmMly4ckQ+1TkX+2
+z2+ofMHqAjnTGer+5XVEiNp52EA+9cOcXxo6T44q716AjdG6jKflpqF6Pa9b
+3VWIUQwoR2wG0hA/hR9a8YUYdag/pVstHfFJ0Ets/YrtZatKKl9PR+sNkhbM
+SjDeC2rD98UykJ6CYkXbJZhgSr7wSbMMVC8GHtW0UkxSJS0h/XMG0ieY9JAB
+xzTtguPCbmeiesWIGC+UYW64ecy1kSz0vf3jr3ursAe7WnsP7stG/th1LtSr
+CvMz1d/fq56N+Ds0zUxWYcHTalHkuGzkvwFcvrYa+8Bz+I3ChY+Ij0mqYngt
+Rilw+0Z/PQe6/dJuxXl8xxwtCZPWPjlI/y3H+1vfscUd80x4RA6aX29ylv0a
+sHXDGzoe1TmoP8tyKkMbsZ0jF2tnhHMR3ogvC9U/MEF29erOX7lIv/7ZZLVW
+LHso+BW2nIv86csoGtSKQV6f5XuWT2ieKNg497Rily+4r95V+oT4MZ5wdG/D
+kpI/inG9/hcTrv3F2zFxJcHAMwaf0TxRzTO724XJXdkkNxd9QfO6QPGg2y+s
+Ql73QGHLFzRvWewT+n5hZxjfjMdNfIEeP8PwAY1+zDVTzteROw9Chq/rvOL8
+jRWs3sjdcycPzauvfw0uDWCqQd37DI/mo/1YHJn3D2FaX/K6v70pQPNSnd+o
+YRSLUDySkphTgObFg1ButjFsrCTC+f63AjSfldckTMYw/+p7u45tFiC8j2YI
+PWNYTaeS6kurQqTH0MWIqXHsNLU0zkz0K7ov9Ur/8k5husQa2+FPRWjeb1Pz
+Xs9i0RUnCSXfi9B9NTmv2T+LTWl/+Bs+UoTqwxDy88gcFmgUEKnNXYzwH+nh
+LJzD6i/r1ad5FKN+VSmSvzWP6T9qOuZEKkH1ONTKELyAGdZ1Lv9pLP03jz+G
+YUuYSQGb5rHRUuTHW8XC/UuY2XudMMs/pQjPgysBW0vY5cdFspgEhuZZhXOL
+yjJ2hxR72+cphtYfCDiev4xFFF6boFXHkb8FVIriV7DoD7EKcuY48sPa9bWS
+FSwuosv/iiOO8FLyF7pXsFRXXdHKd//yLlRu9lWsWObYlccbOOJ3/sGy5yrm
+dHbjFt2FMsS/qcNNfQ1b/B7xOuZaGfKLtGmB+RrmqkEoJTiXIf+yb0c6rmEe
+cg6sNgFlaN7EP1R8u4b5sfenV+WXoX4da/8yv4bRB3i2WlSUIfythO/069jT
+v9wby41lCG/ckgvvOvZ81khXdLQM8Xm3+y5xHXvdUD7+ZF856jf+EJon6xiv
+phWb4MFyNF9mR11fr2PRxRsn8yXKUT/ZX3ZIWcdi0wn+Y+rlSM+CHb8q1zEh
+4eYsb8Ny9P6YO23Suo4lRTl0cJ//93369KmBdSw1IEXktFM5wvPSI3hjHZOg
+OWXw+3454ltyd5SBimXe63e597Qc4Xm0/HEvFcu15an8EFuO/OIf8kacisn3
+f56C9HLwan30OUeOiuWbGu/tzitH/Zt944QqFSvSfGbN1FiO3iN6IR6GVIyf
+S4E5quff+rDkNlMq5j06knN0rBzpqdhw15KKDeSFmhct/uN71s3Shoqd8ifR
+6P8tR/X4zBFgT8WSzWY//GSpQP4dZ1lypGIMYm+NHHgr0Pw3bIlxpWLX13TX
+/ohUoPl5tNHHnYrV167FvpCtQOd9uPH2PhWTikzRFiRWoP032Oa8qFjw9TOz
+2XoViL+5+F0fKjavSBsB5yqQP/bvl/KlYibMH9War/77HtfnQPGXHovRy04V
+4H6P+bAwWs+dvuvFwoN/8Sa9BdrP3bNQ3u9ZBeKzblriScV+6tn27Y2oQPyb
+PEj3qBjxAOfjpMQKdN+Uto3eoWLx0+WS8h8rQEszsibtFhXbUeLYVlX87/yy
+L8/sqJjNc4H7pnUVyD86NI8uU7Eai+/CY+0VqH7ru8LMqZj4MY96t8EKVB/r
+kwVGVCxw68gdxtkKNB+nhylaVIzS2M4XufFPn2lXWRUqRo71KxdnrET8P+n5
+HadiObdlbnzdV4nyYTV9wlRsL/Sz6wlVonlKq0fkomKubM8Le6Uq0f5vTiYj
+P3T+Vrp8U6kSCITjsyxr65hizjjjH61KpPd0652xdeyPscY5gUuVqJ/UsgkV
+65jVoYXtrJuViL/UzYDsdaxsIfY90b0S3S97h1qi1rHHoRsrl15VovnQ81Lx
+1jo2diX13fy7f/k94cam65gOwUzrYXol8i/zhInqOsbanhueWFmJ5uspYVbG
+dex28iVVQvO/8xZ6S6fWsGbX3SOVfZWonrbPjBrXsHCuG4TRlUqkb4M7U8ga
+xn9OqFVMvAr5J6w8gH4N8xZr8iiUr0J5evXF/lVsYO3+IV31KuQ3DlWxwlUs
+ObLLyf5CFaqHxZNJ21VMqjeYLet5Far3+ExA3goWnK5aoBZVhfqfvo7RfwWb
+95yyakqpQvWRYiearmBfDmhnz2FVCE8iS+3cMqZmuWUgt1D1z/8HGLiWsSNV
+S3oBW1VofuPdu/uWsD2SUzr9zNXovuERrUlYwgbWOzUDhatR/p41HF3CHofn
+qA6dqUbzX6uES3wRu7X5XlnxcjXa/7r81ZEFzOzKO8Vgh2rE75mTUdwCJiYT
+KK/8pBrp99/TTfYFrP77VanQ/GpUfyvdhpo57LPcBYmJimpU/xfKP8XnsLdR
+xuLEH9WoXrGpOwNmsVt2aiJT49VI7w33t2ozGDsdD/8pvhrkj/K1S0+mMDPl
+epbF+zVo/nTa1z0awSChjFknoAbps9T8MW8YE2cqYIwNr0HvzXxl15EhjNqR
+RKeXVYPup+TkJ4qD2Ftnr82E/hrE7+e5H64/seFUmen/1GvRfKm5WhJQhzWw
+iU1+MKxF+w99OvywCvviJjC+db4W3c/NLkcdyjB/zV3DaXdq0bxd5Ssn5GAS
+A8O9tMm1aH71YsEXPhGdeN7U5zLUITx4HibWRfz8eeEZYW8d+v0V9Wfxdg9x
+1chAN0+gDvVrpr5GyU/igwDaukL5OtDUHDBOkh8gBlBvVuNX6pA+uUffMYwS
+E36SyhqxOlSfNoU2mCOO3IvxMaqv+/eeNw/UmyeKc64SWzrq0PyL9cRW54nZ
+Bhml7ZS6f+87k+Ezi8SiUq7in/u//fs9OS99aIXYGjeVN+n2DelZIKLEtEnk
+UtW6e9PvG+Kjt2rQsEk0746Tn3nxDemTR9589YfYz276eT75G7rPM6PEhbeJ
+Uw/xnLXWb0ivIGw0nQZ22IRn7Dxej/Tx0hTbSQ8EcWLCofF6hD++bv0MC5gJ
+pA/ELNWjflY7KtXLAu57uYW4ab6j/qmmM7JmBezPTOwuvu9oflj/sr6zG/Ra
+3r1d0vuO/MR27FMcG1z23HpTnf0d8Rt6brRvLzxvKAm+4daA+pfu6/g8N4w5
+qTzI3dkEccti7ttrQnA1hsXrHEcTXJS51swscggGqn96bfE3If8y6KgZH4Le
+/Q98dOWbUH00bx5IOwRNVSV+g1eaIH+gXirTQhgKeInPOMqawMvEwKi3/jAE
+lJEinD1/gPjWIXGu8iPAxXS4O/JeM9pPoHLmrxSEiKsU0422oHoc3tX7Sx58
+TzS/PzHdAm0fZqsEqPJw59S1ULuFFjB7PZJyjvMEmFmE3Pi+1YL4xDzI1DsB
+gi+HecK4W0FczXWsOf8EZK4FuQrrtIJXqM67gucnoa6m75h6Ris40AoKv5RS
+hKI2Zz6X3FZwL4h7NqOlCJkDDDtTClqhZHOQ7uQlRQjZkOljqmqFZ0yuDf6v
+FMFM+klgc18rmHWILwqsKMLI62Pjl/a0IfwnetsLlID2mne8t3Mb5IoO3dsU
+V4H459UO2vfaoNHhQ1yEmgoQv7Aq7fFqQ/4m0XGbqMADupiWdwFo/c4DdmWe
+KrCeULCjNK4NrL/fYS6pV4H5/nmbzcY2iJdPvbv3miqEMCjKVra1ITwvNpvv
+qYK0tM9WYE8b5NPcd3EMVAUHr90R+0eRs2cHpPQ/qsL4AYlapT9twHDf191t
+TRX6za8edZdoB55M2ZwrD9XAyzd9BWTaAW7oaNOGqgF/6kI548l2iOYL/Hw/
+UQ0urPlceKOO8kc9OOkq1aDj9dugfPN2mCO30pnuIEJDa8fMsn87MBQbMP7w
+IMLNDf6ikuftqB+WsnYHEGGXsI3/49B2cO9yNBCJIIKO86IgZ2w72L239uvO
+JUIVG5sxIa8dhBN1LczGiVBsoPPJebgdpgjlbHf1AOqFIrG8yXbUL3s32c4B
+dC+P11Pn2oG1MzP23lWA1bdPhx/+aQezvL61jPsAcjM1nKFcHSC/pHYzIQ1A
+vZz7UOeBDtgcGQiO/gJg/Nr22H7hDlBqGtGxwgFuqTFoJ0p3gPH+tXuaiGbq
+C617n053gFZVWPLjTYAC69ePVg07YOPLwaxrO0hQc2I0RPks+t7b8r8ZBhIM
+/3qcWnG5A7yGflNT2UiwmNv+hcGuA4I1ssv69pGAxl+kXO9WB8K3brrMQwJB
+6aqeVo8OpOeES9NBEhzbwTnG7dsBKT5Hyl8eJoFq59XFC/4dqF6ctifFSHDe
+m45lOBSdz8mjISlNgvCmU6pLGR3AsWB8rFCZBEmJoToKnzqg9lUzX6gaCT65
+DZ29X9gB/e+kvMgkEvwQ9LtFV90BF8tA7bYWCfoXWzxOf+8A4U8s11pOk4BS
+c8g/qKUDKtz6o7j1SLDLsTx2Xz/CR+2u1CaTgE+DI+PcCDrf1cxf1pgE4jzW
+BTFTHchvT+e3/iPByemcyt/zHcDzvGEy4wwJtHCa5sNrHajeredVTElwNsy4
+z24L5RtCxDPNSHDFLn4ig64T9Y8GcfscCZxV5pfnmDshX8bzkex5EviykWjl
+2TuBcJh5UOsCCf0OCdntzt2J9NlLUrlIgtiC33wl/J1AU0YXyGFBgsyg40do
+DnfCM/eI1DoUF1/ykdM82gnWQc1PLluSoJ7wgxhwHH0fQs/ag+JuxoP6DSc6
+4Q6lRVTOigTjP2+fY1fthOgbothNFK9+xK6ePdUJHIeUyp6geOfjPU6ROgjv
+idc8vijmNLd60EfuRL//2HIuoPiwVHaAkCk6L6bhLheK5Wi2w20udkK4FZjm
+oPPU2w0TUq07of/FURVJFBunvsui2HXChshbTn+E1+rBzFeZ253w6NZaUxni
+d8tYrcbVtRPNk+lzPxH/MsdcrxjPTjTPJnJ6kT57Q0RPVPh2gjvP7sEicxLY
+ZEdRJvw7Ic51vOs+0jO/cXcy2wuULzB6IoD0Zpp5ePFkWCfUPrzRE3eWBBdY
+V/daRnWCgF1S1Q5Ur229/ofpKZ3AMJ1x2N4I4bM3UWrJQPu1t3jcNiRB4rOa
++bXcTqgYq5E8o0+C03XZl7QwhH+E42apNgmix4V5HKqQfs+Efp3SRH5ieNMU
+Wt+J+snJNVWdBC+1fNQGOjvh4kDI732qJBiyWVpm+IX2/+ITzadEAvnHdpnH
+hjuBh3Ve5+8JVJ8KowP35zrBbmzkP/vjJJAYqmxNWOkEh8Hl13OSJHhAqxhY
+t9kJwZVv48+Kk+AQSYjKxdQFtYMiA6VCJHC9hB5Ye7rQfrS0FfyoX72Zrl/l
+7IISyVtlKbwksC+d78wR6oLgMINVFnbUL8rlX/SVumDz8bN3yRsA9BdOONwB
+tF5FdjR5HsDMI+1wlFbXv/9njl8dA9goeBU69l8Xwpc2KtACoHHiitND+y4I
+32Zx800CiDjbKZbq1AVK0meV7r4BmHDR+93k1gUC45IW4kEAzz/JkfkfdaH3
+x3jsN2eA9uN0UgUxXWDGddB4TQXgiNG94V8JXRAfvk+j/xiA++3paPrULjQP
+wq88OgggkNXGbPKlC+Q/x/Ix7QCwlUgepzR0QU9iguRmJRHWRLSShLe7gMNZ
+jzVAhQirVjdVftN1w5SLZtULCRRHvmqLYe6G3Opd+hf4iLDM2k/HxdWN5rdC
+7+lVNVhcdrNhlOoGGl/x7LtZakCpShWlnO+G/Hha2cMcajC93VSaeqkbpCMz
+DaL+qMKU4orptWvd4K5QUNE5rgqTmer+/U7d//5fsfChVBXGwnvHmp92w0Wn
+Yz3JtqowYMOampfXDXPBq1e5s1Xgd6wc6U5xN5rnZYLMESrQ323eLV2O4vxf
+J6u8VOCXQQpTakM3ND7//SPMQAV65Yk3ooe7obZFdDl6XBna6Z0kfDh6IKO+
+mGqxTxm+Jbdl6tzqQe/TiWXbU4qgGLTjyUOXHugeYmJYE1KEVGdZyyKPHnSf
+/orT/asA/sSQ3VL+PWDs+YlfoVgBTnXr3WaL60H92yuiKKMAJSwVxzube0Dv
+YNXbzT0nIftOzqer8r3Q75XxYzaeAGGkF4Xem70Q3eP6YVJbCnLUbzsb0v5E
+7zkatfVZSWg4ZSTBz/gTHs3wr+RFSAK9Fsfbr3t/ovOUv5JGJcBN97XP8tGf
+6D4PFE/wPgrmJu+07c1/Ir2PnPmTeAT4bbLaTfN+gvvaX5qPeUKQ8rRxXsqx
+D/FL2eR7QgMfpxQlp2n7gRBmMflA6Sj+SrBA+uyL37CiLh1MlVTB98jd+8wT
+9hvmIqRdci6r4IFaCoo/I3+DdeWV7LOvVfDHDgXqV5J/g/iKFYvNtgruVlRw
+1qn4N5ToO6RE/FDFLcwKPZ9PovWHXwnvuU3E99VaXB0SHgCl6JOXPzeQ8F/b
+lh/3+wyAwOZEaHGjBt5uVfFK2W8A7Mjlt9LGNPB67IjrhScDQBNe2+n3VwPP
+955TjA5C60+/rlyT0cRfbvtW8EUOwEVFQ5GxUE381HZSB2/uAJRc+v0o30QL
+f781uck9PADPaA7xqZZr428tyf0nxwagYnUTO9+ljYeWfiozm0TrDzq3W81o
+4z5e959EzA1Abt5WlyDfadx8i5WN+88AiIuS9ro4nsZ3bR0X5uIahKmPd4PO
+8Ojgt//c1dl3ehAYslTTlc7o4sU3CAe2dQfB/fjhXS02ujhT1/zMhMEgVEgb
+iBq76eIJuTfDMJNBGDHv19gZpYu321r337BC+/3uF9f9pYurtBi4lt1Feb8t
+c3FrPTyAuOt0hvsgiJ/rO0pw1sPbM2r5Iu4PwsoNPEnkoR5+2/8UfvPhIERT
+mc4Wx+vhiSqKu3heDILSwJuNvH49nOn94fhbyYPAI5f4ss1UHzfdN3jH/MMg
+cLx2o6rb6OOJvrFaGunovHkN0Yg7+rjqRb5p3pxBkH55IXQuWB93ZGc7WVWM
+9rsjaXOtRh/v9Nz4vr8N5UfZ/U1kDPAko5a1WtohcGes/D0xZ4CHDgkJJdMP
+gbTGxQ8VGwa4710nHV/GIfBy0Np6uNMQt4phi1LcPQSPwjwVc/cb4rzjhspp
+vEMgbKMg36JhiD/3rn8QeHwIHAIN6fe+MsQ9Ofan2MoNgbiZ0zf1aEP8RvKN
+xlMn0PcuY2VmSYa4dj2T4KbyENzRMjwhk2eI03Cfxm9qo+95tSriuwxx16xK
+WkPLIWDI0LG+y0PGr5D2SRy9PARtE3tfrQqS8f/arpjsvDoESmRZ3OIIGZem
+0iaVXh+CZ62Ne7rlyfiEJklT2nUIcscryIHGZLyzK8Rh1z2E9+p5DcI5Ml5t
+/zt8zGMI5Ou2JMotyXjiS+/RWJ8hCPmY2RxkT8Yt+kr82YKGgMcnx77Pj4zr
+ObJ+nH6B8NvnTWcGkHGlHRZdtS+RPtdEra4Ek3Fu8U0x3wiEz0aX70EUGW92
+Ufo2nzAE8e+o2/bZZBxjeLbQkDwEm6PJQlc/k/GsqG6+tA+IH91rFVIhGQ/E
+79lbZw2h+3T9alo5GddkyWdpLRwCM5FfeQptZNx+mfkspXgI8l95KOR0kfFX
+vyzfMuBDUHtteJupj4z3f9x5TKV6CMJNs25dHCHj9FHn75rWofXRrfymE2Rc
+0i+r1PE7wmNidOg4hYy7nzUlJ7cMwYoprerjJTIeq5YWgbWj+t97fvHvKtLn
+yFZ/d9cQsF7bP3xhg4zvpSY77u5H53WxwGcaI1xxaL1AbHAI9KT+E8yhM8Kt
+vhvQnBoZgqkEi/svGIzwjHfLL92mhqDEIblmksUIb/XX6Xk5g+KvuuXX9xjh
+645vD2XMD4FWib9JHbsRLnh+/kb10hBwzDM9ZNpnhGue0vz0e3UIKiazzhzl
+MsLtJSM3qNQhMD7+qEWCxwh/xUk5xbmF+HDV0O7mM8L7x8LadOiGQZjV/Y0L
+vxFO3zx+4CrDMEyRjFjXBYxwya8qNl7Mw/CM1cbE8qARbpIYkvmGdRgYTg04
+JwkZ4e5Bw8u5bOj7p/wu9YeM8FhXBbWGvcMgIBBv1SpshFdbBj0Z4xoGr1oh
+teLDRjhF+3cjDR+KA/14nogY4XtlCNwH+Idh5WXX6nFRpA/fU6sTB4fBffnS
+SDGKL+34+d5IeBi9z59Nih8xwv2npeduiA6Dw655tnsozmz3U3gsPgyPxCys
+36O4tbTTJ1ZyGHqEq8bzUUx9L1FXKD0MrCT9rFQUC730Zm+TReuT1Uvuo1jb
+o9V8Rn4Y2ggiB2VQ7HDlSAKj4jCUnHs7UI3OD9P3nDykMgzQ5sOihuIi+SZZ
+VSLiH9+c/hrhHxAQ9jRTHwbrzJJvPxA/Bka3CifNYdj8+s5lGvE/Nv9tV9Dp
+YeA4Tv08gfQ52yNwJkVvGPT6fCJqkX6eFc4xuCHC07dbLADpG59RPdxjPAwV
+xunOEoJGeG04n9TyGcRX86lfNqrPrNct1z3n0HnOtLacB4xwTrvyEvELCD9b
+vLgFqqeyMddODcthyP3E2fUE1dta6Yah5WVUj01l71fID9ksHP2vbFF9s/qm
+yBxGePuyzZHMG0gv8kA9DZsRvvmr8HaNA9I/MaU7nNUI18m5/HfjzjCIz+l/
+ucpohA+ezRGy8UHrnX4sv9sk41b6lud1/ZAetgJr0etkvE99V6j0k2GwozW9
+6r2C5oe0DR01EOH9y5u+PkvG65l4x15EIL5RMfolA2T89N8qQZco5Acyy9oM
+6seqFedz5m+R31heOzH0oP4f+l4nnIjWmyntoDST8U8lPhkFWUhfx+59QTgZ
+P/5ZauRtzjBIx15OWi4i45lpPfx+nxHeMXsHrXwy/j6CEGzwFfHnaxp6m0nG
+o53GnQarhqEWOz0jEknG/USMTrL0DcNc5uET79H8+rv/z+35fsRHliQYaEPG
+H3CkfegYHIaRaTEpMysy7ra9gy9+HNVj7uvy+//QfOnO35RfQnre3bkkpUDG
+TZ4LllvtGgGaj/eru7cM8R9+36kau0fgTn6El/aqIW7g4S53lH0EHj3ffend
+LJrntq1JS1wjsKl7c4jhtyGuTPL3Dzg0ArWXLjbVY4a48PKM/ifFEWi70xUr
+6mmId5HikjtURqD7w88iByd0f7ww3lonjsCKY+V/0baG+OqRz9mgNQLW9GLk
+NBNDvP68O0fjfyOg5JnIG3XUEHfGd3SN24+APFWDsaPVAC8L5Lki8A7tVzXM
+5rDPAL/bVVdEih+B3J/4XC6DAS4h4rnPJmkEjCWY7Qep+nh4aV9Vehrix1v/
+Zuu3Pn59PkFMMX8EHM5klh/L0MfZzaRmTH6MgJ3UUO9jNX380iF19wDaUXBQ
+2HeoyUQPzw97fOQd/SiU6BYWVWro4awMde25jKPQ6P1jzwd5Pbxoiiz7czfK
+P9Q1UeDWwzm/WEwd2z8KI4XJqg+7dfF6bXeLNrlRqGA1cW09r4vLO3wkCdqM
+Qr6IAruksQ7OVCDA/KVmFPUzn0ALhzZumqiWE+M9BnNMIVZ6Lup47AEXcxbt
+cXhU/vidsb4iHjQ1za1AMwHxNi82WrmO4SOHZpUK8yfQe1o94kouN0719bZq
+/joBdtoqL+mEuPE9A3seTZRMQHi28PO1YC5cKfZ4A2/lBGiOlCr03uLEg/c7
+W3n8mIAVPs/V18f34kr7lv2UJyZgat+FKj9/FjyYfuN7Cd8kCNRGShoWLmNK
+4zutyh9Mot/nUwsj+Tsh+czcnWSfSZgj94hJRDMAe1n306d+kyC+VXy86AEj
+TERm5BoGTMLKN/NjX4EZIvX+29kbNonwNtiIl7LCetbbzMX0SXCvtSktreeA
+fFfC5uGeSXgWqa7QYcELwoP87Ix9k2A8lUZoruCFYEMG0al+dJ60m89NcT6w
+PdJDzhlBeK77PPFb5AOubu9E1flJcPBQn5L2OwCuKvW6poxTILyLBbcLEQS5
+HdaR/iemgOftwvezMsLQWUVu/KA4BdG/aE7RWguD51PVHd9UpiD8wnq+yyth
+KGfldWA5NQW1Kb530xeEwZjnB7wkT4G0eDvR6uNhcJRSG4+ymwKBN7PjXQdF
+IdOM72RW1BRwjHL1TreLgTEf482mt1NA+PluUW9bDJZ/LsfNxU3BZqrwdUcx
+cVC1bmaWez8F4ta7bzJ5iMP3m09/5X+agrno1nFPvqMw5bvyuOw7wmNb63rV
+SALEMlra2ramwM68huFyiBQI3+el4jTTEM90jFX2oxTw618SzKSbhvDoBZcf
+TVLAPk25/ph5GkpqVZ+57j4GGxJM2/Jc09C4SMm8HHAMmtKJ4hFS08ifHGF1
+rtJQ5/nE0O/4NPTMB5S7vJKGSr2GO7flpkFL3maEkiUNhVPnS7UVp9F7NktO
+d0waEiTumqxpTIMXSVIq4+xxcE3PeGB+cRo6H6k/YuOUgdueiwmaVtPw/Bjj
+/S4hGbihp1QrYz0NPGfKmvyPyYDVVA0Hs900OBzLT4nRloHTEkPvv96ZhlPF
+5O7YezKwP523ZX/gNDCqzjZxdMhAWdoT0V+F05CfUO805CULFnFW8UXF07DM
+OCXt+lQW1sMVDkRiiE/wNeW5l7Ig4zvJfqZqGgjXfCwTkmQh3szwT92PaegV
+CWpfrZWFh3RcbV/GpsFDaLv8NqscCFJnDEMnp2E9cdeXKE45KJqtqXOkTENb
+e2RQNr8cLPa4YxKLiM/P8H0RUnJwJacvLX5rGnxzOFMs9eXglGWy73NOCkjH
+/FjseiwH/SZemzd4KMBzsZz3fZAceOqYuZ3eT4E9n1sarELl4BOByWGHEAX0
+3gWzvIyTg8O7HM65S1Jgc9WZf6lQDsr+araaSlMgXHNimhuXA4sVAUOCLAWe
+3XRPEq2Wg/CBH6dmT1IAbJfW6VrkgL6AIG1zCp1/sNCvelwO4jNZ09S1KMBh
+st2lPiMHqomjhw/qoLx0/520RTlwffGGr9eQArkskmnKW3IwcnWT3vg8wqvD
+c8OWgwDV7JU/VZwoYDzHPDlzggDRFvFu51wQPsPUfG9lAtxO9eJwcaPAHDWL
+eZ1IAG6S4un0BxSgaez3TT5NAFvHrE+8zyhAONTvNXaOAMrFgYbyzylgfcCA
+VHqRAHsYr08YhVCA4VUUi9clAuTHCgs+fU2BWutPfwtsCcDQ9ObZSgIFghdk
+Tgi4EqCX764IRwoFxLuecBHvESD7mgkulYr2+7X0RMeTAGZbrCtXsymgdLb6
+4n5fAkjoToX45FIgjjV+eNCPANvhtRIxX1C8y48U9oQA76X8LrcWUeBi5C/s
+cyABPN0vbc6UIv75inSHXxCAXKUawVyO+GxYXnkQQoDVi2vfSbVIb7ZzBTNh
+BKj/0G5rUU8BAdk7zTsjCBC7lEvr3kiBiqFRPaZIAmgHOSh8bKOAuxElvSGG
+APu7dFvrO1G9Y8S+BL8jwKyw2K2xHlRPK1ZblTgCRBQNJgoMUMCrO4nFNJEA
+9gy4mtIw4jt48XBFEgGIJm+7z44hfIW1kvtTCDA2abbnOYUCKZVwLugDAYpO
+yKd9mKNAd0BabHIqAYIfcmhWLlJAmMHvYFoaAa40zvb3r1BA885eSmQ6AU7y
+NXhsrFMg3z6b2zWDALuupXFy/6HAo8rPucqZBOjP8f8o+5cCJUaBPygo/vTn
+qp7hjhkInkzyC8wigL+O+uj1nTPQxvfg175sAlwIF/R9zDQDHIcjFwNQLD2w
+uT+eZQY26/3bJ1G8Q6onr3jPDLCeHHh98iMBOu/lG3dxzIB0iZauI4rTK8Om
+FzlnoHbYmjYcxd5szv57eGegW3CiORnFJhfJhyQOzAADHl6fgOIjHyRLtARn
+gKZBijYIxRuLTOesD6H9mryeXkZxE3Fs4YHIv7ylkzCKEwMrn0eKoZg3o6kZ
+4XHrjBf7IjEDKQSDvJso1hP2rvhxDOGNPK6whPgJ3r5oOS3zD5++nR2KF78q
+rjPIz0BjVax5HdKjZid3mLAC+j5IWpAbxfNWBoLMyjOQQd8QZIX0PFDolzan
+OgO5Ci9sI5De2hxf5TthBhzebJSWono42c/hJafQ+tmEhHZUr+hKUf0kLcTv
+Bvehn6ie1fwWnc90ZqDfcl6/5T3yz486ihl5BuIKjYaeJxNAU/zvPbX/UCxy
+8JYJ8ofjwxN0ImdnQOD3+CAj8k8VIZFv4fwM8p903SnkL8fI+9pB12ZA/AQb
+aQP5M3oht8X5+gxUHGFsI71B6/UmLMxvou+ntxvvvUbnbZ11EXWegeg8dZWC
+VyhvLR2PP5gB4cSTH72eIf8W2Ui+90H1L5Yj6j4lAB9nTP5zP4SnT+HLTtRf
+t2sYG88HID2bRV7/h/qRV3KQuhQ2A0rZ2ZMn3Qhw6jHPk96IGTBLoHEKciHA
+rV+G7OVRCJ+osmWLEwEqQoqOBMfNQHh+QKbsTZRfDjsjnoHWNwoNaKF5UVGq
+nWVRgfTM6siu1yQAhdtLUaMa1et6opSaOgF4nD5XHq2bAb2/Q3sT1QjgICzU
+u9qIYker8xon0bx6SmV41YPw8baFjh4hwE3jzMvV8+g8f+Xf+TuRf/6OsUwt
+IT8uUIhUGgLIfDxUsGdtBghXd/dK/ZGD1d1vdptvzaB5Sc91Hc1T3+8Pi6aY
+Z6H79qd+mX40n7XPcbIfnkXvt9s1Ap/loER1R90FU5QvqvuxbILuG4qqi4/5
+LEzOjd3zN5CDhzH3BJMvzoJAlzuFRVsOtDcorjPWs5DL4f58UVEOmgu6Dvne
+noXw2ahBGUE0r+Wy7qc8RfmdDAmPxmSB9aj58fmvs2Ad9zxgj6MssG+LyDCU
+zqJ6UW2v2ckCZ9uCDH/ZLLgr3Jz9dEkWBLyC5HRqZsG4iEtDzlgWpFuwE/Gt
+CN8Ojd1VMrJg5CGqajw9C2Bdbak5LwOh3xZ1cvjnoP+JooHiDRngs39xxcln
+DkLaAhOyXkjDNRo6s84D8yBs4ofvWT4KxXv17hf6zEMwna9vcYMIDP/4lLHe
+Nw+PXnRhXVJCoK5+Ofiq4gJwtNwXDDyA3nvCM7rzSgugtGeVlmODB+jpPHd6
+qSyAsXKlZFY3D9RUhT2IIC5ARjp/lGgEDxjo1Np/01wAhgNEnHcvD5gbSZ8+
+/t8CBA/3feXeww2Oln/+btxA+7+iv/yTmxPeeUQ6h8YsoPe53pjybXaQGPwv
+hf7dAtJPW/nCWXbI12HpcYtdQPoMpwYrs0MzjzfpYsICTLY1TJ5kZIcd+VfZ
+RD4sgJ1twuYuDTa4viidlfdpAbr9fmuofdkN8jerJ7q/LUB0lKFQTv4uKG/1
+5tf/vgBTYf0rGgG7gKysaFzasACNDVo1Oy7sAjvmjIKEHwvoPfzoMu02M0R/
+eOlv37EA0t0hmTt0mIFm5KLIn4EFgElRN+4RRvhusXjp4Pq/9dJrXqo7wW0y
+IaGEugA0vt1zWXt2gpDbf8PnNxfgogyH/r5BenANybEN31749/5m8/anB8GK
+27eYdy6C3kEh5rY2OrgjNu25xLGI9JB/5eK+A3gXh1/XSi5C/mUHSlDrX2KF
+d1iXzbFFcL+HSQk9/ku8xaLBt+P4IvT/qnTlP4nyIolvVeUWQZ7QE2sQs010
+OHc5KVdxEbQ0VVqf2m8R8ZK+nBitf98fLNPn3yTa6yIbn14E4429FcbtG0TO
+ThX5Tp1FpOfBt8XPN4jX56IL2A0WoYLbUKVim0rcK3wee2KyiPRbwoLH14kl
+2Uw0h88uwtwskyCWuE60UylULzNdhEfHgveYWKH8WZ7qDfNF2Ez+sfa+c41o
+O1jDEHlhEdXXIsoubI3IcdtN54TFv/VUgefGa8SSDdHAVstF5Ltlc849aP3T
+ju+OlxaRv0QFaBpWif8DvBoyLQ==
"]]},
- Annotation[#, "Charting`Private`Tag$8760#1"]& ]}, {}},
+ Annotation[#, "Charting`Private`Tag$98991#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
@@ -495,7 +504,7 @@ tL73cbMFbb/RJu4zh9HqK8v/25IsLzYWxE3hfxax2Fg=
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
- PlotRange->{{0, 1.1483}, {-0.0009440149116545116, 0.0014743693013206751`}},
+ PlotRange->{{0, 1.1483}, {-0.0009506600468124029, 0.000499549205820878}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
@@ -503,10 +512,227 @@ tL73cbMFbb/RJu4zh9HqK8v/25IsLzYWxE3hfxax2Fg=
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
- CellChangeTimes->{3.857793273501688*^9, 3.857799947911737*^9,
- 3.8588497580654993`*^9, 3.867387198157053*^9, 3.867392576035952*^9,
- 3.867399192057679*^9, 3.867807033354333*^9, 3.8705036374745817`*^9},
- CellLabel->"Out[5]=",ExpressionUUID->"1beeabe4-ee06-48f6-86f2-eb131e832f9d"]
+ CellChangeTimes->{
+ 3.857793273501688*^9, 3.857799947911737*^9, 3.8588497580654993`*^9,
+ 3.867387198157053*^9, 3.867392576035952*^9, 3.867399192057679*^9,
+ 3.867807033354333*^9, 3.8705036374745817`*^9, {3.871622322431304*^9,
+ 3.871622353837566*^9}},
+ CellLabel->"Out[17]=",ExpressionUUID->"7d82a994-0e66-45e2-9f9d-23085d92d885"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Solve", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"tt", "==",
+ RowBox[{"R",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Theta]", "2"], "-", "1"}], ")"}]}]}], ",",
+ RowBox[{"h", "==",
+ RowBox[{
+ SuperscriptBox["R",
+ RowBox[{"15", "/", "8"}]],
+ RowBox[{
+ RowBox[{"g", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}],
+ ",",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}],
+ "[", "\[Theta]", "]"}]}]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"R", ",", "h"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.871628972194471*^9, 3.871628981154234*^9}},
+ CellLabel->"In[77]:=",ExpressionUUID->"d0b98ea5-26fd-48d2-9fd3-094018a22423"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "Solve", "nongen",
+ "\"There may be values of the parameters for which some or all solutions \
+are not valid.\"", 2, 77, 41, 31834900206562845425, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{3.87162898136685*^9},
+ CellLabel->
+ "During evaluation of \
+In[77]:=",ExpressionUUID->"54591efa-3e06-4780-a52d-356be312bb3b"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"R", "\[Rule]",
+ FractionBox["tt",
+ RowBox[{
+ RowBox[{"-", "1.`"}], "+",
+ SuperscriptBox["\[Theta]", "2"]}]]}], ",",
+ RowBox[{"h", "\[Rule]",
+ RowBox[{
+ RowBox[{
+ RowBox[{"-", "0.2885788587440556`"}], " ", "tt", " ", "\[Theta]", " ",
+
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"1.`", " ", "tt"}],
+ RowBox[{"1.`", "\[VeryThinSpace]", "-",
+ RowBox[{"1.`", " ",
+ SuperscriptBox["\[Theta]", "2"]}]}]]}], ")"}],
+ RowBox[{"7", "/", "8"}]]}], "+",
+ RowBox[{"0.016405558185319673`", " ", "tt", " ",
+ SuperscriptBox["\[Theta]", "3"], " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"1.`", " ", "tt"}],
+ RowBox[{"1.`", "\[VeryThinSpace]", "-",
+ RowBox[{"1.`", " ",
+ SuperscriptBox["\[Theta]", "2"]}]}]]}], ")"}],
+ RowBox[{"7", "/", "8"}]]}], "-",
+ FractionBox[
+ RowBox[{"0.0851120718084878`", " ", "tt", " ", "\[Theta]", " ",
+ SuperscriptBox[
+ RowBox[{"(",
+ RowBox[{"-",
+ FractionBox[
+ RowBox[{"1.`", " ", "tt"}],
+ RowBox[{"1.`", "\[VeryThinSpace]", "-",
+ RowBox[{"1.`", " ",
+ SuperscriptBox["\[Theta]", "2"]}]}]]}], ")"}],
+ RowBox[{"7", "/", "8"}]]}],
+ RowBox[{"1.`", "\[VeryThinSpace]", "-",
+ RowBox[{"1.`", " ",
+ SuperscriptBox["\[Theta]", "2"]}]}]]}]}]}], "}"}], "}"}]], "Output",
+ CellChangeTimes->{
+ 3.8716230762709217`*^9, {3.87162897892483*^9, 3.871628981372864*^9}},
+ CellLabel->"Out[77]=",ExpressionUUID->"3e64dfbd-1d75-4bd6-b63e-4e5bec743e80"]
+}, Open ]],
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{
+ RowBox[{"InverseCoordinates", "[",
+ RowBox[{"\[Theta]0_", ",", "gs_"}], "]"}], "[",
+ RowBox[{"ut_", ",", "uh_"}], "]"}], ":=",
+ RowBox[{"FindRoot", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"ut", "==",
+ RowBox[{"R",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Theta]", "2"], "-", "1"}], ")"}]}]}], ",",
+ RowBox[{
+ RowBox[{"-", "uh"}], "==",
+ RowBox[{
+ SuperscriptBox[
+ RowBox[{"Abs", "[", "R", "]"}],
+ RowBox[{"15", "/", "8"}]],
+ RowBox[{
+ RowBox[{"g", "[",
+ RowBox[{"\[Theta]0", ",", "gs"}], "]"}], "[", "\[Theta]",
+ "]"}]}]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{"R", ",", "1", ",", "0", ",",
+ SuperscriptBox["10", "8"]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"\[Theta]", ",",
+ RowBox[{
+ RowBox[{"Sign", "[", "uh", "]"}], "1"}], ",",
+ RowBox[{"-",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ ",",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}]}],
+ "}"}]}], "}"}]}], "]"}]}]], "Input",
+ CellChangeTimes->{{3.871623051098364*^9, 3.87162311994796*^9}, {
+ 3.871623153141858*^9, 3.8716231605568438`*^9}, {3.871623563300939*^9,
+ 3.8716235634680767`*^9}, {3.8716238133855333`*^9, 3.871623826096807*^9}, {
+ 3.871624083622401*^9, 3.871624365683359*^9}, 3.871624437060791*^9, {
+ 3.871624474669331*^9, 3.871624494893714*^9}, {3.87162891423326*^9,
+ 3.871628921457245*^9}},
+ CellLabel->"In[74]:=",ExpressionUUID->"27f70f50-5ebf-4a6d-94af-1a6bfe816e28"],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{
+ RowBox[{"InverseCoordinates", "[",
+ RowBox[{
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<\[Theta]0\>\"", "]"}], ",",
+ RowBox[{
+ RowBox[{"Data", "[", "2", "]"}], "[", "\"\<gs\>\"", "]"}]}], "]"}], "[",
+
+ RowBox[{
+ RowBox[{"6", "/", "10"}], ",", "0.2"}], "]"}]], "Input",
+ CellChangeTimes->{{3.871624380395876*^9, 3.871624486365077*^9}, {
+ 3.871628883904001*^9, 3.871628909432775*^9}},
+ CellLabel->"In[75]:=",ExpressionUUID->"8965277f-d2d2-40c8-b8ca-7816448c9503"],
+
+Cell[BoxData[
+ TemplateBox[{
+ "FindRoot", "reged",
+ "\"The point \\!\\(\\*RowBox[{\\\"{\\\", \
+RowBox[{\\\"0.543260400931124`\\\", \\\",\\\", \\\"1.148407773492004`\\\"}], \
+\\\"}\\\"}]\\) is at the edge of the search region \
+\\!\\(\\*RowBox[{\\\"{\\\", RowBox[{RowBox[{\\\"-\\\", \\\"1.148407773492004`\
+\\\"}], \\\",\\\", \\\"1.148407773492004`\\\"}], \\\"}\\\"}]\\) in coordinate \
+\\!\\(\\*RowBox[{\\\"2\\\"}]\\) and the computed search direction points \
+outside the region.\"", 2, 75, 40, 31834900206562845425, "Local"},
+ "MessageTemplate"]], "Message", "MSG",
+ CellChangeTimes->{{3.871624424018366*^9, 3.871624495554133*^9}, {
+ 3.8716288885286217`*^9, 3.871628922299012*^9}},
+ CellLabel->
+ "During evaluation of \
+In[75]:=",ExpressionUUID->"a3d42e0f-bd1e-49b1-8d2a-a9faf8854a08"],
+
+Cell[BoxData[
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"R", "\[Rule]", "0.543260400931124`"}], ",",
+ RowBox[{"\[Theta]", "\[Rule]", "1.148407773492004`"}]}], "}"}]], "Output",
+ CellChangeTimes->{{3.871624407919861*^9, 3.8716244955603247`*^9}, {
+ 3.871628888535161*^9, 3.8716289223051*^9}},
+ CellLabel->"Out[75]=",ExpressionUUID->"0e650aa6-b018-45af-8c81-ff1b91e82c5a"]
+}, Open ]],
+
+Cell[CellGroupData[{
+
+Cell[BoxData[
+ RowBox[{"Solve", "[",
+ RowBox[{
+ RowBox[{"{",
+ RowBox[{
+ RowBox[{"tt", "==",
+ RowBox[{"R",
+ RowBox[{"(",
+ RowBox[{
+ SuperscriptBox["\[Theta]", "2"], "-", "1"}], ")"}]}]}], ",",
+ RowBox[{"h", "==",
+ RowBox[{
+ SuperscriptBox["R", "\[CapitalDelta]"],
+ RowBox[{"g", "[", "\[Theta]", "]"}]}]}]}], "}"}], ",",
+ RowBox[{"{",
+ RowBox[{"R", ",", "\[Theta]"}], "}"}]}], "]"}]], "Input",
+ CellChangeTimes->{{3.871622894456358*^9, 3.871623007057829*^9}},
+ CellLabel->"In[21]:=",ExpressionUUID->"6c1d3718-7a8d-41a6-98ea-98fe3318bcfa"],
+
+Cell[BoxData["$Aborted"], "Output",
+ CellChangeTimes->{
+ 3.871622938634961*^9, {3.8716229813491297`*^9, 3.871623000110902*^9},
+ 3.8716230715991173`*^9},
+ CellLabel->"Out[21]=",ExpressionUUID->"8b0315bf-6d61-4278-a829-dedfe692066f"]
}, Open ]],
Cell[CellGroupData[{
@@ -670,1995 +896,6 @@ P2N7pe1wUFhH7oo7H21tW/LT9VfhZZ+xuakHHzLG5fIHzxnjPw2YIaM=
Cell[CellGroupData[{
-Cell[BoxData["s"], "Input",
- CellChangeTimes->{{3.867807054536924*^9, 3.867807065392228*^9},
- 3.8679107297497873`*^9},
- CellLabel->"In[7]:=",ExpressionUUID->"58adee79-610c-4fdb-8124-fbf6f3d2f4f7"],
-
-Cell[BoxData["s"], "Output",
- CellChangeTimes->{3.87050364038545*^9},
- CellLabel->"Out[7]=",ExpressionUUID->"76f32142-c2e3-4b66-9e61-ffed298db318"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{
- RowBox[{
- RowBox[{"(",
- RowBox[{"DufDuh", "[",
- RowBox[{
- "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",",
- RowBox[{"{", "}"}], ",",
- RowBox[{"{",
- RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], ")"}], "[", "2", "]"}],
- "[",
- RowBox[{"R", ",", "\[Theta]"}], "]"}]], "Input",
- CellChangeTimes->{{3.8674005827236223`*^9, 3.867400611996139*^9}},
- CellLabel->"In[23]:=",ExpressionUUID->"4534127d-b193-401a-b594-a6abec8f7edb"],
-
-Cell[BoxData[
- RowBox[{
- FractionBox[
- RowBox[{
- SuperscriptBox["R", "2"], " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ",
- RowBox[{"Log", "[",
- RowBox[{
- SuperscriptBox["R", "2"], " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]}], "]"}]}],
- RowBox[{"8", " ", "\[Pi]"}]], "+",
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{"R", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}]}], "]"}],
- RowBox[{"7", "/", "4"}]]],
- RowBox[{"(",
- RowBox[{
- RowBox[{
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"15", " ",
- SuperscriptBox["\[Theta]", "2"], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], " ",
- RowBox[{"(",
- RowBox[{"1", "-",
- FractionBox[
- SuperscriptBox["\[Theta]", "2"],
- SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
- RowBox[{"g", "[", "0", "]"}]}],
- RowBox[{"4", " ",
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], "]"}],
- RowBox[{"31", "/", "8"}]]}]]}], "+",
- FractionBox[
- RowBox[{
- RowBox[{"(",
- RowBox[{"1", "-",
- FractionBox[
- SuperscriptBox["\[Theta]", "2"],
- SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
- RowBox[{"g", "[", "0", "]"}]}],
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], "]"}],
- RowBox[{"15", "/", "8"}]]], "-",
- FractionBox[
- RowBox[{"2", " ",
- SuperscriptBox["\[Theta]", "2"], " ",
- RowBox[{"g", "[", "0", "]"}]}],
- RowBox[{
- SuperscriptBox["\[Theta]0", "2"], " ",
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], "]"}],
- RowBox[{"15", "/", "8"}]]}]]}], ")"}], "3"]],
- RowBox[{
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- FractionBox["\[Theta]",
- RowBox[{"2", " ", "\[Pi]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}]}]]}], "+",
- FractionBox[
- RowBox[{
- RowBox[{"CYL", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"5", " ", "\[ImaginaryI]"}],
- RowBox[{"6", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]}]]}], "+",
- FractionBox[
- RowBox[{"5", " ", "\[ImaginaryI]"}],
- RowBox[{"6", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]}]]}], ")"}]}], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{"1", "-",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
- ")"}]}]]}]], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
- "]"}]}], "-",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
- ")"}]}]]}]], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
- "]"}]}],
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}],
- ")"}]}], "\[Pi]"], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
-
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
- "+",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
-
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}], ")"}]}],
- "\[Pi]"]}],
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]], "-",
- FractionBox[
- RowBox[{"4", " ", "\[Theta]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"CYL", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "2"}], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"5", "/", "6"}]]}], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
- ")"}]}]]}]], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ",
-
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
- "]"}]}], "+",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
- "\[Pi]"], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
-
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
- "+",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
- "\[Pi]"]}], ")"}]}],
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]]}], ")"}], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"465", " ",
- SuperscriptBox["\[Theta]", "3"], " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ",
- RowBox[{"(",
- RowBox[{"1", "-",
- FractionBox[
- SuperscriptBox["\[Theta]", "2"],
- SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
- RowBox[{"g", "[", "0", "]"}]}],
- RowBox[{"16", " ",
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], "]"}],
- RowBox[{"47", "/", "8"}]]}]]}], "+",
- FractionBox[
- RowBox[{"15", " ",
- SuperscriptBox["\[Theta]", "3"], " ",
- RowBox[{"(",
- RowBox[{"1", "-",
- FractionBox[
- SuperscriptBox["\[Theta]", "2"],
- SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
- RowBox[{"g", "[", "0", "]"}]}],
- RowBox[{"2", " ",
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], "]"}],
- RowBox[{"31", "/", "8"}]]}]], "+",
- FractionBox[
- RowBox[{"45", " ", "\[Theta]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], " ",
- RowBox[{"(",
- RowBox[{"1", "-",
- FractionBox[
- SuperscriptBox["\[Theta]", "2"],
- SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
- RowBox[{"g", "[", "0", "]"}]}],
- RowBox[{"4", " ",
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], "]"}],
- RowBox[{"31", "/", "8"}]]}]], "-",
- FractionBox[
- RowBox[{"15", " ",
- SuperscriptBox["\[Theta]", "3"], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], " ",
- RowBox[{"g", "[", "0", "]"}]}],
- RowBox[{
- SuperscriptBox["\[Theta]0", "2"], " ",
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], "]"}],
- RowBox[{"31", "/", "8"}]]}]], "+",
- FractionBox[
- RowBox[{"6", " ", "\[Theta]", " ",
- RowBox[{"g", "[", "0", "]"}]}],
- RowBox[{
- SuperscriptBox["\[Theta]0", "2"], " ",
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], "]"}],
- RowBox[{"15", "/", "8"}]]}]]}], ")"}]}]}], "+",
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"15", " ",
- SuperscriptBox["\[Theta]", "2"], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], " ",
- RowBox[{"(",
- RowBox[{"1", "-",
- FractionBox[
- SuperscriptBox["\[Theta]", "2"],
- SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
- RowBox[{"g", "[", "0", "]"}]}],
- RowBox[{"4", " ",
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], "]"}],
- RowBox[{"31", "/", "8"}]]}]]}], "+",
- FractionBox[
- RowBox[{
- RowBox[{"(",
- RowBox[{"1", "-",
- FractionBox[
- SuperscriptBox["\[Theta]", "2"],
- SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ",
- RowBox[{"g", "[", "0", "]"}]}],
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], "]"}],
- RowBox[{"15", "/", "8"}]]], "-",
- FractionBox[
- RowBox[{"2", " ",
- SuperscriptBox["\[Theta]", "2"], " ",
- RowBox[{"g", "[", "0", "]"}]}],
- RowBox[{
- SuperscriptBox["\[Theta]0", "2"], " ",
- SuperscriptBox[
- RowBox[{"RealAbs", "[",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], "]"}],
- RowBox[{"15", "/", "8"}]]}]]}], ")"}], "2"]],
- RowBox[{"(",
- RowBox[{
- FractionBox[
- SuperscriptBox["\[Theta]", "2"],
- RowBox[{"\[Pi]", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]}]], "-",
- FractionBox["1",
- RowBox[{"2", " ", "\[Pi]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}]}]], "+",
- FractionBox[
- RowBox[{
- RowBox[{"CYL", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["5",
- RowBox[{"36", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"7", "/", "6"}]]}]], "+",
- FractionBox["5",
- RowBox[{"36", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"7", "/", "6"}]]}]]}], ")"}]}], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}],
- "2"]}]]}], "-",
- FractionBox["1",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}]], "+",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
- ")"}]}]]}]], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
- "]"}]}],
- RowBox[{
- SuperscriptBox["B", "2"], " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}],
- "3"]}]]}], ")"}]}], "\[Pi]"], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], "2"]}]]}],
- "-",
- FractionBox["1",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}]], "+",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
- RowBox[{
- SuperscriptBox["B", "2"], " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], "3"]}]]}],
- ")"}]}], "\[Pi]"]}],
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]], "-",
- FractionBox[
- RowBox[{"8", " ", "\[Theta]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"CYL", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- FractionBox[
- RowBox[{"5", " ", "\[ImaginaryI]"}],
- RowBox[{"6", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]}]]}], "+",
- FractionBox[
- RowBox[{"5", " ", "\[ImaginaryI]"}],
- RowBox[{"6", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]}]]}], ")"}]}], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{"1", "-",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
- ")"}]}]]}]], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
- "]"}]}], "-",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
- ")"}]}]]}]], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
- "]"}]}],
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}],
- ")"}]}], "\[Pi]"], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
-
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
- "+",
- FractionBox[
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
-
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}], ")"}]}],
- "\[Pi]"]}], ")"}]}],
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]], "+",
- FractionBox[
- RowBox[{"24", " ",
- SuperscriptBox["\[Theta]", "2"], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"CYL", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "2"}], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"5", "/", "6"}]]}], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
- ")"}]}]]}]], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
- "]"}]}], "+",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
- "\[Pi]"], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
-
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
- "+",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
- "\[Pi]"]}], ")"}]}],
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], "4"]], "-",
- FractionBox[
- RowBox[{"4", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"CYL", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "2"}], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"5", "/", "6"}]]}], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}],
- ")"}]}]]}]], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
- "]"}]}], "+",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
- "\[Pi]"], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
-
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}],
- "+",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
- "\[Pi]"]}], ")"}]}],
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]]}], ")"}]}],
- ")"}]}]], "Output",
- CellChangeTimes->{
- 3.867399663278276*^9, {3.8674005829418097`*^9, 3.867400612249578*^9}},
- CellLabel->"Out[23]=",ExpressionUUID->"1d11593c-279f-48a7-b332-deeff602eead"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"\[Chi]0", "=",
- RowBox[{"Limit", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"(",
- RowBox[{"DufDuh", "[",
- RowBox[{
- "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",",
-
- RowBox[{"{", "}"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{"g", "[", "0", "]"}], ",",
- RowBox[{"g", "[", "1", "]"}]}], "}"}]}], "]"}], ")"}], "[", "2",
- "]"}], "[",
- RowBox[{"R", ",", "\[Theta]"}], "]"}], ",",
- RowBox[{"\[Theta]", "->", "\[Theta]0"}], ",",
- RowBox[{"Direction", "->", "\"\<FromBelow\>\""}], ",",
- RowBox[{"Assumptions", "->",
- RowBox[{"{",
- RowBox[{
- RowBox[{"\[Theta]0", ">", "1"}], ",",
- RowBox[{"R", ">", "0"}], ",",
- RowBox[{"B", ">", "0"}], ",",
- RowBox[{"\[Theta]0", ">", "0"}], ",",
- RowBox[{"\[Theta]YL", ">", "0"}], ",",
- RowBox[{
- RowBox[{"g", "[", "0", "]"}], ">", "0"}], ",",
- RowBox[{
- RowBox[{"g", "[", "1", "]"}], ">", "0"}]}], "}"}]}]}],
- "]"}]}]], "Input",
- CellChangeTimes->{{3.867399306978856*^9, 3.867399362899951*^9}, {
- 3.867399492127166*^9, 3.867399492566269*^9}, {3.8673995729447317`*^9,
- 3.867399586808991*^9}, {3.867399697155163*^9, 3.867399722330738*^9}, {
- 3.867400597443878*^9, 3.867400646940031*^9}, {3.867400765926566*^9,
- 3.86740078743888*^9}, {3.86740167647156*^9, 3.8674016895355988`*^9}},
- CellLabel->"In[30]:=",ExpressionUUID->"7b4a2b19-eb62-4fb5-9666-a81b70aa0106"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{
- FractionBox["1",
- RowBox[{"8", " ",
- SuperscriptBox["R",
- RowBox[{"7", "/", "4"}]], " ",
- SuperscriptBox[
- RowBox[{"g", "[", "0", "]"}], "2"]}]],
- RowBox[{
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- FractionBox["1", "\[Pi]"]}], "+",
- FractionBox[
- RowBox[{"2", " ",
- SuperscriptBox["\[Theta]0", "2"]}],
- RowBox[{"\[Pi]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}]}]], "+",
- FractionBox[
- RowBox[{"48", " ",
- SuperscriptBox["\[Theta]0", "2"], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"CYL", " ", "\[Pi]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "2"}], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"5", "/", "6"}]]}], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0",
- " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
- ")"}]}],
- RowBox[{"\[Pi]", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]], "-",
- FractionBox[
- RowBox[{"8", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"CYL", " ", "\[Pi]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "2"}], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"5", "/", "6"}]]}], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0",
- " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
- ")"}]}],
- RowBox[{"\[Pi]", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}]], "-",
- FractionBox[
- RowBox[{"16", " ", "\[Theta]0", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["C0", "\[Pi]"], "-",
- RowBox[{
- FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]], "-",
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-",
- FractionBox[
- RowBox[{"C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}],
- RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}],
- ")"}]}],
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]], "+",
- FractionBox[
- RowBox[{"2", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox[
- RowBox[{"2", " ", "B", " ", "C0"}], "\[Pi]"], "+",
- RowBox[{
- FractionBox["5", "36"], " ", "CYL", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"7", "/", "6"}]]], "+",
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"7", "/", "6"}]]]}], ")"}]}], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"2", " ", "B", " ", "\[Theta]0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}]}], "-",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
- ")"}]}],
- RowBox[{"8", " ",
- SuperscriptBox["B", "2"], " ", "\[Pi]", " ",
- SuperscriptBox["\[Theta]0", "3"]}]]}], ")"}]}],
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}]], "-",
- FractionBox[
- RowBox[{"3", " ",
- RowBox[{"(",
- RowBox[{"2", "+",
- RowBox[{"3", " ",
- SuperscriptBox["\[Theta]0", "2"]}]}], ")"}], " ",
- RowBox[{"(",
- RowBox[{
- FractionBox[
- RowBox[{"\[Theta]0", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}], "\[Pi]"],
- "+",
- FractionBox[
- RowBox[{"8", " ", "\[Theta]0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"CYL", " ", "\[Pi]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "2"}], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"5", "/", "6"}]]}], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
- "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
- ")"}]}], "\[Pi]"], "-",
- RowBox[{"2", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["C0", "\[Pi]"], "-",
- RowBox[{
- FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]], "-",
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-",
- FractionBox[
- RowBox[{"C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}],
- RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}],
- ")"}]}]}], ")"}]}],
- RowBox[{"2", " ", "\[Theta]0", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]]}], ")"}]}]}],
- "+",
- FractionBox[
- RowBox[{
- SuperscriptBox["R", "2"], " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"], " ",
- RowBox[{"Log", "[",
- RowBox[{"R", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}]}], "]"}]}],
- RowBox[{"4", " ", "\[Pi]"}]]}]], "Output",
- CellChangeTimes->{{3.8673993112840843`*^9, 3.8673993768209543`*^9},
- 3.867399506274879*^9, 3.867399581147868*^9, 3.867399616196063*^9,
- 3.86739971032502*^9, 3.86740056902387*^9, 3.867400605222789*^9,
- 3.867400763951229*^9, 3.867401303236107*^9},
- CellLabel->"Out[25]=",ExpressionUUID->"49d3eb26-ffe6-47e7-8e76-81dd108d6570"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{
- FractionBox["1",
- RowBox[{"8", " ",
- SuperscriptBox["R",
- RowBox[{"7", "/", "4"}]], " ",
- SuperscriptBox[
- RowBox[{"g", "[", "0", "]"}], "2"]}]],
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-",
- FractionBox["1", "\[Pi]"]}], "+",
- FractionBox[
- RowBox[{"2", " ",
- SuperscriptBox["\[Theta]0", "2"]}],
- RowBox[{"\[Pi]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}]}]], "+",
- FractionBox[
- RowBox[{"48", " ",
- SuperscriptBox["\[Theta]0", "2"], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"CYL", " ", "\[Pi]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "2"}], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"5", "/", "6"}]]}], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0",
- " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
- ")"}]}],
- RowBox[{"\[Pi]", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]], "-",
- FractionBox[
- RowBox[{"8", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"CYL", " ", "\[Pi]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "2"}], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"5", "/", "6"}]]}], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0",
- " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
- ")"}]}],
- RowBox[{"\[Pi]", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}]], "-",
- FractionBox[
- RowBox[{"16", " ", "\[Theta]0", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["C0", "\[Pi]"], "-",
- RowBox[{
- FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]], "-",
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-",
- FractionBox[
- RowBox[{"C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}],
- RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}],
- ")"}]}],
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]], "+",
- FractionBox[
- RowBox[{"2", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox[
- RowBox[{"2", " ", "B", " ", "C0"}], "\[Pi]"], "+",
- RowBox[{
- FractionBox["5", "36"], " ", "CYL", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"7", "/", "6"}]]], "+",
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"7", "/", "6"}]]]}], ")"}]}], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"2", " ", "B", " ", "\[Theta]0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}]}], "-",
-
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
- ")"}]}],
- RowBox[{"8", " ",
- SuperscriptBox["B", "2"], " ", "\[Pi]", " ",
- SuperscriptBox["\[Theta]0", "3"]}]]}], ")"}]}],
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}]], "-",
- FractionBox[
- RowBox[{"3", " ",
- RowBox[{"(",
- RowBox[{"2", "+",
- RowBox[{"3", " ",
- SuperscriptBox["\[Theta]0", "2"]}]}], ")"}], " ",
- RowBox[{"(",
- RowBox[{
- FractionBox[
- RowBox[{"\[Theta]0", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}], "\[Pi]"],
- "+",
- FractionBox[
- RowBox[{"8", " ", "\[Theta]0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"CYL", " ", "\[Pi]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "2"}], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"5", "/", "6"}]]}], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-",
- RowBox[{"2", " ", "C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
- "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}],
- ")"}]}], "\[Pi]"], "-",
- RowBox[{"2", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["C0", "\[Pi]"], "-",
- RowBox[{
- FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ",
-
- RowBox[{"(",
- RowBox[{
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]], "-",
- FractionBox["1",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-",
- FractionBox[
- RowBox[{"C0", " ",
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}],
- RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}],
- ")"}]}]}], ")"}]}],
- RowBox[{"2", " ", "\[Theta]0", " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]]}], ")"}]}],
- "+",
- FractionBox[
- RowBox[{
- SuperscriptBox["R", "2"], " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"], " ",
- RowBox[{"Log", "[",
- RowBox[{"R", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]0", "2"]}], ")"}]}], "]"}]}],
- RowBox[{"4", " ", "\[Pi]"}]]}], "/.",
- RowBox[{"B", "->",
- RowBox[{"ruleB", "[",
- RowBox[{"\[Theta]0", ",",
- RowBox[{"{",
- RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}]}]}], "/.",
- RowBox[{"C0", "->",
- RowBox[{"ruleAL", "[",
- RowBox[{"\[Theta]0", ",",
- RowBox[{"{",
- RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}]}]}], "/.",
- "data2"}]], "Input",
- CellChangeTimes->{{3.867401430819233*^9, 3.8674014482667217`*^9}, {
- 3.867401479324093*^9, 3.867401519892399*^9}},
- CellLabel->"In[29]:=",ExpressionUUID->"df04d6a6-7870-45a4-a6f0-74b19e0194f0"],
-
-Cell[BoxData[
- RowBox[{
- FractionBox[
- RowBox[{"1.443675578109905`", "\[VeryThinSpace]", "+",
- RowBox[{"0.`", " ", "\[ImaginaryI]"}]}],
- SuperscriptBox["R",
- RowBox[{"7", "/", "4"}]]], "+",
- RowBox[{"0.008090042376531648`", " ",
- SuperscriptBox["R", "2"], " ",
- RowBox[{"Log", "[",
- RowBox[{"0.3188455280999998`", " ", "R"}], "]"}]}]}]], "Output",
- CellChangeTimes->{
- 3.867401448565897*^9, {3.8674014930013247`*^9, 3.867401520373138*^9}},
- CellLabel->"Out[29]=",ExpressionUUID->"911979f9-954d-47ec-b0a6-8c3dacdfaa49"]
-}, Open ]],
-
-Cell[BoxData[
- RowBox[{"Limit", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"(",
- RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "2", "]"}], "[",
- RowBox[{"R", ",", "\[Theta]"}], "]"}], ",",
- RowBox[{"\[Theta]", "->", "\[Theta]"}]}], "]"}]], "Input",
- CellChangeTimes->{{3.867399396604781*^9,
- 3.8673993968872347`*^9}},ExpressionUUID->"626c9442-a5ca-460d-9253-\
-fd9b4c2f2227"],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"ComplexPlot", "[",
- RowBox[{
- RowBox[{
- RowBox[{"(",
- RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "\[Theta]", "]"}], ",",
- RowBox[{"{",
- RowBox[{"\[Theta]", ",", "3"}], "}"}]}], "]"}]], "Input",
- CellChangeTimes->{{3.857755068199889*^9, 3.857755069519574*^9}, {
- 3.857790321737791*^9, 3.8577903601065702`*^9}, {3.85779160038527*^9,
- 3.857791646178491*^9}, {3.867399210226221*^9, 3.867399214577518*^9},
- 3.8673993211077833`*^9},
- CellLabel->"In[10]:=",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"],
-
-Cell[BoxData[
- GraphicsBox[{GraphicsComplexBox[CompressedData["
-1:eJx12z2oXlUQheFPr2gQQbEwYBeC2NiI6VTWYGElCGkUtFERfxohgohaRrCJ
-FmodSKeNsRJsFBEby0saSRGCYGWhIgoKEQlrF8/hVJsFl+/sPS/7nJk1c0+9
-+MbZl289HA7njw6H/9cv7nv05xs37vi264PX7nz/yWdvX/riZz89cOHybUuf
-fPPzH45PHC390WPvvHL/C7csffddn9zz3bkb31QfLj5y9unT/y7928PHH189
-/nvp69+fu/La+T+XPn7m3pN/nfl96Q+uvPTliR9/Xfr1fy6dOf3QL0s/der6
-V49fuLb0cx8+8dblq8dLv/3q0R+fvvv10u/d1Kl+/ubfh98Lzwv7CfsN5wnn
-DfEI8QrxHOI98Bh4DRzVi6tr+VaXb3X5VpdvdflWl291+VaXb3X5VpdvdflW
-l291+VaXb3X58nvheWE/Yb/hPOG8IR4hXiGeQ7wHHgOn4V6qNxyrXcu3unyr
-y7e6fKvLt7p8q8u3unyry7e6fKvLt7p8q8u3unz5vfC8sJ+w33CecN4QjxCv
-EM8h3gOHgdfS5bv33vWeytW1fKvLt7p8q8u3unyry7e6fKvLt7p8q8u3unyr
-y7e6fPm98Lywn7DfcJ5w3hCPEK8QzyHOA4+B19Llu/cd9b3rPZWra/lWl291
-+VaXb3X5VpdvdflWl291+VaXb3X5VpcvvxeeF/YT9hvOE84b4hHiFeI4xHvg
-MfBaunz38iK/o753vadydS3f6vKtLt/q8q0u3+ryrS7f6vKtLt/q8q0uX34v
-PC/sJ+w3nCecN8QjxCnEc4j3wGPgtXT57uW55kV+R33vek/l6lq+1eVbXb7V
-5VtdvtXlW12+1eVbXb7V5cvvheeF/YT9hvOE84Y4hHiFeA7xHngMvJYu3726
-xTzXvMjvqO9d76lcXcu3unyry7e6fKvLt7p8q8u3unyry5ffC88L+wn7DecJ
-5wzxCPEK8RziPfAYeC1dvnt1qHWLea55kd9R37veU7m6lm91+VaXb3X5Vpdv
-dflWl291+fJ74XlhP2G/4RzhvCEeIV4hnkO8Bx4Dr6XLd89XsA61bjHPNS/y
-O+p713sqV9fyrS7f6vKtLt/q8q0u3+ry5ffC88J+wj7DecJ5QzxCvEI8h3gP
-PAZeS5fvnk+kr2Adat1inmte5HfU9673VK6u5VtdvtXlW12+1eVbXb78Xnhe
-2EfYbzhPOG+IR4hXiOcQ74HHwGvp8t3z/fSJ9BWsQ61bzHPNi/yO+t71nsrV
-tXyry7e6fKvLt7p8+b3wnLCfsN9wnnDeEI8QrxDPId4Dj4HX0uW75+Pq++kT
-6StYh1q3mOeaF/kd9b3rPZWra/lWl291+VaXL78Tnhf2E/YbzhPOG+IR4hXi
-OcR74DHwWrp893x5fVx9P30ifQXrUOsW81zzIr+jvne9p3J1Ld/q8q0uX34v
-PC/sJ+w3nCecN8QjxCvEc4j3wGPgtXT57vVZ9OX1cfX99In0FaxDrVvMc82L
-/I763vWeytW1fKvLl98Lzwv7CfsN5wnnDfEI8QrxHOI98Bh4LV2+e30z+yz6
-8vq4+n76RPoK1qHWLea55kV+R33vek/l6lq+/F54XthP2G84TzhviEeIV4jn
-EO+Bx8Br6fLd64PaN7PPoi+vj6vvp0+kr2Adat1inmte5HfU9673VK6u5cvz
-wn7CfsN5wnlDPEK8QjyHeA88Bl5Ll+9eX9s+qH0z+yz68vq4+n76RPoK1qHW
-Lea55kV+R33vek/l6kp+FfKrkF+F/CrkVyG/CvlVyK9CfhXyq5BfhfxqM6dg
-X9s+qH0z+yz68vq4+n76RPoK1qHWLea55kV+R33vek/l6kp9FOqjUB+F+ijU
-R6E+CvVRqI9CfRTqo1AfbeZOnFOwr20f1L6ZfRZ9eX1cfT99In0F61DrFvNc
-8yK/o753vadydcXfCP5G8DeCvxH8jeBvBH8j+BvB3wj+xmaOyLkT5xTsa9sH
-tW9mn0VfXh9X30+fSF/BOtS6xTzXvMjvqO9d76lcXfEngz8Z/MngTwZ/MviT
-wZ8M/mTwJzdzYc4ROXfinIJ9bfug9s3ss+jL6+Pq++kT6StYh1q3mOeaF/kd
-9b3rPZWrK/2F0F8I/YXQXwj9hdBfCP2F0F/YzPk5F+YckXMnzinY17YPat/M
-Pou+vD6uvp8+kb6Cdah1i3mueZHfUd+73lO5utIfDP3B0B8M/cHQHwz9wdAf
-3MxtOufnXJhzRM6dOKdgX9s+qH0z+yz68vq4+n76RPoK1qHWLea55kV+R33v
-ek/l6kp/f/El3gOPgdfS9Pc3c7jObTrn51yYc0TOnTinYF/bPqh9M/ss+vL6
-uPp++kT6Ctah1i3mueZFfkd973pP5erKfM7iC4+B19LM52zmqp3DdW7TOT/n
-wpwjcu7EOQX72vZB7ZvZZ9GX18fV99Mn0lewDrVuMc81L/I76nvXeypXV+br
-ymPgtTTzdZs5eeeqncN1btM5P+fCnCNy7sQ5Bfva9kHtm9ln0ZfXx9X30yfS
-V7AOtW4xzzUv8jvqe9d7KldX5mMXX/7PQb2Zi3eO2rlb5zSd63MOzLkh50yc
-S7CPbd/TPpl9FX14fVt9Pn0hfQTrTusU81rzIL+bvme9l3KEx8BraebbN//H
-4v89OCfvXLVzuM5tOufnXJhzRM6dOKdgX9s+qH0z+yz68vq4+n76RPoK1qHW
-Lea55kV+R33vek/l6sr/p2z+L8n/Y/H/HpyTd67aOVznNp3zcy7MOSLnTpxT
-sK9tH9S+mX0WfXl9XH0/fSJ9BetQ6xbzXPMiv6O+d72ncnX9DytUJ10=
- "], {{
- {Texture[
- GraphicsBox[
- TagBox[
- RasterBox[CompressedData["
-1:eJztyMEJwkAUBNAlXjzagl14ErwEvEZSQIJr8LKBTUDsIm3aRTbgORU8ePOZ
-+ed+bF5VCGE6ltN0n1vO3fdxKqNN03tI8XlPcxxivvSH8lz+2fqvvgIAAAAA
-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
-AAAAAAAAAAAAALBjBcshkTw=
- "], {{0, 144.}, {144., 0}}, {0, 255}, ColorFunction -> RGBColor],
- BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
- Selectable -> False], DefaultBaseStyle -> "ImageGraphics",
- ImageSizeRaw -> {144., 144.}, PlotRange -> {{0, 144.}, {0, 144.}}]],
- EdgeForm[None], GraphicsGroupBox[PolygonBox[CompressedData["
-1:eJxNm3V01UfXhXPvD3e3oMGCBQlO0QDBA4Hg7u4uwSluhQKlRYsXCsXdnUIL
-xd0dSpGi5T17zfOt9f2xV0/3nXNmZj/DhVSytO4R2d0fEBBQ1QsIiGF/9Zn0
-95lNmajto4AseKq1LghPdUxTVjzVsUzZ8FTHNmXHUx3HlANPdVxTTjzV8UzB
-eKrjm3LhqU5gyo2XxpTWVMxUlDqdqTheIlNiUz5TXuokphA81UlN+fFUJzMV
-wFOd3FQQT3UKUyE81SlNoXiqU5kK46lObSqCl5ozF8XTXRKa8nCnhJw5L57u
-EmgqwZ2CuXe4qbIpvSmDqZSpJHVG0zd4meBWxlSaWtzK4mWBWzm8ILiVx8sK
-twp42eAWhpcdbhXxcsCtEl4o94401eEu6TlrCe6ie1fhTrm5d1W8PGRRDS8v
-3Krj5YNbDbwQuNXEyw+3WngF4BaBVxButfEKceY6eDnJvDJ3Kgy3utypCCzr
-4anWu4vCK849G5jqU+vuDfHKk2NLUwt6i7M2irXi2IieUrBtjFcWTs1NzajL
-M0teaTg3NTVhL3FqxZ5lmNGMNWFwa82aGuTWxdSZDJRFW1MbanFrhxcOt/Z4
-VeDWAa8anDqZOjK3q2miaQJ71cLrQi0u3fCqc6bOzKjImdpw5gi4daenNix7
-4NWBW0+8unDqbepFrdz74EXBoi9efbj1w2sAl/54DeEyAK8RrAbiNSHnwaZB
-1Mp+CF4zuA3Fi+SMvThzc9gOY01LOA03RZOBshhpGkEtLqPwWtATzYxW9Ixg
-RmdyF4vx9IrjaGa0h+VY0xhqcRyH1xEu3+J1YuZ4vHbMGMNMvY1q9HWAsbhN
-CnBvYotpq+m86S8YitsU02Rq5TIVrydZTcPrBcfpeL3hOAOvDxxn4vWF43d4
-/eA4C68/HGfjDYDt93hjuffPpqXUuvcyvCFw+8E0j1oc5uMNg82PeNFw+Qlv
-OKwW4I2A60K8kXBahDeKnBfjjSb7JXhjOPNSPL1JvcO5pjnUQzjrXO4ilsu5
-0yzuvdH0W4B7N+K20rSCWixX4U2C22q8yXBbgzcFbr/gTYXbWrxpcFuHNx1u
-v+LNgNt6vJlw24C3iHvvNe3hLhM463LuIpabuNMc7q13uJlaWWzFmwe3bXg/
-wG073ny47cD7EW478X6C2y68BXDbjbeQM+/B+47Mf+NOi+G2jzstgeV+PNV6
-dwfwlnHPQ6aD1Lr7Yby15HjKdJLeZaw9wFpxPELPSjgexVsDpxOm49RrmXWC
-teJ8jJ51cPqdPVcz4zhrfoXbadZsJ7dLpotkoCz+MJ2hFrc/8TbC8izeZrjp
-u+QczMTpQoD7jtF3j75j9C4nsZe4XGbPnXC5greNM11kxnrOdIYz74LbVXp2
-w/Ia3h64XcfbB6ebphvUyv0W3gFY3MY7CLc7eIfgchfvMFzu4R0h9/t4R8n5
-Ad4xsn+Idxxuj/D2csYbnPkEbB+z5hScnpqekIGyeG56Ri0uL/BO0vOEGb/T
-84wZF8n9nektveL4khnnYPmP6RW1OL7GOw+XN3gXmPkWT7P0Nv5m5iW4/sue
-l+H2Hu8K3D7gXSOHT6aP1MrmM949cvXsByu/z/VeY+0H1orrF3puwvU/vDtw
-8+kHM5+rNVOz5N2C+1d67sMths/teZsZ6v3KZ+IY0+fWvOTuiaxO6HMMxSG2
-1bF8rhabOD7nPYFLXJ/znsIqns95z+GSwOr4zNTsvKY8PsdIXJJYndjnanFJ
-6nPeCzioTzMe8q50Fp35Ge9Gs7Xnazgm87kZb+GWwurkPsdIOae2OpXP1co+
-jc95AeSYyZTR5xirR2tT+txacUzrcz2f4JTO57z/yD6D1enJOIBZ8j7DMdDn
-et7xjjRbZ3zDW9RZk3EWsc3MmeKRYy5TMBkoi2ymrNTikh3PD/cszIhBj9YG
-sVbcctATB2458eKTe272TADDPHhxOVMwPR57BLHnb6aNpj9Nf8BYXENM+WCk
-exYw5YeRcihkKkitbELxAsm1pKkEvclZW4C1YlWYnlRwLYKXltyLm4pRBzKr
-OGvFtSg96eFWij3TMKMYazLA9hvW5CCHSqaKMFPuZUylqZVLWbwsZFUOLwg2
-5fGywSXMVIHskpJVCHsp+8rsGQyncLzsnKkiMzJyptKcORccq9CTG7ZV8VTr
-12o1vBD2rmmqQa3ca+EVgEUEXkG41cYrBJc6eKFwicQrTO518YqQcz28omQf
-hVcMbvXx8nFGna06n4ltA9aUhFMjU0MyUBZNTI2pxaUpXgl6GjKjFD2NmfGF
-71m9k0B6xbEZM8rBsoWpObU4tsSrAJdWeGGwao1XlhnNmVkRzm1YUwnObfEq
-w7EdXlXYdTR1IBNl09nUiYyVay9TT5hXZW171oprF3pqwrUrXm249TB1p45k
-Vg/Wins3elpyr+GmaD6rTW83ziKuvTlTU+49xDQYBmLR39SPWhwG4NXjHfRh
-Rn16tLYva8VuID2N4TwIrxlZD2XP5nAahteEMw2mJ4o9+rJnC+4YTU8rOI3g
-zoOZO880F2biNMo0klrsRuO1g8MYvPawGYvXAbbj8DrBabzpW2pxmoDXBQ4T
-8bqS+yS8brCYjNeaM47kDt3hOoU1PeE0zTSVzJXDDNN0amUzE68HPVOZ0Yue
-6cwYQs4/kFFf2H3HjP5wm22aRS1u3+MNhMscvEFkPhevHzNmMXODz/0epd+b
-zrC3uM3nDItMi017TXvIQFksNC0gU+W4wrScWjmuxBtOj9b+5HPvYjj1j8wa
-xT4LYTaeWctgLs5LOMcovMX0TITTKvbUG9Bb+Nm0lM/EaTVrZpHTRu49BRa/
-mNZQi8NavOlw+9W0jllTWLuatdP5bC1rxWk9PbPhsIk9Z/6/3LVG31X6ztG7
-bsdnszjbBu4+lrssYZY4bmbmHNhuwZtPrjtM26mV9U68pWRzwLQfxvNZu421
-YrWLngVw2Y23mHPs87k3sYSZ+/EWwmUPPfPYQ7O3wlRsD5kO+twbEbcjpsPk
-qNx+N50iY2V93HSM3hWsPcTd5zF7C4xXs/aoz73laHKYz16r+OwIjMXtpOkE
-e4vLac6wHg5n8NZyxlP0rGHGCc6oP7vozyz6fa08zMXprM/9GfCi336mMr0z
-vfU7Zjr3X6Zz1LrLebytZHcBbxusLuJth+slvB1wu4y3E25X8HbB5Sreblhd
-w9sD1+t4p8jhqekJtXJ4hifueku3TDdhKi53TLepxeou3mFyv4d3BBb38Y7C
-7gHeMXJ9iHecrB/hnYDDY7yTnPkJnu6id3mDO+3jzDfxTsP2OXe6yr0/mj74
-3PeiuL00vaAWy7/xzsLtFd45uP2D9xfcXuOdh9sbvAtwe4t3EW7v8C7B7V+8
-y3B7j/eQe8eytxTT7+7yB2d9zl1070/c6Tr3/ox3gyy+4N2E5X94t+Gmf/H5
-lVrcfH7n3YWb3++8e3Dz/M67D7cYfuc94Mw6q7wrZP6BOz2CW2y/u9NjWMbx
-O0+13l1cv/Oecc/4Vsfzu1p3T+B33htyTG51Mr/rVY/WasYLOCb0u56XcEzk
-d94/cEpqdRK/qzVTs+T9DefEftfzFk4p/G7PV3BXr9a8g1tKv1sTQG6ZTBn9
-LgNlkdrqVH5Xi1sav/M+wi2t33mf4JbO77wvsEtvdSBzM5vKmEqzlx8vE7W4
-ZMH7CmudJYPfnVVn0llSslbcguiJwbvLihcTbtnwYsMphyk7tXLPiRcXbsF4
-8eCWCy8+XHLjJYBLHryE5J4XLxE558NLDLcQvCRwy48XizNm58xJeScFWJMc
-ToVMBclAWRQ2hVKLSxG8ZPQUZEYKekKZkZHcxeIbesWxKDPEUCyLm4pRi2MJ
-PNViWxIvAzM1qxSz0tKrmZ/5dRzIrMxwK8ub6GTqbBpv+haG4lbeVI5auVTA
-y0ZWYXjZ4VgRLwccK+HlhGNlvGA4huPlgmMVvNxwrIqXB47V8Ipz7wam+tTK
-oiFeCNxqmmpQi0MtvAKwicArCJfaeIVgVQcvFK6ReIXhVBevCDnXwytK9lF4
-xThzfTzdRe+wOnfKx5lr4JWCZWNTIzLQvTuY2vvduxG3pqYm1GLZDK8s3Jrj
-lYNbC7zycGuJVwFurfDC4NYaryLc2uBVgltbvMpwa4dXl3v3NvXiLqU5a2Pu
-ont35E7VuHcnvOpk0RmvBty64NWEW1e8WnDrhhcBt+54teHWA68O3HriRXLm
-XnjhZN6eO9WDWx/uFAXLvniq9e764TXingNNA6h190F4rchxhGk4vXq7/ZnR
-BI6D6WkKxyF4LeAUbRpG3YpZ0awV56H0tIbTSPZszoxhrGkDt1Gs6Upuk0wT
-yUBZjDGNpha3sXgd4DYOryPcvsXrDKcJfvcdo+8efcfoXZZlL3GZzJ7d4TIF
-rwtnmsiMtpxpNGfuAbep9PSE5TS8XnCbjtcHTjNNM6iV+3d4/WAxC28A3L43
-zaYWlzl4g+AyF28wuc/DG0LOP+ANJfv5eMPg9iNeb844gzNHw/Yn1oyA00LT
-AjJQFotNi6jFZQnecHoWMGMkPYuYMZHcV5lW0iuOS5kxDpbLTD9Ti+NyvPFw
-WYE3gZkr8cYy42dmToLravacDLc1eFPg9gveNHJYZ1pLrWx+xZtLrltNW+id
-xtpfWCuu6+mZCdcNeN/DbbNpE/VcZm1mrd7Cb/TMg9s29pzNDPVu5DNx3M6a
-pdz9gGk/DMVhp2kHtdjswlsAl914C2G1B28xXPaZ9jJTs2+ZbrKXuBzEXwaX
-Q3hLONN+ZsznTDs48yL22Muey+F4mBkr4XbUdARGyvmE6Ti1sj+Jt4kcz5nO
-wngNa4+xVhxP0bMOTr/jbSD7P0xnyHgTs/5krTiepmcVexzjjCs48xHusBm2
-f3GmPdz1uukaGSgL/Yx+kVpcLuNtgft5ZmyjR2svsFbcrtCzC25X8faS+w32
-3AeLm3i7OdM1erayxwX21D9L2MzPmfrZ8wBcb/MGDnHPu6Y73Fs53Dfdo1Y2
-D/BOk+tz0zN6j7D2LmvF6iE9x+H6CO8UuT81PaE+zaynrBXXx/ScgeUL9jzJ
-jCes+RO2f5tekply+GB6DzPl/o/pFbVyeY13nqze4F2AzVu8S3D51+/+GcxB
-MrtDhlfJ/iN7XoPTJ7zLnOk9M85yplec+TocP9NzA7Zf8G7C6T+82+yt/5D4
-K7Vy93nOuwsLv+e8e3DzPOfdh0sMz3kP4BLTc95Dco/lOe8ROcf2nPeY7ON4
-znsCt7ie825xxq+c+Sls43luzXNYJrA6vucyUBaJrU7kuVpcknjOewZ3rdWM
-l+SmtQk992t5A+/kNL3imNRzM97AMrnVyTxXi2MKz3nv4JLSc96/sErlOe81
-70C9mvkezqk9t+YDnNN4zvsIx7Se876QQ3qrAz1XK5sMnvNikms2U1bPMVeP
-1qaDsbhm9FxPAFwz4XlwCzJloY7JrCDWintmelJwr1BTIT7z6M3MWcQ1O2dK
-wr3zm0JgIBa5TMHUYpkbLzbvIAcz4tKjtTlhJnZ5TXmoxTkfXlI4FWDPZHAq
-iJeYM4XQE4c9crJncu5YiJ6UcCrMnUOYW9NUA2biVNRUhFrsiuGlhUNxvHRw
-LIEXCMeSeOnhVAovA5y+wcsIh9J4mci9DF5mWJTFS8UZi3CHLHAtx5qscKpg
-Kk/myqGiKYxa2VTCC6KnPDOy0RPGjPzkXIuMcsKuMjNywbqKKRyG4lbNc/8P
-RF64VMfLR+Y18IKZEc7MtqZ2ptGmUewtbhGcoZ4pytTH1JsMlEVdUySZKsfG
-pkbUyrEJXig9WlvHc+8ilLo2s4qyT12YlWJWQ5iLc33OURQvip7ScGrKniWY
-od4GfCZOzVgTTnbtuXc5WLQwNacWh5Z4YXBrbWrFrHKsbcbaMD5ryVpxakNP
-VTh0NHXgs//LXWs+8fuM3nVaPgvnbG25ewnuUp9Z4tiJmdVh2xkvgly7m7pR
-K+seeA3Ipr+pH4wjWNuVtWLVk55IuPTCi+IcfT33Juozsx9eXbj0pqcme2h2
-F/YW2wGcoTHcBpkGkqNyG2EaTsbKeqhpCL2NWTuAu9dkdmcYN2PtYM+95ULk
-EMFeTflsEIzFLdo0jL3FZSRnaAOHUXgtOeNwepozYxhnFDe9rTGe+zX1P4uT
-Py0=
- "]]]}, {}, {}, {}, {}}, LineBox[CompressedData["
-1:eJwt0bdNgwEQBtAfTMY2OdsgWsIChJ7QURE6CrDJyYmcBAsQFoAFCAvAAoQF
-YAHCAsCzRPGkK06nu+86p5fHlgqCIEhRSL7uYJApclxyzyvfVGnqZZQkp1zz
-yDu/xA3rZ4IM59zyzCeRUBB0M8wsCZLMMc8CiyyxzAqrrLHOBinSZMiSY5Mt
-ttlhlz32OeCQI46ZYYguwnzY64kbzkgzTh8xftz1xgNXnJBghB6ifMnnhTsu
-yDLJAO3EidFGKy0000QjDdRTRy01VOczJ0qEMJVUUE4ZpZRQTBGh/3/+Ac0Z
-Le4=
- "]]},
- VertexTextureCoordinates->CompressedData["
-1:eJx121+o33Mcx/ETrbY7507DBcqV2AVuxJoyKTeopVzIaiku/Gl340Jb7Ga1
-dnEuRkPKKRc6w8XOJGHIlBJJzGyYMTYtyoWLob6Pj3rW93fz6Xn7ffb5fN6f
-1/v9u3Lro/dsu2hhYWHXxQsL/63//m7avHPrrdZD957cfnj5pY147VUfnVhd
-Pjh4w/4rnl3acXjwdesOL60uvzv4tttP/bK8+OHgLU9fcsvSjqODH3775r27
-Tn06+J0n33h8dfmzwR+vv/O5lWOfD/780PEjy4tfDv52y/ZzBzZ/Nfj0n+su
-Xdrx9eDz+17YtGfl2OC/N9z4yK5TxwfvfGjb0Vv2nBi8+6YND6wunxy8Z83f
-f9zw3veD933xwe6VYz8MXnp57xXX/vXj4OefuP/15cWfBr+46Zo7rr729OBX
-Ljn/zYHNPw9+9bu3Hlv/4C+DV157Zs3SjjOD33zq7v2LS78OPnzX5dfvWfnt
-/+912en3135ydvCRMwfv23Xq3OCjq0+evXDh941zXrvyi/nF/GJ+Mb+YX8wv
-5hfzi/nF/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8wv5hfzO77X5Bfzi/md26f1
-2pVfzC/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4x
-v+N7TX4xv5jfuXO3+7Reu/KL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5hfzC/m
-F/OL+cX8Yn4xv5hfzO/4XpNfzC/md+4e7bnbfVqvXfnF/GJ+Mb+YX8wv5hfz
-i/nF/GJ+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8zv+F6TX8wv5neuLuo92nO3+7Re
-u/KL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv+N7TX4x
-v5jfuTq3dVHv0Z673af12pVfzC/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4x
-v5hfzC/mF/M7vtfkF/OL+Z17t7TObV3Ue7TnbvdpvXblF/OL+cX8Yn4xv5hf
-zC/mF/OL+cX8Yn4xv5hfzC/mF/OL+R3fa/KL+cX8zr1D+25pndu6qPdoz93u
-03rtyi/mF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5hfzC/md3ynyS/mF/M7
-lyv0Hdp3S+vc1kW9R3vudp/Wa1d+Mb+YX8wv5hfzi/nF/GJ+Mb+YX8wv5hfz
-i/nF/GJ+x/ea/GJ+Mb9zOVFzhb5D+25pndu6qPdoz93u03rtyi/mF/OL+cX8
-Yn4xv5hfzC/mF/OL+cX8Yn4xv5jf8b0mv5hfzO9c7tecqLlC36F9t7TObV3U
-e7TnbvdpvXblF/OL+cX8Yn4xv5hfzC/mF/OL+cX8Yn4xv5jf8b0mv5hfzO9c
-jtvcrzlRc4W+Q/tuaZ3buqj3aM/d7tN67cov5hfzi/nF/GJ+Mb+YX8wv5hfz
-i/nF/GJ+x/ea/GJ+Mb9zuXxz3OZ+zYmaK/Qd2ndL69zWRb1He+52n9ZrV34x
-v5hfzC/mF/OL+cX8Yn4xv5hfzC/md3yvyS/mF/M712dpLt8ct7lfc6LmCn2H
-9t3SOrd1Ue/Rnrvdp/XalV/ML+YX84v5xfxifjG/mF/ML+YX8zu+1+QX84v5
-neubtc/SXL45bnO/5kTNFfoO7buldW7rot6jPXe7T+u1K7+YX8wv5hfzi/nF
-/GJ+Mb+YX8zv+F6TX8wv5neuD9q+WfsszeWb4zb3a07UXKHv0L5bWue2Luo9
-2nO3+7Reu/KL+cX8Yn4xv5hfzC/mF/OL+R3fa/KL+cX8zvW12wdt36x9luby
-zXGb+zUnaq7Qd2jfLa1zWxf1Hu25231ar135xfxifjG/mF/ML+YX84v5Hd9r
-8ov5xfzOzSm0r90+aPtm7bM0l2+O29yvOVFzhb5D+25pndu6qPdoz93u03rt
-yi/mF/OL+cX8Yn4xv5jf8b0mv5hfzO/c3EnnFNrXbh+0fbP2WZrLN8dt7tec
-qLlC36F9t7TObV3Ue7TnbvdpvXblF/OL+cX8Yn4xv5jf8b0mv5hfzO/cHFHn
-Tjqn0L52+6Dtm7XP0ly+OW5zv+ZEzRX6Du27pXVu66Leoz13u0/rtSu/mF/M
-L+YX84v5Hd9r8ov5xfzOzYV1jqhzJ51TaF+7fdD2zdpnaS7fHLe5X3Oi5gp9
-h/bd0jq3dVHv0Z673af12pVfzC/mF/OL+R3fa/KL+cX8zs35dS6sc0SdO+mc
-Qvva7YO2b9Y+S3P55rjN/ZoTNVfoO7Tvlta5rYt6j/bc7T6t1678Yn4xv5jf
-8b0mv5hfzO/c3Gbn/DoX1jmizp10TqF97fZB2zdrn6W5fHPc5n7NiZor9B3a
-d0vr3NZFvUd77naf1mtXfjG/mN/xvSa/mF/M79wcbuc2O+fXubDOEXXupHMK
-7Wu3D9q+WfsszeWb4zb3a07UXKHv0L5bWue2Luo92nO3+7Reu/KL+R3fa/KL
-+cX8zs1Vdw63c5ud8+tcWOeIOnfSOYX2tdsHbd+sfZbm8s1xm/s1J2qu0Hdo
-3y2tc1sX9R7tudt9Wq9d+R3fa/KL+cX8zs3Jd666c7id2+ycX+fCOkfUuZPO
-KbSv3T5o+2btszSXb47b3K85UXOFvkP7bmmd27qo92jP3e7Teu3KL+YX8zv3
-v4fOyXeuunO4ndvsnF/nwjpH1LmTzim0r90+aPtm7bM0l2+O29yvOVFzhb5D
-+25pndu6qPdoz93u03rtOuZzJh7zOTP/Y+n/Hjon37nqzuF2brNzfp0L6xxR
-5046p9C+dvug7Zu1z9Jcvjluc7/mRM0V+g7tu6V1buui3qM9d7tP67Urv3P/
-S+r/WPq/h87Jd666c7id2+ycX+fCOkfUuZPOKbSv3T5o+2btszSXb47b3K85
-UXOFvkP7bmmd27qo92jP3e7Teu36D7BDs/w=
- "]], {}},
- Axes->{False, False},
- AxesLabel->{None, None},
- AxesOrigin->{0, 0},
- DisplayFunction->Identity,
- Frame->{{True, True}, {True, True}},
- FrameLabel->{{None, None}, {None, None}},
- FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
- GridLines->{None, None},
- ImagePadding->All,
- Method->{
- "DefaultMeshStyle" -> Automatic, "GridLinesInFront" -> True,
- "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True,
- "AxesInFront" -> True},
- PlotRange->{All, All},
- PlotRangeClipping->True,
- PlotRangePadding->{{
- Scaled[0.02],
- Scaled[0.02]}, {
- Scaled[0.02],
- Scaled[0.02]}},
- Ticks->{Automatic, Automatic}]], "Output",
- CellChangeTimes->{{3.857790326376232*^9, 3.857790371760695*^9},
- 3.8577912617645617`*^9, {3.857791601138686*^9, 3.857791647292798*^9},
- 3.857793207906136*^9, 3.8577932784582577`*^9, 3.857799952996063*^9,
- 3.858849758989471*^9, 3.8673872033934526`*^9, 3.867392578825694*^9,
- 3.867399193184537*^9, {3.8673993021765738`*^9, 3.867399322064127*^9}},
- CellLabel->"Out[10]=",ExpressionUUID->"85a2d28b-ab9a-4905-9bf4-82b4db4297e8"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"(",
- RowBox[{"uf", "@@",
- RowBox[{"Most", "[", "prep2", "]"}]}], ")"}], "[",
- RowBox[{"1", ",", "\[Theta]"}], "]"}]], "Input",
- CellChangeTimes->{{3.85779358958924*^9, 3.8577935913652163`*^9}},
- CellLabel->"In[38]:=",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{
- RowBox[{"-", "0.172824`"}], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1.9827634441176143`"}], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{"0.989667`", "\[VeryThinSpace]", "-",
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}]}], ")"}],
- RowBox[{"5", "/", "6"}]], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{"0.989667`", "\[VeryThinSpace]", "+",
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}]}], ")"}],
- RowBox[{"5", "/", "6"}]]}], ")"}]}], "-",
- RowBox[{"0.310183`", " ",
- SuperscriptBox["\[Theta]", "2"]}], "+",
- RowBox[{"0.247454`", " ",
- SuperscriptBox["\[Theta]", "4"]}], "-",
- RowBox[{"0.0036379842860216702`", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1.8426784734295618`"}], "+",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["0.19653478447668765`",
- RowBox[{
- RowBox[{"-", "1.14841`"}], "-", "\[Theta]"}]]}]], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1.14841`"}], "-", "\[Theta]"}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["0.19653478447668765`",
- RowBox[{
- RowBox[{"-", "1.14841`"}], "-", "\[Theta]"}]], "]"}]}]}], ")"}]}],
- "-",
- RowBox[{"0.0036379842860216702`", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1.8426784734295618`"}], "+",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["0.19653478447668765`",
- RowBox[{
- RowBox[{"-", "1.14841`"}], "+", "\[Theta]"}]]}]], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1.14841`"}], "+", "\[Theta]"}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["0.19653478447668765`",
- RowBox[{
- RowBox[{"-", "1.14841`"}], "+", "\[Theta]"}]], "]"}]}]}],
- ")"}]}]}]], "Output",
- CellChangeTimes->{{3.8577935448317623`*^9, 3.857793591563696*^9},
- 3.857799954963155*^9, 3.858849759739835*^9, 3.867387206768237*^9,
- 3.867392580100976*^9},
- CellLabel->"Out[38]=",ExpressionUUID->"e7286934-338d-4dca-a6d6-10f11548d20b"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
@@ -2934,405 +1171,6 @@ V+/R6xksIBmXGzxuF2Jh6mbOpWhjnPkewZRADKRpNaa/NltACkYv6swpUaAn
CellLabel->"Out[39]=",ExpressionUUID->"2d0442be-aad9-4e64-bcb2-9c95e259b44d"]
}, Open ]],
-Cell[BoxData[
- RowBox[{
- RowBox[{"test", "=",
- RowBox[{
- RowBox[{
- RowBox[{"DufDut", "[",
- RowBox[{
- "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",",
- RowBox[{"{", "}"}], ",",
- RowBox[{"{",
- RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], "[", "2", "]"}], "[",
- RowBox[{"R", ",", "\[Theta]"}], "]"}]}], ";"}]], "Input",
- CellChangeTimes->{{3.857794485726139*^9, 3.8577945302700653`*^9}, {
- 3.857794587583695*^9, 3.8577945880472517`*^9}, {3.857795457439773*^9,
- 3.857795485439518*^9}, {3.857795618698229*^9, 3.857795618786149*^9},
- 3.857795708619981*^9, {3.857795871030658*^9, 3.857795877569642*^9}, {
- 3.857801114854151*^9, 3.857801121726325*^9}, 3.857801663786502*^9, {
- 3.858849847281784*^9, 3.8588498617377768`*^9}, {3.8588511148250217`*^9,
- 3.858851126714478*^9}, {3.858851205810751*^9, 3.85885120581146*^9},
- 3.85885146277564*^9},
- CellLabel->"In[10]:=",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"Series", "[",
- RowBox[{"test", ",",
- RowBox[{"{",
- RowBox[{"\[Theta]", ",", "0", ",", "0"}], "}"}], ",",
- RowBox[{"Assumptions", "->",
- RowBox[{"{",
- RowBox[{
- RowBox[{"R", ">", "0"}], ",",
- RowBox[{"\[Theta]0", ">", "0"}], ",",
- RowBox[{
- RowBox[{"g", "[", "0", "]"}], ">", "1"}]}], "}"}]}]}], "]"}]], "Input",\
-
- CellChangeTimes->{{3.857794589623781*^9, 3.857794596335291*^9}, {
- 3.857795427006524*^9, 3.857795440446805*^9}, 3.8577962389098873`*^9,
- 3.857801064357966*^9, {3.8588511121776543`*^9, 3.858851141707258*^9},
- 3.858851460264333*^9},
- CellLabel->"In[11]:=",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"],
-
-Cell[BoxData[
- InterpretationBox[
- RowBox[{
- FractionBox[
- RowBox[{"45", "-",
- RowBox[{"8", " ",
- RowBox[{"Log", "[",
- RowBox[{
- SuperscriptBox["\[Theta]", "2"], " ",
- SuperscriptBox[
- RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}]}], "+",
- RowBox[{"16", " ",
- RowBox[{"Log", "[",
- RowBox[{
- SuperscriptBox["R",
- RowBox[{"15", "/", "4"}]], " ",
- SuperscriptBox["\[Theta]", "2"], " ",
- SuperscriptBox[
- RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}]}]}],
- RowBox[{"120", " ", "\[Pi]"}]], "+",
- InterpretationBox[
- SuperscriptBox[
- RowBox[{"O", "[", "\[Theta]", "]"}], "1"],
- SeriesData[$CellContext`\[Theta], 0, {}, 0, 1, 1],
- Editable->False]}],
- SeriesData[$CellContext`\[Theta], 0, {
- Rational[1, 120]
- Pi^(-1) (45 - 8 Log[$CellContext`\[Theta]^2 IsingScalingFunction`g[0]^2] +
- 16 Log[$CellContext`R^Rational[15, 4] $CellContext`\[Theta]^2
- IsingScalingFunction`g[0]^2])}, 0, 1, 1],
- Editable->False]], "Output",
- CellChangeTimes->{
- 3.857794613859312*^9, {3.8577954191240473`*^9, 3.8577954879568157`*^9},
- 3.857795607947109*^9, 3.857795641907249*^9, {3.857795846772442*^9,
- 3.8577958986806803`*^9}, 3.857796259719755*^9, {3.8578010619941587`*^9,
- 3.857801086738715*^9}, 3.8578011236295357`*^9, 3.8578020831196413`*^9,
- 3.858849768101416*^9, 3.858849849927265*^9, 3.8588498882662687`*^9, {
- 3.858851116580223*^9, 3.858851124971182*^9}, 3.858851163937449*^9,
- 3.8588512104999847`*^9, 3.858851461109468*^9, 3.8588515200472*^9,
- 3.8588516053495693`*^9, 3.858851645594129*^9, 3.867387230042351*^9},
- CellLabel->"Out[11]=",ExpressionUUID->"b14ef501-bb22-4221-909a-74857a964dbd"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"Series", "[",
- RowBox[{
- RowBox[{
- RowBox[{
- RowBox[{"DScriptF0D\[Eta]List", "[",
- RowBox[{
- "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",",
- RowBox[{"{", "}"}], ",",
- RowBox[{"{",
- RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], "[",
- RowBox[{"2", ",", "\[Theta]"}], "]"}], "[",
- RowBox[{"[",
- RowBox[{"-", "1"}], "]"}], "]"}], ",",
- RowBox[{"{",
- RowBox[{"\[Theta]", ",", "0", ",", "0"}], "}"}], ",",
- RowBox[{"Assumptions", "->",
- RowBox[{"{",
- RowBox[{
- RowBox[{"R", ">", "0"}], ",",
- RowBox[{"\[Theta]0", ">", "0"}], ",",
- RowBox[{
- RowBox[{"g", "[", "0", "]"}], ">", "1"}]}], "}"}]}]}], "]"}]], "Input",\
-
- CellChangeTimes->{{3.867392252744265*^9, 3.867392308104785*^9}, {
- 3.867392401627043*^9, 3.86739242170674*^9}},
- CellLabel->"In[30]:=",ExpressionUUID->"564592fe-1f79-46a8-bf0c-12430c5a848d"],
-
-Cell[BoxData[
- InterpretationBox[
- RowBox[{
- FractionBox[
- RowBox[{"45", "-",
- RowBox[{"8", " ",
- RowBox[{"Log", "[",
- RowBox[{
- SuperscriptBox["\[Theta]", "2"], " ",
- SuperscriptBox[
- RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}]}]}],
- RowBox[{"120", " ", "\[Pi]"}]], "+",
- InterpretationBox[
- SuperscriptBox[
- RowBox[{"O", "[", "\[Theta]", "]"}], "1"],
- SeriesData[$CellContext`\[Theta], 0, {}, 0, 1, 1],
- Editable->False]}],
- SeriesData[$CellContext`\[Theta], 0, {
- Rational[1, 120]
- Pi^(-1) (45 - 8
- Log[$CellContext`\[Theta]^2 IsingScalingFunction`g[0]^2])}, 0, 1, 1],
- Editable->False]], "Output",
- CellChangeTimes->{{3.867392275309338*^9, 3.867392325117755*^9},
- 3.867392402170586*^9, 3.867392436325769*^9},
- CellLabel->"Out[30]=",ExpressionUUID->"a64bfe21-ffa8-4116-9178-4a9bd1ff53e8"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"8", "/", "60"}]], "Input",
- CellChangeTimes->{{3.8588515122487593`*^9, 3.858851514504118*^9}},
- CellLabel->"In[12]:=",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"],
-
-Cell[BoxData[
- FractionBox["2", "15"]], "Output",
- CellChangeTimes->{3.858851520077345*^9, 3.8673872300867767`*^9},
- CellLabel->"Out[12]=",ExpressionUUID->"ad62f5d9-ff96-4126-bac4-f13c7cefde52"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"16", "/", "120"}]], "Input",
- CellChangeTimes->{{3.858851523424665*^9, 3.858851524816543*^9}},
- CellLabel->"In[13]:=",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"],
-
-Cell[BoxData[
- FractionBox["2", "15"]], "Output",
- CellChangeTimes->{3.8588515254659557`*^9, 3.867387230110116*^9},
- CellLabel->"Out[13]=",ExpressionUUID->"e1ce7d09-44f9-4c6c-a067-9b21492174d3"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"D", "[",
- RowBox[{
- RowBox[{"96", " ",
- SuperscriptBox["B", "2"], " ",
- SuperscriptBox["\[Theta]0", "3"], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"7", "/", "6"}]], " ",
- RowBox[{"Log", "[",
- RowBox[{
- SuperscriptBox["\[Theta]", "2"], " ",
- SuperscriptBox[
- RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}], " ",
- SuperscriptBox["\[Theta]", "2"]}], ",",
- RowBox[{"{",
- RowBox[{"\[Theta]", ",", "2"}], "}"}]}], "]"}]], "Input",
- CellChangeTimes->{{3.858851275396508*^9, 3.858851299116581*^9}},
- CellLabel->"In[38]:=",ExpressionUUID->"772ae4ea-2c0e-47ab-b71c-c3d75bfbcf38"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"576", " ",
- SuperscriptBox["B", "2"], " ",
- SuperscriptBox["\[Theta]0", "3"], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"7", "/", "6"}]]}], "+",
- RowBox[{"192", " ",
- SuperscriptBox["B", "2"], " ",
- SuperscriptBox["\[Theta]0", "3"], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"7", "/", "6"}]], " ",
- RowBox[{"Log", "[",
- RowBox[{
- SuperscriptBox["\[Theta]", "2"], " ",
- SuperscriptBox[
- RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}]}]}]], "Output",
- CellChangeTimes->{{3.858851283265959*^9, 3.858851299278167*^9}},
- CellLabel->"Out[38]=",ExpressionUUID->"2382e905-c55d-4fe5-a155-2e47ebb339a1"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"Series", "[",
- RowBox[{"test", ",",
- RowBox[{"{",
- RowBox[{"\[Theta]", ",", "\[Theta]0", ",", "0"}], "}"}], ",",
- RowBox[{"Assumptions", "->",
- RowBox[{"{",
- RowBox[{
- RowBox[{"R", ">", "0"}], ",",
- RowBox[{"\[Theta]0", ">", "0"}], ",",
- RowBox[{
- RowBox[{"g", "[", "0", "]"}], ">", "1"}]}], "}"}]}]}], "]"}]], "Input",\
-
- CellChangeTimes->{{3.858850469422965*^9, 3.8588504784292717`*^9}},
- CellLabel->"In[26]:=",ExpressionUUID->"6125225e-666f-4c16-afa0-2771438e275a"],
-
-Cell[BoxData["$Aborted"], "Output",
- CellChangeTimes->{{3.85885047612123*^9, 3.858850496890915*^9},
- 3.858850586242086*^9},
- CellLabel->"Out[26]=",ExpressionUUID->"36e624ac-a319-4213-9012-0eee8ede07d1"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{
- RowBox[{"uf", "[",
- RowBox[{
- "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",",
- RowBox[{"{", "}"}]}], "]"}], "[",
- RowBox[{"R", ",", "\[Theta]"}], "]"}]], "Input",
- CellChangeTimes->{{3.867391939682372*^9, 3.867391982506528*^9}},
- CellLabel->"In[23]:=",ExpressionUUID->"8a72abe3-fe5f-4db1-bdff-5188d3d18d6e"],
-
-Cell[BoxData[
- RowBox[{
- RowBox[{
- SuperscriptBox["R", "2"], " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"CYL", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "2"}], " ",
- SuperscriptBox["\[Theta]YL",
- RowBox[{"5", "/", "6"}]]}], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{
- RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+",
- "\[Theta]YL"}], ")"}],
- RowBox[{"5", "/", "6"}]], "+",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", "\[Theta]YL"}],
- ")"}],
- RowBox[{"5", "/", "6"}]]}], ")"}]}], "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}]],
- " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]],
- "]"}]}], "+",
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], "\[Pi]"],
- "+",
- FractionBox[
- RowBox[{"C0", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ",
- RowBox[{"ExpIntegralEi", "[",
- FractionBox["1",
- RowBox[{"B", " ",
- RowBox[{"(",
- RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], "+",
-
- RowBox[{
- SuperscriptBox["\[ExponentialE]",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ",
- RowBox[{"ExpIntegralEi", "[",
- RowBox[{"-",
- FractionBox["1",
- RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}],
- "\[Pi]"]}], ")"}]}], "+",
- FractionBox[
- RowBox[{
- SuperscriptBox["R", "2"], " ",
- SuperscriptBox[
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ",
- RowBox[{"Log", "[",
- SuperscriptBox["R", "2"], "]"}]}],
- RowBox[{"8", " ", "\[Pi]"}]]}]], "Output",
- CellChangeTimes->{{3.8673919604421053`*^9, 3.8673919827729807`*^9}},
- CellLabel->"Out[23]=",ExpressionUUID->"55f9a443-3a9c-4c58-b340-624c596abd0b"]
-}, Open ]],
-
-Cell[CellGroupData[{
-
-Cell[BoxData[
- RowBox[{"Series", "[",
- RowBox[{
- RowBox[{"(",
- RowBox[{"1", "-",
- FractionBox["1",
- SuperscriptBox[
- RowBox[{
- RowBox[{"g", "[",
- RowBox[{"\[Theta]0", ",",
- RowBox[{"{",
- RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], "[", "\[Theta]",
- "]"}],
- RowBox[{"2", "/", "\[CapitalDelta]"}]]]}], ")"}], ",",
- RowBox[{"{",
- RowBox[{"\[Theta]", ",", "0", ",", "1"}], "}"}], ",",
- RowBox[{"Assumptions", "->",
- RowBox[{"{",
- RowBox[{"\[Theta]", ">", "0"}], "}"}]}]}], "]"}]], "Input",
- CellChangeTimes->{{3.858852235030468*^9, 3.858852278182721*^9}},
- CellLabel->"In[55]:=",ExpressionUUID->"8ba93997-a470-457b-9874-6c8096818135"],
-
-Cell[BoxData[
- RowBox[{"1", "+",
- RowBox[{
- SuperscriptBox["\[Theta]",
- RowBox[{
- RowBox[{"-", "2"}], "/", "\[CapitalDelta]"}]], " ",
- RowBox[{"(",
- InterpretationBox[
- RowBox[{
- RowBox[{"-",
- SuperscriptBox[
- RowBox[{"g", "[", "0", "]"}],
- RowBox[{
- RowBox[{"-", "2"}], "/", "\[CapitalDelta]"}]]}], "+",
- InterpretationBox[
- SuperscriptBox[
- RowBox[{"O", "[", "\[Theta]", "]"}], "2"],
- SeriesData[$CellContext`\[Theta], 0, {}, 0, 2, 1],
- Editable->False]}],
- SeriesData[$CellContext`\[Theta],
- 0, {-IsingScalingFunction`g[0]^((-2)/$CellContext`\[CapitalDelta])}, 0,
- 2, 1],
- Editable->False], ")"}]}]}]], "Output",
- CellChangeTimes->{3.8588522786443157`*^9},
- CellLabel->"Out[55]=",ExpressionUUID->"b6a790f8-ee2e-4fd5-8d78-21f66e34e2a1"]
-}, Open ]],
-
Cell[CellGroupData[{
Cell[BoxData[
@@ -11463,8 +9301,8 @@ Cell[BoxData[
CellLabel->"Out[9]=",ExpressionUUID->"3fd3b5f8-4da9-404f-8b20-64b6c99239f0"]
}, Open ]]
},
-WindowSize->{1915.5, 1019.25},
-WindowMargins->{{0, Automatic}, {3, Automatic}},
+WindowSize->{1914., 1019.25},
+WindowMargins->{{0.75, Automatic}, {3, Automatic}},
FrontEndVersion->"13.1 for Linux x86 (64-bit) (June 16, 2022)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"3a2ec9ae-362f-42b0-9bfc-c766461c7128"
@@ -11481,120 +9319,85 @@ CellTagsIndex->{}
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 290, 7, 24, "Input",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"],
-Cell[851, 29, 209, 3, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],
-Cell[CellGroupData[{
-Cell[1085, 36, 829, 21, 22, "Input",ExpressionUUID->"874f84cd-149c-43b3-8711-b9fd0129e036"],
-Cell[1917, 59, 1110, 24, 25, "Output",ExpressionUUID->"2569ec7f-06f8-4d96-90ad-f6881e3c95ff"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[3064, 88, 1076, 29, 22, "Input",ExpressionUUID->"13ac0713-5c3c-49fc-a322-a9f53d13bda2"],
-Cell[4143, 119, 918, 18, 25, "Output",ExpressionUUID->"d356300d-fbd5-438e-842f-b2e2d92bd3a0"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[5098, 142, 823, 17, 24, "Input",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"],
-Cell[5924, 161, 20093, 347, 162, "Output",ExpressionUUID->"1beeabe4-ee06-48f6-86f2-eb131e832f9d"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[26054, 513, 606, 16, 22, "Input",ExpressionUUID->"516a4819-1b7b-40d4-a8ad-e2086998c231"],
-Cell[26663, 531, 7198, 136, 175, "Output",ExpressionUUID->"cb4c528f-0710-481a-bfb2-44297fb7fba9"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[33898, 672, 199, 3, 22, "Input",ExpressionUUID->"58adee79-610c-4fdb-8124-fbf6f3d2f4f7"],
-Cell[34100, 677, 147, 2, 25, "Output",ExpressionUUID->"76f32142-c2e3-4b66-9e61-ffed298db318"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[34284, 684, 505, 13, 22, "Input",ExpressionUUID->"4534127d-b193-401a-b594-a6abec8f7edb"],
-Cell[34792, 699, 30824, 838, 1017, "Output",ExpressionUUID->"1d11593c-279f-48a7-b332-deeff602eead"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[65653, 1542, 1533, 38, 24, "Input",ExpressionUUID->"7b4a2b19-eb62-4fb5-9666-a81b70aa0106"],
-Cell[67189, 1582, 12878, 342, 472, "Output",ExpressionUUID->"49d3eb26-ffe6-47e7-8e76-81dd108d6570"]
-}, Open ]],
-Cell[CellGroupData[{
-Cell[80104, 1929, 13821, 355, 496, "Input",ExpressionUUID->"df04d6a6-7870-45a4-a6f0-74b19e0194f0"],
-Cell[93928, 2286, 545, 13, 43, "Output",ExpressionUUID->"911979f9-954d-47ec-b0a6-8c3dacdfaa49"]
-}, Open ]],
-Cell[94488, 2302, 402, 11, 22, "Input",ExpressionUUID->"626c9442-a5ca-460d-9253-fd9b4c2f2227"],
-Cell[CellGroupData[{
-Cell[94915, 2317, 560, 12, 22, "Input",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"],
-Cell[95478, 2331, 14364, 251, 283, "Output",ExpressionUUID->"85a2d28b-ab9a-4905-9bf4-82b4db4297e8"]
-}, Open ]],
+Cell[851, 29, 210, 3, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"],
Cell[CellGroupData[{
-Cell[109879, 2587, 316, 7, 22, "Input",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"],
-Cell[110198, 2596, 2173, 60, 41, "Output",ExpressionUUID->"e7286934-338d-4dca-a6d6-10f11548d20b"]
+Cell[1086, 36, 246, 4, 22, "Input",ExpressionUUID->"83b24d73-7cfc-4a2f-a727-53c609f967fd"],
+Cell[1335, 42, 621, 15, 25, "Output",ExpressionUUID->"db6d0977-ebec-4f64-a895-b2176143e8b2"]
}, Open ]],
Cell[CellGroupData[{
-Cell[112408, 2661, 526, 13, 22, "Input",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"],
-Cell[112937, 2676, 14567, 257, 179, "Output",ExpressionUUID->"2d0442be-aad9-4e64-bcb2-9c95e259b44d"]
+Cell[1993, 62, 295, 5, 22, "Input",ExpressionUUID->"23bc2248-ea2c-498f-be5b-40dd4156709e"],
+Cell[2291, 69, 241, 4, 25, "Output",ExpressionUUID->"108b1754-01ba-4ac1-8b36-cfe5355222e2"]
}, Open ]],
-Cell[127519, 2936, 999, 20, 22, "Input",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"],
Cell[CellGroupData[{
-Cell[128543, 2960, 700, 17, 24, "Input",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"],
-Cell[129246, 2979, 1737, 40, 48, "Output",ExpressionUUID->"b14ef501-bb22-4221-909a-74857a964dbd"]
+Cell[2569, 78, 829, 21, 22, "Input",ExpressionUUID->"874f84cd-149c-43b3-8711-b9fd0129e036"],
+Cell[3401, 101, 1110, 24, 25, "Output",ExpressionUUID->"2569ec7f-06f8-4d96-90ad-f6881e3c95ff"]
}, Open ]],
Cell[CellGroupData[{
-Cell[131020, 3024, 948, 26, 24, "Input",ExpressionUUID->"564592fe-1f79-46a8-bf0c-12430c5a848d"],
-Cell[131971, 3052, 874, 24, 48, "Output",ExpressionUUID->"a64bfe21-ffa8-4116-9178-4a9bd1ff53e8"]
+Cell[4548, 130, 1122, 29, 22, "Input",ExpressionUUID->"13ac0713-5c3c-49fc-a322-a9f53d13bda2"],
+Cell[5673, 161, 918, 18, 25, "Output",ExpressionUUID->"d356300d-fbd5-438e-842f-b2e2d92bd3a0"]
}, Open ]],
Cell[CellGroupData[{
-Cell[132882, 3081, 197, 3, 22, "Input",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"],
-Cell[133082, 3086, 194, 3, 39, "Output",ExpressionUUID->"ad62f5d9-ff96-4126-bac4-f13c7cefde52"]
+Cell[6628, 184, 954, 19, 24, "Input",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"],
+Cell[7585, 205, 17997, 314, 164, "Output",ExpressionUUID->"7d82a994-0e66-45e2-9f9d-23085d92d885"]
}, Open ]],
Cell[CellGroupData[{
-Cell[133313, 3094, 197, 3, 22, "Input",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"],
-Cell[133513, 3099, 194, 3, 39, "Output",ExpressionUUID->"e1ce7d09-44f9-4c6c-a067-9b21492174d3"]
+Cell[25619, 524, 878, 26, 25, "Input",ExpressionUUID->"d0b98ea5-26fd-48d2-9fd3-094018a22423"],
+Cell[26500, 552, 377, 9, 22, "Message",ExpressionUUID->"54591efa-3e06-4780-a52d-356be312bb3b"],
+Cell[26880, 563, 1835, 50, 58, "Output",ExpressionUUID->"3e64dfbd-1d75-4bd6-b63e-4e5bec743e80"]
}, Open ]],
+Cell[28730, 616, 1735, 47, 25, "Input",ExpressionUUID->"27f70f50-5ebf-4a6d-94af-1a6bfe816e28"],
Cell[CellGroupData[{
-Cell[133744, 3107, 651, 17, 25, "Input",ExpressionUUID->"772ae4ea-2c0e-47ab-b71c-c3d75bfbcf38"],
-Cell[134398, 3126, 678, 18, 28, "Output",ExpressionUUID->"2382e905-c55d-4fe5-a155-2e47ebb339a1"]
+Cell[30490, 667, 523, 13, 22, "Input",ExpressionUUID->"8965277f-d2d2-40c8-b8ca-7816448c9503"],
+Cell[31016, 682, 794, 15, 22, "Message",ExpressionUUID->"a3d42e0f-bd1e-49b1-8d2a-a9faf8854a08"],
+Cell[31813, 699, 368, 7, 25, "Output",ExpressionUUID->"0e650aa6-b018-45af-8c81-ff1b91e82c5a"]
}, Open ]],
Cell[CellGroupData[{
-Cell[135113, 3149, 536, 14, 24, "Input",ExpressionUUID->"6125225e-666f-4c16-afa0-2771438e275a"],
-Cell[135652, 3165, 205, 3, 25, "Output",ExpressionUUID->"36e624ac-a319-4213-9012-0eee8ede07d1"]
+Cell[32218, 711, 608, 17, 25, "Input",ExpressionUUID->"6c1d3718-7a8d-41a6-98ea-98fe3318bcfa"],
+Cell[32829, 730, 235, 4, 25, "Output",ExpressionUUID->"8b0315bf-6d61-4278-a829-dedfe692066f"]
}, Open ]],
Cell[CellGroupData[{
-Cell[135894, 3173, 366, 8, 22, "Input",ExpressionUUID->"8a72abe3-fe5f-4db1-bdff-5188d3d18d6e"],
-Cell[136263, 3183, 3306, 98, 91, "Output",ExpressionUUID->"55f9a443-3a9c-4c58-b340-624c596abd0b"]
+Cell[33101, 739, 606, 16, 22, "Input",ExpressionUUID->"516a4819-1b7b-40d4-a8ad-e2086998c231"],
+Cell[33710, 757, 7198, 136, 175, "Output",ExpressionUUID->"cb4c528f-0710-481a-bfb2-44297fb7fba9"]
}, Open ]],
Cell[CellGroupData[{
-Cell[139606, 3286, 728, 20, 39, "Input",ExpressionUUID->"8ba93997-a470-457b-9874-6c8096818135"],
-Cell[140337, 3308, 847, 24, 28, "Output",ExpressionUUID->"b6a790f8-ee2e-4fd5-8d78-21f66e34e2a1"]
+Cell[40945, 898, 526, 13, 22, "Input",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"],
+Cell[41474, 913, 14567, 257, 179, "Output",ExpressionUUID->"2d0442be-aad9-4e64-bcb2-9c95e259b44d"]
}, Open ]],
Cell[CellGroupData[{
-Cell[141221, 3337, 1501, 38, 22, "Input",ExpressionUUID->"47f1d4ba-afc2-44f3-aeb8-a071f0e8c4f9"],
-Cell[142725, 3377, 574, 12, 32, "Message",ExpressionUUID->"a415b118-1097-4155-84e3-609dd9a85a38"],
-Cell[143302, 3391, 614, 13, 22, "Message",ExpressionUUID->"8871feea-390b-4d51-8323-ededa45e1a08"],
-Cell[143919, 3406, 574, 12, 32, "Message",ExpressionUUID->"d90fd7e9-775c-4fd4-8a1d-aa407ff8abe4"],
-Cell[144496, 3420, 576, 12, 32, "Message",ExpressionUUID->"e5d7a12d-1671-4c8c-989b-ec0f9f4c67a0"],
-Cell[145075, 3434, 652, 13, 22, "Message",ExpressionUUID->"bdad9088-50c1-4d40-ad09-4fbb47c24899"],
-Cell[145730, 3449, 614, 13, 22, "Message",ExpressionUUID->"4c080a0f-6df2-46f1-bc2d-7a054fb75363"],
-Cell[146347, 3464, 616, 13, 22, "Message",ExpressionUUID->"cbf1491d-6d6b-408a-9961-e6e37a65a0a6"],
-Cell[146966, 3479, 656, 13, 22, "Message",ExpressionUUID->"c77564c1-0ba4-4c7f-959b-735db191f7a0"]
+Cell[56078, 1175, 1501, 38, 22, "Input",ExpressionUUID->"47f1d4ba-afc2-44f3-aeb8-a071f0e8c4f9"],
+Cell[57582, 1215, 574, 12, 32, "Message",ExpressionUUID->"a415b118-1097-4155-84e3-609dd9a85a38"],
+Cell[58159, 1229, 614, 13, 22, "Message",ExpressionUUID->"8871feea-390b-4d51-8323-ededa45e1a08"],
+Cell[58776, 1244, 574, 12, 32, "Message",ExpressionUUID->"d90fd7e9-775c-4fd4-8a1d-aa407ff8abe4"],
+Cell[59353, 1258, 576, 12, 32, "Message",ExpressionUUID->"e5d7a12d-1671-4c8c-989b-ec0f9f4c67a0"],
+Cell[59932, 1272, 652, 13, 22, "Message",ExpressionUUID->"bdad9088-50c1-4d40-ad09-4fbb47c24899"],
+Cell[60587, 1287, 614, 13, 22, "Message",ExpressionUUID->"4c080a0f-6df2-46f1-bc2d-7a054fb75363"],
+Cell[61204, 1302, 616, 13, 22, "Message",ExpressionUUID->"cbf1491d-6d6b-408a-9961-e6e37a65a0a6"],
+Cell[61823, 1317, 656, 13, 22, "Message",ExpressionUUID->"c77564c1-0ba4-4c7f-959b-735db191f7a0"]
}, Open ]],
Cell[CellGroupData[{
-Cell[147659, 3497, 356, 5, 22, "Input",ExpressionUUID->"c6e27107-d1c1-4def-bce7-5bfc77efa117"],
-Cell[148018, 3504, 431003, 7099, 264, 351059, 5788, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"65425ede-668b-4584-b959-e541ddaed240"]
+Cell[62516, 1335, 356, 5, 22, "Input",ExpressionUUID->"c6e27107-d1c1-4def-bce7-5bfc77efa117"],
+Cell[62875, 1342, 431003, 7099, 264, 351059, 5788, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"65425ede-668b-4584-b959-e541ddaed240"]
}, Open ]],
Cell[CellGroupData[{
-Cell[579058, 10608, 474, 12, 22, "Input",ExpressionUUID->"d91d527e-9cac-4ce1-9ae6-5ff3208121a2"],
-Cell[579535, 10622, 4330, 89, 171, "Output",ExpressionUUID->"559d6958-bbd1-42f4-b122-f3904597675f"]
+Cell[493915, 8446, 474, 12, 22, "Input",ExpressionUUID->"d91d527e-9cac-4ce1-9ae6-5ff3208121a2"],
+Cell[494392, 8460, 4330, 89, 171, "Output",ExpressionUUID->"559d6958-bbd1-42f4-b122-f3904597675f"]
}, Open ]],
Cell[CellGroupData[{
-Cell[583902, 10716, 1771, 32, 24, "Input",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"],
-Cell[585676, 10750, 14400, 247, 630, "Output",ExpressionUUID->"a6b30fc2-c088-4262-94f2-edcc475c95da"]
+Cell[498759, 8554, 1771, 32, 24, "Input",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"],
+Cell[500533, 8588, 14400, 247, 630, "Output",ExpressionUUID->"a6b30fc2-c088-4262-94f2-edcc475c95da"]
}, Open ]],
-Cell[600091, 11000, 162, 3, 22, "Input",ExpressionUUID->"536d20a8-587f-4cd2-8d38-d67784bf6d33"],
+Cell[514948, 8838, 162, 3, 22, "Input",ExpressionUUID->"536d20a8-587f-4cd2-8d38-d67784bf6d33"],
Cell[CellGroupData[{
-Cell[600278, 11007, 347, 7, 24, "Input",ExpressionUUID->"91e758ec-72b9-4894-b62d-8872e6b4ee42"],
-Cell[600628, 11016, 369, 7, 28, "Output",ExpressionUUID->"7ebcdde0-d788-47fa-bc62-df9697e7a7a4"]
+Cell[515135, 8845, 347, 7, 24, "Input",ExpressionUUID->"91e758ec-72b9-4894-b62d-8872e6b4ee42"],
+Cell[515485, 8854, 369, 7, 28, "Output",ExpressionUUID->"7ebcdde0-d788-47fa-bc62-df9697e7a7a4"]
}, Open ]],
Cell[CellGroupData[{
-Cell[601034, 11028, 1225, 20, 24, "Input",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"],
-Cell[602262, 11050, 4606, 106, 179, "Output",ExpressionUUID->"9cd66a8a-65ca-4fb7-ba2c-0e30d1efdb75"]
+Cell[515891, 8866, 1225, 20, 24, "Input",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"],
+Cell[517119, 8888, 4606, 106, 179, "Output",ExpressionUUID->"9cd66a8a-65ca-4fb7-ba2c-0e30d1efdb75"]
}, Open ]],
Cell[CellGroupData[{
-Cell[606905, 11161, 1327, 21, 24, "Input",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"],
-Cell[608235, 11184, 11492, 278, 179, "Output",ExpressionUUID->"3fd3b5f8-4da9-404f-8b20-64b6c99239f0"]
+Cell[521762, 8999, 1327, 21, 24, "Input",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"],
+Cell[523092, 9022, 11492, 278, 179, "Output",ExpressionUUID->"3fd3b5f8-4da9-404f-8b20-64b6c99239f0"]
}, Open ]]
}
]