summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2022-01-19 14:01:12 +0100
committerJaron Kent-Dobias <jaron@kent-dobias.com>2022-01-19 14:01:12 +0100
commit8695294031dc063e4eb901cb37269395846b3935 (patch)
tree4584240c2d2246143816a161391afb871a0a8811
parent3f7127ebb07224a72e8724dfc54957a81d487fda (diff)
downloadpaper-8695294031dc063e4eb901cb37269395846b3935.tar.gz
paper-8695294031dc063e4eb901cb37269395846b3935.tar.bz2
paper-8695294031dc063e4eb901cb37269395846b3935.zip
Finished moving PDF figures to EPS.
-rw-r--r--ising_scaling.tex8
1 files changed, 4 insertions, 4 deletions
diff --git a/ising_scaling.tex b/ising_scaling.tex
index 819ad16..210f63c 100644
--- a/ising_scaling.tex
+++ b/ising_scaling.tex
@@ -242,7 +242,7 @@ s=2^{1/12}e^{-1/8}A^{3/2}$, where $A$ is Glaisher's constant
\begin{figure}
- \includegraphics{figs/F_lower_singularities.pdf}
+ \includegraphics{figs/F_lower_singularities}
\caption{
Analytic structure of the low-temperature scaling function $\mathcal F_-$
in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The circle
@@ -289,7 +289,7 @@ branch cuts beginning at $\pm i\xi_{\mathrm{YL}}$ for a universal constant
$\xi_{\mathrm{YL}}$.
\begin{figure}
- \includegraphics{figs/F_higher_singularities.pdf}
+ \includegraphics{figs/F_higher_singularities}
\caption{
Analytic structure of the high-temperature scaling function $\mathcal F_+$
in the complex $\xi=u_h|u_t|^{-\Delta}\propto H$ plane. The squares
@@ -491,7 +491,7 @@ $\theta$. Therefore,
The location $\theta_0$ is not fixed by any principle.
\begin{figure}
- \includegraphics{figs/F_theta_singularities.pdf}
+ \includegraphics{figs/F_theta_singularities}
\caption{
Analytic structure of the global scaling function $\mathcal F$ in the
complex $\theta$ plane. The circles depict essential singularities of the
@@ -548,7 +548,7 @@ Fixing these requirements for the imaginary part of $\mathcal F(\theta)$ fixes
its real part up to an analytic even function $G(\theta)$, real for real $\theta$.
\begin{figure}
- \includegraphics{figs/contour_path.pdf}
+ \includegraphics{figs/contour_path}
\caption{
Integration contour over the global scaling function $\mathcal F$ in the
complex $\theta$ plane used to produce the dispersion relation. The