diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-09-08 13:05:27 +0200 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2022-09-08 13:05:27 +0200 |
commit | 5230844b8b9700841d16a26cf701762ab8934089 (patch) | |
tree | 25e684fda246704b363cfcac82df989c2db7c9d2 | |
parent | 9ff4fff4dbe01eab0d11b4dbc4c8a8ab748c88ad (diff) | |
download | paper-5230844b8b9700841d16a26cf701762ab8934089.tar.gz paper-5230844b8b9700841d16a26cf701762ab8934089.tar.bz2 paper-5230844b8b9700841d16a26cf701762ab8934089.zip |
Added all paper data to wl file.
-rw-r--r-- | IsingScalingFunction.wl | 74 | ||||
-rw-r--r-- | IsingScalingFunctionExamples.nb | 4526 |
2 files changed, 2333 insertions, 2267 deletions
diff --git a/IsingScalingFunction.wl b/IsingScalingFunction.wl index edc46c2..0d5b38c 100644 --- a/IsingScalingFunction.wl +++ b/IsingScalingFunction.wl @@ -33,7 +33,11 @@ DufDuh::usage = "DufDuh computes derivatives of the singular free energy u_f with respect to the temperature-like scaling field u_h." ruleB::usage = "" -ruleAL::usage = "" +ruleC0::usage = "" + +Data::usage = "" + +PrepareArgument::usage = "" Begin["Private`"] @@ -95,6 +99,62 @@ Ghs := { Around[-1.04 10^7, 0.01 10^7] } +Data[2] = <| + "θ0" -> 1.148407773492004`, + "θYL" -> 0.9896669889911205`, + "CYL" -> -0.172823989504767`, + "Gs" -> {-0.31018352388662596`, 0.2474537923130002`}, + "gs" -> {0.37369093055254343`, -0.021636313152585823`} +|> + +Data[3] = <| + "θ0" -> 1.2542120477507488`, + "θYL" -> 0.6020557328641167`, + "CYL" -> -0.38566364361428684`, + "Gs" -> {-0.3527514794812415`, 0.2582430860166863`}, + "gs" -> {0.4483788209731592`, -0.022032295172535358`, 0.00022200608228654115`} +|> + +Data[4] = <| + "θ0" -> 1.3164928721109121`, + "θYL" -> 0.6400189996493497`, + "CYL" -> -0.3563974694580203`, + "Gs" -> {-0.3550547624920263`, 0.23465947408509413`, -0.0019083731028066697`}, + "gs" -> {0.4410742751152714`, -0.034817777358116885`, 0.000678172648789985`, -0.00004305140578834467`} +|> + +Data[5] = <| + "θ0" -> 1.3403205742656135`, + "θYL" -> 0.6238113973493433`, + "CYL" -> -0.38002950945224295`, + "Gs" -> {-0.35127522582179693`, 0.23704589676915347`, -0.007319731639727028`}, + "gs" -> {0.44371885415894785`, -0.04609943321005163`, -0.0007458341071947777`, 0.00005966875622885447`, -4.403083529955303`*^-6} +|> + +Data[6] = <| + "θ0" -> 1.3626103817690176`, + "θYL" -> 0.6462147447024515`, + "CYL" -> -0.35576386594103865`, + "Gs" -> {-0.3520586281920383`, 0.23316561297622435`, -0.006649030656179257`, -0.0016899077640685814`}, + "gs" -> {0.43845335615925396`, -0.05312704168994819`, -0.003914782631377569`, -0.0004080160912692574`, 0.000026262906640471588`, -1.0974538440746828`*^-6} +|> + +PrepareArgument[data_] := With[ + { + θ0 = data["θ0"], + gs = data["gs"] + }, + { + θ0, + data["θYL"], + ruleB[θ0, gs], + ruleC0[θ0, gs], + data["CYL"], + data["Gs"], + gs + } +] + t[θ_] := θ^2 - 1 g[θ0_, gs_][θ_] := (1 - (θ/θ0)^2) Total[MapIndexed[Function[{gi, i}, gi θ^(2*i[[1]]-1)], gs]] @@ -168,13 +228,19 @@ DScriptFPlusMinusDξ[params__][m_, θ_] := Last[DScriptFPlusMinusDξList[params] DScriptF0Dη[params__][m_, θ_] := Last[DScriptF0DηList[params][m, θ]] -DufDut[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_][R_, θ_] := RealAbs[uh[θ0, gs][R, θ]]^(2 / Δ - m / Δ) DScriptF0Dη[θ0, θYL, B, C0, CYL, Gs, gs][m, θ] + Log[uh[θ0, gs][R, θ]^2] / (8 π Δ) Derivative[m][Function[utp, utp^2]][ut[R, θ]] +DufDut[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_][R_, θ_] := m! RealAbs[uh[θ0, gs][R, θ]]^(2 / Δ - m / Δ) DScriptF0Dη[θ0, θYL, B, C0, CYL, Gs, gs][m, θ] + Log[uh[θ0, gs][R, θ]^2] / (8 π Δ) Derivative[m][Function[utp, utp^2]][ut[R, θ]] -DufDuh[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_][R_, θ_] := RealAbs[ut[R, θ]]^(2-m Δ) DScriptFPlusMinusDξ[θ0, θYL, B, C0, CYL, Gs, gs][m, θ] + ut[R, θ]^2 / (8 π) Log[ut[R, θ]^2] +DufDuh[θ0_, θYL_, B_, C0_, CYL_, Gs_, gs_][m_][R_, θ_] := m! RealAbs[ut[R, θ]]^(2-m Δ) DScriptFPlusMinusDξ[θ0, θYL, B, C0, CYL, Gs, gs][m, θ] + ut[R, θ]^2 / (8 π) Log[ut[R, θ]^2] ruleB[θ0_, gs_] := (2 * OverlineS / π) * (- g[θ0, gs]'[θ0] / t[θ0]^Δ) -ruleAL[θ0_, gs_] := Exp[Δ t[θ0]^(Δ - 1) t'[θ0] / (2 OverlineS / π g[θ0, gs]'[θ0]) - t[θ0]^Δ g[θ0, gs]''[θ0] / (4 OverlineS / π g[θ0, gs]'[θ0]^2)] t[θ0]^(1/8) OverlineS / (2 π) * g[θ0, gs]'[θ0] +ruleC0[θ0_, gs_] := Exp[Δ t[θ0]^(Δ - 1) t'[θ0] / (2 OverlineS / π g[θ0, gs]'[θ0]) - t[θ0]^Δ g[θ0, gs]''[θ0] / (4 OverlineS / π g[θ0, gs]'[θ0]^2)] t[θ0]^(1/8) OverlineS / (2 π) * g[θ0, gs]'[θ0] + +Unprotect[Derivative] + + + +Protect[Derivative] End[] diff --git a/IsingScalingFunctionExamples.nb b/IsingScalingFunctionExamples.nb index 507bc20..b5b6bd0 100644 --- a/IsingScalingFunctionExamples.nb +++ b/IsingScalingFunctionExamples.nb @@ -10,10 +10,10 @@ NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] -NotebookDataLength[ 661071, 11594] -NotebookOptionsPosition[ 653812, 11470] -NotebookOutlinePosition[ 654214, 11486] -CellTagsIndexPosition[ 654171, 11483] +NotebookDataLength[ 627149, 11594] +NotebookOptionsPosition[ 619743, 11465] +NotebookOutlinePosition[ 620138, 11481] +CellTagsIndexPosition[ 620095, 11478] WindowFrame->Normal*) (* Beginning of Notebook Content *) @@ -25,12 +25,12 @@ Cell[BoxData[ "\"\<~/doc/research/first_order_singularities/paper\>\"", "]"}], ";"}]], "Input", CellChangeTimes->{{3.857727143976652*^9, 3.857727184451297*^9}}, - CellLabel->"In[45]:=",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"], + CellLabel->"In[1]:=",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"], Cell[BoxData[ RowBox[{"<<", "IsingScalingFunction`"}]], "Input", CellChangeTimes->{{3.857727185315662*^9, 3.857727193227276*^9}}, - CellLabel->"In[54]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], + CellLabel->"In[2]:=",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], Cell[CellGroupData[{ @@ -79,8 +79,9 @@ Cell[BoxData[ 3.8577516345702353`*^9, 3.8577902377024403`*^9, 3.8577905746804*^9, { 3.857790654638524*^9, 3.857790670814478*^9}, 3.857791166262724*^9, 3.8577912575588627`*^9, 3.857793185554345*^9, 3.857799943653722*^9, - 3.858849755117009*^9}, - CellLabel->"Out[3]=",ExpressionUUID->"ce3049a2-a872-4051-b925-2b210d981406"] + 3.858849755117009*^9, 3.867387189726757*^9, 3.867392573802265*^9, + 3.86739918902833*^9, 3.867807029271892*^9, 3.870503634462634*^9}, + CellLabel->"Out[3]=",ExpressionUUID->"2569ec7f-06f8-4d96-90ad-f6881e3c95ff"] }, Open ]], Cell[CellGroupData[{ @@ -131,8 +132,10 @@ Cell[BoxData[ 3.857750445664744*^9, 3.857751635086946*^9, 3.857790237915689*^9, 3.85779057489809*^9, {3.8577906548620043`*^9, 3.857790670988171*^9}, 3.857791166635693*^9, 3.857791258021803*^9, 3.857793188099229*^9, - 3.857799944441625*^9, 3.858849755394497*^9}, - CellLabel->"Out[4]=",ExpressionUUID->"3221ce5b-1b38-40e6-a72a-522044bce1af"] + 3.857799944441625*^9, 3.858849755394497*^9, 3.867387191076661*^9, + 3.8673925739943132`*^9, 3.867399189446398*^9, 3.86780702978512*^9, + 3.870503634937377*^9}, + CellLabel->"Out[4]=",ExpressionUUID->"d356300d-fbd5-438e-842f-b2e2d92bd3a0"] }, Open ]], Cell[CellGroupData[{ @@ -460,7 +463,7 @@ nj1neYGKmdePntL/P94/96Ojkd2zNx5jBvN43sTd+3czAm0XNUP+hvM0fT2d X3dQkRFP5brp/+NF719xRld+VTE9N///OpWlyBpxOrpqK5yfx/ProP3tFENU tL73cbMFbb/RJu4zh9HqK8v/25IsLzYWxE3hfxax2Fg= "]]}, - Annotation[#, "Charting`Private`Tag$3968#1"]& ]}, {}}, + Annotation[#, "Charting`Private`Tag$8760#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, @@ -501,8 +504,9 @@ tL73cbMFbb/RJu4zh9HqK8v/25IsLzYWxE3hfxax2Fg= Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.857793273501688*^9, 3.857799947911737*^9, - 3.8588497580654993`*^9}, - CellLabel->"Out[5]=",ExpressionUUID->"4d2138f6-c507-4fe3-b575-f7a229cf7535"] + 3.8588497580654993`*^9, 3.867387198157053*^9, 3.867392576035952*^9, + 3.867399192057679*^9, 3.867807033354333*^9, 3.8705036374745817`*^9}, + CellLabel->"Out[5]=",ExpressionUUID->"1beeabe4-ee06-48f6-86f2-eb131e832f9d"] }, Open ]], Cell[CellGroupData[{ @@ -617,7 +621,7 @@ oShnP/7caBJb78CHQiX74jFpL2yO/2LQ68iHj/FeXnTbLtw78s052pmPofFT tuprd8DTRuh65RY+Prf0XNHYuxlPjKRfbnfl42tE/BaZMQfIz57d93sbH+qW P2N7pe1wUFhH7oo7H21tW/LT9VfhZZ+xuakHHzLG5fIHzxnjPw2YIaM= "]]}, - Annotation[#, "Charting`Private`Tag$4180#1"]& ]}, {}}, + Annotation[#, "Charting`Private`Tag$8964#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, @@ -658,25 +662,1672 @@ P2N7pe1wUFhH7oo7H21tW/LT9VfhZZ+xuakHHzLG5fIHzxnjPw2YIaM= Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.85779130533657*^9, 3.8577913091623983`*^9}, - 3.857793276120146*^9, 3.857799951294331*^9, 3.8588497581844807`*^9}, - CellLabel->"Out[6]=",ExpressionUUID->"ba11d116-bc7c-4392-9461-520d5c8b9511"] + 3.857793276120146*^9, 3.857799951294331*^9, 3.8588497581844807`*^9, + 3.867387198268334*^9, 3.86739257677225*^9, 3.867399192185546*^9, + 3.867807033499033*^9, 3.8705036390135803`*^9}, + CellLabel->"Out[6]=",ExpressionUUID->"cb4c528f-0710-481a-bfb2-44297fb7fba9"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData["s"], "Input", + CellChangeTimes->{{3.867807054536924*^9, 3.867807065392228*^9}, + 3.8679107297497873`*^9}, + CellLabel->"In[7]:=",ExpressionUUID->"58adee79-610c-4fdb-8124-fbf6f3d2f4f7"], + +Cell[BoxData["s"], "Output", + CellChangeTimes->{3.87050364038545*^9}, + CellLabel->"Out[7]=",ExpressionUUID->"76f32142-c2e3-4b66-9e61-ffed298db318"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"DufDuh", "[", + RowBox[{ + "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",", + RowBox[{"{", "}"}], ",", + RowBox[{"{", + RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], ")"}], "[", "2", "]"}], + "[", + RowBox[{"R", ",", "\[Theta]"}], "]"}]], "Input", + CellChangeTimes->{{3.8674005827236223`*^9, 3.867400611996139*^9}}, + CellLabel->"In[23]:=",ExpressionUUID->"4534127d-b193-401a-b594-a6abec8f7edb"], + +Cell[BoxData[ + RowBox[{ + FractionBox[ + RowBox[{ + SuperscriptBox["R", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ", + RowBox[{"Log", "[", + RowBox[{ + SuperscriptBox["R", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]}], "]"}]}], + RowBox[{"8", " ", "\[Pi]"}]], "+", + FractionBox["1", + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{"R", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}]}], "]"}], + RowBox[{"7", "/", "4"}]]], + RowBox[{"(", + RowBox[{ + RowBox[{ + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"15", " ", + SuperscriptBox["\[Theta]", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], " ", + RowBox[{"(", + RowBox[{"1", "-", + FractionBox[ + SuperscriptBox["\[Theta]", "2"], + SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", + RowBox[{"g", "[", "0", "]"}]}], + RowBox[{"4", " ", + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], "]"}], + RowBox[{"31", "/", "8"}]]}]]}], "+", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + FractionBox[ + SuperscriptBox["\[Theta]", "2"], + SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", + RowBox[{"g", "[", "0", "]"}]}], + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], "]"}], + RowBox[{"15", "/", "8"}]]], "-", + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[Theta]", "2"], " ", + RowBox[{"g", "[", "0", "]"}]}], + RowBox[{ + SuperscriptBox["\[Theta]0", "2"], " ", + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], "]"}], + RowBox[{"15", "/", "8"}]]}]]}], ")"}], "3"]], + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["\[Theta]", + RowBox[{"2", " ", "\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}]}]]}], "+", + FractionBox[ + RowBox[{ + RowBox[{"CYL", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"5", " ", "\[ImaginaryI]"}], + RowBox[{"6", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]}]]}], "+", + FractionBox[ + RowBox[{"5", " ", "\[ImaginaryI]"}], + RowBox[{"6", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]}]]}], ")"}]}], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], + ")"}]}]]}]], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], + ")"}]}]]}]], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], + "]"}]}], + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}], + ")"}]}], "\[Pi]"], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", + + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], + "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", + + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}], ")"}]}], + "\[Pi]"]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]], "-", + FractionBox[ + RowBox[{"4", " ", "\[Theta]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"CYL", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + SuperscriptBox["\[Theta]YL", + RowBox[{"5", "/", "6"}]]}], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], + ")"}]}]]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ", + + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], + "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], + "\[Pi]"], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", + + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], + "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], + "\[Pi]"]}], ")"}]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"465", " ", + SuperscriptBox["\[Theta]", "3"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ", + RowBox[{"(", + RowBox[{"1", "-", + FractionBox[ + SuperscriptBox["\[Theta]", "2"], + SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", + RowBox[{"g", "[", "0", "]"}]}], + RowBox[{"16", " ", + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], "]"}], + RowBox[{"47", "/", "8"}]]}]]}], "+", + FractionBox[ + RowBox[{"15", " ", + SuperscriptBox["\[Theta]", "3"], " ", + RowBox[{"(", + RowBox[{"1", "-", + FractionBox[ + SuperscriptBox["\[Theta]", "2"], + SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", + RowBox[{"g", "[", "0", "]"}]}], + RowBox[{"2", " ", + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], "]"}], + RowBox[{"31", "/", "8"}]]}]], "+", + FractionBox[ + RowBox[{"45", " ", "\[Theta]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], " ", + RowBox[{"(", + RowBox[{"1", "-", + FractionBox[ + SuperscriptBox["\[Theta]", "2"], + SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", + RowBox[{"g", "[", "0", "]"}]}], + RowBox[{"4", " ", + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], "]"}], + RowBox[{"31", "/", "8"}]]}]], "-", + FractionBox[ + RowBox[{"15", " ", + SuperscriptBox["\[Theta]", "3"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], " ", + RowBox[{"g", "[", "0", "]"}]}], + RowBox[{ + SuperscriptBox["\[Theta]0", "2"], " ", + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], "]"}], + RowBox[{"31", "/", "8"}]]}]], "+", + FractionBox[ + RowBox[{"6", " ", "\[Theta]", " ", + RowBox[{"g", "[", "0", "]"}]}], + RowBox[{ + SuperscriptBox["\[Theta]0", "2"], " ", + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], "]"}], + RowBox[{"15", "/", "8"}]]}]]}], ")"}]}]}], "+", + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"15", " ", + SuperscriptBox["\[Theta]", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], " ", + RowBox[{"(", + RowBox[{"1", "-", + FractionBox[ + SuperscriptBox["\[Theta]", "2"], + SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", + RowBox[{"g", "[", "0", "]"}]}], + RowBox[{"4", " ", + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], "]"}], + RowBox[{"31", "/", "8"}]]}]]}], "+", + FractionBox[ + RowBox[{ + RowBox[{"(", + RowBox[{"1", "-", + FractionBox[ + SuperscriptBox["\[Theta]", "2"], + SuperscriptBox["\[Theta]0", "2"]]}], ")"}], " ", + RowBox[{"g", "[", "0", "]"}]}], + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], "]"}], + RowBox[{"15", "/", "8"}]]], "-", + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[Theta]", "2"], " ", + RowBox[{"g", "[", "0", "]"}]}], + RowBox[{ + SuperscriptBox["\[Theta]0", "2"], " ", + SuperscriptBox[ + RowBox[{"RealAbs", "[", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], "]"}], + RowBox[{"15", "/", "8"}]]}]]}], ")"}], "2"]], + RowBox[{"(", + RowBox[{ + FractionBox[ + SuperscriptBox["\[Theta]", "2"], + RowBox[{"\[Pi]", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]}]], "-", + FractionBox["1", + RowBox[{"2", " ", "\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}]}]], "+", + FractionBox[ + RowBox[{ + RowBox[{"CYL", " ", + RowBox[{"(", + RowBox[{ + FractionBox["5", + RowBox[{"36", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"7", "/", "6"}]]}]], "+", + FractionBox["5", + RowBox[{"36", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"7", "/", "6"}]]}]]}], ")"}]}], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], + "2"]}]]}], "-", + FractionBox["1", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], + ")"}]}]]}]], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], + "]"}]}], + RowBox[{ + SuperscriptBox["B", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], + "3"]}]]}], ")"}]}], "\[Pi]"], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], "2"]}]]}], + "-", + FractionBox["1", + RowBox[{"\[Theta]", "-", "\[Theta]0"}]], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], + RowBox[{ + SuperscriptBox["B", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], "3"]}]]}], + ")"}]}], "\[Pi]"]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"]], "-", + FractionBox[ + RowBox[{"8", " ", "\[Theta]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"CYL", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox[ + RowBox[{"5", " ", "\[ImaginaryI]"}], + RowBox[{"6", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]}]]}], "+", + FractionBox[ + RowBox[{"5", " ", "\[ImaginaryI]"}], + RowBox[{"6", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]}]]}], ")"}]}], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{"1", "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], + ")"}]}]]}]], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], + "]"}]}], "-", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], + ")"}]}]]}]], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], + "]"}]}], + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}], + ")"}]}], "\[Pi]"], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", + + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], + "+", + FractionBox[ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", + + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}], ")"}]}], + "\[Pi]"]}], ")"}]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]], "+", + FractionBox[ + RowBox[{"24", " ", + SuperscriptBox["\[Theta]", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"CYL", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + SuperscriptBox["\[Theta]YL", + RowBox[{"5", "/", "6"}]]}], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], + ")"}]}]]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], + "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], + "\[Pi]"], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", + + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], + "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], + "\[Pi]"]}], ")"}]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], "4"]], "-", + FractionBox[ + RowBox[{"4", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"CYL", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + SuperscriptBox["\[Theta]YL", + RowBox[{"5", "/", "6"}]]}], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], + ")"}]}]]}]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], + "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], + "\[Pi]"], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", + + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], + "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], + "\[Pi]"]}], ")"}]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], "3"]]}], ")"}]}], + ")"}]}]], "Output", + CellChangeTimes->{ + 3.867399663278276*^9, {3.8674005829418097`*^9, 3.867400612249578*^9}}, + CellLabel->"Out[23]=",ExpressionUUID->"1d11593c-279f-48a7-b332-deeff602eead"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"\[Chi]0", "=", + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"DufDuh", "[", + RowBox[{ + "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",", + + RowBox[{"{", "}"}], ",", + RowBox[{"{", + RowBox[{ + RowBox[{"g", "[", "0", "]"}], ",", + RowBox[{"g", "[", "1", "]"}]}], "}"}]}], "]"}], ")"}], "[", "2", + "]"}], "[", + RowBox[{"R", ",", "\[Theta]"}], "]"}], ",", + RowBox[{"\[Theta]", "->", "\[Theta]0"}], ",", + RowBox[{"Direction", "->", "\"\<FromBelow\>\""}], ",", + RowBox[{"Assumptions", "->", + RowBox[{"{", + RowBox[{ + RowBox[{"\[Theta]0", ">", "1"}], ",", + RowBox[{"R", ">", "0"}], ",", + RowBox[{"B", ">", "0"}], ",", + RowBox[{"\[Theta]0", ">", "0"}], ",", + RowBox[{"\[Theta]YL", ">", "0"}], ",", + RowBox[{ + RowBox[{"g", "[", "0", "]"}], ">", "0"}], ",", + RowBox[{ + RowBox[{"g", "[", "1", "]"}], ">", "0"}]}], "}"}]}]}], + "]"}]}]], "Input", + CellChangeTimes->{{3.867399306978856*^9, 3.867399362899951*^9}, { + 3.867399492127166*^9, 3.867399492566269*^9}, {3.8673995729447317`*^9, + 3.867399586808991*^9}, {3.867399697155163*^9, 3.867399722330738*^9}, { + 3.867400597443878*^9, 3.867400646940031*^9}, {3.867400765926566*^9, + 3.86740078743888*^9}, {3.86740167647156*^9, 3.8674016895355988`*^9}}, + CellLabel->"In[30]:=",ExpressionUUID->"7b4a2b19-eb62-4fb5-9666-a81b70aa0106"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + FractionBox["1", + RowBox[{"8", " ", + SuperscriptBox["R", + RowBox[{"7", "/", "4"}]], " ", + SuperscriptBox[ + RowBox[{"g", "[", "0", "]"}], "2"]}]], + RowBox[{ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["1", "\[Pi]"]}], "+", + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[Theta]0", "2"]}], + RowBox[{"\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}]}]], "+", + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["\[Theta]0", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"CYL", " ", "\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + SuperscriptBox["\[Theta]YL", + RowBox[{"5", "/", "6"}]]}], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", + " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], + ")"}]}], + RowBox[{"\[Pi]", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]], "-", + FractionBox[ + RowBox[{"8", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"CYL", " ", "\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + SuperscriptBox["\[Theta]YL", + RowBox[{"5", "/", "6"}]]}], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", + " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], + ")"}]}], + RowBox[{"\[Pi]", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}]], "-", + FractionBox[ + RowBox[{"16", " ", "\[Theta]0", " ", + RowBox[{"(", + RowBox[{ + FractionBox["C0", "\[Pi]"], "-", + RowBox[{ + FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ", + RowBox[{"(", + RowBox[{ + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]], "-", + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-", + FractionBox[ + RowBox[{"C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}], + RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}], + ")"}]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]], "+", + FractionBox[ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"2", " ", "B", " ", "C0"}], "\[Pi]"], "+", + RowBox[{ + FractionBox["5", "36"], " ", "CYL", " ", + RowBox[{"(", + RowBox[{ + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"7", "/", "6"}]]], "+", + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"7", "/", "6"}]]]}], ")"}]}], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "B", " ", "\[Theta]0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}]}], "-", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], + ")"}]}], + RowBox[{"8", " ", + SuperscriptBox["B", "2"], " ", "\[Pi]", " ", + SuperscriptBox["\[Theta]0", "3"]}]]}], ")"}]}], + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}]], "-", + FractionBox[ + RowBox[{"3", " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"3", " ", + SuperscriptBox["\[Theta]0", "2"]}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"\[Theta]0", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}], "\[Pi]"], + "+", + FractionBox[ + RowBox[{"8", " ", "\[Theta]0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"CYL", " ", "\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + SuperscriptBox["\[Theta]YL", + RowBox[{"5", "/", "6"}]]}], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", + "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], + ")"}]}], "\[Pi]"], "-", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["C0", "\[Pi]"], "-", + RowBox[{ + FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ", + RowBox[{"(", + RowBox[{ + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]], "-", + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-", + FractionBox[ + RowBox[{"C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}], + RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}], + ")"}]}]}], ")"}]}], + RowBox[{"2", " ", "\[Theta]0", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]]}], ")"}]}]}], + "+", + FractionBox[ + RowBox[{ + SuperscriptBox["R", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"], " ", + RowBox[{"Log", "[", + RowBox[{"R", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}]}], "]"}]}], + RowBox[{"4", " ", "\[Pi]"}]]}]], "Output", + CellChangeTimes->{{3.8673993112840843`*^9, 3.8673993768209543`*^9}, + 3.867399506274879*^9, 3.867399581147868*^9, 3.867399616196063*^9, + 3.86739971032502*^9, 3.86740056902387*^9, 3.867400605222789*^9, + 3.867400763951229*^9, 3.867401303236107*^9}, + CellLabel->"Out[25]=",ExpressionUUID->"49d3eb26-ffe6-47e7-8e76-81dd108d6570"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{ + FractionBox["1", + RowBox[{"8", " ", + SuperscriptBox["R", + RowBox[{"7", "/", "4"}]], " ", + SuperscriptBox[ + RowBox[{"g", "[", "0", "]"}], "2"]}]], + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", + FractionBox["1", "\[Pi]"]}], "+", + FractionBox[ + RowBox[{"2", " ", + SuperscriptBox["\[Theta]0", "2"]}], + RowBox[{"\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}]}]], "+", + FractionBox[ + RowBox[{"48", " ", + SuperscriptBox["\[Theta]0", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"CYL", " ", "\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + SuperscriptBox["\[Theta]YL", + RowBox[{"5", "/", "6"}]]}], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", + " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], + ")"}]}], + RowBox[{"\[Pi]", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]], "-", + FractionBox[ + RowBox[{"8", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"CYL", " ", "\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + SuperscriptBox["\[Theta]YL", + RowBox[{"5", "/", "6"}]]}], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", + " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], + ")"}]}], + RowBox[{"\[Pi]", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}]], "-", + FractionBox[ + RowBox[{"16", " ", "\[Theta]0", " ", + RowBox[{"(", + RowBox[{ + FractionBox["C0", "\[Pi]"], "-", + RowBox[{ + FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ", + RowBox[{"(", + RowBox[{ + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]], "-", + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-", + FractionBox[ + RowBox[{"C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}], + RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}], + ")"}]}], + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]], "+", + FractionBox[ + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"2", " ", "B", " ", "C0"}], "\[Pi]"], "+", + RowBox[{ + FractionBox["5", "36"], " ", "CYL", " ", + RowBox[{"(", + RowBox[{ + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"7", "/", "6"}]]], "+", + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"7", "/", "6"}]]]}], ")"}]}], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"2", " ", "B", " ", "\[Theta]0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}]}], "-", + + RowBox[{ + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], + ")"}]}], + RowBox[{"8", " ", + SuperscriptBox["B", "2"], " ", "\[Pi]", " ", + SuperscriptBox["\[Theta]0", "3"]}]]}], ")"}]}], + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}]], "-", + FractionBox[ + RowBox[{"3", " ", + RowBox[{"(", + RowBox[{"2", "+", + RowBox[{"3", " ", + SuperscriptBox["\[Theta]0", "2"]}]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox[ + RowBox[{"\[Theta]0", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"]}], "\[Pi]"], + "+", + FractionBox[ + RowBox[{"8", " ", "\[Theta]0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"CYL", " ", "\[Pi]", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + SuperscriptBox["\[Theta]YL", + RowBox[{"5", "/", "6"}]]}], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}], "-", + RowBox[{"2", " ", "C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", + "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}]}], + ")"}]}], "\[Pi]"], "-", + RowBox[{"2", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], " ", + RowBox[{"(", + RowBox[{ + FractionBox["C0", "\[Pi]"], "-", + RowBox[{ + FractionBox["5", "6"], " ", "\[ImaginaryI]", " ", "CYL", " ", + + RowBox[{"(", + RowBox[{ + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]], "-", + FractionBox["1", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]0"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"1", "/", "6"}]]]}], ")"}]}], "-", + FractionBox[ + RowBox[{"C0", " ", + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"2", " ", "B", " ", "\[Theta]0"}]]}], "]"}]}], + RowBox[{"2", " ", "B", " ", "\[Pi]", " ", "\[Theta]0"}]]}], + ")"}]}]}], ")"}]}], + RowBox[{"2", " ", "\[Theta]0", " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "3"]}]]}], ")"}]}], + "+", + FractionBox[ + RowBox[{ + SuperscriptBox["R", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}], "2"], " ", + RowBox[{"Log", "[", + RowBox[{"R", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]0", "2"]}], ")"}]}], "]"}]}], + RowBox[{"4", " ", "\[Pi]"}]]}], "/.", + RowBox[{"B", "->", + RowBox[{"ruleB", "[", + RowBox[{"\[Theta]0", ",", + RowBox[{"{", + RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}]}]}], "/.", + RowBox[{"C0", "->", + RowBox[{"ruleAL", "[", + RowBox[{"\[Theta]0", ",", + RowBox[{"{", + RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}]}]}], "/.", + "data2"}]], "Input", + CellChangeTimes->{{3.867401430819233*^9, 3.8674014482667217`*^9}, { + 3.867401479324093*^9, 3.867401519892399*^9}}, + CellLabel->"In[29]:=",ExpressionUUID->"df04d6a6-7870-45a4-a6f0-74b19e0194f0"], + +Cell[BoxData[ + RowBox[{ + FractionBox[ + RowBox[{"1.443675578109905`", "\[VeryThinSpace]", "+", + RowBox[{"0.`", " ", "\[ImaginaryI]"}]}], + SuperscriptBox["R", + RowBox[{"7", "/", "4"}]]], "+", + RowBox[{"0.008090042376531648`", " ", + SuperscriptBox["R", "2"], " ", + RowBox[{"Log", "[", + RowBox[{"0.3188455280999998`", " ", "R"}], "]"}]}]}]], "Output", + CellChangeTimes->{ + 3.867401448565897*^9, {3.8674014930013247`*^9, 3.867401520373138*^9}}, + CellLabel->"Out[29]=",ExpressionUUID->"911979f9-954d-47ec-b0a6-8c3dacdfaa49"] +}, Open ]], + +Cell[BoxData[ + RowBox[{"Limit", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "2", "]"}], "[", + RowBox[{"R", ",", "\[Theta]"}], "]"}], ",", + RowBox[{"\[Theta]", "->", "\[Theta]"}]}], "]"}]], "Input", + CellChangeTimes->{{3.867399396604781*^9, + 3.8673993968872347`*^9}},ExpressionUUID->"626c9442-a5ca-460d-9253-\ +fd9b4c2f2227"], + +Cell[CellGroupData[{ + +Cell[BoxData[ RowBox[{"ComplexPlot", "[", RowBox[{ RowBox[{ RowBox[{"(", - RowBox[{"ScriptF", "@@", - RowBox[{"Most", "@", "prep2"}]}], ")"}], "[", "\[Theta]", "]"}], ",", + RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "\[Theta]", "]"}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", "3"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.857755068199889*^9, 3.857755069519574*^9}, { - 3.857790321737791*^9, 3.8577903601065702`*^9}, {3.85779160038527*^9, - 3.857791646178491*^9}}, - CellLabel->"In[7]:=",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"], + 3.857790321737791*^9, 3.8577903601065702`*^9}, {3.85779160038527*^9, + 3.857791646178491*^9}, {3.867399210226221*^9, 3.867399214577518*^9}, + 3.8673993211077833`*^9}, + CellLabel->"In[10]:=",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"], Cell[BoxData[ GraphicsBox[{GraphicsComplexBox[CompressedData[" @@ -732,1282 +2383,11 @@ sK9tH9S+mX0WfXl9XH0/fSJ9BetQ6xbzXPMiv6O+d72ncnX9DytUJ10= GraphicsBox[ TagBox[ RasterBox[CompressedData[" -1:eJwsu2dwG2e2Nnhr98/+3L9b337f3blh7ty59vh6PI7jMB7nbMuWlSUrZypQ -OVCBokiKYhApBjHnTII5gQSJnHMOjdxAo3NEB2irFpzaqgMUQiPU+7znOc9z -TvfvjlzYceJ/+6d/+qfS/6N4t+Pw9Y8vXz588+f/s/hkZ0np6ZMlx499VXLl -+Mnjl9858r8XX2z4/2/bj0GeT+fz6TyXyrPJ7WASeTqep2J5MpYnohwGcGiE -Q8IcHOSgAJf1c6CPS3u5pJeLe9mYlwW8bNjLhrxswMP4PIzHwzg9jN3NWNy0 -0U3rXLTaRSs89LqPlgfo1RC9EqGXotRinJpPUXMgNZOlZDlqGqEmcWqCJMcp -YpzGxxl0nEXGudx4PjvOZ8aF9LiYHJfi44XY+Etg/P8Njb8MTLz0ThZcUwX7 -tGSRSUaZqJsRVTPC5iy/PsuvzOUXF/ILS9z8Cje3xs1usDObrEzJTquZKS0z -aWDGTfSYhR6zU2NOctxDjvuJiSAxEcEno9hUAp1OobIMIoPgGSQ3i0ELeHaZ -yKySoJxKbzDpTTal5JJqLqHNx3V8zCBEjSJglgBLAbAXAGcBcBcATwHwFYBA -AQgWgHABiBSA6Esg9hJIvASSL4HUSyD9EgBfRrMvY1AhnivE4UICkRKYlMS3 -I0VIKVJMU2KaFkHmH8GKGW470nk+lc8XI5nningl8kyco2McFePIKEcAHB7h -0DCHhDg4wEF+LutjQQ+bcrNJNxt3s1E3C7jZsJsJuhm/i/G6GLeLcbhom5M2 -O2mDk9Y6aJWD2nBSq25qxUstBajFEDUfoeai1EyckqWoKZCazJLjMDmGkqME -OUwSwxQ2TKMjDDzCQiP57AgPjgipYTExLMWHC9Hhl5Hhl8GRl77Rl+6xgmO8 -YJ2QTBOSflLUTAlbU8LGNL86nV+U5edmudl5TrbITa+wU2vs5Do7scmMK5kx -NT2qo0cM9JCJGrKSww5y2E2MePGRAD4axsai6HgcGU8hEyA8CeWmYEiGZefw -zAIBLpPpVSolp5MbTGKTjSu5mDof1fCATogYxLBRCpulsLUQthfCzkLYXQh7 -C2F/IRwshEOFcKQQBgrh2Mtw/GU48TKcehlOv4yAL4FMIQoVorlCDJbiiBRH -tyFL4GKSEJOkmKLEFC2mGDHNCGlWSHMCmBdS23jxyXw+wXEJjo1zTIyjoxwF -cCTAEREOD7NoiEWCLOxnIR+b9bKgm0252ISTjTuZqJOJOJmQkwk4GJ+D9jho -l4N22GmrnTbZKb2d0tgopY3asFHLDmrRRS14yTk/ORskZRFyOkpOJsjxFDkG -kiMQOYyQgxgxQBD9JDZAIQMMPMBCA1xmIJ8e4JMDQmJAjA1IwMDL0MDLwMBL -7+BL11DBPlywjEiGUVE7JirHBMU4vzbOL03k5yY42RQ3NcNNzrETi+z4MjO2 -xoyuMyOb9LCSHtRQAzqq30j2m8l+GzHgxAc8+KAfGwqhQwAyHIdHkvAomBuD -oHE4O4lmZDg4R6QWyeQylVil43ImtsFGNzlAmY+o+LBGCOnEoF4KmqSgRQra -pKCjEHQVgp5C0FcIBgrBYCEULoQihVC0EIoVQomXoeTLUKoQBguRTAHISkBO -isJSDJFiqBjHxDguJggxQYpJSkjSQpIRUuw/giuCJSS5YvAJLh/nuDjHxjgm -ytEAR0VYMsISYRYPsWiQRfws7GMhL5vxMKCLSTmZhJ2J2RnAzkTsTMhGB2y0 -z0a7bbTTRtmtlMVKGa2UzkKpLeSWhVw3k8tWct5OzrpImYec9pOTQXI8QoxF -iZEEMZwiBjNEf47oQ4keHO8msB4K6aFzPUy2h830cOkePtkjxHvEaI8U6SkE -e176e156egvO/oJ1QDINSrpBUT0kbg4L8mF+ZSQ/P5qXjXIT49z4FDs2w47O -MSOLzNAyM7hGD6zT/ZtUn4rq0ZDderLbRHRb8R4H1uvGen1oXxDpj8ADsdxg -EhoCoWEoOwKD42h6CkvN4Mk5MrFAxZbp6CoDyNnIBhfe5ENbQlAlBjSiXyf5 -DZLfLPmtkt8u+Z0Fv7sQ8BYC/kIgUAiECoFIIQAUArFCIF4IJArBVCGULoQy -UjgrRXISAIsAIkZRMYqJMVyIEUKcFOKUkKCFBCMkWCHJ8kWYksXM4oQEx8e5 -fIzjihFlWYBlIiwdZskQSwRZPMBgfgbxMbCXgTxMxsWATiZlZxI2JmZhAAsd -ttBBC+230F4L5TZTDjNlM1NmM2UwkVoTqTKRmyZSbiSWjMSMhZi2EZNOYsJD -jPmIkSAxHCEGo0R/guhL4z1ZvAvGOzG8HUfbSaSDynXQ2Q4G7OBSHflEBx/r -EIAOKdxRCHS89HW8dHcW7N0FS49k6JW0faKyX9joF1YH+MXB/OwgNznEjY6w -I+Ps8BQzKGMG5uj+Rbpvme5Zo7o3qK4tskNFtmuJdgPeYcY67FinC+3yIl0B -uDuc64lCvYlsXzrTnwUH4fQIkhrHElN4fIaIzVHRBTqyxIRX2ZA8H1znAwrB -vyX6VJJPK/n0ks8k+SySzyb5HJLPJfk8BZ+v4AsUfMGCL1zwRQq+aMEXK/gT -BX+qEEhLwYwUyophSAzDYgQRAVQAMCGKC1FCiJFCjOJjNB9n+Di7HUWYklw+ -yRbh42MsH2XzAMsBLBthmTBLhxgqyBABBvczmI9BvAzsYSAXnXHSoINO2eiE -hY6ZacBIh410wEj5jJTHSLmMlN1IWo2kyUDqDaTGQCj1hEJPrOmJRR0xYyAm -zPiYDR914sNufNCH9wfxvgjeE8O7kngHiLdDWBuCtWBoCwG3kFArlWll0q1s -spWLt/LRViHSKoZaC/7Wl97Wl862gq29YOqQdJ2Sukvc7BbkPfxyDz/Xm5/u -48b62KFBdnCE6R9n+ibpXhndPUd3LVKdK1S7nHyxQbRuES1qvEWPtZrQViva -5kReeOB2f649DHVEs52JTHca7Mmm++DkEJIYxeLjeHSKAGaoyBwdWmCCS2xg -Je9f473rgkcherZEj1ry6CSPQXKbJbdVctslj1PyuCWPt+DxFzyBgidU8EQK -HqDgiRW8CcmXlPxpKQCKgawYhMQQLIQRIYwKEUyI4DxA8ADJRyk+SvNRpggN -H9smwGLNyhfpsYhgES+AzUdYLsywYYYJMXSQoQIM6WdwH415acRDwy4actJZ -Bw3a6JSVTpipmJGK6KmQngroKZ+ecutJp46060iLjjTqCJ2WUGuJLS2xrsVX -NPiCBpdp8FE9PmzCh6z4gAPrc2M9PqwriHVEsPYY1pbCWjLY8xzWhKKNGNxI -QI1kpolONzHJJi7elAea+HCTGGiSfE0v3U0vHc8LlpaCsVXStonKF+JGu7DS -wS905me6uIkubrib7e9legeZnhG6a5zunKI6ZqgX82TbItmyQjTLiSYF3qjE -GrVokxFtsiDPHXCzO9fih1pD2TYg8yIBtqfTHdlkdy7Rj8SG0OgoHpkgwlNU -SEYH5hj/AutbyntWePea4FoXXZuiUyU6NZJTLzmNktMiOW2S0yE5XZLTIzl9 -BWeg4AwWnOGCCyi4Y5InLnmTojct+kDRnxUCkBDICUGED6F8COPDOB8m+AiZ -j1D5CJ0HmGIe5aPsNvsVa1biH3gVQSy+HmbyIYYLMmyAoQM05adJH014acxN -oy4adlKQg8raKNBKpcxUwkjFDFRER4U0lF9DejWkW0M6NIRNTZjVhEFNaNW4 -So1vqnC5Cl9W4fNKbFqJjaqxAR3WZ8J6rFiXA+t0Y+0+rC2EtgDo8zjamEYb -smg9gtaicB0O1RGZOipVTyfq2Vg9F6nnQ/VCoF7y1hdc9S/tDQVzY0HfJKmf -i5stgrxFWGrl59ryUy+40XZ2oJ3p7mK6eumOAbp9hGobp1qnyOYZ8vk80bhE -NKzi9etY3RZWp0Hr9UiDGW6w5565oEZftimUeQ6kmxOplnSyLRvvzMV6YKAf -jQzhoVEiOE76p2ifjPHMce6FvGuJd6wI9jXRviHat0S7WrTrRLtBspsku1Wy -2yW7U7K7JbtXsvsL9mDBHio4IpIzKrniojspelKCFxS8WcEH8f4c70f4AJoP -Yvkgng8R+RC1HWG6CAoX2eY9LrqtBtliRSuSZDHvilAW3w3SXIBm/TTjo2kv -TXoowk1hLgp1UrCDytmorJUEzWTKRCYMZExHRjRkSEX6t0ivknApCYeSsCoJ -0xau38I1W7hyC1dsYWub2NImNreJTSnQEQXaq0K7dWinEW0v0pADbXGjz/1o -YwhtiCJ1CeQpiNTkkGoErsay1Tj4hEw9oRNPmGgNF6nJB2sEf43oqSk4a17a -nhZMdQVdvaRsEDcahZUmYeE5L2vOjzdzQy1sbyvT0U6/6KLbeqmWQap5hGwa -J59NEQ2zRN0C/nQZe7KGPVGgT1RIjQ6uMeWe2qBaV7bOC9YH0w1A6lk82ZiO -N2djLyCgEw73oqF+LDBE+EdJ7zjtnmJcMs4xm7cv8NYl0boqWtdF66ZoVYlW -jWjVi1ajZLVIVptkdUhWl2TxSBafZAlI1pBki0j2qOiIi86k4EoJbpD3ZHgP -xHtzeR+S96F5P5b341yA5AJUEYhi7nChbcYrigo2yhalO1MUIcW6VqTKyD8A -DVKcn2Z9NOOlaA9FuSnCReEOErWTiI3MWcmsmQRNZMpAJnRETENEVERoi/Ar -CM8G4dog7ArcsoEbN3DdBqbewLY2sI0NbHUdXVxHZ9fRyXV0WI70biAdSuSF -Fmk1Is8tSKMDafAgdX7kaRh5EkOqU3BlFq6Ac4/QbAUGVhCpx1T8MR19zIYf -5wOVvK9SdFdKjsqX1sqCsVrS1EhbT0V5nbBUz8815KeecaONbH8T09lEt7bQ -Le3U8y6qsY98NkjWjxK1E8TTafzJHFa1iD1eQR+vI4+VcKU2V2mEqqyZaif4 -xJuuCaaeRpK18Xh9OtaYAVqgcDsc7EIDvZhvgPAMke5R2jnO2Kc4myxvmRXM -C4J5WTSvieYN0bwlmtSiSSeaDKLJJJmskskumZySyS2ZvJLJL5mDoiUs2qKC -PSbYE7wjxTtB3pXJu6G8O5f3IJwX5bwY5yU4H8n5qCIKbDF3ggxTrFBFUQGw -RZ9FF3VjUYoUq1uRMENkPvCPIz0U66ZoF0k5SdJB4nYSs5GIhciZiayJAA1E -SkcktERMTUSUeGgT96/jnjXcuYbb1nDLGmZcw3RrmGoN3VxD19fQlVV0YRWR -rSITq8jQCtKzCrduwM1KuEkLPzPC9Va41gHXeODqAPw4AlfE4fI0/ADK3YOz -91HwAZ58QMYfUsBDJvSQ8z/kvQ8FV7lkL39pKS/oKyR1paSoElefCAs1vOxp -fryWG6pje+qZFw308ya6sZVqaCfru8naPqJmiKgexasmsccyrHwefbCMPJTD -Dzdz5Wqo3JB9ZAErHOnHnlRlIFEViVfHYzVpoD4TboKCrbC/HfF2YZ5ewjVA -OoZo2yhrGefMU3mjTDDOCYYlwbAqGNZFw6ZoUIkGjWjQiwajqLdIepukd0h6 -l6T3SAa/aAyK5rBgAQRrjLcleFsqbwfzjgznhDhnjnMhnBtl3TjrJlgPuQ1B -MWuKRFesTUU5EWaLDosCWKoo9YvqsShIijWuSJuBf4BbPN5JMg6StpOkjSCs -BGYhEDMBGwnIgGd0eEqLJ9R4TIlHNvHQBuaXY54VzLmE2ZYx8zJmWEa1y6hq -GVUsI2tLyPISMr+ETC/B40vw4CLcvQi3rsCN67l6Za5Wm6sx5qqtuUpnrsKb -Kw/m7kdzZcnc3Uzudi57G0nfwZJ3iNhdMnKXDpWx/rK8p0xwlom2ewXTvYLu -gaQsl9YficuPhblKfqoqP1rN9T9hO2uYlqd0Qz1V30TVtpI1HUR1D1HZj1cM -Y+Xj2IMp9N4scncRvruaK1NA91TZe3rwvjn9wJ566EmUB+KPIrGKOFCVDj/N -BBsg//OctxVxt2POLsLeS1kHaPMQaxzlDOO8bkrQzQq6BUG3LGjXBO2GqN0S -tWpRqxO1BlFrFjVWUWOXNE5J6xF1PlEfFIxh3gTw5ljekshbUpwV5GwZzg6x -dph1IKwDZZw44ySY4uIX86VIcb5tFVEU6lSIIcPbjpgsujMA39aQRVlSrHRF -8vTiXBHi4qfsBG0jKCtBmHHchKNGHNbjkA7PaLC0GksosdgmFtnAQnLMv4p5 -llDnAmqdR03zqH4e1cwjynlkYx5ZnYeX5uHZeXhqHh6dyw3M5brmci3zubrl -3NP1XLUyV+SjCiNUboMeuKB7PuhOGLoVg26koWtQ9hqcvo4mbuCxG2TkJhW8 -yfhucu5bvOOWaL1VMN4uaO9IW2Wi/L649FCYKecnKvJDj7neSvZFFd1UTdU+ -pWoayOrnRGUbUdGJl/diDwaxeyPo3Qnktgy+OZ+7uQLdWs/eUmZu69J3TKm7 -9kSZO34vEL0fAR7GwxWpYDXor816n+XczxFHK2ZrJyxdlKmXNgywuqG8ZpTX -TAhqmaCeF9RLgnpVUK8Lqk1RpRJVWlGlF1UmUWkRlTZR5RTVbkHjE7QBXh/O -G4C8McYZE5wpxZpB1pJhrRBjhRkbwtgwxobTxWUvZkqR3Ir1yLst+cgAQxS9 -Vegf7YuioS56tDAmFJVkANuud0UKdWNsEejiZy04ZcZJI44bMFSPwVoM0mAZ -FZZWoslNNLaBAnI0tIr6l1HPAuqcQ6wyxCRD9DJELYO3ZuD1GXh1Bl6cyc3I -cpOy3IgM6pdBnTKoRQbVzkFVy9DjdahcCT3QQvdM0F07dNudvRHIXgOyV5LZ -y5nsJSh9GU6UotErRPgKFbjKeK9yrqu8/ZpouSYZrhU0N6TNW+LqHWGhTJi+ -x4894AYesl3lTOsjuqGCqq4mK2vJimdEeTP+4AV+rwu724feHkJujiHXpuCr -s9DVpew1eebaVvq6NnXDlLxpi99yx24HgDuRcFki+DDlrwQ9NVlXXc7RiNia -MUsbYeqg9F2MtpdVD+SVw7xynFdO8VuzwtaCsLUibMmFTYWwqRQ21eKmTlQY -RYVZVNjETYegdAsqH68O5DWhvBbgdDFWn2ANKdYIMqYsY4JoM0ybEdqCFRec -thJUkdaKlchFEUW956WLFhgvGuEgi4VYDEDFCLrt1ILotp4sShQPyrnQ7dws -wm3GaCNG6jFCh2FaFFGjORWa3ULBTSS5gcTlCLCKhJYR/yLimUOcM4h1CjaN -w7oJWD0Bb07m5JO5lcncwiQkm4QmJqHhSahvMtsxmW2ezNZOZR/NZR8uZ++v -Z+8qs7d12Zvm7HVH9oo3ezmUuRjLlKQz57Lp87lECRK9gIUvkoGLtPcS67yU -t10SzJcl/eWC+oq0cU1cuSHM3eKn7uRH7nJ9ZWz7Peb5A7r2Ifm4gnz0hHhY -h99vxMtasDsd6M0e5PoAcmUEvjyRuzSTvbSYubwGXt5MlWqSV4zxq7bYNTdw -PRC+EQneSvjvpbyPQFdV1lGTs9Yj5kbM2Ezo2ihNB6Pq4jZ785uDvGKUV0zy -ihl+Y17YWBI2VoX1DWF9U1hXCXKtKDeIcpO4bhU2HLzCzW9588oApwpxaoDV -xBhtgtGlGB1I67O0AaIMMGVAKSNGmXDSQhDFGlSUDU4KL4pzz7b/xfwMGmDQ -IIsCiBiBt/11EOb9MO9FtoWKC9mmUyvCmFG6+D1alNSguBpFlQi8hWQVCLiB -pORwfBUGluHwIhyYhz0zsHMatk7kTKM53UhONZJTjObko9DyKDQ/Ck2PZsdH -s0Oj2d7RTPto5vlopnY0Uz6ZKZvL3FnJ3NzIXFdlruozpZbMRVemxJ85F8mc -SYKnwPQpKHEajp5Bw2cJ/znKc45xnues53lTiagrKaguSOuXxeUrwuw1fuJG -fugm132bbbvDPLtLPSkjyx8S9yuJshr8Tj126zl6ow292oWU9sEXh3Lnx6Dz -09nzC+D51XSJInlBnbhojF2yAZfd4dJA6ArgvxH33k25HoCOiqy1Omd+ihjq -MV0joW6mlG2MooNb786v9/PyEV4+zsun+bU5fm1RWF0RVuXCqkJYUQorGmFZ -L66YhFUrL3fk1135DS+nCLBbIWYLYJQxWpWg1SlKA1KaLKXNkVqYLC5yMS+K -VFasPkXBYCOxoiwvOin3drMC8TGIn0ECLBzJieGcGMxtW2xfbtsIuHPbcqVY -AYukaoJpPUxpEFKF4FsIugnDChhahzNrcGo1l1jORRdz4flcYCbnnc45JyDb -GGQahnT9kGoAUgxAa4PZpcHs3GB2ejAzNpQZHMr0DGVeDIFNQ+DTIfDRMHhr -CrwxD15bAUsV4CU1eMEInrOBZzzgqSB4IgYeS6ePZhLHctHjSOgE7j9Jek7R -jlOc9TRvPC1qzxSUZyV5ibh4UZBd5seu5AeucZ3X2eYbdN0tqvI2ee8ecbcc -v12F3azFrj1Dr7Qgl9rhCz25cwPQ6dHs6anM6fn06ZXUmY3EWXXsnCF63hop -cYcuBAIXAe/VuPtW0lEGWh9mzY9zhmpEW4urG8itJnqjhZW35de68qt9+ZUh -fmWMX57il2f4pQV+aVlYWhMWN4TFLWFBLSzohEUjv2zJr9i5NRcr97LrAWYj -RCsAejNGbSWorRSpBEllllTlCBVCFDNCh2IGDCtKBTOBWAnEThY9L+yiYDed -8zA5H5Pzs7kwJIUgMQgJfmjbaHugvAvKOyDOBrEWiDFCtD5HaXKkMkcoYGwj -h8hzubVcdiWXXoISC1BsDorMQIFpyDuZdY1lbcNZ00BW15tVdWc3urOrPdnF -3sxsb2aqNzPaBw70gd19YFtfurEvXdOXLu9L3xxJX5lKX55PX1hNn99Mn9Wm -T5nTJxzpY770kUj6t2T6IJg4BEUPw6EjmP8o4T5KOY6xluN5w3FBc6KwdUJa -Oy0unBOmS/iRi/m+y1z7FabpKv30GvXoOnHnDn7rAX69Arv6BC2tRy4+h8+3 -wWe7cqf6oGPDmeOT4PHZ1PHlxImN+ElV9JQhctoaOuMOnA34zgPu0rjjetJ6 -BzTfzxrKc9pKVPUE36wlNxrotSZ2uSW/3JFf6skvDuYXR/mFCX5Bxs/P83NL -/NwqP7suzG4KMyphVsfPG/MLFm7Jzi67mBUvsxqg10KUHKDWY+RGgtxIE4oM -ocjiihy+BWMqBNWgqA5DDDhsIuCie7KSOft2Twly0ZCbhjxM1stkw1kpmBED -GdGXEbwZ3p3hnZm8PcNZM6w5wxiztC5LqbPkFkRsQPgahK5C8DKUXYTAhWxy -LhubyUams8HJjG8s4xrJ2AYzpr6Mrjuj6shsvMistmcWO8DZTnCyExzpSvd3 -pbu60q1d6WfdqZruVHl36lZv6uJIqmQ6dW4hdVqeOqlMHdOnjlhTv7lTB4Op -/bHU3lRibya6Pxc6gPgP4u5DlP03xnw4rz8sqI9Im0el1ePi/Clh6iw/fD7f -U8K1XWSeXaarS8kHV4ibN/BrZdiVcvRyFXqhFjn3DD7TkjvZAR3tzR4eAg9P -pA/PJo8sxY+sR4+qgGOG8HFb8ITbdzLoOQM4L8ZtV5Pmm6Dhblb7AFY9Qjer -8PUacrWOWXrGLTTnF9rz8935uf783HB+dpyfmeZls7xskZ9e4afk/JRCmFLx -Mm1+xsjNWdh5O7Pgohf/MaxdDpErALEaI1aT+FoaX8tgaxC2nkMVMFKsNWq0 -qOhyegwy4pCJyFrIrJXM2qmMg8646IybyXiYTAiUAqDkB0UvKHhAwQXyjnTe -BnIWkDOBrAFktCCtBsmtDLGewVez2FIWWchC85nMbCYly8SnMsBEJjQG+kZA -9yBo7wfNPaC+E1S9ABXN4GozuNCSnmlNT7SlR9pS/S9SnS9Sre2pZ+3JJ+3J -8vbkrY7khb7kmdHkKVny+FLy6HrysDp50Jjc70ju9SV3A8lfk4mdYHQXFNoD -+/Zi7n2kfT9tPsDpD/Dqg5LikLR6WJw7Jkyc5IdO57vOsi3nmfoSuvIiWXYJ -v3YNL72NXbqPllQgZ5/Ap+tzJ55DR19kD3VnDgykD4ynDswkDi7FDq4Dh1Th -3wzBwzb/EY/3WNB1CrCXxM2Xk4broPZ2VlUGbz5E1yuIlSpqsYaZq+dmn3Oz -bfmZrrysLz89lJ8ay09N5Sdn+IkFfnyZH1vjxxT8hDI/qeWmjKzMwszY6VkX -Necl5wPEQhhfBPDFOLaUxJbS6FIGXYGKlAVvwLlNBFKiWTWa1WIZPZ4xEqCJ -BC0kaKXSdirtoNNOJu1m0sF0wZ+SfCnRkxLdKcGZ4u0p3prKm1OcMcXqU4w2 -RavS1GaaXE/jKyC2AKKzGXgGzE6D6UkwMQFGx9LhkbR/MO3uTzt60pautL49 -rW5JK5rSqw3phWfpmcbURFNq+HmqrznZ2ZxsaUk2tCSftCYetiZutSYudiRO -9ieOjSeOzCYOrSQObCb3aZO7Lclf3clfQskd8cSPqeiOTOiXnG8n6tpF2HdT -pj2sbg+v2itu7JNWDoizvwnjR/mBE/nOU+zz00ztWerROfJ2CV5ail28gZaU -oWfLkVNV8PHa3JFG6FBbZl8XuKc/tWcsuVcW37sY3bce2acK7TcEDti8hzzu -30KOE4DlbNx4Mam7AqpuQJt34PV72Eo5sfiYnq1mZbXcdCM31cpNdnKTvfmJ -wfz4aH5sMj8qy4/M88NL/NAaP7yRH1VyY1pmwkhPWqgpOzntImRefCaAz4ax -2Sg6F0fnUsgciCxk4KVsbhWC5LnsBpzZQkAVChbtrRZP6YmUkUiZyJSFSlqp -pI1OOpikk0kGkgVfUvImJU9CdCVER0KwJfii+zYlOEOC1SUYTYJWJihFkpQn -iZUUtpBCZ9LwVBqaSIPj6eRoKjacigymAv0pT0/K0ZWytCcNrUn18+Tms9Ra -bWrhaUpWm5yoSw7XJ/saEh3PEi2NiYbGRHVT/GFT/Nbz+KXn8WOd8cOD8YOT -8f3ziT1riV3KxE5DYoc98aMv8T2Q+DYZ/Q4M/QD5fkJcO3DbL5RpJ6P7Na/8 -VdzYJS3vEWcOCGO/8f1HuPZjbNMJpuYU9fA0cfMsfvEidv4aeuY2cuoBfPxx -7kgNdPBZdl9LZldH+te+1K+jiV+nY78uArvk4d2qwB6Db6/ds8/rPBiyHgNM -p+O6kpT6Mrh5DVq/hazcxRbuk7OP6KlKdvIpN/GMG2/hxjq40R5uZCA/PJIf -msgPTucH5vJ9i3z/an5ggxtSMsNaetRIjVnIcQcx4cYnfdhkEJ2KIFNRZDoB -T6dgGZiby0CL2cwyBK7m0utwWoGkttCkCktq8IQWT+iJhIGMm6i4mYpb6biN -jtuZuD9e8MYLnrjkikvOmGiPbXe3zDHeGMvrY5w2xqpjzFaM3oiTa3FiOYHP -J1BZEplI5UZT2eFkaigZH0gCfclgT8LbmXC2J6ytCWNzQtOY2KxLrNUkFiuT -sqrEeHVi+Emi92m8ozbeXBuvr4tX18cfNsRuNcQuPYudaI4d6I7tG47vno7/ -uhj/eSP+kyb+gyX+rTv+dSj+ZTz6ZSr0Tdb3Hez6HrP9SJp+YrQ7OOXPwvov -0vJOcWaPMLqf7zvEvTjMPjtKVx+n7p8grp3Czp9Hz5SiJ28ix8rgw49yB59k -99VndjWDP7endvQld4zEf56O/rwY+UUe/EXl32n0/Gp37fbZ94fMRwD9ybjm -XGrrYmb9Sm7lOrJ4G58tI6ceMOOP2bEadrSBG2nmhtu5wW5uoJ/rH873jed7 -pvPds/muxXzPKte3wfQr6QEtOWgkhiz4sAMbcaOjPmQ0iIxF4LFYbiyRG09B -U+nMTAacz6YXodRKLrkGJ9aRuAKNb2ExFRZT41EtEdWTUQMZNVFRMx210FEr -E/XHCt5owR0tOKOSAxBtgGgBBBPAG4C8DuA0AKsEmE2AXgeo1SixFMXnY5gs -hkzEc8MJaCAB9iWSvYlodzzcGfe3x92tcVtz3NQY19bHt57G5dXxpYr4zMP4 -+KP4UEW8tzLWURVrro7VP4lV18QePo3eqo1ero2eqovubY3u6o3tHI3tmI39 -uBL7fiv2jSH2lSP2hT/2WTT2aTL8Oej/CnJ9jdq+JUzf0drvua0fhPUfpeWf -RNlOYXQP37ufazvINvxGVx6hyo4RV45jZ86iJy8hx67Dh+/kDj6E9lVld9Vl -fm5K//Ai9UNv4oeR2A/TwI+LoR/XAz+pvDuM7p8djl/8lr0h42+A9nhceSa1 -UZJZvZxbvIrO3iSm7lCj99iRCnb4CTtUzw485/pfcH1dXE8f1z3EdY7lO6by -L2bzHYtc5yrTraB7VGSvjugz4v1WbMCBDHjgQT88GMoNAtBgLDuUzI6mwIl0 -ahpMzmYS89n4Ui62AkfX4Og6AihQYAuLKPGImohoyYiOjBioiJGOmOmIlYn4 -ge0htStScEQK9rBkDW/3kI1hQR/itaG8OsRthVhFmJGHqZUwuRgh5iLYNICO -R+HhKNQby3THUp2xeEcs8iIWaI15nkcdjVFzfVRXG1U9ia0/ji2Xx2bvxSbK -YsP3Y70PYx3l0eaKaP3jaHVl9GFV9FY1cPkJcLoGONAA/NIe/Wkg+sNE9LuF -6NfrsS81sc8tsU88sY8jsY/i4b+n/Z9m3Z8jti9x01eU9ht261te/p209L0o -2yGM7OR7dnOt+9i6A3TFIfLOYeLyEezUKfR4CXLkKnzwdm7fA2j348wvT8Ef -G9PftiW/7Yl/Oxz9djr87WLwu3X/92rPDybnj07bDr9pT1h3MKo6mlCcSq+d -yy5dhGdLsanrxNgteugeO/iIHXjC9tWzvU1sdxvX1cl19HHtQ1zbGNcymW+Z -5doWmRdrVLuC7FThXTqsy4R225AeJ9zjyfUGoN5wtiea6Y2DA4n0cCo5lo5P -gjFZJjqbBeahyFIuvAKH15DQOhpSYMFNPKgkgmoiqCGDWipooIJmOmSlQ75I -wRMuuEIFR6hgDUqWoGQKioaAoAvwmsB2C2UzwG4EmLUAvRykFoLEbBCfCqFj -YXgokusFsh1R8EU00RqNNgOhJsD3DHDWA9ZawPAEUFcCikfAyoPo3N3o5M3o -8K1o751oRxnQfB+ofwBUlwMPHwG3K4DSx8CZysih6shPTcD3XcC3w8BXsugX -y9HPtqKfGKJ/c0Y/DEbfj0U+SPr/lnH/PWf7FDN9Tmq/YLa+zMu/Fpe+Eae/ -F4Z38N07uZbdbO1e+tF+8tZB/OJv6PETyJFz8KHS3P6b0O572V8qMj/VpL99 -lvqqNfFlT+yr4u9Mh75aDHy97v1G4/rWbP/OZfkpYNgVVh+Ibh5JyE+kl89k -50rg6cvY2FVy8AbTX8b0PWJ7qtnuOraziW1vZV90cq29XPMg1zTKNU5yTbNM -8xLVska2KvA2NfZCj7Sb4XZbrsMFdXizHYFMRwTsiKa748m+RHwwGRtJAeNg -ZCoTlmVDs1BwPhdYggPLiH8V9csx/wbu2yR8W4RPRfq0lN9A+U10wEoHfKGC -J1hwBQuOQMHq3x6rGXySzidqfNstyi1vXuHlit581ccs+ah5Hznjxyf92FgA -GQzmekPZjjDYHEk1ReKNkUhDxF8XcT+N2J5ETJURTUVk82FkrSyycDsyfR0Y -uQL0XQc6bkZabkfq70aqyyIP70duP4iUPoycfRQ5XBH55Wnkm5bIV72Rz8eB -T+eBv8uBv2mAD6zAX33Au0Dk3UTgfdD9EWT/GDX9ndB+Sm99lpd/Li5+KU5/ -Iwz/wHft4Jp3sk930w/3kjf34yUH0KPHkN/OwPsv5fZch3bezf70CPzuSfqr -huTnrfHPuqOfD0c+nw5+vuj7YsPzpcb5lcX2tdv0Y0D7a1i5L7r+W3LlODh/ -GpKdQ8Yv4kOlVN8NpqeM6S5nOqvZ9jq2rZFtaWWfd7BNvVzDIFc3ytVPMc/m -qMYlskmOP99Em9VIsz7XYoZa7NkWd6bFB7YE08WFKu7tzlisJwH0J8NDqdBo -Ojie8U9l/TLIN5vzzsPeRcSzjHpWMY8cd6/jbgXhVpIeLenRU14T5bXSPl9g -++wdl79g90lW7/YkVO+RtG5R7RaVbmHTza+782tudtnNLLrpOTc57SEmPNio -Fx30wT1+qLhtiv+kIZysC0VrQ8GakLc65KgMmR+FdA9Dynsh+Z3w4s2w7Gp4 -7FKk/2KkszTSci3ccCP85Fa4/E74zt3wlXvhc/fDRx6Edz0Kf9kQ/rw98ulg -5OPpyEfLkQ+2gPeMwDsu4K0w8JdY4J2U569Z+weI6SNc+zG99Xdu7RNh8TNx -+kth+Fu+60fu+c9szU76wS7y+h783D708BHkwCl474Xcr9eyO+5kvi8Hv65O -fVaf+KQl9kk38Mlw+JPpwCdL3k8Vrs+09s+tli+8+h8C6p0Rxd7Y2qHk4tHM -zMncxFl0uITou0x332A67zLt5UxbFdNSyz5vZBtb2YYOtq6HrRnkakbZp1N0 -3RxZv4w3rKMNW/AzTe6ZIfvMknnmAJ950s/8qeISNUVirQDQHgt3xYO9ycBA -yjeU9o6CnvGMexJyTedcs7BzDnEuoM4lzLGCOdZwh4JwKgmnhnTpKbeJclto -j89f8PgKLm/B7pGs7u3htd61PWJTOrYHARuO7XblioNbcrDzDmbGQU05yXEn -PuJCB9xIkZbbvdni5mnwJ58E49XBSGXQ/zjgehSwPgga7gXVd4Mbt4LL14Oz -paGJC6HBs+Gu8+HWS+FnpaEnV0OProfu3gxdvR06fzd0rCy0517om6rQJ8/D -H3eHPxwNvz8XeW898o428pY98kYg8udo8C9Jz9sZ+3s50/uY9gNq6yN27WNh -8e/S9GfC0Fd853dc04/sk5/p+zvJq7vwM3uQg7/B+07mdp2HfrmS/fF25tsH -6S+qUn+vT/ytJfq37sjfhoN/m/Z/vOT5WOH8u876ic30uVf7fXDrl4h8T3zp -QGr2SGbyBDxyGus/T3ZdojuuMy/uMq3lTHMV01TLNDSyda3s0w62uoetHGSr -xujqabJmHq9ZQZ9uwE+VUK02W2sCa23pp87UU2+iuDjF/fwsEm4Ggm0xf0fc -253w9KZcA2nnEOgYydjHs/ZJyDYN22YQ69z2GNG6jFnXcJsCtykJu4a060mH -iXJaKKfPW/B4Ci63ZHdJVqdkcmyPsDV2SWkTFdbtccCqlV+25hes3JyVkVnp -SSs1ZiOGbFi/He12wO1OqNkNNnhST3yJCn+03B966Pfe9zvK/OY7fu0t/+b1 -wOrVwPylwFRJcPhMsOdkqO1sqLEkWHMpWFEaLLsavHY9WHIzePx2cN+d4PcP -gh/Xhj5sC70/EH5vKvz2cvhNZeQNc+R1T+S1SOi/49430o63IPM7qPY9cut9 -du1DfvEjafpjYehzvvNrrul7tvpH+t7P5JWd+OldyP6D8J7juZ3noJ9KM9/d -Ar96kP60MvlRXfyDlugH3eEPRgIfyrwfLrs+2rT/zWD52KH/3Kv6Lqj4GVjd -HZ/fn54+nB07hgycwrvOUe2X6LYbTMtdpqmceVbF1NcyTxuZJ61sZQf7qId9 -NEQ/Hicfy/DKBbRqFa5SQFWqTJUerDKnquzJSne8wherCkSehkL1YX8j4G2O -utvizo6Eoztp601b+0HLUMY8kjWPQaaJnGkKNk0jxnnUtIyZ1nCzAjcrCYuG -sOpJq5GyWSi7z13wuCSXU7I7JKtdMtkkvVXSWESleXvctmbaHgosGrdblzNG -dsq0fWHHiIkcNON9FrTLiryw5ZrtmQZnusaVrPDE7nkjZV7/Xa/rttd602e4 -7lNd9a1f9i1d8MvO+UdPBfqOBduPB5tOBZ+eCz4uCdy7FLheGrhwNXDyeuDA -zeBPt4N/fxx8vzH0Xlfo7dHQm3PhNzbCr+vDf3KGXwmF/yvm+++U442s+U1E -9zax9S4j/2t+8QNp+kNh6FO+80uu8Ru26nu67Cey9Gfs5E5k735419Hcz2ez -P1zOfHMT/Px+6uPK5Pt1sb+2AH/tCf11xP/XGc/7K873lbYPjKYPXdrPfVvf -huQ7gKVdiZl94MQhaOgo2nOSeHGWbr1MN9+gG8uYhnKmtoqpqWWqGpmKVuZh -B3u/l3k4TJZP4OWz6KMl+JEcerSZeaRJPzIkyy2Jh47YfU9xD4cfBwJPQr7a -sLsBcDZF7S0xa1vC0pE0daWMPaChP6MfzOqHId1oTjcO62SIbh7VL6P6Ncyw -gRuUuFFDmHSk2UiazZTF55Q8Dslpl+w2yWqVTBZJbxY1JlFpFBUGcU0vLuvE -ed12t3lax03q2DEdM6ynBvREjwHrNKJtJvi5OdtgBWtsqQpH/J4ressTuunx -3vA4rnlMVzzay17FRe/Kee/cGd/ESd/gUX/nwcDzI4G6E4HKM4H75wM3LwQu -XQqcuhI4dC3wy/XAF2WBd2uCb7cG3+wPvTEVen0l9Cd1+BVr+I+B8B8A3ysJ -52sZy59h3Zu48m1a/k5+8T1R9r4w9DHf+RnX+BVb9S199wfi8k/YiZ+RPXvh -nUegn05nv7uU+fJG+tN7qQ8fJ96tjb7bEnm3J/juqO/dWfe7q473VJa/mg0f -uNWf+Te+Da38FJ37NTm1NzNyKNd3BOs4Qbaeo59fphtv0PVl9NNHTHU187iO -KW9i7rcydzuZsn7q3gh+fwq9Pwff3x6+gveVqXvaRJkpftcWve0C7npDD3z+ -RwFPVdBZE7bXRSwNUVNTzNic0Lclde0pbSeo6c6oe7Oqfkg1nFONwyoZop5H -1EuoZg3TbGDaLVynJvQ6wmAkDWbK6LNLbtv2Kal2s2QxSSajqDeIGr2o1IkK -rbimEZc1wrxakKmEKVV+XMWNqNlBNd2nIbs1RIcWa9UhTfpcvTFTY04/tiTv -22I3nZGrrsAVl7vUZb3k1l90K0vc8rOehdOe6ePe4SO+noO+1v3++sP+6uP+ -h6f8t876S0v8Zy76D1/277ri/+aa/91HgTefBd7oCr4+GvzTfOgVReiPxtAf -PKHfh/1/iLteAa2v5fR/xpR/oeRvcYvviLJ3xeEP+c5PuMYv2Mqv6TvfEZd+ -wI79BO/ak/v5MPTDqew3F8HPr6c/Lku+/zj+dm307ZbwWz2Bt8a8b8+53pbb -3tGY3rXoPnBvfeaXfxNe/Ckm25ka25sdOAh3HcZbjtPPz9HPSum6m3TNPbrq -EV1RzTysY+41MbfbmNtd1O0B4s4YemcavruQvbMK3lGkbqsTt/SxmxbguiN8 -wx287fXe87keBuwVQUtV2FQTMdRGdQ0xTWNC9TypbE1tvQA3OzKKrqyiD1IM -5xTjuU0ZvDmHbC2hW2uocgNTbeFqNaHREhoDqTWTOq9l+5Rvp0myGyWLQTTp -Rb1O1GhFpVpUqEW5SlhWCvNbgmxTmFAIo5v5oU1uYJPp3aK7tsgXSrxFhTaq -4Tot9EQPPjak7pvit6zRK/bwRYfvgtNZ4jSfd2rPuhSnXSsn3bPH3GOHPf0H -vO27fY17fU8O+cqP+u6c9F054zt3znf0gm/PJf/3pf6P7vjfeBJ4vTXw2kDw -VVnwj2vBP2hDv3eE/i0U+Leo+z9T1lcgw2uo6nVy/Q128U1B9rY4/D7f+THX -+Blb+SV95xvi4nfY0R/gnbtyPx2CvjuZ+eoC+On11EdlyXcr4m/WAX9pDf2l -1/+XMc+b8443161vaY1v29QfehSfBVa+icz9GJ/cmR7eA/UcQNsOk89PUM/O -03VX6JpbdNU9+lEF/eAJc7eeufmcuf6CvtFD3BxCb07AN2eyN5fAG/LU9a34 -NW30ijFy2Ra67Axcc3tueRx3fdb7AVN5UF8R1lZF1E+iytrYZn1i41lyvSkl -b06vtWZWO7Nrfdm1YWhtPCefhuVzyPoSsrGKbqxjis3tc6S3tITSsH3xiNpr -ktxGyWmQ7DrJohVNGlGvFjUqUakUFVuCfFNYVgjzG4JsXZiQ8yNyflCe75Nz -3XKmY51q2yCaFdizTaROmXuiylZo0g90ydvG2FVzpMQWPGv3nLXbzjgMpxyq -k075cefCEdfUIffQfnfXbk/zz96ne7wVB71lR7zXjntLTvtOnPXtL/H9dNH3 -aanv9Yf+1xoCr3YF/mss+J+Lwd8rg/9mCf5LIPg7wPPvSdt/ZgyvIKrXiPXX -2aU3BNmb4vC7fOeHXOMnbOXn9O2viAvfYke+h3/5NffDwew3JzJflIB/v5Z6 -vyzxVkXsjbrIG63BP/f5/jzhfmPB/obC/Be9/k2H8kOv/LPg4jeA7MfE2C9g -/55cx37s+W/Us5NUXQlVc5WuvE0/uk/ff0zfraFvNjBXmpmrHeS1PuzaCHxt -KnttDry6kryyEb+sil7UR0oswfN2/yWn+4rbfsNjvu0z3A1o7wdVD8NbFZGN -yqi8OrZWk1ipTS7Xp5Ya04tt4GJXZrE/uzQMLY3nlqdzy3PwyiKyuoqurWPy -TUyuwte1xIaeUJjITa9ecuskp1aya0SLSjQpRf2WqNkUlQpBsS7I5cLymrCw -Ksys8pMr/MgyP7DM9yznO5fZFytM6yrVtEY0yLHadaRaAVVsZR6oUnc08Wv6 -6EVT+LQ1cNLmOmGzHLdpj9k3jzhWfnPMHHSO7XP17XK3/exp+Nlbtdt7/4D3 -5mHvpePeU6e8h856fznv/fKi753bvler/f/V6v/PwcB/zAT+fT34r4bg7zzB -fw57/yVu/z1o/COsfhXfeI1Zep2XvSGOvM13vp9v/Jh9/Cl9+wui5Gvs8Lfw -jp257w9kvzqe+awk/bdryffuJv5SEX29Lvx6W+D1fu/rk87Xl2x/3jT+2ah9 -y7n5oW/1s9Dc19HJH5NDv2S6d8Ot+4lnh6m601TNBaryGv3oDn3/AX2nkr7x -lC59Rl9upUq78NIBpHQMuiwDLy8mL63FL2wC57XhM8bgKZvvnN11wWktdRuv -enQ3fKrbgc2itbkXXnsQWSmPLlXEFioT89XJ2drUbFN6tg2c7crM9mdnh7Nz -49DcdG5+Dl5YRBZXkKV1dHkTW1ZuXzCyqifWjKTcq5XcasmpEu1K0bIpmhSi -fkPUrAvKNUGxKshXhJVlYWGJn1nkJxf40QV+cJ7vmc+3z+fb5tnmBbpxkaxf -wp+ubEvZCnn2/gZ4Zyt5XRW7pI2cNQSPWnxHLI4jVuNhq/o3m/ygfWG/Y3Kv -Y2iXs/Nn1/PvPTU7POW7Pbf3e0p/85w95jl80rvrjPfb894PL3tfeej74zP/ -H7r9v58I/OtK4Hea4D87gv8z6PvnmOPf0qb/yGn+iG28Si+/lp95XRz9C9/1 -Xr7xI/bxJ/Stz4mSr7DfvoF/+gX6dn/2y+PgJ+fTH15NvnM3/npF9LX68Gsv -/K8NeF6bcry2bPlvpeF1s+pt1/qHvqXPwrKvY6M/pPt+gdp3o437ybqjVM0Z -qvIS9eg6df8ufechfaOKLq2lLzTSF1/gF3uRi8PQxUnwwlzy/HLs3AZwWhU6 -oQ8ctXhP2pxn7JYSp+GSW1Pq3brm27gRWCv60DvhhbLI3P3ozIPYdHliqio5 -WZeafJ6afJGe7AIn+zNTw9mpcWh6OiebhWWL8MwKMitH5xTYvBJb0OCLuu1r -6Ja9KsmtFJ2bol0hWtZFk1zUrwmaFUG5LCiWBPmisLLAL8zzs3P81Cw/NsMP -yvK9snyHLN8ynW+SsQ0zdO0s+WQer1wsCtrc/dXsHXn6hiJRqoye14SL//+g -2XPQbDto0R+wbO23ruyzze62j/3q6P3Z2fa9q/4bd8UOd9lu97X97vO/eY4d -8+w76fnxjOeT897Xb3n/8MT3+zb/vw37/2U+8P9sBf6XJfB/B/z/A3D+Lmn+ -96z2D6jiv6jlV/Mzr4mjfxa63sk3fsA+/pi+9Slx/gvs0NfwDzugb/ZlPz8G -fnw+9f7V5Ft34689Bv7UEHq13ffqoPtVmf1Pq+Y/qXWvWbfedq99FJj/LDL5 -TXzoB7Drl1zLbqz+AFVzjKo6Rz26TN2/Qd0po288okur6ZI6+nwzUdKJlvTn -zo+C52TJswux02vAia3QUa3/kMlb3J8nbObTDt05p6rErbjkXSv1LV8NLFwL -zt4IT98CJm9Hx+/GRh/FR58kRuqTI89TIy/SI13gSH9mdDg7Og6NTUHjs7mJ -BXhyBZmUo1MKdFqJydT4jI6YNRCzvi3RrRCd66JdLlpWRdOKoF8SNIuCckFQ -zAnyWX5lhl+U8bPT/NQUPzaZH5rM903kOyfyreNc4zhXP8E+ndx2949nsPI5 -5P5C7s5S5sZqqnQ9XrIJnFKFDut8e42ufSbzXrNmr3ljj2Vxl3Vqp21oh73z -e2fT167qb90Pdrhv7nZf3O8++Zv74DHPzyc9X5zxvHPZ+x/l3n9v9P1rr/93 -0/5/lgf+pyHwP7yB/yvs/l8Jy79kdL9HNv+TXPkvbvZVcew1ofutfONf2cd/ -o299Qpz7HDv4Ze77n6Cv92U+Owb+7VzqvauJv9yNvfo48kpD8JUO7yvDrldm -bK/Ija9qNa/ZFe94lj8KznwGjH2T7Psx8+IX5Nlu4ukhquoEVXGeenCFunOL -unGfKq2gS2ros8/Is23Y2Z7c2aHMmYnUqbn4iWXg6EboN7V/n6G4M+2HLaZj -Nu1Jx9YZ1/o590qJd+Gif+ZSYKo0NH4lPHoVGLoRHbwXG6iI9/9/TL1lWJtp -tzb879t7P894x2fqblPDrUBxh+KuxYuWUpziFHd3KFDc3R3iRggJgbiROyFY -Z368191nv8f3Hsf8mOm0XHfWWqetK0mz95sKDppKGE2VzKZaVlMTq7mN3dzB -aenmtvbzWof4baOCjxOC9mlhx5yoY/Gwc+Xw04a4mzRzhp86w46foUbPt0bO -N4bOVgfPlvrP5vvOZntOJ7tPx7pOhz+d9nee9nTAd99t7SdNH09qPx5XtB0X -tx3ntR1nf4QXMmmd4vddosReQWw/N3qIFTl6EDKxFzC96z1Pdl4m2K2h7dbX -7TbmbTcnbLYGrBEdlsgGM1S5ETpPD5tqgo17iY2wxwY64zzccXbeOGNfvHoA -/m4s4cYHwrUq4pUO0qUR0h9L279htn/Zwf+xh7jCWr3On7stHr8r639w3vnX -Wb3cSbGKLF1DGqMtDtIVuujzTC25Bo7sF14sjSCG0pv9pwl79zMo9wu379Xg -731E3x/Yuj+9+mBt4TF6UpkwpLnTrbfXasyoteCWWgtz7aEsD0manyQ5RBL/ -RhIdJ4lIlrzOkPrnSvxLDv2r+f5NHL92xqteuvcw1WOS7DJPdFjBO6yjXDbX -3RFLXqhZH/SEL3bYH98fSOgOInUGb38M2WkJ3W2MpNbH0OqS9mrT6bUf6DUF -+zWlBzWVjJpaZm0jq7aVXdfBqevm1vfxGoZ4DaP8xglB07SwaU7UtCxqXT9s -R4i7tqdOieOnuNFT9PApYvBso+9stfdsqftsoet09tPpVMfpWPvp8MfTgTb4 -vSWdLSdtzSdNzcd1TcdVTcelTccFTccfmmXpzbKUVmnyR3FChyi2ix/dy4kc -YIYO7weO0V5NUdznSPbLeOtVpPXaqvX67MuNEavNHoutVjNkjTGqWA+dpYdJ -NMW+fYl9bY/1ccE6euDMvXHafrin4fjrqYSrJcTLzcSL/aQ/Zkm/Ikg/bxN+ -paEuMteu8uZvHk7cORq4d9b54Kzh6UmxkixDXRqjJQ7SEbro8UwsuPoObG0v -pnrQgcIb+uME2r0Myt1i0t063N0O1N2hzXuzK/c3Zp9ixlSI/VqUTj16kzGr -0oJXaH2Y7QRleEneB0gSwiTv3koi4yUhKRL/LKlvgdi3XOBbx3nVyvTuonsO -UN3GyE4zRNslnM0a0mFjzXlz0Q0x7YEa88IMemN7X+E7fYltfqRmf3JDwE5t -CKU6arcyjlrxnlaesVeeQy8r2C8rPSirZJTVMssbWeWt7IoOTkUXp7KPWznI -qxrhV40LKmeFtYvChjVRM3xTLe4kjx+TRk/wwyeYwRNk38lmz+nap9PljtOF -9tPZttOp1tPxltOR5pOBRvjtQJ8aTj7WHzfXHdfXHVfXHZfVHRfVyXLrZBn1 -svf1ssRGSXyLOKZN+LaDH9nFCe1lBg3u+41SPSd3nGaJL5ewlitblqtLlmtT -lhuD5pudpluNxogKfVSeNjpFHxNjhgmzxvg5YF1dsC89sPo+OCV/3LU4/JVc -wqVa4p9dxN8nSL+uk34mkn7cRf9xsH6Zu3BdNHlLOnj39NP9s4bHJyWKsgxV -acxzceALobMuz9ico+fA1vJkqgYdyL+h/5VAvZu5c6eEeKcee+cT8s7I+t2F -pbuI6We4EdXtHi1qm/5+nQm71EKQYw1lukCpPlBikCQmQvLmnSQ0URKQJvH5 -APkUC32quN5NLM/2ffdeqsvIjsMU0XoBZ7mCtFlbs99YcNqackGOuKH63TFd -HriPnoRmL2K993aNN7kicKcsnFIavVscTy1KoRVm7hXm0AsK9wtKDwoqGQW1 -zIJGZkErq7CDXdjFKezlFg7yCsf4xdOC8gVh1aqwblPUiDpswYrbd0Zl28My -wuAxru8Y3XOM+HS80XGy0nay2HI623Q61Xg6Xn8yUncyWHvSW3PSVX3cXnXc -UnXcUHlcU3lcUSkrrpTlVcmyqmSp1bKEGllsneRdgziqWRjZxgvtZAf3MPz7 -6d4ju64TZLtZgvkSxmxlw3x13nxt3Gy9z3SjzWirVh9R/AKVqYlOMMS8MccE -2WA8HbH2rlgTT6zGK9z9SPzldPzFcsIfbcTfhom/LJF+wpEu7GB/3d+8yF68 -Kpy6IRm6fdp176zxr5NSeVmGijRGQxyoLXTS4RmZcXTt2ZqeTJWgg2dv6A8S -qXeyyLdLCbcbMbe7EbfH1u4sLdxHTcjhB9XIn7RpzQaMKlNuoaUoyw5Kc4OS -faG415K3byRhsZLA9xLvDIl3/qFXOd+rju3ReuDWRXMe3LEfJ1rN4cyWUVar -azbr83abkw6IYSdkrzO60wXb6oprcCXUuJEq3LdLfMlFr3cKIil573ZzE6k5 -qbQPmXvZuXvZhfSs0v2syoOsWkZWIzOrlZXVzs7q4mT2c7NGeblT/MJ5QcmK -oGJDWI0U1WMPmwjiNsrwEXnwiNR3hO85wnw6QnXINttkay2y5cbj+frj6ZqT -8aqTkcqTwYqTvvLjrrLjjrLj1tLjxtLj2hJZZYmstFRWUCrLKZWll8mSy+Et -TXS1JKpWHNEoDG0BDood0HXg07fnMUxxGt+2nsEbLaFMlldNVmZMVoeN17uM -Npr0typ0EHmaqBRt9DsjdKgl5pUtxtkJY+GGfeGFfRaIu5yAv1hA+KOB8Gsf -8edZ0o9I0g9k3E97W3+wli8Lpq9Dw7dOuu+cNz88LZWTZSpLY9TFgVpCRx2e -oSlHx5713JOhFLT/9M3evcTdW9nbt8rxt5rRt3o3b02u3F6dfYgeUyD0qe+0 -v6DXG7DKTPk5luIMR+i9JxQfAEWHSSLeSoITJK9SJZ4fxJ7FAo8qjnsTw6WD -5thHsR0lWc7gwMsxW1mzXJu33piw3RwCVsoe1e6AaXLE1jriKxyJJc6kAu/t -3ADyh9CdrChKZiwlPWk3LZWamkVLyd17X0h/X7r/vvIguZaR3MhMamEldrAT -+zgpI9yMSV72HD9vmV+0LihDCCsxolrCYcP2YQt1QLrTJ93ulhI/SXHtUnSb -FNEs3Wg8Wq07WqyRzVbKJsuPR0tOhoqP+4qOuwuPOwuO2wqOmwpk9fmy6nxZ -eYGsqECWV3iUVXiUWnSUUHIUXXoUWS4JrxaH1gmDm3gBbSzfzgPPXprL0I7d -ONFiBmuwiDBcWjJamTRaHTBcb9ffqNPdKtFCZqmh4nXQkSboACuMuz3Gxhlj -4IFV8cbejML9mYX/vYrw6yfizxPEHzdIP5AIP1ARvzJXLvJnropHbhx33z5v -uX9a9lSWqSSNURMHaAodX8D9emHHUvdkKAbtP47au5NEuZmzfbMCd7MVdbN/ -4+b00q2N6b8ww4qkbo3dFp39akNOoZkw8yWU6gwl+kAxQVBkhOR1jMQvSeKR -LvHIF7qXc93qmM5tew7dFJshksUkznABZby8ZrY6b7k+brUxaL3VZYNss0E3 -2GKrbHGlNoQCB2KOOynLdzsjmJwaTn7/dic5jpKYvJuQRo3LosXm7cUU0WNK -999VHkTXMqIamW/aWe962XHDnKRJbuocL3OJlwN//lRQjBGW40XV24d1lMMm -Wh+02w3tfILgD1O3QdhmCNUg2aqTrFdLliukC2XSmeKjicKjkXxZf85xT87x -pw/HHz/IWrJlDdmymmxZRbas5MNRQc7Rh5yj9Nyj5PyjuIKjqKKjsBJpSIU4 -uEYY0MD1bWF5d+y791AdB8nW4wSTGYze4qbB0oLBypjBao/+eovuRqX2Vr46 -MkUDFa2Pfm2G9rZGOzhgTF0xzz2xfwXj/kzG/16C/7WV8NMw8cIy8XsC6dtd -1M8Hq39wZy8fjl6X9dw6b717Wv7kOEtRGqMqDngudNDmGZjA/VLzYCgE7T+K -ot1KptzMJd2owt74iLgxtHZjbuEmYuIxdkB5u+M5rUGXUW7EzTU/TLeFkt2g -OF8oKgQKjZIExEk8UyTu2YduxTzXapZzM92hc9dmYNt8HG8whzZYWjdemTdb -HTdfH7Dc/GSFaLFC1VlhKiyxRZb4HFtCpgsxzZv0PmA7KWQ7PpIc+27nXTzl -7fvdqHRqZDYtIm8vrIgeWrb/uvIgsJHxup0Z3sOKGmbHTHDiZ7nJS9w0+JOn -/FyMoBAvLCWJKiiiGuphw163mPpJTGkXk1vF8EeqG8SYWjGySrxZIV4rhZaK -ofkCyXSeZPyDdCjrqC9D9ilN1p4ma02TNabK6tKOqtKOytKOitKPcjOOsjKP -UrOPEj9IY3KlkfnS14XSoFJxQKXAr47r08z0aN936abaDW5bghc7i9ZZWNNb -mtVbHtZb7dRdb9DeLH2+laWCjNdCRRii/C3QrrZoKyeMrhtG3gt78R3u91z8 -L3WEn/qIF+aI36OJ3+5gftxf/40zf0k0dvWo78Z52+3TikfH2Qpf+qUhtAf9 -MuZo28L9kg+iP3xLu/F+50Y+8XoN5nrH1vWR1RuLc3eQY0/xvSo7bVp7tXqs -YmN+pgWU4gAleELvAqCIMCgoWuKTKHFNh1zzBS7lbKf6A/uPVOtesvkI3mAG -rbuwYbA0b7wybrrWb7bRab7VbI6sMUOXmmHzTXFZL/FpjoRkD2KCLyk2iBQd -tv0mihwRsxOWQAlJ2Q3OoAZm0/zz9l4V7XlV0r0bD3zbGYE9zJAhVsQE++0s -J3aJk7jGTYE/Jsz/gBfkbwuLKKIymqiKflhH7zzcaxfttorgryyoFxFqRbgq -EbpchCgRbRQdruYfLuYezmWLpzKhsTRoMEXSmyztTDxqS5A1JxzVJx5VJx5V -JB2VJB0VJB99SDnKSJW+T5fGZ0qjs6XhOdLAPGlAsdivXOBTw/VsZLp9pDt2 -71oPkkzHcTqzyBcLyzpLk7rL/TqrbS/WqzU389UQKSqotzqoYBOUlxXazh5t -7IJR88DcCcX+lob7pQL/UyfhwiTxu03iN9u47/c2f2Ev/CmcuCLtv3728dZp -1V/H2fLSGBW4X3ZaPH0jjpYtS9Xj4Fkw/X409UYK+Xoh4Vod+lrX5vXx5esr -0/fQw3LELjVKk/Z+hT4nz0SY9hJKcoFifaA3wVBIJOQbK3F7L3HJFjkXc51q -GPYtNOuuHfMhgsEkWnt+U28R8MO40Vq/8XqHyWajCaIKZBMjTI4hLt0Sl2yP -j3clxHgTo/zh26LQiO3gt+SA2B2/RIpPyq5nBtX9A9W5kOZYuefSuO/RfuDd -w/AbYgZNsEJn2ZFL7Oh1ThyCm4ThpeL5mduCHIqwgCYs2RdVMA5rDj4K6S1C -WpNwt16wUyMgVQoIZQJsiQBVKNjKE6znCFeyhAvpotlU0eT7w9Ek8WAC1BMn -6YiRtkQfNUYf1b47qoo5Kos5KoqT5sVLsxOkaUnSpPfS2FRpVIY0NEvqnwPH -Fp8ygVc1x72BAfjfvotiNUg0Gsc8n9vSXlh4sTT2YqVbe7VJc71MfTNbCRmv -gQrXR/mZoZxt0BaOaG03zJNX2N/icb8U4n9qJlwYJny3QvyGSPiGiviJufS7 -YPKyZODaafvNs+oHxx+eSWOVxf7qAlvQL0PQL6aK58HTYPq9aOr11O1rRfhr -DahrPevXphavb0w+xAwokNrVqfUvGCWGvCxTcYodFO8ORftBYaFQwFvIM0Hi -nC52zuc7VrDsG+jWHRTzfqIh/NiIFwuLessTBqv9husdhpsNhohKA2ShPjpb -D5tihkuwxcU446M8CeG+xNdBxIBQkm/ktvc7snv8jksSxTF11yZz16KIZl21 -Z9dEd2zfd+098Bxm+Ewy/edYwcussHX2GwTnHYabQOC9J/PTd+GvucjbFxYx -RWXswypGi2C/kU+v41Or+ZQKHrmMRyrm4Qt4mFweKpu3lclbT+Mvp/AXkgQz -CYKJOOFIjGgg+rAnStwRCbVESOrDj6ojpBWR0pI30oK30pxoaWYMvM1OTJTG -JEsjU6WvM6S+2VKfPLFXCeyvXBsYjm00GzCogwS9CfTzuXWthVntpSHtlXat -tVqNjQKVrVRF5FttZJARysMSZWOHNnDGKHlgrkVif8nC/VSLv9BL+G6e+A2W -+BUFeeFg5Tfe9EVo8OpJ542zmvvHOU+lcUpwv2w0eXqGHE0bprLnwZPXe3fe -7V5LJ10txV1tRlztX706O38DMfYI16NEbn2+V6XLyjcSpFlASY5QjBcUGQgF -R0A+MZBLssQpW+hYzLGvObBp3bXoIRmOYDVnEFrzMC3orQzor3XobzTob5Xr -IfN10Bk6mCQTbKw1LsoRF+6OD/Yh+PsTfV4TPcJJLlHbDjFkm4Qdi2SKUfau -UTHVtJpm2bxn3UG369t3Gjlwm2R4zTNfLTMDNlghSHYElvOWyI0l8xKp/BQ6 -P/NAkMMSFnBEJfzDClYDj1HL26/i7pVzqSVcShGHnM8h5nDwWRxMOgeZytlM -5qwlcpfjuAsxvJlo3kQUfyRSMBAu7A4TdYQctryG6oIlVcHSstfS4lBpfrj0 -Q6Q0I0qa8k6aECt5lwBvcoJTJa8yJV65hx7FArdKtjMQgjbqy26yyRBeewqp -MbeiuTCptdSrtdLyfK1cbfODIiJeFRmmi3plinKyRps5oJ+7Yh4EYH9Jxv1U -hr/QQfhukvANgvgVGfPd/tov3Nk/xcNXjj9dP6u7e5L35ChOURygBvrF1TNg -P7dlKnkePH69dyuGcjWTdLUcc6Vt6+rQytXFmdvI4SeETyqURs39Mj1OtrEo -xRqKd4XevoJCX0P+UZB7POSUduiYz7OvYNg00iw7yUaDeO1J5PO5Ve3FKZ3l -Ad3VDt31et3N8heIPC1UmjYmwRgTbYWNsMe9dsX5e+G9fQluQUSnUKJtJMky -etsklqz3fkc7h6JbumtQSzVuoZl92rPsp1uP7ttPHzgvMNxXGd6bTD80KwjH -DiVxIincdzRe/D4/mclPYwuyecI8gahIBCBWx2ZWsxnl7P1i9l4Bm5rLomSz -tjNYxDQW/j0Lk8hCxrM2Y1hr0azlKPZ8BHsmjDMRyh15zRsI4vcECjoChC3+ -h/V+UKWvpNRfWhQozQuWZIdK0sMlyW8k8dGS6FhJeMKXyAlc8YdDt0K+SwXb -sX7ftu3LxA5jNaYRGnOLzxdHNZc/PV+tU18vUt5MlUO+1UQGGaLcLVAvbdG6 -zmg5d8zv0dif8nAXmvDfDxO+WSN+RcJ9s7fxE3v+d9HoZVnXtbOG2yf5j4/i -Qb9UBTbPuboGbA1bpqLX/l8htJtxO1eziVeq0Fc6Nq6MLV1dnbyH7pcjfVSj -1mozCg34aabiJHsoxgOKCICCwiHvd5BTMuSYLbAvYdvW0i0/Ukz6CDpjaLXZ -dc2FGcAGL1Y6dNYaXmyUaSFyn6NSNdFxhpgoC0yoHTbAGefjgXd7hXcMINi8 -JpqHkwyjSC9itlXTyOp5O8/LKdr1u7ptVINumvHgntk43Wp232bpwGGN4YJg -eGCYPgSWP5n9epcTvseNOuDGsniJXH4KX5ApEOSKBEWHgnJO7QGr8oBZenBQ -eEDPPdjLYlDTGJT3jO2kA2L8AT7mABN9AH/YMIKxFsZYDmEsBDNnAlmT/uxR -P86AL7fnFa/Th9/qLaz3Oqzygkq8JIWvJLl+kqxASdprSXKYJO6N5G20JCxO -EpAk8UqVuGUfuhbynYAi1NOtP1JMe4m6o2iV2Q31+ZnniwPPl9vUVytVNj4o -bCUoI8N0kD4mKIeXKGMHtKor5vZr7M9puAvV+O97Cd8sEL7CE/5F3brAWvxN -OH7xqOfqedPNk8JHR4kK4sD/p18KXvsPQ2nX48lXcvFXalGXu9auTM1f3Rx7 -iO1RIDdr7FXosHMMhSmW4ngn6K0PFBoM+b2B3OIhh7RD+3yubeWBVfOuaRdJ -bxijOrOpMT+ntTisvfxJe61Ba6NMcytHHfleAx1jgI4wxwTbYH2dsO7uOEdv -vI0/3iwIvnjViiQpxm8rZJKVCndUqihqjZTnHbvavVTdEZrB5J7xPN18Zd9q -88AWdeCIY7iSmJ4Uli+NHbjPCWFyIjncaB43gc9NEfIyRbzcQ16RmFfOrdlj -V+yxSmiMAtrBBxo9g0ZL2aMm7lFi98hv6cQ3dHw4HRNKR72mbwXR1wPoK377 -C68OZn0OJr0Yo57MQQ9Wrzun053b5sZvcBNWux2WukEF7pIcb0mWryQ1QJL0 -WhIbLomKkoTGSPwT4DjjmnXoXMBzrGDaNuxZtu8Y9+G1xlEqsyvq8xMaS90a -Kw1qa8VKm2lPEVEayEADpJs5ytIWre2EfuyF+TkO+2Mx7vt2/LeThK9QxH/t -oL5jLP/Cn/xT2nflvOXGSfFfR0nyUJCKwEYD7pe6LUPem34/nHo1cftKPu5y -A+Jy38rludkbiKHH+E4lSr3mQbEeN91YnGQjjnGDIvygwDDI6x3kkATZZ/Ph -zx7V7Zm3kw0GcBqTCDVAAgtjmstdWquNwBppbOaoIpPVUdF66DAzdIA1xssR -6+KGtfXCmfviDQIJWiEExTfEx8mkJx+2n5WQ5Wt3FFsoKl27agPU52NU7Rma -7tKewTrdBLFvgT2wJh7Y7zCcqUz3fZY3k+3PZr/msiN57HcCdqKQnSpiZ4nZ -eRCnSMIp51VROGUUdhGFlbfDyN45SN+hv9+hxe/svtuhvKGQw3ZJQbv4ACr8 -KdFX1C1v6ronbcWDtui2N+dKn3LZH3M+GHJi9DkxuxzZHx25TY78GkdhmdNh -gZMEvkLykqT6ShIDJbEhkjcRkpBoiV+8xB2Y5MxDpwIgDUzrRpp5x7b+AE5t -ckt1bkF9YVh9qV1ttUplPUd+K0EJEfoC6W2MsnuJMnRAK7mir4Zjf8zG/dCA -/3aY8PU64V/bmK/pqz/xpn+HBi6ftV0/LX0gey8HBasIQb90DNhqdgw5H/q9 -iN0r70mXi7GXmzcvDy1dXpq8g+p/RmpTpVZpM/P0BSnm4ngHKMoLCgmCfCMh -1zjIPk1kV8Cxrtq3aKEY9RC0RsE4rarPTz5f6tVcaQYiq76Zo4JIVkW91UWF -mKL9XmLcHTAOrlhLT5zRK5x2AF4pmPAghvggjfQwf/tRBflxA/lp+45cL0Vx -ZFd5iqq2QH2+StPe2tPD0A0J+6bkfUvqgQ2d4cBguLIY3hxGAJcRwme8ETBi -RIzEQ0aqmJkFMfMkzCIpq5xfuc0tJXEKSexcIjOLyEgl7CcR6HEE2lvCbgSR -EkIkB5JIviSC1zbObQftsoNw3tlwpKw6UJbsd+ftqNN2tAnbvRHb/QGbg24b -ZrsNu9mWW2fLr7ATFtqJcxyhTDco1QtK9IM3PG/CoNdREjjXAOuVKXIs5NoB -wmmimnwi6QxjFGc2VOem1Rd71ZcbVdeKFTfSniCi1BEB+kgXc5SFLUrTCf3w -FeanJOwP5fjvuvFfLxD+TcD/i7ZxgTP3m3jo0kn7tdPye7KUZ9BrZaHtl36p -2jOe+tLvvNm9kkq8XIa+9HH90tjC5fWx+9hueXKjOr1Uh5NpeJj0UhzjCkX4 -QoGhkGc0ZJ8E2WXzbUqZVvU0kw6SziBGaXpTdW5GA6brVo21SrWNXOWtZGVk -lA7qtQn6lRXaxR5j44I19cDq+OBU/fGPwgi3E4h3soh3i0n3arYftJL/6tp5 -PEh5OkGRm9tVXKYqb9LU0DRN/N4LMl2fSjem75sf0K2ZdEc23Z1D9+HRAwX0 -UCH9jYgeI6YnQvupkv0s6UHe0UGRjFEuqMDzSnDcAhwnB8vOwDBTMIxE9H4M -mh6FpoWjqcFoij+G7IMheWAJLjicAx5jS0S9JG1Zba9bbq9YkhctdmYtKJMW -u2MWtEGLvV6L/U5LRqslq8GKW/WSX2wtyrGFMh2hVPcvS7kAKDIECn4DvYqF -XJIkjllC+yKOTTU8xoY9hOdjSKXZZdX5UbWlDtWVauX1HLnNBEVEqDbSyxhp -a4XSt0cruKIvvsFeyMN914r/ZoLwbxThfyiI75gLv4hG/zz+dPWs6q4s7SkU -Avqlzn1hwFK1P3jit3frLeVyJuFSFfJS1+ql6dlriKFH+Hal3RpNRoEeP8VU -HG8vjvKEQgKhV5GQSxxklyayLeC8rKKbte7o9+LUxhHKszDwNZba1Ver1dbz -lLbeKyKjtFHBRihvS7STHcbKGWPogX3ug5Pzw92Iwt9IIdzII96sIN1q3L7T -Qb7bT74/tvNwhvJoifJkY1cORVXEU1XINHXqntYeTW+fZsygWrKotpxdZ+6u -B3/3lWA3ULQbekiNElNjIWqihJYqpWUd7eXJ6EXH9HJBOYZfjOblo7gfkJx0 -BPv9FjNhi/Fu8+DNJj10kxa0SfXbpHhvkt22tp23iPYIvDUKa4FGm2IRRvhN -Q8KaIXHJkDRvuD1tuDNhRBkxovYb73Wb7H80ZTSZsWvMuaWWglwrcabtlz2q -J/TOD4p4DQVFQt4xkFMS5JAtsCtmvazdM/tI1u3HKk9uKs/Oqi70qy03qayW -KGykPUZEqSH8v0DM3Ab13Al9zx/zYwr2+2r8twOEr9YI/7ON/vpg+SfBxB9H -3VfOam8dZz6RhCn9b79UHA4eB9BuvCNf/oC7VLd1qX/p0uLkbXTvM1Kz6l65 -NjvLQJRkJY5xgcJfQQEhkMdbyC4RBpd1KcOigWrUSdQaRivOrKrOT6gvdqmv -1KmuFyptpsgho754Vy9LtIMd2twZo+sO76UfBOOuxOKvZBKuFhOv1ZKutW3f -6N2+OUK+Nb1zZ2nn3gblAYryCL/7hEyVo1KV9nY19ikvGDsGLLIZh/ySS7bn -k10E254isu8hOUhMDoPIUZKdWOlO0hElVbabdbybd0ItOqGVC8sRgqItft4m -L3udm7bGSV5jx60yo1cYkcsHIcv0wOW9V8tUz+Vd1+Udx+Vt2xXSy1WC+RrO -ZANjsIXURW5pozc0cata+EUtwpw2aerF9pjOzpDebq8+rdNgv8WIUWfCLjfj -5ZuL4NW3A5ToDr17BUUEQ4ERkFcM5JAM2X/g25QxLEF9PhE1h1GgPipzY6qL -nQBiSmu5zzYTFBAhWkgvo/+FmLwr+ve32B8Kcd+247+eJfwLj/+fvfUL3Onf -JH2XzhtvHH94JAlXFNqpc7UNWcqO+38F0a7GbV8qwFxs3rg0On9pfeQBtlNh -p07joECXl2IsjrcTR3lArwG4IiDnWBhcNgVsq2q6aStZtw/MzxaYHzV4fppV -10qUNtKfIaI1kMEGKE8LlJ0t2tQJo+WOkfPGXg/HXUzGX8olXKokXmomXe4i -XRnavjpFvrZIvrG+cxO1c4dAubdDebC783SPrLi/rcYgabGIumyCEZdgzidY -CwgOIoLrIcFTTPCFCEESYpiUGHVEipWRko63U0/IWac7eaeUorPdMlHZurBo -TZC7ws9a5qUtcZMWOXEL7LfzrIg5xuvZg4DZfZ+ZPY8ZmsvMrsMMxWaWbDlH -MpsnGi3g9RexOstorVWkxsam2ta6MnpFGbuoiptVJ0xqkEY1yQPalG4d2ke9 -/UYDZpURp8hUkGUuTrWFElygdz5QeBAUEAG5x0L2KYd2eVzryn2zlh29XpzK -xJbS7ByAmOpSs/J/ILYVpYrw10O6mCEBxDSc0Hf9MRfSsN/V4b8ZJvwbQfhv -CuJb1vwv4sGLZ63XTvL+kkQqCO3V4H4pOe8/eE29nEi8VIq62AHIcPo6sv8J -sUWFVq7FytIXJVmK3zmL/wMu9y/gss3mAXCZN+wafiI+HwHDs6wyP6K21K66 -Wqm0nv1sK1YV+VoP6WmGsrNBGzthNNwxj3ywf7zF/ZGO/6OY8Ec98Y8O4p8D -pD8nty8ubF9aJ19Bk68Sd67vkG/vkh7sEZ/sE+QZOBUWToODfcHF6PMxJgK0 -hQhtc4h2FKNdJRgvKcbvCBMsw4Yd46KOcbEn+KRTQuoZMeuMlHu+XXROLjss -XREVLglzFwSZ8/zUWV7iDDd2Gv6iufAJ+Ouw/McPfMb23cfozqN79qNU69Fd -i7Ed03Gy4ThJb5LwYgqnOYNVn0OpLCKUljcV1tfktlaeohfksTNK+AkV4rD6 -dt9zSqc2rUXnoEafVWLEyzY9TH0JJThD0d5QaBDk90Uy7NOFNkUsy1qacTtJ -awgtP72qPDcOIKay/L8Qk0OEaiK8DZG2lih9O5SCC/qPt9jvAcQ68V8tEv6H -hPk3oETh6B8n7VdOih5I3yoIHeB+MRVd6ffCKJdS8Rerti72LV1aHruL+SRP -rtPYL9CBwRVnJ37jCQUHQj4RkFMsZJsmBOCyrN4zaSXr9GEVYXKeVl3oUV2u -V17Ll99MBH5VB+ltirKzRhs5olXdMPf8sb/F4X7Lwf9aSfi1lfhrL/HXcdJv -86Tf1rd/R2//SSJf3CFdoxJu7+Hu72MfM9ByLJQSB6nGQ2gKEDrCLUPRlql4 -yxLaspVsOUq33I62vGUIv2Nk8Aky/BQVdYqOPcMknWNTz3FZn/G5nwlFfxPL -xKULhwVzopwZYeaUIGVSkDjOjxnlRY1ww4bZwUMsvwGm9wDDvf/AqW/frm/v -ZR/Noo9q0kcx6N/RHdjWHiQ9HyaojeCUxzCKkyj5GcSz+c0ny2uP1pcfIhYe -o6ef4cYUCYMq293qu21ae/U6jDIDbo6xKNVSnADyqTf0OhjyeQM5JMCq8bLs -wKyJoteDUxnfUpydU5nvV/kCMfn19Mdbb1UQATpIVxOkxUuUliP6wSvMhRTs -d7X4r0cJ/8IQ/ou28T1v6jdZ1+XTsnvSGHmhoxpHy4gp7753O3LnUjb2YuP6 -xbHZK1sDjwgAXGVa7AwDUeJLcbSLONQX8guF3KIh2ySxzQfeyy/gMvhE0BhG -KsDgGlZdalNZLQUwf4qI1ES+MkaC/G7kgFZxw9wKxv6aDG+hf64n/PyJ+NMI -8ac50s/rpJ8x27+QSL/tEC5Rsdfp6NsHyPtMxCP25lPuhgJ/XUWwpiFa0z5c -1YNWjSSrZtJVq6NVO9mq0/Ga+8ma9+m6/+lG8NlG+Pnm2/Ot2M/IpM+o1L/R -WX9jcv/BFv2DLxOXzYqLpg5zJ0SZY8KUEWHCkCBmgP+mnxfWyw3q4fh1sb0+ -sdw6mU4dDLuOg5ftdPP2PeN2mkEHVaeDotW5o/FpW7WLpNxDUOjDyQ1in46g -H48j/prefDC/dn9l+d7m/APU1GPsqDyhX5ncqU5t0tqv0GXnGgpTLOCVwhsf -KAgIfTRkl3IIz3YNzaidpDmEkp9eUZ4bU4EhVqO4lvdsI/HpVpgG4pU+0sEc -aWyDUnFGXwvD/JCH+7YD/9US4b/JqK9Z8z9L+i+e1dw6SngmclLlaBoznnnS -bkSTLhYAMly+OD92B9Mpv1OjcZCry082E8c4iiO8ocBgyBMMTBxkmy6wLmD9 -L7h6sUoTm0qzMyoLPSrLdUprOU+3YtQQILw7W6JM7NEqrpgbofCy5ady/I+t -hAsDxAszxB/WSBcwpAsk4s8U3B809GU64jpj8zZr/R5n7S/eyhPBsrxoSelw -UQ1a0JQsvJAu6B/NG8vmzY8XXp4s2J0uOJ8tup8t+Zwv+39efv15Jfzvtbd/ -r8f+s5H0z2baP1vZ/yDy/0EW/4OugCqmxCXj4vzRw+xhUfqAMLlPGNcjeNvF -D+/kBbdz/do4Xq0ct2a2YxPLtpFp1Qh/eYVxA12/YU+ngabVSNVo3FVt2lFq -ISu0kZ61E5904h91Yx/2oe8PIe+Nbd6ZXru9uHxrfe4ucvIRdkiO2K2806Kx -V/WClWcgeG8hjnWGwn0h33DIEVQsi/+y/MC0eQeUS3FiUxGUa74PhthKqcJ6 -5pPNGAXEa02EpyHSxgJmRTkX9C+x2O8qcF8P4/+FJfwXffWCaOSP8+ZrsvdP -RS6gXyaMJz7Uy/GEi5WbFwdnL2/1PSY2qu4VveCmGH1hQg8oOADyCYecYyDb -94c2OVwrAHAArk7ic3hgACePqix+VF4pk99IlUOEvUB6mKEs7NDqLuibYdif -snAXavA/dBG+nyB+t0L8Dk36joS/QMH8SkP+ub95hbl2g7MCv2lcsPBQNPf4 -cFYOmlGUTKtIpzVkU1rHU7onUwanUyanUxZnU9bn0/afp50/z3j8Pevz91zA -33Mhf89H/r3w7u+lhL+X3/+9kvH3as7f6wV/b5T+vVUpqRqDSkfEhYPinP7D -zF5RSpcwoVMY0y5408oPbeYFNvJ867medRyXGrZ9Ncu6kmVewTSuYOiXH+iU -72uV0zUq9lQrqEqVu/LVlGc1O0/qth81Eh+2EO5/xN39hLnTi7w1tHlzYu3G -/NKNtdk7yLFHuD757TY1WrU2M9dAkGwpjnaDFQR4adsUkXURy7yeqv8JUCxC -YWZReW5EZbFDeblWabVAbiPl0VaUEiJQG+FuhHxphdKxRz32RP+Qgv22Cf/V -PIAY8mvu9K9Awo4zH4ncVDnPTQ/+8qdcSgPOcOXi3Og97Eel3TItVrrBYby1 -OMpN/NoPehUGuQImTBTbgFEpYlpU7xkDcAFCHttSmJlXnh9QWWpUWst/uhkL -MoUR0s4a9cIZfTcU++MHeMfy3QDh23niN0ji1yT8dxTUz3ubvzPWLrGXr3IX -bvDnbotm7h1OPYQmHkvHnx2NKchGlY9H1E5Gnp+OaJ8N652PGH4eMf08Yvl5 -xPbziNPnUbfPo96fx/w/jwd/ngj/PPn283Ts55mkz7Opn+ezPi/mfl4q+rxS -9nmtSlI9LCkfhIr7xHnd4uxPh2ntouQ2YVyzMLpREFHHf13DD6ji+VRwPco4 -LqUc+2I2qKlFIdO4gKmfz3iRd/A8b181j66Uv6dQQHtWSH1StPuohPKwnHy/ -cvtuLfF2A/5WK+ZmJ+pG3+b10bVrc4vX1qfuogefEtpVdqu1mNkGogRbmJde -hUN2CZBNLgcUzRBQ4iBabnpNaXZSeb5XZalFeaVCERiPjeS/tiKVEQHaCDcj -pJUVStsB9dAP80M27tsu/L+RhP/aX/5R0nfxJP/BoacKR8N8/17I9sX8rT/7 -Zq4iuuTIVc8ZmfqihJfiKFdxiB/kGwq5giEBh2YAJmRbVtDNGikGHUStAbT8 -1Ibi7PQXMqxVWM96tBWpjfAwR5k4oJ8GYH7Mxn3fgv92jPD1OvErIv5rCupH -+savzOU/OQuX+TPXhJM3xeN3JKP3pMMPZYOPjgeenvbLn/Upnfepfu5V/9yj -dd6je95tdN5tdt5tdd5te97jeN7jet7rdd7ne94feD4Qej4UeT787nw0/nzs -/flE+vlU9vlM/vlc8eeF8s+L1dLaAUlFL1TSBRV0inM+ijNaDlMaRYn1opga -YVSVIKxcEFzK9y/meRfw3PO5zrkc+w8c62y2RRbLJJNlmMHUTWdopTM00g9U -0vcV0unPMvYeZdIeZlHv5+zezdu5U0i+VUq6WUW4Xo+91oq62r15dWTlyvzc -NcTwX7h2pd0KbRbwaUD3gY44xkJA8S0r6cZt29r9GIXJTYWZOeW5YeWFTuWl -BqWVMoW1HNCyR1tvFBGBWgh3Q+RLS5QOaFkA5vsC3DcjeJCdvxKM/35WeVv8 -SpmtZrUHv7WqdvniQv8jQq36fraeEG4WQJY/jCyX/yALNCufbVW+b15HBefq -duPUh5Fy06tKsxMqC5+Ul6uA25FDhOgjHa1Rmq7oX9Nx37fiv5km/BsDb5u/ -p6//zFr8gzd7SThxVTx6QzJ066j/znHv/dPuh2ddj847n553yJ9/VD5vUztr -1TxreXHWon/WbHzWbHbWYnXWYnvW4nDa6nLa5nH60ees3f+s8/XZp/Cz7qiz -3piz/sSzwZSz4Yyz0Zyz8YLzyZLz6Yrz2RppXa+0qktS1gEVtUF5zeKsBnFa -7WFylSiuXBRdKowsEobmC4Jy+X4f+N6ZPPd0nnMa1z6FY5PMsUximyWyjRJY -+vFMnXimVjxDPY6hEn+gGL8vl0B/nEh/mLR39z3tdtruzaydG7nb14uJVytx -VxpRVz5tXB5bvLw6+gDbpkwF1jreFq6h8zvIJvtLv1q3X/Rhlca35KeXQN2U -5/uVF9u/tKwceA+59dTHm++ebYVoILz1kfbmSAM71BN/zPeluK8XCP99sPzj -adsVKEiJpWK7eykZgGv0LqZBlZ6lJ4yzEUd6QoFBkGck5BgD2QDNyuK9BB4D -NAu+QSTrdxK0+jHKY1/OBW4HzMlypfx6mgIi2AhpbY96CnJ6I/6becK/iLh/ -7238yFr4jT918XD0imTguqzn5smn22cdd8/bHpw3Pz5rfHZWr3BWq3xao3Za -9fy0Svu0Uvek0uCk0vik0vyk0uqkyuakyuGk2vmkxv2kzvuk3u+kMeikKfSk -JfK0Lfq0Pe60M+m0O/W0N+u0P/dsqPBspPRsrPJssvaovkta3SEtb5UUN0H5 -9dCHGnFGpTil7DCx+DC2QPQ2VxSRLQzJEASmCXzf872S+O4JPOc4nkMM1zaa -a/WWYx7FMXnDNoxk60ewdCJYWhFMjQimWgRDOfJAIfLgWdT+47f0h+/27sbR -biTuXkvdufqBdKUEd7keealn+dL8yANsvfo+cGvAVzvFQNY5XMCHRh9J2n1w -3eSmVxRnZpTmRpXn+5QXOpSXmpRBIlspVlj78AVoUQqIIAA0Y6QFcIxe6B8q -cV9jCf+feOhPyRt5poIz8WLp7KXNJpW9dP3Ddw7iEF8YVs7RkA0MK751Htuq -hGFRtWdWvwuaBZjwRS9WYwilMLEpP72oNDuuvNClvFwjv54pj3htjLQEjrQY -9+0s4V9k1DeMxV8EE39Cg5dl3fBbR85bbp/VPzirfnRa8fS0VP6kWOmkUOW4 -QP04//lxnvZxrs5xrr4s11CWayLLNZflWcnybGT59rJCJ1mRm6zYU1b66rg8 -4Lgy+Lg67Lj2zXH9u+Om+JOW9ydt6Scd2Sddeac9Raf9ZadDVacjdUeNHUe1 -rdLKJmlpvaSwWpJbAWWVwF/bnpx3GP/h8F2G6E2qKDxZ+DpRGBAn8H0n8HrL -d3/Dd4ngO4bx7EJ41sFcyyCueSDHJIBj6M/R92Pr+rG1/ViafiwNP6aaP1M5 -gKEYyJALPngSsv9XOP1eFO1G7O6VlO3LBdhLTasXp3ufkoAHAPgC7PSymGna -SAF+Q3MADfr1bHpNfmZBcXbqS8sGlBe6vwANdK1GCZjG1dz/YE1+K0gb4QqA -5oS+XIP7irb+vSz18cFj340/R5qVackm4ghPsW8I5ATwm3xo/R9MlR2AwYA7 -1Uw2/EjS+4QHzXo+iFYdRchNbgB8gUO/4LpFcbXwr603wOF4o3/ox/+bgviW -N/W7pO/y6cdrZ/W3TysenBQ9Psl7dpwtL8tQlKWpyFLUjt5rHCVrHiVpSxN1 -pIl60kQDaaKRNMlUmmQuTbaSvreRpthL05yk6a5HmR5H2d5HOX5HeYFHBSFH -xRGy0reyilhZVaKsNuW4IeO4+cNxW/5JR/FJV/lJb/Vpf72sqfWovumouk5a -Xi0tLpfkl8B/LUJGDpSSJU5KF8e9P4xOPIyME4W9+/L1jxFC31Ch92uBR6DA -1Z/v5Mu39+HbevFeevIs3XnmblxTV66xC9fQmaPvzNF14rxwYms7sTWd2Rou -LDVXloo7U9GTIedz8CSAfj+MdjWOdLFk6eJijq7AKwICAw8KCEgJgEttGKk4 -vvlsal1uehm0TGFmRnF2Uml2TGluWAk0br4HFrXFVuWleqXlSkXgHtdTH25F -aiLcrVGqdbivzlqv7l5KbFGivnMU+4RBNvEQaJMVcIDAVNRSTRp3jFq3DdqJ -ep8IOt04cBwYD40hJGiW0v89FEgnDDGA66UmAOfnCK8QzPdAH8WDF88bb5wU -PTzOfHqULH8UpyiNVpZEqUoi1KBwDSjsORSqBYVoQyE6UIgeFKIvDjEUhxpD -YaZQuAUUYQVF2kBRdtBbR+idCxTrLon3kiS9gj8JkxYszQiTZkdKc6OPCuKO -ipOOylJllZmy2hxZQ8Fxc8lxW8VxR81Jd4OspUnWUHdUU31UWS4tLZYW5sN/ -k0VWJpSeCr1PEifEi2Pfid9GHUaGH4aGiIKDRAH+It9XQm8voaeH0M1V4OIs -cHQU2NsLbG351tZ8q5d8S0u+uQXP1JxnYsYzNuUZmvIMTLj6Jlw9E66uCfeF -CUfblKNlxnluyVazYSq40q6/SzYVW1TS9b7ASm0ECZAFk9LkBigdgBhQf0CM -cOOml+SnF+Rn5kExFWZmFWamQRMVZ8cV50aU5gaUAH0BOKyUPtoKr8d91apE -tY2DLEsPTBoo/4ugHqzWf1oziFIfQoKRUB1BqIxugeNAm0DiU5jYkPv/D10B -x4GD4DmZ7wdT4YS+clZ7UxotLw5UPvRWFbmriVzURU4aQsfnQkdNoYOW0EFb -6PBC6KgrdNQTOukLnQ2FLkZCVxOhm5nIw0LkaSXytha9shP5ORwGOB8Gux2G -eIrDfcRv/MRvA6GYECghHEqOkqS+k2TESz4kS/PSpEVZR2W5R5WFR7WlsoZK -WUvN8ccG8A/4F/Cf4Bfh/1WWC34b+M3gj8B/MPUd+CHwj4oJAT8W/uHhPuAg -+LgAZ3A0/ADgMcDDeFiAB4MfDzwkeFTwwOCxwcODlwC/EC34RTk+By8Qfpnu -auAlgxcOXj4oAigFKAgoCygOKBEoFCgXKBo86pMboIygmKCkoLCgvKDIoNSg -4KDsoPigBaARoB2gKaA1oEGgTaBZoGWgcaB9oImglaChoK1wc+Ejpr+0ew60 -Hh4A+LjlLyOx+p9D5eFD4ePA8IAjwCCBcQJDBUYLDBgYMzBs8Mhpm4Lxg4dQ -Dx5IMJbwcIIRBYNqag6GFh5dMMDW1mCY4ZEGg+3iDIYcHnVvLzD28PAHBwEg -ADgAUMDQSIgHMAFgAZABwAHwASACUAKAArAC4AIQA0CD4dZcAqAHA7AyE4AR -hmRBHIAnDNKMMPijoQC2ALzxXgDIMJwBqAG0AcABzAHYw0wB8AH8AQl8oQId -mBYAOQCKCNcAdAFIA1AHIBBAI4BMAKUAYgH0AkgGUA0gHEA7sDbN9wEiAsUE -NQSlA20CNAXICtQNEBegL1A9QGWA0ACtAXIDFAeIDtAdID1AfYAAAQ0CMgSU -CIgR0CMgSUCVgDABbYKpABQKEymg0/keQK0wwc6OfWniDCDe/xwKqBiMBDgO -kDOgaEDUgK4BaQPqBgQOaByQOaB0QOyA3gHJA6oHhA/TvjYsAbAQ6DsDUYCl -wdQVyAQsFi89gXDA8uHkC6QECAqQFVhcAiKA0AC5AaIDpAcIEJAhIEZAkoAw -AXkCIgWkCggWkC0gXkDCgJDBctZRDKQNFriGDCB2sOQB4St9C0QQlkIgiEAW -gThmegChhOUSiCaQTiCgQEaBmAJJhYUVyKsOkFpYcN9rAPGFJThDEcgxEGUg -zUCgYZn+eA1INhBuIN9AxIGUA0EHsg7EHcBBGQbaFDz2kxugWcAGADPwHwQB -ewAKCKwCMAzANsBtSj4ERgLYCWAqgLUABgPYDGA2gOUAxgPYD2BCgBUBhgTY -EmBOQOOAUQF2BZgWeDyAgQE2Bm7cKHzozAKAGEAWGA9ge4D5ARYIGCFgh4Ap -AtYIGCRgk4BZApYJGCdgn4CJAlYKGCpgq4C5AhYLGC1gt4DpAtYLGDDYhpkE -AEsGjBmwZ8CkAasGGzb3N8C8AQsHjBywc8DUAWsHDB6wecDsAcsHjB+wf8AE -AisIDCGwhcAcAosIG0VgF3uKgHWEDSSwkS3vgaWEjSWwl8BkAqtZHgBsJ2w+ -gQUFRhTYUWBKgTUFBhW2qYbAssLGFdhXYGIL1IGhBbYWmFtgcYHRBXYXmF5g -fYEBBjYYmGFgiYExBvYYmGRglYFhBrYZmGe4jIC+ZseBqQakBAw2aBYw28By -w52q2gMmHAw8MOTAlgNzDiw6MOrArgPTDqw7MPDAxgMzDyw9MPbA3gOTD6w+ -MPzA9gPzDyIACAIgDgA4g2gAAgLcNRAWAK5By2ZmADGCfgFwgVgBBgNEDBA0 -QNwAoQNEDxBAQAwBYQREEhBMQDwBIQVEFRBYQGwB4QVEGBBkQJwBoQZEGxBw -QMwBYQdEHhB8QPwBIQhEIRCIQCwC4QhEJBCUQFwCoQlEJxCgQIwCYQpEKhCs -QLwCIQtELRC4QOwC4QtEMDiIgTg2VAiiGRzQQEwDYQ1EtrZoEN/gEAeiHAh0 -INaBcAciHgh6IO6B0AdHPxAADUAYhCMhCIY1aiAkwlGx8RmIjSA8gggJgiSI -kyBUgmgJAiaImSBsgsgJgieInyCEgigKAimIpSCcgogKgiqIqwBfoG4gwAJS -As0CkRYEW4ApEHJB1AWBF8ReEH5BBAZBGMRhEIpBNAYBGcRkEJZBZAbBGcRn -EKJBlAaBGsRqADQQsUHQBnH7P1gDARzEcBDGYaABXzE7AYfl8S0Q2EFsB+Ed -RHgQ5AG+QKgH0R4EfBDzQdgHkR8EfxD/iVcrt68X79zI3b2ZRbudtnf3Pf1h -Ev1x4r5cwoFiPEMFXiMwteCVAks/nm2UwDZL5FgmcWySufYpPOc0nns63zuT -7/dBEJQrDM0XRhaJoktFceWHyVXitFpxVgOU1wwVtUnKOqRVXdK63vPZGnjR -MVlyNl4Arz6GM+A1SH8ivBLpjoLXI52vz9r9Tz/6wGuTVpezFocvixQreKnS -bAwvWFpenLVqnrepwYuXDvnzzqdnXY9Oux8e994/6r8jGbolHr0hnLjKm73E -WvyDvv7zDup7DPFf04R/t+K/Scd974r+1RqlqY90lEOEyK+nKy9XqSx8AnUD -6q8+jNTtxhm3bZvXUa3K963zAawEgJ1cvsAK1DDKTZzwUpytJ6xV3+9/RFi+ -uID7s3bvZhRbzUr8Svms8rZg/HegjyP4/ynAfROA+d4B9dASpWOIfAmApogI -fLT15gvQcpRWyuCWAVGbG4bN5+Smdj8GnAv36wPPMRa+dol2EacYiyu0We1K -u8N/4eauIVauzG9eHUFd7cZeayVcryfdrCLfKt25U7h7N496P4f2MGvvUSb9 -Wca+ArysY2jAizumbjrLMINlksm2yOJYZ3PsP3Cdc3nu+TzvAr5/sSC4VBBW -LoyqEsXUiBLrD1MaxRkt4pyPUEEnVNIlqeiV1g58Xqz+vFB+PlcMLxWnsuEF -49h7eNk4/A5ePA6EwkvIPl94IdnjCi8nu22/LCrN4KVlj+7nHq3Pvernfapn -fUqn/fLHA09lg4+kww8lo/fE43eEkzf5M9c4C5eZy3/SN36loH4k4uE16Rjh -6xb8t9m47wMwPzqgn5qjTLQRHo+2IhXWs1SWa1UWehRnp+WnNrQG0IAJzRop -lhV064IvzUqAl7S+oVCIHxTlCjcrU19U9ZzRJUeeuYoA4Nq+mL9/L4SjYX7o -qXKS/0DSd3F/+Uck4b+68P/Oxn3rh/kBtMwKpW2EtNJGuCkjAv7aigQtU1zL -VV6pgBfL871Ks5Ny02uag2jDdpgPbXI5dgnwOjrCG0qwFWcbiKq1mO0qu4NP -CVN30YvX1teuzW1eH0Xd6MPc7MTfaiXebti+W0u+X0l5WL77qIT6pIj2rHBP -oYCulL+vCq/HGS/ymPr5TOMClkUh27qIY1/McSnlepTxfCr4AVX81zWCiDph -dKMwrlmU3HaY1i7O/iTO64aK+yTlg5Lq4c9rVfCifqkIXtrPZ8EL/JkkeJk/ -+RZe7I8Hw0v+UW944T/i9GX5b/l5xPR8xPBsWO90RPtk5PnxiJpsVPloTEE6 -/gyaeHw49VA0c48/d5u7cIO9fJWxdmlv83cK6mcS/jsk8et54jcDhG8b8N99 -wP0Qiv3RGX3XGvXCCGmnhvB/uhmrtJavstQI1F9hZl5lbEunB2fcSgZFe1nE -tMniA2S5/gdZfjCy4q3FwAOUabE+Ku2O3sOuXJzDXGymXEo7+Muf89xU5KZ6 -nPnopP0Kd/pXMvLrecJ/N+G/SsF+64kG9PvYCqUDHI42wl0JRlmU3EaK0mqB -MhiVxQ7luRGFmUW1EQTwG+b1VOsilm2KyOMtfOkT7QYlW4pzDQTV2sw2NVqf -/PbYI9zsHeTSjbW1G/ObNyeQt4Ywd3pxdz8R7n8kPmzZftS486SO8qxmV76a -qlS5p1pB16jY14Kvohj65UzjCpZ5Bcu6km1fzXGp4XrW8XzreYGN/NBmwZtW -YUy7MKFTlNJ1mNkrzukXFw5CpSOSqrG/tyrhi7D1AvhSbCUDviBbSoAvy+Yj -4YuzuYC/Z30+z3h8nnY+n7Y/m7I+nbI4nTI5mTI4ntKVTWlJpzUk0yrQjOLh -rJxo7rFg4SFv6R5n5TZz7cb+5hUa8k8K5lcS/gKaBF/qTRC/6yJ8X4P/IQt3 -IQz7kwv6ph1a3Qxl8QLpIYcIk99IVV4pg68I50blp1efD6EMOolmDbtWZQc2 -OVzb94fOMfD1YnAA9MYDirMTpxiJi15wG1X3+h4TZy9vbV4cJFyspF6OZzzx -4WiaiFxUZe+fnjdfE438QV+9gCX81zD+XxW4r2Ox37mgf7FDyVmg9A2RNpoI -TwXEa/gyFFidlVKVpWaV+T7F2RmQ+HR6sabNOy/LD2yz+I5x8KVquC8U6wy9 -txDnGQiqXrBaNPa6lXeG5IiTj7Bzd5HLt9bXbi9u3plG3htD3x/CPuzDP+om -PukkPWsnK7TtKLXsqjZRNRppWo17OvCF775xA8O8gWnVyLJtZDs2cdyaOV6t -XL82XnA7P7xT8LZLGNcjTO4TpQ8cZg+L80fFJeNQxdQ/6Ar4ohmRD186b6b9 -s5EE/1Wea28/r4R/Xn59vux/tuRztuh+uuB8smB3vPBSNm9+NG8sXdCXLLyA -FjQPF9VES0qCZXneyhPO2l+s9XuMzdt0xHUa+jIF9weJ+DOGdGGNBF+XDxAv -tBIulON/TMP9FIr92RVzwx6tYokyMUA6qyECn27FKK3lqCzXATJUmp1R+lIu -k1ayJXBoBSzbdIFDHHxxD3QE8FKMoxi4tVxdfo3GQaf8ztgdzPLFedTFDtLF -AtqNaMYzT46mschJ9Sjh2VnNLUn/Rdb8z2TU10uE/+7Af5WH+zYM8wNwpMAx -miON9ZEOGohXT7fCnm0kAu+hslyjsghUDLidFc0hlFE7ybKGZlPAtks59IiG -37rwxgeKd4JSLMS5hsIKXXaT1n6nOrVfmTwqT5h6jJ1/gFq+t7l2f2XzwTzi -r2n043Hs0xGc3CBBoY+k3LOt2rWj8Ymi1UnV6aAZdOwZw2+uOHjZzrDrYDp1 -sNw62V6fOH5d3KAeXlgv/02/IGZAmDAkTBkRZY4d5k6Ii6bEZbP/4Mv+wRb9 -jcn9G531GZX6GZl0vhV7vvn2bCP8dCP4dN3/ZM37eM1dtup0tGonXbWSrJpB -q0aHq3qiNW3BmgZ/XYW7ocDefMpEPDpA3qejb/8fpt7yP8p77dt9uZ/blnV1 -dXV1FUqhLaW0FLckkAAhRoS4CwkSIyEhxN3d3d3dJzbJTMbd3d0txps9V+9n -fz77LyBc58/n/B4Hh3iRSTlHowHsIATtH3u0f6xSv5yiftlH+UcD+R8FpK8S -iP8MJ/wYiH/gjXNxxQY+xr6+gUm9gyx5AGsBmlvA1h0fareCdbIuR/1s7xaR -dcf3y9eFpwONMdZztXXfz/PWlTlpWu2lww+4i9cou9+hEd+uE78dYJ6r5P2U -Kr4dIbN3UQfZGDNvH7deMU9bL3pfc5F/JVD+nzXKf/aQ/6eI+JfXhC+C8Fe9 -cfZuWM+n2LAHmNjf0Z+A0w6s+Y8ptgA0/GygHWdJ7oMs71ahf6UyMBdoDUpM -ANqEcoP1xV66aldNq5O876lo1J43Y8teekBfv0vZvkna/x0P/RUDv4ZAXYdi -boJxt3cId0Gk++sUm1XaoxW6wxLz2SLLaYHjBjQv8byBRiZh8LwoYkEcvSh5 -uyhNWJYnryjSVpWZa6q8DVURSF2+pane0dbv6Vr2P1NbzyiNZ+SaU1LFKbH4 -hJB/jM86xqUdYT9YsAlmzFsTOtqIDjegg/RoPx3aS4N+oUY7qzBPFZjHMqyN -BHdPhL8lIP7OI/3CofzEpH1PY3yLp/8bQf8XmPb1Bu3rOSrQ6NVB+Wc1+Z/Z -pK/fEb8OJ1wJwj/0wbu8wPk/xUbfwyTdRuXdh9c9hPY93J+9v7t9F4R6Ov9/ -J5d1bPuVqIOzgJYz6w7yMeqPldAVOFr32gmmbjPWfyZAzkHR386Tv+1knSvm -X0kW3w2TOzirA22Mn+4cNV61bmHqtW+E0C9phP86oPzHJPm/G0h//kT8ayj+ -G3/cHS9gVfR7jIm+hUm6icq9B695AO16CEwx6wUQZr+Md7VOsR6ub6MkoFQd -mg004CXFA814uSH6Ym995Qtts4ui+7lk+Klw0oE7/4i1YkvffEDduUfev008 -vIGH30Kj7iAw96C4BwdE2z3S4x3Kky2aI4jhvMF8scH2XOf4AI2C/JA1QcS6 -MGZd/G5DkrAh/bApSwPJs7YVeTvK4l1VOVhds69pgGhbDk8Zraf0xhNazQm1 -4phSfETOt5CyLKQ0MzHZREgwEt4aCK90+DAtPkiD91XhPZUENznhuYz4REKy -E5EeCCi3edTrbNpVJuMnKvMinnEBwfhun34ORP92kfbvCeq/+6hAI2UpGWiq -jCF+E0G4Fkyw88W7uuP8HbFRD7GJN9FZ9xCVD2EdNpDxB+DVuzvQR6s45ymq -dXL5tIj8KhX+eUAzZ+x7oGs6I0SX76WreK5ps5dYJ9fCder2RSzs3LZ1MaSe -a+GczxNcTZTcCwHqFWBjSL1zVPvbycj3uiXrkvgVC/NnDOX/rFD+q5f8pxLi -X94RvgjG/+yLs3PHejhiQx9i3v2OTrNOc+sUewgZerhvvYvtPdhEO86R3IeZ -Ph0C/1rrhUkbkQW0uX6IB1pec0P1xX76Cg9d4wtVp4tswEk85iiYecpddGCt -PWaA7Gi7tpSDh6TD+0TEfTzKBo21Q+LtYcSnUPLzA6rLPs0dzPDaY/nusgOB -dlxe5I4gZkcYuytK3JWk7Ek/gWXZ+/L8A0UJRFkBVdUcqhvhmlbECbv1mNV4 -zKw9YlRY6MVmWr6JlmWkphmoyXpKvI7yRkuJ0lDCVJRAJcVHTvGQUlwk1Gci -mr2AbsNj3GUzbzBZVymsKzjmZQTzhwPGpS3G98v0C9O074Zo5zuoQItyAfnc -B9K30cSLEYRbwQR7P/wLT5y/Ey7KDptwE5N+D1n6EN5sAx2y2V+4v7t7H4R+ -Nk98McJ42cUHNo4STUgW0CydGKdPi9Tn/O/kemadXMLJO8zVq0TwOQTy3Jr1 -ZEg/V8+9kC34LV5yPwiol7+t4cNdS9W104FLhvlz8u2veYgvyOT/2KX85zj5 -f/6YYn8Lw/8rAH/7Je65C9bPHvvqDub9/06xh4fAFHuwt353B/Z4BecyRfXq -5/i2igKqlIEFQBt5XArQUp7xGmgvLw7Ul3vr6zw0be6KXjfpsIto0kkw95y7 -7Mhef8rcekLfc6Ad2FNg9mTkYxLaAY99hiU4oUluSIoHnOYNo/sdMoOAdndO -FND6zo8D2uBFqVBx+qE0GyYrgMtL4IpKhLIWpWpEq9swR9y2I06jhV1rZleY -WMVGZr6BmaVnpOkYyVpGvIbxRkWPUjJC5YwAGcNbwnAXMZ0ErCc8th2Hc4/B -uUVmX8exriFZVyHMK9vMy6uMH+foP4zSL/XQvm+ifl9OuZBF/i6B9F008WoE -8UEI4Zk/3sMLH+iMe/UYG38Lm3YPVfQQ0WB72Gt7MP0QvGn9PvYreJdJqmc/ -xzq5rLuGdXJF/n+TKzNUn/9SV+GkaXOQDj3kzd2kgX7CQ84doM8tkM71Ms5X -cS9lCH+PlTwIlD9xUvvZGpLvWcqvn/T8aJr5TrUJLIl0/P/AKf+xSPnvLvKf -i4h/fUf4ezD+ii/ukQfO4zk21Hqn+B2T9sdOah0/gw//7/hBPVsguo8xvHt4 -/k2SwEpVcD4Q1ohPBYIbGW+BEEdxiL7cT1/zUtfiper2kA+6S8deiGbcBAuu -vFUXzqYLa9uZCXamQ5xpcGcqypmCcSHjXxCJnniyD44agKGHoBnhaFY0EC3h -xgMxE+FHlCgDJc5FSwvRslKMvAqrqMMpm/CqNoKF32bmN5p4tUZuhYFbrOfk -6ThZWk6ahp2kYscp2a/l7EgZO0TC8RNxvARcVx7XkcOzZ3BtyZwHOM5dJPsW -hHV9h3VtnfnrAgPAIw/QL7fTfqyl/lBEAcI1b0mXYki3IomPQgjO/oSXXvhg -F1y0Ay7hrrVY6EIbRK0trAuI6uyv3N/dt9nAPLeuPyNM706+X73MOrmsW8br -VCDskxalzwnQFb3Q1Tsqux+Lxu+xl6+Rd7/HWBdD7LlpyrlO1vly3o+fhNff -Sh4G/G+99O/vm0tunHT+bJm6oFn7t3jfuiT+BUf5j80/nlZqSX/5SPwiDP9t -AP6OdYq5Yv0csK/uYpJuoXLvI6qtUwyINYHX7u1CH61jnWcpnsMs3y5BQKMs -qEIdmm94nQUEo1LfAyGpvBggMFUepK/20zf5aDq9lf0v5SNekkkv0ZynYMmT -t+7JBXmydz1ZB57MQy8GwouOfknHedMIflRSIJkSSqJFEhkxBNY7AicBiHHx -04BIlygPLy4iSMsIsmqivJ6kaCap2slmUZtJ2GgU1hoEFXpBsY6fp+Fnqvkf -VfwkBT9Oxo+R8iPE/CAh34cv8ODwXRn852TeEzz3MYprA+Xc32Pf3WTdWmLd -mGb+PsL4rZt+tYl2pYL6cy71cjLlp3fkazGkh5HEp6HEFwEE35f4UDf866e4 -xPvYtPvoAhtkjR28AwjBHSw+3Nu5t416ukRwm6C97OP6toitkysgHwjQxSUB -YbrMMH2+t67cWdvyVDZgy5+xnjR+Ie6fRyDOrePPjVHPt7K/K+Zf/ii68UZq -rddTa73s9In3zUU3j9uuHI1/r1s+J9uznhK/oJD/c5/yXzPk/2kj/yWf+LfX -hC+D8b/64R574DytU8wWE3sdk3YXWfIQ3mQLHbA9mHu4t313B/l0heA2RXs5 -yPHvEAY1yIPLNeEFQPAwMc3wMRmIIua9BWKJ5eH66iB9g7+u3V/d66cc8pOP -+0pnfMWLvsJVP8GmH2/bnwv250AC2LBAFjKIhQkBIpCkcCblFZ32hsaIo7He -U9kpVO4nIDIpyKeIiiniCqq0hiproMlbaMoOulHSZhA36sW1OnGFVlSsEeWp -RJlK0Ue56L1MFCsRRYtEYXxRIEfoyxB4UQQvCHxnNM8RxnXY5zza4tissu/P -se6OM2/1M260M36vo18rof2aSb2aQLkaS773muQQRXIJI3oFEgK9CREv8G+f -4d4/xH16gCmwRVU/grcB8VLInC0Y9GAXZr+Gc/ljGPt0CvzrZQElmrBsIKD6 -Ph4Iq+YE6os8dLXPVZ0O4tGHnAXrYngZBzkPQZ1fJp63bpVN7O8K+VdSRLdi -pDb+QL187fQJD8yFt45brp6MXtQvnlds/4sP+5JOAIK0K5T/6QcexP72gfj3 -MPyFQPw9b5yzK87/yf+eV9G5DxDVNrBO2z8m/sO9fRsQ+vkiyWOC7jPADWgX -B9crQsu1EYVAvPd9OhD1zXoPxH6L3wAR4OpwQ32woTVY2x2kHgxSjgXJp4Ok -88Hi5WDReohwK1SwF8Y/COcdRnIRUVx0NBA0Jr7lkGM5tHg2I5nN+shiZwCR -ZH4hEE8WVTIltUxpIxBbVnSyDLI2vaxRJ63VSCvU0mKVNE8hzZBLU6XSRLH0 -nUASzRFHMEUhVGEAUeiDEXgi+G4QntMO99k6x2GR82iabTPMAnQnzYzbVfSb -BbTrH6m/v6fcjaPYvyE7vSJ5hBP9goihPoRX7vhYR3yyLS79IbbADlX9GNEK -BLeh04/21232DuxAGCfrBxlnePfy/FskAdb7Tj4Q/Y5LBmLgmeH6fF9dqauu -yVHe91g4eY+1/Dt59xLm8Pwe5vw86Xw//bs6zoU8/i8fRLejpbZ+8mdOKmu9 -4h+Y8m8fNf12OnzJOP+dEvRvEfQrJu4vOOp/gij/PU7+cxPpr9nEv78i/CMY -/7sf3sED5+WEDbfDxt3AWDfWEht4k91hvx1kxha8+WD30H4D5zpP9hpn+vXz -gtrFIfWKsAptVBEQok/KBAL1WR+AcH1xLBC0r4421EcYWsL1XeHa/nD1aLhy -MkI+FyFbipSsRYlBr0S7McL918LDtwJELBDkxyUCoX7yByDgz/jEZ2UBkX9u -EY9fBkAARPVcSTNX2s6Td/N0ijatolGjqFErypXyIoU8VyZPF8tSBbL3XGkc -S/KGJo4iicJwwiCU0O9Q8BLM9wDxXFe5TnOcZxNshwHWo06WTQPzQTnjXg79 -TirtbhLVPp7i9I7sHk32jSAFBRMjfIlvPAgJTvgUO3ymLbbwMbraHtnqAO93 -gE7ZH6zYgfce7qAcVwgvpmkvh9h+HcKAOnlgiTY8B0ArJCUAmAXgScF6P3VW -tz+VDtnxZu8w1n8lgi+g4N9t4c5Pk7/rYXxXw72YI/g1SXznldTuf+v1SBf3 -0JR356jh2ungD6bZC+qNbyUHX3PQX5Ap1iXxv+cof+oi/7WE9EUi8NjyUyD+ -oTfO1Q0X+BQbcx+bfMc6xZBVtjDrcj366GDRFrzzYBf5bA3/Yo7qM8YK6OMH -t0vCGpThldpXxQCqIjkbwFZkfwQQFiWJAM6i5i2Atmh+Zeh8pe97pR2JVk/G -KGdfKxbfyNfeykDvpDtxkv0EMfQ9AMpApYiwHwF0BjkTwGjQ84WsQgCswasQ -8WsA1Ia4BcBuyHqEWlWbRtWoUtUoVeVyZZFEkSeUZ/HkaWzZB4Y0kSJ5RxDH -YESRcFEoRBi4K/Dd4L9c4rnPcF1HOU597GdtLIda5qMShm0m/WEa7ckHmnMi -1SOW4vuaHBRJDg8hxfgTYz0JSc6EtMf47Ee4YntMzRNkKwAbOZxwgCw/3t+x -2UU8Xce7zVO8xlh+PfyAZmmQ9QxWAEBL4j8AAJPMSH1+gL7kha7BSdnjIBqz -4SzcooGu4CEXYMjv1vHfTVC/62ReqOT+YD3Mvxff/f/VK/ahKefuUd3vJ/0/ -mae/16ydl4L/xUN+SSMBuJUVyp8GyX+tJX2RTvwygvCvEPwtP/wzT5y3My7i -j7Prp/uoYltE4yNYLwByOVizsy4C2xjnFaLnLM1vlB3UJwhtl4Y3KCOrtNGl -ABDmQy4Ah8lJB0AxpR8AaExtgqExztjyztjxxtD3Vj/8TjsRq56NUy3GK1cT -FZtJ8p1kGThFCk2TwtMBKA02BwDUkAsBWA29DADXcGokvHoAZSNqA7A20l6p -RtOq0jQq1LVSVaVYWSJQFnAVOSx5Bk2WSpIm4SXxKPFbmCh6XxSxLbRewgMW -+D5TPK9hrnsPx7WF7VTNelbIdMhiOKbT3VJpXklUv3hq8BtK+CtydBjpXQAp -8SUxxZWQ7kDItceVPMHUPkO1ARgf2MRT6KLDwRaA9wFhXZbIXpMMX2BrEAXV -KYJLtBE5ABQoKREABOWE6Yt89JWumlZH2cBjwdQD1sp1ys5P2MMLB+gLy4Tv -RmkX2lgXrIfDTOHvieJ7UdJHfnJHa70e62JtTNl3j2qvn/Raj4gXdSvfyXf/ -LYB/xSD8BUP9bxDlTxOUv7SSvyggfRlL/CqMcDUQ/8gH7/4CF/wM9/ohNvku -JscGVWXdZO0Ph+0hc4/3QXZ7hw5bWLdlsvcMI2CUE9InDO+QRjapXtVoX5cD -2KWUAgDBlJtlKMoAoExVqQCgqSkJgDV1Jhh7EwzDifqJ99qZZM3iB/Vqqmoz -TbmTrtjPVECz5fA8OaoAAEARSgEYFLUaAEOxGmWcZgAVJeiUi3oUkn6FUtsu -0zRL1PVCVTVfWc5RFjEUeVR5FlH2CStNQUreQ8WxYPFrkOjVqjB8XhA8wfcf -4vl0cb2aOC8q2S4FLJdcpmcmwzeNHviBFppIjXxHjYmhvIsgJwSRPviQ0tyI -WU8J+U/xZY7YuufoNgCQBZ9wPFx8CgHZg6GPdzDOq8CI9R1hB3QLg5pkwZXq -0AJDTCYA3UqNAwBc+UH6Ek99nYuq85lk5BFv9h5j/RoJfAkDu7CLubBAujBE -u9DC/r6UdzlDeD1RfD9K9thX4egM1OudrTH7nqX6xkn3L0eTl/RLFxTb3woP -v2ZhvyBS/xtM/dMc5S895C8qSF+mEr+KJHwfQrjnj3fywvm64CIdsPF3sZ8e -oIvtkPX28B6Hw3HramC/v/toD+G4ifdYovhOM4NGuWH9oshO2atmVUyt7k0l -ADdLLQZAZ3l5APSsPBMAoNV/AmBo7anGrhRj3wfTcIphIlU/m6ZbTNeuZmo2 -s9U7uar9fBW0SIkoUaLLAcwaoQZArtGaAPwaq13B6QKAbIIBpWhYJdV2ijWt -AnUjT1XLVlUylKUURSFBnouRZSCkH6GS5D1JAkj8bkUUMyeMGheEDfKDOnn+ -jVyfcrZnMds3nxWUwwzNYESk0qOTaG/iqbFvqIlRlA8h5DQ/UqY7KdeRWPQc -X+mEbXDGdADoOcSEE2zBEbr5ZP/g0R7GeYPgsUD1mWAF9POD2iUhdcqQUl1U -riH2EwC1S38LAO6K/PUVL3TNzoq+J6JxW87iHRroV8LBRSTi+y3c97Pk7/vp -3zdyLhbzr6QLbySIH0TJ7P0Uz51VfvZAvbLuW6punnRdPR7/wbD4vQp0Xgz5 -FwfzJZXyp0Pqn1YofxmifNFA/jKH9NVr4GHzehDewRfv6Y4LeY57a4f7cA+b -Y4uqtB6NHGCDTw5nnkDWHfb3H+2hXTYIL5eoAdOskFFeRL/oVZcsplX1pl73 -rhpACKaVATjB/EIALViZC2AGG7ONrZkAeLAnA4AQDqebJjKNs9mGpVz9Wr4O -VKjdLdbsl2oOK9SIajW6FoAZEpsBsCGtA4AcsvtU3EEAeygcU4u03QJNO1fd -zFLX01XVZGU5QVGMkecjZNkQafquNHVTkrQsjp8VvR0XRg8IIjt4oQ3coCpO -SBknoogdlceKyWK+/cSITaEnJNKS3tFSoqlpYZTMAHKOF6nAmVTqQqh2xTW5 -YTrdUAOuiAkX+ILT4Ybjwb4DGOUEwnssU3ymmQHD3OBuUUiTPLRSE14I3Gve -pwLQyKwYACBZ4q2vdVO3P5cNOgimbVgrt6jbV/DQi4eoixv476cp3/cyLjZw -LhXxf0kX3kyQPIz8o14uan97XaydMfOBpfL2cedvJ2M/Ghcuqje/k+7/m4f6 -ik76K4r6JxD1L5OUL9rJX5aQvkoifh1JuBxKsAnAu77E+7vhXj3FJTzAfbLB -FD1G1T1BdD2FjQJoTQgIwGzuYl9skHyWaEEz7PAxftSAOKZb/rZNFduki6sF -QJ3plQC0s7DUWFZsrCoCYJ7N+QDYsysPgHwO5QLAz8k801yBcanIsF6i3yrX -71XqDmoAQCiyUYtpBpChpE4AH0rvA1Ci7BENb1zDn9Tytb1cTSdL00pXN5JV -dQRlFUZRBpcXQWR5u7KsTemnZUnKrPj9uChuQPimgx/dyHtVy3tdyX1Xxokr -Yifkst5nMpPTGCnJ9I/xtPQ3tKxIam4QpcCbXPKCVOFOrHPHt3hguz3QQ+7I -yRfwBdfDDScIGICp7uA9Vsk+c4yAMU5wnzC0TRpWpwor1cfkGeLTDSnJAJQ1 -NwoAtJZ76ptclT2OklF73twD5voN8t5lLOzSAfriKuHiBPViN/NSHfdSIf/X -T6Lb8RKbSJmDn8LJVR3g8Ee9Hloq7xy3Xzsd/ck0f0mzfkEGPidAfM0k/B1P -/fMe9a/z1C96KV/WkL/KIP3rFfHbcMLtYMIzP/xLT3yYM+6dPS7lATbnEbrC -AdXyDNHvCJsEALaQ3af7cKddvNcG2X+JHjrDiRwXxAyJ3/bKYztU8S26xAYA -h5tZY8yrMhZXApjcmjIAmdv6Bz63twTwOI/8gdWdKjHPl5mXK0wbVcbtWgO4 -3gBp0sNb9Kh2AMlL6AHwvNQhANXLGgewvQC8V9vP0nTTNO1kdQtB1YBR1iAU -FRB5ya68YFOWsyLNnJWkjYs/DIgALHCrILGRn1TLS67kppRyUgvZaTmsTxnM -jFRG1nt6Tiw9P5pWGEot8aOUe5GrvYiNLwntAIIYM+yFmvJALLrDNlwPwU4Q -hNMe3mOD7LtID5xkhwzxw7ok4U2KiErgOhObbUhKM6S9B6DHBeH6Uj99jYe2 -zUXe/0w08Yi7eJ+++Ttx/wcM/NIe5tIy8dIY7VIn64ca7o8Fgmtpojt/1OuJ -v8LJTR1ordcjoF4Vd4/brp+O/Gye/VG7dlG+e14I+4aN+weF9mco9a8rwK+o -XzaT/1lA/lcC6d9RxN/CCI8CCS988IHu+Ojn+EQ7XLottsgBXfcM2fEcMewE -mwUw0ZB9xwOU2w7BZ4MStMSImOVETwjeDEti++UJ3er37brkZmNaI4CeLqgD -MNRV1QCSurnK1P4HpLq/EgBWj1WZp6oAhPVCtWW1zrzZYNppMu23GqHtRkQX -gLzG9RuIQwAEmzYOALHZM3ruvJ6lHaRre8maLgJATmlCKOsgiuo9RTlIXrwi -y5+TZo9LMgbEH3tEaR3C9BZBRiM/s5aXWcHNKuFkF7Bzs1l5n5gFHxiFCYzi -N/SyCFpFILXal1LvR2rxI3b64vt9saM+6OmXyCUvxIY7DOwKhTvv4zxBJN9l -WuAMsP6H94oj2uSRderIUgAenphpSE0xAC88MX+8o3rrG9zVXc6y4aeCGTv2 -yl3a9m8EyI9I5A/buB8WSD+M0H9oZ/1QzbucL/g9TXQ3XmIbBdTL+YU66Iku -9rEx08Zcfu+49cbp8C+WmZ90q5eUOxfEh99yMP+kUf6GpP1tk/r3Keo/Oin/ -rCD/K43072jiD5HAu7QT8HpGiHDDxz7Fp9rgcuyxFc/Qzc+Rvc6IcRfYossh -yBkCcTrAeO4Q/TeoocvMqDnum0lh7KgkYVCR1Kv+0KVLbTOktwCA9+JGAPZe -22BqrAfw7111AAp+sN48Wg/A4WcaAFD8chMAjQe1WXY7zAfdZlivCTlgwgwB -eHnSOICap88A2HnOopGuHaZo+wmaHoy6A6FqhSob95S1IEXlqrxsXlY0Ic0b -luQNiPN7RAUdwoIWAYC4r+EVVnCLijnF+eySLFZpGqs8iVkRy6iKpteE0OqD -qM0AKp/YE0gYDMCN+2Nm/FDLPshNLzjY/RDuAsF57ZD81mhB86zQCW7EIHC+ -impSRVXpXhcDcP6UT4b0ZENOLADtLwvSV3vpWl8o+5wk40/487bM9TuU3V/x -hz/BUD+C8D/OkX8cov/Yxv6xknclT3Djo+hevORRlOxpwB/1eqqLszdm2prL -7x+33Dod+vVo5rJ+5UfV9kUJ9DwP/Q2D9CWW9rdd2t/nqf/op/yznvJNLvnb -ONL5V8Sb4cQnwQRPP0KIF+G1Cz7JAZ/xGFf0FFP7HN3ughx0RUy7wVYA5QEU -Zv3v+OyQgzfokSusmHle7LQwYVyaNKxIGVCn9ejSuwxZ7aaCNlNpK6BUqG8B -9AodzeaeZvNAC6BdmGgFFAzzbZaldkDKsNF5tN19BO6zQAcs8GFA3ICbMBOm -AJUDbR7QOrBWTBTdKFE7iNX0IdVdh6p2sKp5S9mwpqhZkANiiHEpIIkYEAPC -iA4hII9o4FfU8CrLeZXF3Ko8TnUGuyaVVZvIrH/DaIygN4fT2sMo3WGk/lDi -SAh+Mhg7F4hZ8UeBfBHglzA4oK7YIwVsUEOWmOHT3MgR4ate6as2ZXSdNroM -uHImZwEKjOxEQ8EbQIpR4a9v8NJ0vpAPOYmmHLhLNozNW+T9X3DwyxDMT+uE -n2YoPw0wfmrhXK7gX80T3vwofhAvfRwlexagcHFXB1vr5WDMtDOXPThquX0y -8Nvx9BXD8k/qrUvSgwsC1LdM4j9JtC8gtC9XqF+NUr9uA35U/TaVfP416Zco -ol0Y0S2IGOBLiPIgxDsTPj7G5z7BlT/HNLmge14gR90R8x7wDQ8YGNCLQAj+ -u5SwTUb0KvvdAj9hVpQ0KU0dVaQNqTP6dVm9htxuQFZS0QmIS5o6zO0d5u4O -QGgy3AnITaa7LHPdgO5ktfdoo+9oawDQoBwMHx+OHiEnjjBTgCSFNG+hLFno -K2bmmpmoG8dph1GaAZi6d1/dua1qW1c2LSkA5cq0DNCvjEgaBsSAkKVDBMhZ -GgT11fz6cl5DEbchh9OYzm76wGqJY7ZGM9qj6d2vqH1RlKFI0lgEYToctxCK -XQ1GbwUg933hcK9DrM8+KXCLGrrKjJjjWO8G0YOSmE45IJGp0seWAFqZjxmA -YiYv3lAcA0hnqn30LZ6qXjfp6HPBrD1n9SF9+yYJ8jMG8fM+9vIq8fIU9XIf -83Iz5+dy/m+5wtsfxQ/jpfZRMsdAhauHOuSZLu6JMfORuezhUfPdk/7fj6d+ -MS79rAH9KN+/KEScZ+O/odL+jqD9Y5P2z2nqv3qo/66hnMsmf/eO9H0M6V4k -8Xko0TuQGOZDeOtOSH5OyASkPLhaV0z7C/SAB2rSy7rCw7cAfc8h2htCDN6l -RoGYb9c48UuCpDlx6rTs04Qyc1SdM6zLGzAU9gFKoJpec2OvufUPVVBfL6AN -GuuzTPUDIqHFgaPVoaONYUAwtDsKyIagE4B4CDV7jJ0HVETklSPa2hFjw4LX -TaK1o3DN0IG6f1fds6HqWFV2Lik65+Ud07KOCVn7iLR9QNLWI27rEAHyo3pB -azW/tYzXVshty+a0p7E73rO6Ypk97xj9b2lDb6ijr8mT0cS5V4SlSNx6OGY7 -BHUQiIT7wrF+EFLwDjV8nRG1yIme5r8eEb/plQF6Juu1pcL4vgjQNmV8AhRO -hbGGsleGymB9g4+2w1Mx6CqZdOQv2LPWH1B3bxAOf0Giruzifl4m/TxB+7mX -9XMT90oZ//dc4Z2PYtt4qcMr+fNAhZunOtRRF//UmGlvLrM9arp30n/jZPKq -afGKdvOyAvyDGH6Bi/uWTgEEVbu0fy7QvhmifttMPV9MufCBfPEt6UY0ySGS -5BFKDAogxngTE18QPzkS8hzxFda7iTu22xM98hI1641c9UHsApIsGDYASo7Y -o73eYsWtc5NWBKmL4vQ5Wda0MndCUzCmKxoxlg6Zq4bM9X9IuDoHASHX4JBl -dAhQdM2OHC2OHq2MAequrQlA47U/fQyZAcReyPkTzNIJfgUQflE3julbxxjd -NEI7DtWM7GkANdimanBNObCs6J9X9M/I+yZkvSPS3gFJT4+4p0MEyMXqBd1V -/O5Sfk8+ryeT25vK6UtiD7xnDifQx+Jpk3GUmXfkhTfElRj85ivcbgQGEopC -BCJwgYfkUDA1EsSIXuG8nuO/HRe9G5QB4rNm7bsaQIWWUgBo0XI+Aoq0kreG -ikhDTYC+xUfd4ykfcRXNOPKWHzNB9yn7v+NhV+HoX7bxvyySr4zRr3Szfmng -/VImuJEruvdRYhcvffJK7hSkeOGlDn2ui39mzHQwl9odNT046bt1OvmbeeGq -buNn5d5PEthFHuY7JvkbAv0rCP3rVdo3E7RzndTvqijfZ1EuxZJ/fkO2jSa5 -RpD8Q0iRAcQ4b2KKGzHbkVjsgq91x7V5Yft9MBO+6EU/1KY/Egyo6OD4ECgl -GsyI3Wa/3+SlrgnTlyVZC/K8OVXhtKZkUlc+YawcM9f+IblrH7X0jFkGxwD5 -3eT40ezE0cIkIMVbnwYEebuzx+B5QJkHWzpBLp+gV09xa6fEDUCrR9s5Qepm -DrVTB9rJPc3EtnpiUzW+phpbVo4uKEZm5CMTsuFR6dCgZKhHAmj7mkWAwq9S -MFjCH8zjDaVzhz9yRlJZ4ynMyWT6TBJtPpGyHE9ajyVuvcHvRWOhkWhkGAoX -DCdHHNBebTNfr3HeLvJjp0RxI1JAKdiuiWvQJ1YZU0qM6fmAdrAgFciZlb8G -fkJqCNB1+KgGPKUTrsL5Z5y1R4yde2TINRziVyj2Koh4dZ5ydZRxtYt9tZ73 -a6ngVo7owUfJ43jps2i5S7DC3UsT5qSLdzRmPjGXPj5qfHjSe+d04ppl4Vf9 -+i+q3Z+lhz8K0N+zSOco9K/h9G9A9G9naef7aRcaqReLKD98oPwUS773hvw8 -muwdQQoLIb0JICW9JGW4kQpciBXuhKaXuG5f7Ij1KBWIXglCbQehIIDwEUGM -PKS+3Wcm7nJStvjpG6LsVWn+sqJoUVU6r6mY1VdPG+umzI2TlrZJS/cUoJUc -mT6amD6amQF0kytzgHoStHC8swjIKCErgJgSuX6C3gBUlYQtQFtJ3TuF6xYO -dQsH2nmwZm5HPQtSz6yrppeV0wuKqRn55KR8YlQ2Pigd75EAWsxmEaDIrBSM -FfPHc3jjWdzJTM50Oms2jbHwkb6cQl1LpmwmknbiCfvv8IevsagoND4cSXkF -pb3eY77b5MQt8+LnrCcoSeKgIrFbDYg7awGJZ3qxMTvXmJ8OyD3L4wHRZ12o -oTVA0+OjGPGQTLvyl56xNx/R9+6SDq9hUL8d4H7bIP06R/11mPlrJ+e3ev61 -UuGdHJHNR4l9gswxWu4arPR4qQl30SU8N2Y+NZfaHzXanvTcOx2/cTR/zbD2 -q3rnFxn0shD1A4dwgU77Bk3/9x793BL9u1Ha9+20S5XUHzMplxMo12PJT96Q -PaPJwRHk6BBSQgAp7SUp15VU4k6s8ya0++H7A3ATwdiFEMx6KHovDA0DtKoo -8msYPQHCSgFz03cE2SBx/oaseFVRtqKuXNLWLOjr541Nc+bWWUDY2j93NDx3 -NDEPiFwXFgGp6/ryMWgF0LyC1wDlK2zzBAkCJLC4HUAISwKfUvbPELq1Q90q -RLsC1izvaJZA6sV11cKKcn5BOTermJuUz47KZgalMz0SQDvbLAIUtOXC6SLB -TAFvNp87n8tezGYtZzLW0umbadTtFMpeMgmSSIDH4tBvsIRXaIr173+3z4zf -5iSs8d4vCpOmJYAGt1+V1KF93wjocdPLAVVufo6x+BMgz62KNdS+MjSG6DsD -1AM+8nEP8ZwLb/UZa8uOun+XCL+OQv8Oxl9bI1+boV0bYl3r4F6r418vEd7L -Edt9lDxJkDnFyN1ClF4+mghXXaKzMdPRXPrkqPHRcc+D0/FbR/PXjWvXNNtA -07gY+RMPf4lBBTTBEMb5dfqFKfrFXtqPDbTLhdQrHyhXEyh2sRS3NxT/aHJk -BDkuhJwSQM56SS5yJ1d5E5v9Cd1BeOsZeDoMtxyBBUViDqIwCOv4fIWmxsEZ -yVD2p31e9p4wf1tSApKVbyir19V1q9rGFX3LsrF9ydy5dNS3dDS8BCiSp5cB -XfLy6vH6GiBQ3tkAZMqQrRPYNqBXRu8CqmXC/inp4IwCPUPoQTDdJkS7Adau -72rWttRr66rVFdXKonJ5VrE0KV8clS0OygChc7sEkDvXiBYqhAtlgqUS3nIR -d7WAvZ7H2sxhbGfRd9Op+x/JhykkxHsCJh5HfIulxiIYCVDW+11O8ib/w4rw -w5wkZUIOaKZ7tIByugHQT2eXASrq4uw/foB4DyiqGyINbSG63gDliI902lO4 -6MLdeMbctaNC7xAQNxDYG7uE66uU69P064Os6+3c67WCWyXCBznix2nSZ4ky -5xiFe6jypa8m0k2X6GLMem4ufXrUaH/cbQNotedumlava7evKQ9+lSCu8HE/ -sijfkxnn4YwLW4yL8/Qfhuk/tdF+rqD9kkX9NYl6L4HiFEfxeUsJj6G8jaQk -h1IyAij53pRyb3K9P6k9mDgQRpiIwM9H4dejcbsxWOhrrHWUEt9h6ElIVhqM -mw3hF+yLSvakFTvymi1VPUjTtKlr2zB0rJu618x9a0dDa4CCfHr9eH7jeHkD -UJODQICmHLxzAtkFxOVIMCAxx0FOCVBAa06BnSH1uzDdDlS3va/d2tWAtjSg -DfXmimpjUbk+q1ibVKyNylcHZas9UkCb3iheqROt1gjXqgTrFbzNMi6ohL1d -yNrLZ+zn0KFZVHg6GZVKwiUTSAk4WiKakQRjf9jnpm7zP64L0xYlgLp9TJk2 -oPnYpU9tMWXUm3KqAMl7cT4gfK/6aKxNBBTwzRGGrhDNYKBiwkcy5ylYceWA -njHAdhTYbTzqFgx3c4d0c5l6Y4pxY4B9s413s1Zwp0RkkytxSJM+T5S5vlZ4 -hCl9/DRR7rr3bsYsZ3OZo6XxyXG33eno/ZO52+bVm7qt66r9a1L4VSH2Zw75 -BzrjAprxPZhxaYXx4wTj5x76L/X0Xwtp11Ko15OoTxOpXnHUkHfU1zGUxChK -WhglN5BS4k2pDiC3hJB6wkkjUcSZGMLyGwLoLX4/Fg+Pw2HjcORELOMjip2F -4BUcCksg4sp9WS1Y0bCratnRtG/rurYMvSDTAMgyDDoaAx1PgY7ntk6Wtk/W -dk5Auyc7eydg8Clk/xR2cIqEnKKhp7jDMwL8jIQ4oyCt9TqA6/ehOvC+dm9X -u7ul2dlQb6+qthdVW7NK0KQCNCrfHJBtdss226QbLeLNJhGoQbhVJ9iu4e1W -csHl7IMSFrSIAcunI3OomEwyPo1E/kCgf8AyUxHsNCj30x4/HSTKWJVkzMsy -ppQZI+r0Pt2nDmNGsymnzlRQaSouMZbnGasyjbWpxoYEY/NrQ3ukvi9UPRoo -n/YVL3ry113ZO8/oB3ZkxF0s5g4Uf3uLfHuJdmuCeaufc6uNf7tWeL9E9ChX -8vST1Pm9/MUbhVe40tdf88pDl/TCmO1qLnOyND477rYHIE5zd80rt/VbN9X7 -1+XwayLMVS7pZyb9Ep55Ccr8cZNxeY5xZYjxaxv9WiX9ejbtZgrtUTLN/T01 -MJ76KpYa/4aa+oqaHU4tCqJWBlAbQymdkeTBaNLEG9LCO+J6HHEngQBNJKDe -EwhJeGoqjpWJ4eYj+aVwUSVMUguVNx4oW/fVHWBtz56+f884tGsa2bWM7x5N -7ZzM7Z4s7Z2sgU9A+yc7B6fgg1MI9BR2eIqEnaLhpzjEGQF5RkKdUdBnKP0h -XA+F6iAHOsie9mBbs7+pBq+q9xZVe3PK3UnF7qhiZ0C+0yPb6ZLudEh220R7 -zUJwo2C/ngep4R5WseHlLGQJA11Ix+VRiVkUSjqJ8QnPykBzMmG8rANB9o4o -e0OSsyzLnlVmT6izhnRZPcArTV6TqbDWVFJhKi82VuUZazOMDSnG5nhja4yx -J1I7FKacCJLN+YpWvHggV9beM9qhLQl5H429ByHeBVHuLtLvTLDu9HHvtvLv -1ghtSsX2uRLHTzLXJLnHW4V3pNI/UBPtpUv2MGa/MJe5WBqfH3c/OR21O527 -b1m5ZwDd0YBvKWA3JJhrfOJVFu0ymfkjgnl5h3lliXl1nPFbD+N6A/1mMf12 -Gu1+Ks31A80/iRaZSIuNo6W8pWXG0AojaRUhtLowalsUtS+GMvqOPBtHXk4k -gZJI4GQSLIWISSWSPhLpGQR2PpZXihZWocR1CGkTTNF2qOqCanohugGIfvjA -OHZgnty3zOwfze2fLB2crEFONiGnO9BT8OEpBHYKg58iEado5BkOdUZAn5Gw -Z1TcGcqAQOjhhzr4gQ62pz3c1kA3NZBVNWRJdTCnOphU7o8q9gfl+/2y/V7p -QbcE0imCtgsPWwSwJh6inousZaOrWLhyBqGYTi6g0nIozCwiJwfLzUXy86CC -fLAof0uSvybLX1Tmz6jzxrS5g4acblN+m6moyVRaa6qoMFUXm+pyjY3pxuYP -xrZ4Y9dr/UCUZixcMRMkXfQTrntxt92YB89ocFsS+iEK/2CfdH+Den+BcX+c -fb+Pe79VcL9GZFcqfpondUqXvUiWe71T+kapAoM0r711H7yMOR7mcjdLo/Nx -97OTEfvTOZujlQdG0D0t+K7y8LYUfUNAuMahXqWzLmNYVw5YV9eZv80wrw8y -b7Yxblcx7ubS73+iP0+j+6TSw5Ppb9/TkxPoGbH0/Nf0sih6bRi9+RWt+w11 -OJY6lUBZTKKsf6DspJKhaWRkOhmfQaZkkpl5RG4Jnl+FFdVjJM0oWTtS2Y1Q -98E1QzDdKMwwcWiaPjTPHloWDo+XDk/WDk83Yac78FMw4hSCPIWhTpHoMwzm -DIc9I+DOyPgzKsFaLzRCjzrUoyA6JFiL2NbCNzXwNTVsSQ2bUx1OKg/HFYej -8sNhGWxQCuuTwHtEiC4hsl2AbuVhmri4eg6hhkWqZFJL6fQiGiufzC3E84rQ -gmK4sBgiLt6VFoPkxavKogV10ZS2cFSf328q7DKXtJnKG01VNaaaclN9kakx -19SSbmz7YOyIM/a90Y28Uk+Fy+eDJav+AtBLzp4bE+pIRdoRsbYIgg2YbLNO -ezjPfDjGedjHe9gqtKkV2ZdJHPOlrhkyjw8K7zil/ytVUIjmja8+xduY62Uu -d7c0uh53O52MPD2btTtasTWBHur27qsO78pQt0X4mzzq70zWLwTWVRjrt23W -9UXWzXEmoDtpZD4oZdhkMRwyGF6f6KEf6W9S6O+T6Z8S6XnxjNK3jOoYRlM0 -o/MtfSCeNv6eNveBuvqRuvWJup9BhWdRMDkUYi6Flkdhl5B5VURhPUHcgpN2 -YBU9GNUAWj2M0o4h9ZNI4wzSNI8wLyGOVhDH68iTTeTpDuoUjDqFoE9hmDMk -9gyDO8Phz4iEMzLxjEr6jDbgEAYsTI+B6DBgHXpHi9rUotY0yCU1claFmFEi -pxTICTlyTIYakaIGJeh+MaZXiO0S4Nv5hBYuqZFDqWPRqpnMcjq7hMorI/HL -ccJylKgcJinfl5bvyK1H2bJldemctnRSXzxiLO4zl3WZK9vM1Y2muhpTQ7mp -qcjUmmNqTzd1Jht74g1Db7UT0arZSNlSiHgjgL/jzdl/wYA5UtD2eNxjOPHR -LsVujW43x7Id49r28m1bhY9qxU/LJM4F0heZcq8UhW+8MjBGFRKmfQewXIx5 -3uYKT0uT+3G3y8mI49ms/fHKI/OmnX7PRg19IEfdE+Pv8Ck32czfyexrKPZ1 -MPvmGuv2DOvuEOtBO9OmhmlXwLDPZrhnMYIzGDGfGIkfGWkpjNxkRkkioyqO -2fiG2R7L6EtkjCbTZz7Slz7RNzJpu9k0aC4NlU/DF9IoRTRmCY1bSRXUk0Ut -JEknQd6LVw7i1CNYzQRWN40xzGGMixjTMsayhjnawBxvYU52MKdg7CkEdwbD -nyHxZxjCGY54RiSdkcmfqRRrvQhIAwGmx0P0OLAOt6PFbmqxaxrMkhqzqMbM -qzCzSuy0HDspw41JcSMS/JCY0C8i9grIXXxKO4/WwmE0sFm1TG4lg19NEVQT -RDVYcQ1SUgOVVYPl1dvKqnV11ZLWersvnzCWDZsr+szVXebaNnN9o7mpxtRS -bmorMnXkmLo+mXqSjYMJ+rF3munXyoUo6WqoCBTI3/NhQ90ZSEcK5gmW4HBI -tt+h2a8yHs+yH49yH/cKHreKHOrEz8ulbgUyzyy5T6rCP+EPgEyENjZQ/9Hf -mO9rrvS2NHked784GXE+m312suJg3rQ37D3SQG0VSBsp7oGQfJfLuEVn38Cx -b0LZd7bY9xbZD8ZZNr0su2aWfTnzSR7TNZcZmMOMzmImZDA/fmLmfGQWpzAr -k1kNCay2OFbPe+ZwCnPqE2PBeg+1Xm3yGAcFDHgxHVNKJ5YxaBUMtvXj1NOE -rVRJJ0XWR1YMkVRjRPUkQTtD0M/jDUt40yrevI63gPBH2/jjXfwJGH8KIZzB -iGdI0hmGdIYjnxEpn8nUz1TaZ7SRjDSQYAYSRE8E6wg7OsKmFr+uwa9q8Mtq -wqKKsKAkzCqI03LipJQ0LiGPiClDImq/kN7DZ3TyWG0cThObV88SNtBEDWRx -A17SgJY2wGUNEEX9nrJ+S123pq1d1FfPGKvGzVXDlto+c32XubHN3Nxobq0x -t5ebOotM3Tmm3nTTwAfjaKJuKk49/0ax8kq6GS7cCeId+LJhHnT0cwrOEUN8 -BqU83aE/WWU9meU8GeU96RU8aRU9q5O4VEjdi2QvsxV+acqg96rQt+rIKG18 -sP5ToLHA31zla2n2Pu7xPBl1O511Oll5Ztl8Ytxz0ELtVchHMpytiPyQR7/H -4twicu4gOPf2OA/W2Laz7EfDbPtO9tN6lmMxy6mA5Z/PispjxeewUrNZ2Zms -onRWZRqrPoXdmsTuTmYPfmRNZLDmslkreUxQIRNczDwsY6IqmPgqJqWGybCO -Z+snamWIu+jSPpp8mKocp6inyJpZsm6RpF8hGddIpk2SeYt0tEs6BpNODkin -UNIpjHyGpJxhKGc46hmR9plM/0ylf8YYqUgDBWagQPVksJ68oyNtaUkgLWlD -Q15Tk1dU5CUlZUFBmZNTZ2S0SSltXMwYETEHhaw+Aaebx+vgClrYIutfYh08 -rSRpK07WipK3wBQtB6rmXXUTSNu4qm9YNNTNmGrHLfXDlqZ+S3OXubXN3N5o -7qw1d1eYe4tMfblA19BIimEySTsXr1p6J1+PkWxFCMHBXKgfC+lJx7qQCM5o -shOE+nyb4bjCdpzlOo7yn/UKHdvEzvWSF5Uyr2K5b44i8JMyJFkVEat+Fa1N -DNVnhBgLg8zVAZYW3+OelyejHqezrqcrTkcgR+PeMx30qRrpIMfZS0iPBHQb -Dvs+lXMfw3kI4diCOI+XOA6TnKf9bMdWtnM127WE7VPMjixkxxWwU/LZWbns -whx2RRa7LoPd+onTlcoZ+MQZy2LP5rKXC9mbJezdMjakko2sZmNr2aR6Nq2R -zW5i860fqosl6WfKhhmKCbpqmqaZp2mXqPpVqmGDagJRzDsUyx7laJ96DKGe -HFJP4dQzJO0MQzvD0z8TGZ/JjM9UprVedKSRDjfQoAbavp66p6Pu6qjbWipI -Q9tQ09ZUtFUlfUlBX5Az5mTMGSlrUsIeE3GGhbwBAb+XL+ziirvYEuuw6aLI -uojyTqyiE6XsgKnaDzRtO9rWTQBC0LRgapy2NI1bWoYtbf2Wjm5LZ5u5u8nc -W2vuqwA8zoO5f7R4fdTPftAsJirXYmWg1+LdKMFBKBfuz0J70XEviEQ3FMUV -QnfZYjqvcJxnec6jAqc+kXOb2K1B6lUl8ymRB+QpQjKU4SmqqHh1zGttUoQ+ -M8xYHGKuCbK0Bhz3+p6MvjyddT9ddT0CuZj2nPTQ5xqkowL7VEpyENIe89i2 -DK4NgWsH5z7e4z5Z4z6b4z4f5Tj3cNyaOO4VbK8ydngpJ7aEk1LMySriFBZw -KvI5dbmclmxuVya3P4M7msOdLuAuFnPWyzg7lZyDGg68joNp4BCaONQWDrON -y7WO7S6upJ8jG2ErJljKGaZ6gaFdZujWGIZNunGbbtqlm8F0C4R+dEg/htNP -kIxTNOMMwzjDMz8TmZ/JrM9UtrVeTJSRCTcwoAYGRM840DHAOsaulrGjYWyp -mZsq5rqStapgLcnZCzLOnJQ7LeFNiPmjIuGQQNzPl/Rxpf0sWT9dbl2W+wjK -XqyqB6nuOdR072s7d/Qdm4b2FVPrgqV1+qh9wtI5YukasPR0W3rbLf1N5oE6 -81ClebjYPJJnnsg0znzSLaRoVpOUm/Gynbfi/VeCwzAuMpCFfUkjeBLIHkia -+wHjxRbLbYXrNst3GxW69Ynd2iWejVKfanlAqSK4QBmWpYr6qI5J1Lx9q/sQ -pc+ONJaEm2tDLW3Bx30BJ2O+p3Mvz1bdj0EvzHtuBqirFumswjrJSI5i2lM+ -y4HNe0Tm2aN5TyA8xy2e0zLXZYr7Yojr0cn1quf4VHFCKznvKjgfyrmZZdzC -Um5FCbeuiNtSyOvK5/Xn8kbzeFNFvIVS3lolb6uGu1/HPWzkopq5+DYeuYNH -7+Kxu3n8Xp6onycd5conucpZjnqRrVlh69ZZehDLsMMy7THNB0wLlHkEYx4j -WCco1gmGdYpjneHZn4nsz2TOZxrnM8bERhnZCCMbbmAf6tlQPftAxwZr2Xsa -9o6as6XibCq560ruqoK3JOMvSAWzEuGUWDQukowIZcM82TBHPsxUDNOUQ2Tl -EF41iNEMILT9h7q+fX3vjrF7w9S1YulYOOqaOeqeOOodsfQNWAZ6LIMdADJz -pM48WmkeKzGP55lnsg0LGbqVj+qND4rtRCk4VgSN4SMiOOggJt6HRvLGU14i -6F77TM8tjucKz2NW4DEGwCs8OqTeTTL/WnlwuSKsUBmZrYr+pH6TrImN06XG -GHKjjWVR5voIS3vYcX/IyXjg6Zzv2ZrXyZanZc/DCHXXIV+osW5yoouE5ixk -OXJ5T2m8Z3jeczjPeY/nus5zX+B5jvNe9vN827j+tdygGu7bGu6Ham5mFa+w -kldRwasr57WU8bpK+P3F/JFC/mQJf76Cv1rNB9Xx9xr50BY+so2P7eSTuvm0 -Xj6rX8AdEFjHuWRUIJ/iK+Z4qiWeZpWr3eDqtjiGXY4RzDFBOOZDjgXOOUJy -jtGcEyznFM85JXDPSNzPFO5nGs9aLy7ayEUZuUgDF67nwvRcqI57oOXua3h7 -Gt6Omr+l4m8qBesK4YpctCQTz0slM2LppEg+IVBM8BQTbOU4QzVOVY2R1KN4 -zQhaO4zQDUH1g2DjwLapb8PSs3LUu3DUN3s0MHk0OHo0NGgZ7rWMdlrGWizj -9ZaJKvNkqXmmwLSQq1/J0q5/Um2lKvaSpJB4EewNHxXFwYUwiQFUsh+O5otg -+OyzfUBc7xW+96zw5Zjo5YDEu1Pq3yILrlOEVSoji1XRuWoAT5eiSUjQpb01 -5L82VsSYG15ZOiKPB8JPxkNO5wPP1nxPtnwsYG8T9KUe6aXBeiqJ7jLqCxHT -lc91YvKdSHwXNN8NwvfY5nsB/xLfb5Qf0MsLbuGFNvBe1/OS63mZdfzCWn5F -Db+uht9Sze+qFPRXCEbLBZNlwrkqwUqtYLNRsNsigLQJEJ0CTLeA0CegDAgZ -Q0LOiJA/KrSOdtmUSDEnVC0J1GsC7SZft83X7/GMBzwTlGeG8SwI3hGKd4zh -HeN4JwTeKZF/RuafUfifafzPOBMfa+RjjHyUgY808OF6PkwngGoFEK1gXyPc -Uwt3VKItpXhDIV6TS1Zk0kWpfE6imBUpZwXKGa5qhq2aZqinqZopknYSr5tA -68cRhlGocQRsGtq2DG4cDawcDy0eDc8ejUwdjY4djQ0djfdZJrosk62WqQbL -dLVlpsy8UGxcztev52i2MlW7afKDD5LDRBHyHR8TzSGEMcnBFGoQjh4IZwXs -c/xBPL8Vgd+syG9c7Dcg9e+SBbfKwxoUUVXKmFLV2wJ1bJYmIU2blKTLiDMU -vjNVvTU3vbZ0Rh8PRp1MRJzOh56tBZ5u+x+B/UyHfgakrxbroyK+lFO9JEwP -IfcFR+BGFbjjBJ5wwUuwwHdT4L8kCJzmhwzzw7r5kc386GZ+chM/s4lf2Cio -aBTUNwha6wVddcKBWuFojXCqWjRXI1puEG02C3fbhAedQniPCN0nwg+KyMMi -+qiIPS7iTYqtC5R1zMvnxcplkXpdpAEJdTtCPVhggAiMhwITXGBGCixowRFW -cIwXnBAFp2TBKUV4RhWe0YWfCSYh3iTEGoUYgxBtECL1IoROBNOJoFoRRCPe -V0v2VJJtpRSkkG3I5asyxbJUuShRLYpUi3z1Ale9wNLM07VzFO0sUTeD00+j -DVMI4wTUNA62jG4fjWwej64ejy0dj88BP6ROjh9NDR9N9x9Nd1tm2iyzjZa5 -GstChXml1LhepNvK0+xmK/fT5YepEkSSEB3Hx7/mkCKYlHAyPRTLDIGzg/e5 -wVv8oBVh0Nz/29F1NrWRbdu/+OrVCzfNzJ1sj8cep3EOY+OMbWywAZMzQiAE -IgokhCSUc46t1DnnzKt6LVed0gelD716r73W3vucBv++Bv99AfnnNPbdOP7D -MPHzO/LCK+rSAHXlEX31DnPjBnf/Cv/sd/HdJenTRWXqgrr4i2b/Ud/+t3H4 -je79pxr4hxT+Ox//O5v5G5X/X7z830j9v8DWf3a6/1Hv/Weh91/J3v+Een/z -9f552P1mu/udvfvDQvenye6vY92rY917Y92no703o70Pn3ujn3tTn8D5EXBl -GFz/CG19gHZHIPcodDIBBaehyCyUXICyS1BhFaqsQY112BIAVk6BtmB0GyF2 -YeoQpj0Q44O4AMSHQCECijFQSoByClQyoJoD1QKoFUG9DOoV0KhBZkGEciKU -FaAMD6V4KMnBcQ6OsXCEQUI0EqRQP4X6SMxL4Mc4cYiR+wi1D1H7PXqvQ+8B -zG6D2amyrhK3nee3MoIzKTpi0kZIXvcrayfq2pFqP1DXd9WNLdXhUBxr/dkS -57yyNa1sjyvbn2TXkLw3KB6+4j3PWd9TKvCICN1Ho7fhxPVe5konfwEo/VSr -/FCsfZ9u/DsKfBdof+vpfrsPfrMFfWNHvllEv5vBfvyC//KJuDhEXnpDXXlO -X/uLuXGfuXWLe3RNeHlVHLoijV5Wpi+pyxe19V9110+G+3vj5Ds1+K0c+UZI -fMNl/kUX/kmU/4HV/w63/rfX/W+g9z/l3t+yvX/Eev8K9r719L7f7/3o7P1s -612Y7/022ftjondvojcw0XszAX78Ao59AafGwYVxaHUMWh+Ftj7Du59h9xf4 -ZAoOzMKRBTixBGdW4cIaXF5HLIFtaTZLBoA7CLKLWvc/6UZpD8KcImwQ5kKw -EIXFOCwlYTkNy1lIycNqEdZKsFaB9Sps1GGjKCIFEckLSFZAMjyS4tAkh8ZZ -NMZgERoL0XiQIvwkcUKQHpw6wugjhD6CGHePcbfZQ4A9qHP7VX6vxO/mhZ2M -6EpKWzHZGVIcAdVxojmO1c1D1bmnOrfVrU112666VhTXgrIzo+xOKLuflf2P -svu96BnkfK+YwDMq9ISIPkQTd+H+ZsOrneJvQPnXWu2XQuPnNPBTtPVjoPOD -p/fDPvT9Nvz9Ovr9MvbjHP7rJPHbKPn7R+qPd9T1V/TNAebWI/buHe7JTeH1 -DfHjdXn8qjJ7RV25rDku6TsXDPfPhu9HLfiDEvleTHzPZ/7NFL4jK9/i9W+Q -1r/A7j/a4D9q4L8K4Lep/jPif/CDPx2Dv+6CFzfB31fBK3Pg1Rnw3gw4MAMO -TkMfp6GxaWh6GlqYglen4I1JeHsC2fuCuCcR7wwSmEfCS0h8FUmvIfkNpLyJ -1rbQpgtt76KWGIAPMIuyiCOM8mLMKcYGUS6M8jFUSCBiCpEyiJxDlAKilhC1 -jGhVRK8hegM1SiJaFNGCgOUFLMtjGR5LcXiSxeMsEWWIME2eUVSApE4J+gRn -TlDmBGG9EOvtcp42dwzwR3XeXRUOS+JBXtzPSLtJeSembIfVrYC27dO2PZrL -rbr21Z0dddep7q6rezZ1b0nZn1UOJpWDUeVoRPJ+EHzvuMAbJvSSig7gib/Q -1AM4e7tXuNEpXwaql6r13wrNi6nWhWjn10D3Fy/48wH88zby8wb20wp+YZ64 -NE1cHievfqJuDNF/vmFuP2fuPWEfPOCf3Rbe3hJH/pQnbirz19XVq9rmFX33 -d+Poonn6i3b2ixL9WUr+zGd/Ygs/0pUfifoPWOt7uPtdD/q2Cf27DP2QhX5K -QL+EoAs+6JIburwD/eGArq9CN+ehu/PQwDw0OA8Nz8Pj8/DMPLw4h9jmEMcc -sj2L7s2g7hnUO4cGFtHwChpfQ9MbaH4TK21hVRfW3MXa+5il36AjHD3GcS9O -nhC0H2fPcC6C8zFMSGJiGpOymJzHlCKmlDG1gmk1TKtjegMzKhJeFvGiiBcE -PM8TWZ7IcESKJRMsGWeoKE2HKfqMYgIkG8BZP8r5Ye4U5E67vK/NnwCCty54 -qn1vfpSXDjPyQbJfZ94Na7tBbe9U2/Nq+0fa/oG2v6sebKkHDvVwTT1cVt3z -ytG0cjyueEel0xEh+IELvWOir8nECzz1FM0+ggv3eqU/O9WrQP2PavNKoXU5 -1f492r0UBH/zQhcPkYs76EUHdtGG/75I/DFLXpugbo7Stz7Sd98x91+xDwe4 -x4/5l/eF9/ekz3fkqdvK4i117abmvK7vXTWOr5j+S3roNzV2UU5dFLIXuOIF -pvIrWf8Fb/2MdH+CoB/b8E81+JcifCEN/xaDfw/Cf5zA1w7hGzvwLQd8ZwW+ -tww/W4bfLsMjy8iXZWR2GVlaQtaW0M0l1LWE7i9iR4vYyQIWWMHCa1h8HUtv -4rktvLSDV/fwxgHecuPdI8JSccgJgfkI4pS0IoI5I7kIwccJIUWIGULK4XIB -l0u4UsbVKq7VcK2B601cr0pERSTLIlkUyIJA5nkqy1Fpjk6xdIJhYgwTodkQ -xYUILoRzZyh/BvNBkA90BX9bOAUsiyeeVCVvSfbkleNsv8J8GNcOIvrhmXbo -19wnmvtYcx9qR3vakUs93lSP7erxqupZUD0zysmk7B8Xg5/58DAbHaITb8nU -azz7HM0/gUsPwcqdTv0m0LhRBa4X2tfS3aux3h9B6MoJfNmNXt7FLm/il9eI -q8vkjXnqz2nqzjh97xPzYIh9NMj+9ZIbeMq/eSR+fCiNP5Bn7ivLd9X1O9r2 -Lf3gpuG5bgb+0MNX1PgVOXVZzF3mi7+zld+pxiWi9RvWvQhDF3rwhSbyWwX5 -PY9cSSJXI8iNAPKnF7l9iNx1IQ82kEc2ZMCGvLMhn2zIhA2ds6HLNtRuwzZt -2I4NO7Dhx6v4ySoesOHhdTy+SaS2iNwOUdwjqgdEw00Ax0THS4InpKXlUCvX -BCnKigjrIkcpPkEJKVLMklKelIqkXCKVCqHWCLVOaE1CB0i9JlFVkaqIVEmg -iwJd4Okcz2Q5Js2ySZaNM1yM5q3/iRJ8FOMjqBCGhTAohrriWVsMAlKgLvur -/arXSUH1ZvvtgOO4fhzVj0O6J6B5fJrHq3ndmndf8+5oJ1vqyYZ6YlN9S6pv -TglMy2eTYnicj31mE8N0aojMDuL5V2jpGVx5DNbudRt3msDtavtWofNnuncz -Bt44g6/7+meXXdvDr20R19fJm6vk7UXq7iz9YJJ5NMr8Ncw+fc89e8O9eC68 -eyp+eiJNPJbnHymrD1XHA811Tz+8Y3hvmcGbRuS6lriupK9JuWtC6RpXvUo3 -rpKtP/DuFRS6DCG/t5ErdeRqCb2eRW8m0Nth9K4fve9BH/Zbr+hTB/psA323 -gX7eQCc3sPkNbGUDW9/AnBv47gZ+uIEfrxO+dSJoJ8IOIr5Fplxkbo8sHpAV -N1k/JgEv2fGRlleCAxQapPAQRYZp2oqLGM0laCFNi1lKzFNSkZLLlFKllBql -NiitSWkApdcluibRVZGpiExJYIo8m+fZHMdlOC7F8klGSNJCghQShBDHhDgq -xmAxCkqRrhRuSyFAPqsrwWq/ROkvaL6sdpLut9tOYrovrPuCus+v+U6002Pt -9FA73dVOtzW/Q/XbVf+KGlxUQnNSZFqMT/LJcTb9mc4Ok/n3eHEQrbyEa0/B -xqMu8KDZvl/t3Cv07qbBO3Hodgi5ddo/aO7P/f5xjrcc5N016v4y/XCeeTzN -PPnCDnzuH9v+8h3/+rXw4bk49qz/1JjFp+raE23zsbb7SHc/MHz3zLM7RvSW -nrylZm7J+T/F0p989U+2cZNq3SS6NzDoOoJe66HXAfRmFb1VQO9ksPtx7GEI -e+zHnniwgQPshQt75cTeObFRJzblxBac+KoT39jCt7aIvS3CvUV4nMSps9+g -jzjJuItM7VK5A6ropirHVN1LAT6q7ad6ARo6oy0Rbuk6IkpTFpUlGC7J8GlG -yDFigZZKtFyhlSqt1Gm1QWsArbVovSExdYmtiWxVZMsCVxK4Is/nOT7LCRlW -sH5rwZ0mRYtUU5iYRKQELMVBKda1PHi/bBJpKKFqv54cLGiBXL/R5k/qgbge -iOiBkB4I6AGfHvRoQbcW3NeCO1rQqZ2ta2c2NbysRBel+JyQnObTE2x/++cn -svQRr7xDa6/hxnMQeNpp/dXsPK52HxXAhxnoQRy5H0bv+bF7HvzuIXF3h7zv -pB6u049X6SdLzMAc+3yKfdl/uFL/sQjv3gojr6Uvr+S5l8ryC3X9ubY1oO8/ -1Y//Mk4fmaEHZuy+nrqnZu/JhXti+S5fu8s17zLtO1T3DgHdxtBbEHarjd1p -YPfK2IM89jiNPYlhAyH8uR9/6cFfH+Bvd/D3LnzUhU+78MUdwrZDOHaI7R1i -f4d075DeHdK/Q53t9Nv08V0qtU/l3HTxmK546bqPbvrpdpDuWvY2zCARBosx -hCUVrOyTYtk0y1uXPceKBVYqMXKFkWuM0mDUJqMCjNZmtKbENSSuLnI1ka8I -fFngS7xQ4IUcJ1q/soC2YtOiUysDZjApjcgpWE6CffedaPdrXLGGGqn1i/+h -Yr/FdpYxzlJ6KKGHonoorIeCeuhUD3n10JEWPtDCu1p4Wws7tKhdjdnkxLKU -WhQyc3xumu3v1R0jK5/w2ges8RYBXkHt553Os2Z3oAo+LUJPMvBfCfRxBHsc -wB+dEA/d5MM96vE2/cRBD9iZ5yvsywX29Sw3OMm/G+OHRoQPQ+LoW2lqUF54 -o9heq45XmuulfvDC8Dwz/ANm+IkZf6ynH2u5R0rxkVR5JNQfcc2HbPsh3XtA -Qg9w9D6C3+/hD1v4oxr+VwkfyOHPU/jLGP46hA/68XcefOiQGN4jxvaImX1i -aZ+w75Ob++TOPnlwQB4dUCcHVOCACh3Q0QM6sU+nD+ncMV300hUfU/czzSDT -DjHdMANGGSTGYgmWSLKkJRisHGTRmhUp1sUvclKZk6usXGeVBqsCrNpitTar -ARLflPiGxNdFoSoKFUEsC2KRl6zvWxAXGKlAWblPtuRKDpOziJyBlTTYL5Wk -2v2CZKKhxWp6tNJvrkXy/RZ2JG1EkkY0pkcjevRMjwb0qE+PevSoW4vuazGX -FnNqCYeStMtpm5RdFvKLXHGOLU3TlQmyNkY0RjBgCGkPQp3Xne6rJviyCr0o -ws+z6LMkNhDFB4LEUx/59Jh6ckAP7NAvnMyrDfa1jR1c5t7Nc0Mz/IcJYXhM -+DQifvkgzQ7Jy+8V+zvV+VbbHdTdb4yTV0bwpRl5fp4cMDIDWn5ALT2VK0/F -+lMeeMp1njK9JxT8hED/wvDHEPGkQww0iedV4kWReJ0lBvubhYmhEPHRT4x4 -ic9uYuyQnHWTy25y3U063dTuEXV4RHmOKN8RHTiiw0d07IhJHvVb9jkPU/Qx -FT9TD7LNENsOs90oC8ZZOMGilntKc2SGoy3ZYGUii9yseLEgKPNSlZPrnNLk -FIBT25zW4bSWLACS0JTEhijWRLEqSGWh/00L3BIrWxRaomRLqBRwpYApeUTJ -wWoWVDPdfiky3dKSDT1R0+OVfic0XjDiOSOeMeIpIx434lE9HtbjQT1xqie8 -euJITxzoiV0tua2lnUrGIefsYsEmFJe58iJbnaNr01RjggBGsfYw0hmCeu86 -4NsmNFiD35SQ1znsVf8GJ16GyBd+6oWHfnFIv9pj3rjYt5vsu3VuyMZ9XOKH -5/lP08LohDA2Kk6NSAsjsm1YcXxUXR+0/SH9+L1x+tY4GzRjr89TL43sS73w -Ui2/VKovpcYLofWC77xgwRc0/JxCnxP4M5R4DhIv2+TrBvmmQr4tku+z5Ick -ORwjP4XIMT/5xUtOHpNzHmrFQ214qG0Pteel3V7a66VPvXTQy4S9TOyESXrZ -jJfNn7DFU7YSYOtnbDPMtqNcN86BCQ5OcWiawzMcacnyPM8UeNbKRxbFWVFT -EaQaL9d5pckrLV5t82qH19qy2JJEQJIaolQXpZooVwW5yssWshZ5WvnOkihl -UrGMQBFTi4hagNU8qOV6WrajZ1p6ummk6kayaiTLRrJopPJGKmuk0kYqaaRi -Riqip870VEBP+fSUR0+59dS+ntlVs9tK3ikXHGLJLlRsXHWZrS/QjTkKmCLa -X7DOZ7Q3DIEfO9AHAB6qoe9L2Ls8/jZNDMbJwTD1JkC/OaHfHDFvD9j3u+yH -be6jgxux859X+dElYXxO+DItTk5Ic2Py8qhi/6w6P2u7n7TDEd07bPg/mOEh -M/7+PP3WzA3qxUGtMqjUBuXmoNgaFLpvOPANA7+h0dck8RonX8PkYJd82yLf -16kPFWq4QH3KUqMpajxGTYSpqQA1c0LNnVCrPtrho10+ev+UPjplTk4Z/ylz -dspE/Gzc359iyvrZ/ClXCnCVM64e5ppRrh3nugkOTHFwmkezPJ7jCctJWeLc -0nuWhCgLfaKzYqcmyA1BaQpKS1DbgtoVtI4stWQJkOSmJDfE/qcWoP3FKlam -q9F9PVkh1QquWka7hPZrWUVQK/T0fKffl8k2jUzdzNTMTMXMlIxMwcjkjEzG -yKSMTNzIRI1MWM8E9cypnvHqmSM9e6jl99XCrlJ0yWWnWHEINTtXt7HNZQZY -oNqzRGcK742j4CgEfe4inwB0pI4Nl/GPeeJDhvyQoIYi9Psz+v0pM+RhP7jZ -4X3u0w73eYsfc/DjdmFiVZhcFKfnxJlpabG/3VRxfFFd49r+mHY8qvtGjeAn -MzJiJobPMx/M/JBRGtKqQ2p9SG4OSe0hoTvEg0Ms8p7B3lPEe5J6h1JDEPWh -Qw0D1Kc6NVqmxwv0RJaeStHTcXo2TM8H6UU/bfPTmwFmJ8AcBJjjIOMLMoEg -Gwr2RzoTZ2z6rD/LVDjjSmd8JczXo3wzxrcTfDfFg2kezvJojsfyAlEQ+paq -LLAVgasKvJWbav0IskBRAFFpiWpHVLuihZfcluWWJANS/30LSiv6LMK0cpwl -SywlWafUGtm32FVMq6BaGdZLkF7q6cWOUWgbecDMNcxczcxVzVzZzBWNXN7I -ZY1cuj+SmosZuYiROzNyAT3v0/MevXCkFQ/V8r5S2ZWqLrHuFBoOvrnOtmxM -e5nqLpC9GRyaROEJCPnSRccBbKyOj1aIzwXSurVHktRIjB4OMcN+duSE/XzM -jR5y43v8lx1+ckuYcgjTdnF2VZxbkhbm5JUZeX1a2ZpWd6e0w0ndO6H7vxih -cTM2ZiZHz7OfzgsjRnlEr46ojREFGJE7I2JvRIBGOGSExYZpYpiihnF6BKE/ -gfRomx5v0hM1erJMTxfo2Sw9n2IW48xyhFk5Y2xnjPOM2Q0xhyHWE2JPQ2ww -zIbDXCzMJcNcJsLlIv2JpnKEr0b4eoxvJvh2SuimBTArwDkBzQtYUSBKAlkW -aMtVVb9qP0tOWBnKIr3mV2jaUh+vnqh1ZaUjK21ZaUmqBaIVdxZVWtnNEiSW -hmzSmuXUGqRm+esapldRvQrrFajfiyl1jWK736QuNs1ivT+9U6yYxZJZLBjF -nFHIGIVUf+S7GDWKYaMYNIqnevFEL3m0ypFaPVRq+1J9V2y6BGCLbznYjp3p -2ujeMgnNE/AsisxA6FQXm2zhEw1iokJ+KVLj/QMn6LE4MxphR4Ps2Cn3xctP -HPNTh8L0njDjEuac4vyGuGCXllal5SV5bV7ZnFddc+rBrHY8q/tmjOC0EZ4y -45NmeuI8N35eGjMrY3p9TGuOqa2x/rm4vTERGuORMQ4bY4lRmhol6VGMHoeZ -iR4z2Wamm8xsjZkvMwsFZinHrKQZW4JZi7LrYXYrwu5F2KMIexJl/VHuLMpF -Ylw8xqVi/fHOfIwvxvhyTKjGhEZCAJJCOy10swKYE+C8gBRFrCQSZZGsiH0j -bHmrumgpwL6osPKURX2tr3h1JbUnaT1Z6cpqR/q6xD5JWnnNkiKWemwxfY8G -WM6a1BuE3sD0OqrXEKMKGRXQrHTNctsst/pDIOWGWa71p63KZbNcNMt5o5w1 -ymmjnDTKcaMcMcohoxwwKqd69USredT6sdJwS819sbUrtF18Z4vtOhjQTkOr -JLxEIAsoOg9hc118tkXMNMjpKjVdoqfy9GSGmUywE1FuIsRNBvjpU37GK8we -CfMHwsKeuOgSl5zSikNatcu2VXljWdleUveWNPei5l3Q/QtGaN6IzpnJWTMz -c16YOi9PmtVJozGpAZNqe1LpTsrgpAhPCugkj09y5CRDTdDMBMFMocw0xMx2 -2fkWu9Bkl2rsSpldLbJrOXY9zW4k2c0YuxVj9+PccZzzxblAnAsl+GiCTyT4 -dILPJvlCUiglhUpSqCWFRlIE0mI7I3ZzIpgX4aKIlESsLParglWRrn21w5bD -akqWDrSkhdT+SoCdrzD1ZK2nWK8WcBZ8mkWP/YzG93WjJfUtd2YZ6hbVL1sB -hN7EjQZq1BGjDpk10Kx2zWrHrLbNKmBWm2a1blarZrViVktmpWBWcmYlY1RS -RiVhVKJGJWxUz/RaQK+fag2f2vTKwLHUcovtA6G7y/dcHLjFQA4atlPoKoGt -YNgyjC/1iMU2udCk5mv0XJmeKzCzWXYmxc3EuZkIP3vGzweEBZ+w6BGXjsTl -A3F1T7K5pLUt2e6Q1+2K06bs2NTDVe14Rfet6MFlI7xkxJfM1KKZWzgvzp1X -Zs3arNGc1VuzWmdW7c3K0KyEzIrorIDP8uQsS88yzAzFzuLsPMIugOxSl11p -satNdq3G2SvcRpHbzHPODLed4nYS3EGS8yS50yQfTPHhFB9L8ck0n0kLubRQ -SAvltFDNiPWM2MyIQEZs58RuXgSLIlySkLKEVSSiJpF1iWpITFNiLVMMyLwl -3S01aAkMK2dZNNj7iheoaKD1KvWXRY89QevxWpfTu6zeYfQOrbcpvU0aLcIA -cANAjSZiNmCzDpr13nm9e15vm/WWWW+a9YZZq5m1qlkrm7WiWcubtaxZSxu1 -pFGLG7WIUQ/rjTOtGVABv9LyyW2v1DkWu26hd8CDexzsYhEng25QmJ3A1zDC -BhOrPXKlQy0D9HKdWaowi0V2McctpLmFBL8Q4xfDwtKZsOIXV32izSOuHUn2 -A2l9T95wyY4t2elQXOvq/rp6ZNdO7Lp/TQ+tGVGbmVw1Myvn+eXz0tJ5dfG8 -vmgAi3p7Uesuqr1FBVqUkUUJWxSJRZ5c5OhFll2g2UWSW8K4FZhbBbm1Lmdv -cRtNbrPGOSvcdolz5fndLL+X5g/SvDfN+zP8WYaPZIR4RkhlhWxWyGeFYlYs -58RqTqznxGZObOWkTl7qFiSwJMFlCa1IWE0i6hLZkKimzAAyC8hcS+bbstCR -xa4sdWW5pyigoloLVjRI1iBJg0QNFHVQ0EFe73F6j9W7jN6ljQ5ldEijTRgt -3GxhJoCYTfi8AZ03wPNG97zROW+0zxuA2WiajbrZqJmNitkomY2C2ciZjYzZ -SJmNhNGIGc2oDoS11pnaDiodv9z1ST2vCB4LkJuHDzhkl0VdDOakcQdBbGDk -OkzaQcreoddajK3BrFbZ1RK3UuBWsvxySliOC6tRwRYW14Ki3S+t+6QNj+Q4 -kjcPZeeevL2juLaVPafq3tS8m9qpQz9zGJENI75uptbNrP28sHZetp3XVs+b -K2Zrxeis6N0VDVxR4VUFXZWwVZFYFahVnl7h2BWWW6E4G8GtoZwd5jdA3tHh -nS1+q8m76vzO11btfoE/zPHuLO/NCoGcEMoJ0ZyQyAvpvJjNi4W8WCqIlYJY -K0iNggQUpFZB6hSkXlECyxJckdGqjNVloiGTTZkCZKYls22Za8t8Rxa6ithT -pJ4ig328FEhREVm3FizpsNhfkKBDvA5yOsgaPaa/LMi6pNEhzA5utjGzhZ4D -8DkAnQPgOdA7B7rnQPscaJ0DTRNomEDNBKomUDaBogkUTCBnAhkTSJpAwmjF -9HZU64TVbkjpBWXQL0M+CfKK8DGPuDn0gMV2GXybJrZI0olRToTaBGlHl9lo -setNdv0rA9mL/FpOWMsIa0nRHhc3oqIjJG0GJadf2vLJ217ZdSTvHCq7+8re -rnroUj3bmm9bD2zp4S0j5jSSTjOzaeYd56WN8+r6/9Xt54DdbNuNjl3v2TXI -riJ2BbXLuF0i7SJlFxg7z9o5zs7w6yS/gfObKO+E+S2Qd3X4nRa/1xT268Jh -VXCXheOi4MkLJ3khWBDCBSFWEJNFMVMUc0WxWBTLJalakuolqVGSgJLULsmd -ktwry1BFhqsyWpOxhkw0ZRKQqZZMtxW2rXAdhe8qQu8rXqAiQYoMKQqsqv8P -8R1SeA== - "], {{0, 144.}, {144., 0}}, {0, 255}, ColorFunction -> - RGBColor], +1:eJztyMEJwkAUBNAlXjzagl14ErwEvEZSQIJr8LKBTUDsIm3aRTbgORU8ePOZ ++ed+bF5VCGE6ltN0n1vO3fdxKqNN03tI8XlPcxxivvSH8lz+2fqvvgIAAAAA +AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA +AAAAAAAAAAAAALBjBcshkTw= + "], {{0, 144.}, {144., 0}}, {0, 255}, ColorFunction -> RGBColor], BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True], Selectable -> False], DefaultBaseStyle -> "ImageGraphics", ImageSizeRaw -> {144., 144.}, PlotRange -> {{0, 144.}, {0, 144.}}]], @@ -2174,7 +2554,6 @@ v4fOyXeuunO4ndvsnF/nwjpH1LmTzim0r90+aPtm7bM0l2+O29yvOVFzhb5D S+r/WPq/h87Jd666c7id2+ycX+fCOkfUuZPOKbSv3T5o+2btszSXb47b3K85 UXOFvkP7bmmd27qo92jP3e7Teu36D7BDs/w= "]], {}}, - AspectRatio->1, Axes->{False, False}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, @@ -2199,8 +2578,9 @@ UXOFvkP7bmmd27qo92jP3e7Teu36D7BDs/w= CellChangeTimes->{{3.857790326376232*^9, 3.857790371760695*^9}, 3.8577912617645617`*^9, {3.857791601138686*^9, 3.857791647292798*^9}, 3.857793207906136*^9, 3.8577932784582577`*^9, 3.857799952996063*^9, - 3.858849758989471*^9}, - CellLabel->"Out[7]=",ExpressionUUID->"316a1105-8eff-4541-b7ab-c807e95c3253"] + 3.858849758989471*^9, 3.8673872033934526`*^9, 3.867392578825694*^9, + 3.867399193184537*^9, {3.8673993021765738`*^9, 3.867399322064127*^9}}, + CellLabel->"Out[10]=",ExpressionUUID->"85a2d28b-ab9a-4905-9bf4-82b4db4297e8"] }, Open ]], Cell[CellGroupData[{ @@ -2212,7 +2592,7 @@ Cell[BoxData[ RowBox[{"Most", "[", "prep2", "]"}]}], ")"}], "[", RowBox[{"1", ",", "\[Theta]"}], "]"}]], "Input", CellChangeTimes->{{3.85779358958924*^9, 3.8577935913652163`*^9}}, - CellLabel->"In[8]:=",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"], + CellLabel->"In[38]:=",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"], Cell[BoxData[ RowBox[{ @@ -2272,8 +2652,9 @@ Cell[BoxData[ RowBox[{"-", "1.14841`"}], "+", "\[Theta]"}]], "]"}]}]}], ")"}]}]}]], "Output", CellChangeTimes->{{3.8577935448317623`*^9, 3.857793591563696*^9}, - 3.857799954963155*^9, 3.858849759739835*^9}, - CellLabel->"Out[8]=",ExpressionUUID->"c57d6a51-b537-4cbe-ac96-92ebb8cedd38"] + 3.857799954963155*^9, 3.858849759739835*^9, 3.867387206768237*^9, + 3.867392580100976*^9}, + CellLabel->"Out[38]=",ExpressionUUID->"e7286934-338d-4dca-a6d6-10f11548d20b"] }, Open ]], Cell[CellGroupData[{ @@ -2291,7 +2672,7 @@ Cell[BoxData[ RowBox[{"-", "1.148"}], ",", "1.148"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.8577935086036673`*^9, 3.857793511851841*^9}, { 3.8577935977894907`*^9, 3.857793599909363*^9}}, - CellLabel->"In[9]:=",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"], + CellLabel->"In[39]:=",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"], Cell[BoxData[ GraphicsBox[{{{}, {}, @@ -2507,7 +2888,7 @@ yGdH9QVkv8j+YoUaD0JHz4lkai6gf3PFm3ltcdD318J9UGcBcT/x0NJ4dh/v V+/R6xksIBmXGzxuF2Jh6mbOpWhjnPkewZRADKRpNaa/NltACkYv6swpUaAn +Glqw3IBXakLi2/BIuH/34sh6v+/F/sfz7K6AA== "]]}, - Annotation[#, "Charting`Private`Tag$5464#1"]& ]}, {}}, + Annotation[#, "Charting`Private`Tag$197751#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, @@ -2548,8 +2929,9 @@ V+/R6xksIBmXGzxuF2Jh6mbOpWhjnPkewZRADKRpNaa/NltACkYv6swpUaAn Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.8577935124961348`*^9, 3.857793564055354*^9}, - 3.857793600161285*^9, 3.857799955432135*^9, 3.858849760373335*^9}, - CellLabel->"Out[9]=",ExpressionUUID->"f0af288f-6d62-4e20-864d-98a3f00e528f"] + 3.857793600161285*^9, 3.857799955432135*^9, 3.858849760373335*^9, + 3.867387207845401*^9, 3.8673925806357822`*^9}, + CellLabel->"Out[39]=",ExpressionUUID->"2d0442be-aad9-4e64-bcb2-9c95e259b44d"] }, Open ]], Cell[BoxData[ @@ -2572,7 +2954,7 @@ Cell[BoxData[ 3.858849847281784*^9, 3.8588498617377768`*^9}, {3.8588511148250217`*^9, 3.858851126714478*^9}, {3.858851205810751*^9, 3.85885120581146*^9}, 3.85885146277564*^9}, - CellLabel->"In[50]:=",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"], + CellLabel->"In[10]:=",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"], Cell[CellGroupData[{ @@ -2593,7 +2975,7 @@ Cell[BoxData[ 3.857795427006524*^9, 3.857795440446805*^9}, 3.8577962389098873`*^9, 3.857801064357966*^9, {3.8588511121776543`*^9, 3.858851141707258*^9}, 3.858851460264333*^9}, - CellLabel->"In[51]:=",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"], + CellLabel->"In[11]:=",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"], Cell[BoxData[ InterpretationBox[ @@ -2634,8 +3016,65 @@ Cell[BoxData[ 3.858849768101416*^9, 3.858849849927265*^9, 3.8588498882662687`*^9, { 3.858851116580223*^9, 3.858851124971182*^9}, 3.858851163937449*^9, 3.8588512104999847`*^9, 3.858851461109468*^9, 3.8588515200472*^9, - 3.8588516053495693`*^9, 3.858851645594129*^9}, - CellLabel->"Out[51]=",ExpressionUUID->"af000ddb-e1d9-42c9-8898-089a4381de4a"] + 3.8588516053495693`*^9, 3.858851645594129*^9, 3.867387230042351*^9}, + CellLabel->"Out[11]=",ExpressionUUID->"b14ef501-bb22-4221-909a-74857a964dbd"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ + RowBox[{"Series", "[", + RowBox[{ + RowBox[{ + RowBox[{ + RowBox[{"DScriptF0D\[Eta]List", "[", + RowBox[{ + "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",", + RowBox[{"{", "}"}], ",", + RowBox[{"{", + RowBox[{"g", "[", "0", "]"}], "}"}]}], "]"}], "[", + RowBox[{"2", ",", "\[Theta]"}], "]"}], "[", + RowBox[{"[", + RowBox[{"-", "1"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"\[Theta]", ",", "0", ",", "0"}], "}"}], ",", + RowBox[{"Assumptions", "->", + RowBox[{"{", + RowBox[{ + RowBox[{"R", ">", "0"}], ",", + RowBox[{"\[Theta]0", ">", "0"}], ",", + RowBox[{ + RowBox[{"g", "[", "0", "]"}], ">", "1"}]}], "}"}]}]}], "]"}]], "Input",\ + + CellChangeTimes->{{3.867392252744265*^9, 3.867392308104785*^9}, { + 3.867392401627043*^9, 3.86739242170674*^9}}, + CellLabel->"In[30]:=",ExpressionUUID->"564592fe-1f79-46a8-bf0c-12430c5a848d"], + +Cell[BoxData[ + InterpretationBox[ + RowBox[{ + FractionBox[ + RowBox[{"45", "-", + RowBox[{"8", " ", + RowBox[{"Log", "[", + RowBox[{ + SuperscriptBox["\[Theta]", "2"], " ", + SuperscriptBox[ + RowBox[{"g", "[", "0", "]"}], "2"]}], "]"}]}]}], + RowBox[{"120", " ", "\[Pi]"}]], "+", + InterpretationBox[ + SuperscriptBox[ + RowBox[{"O", "[", "\[Theta]", "]"}], "1"], + SeriesData[$CellContext`\[Theta], 0, {}, 0, 1, 1], + Editable->False]}], + SeriesData[$CellContext`\[Theta], 0, { + Rational[1, 120] + Pi^(-1) (45 - 8 + Log[$CellContext`\[Theta]^2 IsingScalingFunction`g[0]^2])}, 0, 1, 1], + Editable->False]], "Output", + CellChangeTimes->{{3.867392275309338*^9, 3.867392325117755*^9}, + 3.867392402170586*^9, 3.867392436325769*^9}, + CellLabel->"Out[30]=",ExpressionUUID->"a64bfe21-ffa8-4116-9178-4a9bd1ff53e8"] }, Open ]], Cell[CellGroupData[{ @@ -2643,12 +3082,12 @@ Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"8", "/", "60"}]], "Input", CellChangeTimes->{{3.8588515122487593`*^9, 3.858851514504118*^9}}, - CellLabel->"In[43]:=",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"], + CellLabel->"In[12]:=",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"], Cell[BoxData[ FractionBox["2", "15"]], "Output", - CellChangeTimes->{3.858851520077345*^9}, - CellLabel->"Out[43]=",ExpressionUUID->"0d1a07f3-3dbe-4537-a762-6504ecebe3ad"] + CellChangeTimes->{3.858851520077345*^9, 3.8673872300867767`*^9}, + CellLabel->"Out[12]=",ExpressionUUID->"ad62f5d9-ff96-4126-bac4-f13c7cefde52"] }, Open ]], Cell[CellGroupData[{ @@ -2656,12 +3095,12 @@ Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"16", "/", "120"}]], "Input", CellChangeTimes->{{3.858851523424665*^9, 3.858851524816543*^9}}, - CellLabel->"In[44]:=",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"], + CellLabel->"In[13]:=",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"], Cell[BoxData[ FractionBox["2", "15"]], "Output", - CellChangeTimes->{3.8588515254659557`*^9}, - CellLabel->"Out[44]=",ExpressionUUID->"062f12b6-ea91-4e05-b0ab-1496de323331"] + CellChangeTimes->{3.8588515254659557`*^9, 3.867387230110116*^9}, + CellLabel->"Out[13]=",ExpressionUUID->"e1ce7d09-44f9-4c6c-a067-9b21492174d3"] }, Open ]], Cell[CellGroupData[{ @@ -2733,6 +3172,119 @@ Cell[BoxData["$Aborted"], "Output", Cell[CellGroupData[{ Cell[BoxData[ + RowBox[{ + RowBox[{"uf", "[", + RowBox[{ + "\[Theta]0", ",", "\[Theta]YL", ",", "B", ",", "C0", ",", "CYL", ",", + RowBox[{"{", "}"}]}], "]"}], "[", + RowBox[{"R", ",", "\[Theta]"}], "]"}]], "Input", + CellChangeTimes->{{3.867391939682372*^9, 3.867391982506528*^9}}, + CellLabel->"In[23]:=",ExpressionUUID->"8a72abe3-fe5f-4db1-bdff-5188d3d18d6e"], + +Cell[BoxData[ + RowBox[{ + RowBox[{ + SuperscriptBox["R", "2"], " ", + RowBox[{"(", + RowBox[{ + RowBox[{"CYL", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "2"}], " ", + SuperscriptBox["\[Theta]YL", + RowBox[{"5", "/", "6"}]]}], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{ + RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Theta]"}], "+", + "\[Theta]YL"}], ")"}], + RowBox[{"5", "/", "6"}]], "+", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"\[ImaginaryI]", " ", "\[Theta]"}], "+", "\[Theta]YL"}], + ")"}], + RowBox[{"5", "/", "6"}]]}], ")"}]}], "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]]}]], + " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{ + RowBox[{"-", "\[Theta]"}], "-", "\[Theta]0"}], ")"}]}]], + "]"}]}], "+", + RowBox[{ + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], "\[Pi]"], + "+", + FractionBox[ + RowBox[{"C0", " ", + RowBox[{"(", + RowBox[{ + RowBox[{ + SuperscriptBox["\[ExponentialE]", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]]}]], " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}], " ", + RowBox[{"ExpIntegralEi", "[", + FractionBox["1", + RowBox[{"B", " ", + RowBox[{"(", + RowBox[{"\[Theta]", "-", "\[Theta]0"}], ")"}]}]], "]"}]}], "+", + + RowBox[{ + SuperscriptBox["\[ExponentialE]", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]], " ", "\[Theta]0", " ", + RowBox[{"ExpIntegralEi", "[", + RowBox[{"-", + FractionBox["1", + RowBox[{"B", " ", "\[Theta]0"}]]}], "]"}]}]}], ")"}]}], + "\[Pi]"]}], ")"}]}], "+", + FractionBox[ + RowBox[{ + SuperscriptBox["R", "2"], " ", + SuperscriptBox[ + RowBox[{"(", + RowBox[{ + RowBox[{"-", "1"}], "+", + SuperscriptBox["\[Theta]", "2"]}], ")"}], "2"], " ", + RowBox[{"Log", "[", + SuperscriptBox["R", "2"], "]"}]}], + RowBox[{"8", " ", "\[Pi]"}]]}]], "Output", + CellChangeTimes->{{3.8673919604421053`*^9, 3.8673919827729807`*^9}}, + CellLabel->"Out[23]=",ExpressionUUID->"55f9a443-3a9c-4c58-b340-624c596abd0b"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ RowBox[{"Series", "[", RowBox[{ RowBox[{"(", @@ -10055,6 +10607,114 @@ wo7f6M9G3DFukf8bRl0snUqA3/GXTldOhv+77B+O7zRF\ Cell[CellGroupData[{ Cell[BoxData[ + RowBox[{"Plot", "[", + RowBox[{ + RowBox[{"Evaluate", "[", + RowBox[{ + RowBox[{ + RowBox[{"(", + RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "2", "]"}], "[", + RowBox[{"R", ",", "0.1"}], "]"}], "]"}], ",", + RowBox[{"{", + RowBox[{"R", ",", "0", ",", "2"}], "}"}]}], "]"}]], "Input", + CellChangeTimes->{{3.867392839450399*^9, 3.867392886363302*^9}}, + CellLabel->"In[51]:=",ExpressionUUID->"d91d527e-9cac-4ce1-9ae6-5ff3208121a2"], + +Cell[BoxData[ + GraphicsBox[{{{}, {}, + TagBox[ + {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ + 1.], LineBox[CompressedData[" +1:eJwVx3k81PkDx3FKKOXKrza5o1SSytGh3kiNRW2hn1QkOqTWkQ6kLYXsRuwv +O5IjosnZjDIS037MGAqDMeabksjVKlLJEcV3+/3xerweT32fQJcjM2RkZM79 +6P/XF6XbMsxyMCnNuS64KiErGH/GPgjKwfXEdU6+xyREEh347tXTHKzPqIv5 +xVpCDGeaFJievYsDnhaDm/qbSc1UjqlUwgLzH3/VBkYzmfuFaaEbl4fSE1bZ +zfpiwl1zhunQkwexaNez5Okm4hXkOh68MR8aF3K3hJQ3EfYHlcfC/nyYDNkH +PDVvIi79sdb+2wohFpcTp3WN5Obr8K3c6fswLleWT3YVEVstj5yOPWwILes3 +pWuKyPt9VrMUi9hQrT2nbttdT3QGw3yLVnHwU0mMnVtIPQk8bmkk086Bg0tR +/a60OqJ+mJ17d/0DFB6y116tUEv2emSxP30uwZuO27LZZjXk4yu3OXc0uQia +3S1nMbuGxHgpHnHdykVEQnSNenc1eegbqFmaxAVvYEqhKKmaKAdsjj5vVQq/ +zefObJkSkurLL/fJX3iEwckly8bbqsjaQjV5LcVy9C/aSIkEfFJrWu3dYFaO +QaH/hnnZfOJdHFrxm0c5DLeE1v92hU/iSzuDuvLLcfO5ps4Xez7pryx6xdpR +gYgl2UmqdZUkg/q5eM0NHmScviz95TEhSnTkAYYOAWe6KWgCPHLzuLuXyfYf +tozndyjxiKHUxFstgCDxdchB+RcVZEteq++rJwRiQUbfouAK8jiPyX1kWgmz +wUfuNqxy8sF1kOfUWIlYq7kWclqPyZ7c5PqQeQJU8hOepa8pJWmel52P6gtg +bB4VWixXSrrVf23YayHA3jKt8LFWLgm8YNe02VMAReIoVL/IJb+7fJAoFAnw +aa9oOraphDz5bteW6lyFXed5/9MIe0iMdg/1V10TInPet23LBzlE8yJj47Es +IWJ7n6i48zlEtSjz2pxHQoiDbxQUMzlkUtHVdHe3EA7LJL0DthwirnwU0rG+ +GplrYlul5mwSbhY5/bWvGokMvZCrrELSqKKhYWrzFIl1C4dOCe+Rc40bcHOk +FnoBz2VTU9KJsim3r1axDjIp5gO0ZjrJiTeL+6ZVh0sRVd01aWmk2XnZS69t +dXhjoZkZmpVKVtZrhBgx6+AdJvlpPzuFdD79yHpgVQ/vyrWBGe1/EQb/rnJD +uAiXZLL0eobjyMIStQ5Z2SbI9JZRLEd7Utq9VdRkLYGM80x1lbYUCPzTF3sM +ShG6IL2M0snF6NLNKkW/tqLwYMiG7/kczJgoUF1s1AbD4lPhdku4sKS9S13v +t0Oma112V38ZRFHmjTUrOjHX49j5L0486CYOTOQNvUGs640CXhHBwHhnB2XW +DccChz/4znzkvK+oU77eA0WHKvuuagGUte997O3txch2C0V3XSHijnOPZhq+ +RYYbZauzsxpjNgW9fhf/gaoyL+3ZlRqcXissWVDVj/wO1h7tv56i877wWrP+ +e2iFqRuPFT3DN39p6vLwAeQz5KvLHtZipa3C9NGKQWzUnqOQnlYHxh39Y8UL +h2C3ZAGzN74e57QPGnQd+IjSu2pyUUdEMBnco9S64xOe/b44jWnWgPkqnxSF +k5+wIoK5c4dcI+RIKntJ2mcYM+Sv+wkaccK84uVsp2FIDuVefRfbhIKffTL/ +HhtGzI1Zt/YZiDE6oKn6lvkFVp1afd/PisF1ZcxMsh/BjD8XBAibxLjoEH27 +5O0I1u28/J7WbYb+a8cX2dGj8EmqjHQ92YyNVlFJi9aOQddt6/YHvGYc0Gma +kG0Zw/BJkcuVWRKM1sV3B0WOQzxhobbeRYKbcl6nXQy/QqR+ROl1sgTzO7h3 +Zgi/wleOs8inTYJZFyLdNgRPQC8rdl2BXgtk8rzY3eqTGGONlqR4t+DULXa8 +umASHYsr+pbltODJylhFtYBvMJ95trO5twVqjqdMLit/xz5HlzPlulK0rxK3 +hPG+o8fOz83ASwpOBgx7vabwd5fh8PxkKTzZlmra01N4ThmHlTVIcSk6K7I9 +fxq3Qob6eQoUivq1U5WdaYi+zt/Gs6YQmx7t3bGThs555QjWZgqHXT4Y3d9N +w99DNiNxCwUtHo+zw50G267zzmEbCn8k7K+J86HxX+s+jpI9BT/LlM9zwmgM +6/h07XGiYBCl4aDAouGWvep+mweF6fUR81pzaTjfCXIS7KPw8kOPhFVAw6XN +QJq3n0Ki+0PP7cU05BJ67oV6UqBXuIRE82iYKlh7/OcQhfbmhIyZLTSM+8+8 +dfSjUBYz7ttC0dh52tt6zXEKSZsOLs9+QSNm9ciFhf4UnO6alth10NBLMBL2 +nKBQHtpQG/mOBtNWw/N8IAXmKouE3YM04lILVQ8FUQjuTnPT/0ijrWoOZ3sw +BWPnk52VIzRsnix9oBZCQU5WmpM4TuN5/oDG+A+/4W7y956kUXs7yrf9NAWe +f/ZqsykaM4xH0/lnKCTrKo3SNI3wRhsh6yyFfwEnzdXi + "]]}, + Annotation[#, "Charting`Private`Tag$236918#1"]& ]}, {}}, + AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], + Axes->{True, True}, + AxesLabel->{None, None}, + AxesOrigin->{0, 0}, + DisplayFunction->Identity, + Frame->{{False, False}, {False, False}}, + FrameLabel->{{None, None}, {None, None}}, + FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, + GridLines->{None, None}, + GridLinesStyle->Directive[ + GrayLevel[0.5, 0.4]], + ImagePadding->All, + Method->{ + "DefaultBoundaryStyle" -> Automatic, + "DefaultGraphicsInteraction" -> { + "Version" -> 1.2, "TrackMousePosition" -> {True, False}, + "Effects" -> { + "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, + "Droplines" -> { + "freeformCursorMode" -> True, + "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> + AbsolutePointSize[6], "ScalingFunctions" -> None, + "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& ), "CopiedValueFunction" -> ({ + (Identity[#]& )[ + Part[#, 1]], + (Identity[#]& )[ + Part[#, 2]]}& )}}, + PlotRange->{{0, 2}, {-0.2895361321455564, 0.33536690869662034`}}, + PlotRangeClipping->True, + PlotRangePadding->{{ + Scaled[0.02], + Scaled[0.02]}, { + Scaled[0.05], + Scaled[0.05]}}, + Ticks->{Automatic, Automatic}]], "Output", + CellChangeTimes->{{3.867392859949072*^9, 3.867392886626802*^9}}, + CellLabel->"Out[51]=",ExpressionUUID->"559d6958-bbd1-42f4-b122-f3904597675f"] +}, Open ]], + +Cell[CellGroupData[{ + +Cell[BoxData[ RowBox[{"ParametricPlot", "[", RowBox[{ RowBox[{"{", @@ -10063,8 +10723,8 @@ Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"(", - RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "1", "]"}], "[", - RowBox[{"1", ",", "\[Theta]"}], "]"}], "]"}]}], "}"}], ",", + RowBox[{"DufDut", "@@", "prep2"}], ")"}], "[", "2", "]"}], "[", + RowBox[{".1", ",", "\[Theta]"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Theta]", ",", RowBox[{"-", "1.148"}], ",", "1.148"}], "}"}], ",", @@ -10082,321 +10742,224 @@ Cell[BoxData[ 3.85779801950991*^9}, {3.857800886978672*^9, 3.8578009121390047`*^9}, { 3.857800968380188*^9, 3.857800968803484*^9}, {3.858850385148155*^9, 3.858850391852289*^9}, {3.858850587967984*^9, 3.858850605599574*^9}, - 3.8588520958839197`*^9}, - CellLabel->"In[53]:=",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"], + 3.8588520958839197`*^9, {3.867387377621475*^9, 3.867387402908786*^9}, { + 3.867387457214499*^9, 3.867387468630344*^9}, {3.8673875335359592`*^9, + 3.867387533607287*^9}, {3.867392588550147*^9, 3.867392633414612*^9}, + 3.86739272401696*^9}, + CellLabel->"In[46]:=",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], FaceForm[Opacity[0.3]], LineBox[CompressedData[" -1:eJwVlXc41v8Xxs1EVmRnZ0aFjKz3W0VWpSiiIgllRgNJSEI2WZUkKikrEeF8 -wteWlb13ZT3PY0XGr99f57qv+7ru65zz+uMWtXU7e42Giooqh5qK6v8zZs4X -KV+mwN/U+IPrm/EEttMfPGtFgfJrAs0OR70JUh/nPXcLCtQXWOtWNTgRaWeG -eSPPUaBml5P54ShbwqTufVH2WQq82RhW/HrGiqBCd8zqT1NAbE/waOTZc0Tu -Zx3KlDEFFh7IfrI+fYa4LMcSTWdIgaCkYAfeX8YE6+seebETFEj23aV+JUuf -qODLaETHKSAgRz+Se1WXcI12u35JhwLySVup3U1HCSEGDYZ72hRw0xlWLS3E -RPP9HZlJGhR4CBUr1itahO9S29EiNQoUPnX4M8OpQcg5vRjpUKaATC6vn0W6 -GjEw6uhHVqSANH1Pm0uYChFucXgv2yEKLO3rCGwvPUxotmyXyMlTwDt/tshE -UomY0W00N5SlgFac45OcSgUipSxh2UGKApjX4NP440OEoZJt3KN9FGgf25PP -M3yAWM+SV3gtSoHYqPOCtL/kiPcia98JIQr0ynBPykjsJywTq52HBChQt1zH -lR0uQzCyRjNt8FKAAaziOvikiS9BVu/4uClwJtD780itJOH4V1JPlZMC7JP1 -im2xEgSvB2XcjJ0CCSkTL/HdfUTdz/IADxYKXJoc7jH0ECe8rEOFo5koENne -5Hg7QIyQ6jIr/8hAgd1/zga/SBclgqtm/vykpsCfk7qPyzlFCBX14oQd22S4 -dM1Qw/abEDGZF3h43wYZfm7PPGb3FCTipU6166yR4WYr87aF+l7ieCqfu/UK -GURO1sue5hIglvZMstxfJMOd6BRBbRp+IuNJXnYKiQxse3/Opm3zErTeJ6Y7 -f5OhZscrT29JHqJggePR4jQZ+qNN6F+d5CZs7YfEdk+S4XwOX36iPxdRaXr7 -svEwGUIF57x9d+whPBrwxvUBMtAa1R4ZN+ckRHWYUx73kuHor79F9AUchP+B -152VHWQYzPlgKe63mziU6eo50kqGxK/CQbsX2IlhAfXdW81ksFVlrU61Zye0 -GduMj9SR4UtSxY7hFlZi/sHz3+f/I8PhT89of42yEKkrDiG3Kskgfv/ogtIW -M7E5vlWVW0aG+Or2R7Kmu4gPlg1Xmkv+7RPGdPVbGBNxse3p9u8iMkACKcKl -gZEoq5DTkMwng5FgUf4xm52ET7JlwfNMMnhNXepU7acnuK8bHPZNJwO1j97e -m5r0RIGaWpHVSzLc+Bxu2vqajvjVzVXKn0wGBQFx5pKHtETQWzrN9adkkPmU -YvHhLw0hcnexvDeWDIHjTCeTvGgIC+62b0nhZCghH/a28acmlibhmFcoGbwP -nX9az0RNRH3O+c88+N99ddpPjidTETVm4fXc/mQY2rGqcOnhNijHnWiL9yQD -jn8vrnt3A1ptVUxvuZNBOvK8c2bVX3BWlOg0dSHDOjIWe8v1FzLaaHo5HMgg -aKu/50X9GnCwV4xEW5Kh9vspVzunVcgZ/mDrbk6GbxajpbVDK2CY+2zitBkZ -WH98JyudX4GAU94/WU+RISvGjTrUZBlI4YdJ4TpkYBe7X6nutgjhF8U9nLX/ -5SWM6M1sUUBKjmPJSIMM91Vk05/GUOBy48IqkzIZhjUMg52BDM2M2dsh0mQ4 -kXf63S11Ejj2Jgc4SpCh6fRpLa+KBaDLCqHVFyODb22oQTDzAmjq2zMw7CXD -hYmRa6Gf5+B9sCjbI7Z/OZ4V+VdVZ0DvPHuMHTMZpF7RPuR59RvGJLY5jjOS -gX9RqO0o62/g+2+Am5b2H+9XNdVxlJ8QQpskFLBCgkK7jiHbkSnY1xGcZrNI -Ao/8u5dZr04BpN8WwyQShNi3cHr8nIQVHVPJ7V8kkAkrTuD4OwHX/FkP3B/8 -51cJmhVojQNdNU9ZTB8J6iZv1dD0j0EGg6jhm24SiBwfvavqMwZjkUr2LW0k -mEwYbN9bMQo2LyxSRWtIcFObVy7RcgS2R67IqVSRgFU/xbGGfgRS9zmVGhIk -yPI5EUB7bRgGs+93eZaSYPdKY92cyBBYlqaz1uSQYL5hc7qytB/WNrOf92WT -wKlOpnxGqh+SdD7LLrwjgXgNi/zrxD7orqvV431Ngul3WjqBfr1g1j3rdyOR -BIYyR3TvOnbDqSWVBVb/fxwexppIpnfAnCq+L36fBNXkDYadih0Qfs9gl5oP -CbxWL9wvrGqHRpqLUldukSCeytDhxGwb6O8OsP7kSALeq2pHzM+0wtEDjS3m -Z0hAW7XToqW2AUZv/rjkfIoEApOpEhO8DeD/eXDG34gEU4V8o5HO9QCaJIb3 -uv/+txgv4ilQB5pGXHjjCAl+79u0F0v4D1QdrfPSxEjwWFs16dIyAdLO/dNV -wiT4w2DxWdiFAF53c+HpvSTg2PNoy60Z4M/d05HyPCTYYt8/EVdRDqWPkXPp -rn95OnUHZBtKwOcUMnn3awHSnabry7wLwOq8KsyPL4A6bV4C6Xk+aF4+eEB5 -6J8vFhYxW5kHmy7CzJXtC1CjI3hJ4EAO+Eds1/Z/XYC/fN0RLuVvIbgJEFvk -AoR88dfKCk0Ehx/FOedCFiCaMSdtf2E86A/kCj4PXIABO1oRrekYYJx9+Vf6 -7gLov89p3dEcAuG7/IuP2iwAVat7WJb1RYg1xAfvKC7AUhBzUARHLPI8q5Za -JrcAhd8Cauhd45GZ5SEWWql/+nb3cntlAuK6ITITJbAAX27WDrRbPENJoVRv -s+gWIIxdODhqbzp6WUcIDXbNQ3v16eUXbu+RReD2ubet88Ak8KlsMzAbsWtq -R9xsmAefSq6qE3EfUGDu17/0FfMQTzAKNL3PQfYJRT0HMufBcKDpqIdVPpKz -+xDr7zkPZSdad0ZKfkaTgjP1hi7zsO5woAGlfEap3TLUXA7zcK7o4VY5cxFi -N3rrlmU5D1psVNcV54vQokK6cbvOPDCI0z/0fv0FlW4n7tjHPg/Ne5yVlfu/ -Is+SLq15xnmQNZW/V6RVhuQ8uW5/oZ2HcgMXd72XZSh1KnbceHUOPIWm89Os -y1FAcwRxe2gOho6ZXHnZWYH0nz30qf0wB8t+Om9amgjUqeI2f8NgDl6pUjNv -GVahhJ4xrZfH5uC7xV69jy5V6LzP+YgOrTlwaKmZ54+uQl3lWnKainPg+oyL -X/nHP32c+QaLwBw4srNy3r9QjbrOZk3mzs5CjWz2IueF/1CP6/jAUtQsOIvD -cqJCLUpiN5eTCZuFROcK5ZSTtciioOHepaBZaGYVO+dxvRb1LOfz13jNgk5Q -zZM3af+0r79F4pVZ6NhImjrAUod6wwR/HFGahW3341zqw3Wo7415o1/XDPwV -b4wsv9GAPNZ3j6u0zgBvR+nSvaAGxHSqaX2+fgYoSRruAqkNSH0Zy1qXz4D9 -07DP260N6Nkx2VCUMQMnWTICnJQb0cWRDT0qjxmwTr0eorHWiIb40isDWGZA -aE7yd5tbMxoPny0JOv4beK/EBU9xtyKvZ6NXhkt+ArsovQltVjsayGbnIQym -wfKEhvq7Q51ohU/O9uGxaRgv4z6pp9mJ2EJOfNTTmoYK9VKFmROd6Kid37Hm -Q9Ow1VeWa2DdibL2zrr18UxDtKq9mlVkJ7oTUVu3NDkFI6c8DwzNdSJ2Nz8f -mcAp+HnoWVdLQRc6rjg7GFs6CX5u55SKzHvQtRBNHaJwEmR5lqcT7HpQ8FB4 -xlzOJBjc5Rnzv9mD6sLknfRfT8ITzawe9yc9yGjc9c/mk0nIExCXq4QedDae -zHH90iTwuMjYKsv2IpuVlROIahJOfXX5WLSjD90rpS6Y0Z0AXDvuuTXSj7Rj -VB1V8ASE5HKrnSD1IxpHF6EA9QlQ24xie77dj0K4esO4D06AMaFx4IbQAIp3 -z7uqwzsBlIp9b5IvDqAPktZcib/Hwbi0IvBM/wAaiC3zOho1Dvy/O+4/HhtE -2k53UXLPGAx1uq28YRlBvYuL5Q7tY6DwJfBgB88IuuXrrqnSNAZm6W8qdoqN -oPcR1490wBiMG0vvilYZQTx5Vkosb8fgsJZuPLvNCCItIamA22OQPEE6NV44 -gtL9drJd5xiDTr3IYlH7UaTF8ChClXkMWun8+KJujqKeKGrmHTv+9ZbCwVMM -90cR66v1na/XRuFcceFV3vhRdK9qlmZwZBS69SxzKipHkdnOthWT3FHYQP53 -pcTG0I7Y5CE141FoohkMafw1ht7RGN2+qTcKNfRXPrUujyEjz41d7/Eo2DEK -dIxQj6NoM+sjAsqjEPA8bZ8Y/zji45GI3xQchb85k7dkjcaR3PM8g8qFEXht -tCh/KXccnXlTW2gUNwJ+TOss7/0n0BK3t1FQxAg8ls/MlYqcQAmPZcfKHo/A -3cEnW/nPJlCfYwTbAd8R+HnPb2S2aALZ7Te9wX5tBDLpeK9szk2gO3lDwp0q -I/Dk0HeaxMuTSO32DFd54TC4c5lrCxtOIfnS/g7ld8PgiHZOJVlOIbHtxpic -Z8MwrFo2Lu40hXaFfmBJCxyG6Yg4bdfwKTT03IX+ockw0Pp82NndMoUeVS8s -6c8OgX9AsByr5TRq51zq+CE+BMLUs5n/+f5EtRYTMSd5hmDxbMTtlKifqOzF -j9M1TEOgYiHW9zD9J3oj9bmxmDwIL/Drrvi6n8hb405VCgyCjQNvTwHXLyRy -9U+BjdUgdA4bh619+oVcCjZiZmMHIIllkSmWega9+VO8/DJ4ANpt+KNauWfQ -iLbnBVOfAegjlXZKys2gs42/REqvDMAXvhRlAfMZpDLRlfv40ABwrpbslcqZ -QVTc+c1i3/vhSoO5yYzNLIrzvsZ4gbEfeJUDbyj2zaEmEHFh3uyDCm/GkXzK -HNqxY6AVSH0wL1Tz9+SueeQVezZJsqcPOp4bdw9ozqOL2Uhq6U0fGKXvY7Z8 -NY8kB/l0o473Qb07LeNftwVUgr/7//egF66xl8smxZIQlfninpO3euH76t+x -vpckpO/Cm/XDsRci4yvq5T6SUE+ybdv4mV6wbYQHW7UktEJZEaXZ1wvZK85i -F7dI6HCmcJV2XQ+8lpJ8xOVKRjmMN+m/sPcAb9sPbWVLCloRTkhG9D1geUHm -ZuR1CtJS+Spfu9YNkyK6/OteFNRkS3++a6wbCvUT9BmTKGjma/KbpcJuELzQ -dp2pm4KkXStPKFzoBjydrfLJYhG9bucMe/+qC+r8JGhCnZZQinFNzpGnXSDt -udC95LeEYmu8OupCukCB77jLvdglFFg6uHfarQviG7+m9pYsIdv0t7ni2l3A -P9OfN8y4jEQ8NDqf93XC80cn2nDuMnqx+6pIFGcn9PPPLU2wr6L4J1y6Qgz/ -/LQ2F07pVRROX3f94/oPUOvPnrmKVpHvmtynxtEfQEq9y+Dsuooujq7o7sz7 -AfqS1NYi31cRf36YU4DxD2BTIM1axP9BiSYFRZ6POqDOZ2edvPY6Sk35vqvb -uwP2O208MLFYRxkTv23UXTvAREkvPtljHeV5ie+iNu+AM3tbGNLerqOGtHjr -SOkOGDq7RQRz/kUbpDs7sxrbgeVyvT3t4l9kE6NhObS7HSia9dtSHZvIvt88 -V2dHO3x901hZRtlEzhK36DLX24Dtoa7+Q44t5F3yIcdpvA2kQu4bvz27hWJH -BWnXCtvg3kCgpXnnFqpWoPrAadEGbmyl+WUT20imvXpTP7UVfFz1SoJ5qPHI -A9fxTzGtoEoPPoFy1DhBnrde6FErxHX9/ZOhQ43/QYpfcmqFt7ufl1g7U+MB -xLE/7UgrKOq53y6uosYiVpA3n9UC585pvDvpQ4Mjijh8q6NbQIgqOmMqhgav -77Y/kXK3BfYM8at8zKLBP+qYh3R1W8BAdpb2v14a/FjFcteLke8Q3d7MLa9J -i+d3L18z4vkOk5cunTdlosNWLvoKolvNEK7f30MjQYfr6p5trEw0gx6PhetP -RIfTHxyNSy9oBrnyRRWLO3T43FwUsXayGfLP+d/rn6TDZXWyAu+CmmA97IML -TSs9Dn1g00pHaYBfGzPbPzsZsN+gwfTp3gYoj7/Ayf6HAd/SUNpKIRpALjkz -KpB/J7ZZpZdTiGoAxjHNGydtdmIVt+zHl+Qa4C622vV0YSceu7yiXWRfDwJC -9/maBJlwT9nwOepT9cBku+QsrMuEm/nrnY2V64HD907Sd2cm/KXrWcoYbT2U -8QQc1C1nwlGndFZYX9WBT9CdwM+2u7CmdvhHh/5aeERSr/yPYMaKz29XF1TW -gv53Qew2z4yl1i/3b2bVQqOL3GroXhbMUaTAGO9VC0Y2yTp8Piz4p3y3HcFV -C2p8cXJN6qz4qaDYXj6TGnCqD0ml/cGG5zeKwxqqq0FyVknmv5LdmOrvLZqK -j9WAHzyVtejejTnXFHzyE6rBK6lM98jybqy2nH09ybEaVIgyy98KHDhw7qW+ -PXM1dOnxKcvkcmDuocc7aMyqwPikk4lqKSeWHjjut6xZBU+7Y6x0BjmxRh/1 -yk+JKug5GBGfQ7UH23Tdm2xZrYSg6eDGL/p78PvvbtUvnlXCxa2DFSWDe7A2 -mAceGf8G3BSJ8pW93NikfM+6XNM3SK4W/kl1ghtf/dp2U+TzN2DZb3D+yU1u -HFJsdIXh8TdwHibny9Rx4/ZchDtlv8FmzDXBpns82D5Nasvdg4A8cxqP9i1e -7JU6cdvOioBWUSYytSIffvL81Zz5cQIMxqtH+67x4bwkgUFtbgJC2/hfPG3h -w8uiwl58twB8rlZcD8vmx0K0C4smtBVweUphMDFkL6aLTJU431YONE/EbK82 -78W/eE+ZW70sh7GgdGUtTkFceOBj6TWNclBBD+OV0gWxkaVTgI9nGcCV/bH9 -zUL40CT/pwc6ZeBxofdHnYAw5nZvmAhiK4P/po6U/bkhjMceyehHZX8FouiO -+ssdItgrf5o1Y7wU3lcMaovki+DLmok4K78UzAKlFaMHRfCxWj2PnAeloGRi -kFrJJIpZBzM7vwiUAjlWny7QQRRn7LR73mxaAsKKwT/WZMVwm/WIzGpVMaye -vzXbNySOi35HWW3EFEPC3et6LPz78PPbKILaphjSohKU7c7vw45PUkm7Norg -NqnEO619H94qulgscrgINJWFTfX7JPCEDvMvCZoicPL8oxonLInrm77y72/9 -DJVsR68b20vi+DF+P2Xnz/DaciVA+Y8klmXtPW6YUQj0oxTmAwelMXtyyJ3T -HoWwuT/u8OEAabwsrvbODBeCyvETvsyd0pg4krjLeuATDLGzBboFymDza+fa -Pfd8gpbOnJq6ZVmsSaKj8x4rgD7fudsSFvux2L1CZb+8AuhiE3oxVLYfz0dz -JocYF8DpLyJtpRFyOKiszfpFUD7cIqmEpp8+gDMeS5sunssHk2KlLEs4gKvO -PtAzkMqHDouj+Y0KBzHNLzn55fo8EOOLhxdsh7A/V8i6MVsenNb9KJ/JpoDR -t/J+3W+5ULh/IXbQVAH7mTtVkq/mwoktG4mpZAW88bAmyiArB7YVO9Zz9yvi -1QFf2TWlj5B0sPP0OUclrOIpuzuz6wPEFDhmqJUr4VuMPasm3h9g8uKrG4l7 -DmOKstJ/7yqyQaA17+LhxsNYoWkk2+xKNlwcuzj3QVYZu9tGxlLRZUNxizmZ -K0IZz0f+srYweA+3WA7G6lipYHmJRD262SxIjnK1P1mrgp2/HpfPi8yCEYeO -GwMqqvj39Mt1hh/vYPXbodOHRNXwFD7/tPjyW3jirz5LL62OJbppfa9Sv4Xc -q7MvPD6rYzuXfFu2jDdAlc3/h1lfA48lMx9y+JUJAcVl8r/va2LRQ6XcnOGZ -sO/BnS/1olrYpsZhs+JAJlzhXFPb3aSFhyiVDdy3MmDMOXHNTBlhwVD3/Eru -DLg4YkMjtozwRWGhJNeS18Dofnjb9zLGfUbe12q20sFHs6DYXkkH841JGnu8 -Sodrp8l3KBk62MLrh6LQ8XRQnUntThM4ijszDlLdCX0Fr0nNKvV8x/AejcEp -UblXwBQVLMCYfgybtoU1N39Pg0GJB3jt0HHctjmZIrEnDcRP1ViP2+liEWkp -2tcuL+EmPc3aHyY9nGoW2LpekAqKn22k10r0cPJHNaf3Wi/ApKXO7oWyPubu -i1OjefgclB8F5U7SGuD4HQv0lnXPwJlcFW0/ZIA5lAw78lmeQaqLe6xCjSGO -ts5MYzRNASeG+gteZUaYNZzK9UpSMtxMW3WPqTTG4V+sNEoGk0DpRxpps/ck -DtnN0eXomAgRYQ1Uv0VNsPFZQSqn/ATQ2KUal1dvgtnipGVd1p8C6nJvgPtn -cHuHkpnbsacw68Iu7orO4oQ9yO9meDy0/bkbcZzdFFueM3zn2RkHSSZ+ZAaK -KRZKONd+WygOlC+m/KqeMsNjXTYbdx1iISv+j9kQ6RzO5HGW9MmLgcHq+Xhh -TnPsaHHXxHctGrwPzcV1mFhgueRAH7+j0cB17JXA2McLeOSTgAE1TxQU2MfG -LR+wwg7Kii/osyKg9lgz94fei3i+SJ/MqBEO/RMGO3sKL+M7ata6rM1hoD8U -y+5kZ4M3S24nc1iHwmvrM4NU0VdwkEb4HDf5Mei9DVF8P26Ld5Wn6wg8DAYO -lcEL6Q52OFa75Kkw1yOYz3R8HSBpj/mJll/ibx9Cj9iRQfEDjviVzpSW9JFA -MOYqebUdfQNLV23EyDX6QxqNrsBhRxdsHSrZdKXUD2IZhPfbOblj13DTWzeG -7sH5+b6aB489sG+U/15PGm+g/vTKrkL+Ng6L/Vh9T/IOHCz20plI9MLJT/uc -gww9wVOKvMi97z5+l8TAFeHqDjrt+x7xfg3AzqrXffZLOMFOsqXEC9tgHKpV -1aDpcg1Er2G7jM4IbPxYXeX5DWvIccrSOfn5KQ6Om++qWDeFL/5xNwPz07Gz -tLyWjJoBYDvslH8wD/8Pr2kVrw== +1:eJwV13k0ld0XB3BzeQ2pTJVUepMkDdJryBAVRb0i8paQMkUaqISQmQyRDI2S +SiSUiOh7L7cMUYa4zxUqlzsZkqSS9Du/v571WWufs9Y5++y917PM7bitu4iQ +kJC6sJDQ/7+pIyEmus7jEMvsebutvQOmRyx7bQ+MYzw4NMuvswNj3fODTziO +Izl+2Owa1QGbhoLyQttxpPMiEv70dUD2DrVGzWIcardep30e6kCi40aVOevG +oWdvenOPxDvE1A394AmPQ1qz0Dpq8zsEZe9/fP3uF/wl3XpH9OE7uIfLap/v +HUP4R489cTmd+MfLpSRHbQzFjjO210O6cKuBptrbNQon7rwl0WZMOEb8sb/f +OgpjWKo+3MaE3GbjpJNNo0jPKV7XZslERPHzX+IvRrHqqV20wr9MeGSUU9p3 +R2Hnp1wQc4AJrSMP08L9iUuW1s8OYKLqT6bE33Kj6B1eSg++w4R/ZZfRqOQo +mib3xrneI/H+CqefiY4i1+yAkvkDJm5y0tjW30dQcLIhUriYiQstSbTTfSMI +LHzjcLiKCctrkUH1D0fwV+G70WetTHRuOj56dMcITpp8On79FxMZVL/RLfMR +xEWXJkrOMOEQ5JDUYTSC/Sv8zgcIUeiqMdLavGEEu4QZHebixFulj8osGkGq +WcXyBlli2weDxcPDEPPXaXdfRoHyY/dMpAzDhF19m7+VQpbcPq1VCcPIEM/6 +KmNBwfFxU/DBqGEoT1Sy1+4g8d9KF74KHEb9Jfss313EIeGOmYeG4ZFWuqLR +ngIrYfE7fZ1hlPZ88JbxoNB9b9/r0K4h1Dm4JFREUTg1NZe9qXUIVZXd5U9i +KPy1u3lqtHEIrQ6/3z+Mo2DwzVTTpWYIRzadn52RSOGauWa8Sd4QdPrjy8zT +KTh9nN4udGoI88bziv66Q2FCp8L5mc8QJs+JhnXmUUiMPXnmhPsQapRua964 +R6Fam3P3o+MQAmNWSi4voLD4/FsxuskQ9mpEFs8updC3ILf2gswQHFR2Sxi8 +oHDmmFO3/iyyv/qdm22gIEtXHP8iNISE7xNf3ekUjL0uLnObEOCHjOebKAaF +W+UB4WbvBVBJLpa71kTB1c7CWPSBAOLh4qYaXRR+3BN2eJ4rwI6/hzoSmBQu +TT0/5n9dgBnFitkCigL99rob7BQBLKXVd998T0FtbMF03RkBAkdylPs+UmAn +DldGbRWgqEt2Q6WAguqhxL/3GwtQHbAu+8MQyY+uVspaPQHq18TdExmh0Nzr +c6R7tQAr0u8VGX+mUK49JLtuvgBhA4FmyV8pjIlcPCcuI4DthEpJ9gQFTabm +QLeEACGMRxW3v5HzhB2tjJ7io+ptUvL97xTiWvmH33/iY8Z00fqEXxRq8+Lf +lLzn40itxNagaQq/A1fpx3TycX8ve8DjN8nvMm/Z9Y18HFKLa9L9Q+HAKd6z +mBKyPvv49AMRFrTluTIbwvgIPbixXDCbBS9eTOCsc3ysicz4mSvJQm61Orvn +FB/+g6wn+/5iQcnd41msBx/3RH1jy6VYECofdOvdxQdjZ3fkDlkWDBKiWx5b +8OGqsX/fIPFp5xV6cVv4MCgtzDg/hwWBhLuMji4fl7z22t2RY6Fj30BFnAof +9JafN+vmsSCrFaXmrMjHlLNhodl8FiyF/k7SkePjUXeq8gvi6vzDbn2ifITr +680tkGdhMkS05clvHlRe8rIXKrCwfs+df+K/8+CZfDw0lvjez37pjUM8KAve +2jsosvCxJeKs5CAPQgPy258RL8xV6+/r4+HjsESSohILKTvdKuLbefhHwFzQ +QNykKqLm0swDTWPNwUXKLIh9vZ248RUPl6RVxo8SB177dOhDJQ8F52ql/hBX +7SsfUC3j4UT0FzmTBSz8mn/R0/kRD+22H3uDiTe3ughu5PPwyCv55FPi0MSN +x3pzSfzB6aYhYpql5JjKDR6uMlfzVReyICzed8opk4f3yUte7yaOOh8b+P4i +DxKjh7vyiF/pO/1aGEPWu+F3E/GsyXWh+8N5ePloYmCE2PKxuPDVIB56hqUu +yixiIcGvO5IVwMNva9nPq4ibNYslFhzn4aiihJw5sSw3Mt7Rm4eQ/JlhR2Kb +O47SWYd50A0Wi/YhTnVZk8I8yEPy0hXMIOL2RSLzlBx5GN16vD+GWJ7qSnew +5WFfyfjdFGKH9EKlDGtynxa0pVeIs2zCr3Zu58FASrAnk7hb2n6xwhYenFQi +9TKIFzWuytlrSPavvNWRSuwUPaOWrstDzRZ7tQTim1s67nas5UFSt2p5GPHH +3/c15mvyoKbL6TpBvKwqpND2b3K/EuMGLsRuZ/Zop6nywEn9vnsncd4G9dI2 +ZZIv9tx5G4g5o1M6c+fzEKZ9MFKReGXh23IbGR70Xk/e/k7uz8szT//SLB62 +Gvz27SQuWH6u+q0wD/Z/X2IXEw9/2GUyZ5qL0AOtYrHEa66r1e6e5EK658Pb +/cR+jt+3Jo9xkdnyyXw1cYl8c32LgIuPkVMuP0i+x1tzdsoMclEc9u/yWmKd +pNMt1h+4WHhiVlIccbn4ko7XHVz8wzS1kSL+Qf9qL/WG+JpCfj15b/qhDdTO +Bi72jn3NDSeunjzZ11jNxa95F0J55P3WcRn8+rtcmK2XKk8h710sL9t3Vg4X +T5Rt56wn3u7q93n7VS7kr64Sf0vqpYlS+vYymYsBdfc6IeLWxqNCjLNcqHB2 +BxiS+psXYxIpeoqLgGjb63RSr3Zm8hLmvlxYxVXv30rcVVUjVetKznf8VabJ +XBZ6CuWUaDu40BuXmpEm9T+5QMst0pyLjepV4j6kP8yJsyjabsRFsqqp6EsZ +FsyOhJq3rOMiia3X4yvNwgOV4ePdSlx8OyM5cpH0o9qEWc9vzCX3PetKQiPp +Vz0/1CQOSXHxNGJcUZRYrvO/69wZDswl6354S7BwJqm+YWKQgw+c8EYJURYu +/eqf/+wDB3GR9q+Wk/73wHvGOZjFwVlF38LNwmS/bbrfhFs4EOsxWO1G+qX5 +TO6yOWUcjHW9Hgom/VbueGjQqggO/FLONPHHSb/uzX45HMzBko4VXxhfSLzV +U7mS0xzwlnlMXBsj82vl8L1N3hwERo8nGY1S6P3wX4e5DQdCpUq/dvMpFNjo +ajmrciCpqKVT0EeB8cLm7DJlDnRvRTLNekm8lm/twFxynlPPdzPJPJKTvOPo +I86B6bn8J1/JvDpLl4sOHB7E12uTllPtFLZuGO5NqxpEUtjhjcavKLjHbd5C +KxtE+eHqLSVkPsb0JeaNPBrEaYnqPNU6Cg0Ja3ws7wzCw9nt6BiZr1Zsvx+/ +Lw5i1DV5yLOSgm36l3neBwfhJ704+l4hmaeTkxYmQoPY9fiGn2sShQvWFoW+ +UwOYfrSyxOkihdzcTNmrEwMQdTA3tY+nMLBbr3OCNwCVspdWhtEUPO+fcyto +G4DzlXMy70MoUh/TIQp3BqB9+dMabx8KwVXCj4e2DWDKyJqFbWS+p/7jtcl0 +AB07YlxszSmIeB1TvWAwgIf8wP8+mZJ5qMBKUFxL9psl+2DCkEL6iZLDW5QH +sPCl1POx9RQeqrsoZArY8Hin2Wa8mEJPWnWgWQob6wLCDm38wsQt73HtpHg2 +whNf19mPMuFmqjHIjGSDq19w23+ICd7I5T3HAtn4lnyzLW+QiQlLH82sQ2zY +6v0r08tiQubPgp4RHTb+XGTvuUtnwtjnrEk21Q/LBXOOZSUzwfr6tcazvR+j +0s2zRS4yERByYvOm5n4MzLG97BnLREGSt34H+mGVMnVWPZwJpZIDOjL3+xE4 +qp3pf5KJsQmTlRdO90PEIGfcyo6J3NDZc7zn9WO697zg13wmJNKy+/SsP6Ek +bfJydnwX8kWsTp/c/gkZi1oL7KO7YOU/LVVg+gliE/nnZC904dJeF/1Fup8w +U3l565nALixQWpH+e/EnNKUFlal6dkHresmO2s8fcSjuoPY78y7suVdfZnX5 +I1i3QnLeT3VC7/SQQk3ZB/yRXFz31KUTxx5Ppw6n9aCy6JDAiN+BStM34S/D +WGgQsL9k2rTjTvv8hILbXVD3cRB/+rwVmTaPy/2jOyCkGWIx93sLVrUzflve +bEWi3JNZNYwmxIe5toqNN8FGu9F8Y2I9Qnt3cP9lNcHxXbTYzvB6BBjqzFyl +NSHg8xdXj4B6uH4X11qf0oTZbVB84lSPTccLYw9qNWGr1surN9bUo9950rjc +oxGJFfqLaa2vsNk4scjzfT00piVEI1VeYXS6IqGJwYDvNh3BumYGhH4FiLwo +YqCkTFuBV8vA/J/rg0ozGDD977XG/UoG9L4Vemd5MfBu/ZuVRvcZiBi5Zekh +zUD+yFL7xggGFPtiJUT21sFL7mWPlyGD/Nfsi9Bn0+HKbvw1+bgONjXyU1rN +dIi5Nv5bWVCHw8/bTi59Skec+9yTUbl1iKuwOjQrlo4e7ahNuml1aC82Me3U +pOOEUHuc8Kk6eOSsnDlxioZnEu/krXTqoCr6+auN6AvkGTo9f1NdC7Hkmysc +2mqgYWHMUX1aC77y7n0HbtUg0Kn9v6CiWpRpF1W5G9Yg/aS6vt3NWljt97kQ +5F+NZsX3+UnhtQgs5crmsaugMuhatNqiFs6bM00flFYhT/7yOx3TWpjXbz/1 +KKwKeuwFzyz0ayHbe7fz2SISv+bq27TVtcibfeR6i10ltIJ1ZsrlatHm8nHV +97oK9Fh+WW7US0e5IOXAdGoFyqp3rhdj0nH9tEmSsGsFloa/OsxspcPr4s0x +qely2LQ12+Qy6Jgpd6pYurEcrvHLvzU9pENTlrV1Z14Z8hfKpfqG0RFV3eZy +I6oUOda5E0radOTFath9tS/FxnSHoJpVdNTZhm3fsbIUphxjbb8VdIjwtdZ8 +aywBrfLd2i8qdIQrxE1ZzyHOWCASKk3H954QzZ86RYhScRUtH6Fhk7/m3Ltd +DxGVsniJnICGAEnqu825h7jE3HX7NIeGcV2dl/kvCsHbh0G3DzSMJvNdHHcU +wLWV8fJVGw0cU4crFc73MZEZG1j+jIYVTNGQw8L3Yd3veaThKQ1HjpW6zcm7 +B2WG/ODgYxr6s6XXefLvQvmxZLF5EQ1947VNigF5SLS4VpCQS8Pi+BOltYp5 +kPdwi/h5iwanJapZfpV3EBixTyTgBg3dVufcX83kIrG+UjQxi4bOvLVCZ+Jv +o8E6x9IyhQZ5w17OMq3buP7L9aZ8Eg12bQktLW9yMFy8pGg4gYa234NXV8jn +YG+uwW/E0JBdpOdTYHQDrboLrn0NpUGx+7KeSOR1BChsG158noZ0ic/i+xuu +QSXkvtjeYBouudzNkbS7iqwf7qnsszTEzZ3X5eWViYb13VsvnaTB2naxkE9p +BiY23jBceoKGOZc1NI9NXUG45ZmU5340ZMibhJ5MTIeXsoadvC8N++135vt3 +XkaiicXLtqM0qGbYt59WvYxmK8nsq9403FXyVQ8qSYVrW6b3bk8avBzP2oT8 +vISyZicvfQ8atLIjgkLNLiH94dPmte40eOpuuCH+IAnP6vMbjQ+TfJVbfpE0 +TETOsZHD+9xoOKPnsk22JQFCzQs9gw/REGWYOKL4JRYq08qFgy40SNXkblkU +GYOH09tGVhOnGVdeWaIQjR9y8tfOO9OwkPaWv/x+JMS6lJ92H6Th9haOkYZ+ +BBiLPhqaE2vUTadqvQ6HBmdobYUTDS7x6s2HqkIRd7QsdROxX6JdwNG+YIjJ +5R+iH6AhJCVcxV/kHBKPr87ZR5yQVsQIVj8Dmz3Zu37uJ/m50u0btdMflo/M +jt4jzs+apZDkdwLriv0mnYl9//EOWr3CB4EF+8fViOON6po2H3MHT93Aefw/ +ko9Yg03Xj7ogkNpk0EIcc3m068WUHX7knoh5QuyrscZold4OyHVPiz8g/h9U +mVUt "]], LineBox[CompressedData[" -1:eJwVVXc41n8XFrKyVxIyEknIyO58jCQKGRXFTxSSUUhWRkqUMpIVJWQliuzx -/Rohskf2HtnP89izt/evc13nOvuc+9wCVs6Gd8jJyMhSDpCR/V+eI3OxFq3R -AjHTNEKGdh6KVFZLK6w1hX0lrQOsr9+h7Jg6cp14K6C1KjohkR+BwiIc8hQM -7aBj/O4tx7chyOUlq5UInROcP5/tLP0zEGWpD9IcGnsAOxbyPes7figBci3J -K9ygqu1ZaHSWF3qt8qR4K/YRzM1VFsrh7shP0YSZ6OYFTD4Kz6SrXdH9s6J2 -fwweg6O+Yewr2wfoW9zeiDOnP5TV50l6UjojMa6Zl/eeBsAWrU1Qzsw9lBzd -Jm9LegIPxWWUqPXvoqMcpRNWlk+h59idpgO8tijqTUqYRcszGHB91CKhcgcx -sL5SNlN5DhPr8DgpwRoFhbvPmGQFA9lC4EtNaSu0z2j55grXC0hoSnX/tWKJ -Hr26CJeDXkLOsR9lw/n/IcIhmXnt1VCQutDyuKnCHNm94InRtHoNc+F8pw7v -3kBjNFQaqC0MtL2fUivamqEvNY82eD+EQ8DLlg2Kreto7olD89GrEZBCM3r2 -ZvY1dEL9VsoRhkhgfPXl7F+fq8jqwFXPw7WRMGTnUHjd1gS9x3X0ObzfgCzF -wahbdsao3w+E2aSj4EyD4Oizx0boMMjuMM9GQUTLgkN4qiEKr+BNp78WDY6Y -4O4+/xXUqKbiFsEbA5xq4/r8dwwQZZ2ZGudkDLiodhhVO+qjczqejO+yYiG5 -ICax6qQe8miJGTj2IA5GZqw8f+9cQnmGhRmp8vHAR6XgNDumixZ6uh6e3I8H -t5QqPr5+HWQ5wsIs8zIB3PjskmO3tVG8tdRQ0ZVESOY2aRfi10ZdM3pZKlzv -YUnAwdTA8ALSJrzU1Pr0AWp8qzzCe88jNaXu4Cm5JEgwieyfEjuPLHxuL4vE -JQEPG9ucaZAmiiULLM/+7yOYCD1o3zPRQAXqrELL1R/B/cJtGcqf6qjj6ceQ -MyeSoe8793SHujqip8WvFi4kA2XSbMmetho6qatfsamfAmt77Q6hXQhpvRoW -Us5PAZpAtrdadxDyZ9kjYJ6psPkiyY50ElCiUeg18qFUWGoNZMRszqHSt0cr -NdEneB8VkxLzWRWtHlF6+ZMqDYiWvShGVwXdFXwk3PkmHZoXoy2r+xRR0G2q -UI6NdJB91QtxuoooNe0t6ZpZBuTXxXJHVCugYbHv2CB/JjR6hTAMVcqjHQeN -E8eeZsIJCUPTYg15xJXbEXprJhPe+rRYVP86iwxliKbTX7Igv7srJXZODjk/ -9MdFWT7DwwChCGo/ORRaxCRyz+0zTCVT8c9xyqE6ZYnVZaVsEHsgGuBgIIuU -NO+93qr/AqxB3y3Cp6XRtaDtVeVTOUCrwHXye6Q0cmsIueH7OgdG7NZ9NNWk -Uc6lDFEKk1xoOy02rPXpDIrIcrlF9eArNPAo85gHSaEk3dKo9OSvECEy7X5H -QwrlLBxo0O76CmTyx+qkyKVQk0SExEv5b1Ccz6SSQCuJDubn7jDtf4OeO9Jb -ewqnUT+bgaOleB48elnsydMpjnLcCMNfzfJgP/C0/XNncXT97JnqK0V5IBZp -encz5xTKKskLfnM/H17e9ntupyWG/LiNtife58M4sBhQEU8iY++Ve7LN+WAa -xXPCKfEk2lOR1e8++R2ie6z0bXZEkQFewHF44jvcuqcfktAogo4LXH1uy1IA -NPR9tWJPRNBWwPpmERQAH927SSFlEZSsIT94PaEATIoIRyS/nUBrdcXJ8SaF -EHm41TctWxjFN5dJ8jUUQbiaRsNunxBykrj50Wm9CJjIJnvlUoWQRtguK3a8 -GMoEBv/cdBZCCwaq6/8FFIPzcAW5BY0Qgq7K8o9KJcDF9rUnSlMQscv9J0Gy -K4HYk1EqnzgE0Z+3fz+ox5SAQFftpueMAIq8hgInVkqgKpbiicUrATTZX3VR -+EspuF7665U4xo9KlK3KHg6UwnXeYDnTYn70OoH8dB1tGdCpkL8vDuNH8hYa -zLY2ZbCU2X3RGPGjF2O1PRnHyqGegeee+pVjSPJPvbV4ZAXwvnVo+C3MizRL -pd9Y1FZA6G29cLsRHnQ9NLE6fL0ChEwqgw7F8yB/KVeBNbNK4OdaLbzPyoPa -PPhGKoQw0Lzwcp6X6Sgqfqr0Jd0MBx5z4lq6zBFUvbhci7visOyx37K4w4V+ -Xf002BeKw0bYlZrNWi40KspMT4/hkHtLpEnPlAvRNE/Z3xeqghu32kWiXxxG -phwRoooLVeDSGXY7l54T3fbVQoYHq+GrU31n9ggHcprZuXaPrxqGvFXOquRz -oCclNs8TDaohQ5gjiOomB8oyV5k+UFANIbGtdyi/s6PtTzMpjY9rYLDsk0SW -NxuiZEosm4iuAdYzlSjnKhti9DDs3M2tgSdhvIcFpNmQoE4FueR4DRwqHenV -nWNFOkuRt95o1QKVzUm1Z/+xoviz547dZPoBvrm57AI3WdDRRPP5vyI/gDpH -7ne/KgtKoHhclIJ+QCJfrtnMMRb0oa1Mf/7BD2DeqStZmWRGqfaK/l5dPyB2 -43lpsQszyn0vOxYbVwedvlyTW/JMSOqg8ReVvDrQ6NhvLaBkQnn3XD1HG+ug -9ixf32o7I/qukMciulsHAUkPdlYdGVFph6R6kUU9XOhRuf7rMwOqpTqV0i3U -AF7zx6xsVenReUcdZ0+VBkAhggsvWOhRXeddZV6TBkg/5TV1ePoQ+pmU0Xk7 -qAHWyp+m24UfQi1KJyhX/zTA5WfaivgsHepzErjDmvMTJLEYSqkcWrTUc1hE -X6EJONm1oo3cqZFhonWkjn4T1KTnBUdeo0ZF1rl7522awF1CSZBJkRr5E7S6 -VKKaQPDM1feVu1SIhc49QIzQBP2OpiGTQVRIVrVr4GDGL9g727JZ9ekg8koJ -Dy8/3AI+k8OtA7SUaPju4E6RRAtI2x11yyZSIA0pUdv88y3w6oi2WmYfBaKv -wFSzXFvgMbNDnHAWBUrsWZqLaW2BM5dXrXkvUyCc9vJ51+etcDF48ndOPDmi -KKbci/JuA9L+t8DaKwdQkDyv4KHgNki/esKvWOUAoimSuxAQ1QbjDbK1HSIH -EH2hTYTjlzYQvyuf7bFPhti/NwhrjbSBbg9U+n0hQ8e/huptqLfDfETyhjgr -GdLMYE8ypesAUrrFwbcze1AncvpHK2cHaFBl3P/xYw+008/PnRfqAIoH0t4S -qXtwKc1dVlqlA8YV520ybu2BcWpvA51TB7jr8peeHtmFO0kJxLL2DjB5aU3G -PrkDQbHHNfjiOiGY2nwVsW7D9oVOeTy1E9Yydu54bG6B40aAuNXXTqA7s36u -e3gLjK+OcKTVd4LVVY2/e5+3QJA9/s/p9U4gV9tuotDeAiyM6bWqURe4Krp5 -pgRtwmbQdu9Nhm4gpqT7OfBsgMPZzOZ9rm4gnVmzaaHagJGpa9VJx7tBd3G0 -6DJxHeo0Cz5PKnfDibL4ipS6dXhLft/Xwb4bJH60PEt3WQdp3ykhn/puiFth -phlrXYN7D9uc3gX0wOiGkFNT4irEC32vIH/VAwNK3817Xq5CY3sMvX1sD2TP -SI5veK6CqMR/WQq5/x/2ELPv1VWYnF6c6h7sgXL6uZlI5lWwuH7InFnhNwQF -qr6rDF4BQ2Ut3WdLv2HNqeaJRDAJAmZPxi9s/YYQ19zseg8SfI1hmDU62Aur -59/JuN4lAdNqV5AgTy/0rMAEmS4JfmVbV2MXe6HMxCd5hZEEWnwBitupvaBn -7CfMF08ExQPlIs43+mB+58CHlnICFOuyTrfY9kHeo2t+5jkEUIi2S5Vw64MC -egbR/Q8EOHuKQ2AptA+iJk0s3AIJIG3ixO1Y2Qc+yZOqZ3QJIJbJz3BPoB/s -Bw8xZpYtA8+VZySbmX4gozSV4OBbgnfvBr7WrfTD5GPOAZWDS8A9fcb5BNkA -RCqdyQxYWAQu7+H5Ka4ByOAfXrtVtgjsn+SnbusMgKbSKW8Ps0Vg2Jr9bfVl -APg5gj/+TlyA/SS9CgvXQaDRD3+grjAPTkeVded8B+HarQ+lp4/Pw8hbkb6H -LwYhf+AilQTzPOAvyNZCPw6C7Qy5jOOfOQh0yxMvax0ES72NpvG4OaDR5kw4 -LD4E8MtpPpJsDliXh7zaJofA58BOv/7gH3hyt5HmJmEIgt5rvkxv/AMrE4XR -MztDIBGjTsFS8ge6esPy9lmHgbOYd4kr+g/EVKvNiasNQywjhfS2wR/gif5k -GpI4DBp1ReTLP2dAWNVRQf3qCNiYx79haJiGaaNfcnVWI5B3oFxduGga0uxP -yeg4j8A1vpoqvbRpOBE7e9oweAQGgzpae55Og+jKHSGr0hHol+OJKVafhmhj -SWo1plEY1KfPyamagng6UZKl6ygssqfHNjVNwkf3Iw1JymMgG0cid6SfgO0j -UTkeamOwczS0W4psAgwrGN8aXBgDHk39mb8r40BJSWlFZjQGVenmUdjAONhF -LO38Zz8GX7cnsms+j4NUdo3ksbgx4BMS7uq8PA74mGNM4voYTEu2Xcf+6Ucv -VdvEfxsHFdPFzwZ6oxDjfG3buGgcYhXbNUs0R0EvcuEVU8U4yP3gpRRTHoWy -35wFTxvG4SZLXIeQ6ChEW92jcB4ZBwfin5JH5KNw2YM9SYNhAkaUPlyRfjAC -pSk2fQt2E5BnlGHCbDIMUdt0l4B/EgTD01gxrUFwvWd62P3EJPA0DdS3yw2C -4WD6eLb4JBRKLrGvHB8EpkpNT27FSXDZ8ZK6RTEILwJ809auTIIXfv7ZLD4A -/jQksuzASTgS/Dn63bkBcODsK+CamYQZm/1sJs1+0JBOP0b6MgUMDEvJua69 -wF2Gd1TmTwFly5RUu00vkDT6n70smYIGyqKVHdNe+GjCsHD8xxR0JDZMO6Be -+OvhWnxtcAraTjw+VcbwD6cYXKmgm4b5zeHH+5m/QeZy75Ng22lwfnyTpelP -DwjZ0U7zCcyAcb0bqd2nG/6KYPGm+X/g/na5/d/8DtDH2KPh3BxsPnn0X6BA -G6SdbuY4oDkHJg+avX4cboPdd8/eVl+cgzsmP50pGdsgw2M96rzJHPDWXdgl -rLYCmXTvG12HOQjQfPXcIa0Vvqa+i7gWPweCv2lbRqlbgfmF4Cvn9Tko9bYx -E6xpBpvNfvozu3MgSeln5JTTDOU2b0JJB+ZBtaXGOzuuGew0KEMfMswDmXaw -2r5zM+C7Uy+8/+Fy/B1l+/LRZrjvnBn83HAeHqZHcTTe/wVtxlJPP+TMQ4WO -o44YfRPosSQrD32fB2Fu89OyK43wq5lthbtsHsKFdAoE+huhQWvjVnT9PLDK -tVZ9Sm8EXKESXo3Og16ucJ+GWiPk8lza8WJdAPeEQXFrp5/wetLW5ar7AqhZ -facRz64H+o99J6N8FuBUoV5c3Ot6eGGuO9b+ZAHCYyKnf9+vh6AeCYPLYQsg -x7LeUiNbD74Na6c1MxagNCyWqFFaB07ZgbNn+hfATjPsvVzZD7js9sGS4dwi -JD2486n2dQ3Uag/+HdVYhLCf1kLCDjWgxHvkw/eLi7DG+OWKxsUaEK2LHLph -sghNBc6MBeQ1QM4VZJblsAgf+Jy9jFyqobjMwfjCu0WQpTwvmaBRBZLhmSvc -HxdBS2Sm+xZPFaTdno5cSluECWuN1q5VHN4wWLa/zVuEb5fbuCtTcXD6z0hv -8ucilLfK/PAhw+E4hZJ2wOa/fCIhDwQuV8C73+4zxvuLoFDh1SWxUg6s2flB -opRL8NpsKdkxthz+Gv/je6Yl8Oxwb3QdLYP+NH51PpElOCa8m3PZphTCdahV -ykyWoKP/rIu9VhHsRHRJruUtwa4oi+D+ua/QNnXK53PxEljs7WCbr3IhVTGw -4VblEih00H7zf5cDemNnbrX8XAL7RyOHGHOzIUkqLDJ9dAkMahwD2IoyQLP1 -4pop4zKURnydHVdLAi6hj2rM7MvQa5zr/1v3PSy6b76qO7IMmh7uyt8YEiCa -L/2EjPAyJPycrLrhGwN/HCmv06ssw/3+idA4gVAIpcdKK+8uwyiLamrVQw/M -0pKT+qHzMiik3RC2fxGAyX13NDr1cBn4fz9wGZgNwoZv8CzE+C/Dd9qC2fKF -cEzqsyfvg5hl+LV/zjtQLQHrvijrL/RjGQoWsKdF+llYVuLLX32N//xpeGie -z3/GfInjXOFty5Cyn2HsE/oFE42L+LY7sAx6H+bduJy/Yl5/lsa7Sf94slSN -PnUsHwur6RLUZCaA4aMUczKTMuw1+9BtczYC9FcRmO1ty7HQO1Np7pwE2Fis -5Gl7XIEFU6+LZfL842EJovNoIYb56x6WYTxJgCHZm2mnJKox34RjD0XECVDq -X7Hn0lCN+SyKFCFJAtQKaoox3qnBPMMUlF3lCEBh77Hi/KkWc+k01ehVIwD1 -wehBNc167P5xq2dETQLcfZ7yLIhUjzk9tK+n0yaAtWUi2/OUBuzeYW9dVT0C -PG8qtV5naMRu30gwSjYjAJ2lrZQqVTN2dWLY2sGVALbO7F/Tf7ZjxrIzn565 -E8CNXNs6SKkDM3y2PPPekwBX5idTrnzpwPRFyBza/QjQfOZQan9sJ6Z9T8Dt -bCgBoqXoO8lDujGt8pOF+mEEkN3a5wqn68E0GaQ37SIJ4HGy/JHD6x5MLVfd -510sAQzCdiZ1En9jSivWT8k+EUCf1i9cra8PU9B0qDuSQYAHVBp7M0792Nm3 -bjQynwmgfeIDhxn1ACYj/yz0zjcC5Pcxcc6iQUzcOy2qseJf/Cuan372DmN8 -FLOpUT0EMOrZUT53bRzjGu3p9+gjwM/G7Tn7wnGMraKW2XyQAIkUZkTHwxMY -zaMkH+FxAgzrfDkuOjKBrcxdMy5c/GfPgQcNBk1hS/XnX8QTCLBoM4OLrk9h -f1JlcN8VAoScTD9YYjuNDVswiV/YIsAuudnY1JUZrKGjjqKXkgjZl9xJhpqz -WHXud8VyaiLo3J+meV8/i1WEJjsn0RFBfJo9pOLyHJan5Ttgx0wEL24H7lar -eSyxVC5/6ygRth8Za+B5i1hsjNDsEB8RtOs5H5zWX8Ii3ViOVQsQIUqQy0dq -eQkLllh88UKECKU90VNyvATMJTnV6qgMEUZ6qOQi/YmYg19k7F85IpjZ/FDu -HCZitjf9WyYUiMBO7+tnDSTsJudNpexzRMjMHO+vol7BLrxgY1XVIYKfarNN -X9Eqpm57QFvgMhH+Go28IYmtYSqay48PGhChrXHOmP3jGia93zjbbEKE43SK -/hPR6xiPy5Mqi1tEiKZmC+HJ3sQ49e9vqN8mAs792nxYaQtjEbc4LWJLhDut -CMtv3sKophXjlh2IoKe0Lo3IdrADNSKtnc7Ef38zS94gaQfb/cBxsNiFCLvq -nevC53cxoinxvr8HEW6X88UsJ+5hC2dH0m57E2Gf/TzBwHAfm2ZrHtT2JYL3 -hqCJEf1fbLA5Q5vl6b/4KiJJPBfJ8Do1S/7kMCIIzvl5ZKwfwB9+H3QYjCSC -/4WdEipPcvy4iGkJZzQRcl/QZzuSUeCB9IaGLxOIoD8hROtyjBKX9mt5/+MD -EUSCBAKziijxcaLO/N9kIlDWR5UIXj2Io98aT90yibBIk5Gpm06FL1/E23Ky -ifBxoFqvyYwaf1+uwjubSwRe2lXiSU4afPejXKF5IRHeFJzKepJGi39mzyOP -LSHC91+t0dE+dLjZcwn9jnIiDI8+tcduHsJLHET+aNUQ4X2RrxTrOQbcbiRF -NqCOCGLm/Yo/ECPOZcgfUPaTCEezb24kGzDh7vJHuKXaiPCY/AXXVDMzLpz1 -1sa+81+9sYXpKQ4seBcPa35qDxEa2kM0JdhZcWnyQ5eODBEhJJmW/bk/Gz7m -9jzWaPTfvkzkO9e12PHwGYqpVxNEqGhSkfA+woEjM/8zDdNEOGd9rltoiwNf -/rX7mHyOCORfMy7yz3Di78GzUWWRCIFD5NG1k4dxvbw1zkcEIrT/7R59vcKF -Z8cs5c6vE6H2UtLrEN2j+A26e7vC2//u91z0bmMsD073eEbbcu8ffhgcr9/9 -y4uXLFu/jScjQYqG+sLZJ8dwO6vRsS4KEqDS10yKkfz44e6bEkzUJCiPuMy8 -6CaA113o87pIR4Kf7alKt+8J4u6lJvWBDCSgb7S2FvUQwoVPd7BVMpOAjl/g -ruz743jXBz3LTTYS7BRd8GYYE8afsjZlSx8mwa4Ar+2Epggu8+zClgM3CW51 -MV4sbRHFxzdqzqfzkiB+LnI16akYHmGPIsf4ScDOlflr01EcR0Plw0ePk+Ca -Z+549xsJfFlf8dRVERLwX+QuwP2l8PfVBY/CxUgw6U7+K3r8DH5ZTrq28TQJ -eN74H/T0kMF303OYD54hwSNWxkBuPTk8m/uUOciS4EJq5+aQizx+41V6pqc8 -Caj4nx212lHE6ciOr+crkWCO89OHKQpVvNQlSX1J9V/97MGTh8wQfneKJ0xU -jQRZdMUshcnqONf1uAErTRIUJqZ4Hnp+Hq9v5BBNvEAC3+vstO90LuLuqpFu -v3VIwMwoMS9rrocLf2WsYtEjwd+4OJW0akO8S/Alw6Ur//pRkWysEbyOB76l -NgsyJsG4iBm5hq8lLk3zNA2/RoIQ81nab8t2+LgX2cq2GQmoqSyLZAUe4RGL -PiBn8W/e76Mkt/ei8P8BTEPpSw== +1:eJwV13c41e0bAHCiQbwksyEpEaUoDcVd8opSZGRUSEsIRWh57ZHsjKTIiCQq +ynafY+cnicP5Hin7DCtOkhC/b3891+ef57mu+7nH82y0dzW5tISHh0eSl4fn +76rNc+OCUo0eTGiKVWRbUTAvsX7JsWR76E1uS/pGOirG+e0+EwewTOcGC1hT +8Ea4mL2ioAvw/Fk7BKRzdbpXrOy7Dg8WNhT6kU6BArsllR7goFQ/0UI68qB/ +ye8kL8hTaX6ieIaC/+03F530uA3S7KHScNJue5Qc2Mb34OG1St050m8e/elx +lfQFszmuludZCipLs8KdAv2Ah2991jzp9ITWvVe4/lCr0Hgr8hwFH8ZlRNm0 +BEEgZFyl2VBQWCzigPXBEJj3LA8ItaVgcLQnyzw3FFIMFQT07SjoFWEAJ4LD +YSrWxJRznoITK3eN6E89gG1jBZL/s6egw/11ibr2kbCzNFan5AIFX9V4/Vqf +Gg3Rg69biy5RcNjf+ePa0zEg/nOvWu1lCm7ROZ8hIxwLSt1fpr9doeBTyjEj +iTtxQNn5/NUeRwpGV67PFrJIAI81FnkurhRsOnzQI2Z9IgR+SrOdcaMgf731 +YcnBRKi1bLgedYOC3i2JXzZcfwSGlep5QzcpaNezSnRXeAokPTYwUL9HweQL +O78Wn3oCrxee1mz5j4I01sncg9JPYX5VYKSSHwX1J8J19bJSIceZEDYLomAS +T0BFnu0zSHKu9DwWScF3OmKbvlc/g7uXeDVfRFOwLfBZmNqWdEhRVjsoEUdB +IQHK6fej6TAzFvRDPImCvqv+TOCtTFhndI/5Np2CV+W9FNrjsqHWFzwvl5Hx +vbjsgcSvbLA72s5MrKRg5vN4roV1DjhcUrjaSaHgN+Ui7JZ7ATn5E/G3Gyho +smvSivkqFyqqatVsOyioqesU+bvhFVgmGJon/KCgRfDs1AGVfHh4/bN24i8K +ejSGnfGJzIeKIz8XM+comG+Yo8RnXgBK9ztmmHxUjMm9cX7Z9dewzvKcMb8E +FZcWFsyJLLyB+ZavjWn7qdi12via3ba3cNf+1fs12lTM95j49tr6LbS6aCek +6lDRco9a9anit6Ab931N03Eq5pa+DY1zK4TMwsSmZzZUNKa8k5AaKILdpvcU +LIOpmPyxfIdsYzFIW+xYUf2Vii6qZ5+5TBdD0SkldswAFY9EzYvh5hJ4+FpF +xZlDxVFjrWlbvxKwXK9RDz+pCLSqimeapbBi9D3VXrgaB7uoBgqvyqA3+Lp2 +HFTjDnbDhW2xlVC0NVDB+2U16papx9nUVkL3tjQ1+cJqtHzwpDp6uhJ2b/V6 +Ri+rRt+d7ht/WldB84eciItN1djqLdtTuQkhcGEjLh2uxpJAzVfZ1hRoHMh+ +YqNSg1YSMUr7R6nALy/Ap/a+BpP3aG84K1IHE4+vWboN1+LaJ+dGFhXroKKz +67fvVC2m8N0rzjhUB603TL2SF2oxtbXcaOR6Hbye3NvHEqvDTMf9vrdpdaDb +t8lp5EAdFjzd3Zf0qB7sEpZIRkTVYe0ylYyOTY0gPhgX9utgPY53Sika7fsf +zMg3z2nlNyBfCf+fh3dawaNyRiUmtQmDkzYfkX3UDgd/u+TICbeg081Wl8d+ +nVDpWsMpedGK+3krFF3PMOAl6yrv7ME2XEg7WWnj3g2te/1FIxntqKB1bZ/O +6R5IsxP8vXNPBzJNmzXq7Xug3ynwa/mBDnzuqLLrmGsPvHyle/3I4Q7cksTZ +bhLaAzHW51L0DTtQ6celTfZlPSA5rlCmbN+BCWY7lh8W6YWlBVzO8YgOTBZU +4tq594KZ8oXwyd4OfOYp05h2oA+itwzanrrXibMyD/O9D/eBj6pZZrZfJ5pU +/hNvfLQPmv6RiJoN6kR+fn57HtM+4K9SNEmI7ESHmPE5W8c+yLp0+2pWaifu +zKvZseFRH8w5fKqQo3Yipe9a4pPpPrgoV/JfAC8dZYLY927O94HzwbLNzkvp +eEPpwsUTS/rhgA7PsVMCdNzsaqn2R7gftpw7smrVKjqGzuv876xCPyx8Sve8 +LEdHYynpxbVm/VBqPll7RZuOvYbVl5Pf9EN9VveuKi86JrpazJoV94O4Nq1i +0x06nowdjRCp7AfphBUtQT50LKdLvgts7AcBBe9gCKJjgr0Tn2tPP2SGyWuF +xdLxhLd42hHhAWjYb7LnZh4dyzIuM0YdBmDCS9T15Vc6Xq+fc852GYC+9Lov +ab10VOJE89h7DECw8lmMHaBjvGq5Iv2/AaAkRHGcOHR0KxXxpCYMQJ3cLvwx +RUfFTyViCbUDQBs6sMFqJYEPZwUNQW4QNAtik701CHR3spLy3DIIMwE5j9X3 +EWjSnd2ft20QHmjJXGVrEihSpXtrzf5BMG887HD0EIH3/Xye/zw1CHoM5LYd +I9B3BZcnL2AQCpzDZORsCbS9dai5P2wQtOrXtCScJ1B7ODJRJnoQom+JnBC4 +SODc/1RUQ1IG4YXw4os+BwI9oy6dsX83CLKCYT22Nwh0lmS8k2YNQpebkHZs +IIHHQxT9jMYG4W5My6O6YAKVZ24aBv8YBIIZRJkKJZDFEBv4sTgIYY9OuupF +EGj/xFD0k/QQdFAVTxfHE2i5meIYdGwIHPkbXT9lEXhEPXsD99UQmNycD+iq +JnBNOaWtqnAIKm7WKznVEsg90hUUXjoEhfEJyjN1BD4zFx7dXDcEeTqP9ZZ/ +IHDR273EonsIaAafOb9bCCxHOFUpyARvfcUdal0Exupb8d8XZcJUw+lPIV8I +dPx8o/i0JBM8NWLburoJlBnIWj+xkQnf4pl8nj0Eei0TGpbfz4Sq4uuyfoME +7jpB+IdeYcIr75jHw2MECnZOaphfI/cT8c1Y/p3AfpuVnI3uTGAukZTcOEFg +jJu2UbkPE0yumGkZcAn8Hpe5djyeCfNzGhku0wTWr6tqKXvMBGqeq4jrLwKf +ZtH9Qp4xofDc62GnGQJPFAuy5V4xoasgdsJ6lsCXXW5FprVMaHQ6dOyfBQL9 +L9y/ItfEBB95YeCSth7NWDP2iQkJEU+z2xYJFFjo9A3+woR1tWGdobwMvLJR +60Qplwm7YWtlEz8DNzkIMGU3suDqVQfIEmSgPHS3XlFkwfdKhXGblaQlC8pf +b2eBm3GDj7gQA+VqzWJ0NFkw02Js4C7MQFm5tIOXTVlwfEj6yaII6V83FAus +WJCeH+yRJMrA9S3/is3YsoCx66DG9lUMXHd3hBXmzIK09aaex8QYuIbYE/cq +iAUvoy+LmYmTLhDwmQ5nwb7wA0bNpGWCux0glgUGfjvvHZJgoPRuf+3PT1lw +wyP09TpJ0ivNt67JYoHX0HRxIGmpfkXxCy9ZcH9PShGbtGT0R85UMQuSct7F +ZEqRvpJG06pigeqBIx7zpCW03TG4lgWtEZrGxtIMFB+Vjpf+zIJ8q7yZEdKr +a0b+O09nwb+iJxt2yTBQLLnKMfcrC6IXsuO8SK/Sv3jo4DALBCqGtv4gLbph +r0rQBAukLyz8VF5DelpAsmWaBVHj+2ptSIt87OaR+kPGc6EwPpL0P5kFI7Z8 +bHj6Lcqp7K/v+HfmCLBhd9C4Xj9pYRNz6qQIG4RifigtW8tAoa1KeZqSbDDW +rxXb8tc8cwkB69jwKyFkqc5f0z/6NcuzwVn48hJr0ivz05wltrJh+luYoAtp +wSB3C5sdbNjSK7vB56/P6ulka7ChK8jk8P2/3iWzfeIAGw4PmN6IJS0gOCq1 +X4cNVTmmhQmkV/RVLfHXZ8NZ+cCliX9dEjPWdJINt/fIOMb9ddRFYrU5G/Qv +6veHk15+eW/N2TNs8KzWd/UlvUxLMD/rPBsy/5iIXf9r8a9J41fYcMjiWfO5 +vx4pCNjrwobhDNdUPdJLq/1dfD3YIHlsLlyFNP8jc6sPt9nQcCggTuiv3ZR0 +xfzYsO8f/WIOGS/+o3OqZ0LYYFMfPlNNmk+2RSYzgg2hArGWSaSX/EzjH4tj +gxZfGnH1r5vdv2sks+GFw/ytvaR5M/S6fNLY4OD1XYuXNM9tmbqG52zQmapW +aCDvd1ERk60K2eDP3H/5KOmzPnnqQaVsyNXbI8JHuoz2qOk1sqHvdw1/OZk/ +Hn4es8ub2XDeK6ZrA+nP9POxu9rY8PiDaWUzmX+qqkbKtgQb3t/Nm7xJmtO1 +1fr9IBtadTXMKsn81VOT4vYNs0GPxQ08QzozhP++8CQbVPnshabJerDZ3VN6 +8Q8b7qDPZjnS7REPZVZLcsA6dfNT/dUM3Dno90Z7HQd6OzpzPpD1FqnpauAo +zwGd4jfiR0nrswxuUVU5MOu6R2IvWZ+VhxYJ16McMNwn3TPyD1mPiaNuj09w +QOFnurQxae8xxooGUw6IOcpXvSbrXz25aJ+sHQfMwMfkCtkfsn9cTWr25sCh +MYeGFwLkfRyz2Dnjw4GrL41CJlcw0D5Nt3FTEAd8fhlUaZBed2LDzO0YDqg3 +ySUWLmNgzHOaxdZcDgQmq68L4mPgHSuQCv7CAce2jve+8wQSBdsK3vRx4OuG +7Q+j5wjcs2zN0a8sDswb1C+mkP1x4u2U5+4pDqx+VBTykuyfl4RyO/uFhkFa +3i8wdYpAIxRPAO1h+CZfHTQ4QuDz7R8leHWHIXdna8/nYQLnHwfFVxsMQ0pI +qVEFh8Ac7+mH/5oPw8kZNc9QFoE86kTccedhcFH15F3oJ/B15uMYi+RhUM5c +rm7LIFD0vnyE6/QwOKbvUuUj59XlmS4htflhaJZK+RBPzrOKy3EPuLwjEMkj +n6VAJdDhCP+Dm8IjgMQyea0qAinzQ/fvbB6B8TiW1fESAt1cX4SGmIyAFK/R +7NBLAlvNdgam5o9AVAZ9eH0MgSdXpR/4WjQCD9UElDSiCGz+uPrHmvIRSKJe +sjUg522j3q/zCQ0jkNyiVOsQRu6/rwoiekeAf6wtOcCPwIJ1hnO3xUah1k1T +SeU6gZGDV26c9hyFdFUnK6OT5PzxSLUT1h4D2aw7Dmd5CKzV717sPTIGVJET +q8b/0FFzvUxqkcEY9Doqhd6bI98/9bFfz5iPgZPFclb8NB2XSAdb5zqPgbZ9 +b3LeKB1Lyp3Njj4egx9fqq66E+T7jk9T329mDNpUUwzc8+k4F0Pb8fPtOEwd +jjfMNKNjVA1NXld0Ah4E3Dx5MaYTZfk4mQ87J4C387NFf04H1h+2k0uPmoQM +oY+cnnoa3izqdu6OnYTc3v5VY9U03KxoVSqZMAkE1+P+bBUNA4RMTMJTJmHv +bFmAZDEND9GPBHq8mITlPW2aptk0LHVWZOvVTIJ62e99QyE0zEscLxiZnoS6 +KYuiVAManhF0mleYnYRPNiFhtf/SUPAeS9/uzyTscOl7N3yYhg72vX00Pi7M +jqgaHNCkocL2ttVVolzYnts5Nq5Mw6fV77yilbngrFIjWyBEwxMa6rVN27nA +3pi4fHIFDeez80WXqnFBfLutu8ZS8ryI7Be39nLhvkiTbv2fdpS2fPTFXpcL +dgOr9FZ+b8eGJgmlJ0e5kJ8dXnRxpB09tWI96Me4EFi9vJTKakeafLiw4Sku ++NvKaYb0tmNA/HLrYDMuPK+Llpnobkf1FYHPKRZceKoD5ufI/0b/bZ4fs9Zc +KHtWqvipox1jxu6Chg0X+BO7P/3b1o7/BzHMMUc= "]]}, - Annotation[#, "Charting`Private`Tag$436983#1"]& ], {}}, {}}, + Annotation[#, "Charting`Private`Tag$231073#1"]& ], {}}, {}}, AspectRatio->1, Axes->{True, True}, AxesLabel->{None, None}, - AxesOrigin->{0, 0}, + AxesOrigin->{0, -0.39230902671276946`}, DisplayFunction->Identity, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, + ImageSize->{824.0000000000001, Automatic}, Method->{ "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, @@ -10406,7 +10969,7 @@ PiBn8W/e76Mkt/ei8P8BTEPpSw== "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "ScalingFunctions" -> None}, - PlotRange->{{-1.148, 1.148}, {-4.492828149378882, 7.7277590963299785`}}, + PlotRange->{{-1.148, 1.148}, {-0.39230902671276946`, -0.12773605998196258`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.05], @@ -10429,8 +10992,10 @@ PiBn8W/e76Mkt/ei8P8BTEPpSw== 3.8577980205886602`*^9}, {3.8578008901725283`*^9, 3.85780091538914*^9}, { 3.85780096624469*^9, 3.8578009715733852`*^9}, 3.858849775298038*^9, { 3.858850387194827*^9, 3.858850394650468*^9}, {3.8588506002888317`*^9, - 3.858850620305167*^9}, 3.858852097408359*^9}, - CellLabel->"Out[53]=",ExpressionUUID->"3cc5cf10-40e7-4f49-b49b-2b27df5676e3"] + 3.858850620305167*^9}, 3.858852097408359*^9, {3.867387370900909*^9, + 3.867387405618146*^9}, 3.867387471536796*^9, 3.867387534689898*^9, { + 3.867392586082136*^9, 3.86739263513975*^9}, 3.8673927258991632`*^9}, + CellLabel->"Out[46]=",ExpressionUUID->"a6b30fc2-c088-4262-94f2-edcc475c95da"] }, Open ]], Cell[BoxData["dGd\[Xi]"], "Input", @@ -10481,7 +11046,7 @@ Cell[BoxData[ 3.85775442603514*^9, 3.857754438089511*^9}, {3.857755022546867*^9, 3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, { 3.857792220388947*^9, 3.857792221589129*^9}}, - CellLabel->"In[13]:=",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"], + CellLabel->"In[8]:=",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"], Cell[BoxData[ GraphicsBox[{{}, @@ -10588,8 +11153,8 @@ Cell[BoxData[ 3.857754191065139*^9}, {3.857754422623551*^9, 3.857754438672948*^9}, { 3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9, 3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9, - 3.857792222287586*^9, 3.858849787156363*^9}, - CellLabel->"Out[13]=",ExpressionUUID->"33e7c0ba-20ab-4cf6-a29c-389c57994027"] + 3.857792222287586*^9, 3.858849787156363*^9, 3.87050364829076*^9}, + CellLabel->"Out[8]=",ExpressionUUID->"9cd66a8a-65ca-4fb7-ba2c-0e30d1efdb75"] }, Open ]], Cell[CellGroupData[{ @@ -10615,7 +11180,7 @@ Cell[BoxData[ 3.857755042653729*^9}, {3.857790310738358*^9, 3.857790311353793*^9}, { 3.857792220388947*^9, 3.857792221589129*^9}, {3.857793456034882*^9, 3.857793480107435*^9}, {3.857797401964308*^9, 3.857797402122551*^9}}, - CellLabel->"In[14]:=",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"], + CellLabel->"In[9]:=",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"], Cell[BoxData[ GraphicsBox[{{}, @@ -10893,584 +11458,14 @@ Cell[BoxData[ 3.8577550257279997`*^9, 3.857755045295697*^9}, 3.8577563069226103`*^9, 3.857790311770729*^9, 3.857790676280467*^9, 3.857791263968403*^9, 3.857792222287586*^9, {3.85779345804388*^9, 3.857793482920364*^9}, - 3.857797404294942*^9, 3.857797851408039*^9, 3.8588497893548727`*^9}, - CellLabel->"Out[14]=",ExpressionUUID->"b7e91f97-bef2-4342-aa10-56fd59db8ada"] -}, Open ]], - -Cell[BoxData["dza"], "Input", - CellChangeTimes->{{3.85779011850522*^9, - 3.857790118981881*^9}},ExpressionUUID->"0feeca6f-7c3d-42df-96a3-\ -eba02ed3f0e7"], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Function", "[", - RowBox[{"\[Theta]", ",", - RowBox[{"Evaluate", "@", - RowBox[{ - RowBox[{"h", "[", - RowBox[{"\[Theta]0", ",", - RowBox[{"{", - RowBox[{"g1", ",", "g2"}], "}"}]}], "]"}], "[", "\[Theta]", "]"}]}]}], - "]"}]], "Input", - CellChangeTimes->{{3.8577498385691147`*^9, 3.857749855143888*^9}}, - CellLabel->"In[42]:=",ExpressionUUID->"ee96b162-d408-4f1d-829d-62c01734a1cf"], - -Cell[BoxData[ - RowBox[{"Function", "[", - RowBox[{"\[Theta]", ",", - RowBox[{ - RowBox[{"h", "[", - RowBox[{"\[Theta]0", ",", - RowBox[{"{", - RowBox[{"g1", ",", "g2"}], "}"}]}], "]"}], "[", "\[Theta]", "]"}]}], - "]"}]], "Output", - CellChangeTimes->{{3.857749851353796*^9, 3.857749855283477*^9}}, - CellLabel->"Out[42]=",ExpressionUUID->"a6438d16-9b69-47fb-b129-edbda292b468"] -}, Open ]], - -Cell[BoxData[{ - RowBox[{ - RowBox[{"DerivativeList", "[", - RowBox[{"f_", ",", "x_", ",", "n_"}], "]"}], ":=", - RowBox[{"Through", "[", - RowBox[{ - RowBox[{"NestList", "[", - RowBox[{ - RowBox[{"Derivative", "[", "1", "]"}], ",", "f", ",", "n"}], "]"}], "[", - "x", "]"}], "]"}]}], "\[IndentingNewLine]", - RowBox[{ - RowBox[{"EfficientDerivativeList", "[", - RowBox[{"f_", ",", "x_", ",", "n_"}], "]"}], ":=", - RowBox[{"Module", "[", - RowBox[{ - RowBox[{"{", "xp", "}"}], ",", - RowBox[{ - RowBox[{"NestList", "[", - RowBox[{ - RowBox[{"Function", "[", - RowBox[{"g", ",", - RowBox[{"D", "[", - RowBox[{"g", ",", "xp"}], "]"}]}], "]"}], ",", - RowBox[{"f", "[", "xp", "]"}], ",", "n"}], "]"}], "/.", - RowBox[{"xp", "->", "x"}]}]}], "]"}]}]}], "Input", - CellChangeTimes->{{3.857755250612409*^9, 3.857755319553091*^9}, { - 3.857755422678203*^9, 3.857755424189089*^9}}, - CellLabel-> - "In[105]:=",ExpressionUUID->"d8cfd93a-f879-48e0-a27b-95b9cc513688"], - -Cell[BoxData[ - RowBox[{ - RowBox[{"f", "[", "x_", "]"}], ":=", - RowBox[{ - RowBox[{"Log", "[", - SuperscriptBox["x", - RowBox[{"1", "/", "2"}]], "]"}], - SuperscriptBox["x", - RowBox[{"3", "/", "7"}]], - RowBox[{"Sin", "[", - SuperscriptBox["x", - RowBox[{"1", "/", "3"}]], "]"}]}]}]], "Input", - CellChangeTimes->{{3.8577553401391706`*^9, 3.857755381037498*^9}}, - CellLabel-> - "In[101]:=",ExpressionUUID->"9e014371-5790-478a-a2c4-4dfe8ce3b446"], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Timing", "[", - RowBox[{ - RowBox[{"DerivativeList", "[", - RowBox[{"f", ",", "x", ",", "10"}], "]"}], ";"}], "]"}]], "Input", - CellChangeTimes->{{3.857755332457055*^9, 3.857755335775176*^9}, { - 3.857755384961171*^9, 3.857755396809326*^9}, {3.857755434233383*^9, - 3.857755434473165*^9}}, - CellLabel-> - "In[110]:=",ExpressionUUID->"fcc52228-f93a-4127-9745-1d6483b4cd17"], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{"5.335467`", ",", "Null"}], "}"}]], "Output", - CellChangeTimes->{{3.8577553908469267`*^9, 3.857755440088213*^9}}, - CellLabel-> - "Out[110]=",ExpressionUUID->"a76ccc99-43de-4a3a-91c9-6c5b0b9d3834"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[{ - RowBox[{"data", "=", - RowBox[{"Map", "[", - RowBox[{ - RowBox[{"n", "\[Function]", - RowBox[{"First", "[", - RowBox[{"Timing", "[", - RowBox[{"DerivativeList", "[", - RowBox[{"f", ",", "6", ",", "n"}], "]"}], "]"}], "]"}]}], ",", - RowBox[{"Range", "[", "8", "]"}]}], "]"}]}], "\[IndentingNewLine]", - RowBox[{"efficientData", "=", - RowBox[{"Map", "[", - RowBox[{ - RowBox[{"n", "\[Function]", - RowBox[{"First", "[", - RowBox[{"Timing", "[", - RowBox[{"EfficientDerivativeList", "[", - RowBox[{"f", ",", "6", ",", "n"}], "]"}], "]"}], "]"}]}], ",", - RowBox[{"Range", "[", "13", "]"}]}], "]"}]}]}], "Input", - CellChangeTimes->{{3.857755404449452*^9, 3.857755431789523*^9}, { - 3.85775552628896*^9, 3.857755638920166*^9}, {3.857756155805472*^9, - 3.8577561621590548`*^9}}, - CellLabel-> - "In[151]:=",ExpressionUUID->"56426949-8cfc-4977-90ce-38dc748eefaf"], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{ - "0.000217`", ",", "0.000525`", ",", "0.001141`", ",", "0.00335`", ",", - "0.009593`", ",", "0.03427`", ",", "0.141814`", ",", "0.578457`"}], - "}"}]], "Output", - CellChangeTimes->{{3.857755406978237*^9, 3.8577554319755287`*^9}, { - 3.857755586489668*^9, 3.857755615341913*^9}, 3.857755656164979*^9, { - 3.85775615942632*^9, 3.857756163158482*^9}}, - CellLabel-> - "Out[151]=",ExpressionUUID->"bd542387-dd30-48b3-ac8a-75c8be4d170c"], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{ - "0.000233`", ",", "0.000344`", ",", "0.000584`", ",", "0.000931`", ",", - "0.001271`", ",", "0.001725`", ",", "0.002238`", ",", "0.002929`", ",", - "0.003621`", ",", "0.004433`", ",", "0.005236`", ",", "0.006274`", ",", - "0.007287`"}], "}"}]], "Output", - CellChangeTimes->{{3.857755406978237*^9, 3.8577554319755287`*^9}, { - 3.857755586489668*^9, 3.857755615341913*^9}, 3.857755656164979*^9, { - 3.85775615942632*^9, 3.857756163196397*^9}}, - CellLabel-> - "Out[152]=",ExpressionUUID->"0b0601b9-e2e8-40f8-bca4-46e6faaeeb0c"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Timing", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"Derivative", "[", "#", "]"}], "[", "f", "]"}], "[", "6", - "]"}], "&"}], "/@", - RowBox[{"Range", "[", "13", "]"}]}], ";"}], "]"}]], "Input", - CellChangeTimes->{{3.8577560587526007`*^9, 3.857756084388484*^9}, { - 3.857756123969215*^9, 3.8577561508268557`*^9}}, - CellLabel-> - "In[148]:=",ExpressionUUID->"1905df0b-1226-4655-8431-1d968eb57183"], - -Cell[BoxData[ - RowBox[{"{", - RowBox[{"0.006562`", ",", "Null"}], "}"}]], "Output", - CellChangeTimes->{{3.857756085610165*^9, 3.857756151297426*^9}}, - CellLabel-> - "Out[148]=",ExpressionUUID->"012c854d-bc35-40d2-b50e-09b978f1c772"] -}, Open ]], - -Cell[CellGroupData[{ - -Cell[BoxData[ - RowBox[{"Show", "[", "\[IndentingNewLine]", - RowBox[{ - RowBox[{"ListLogPlot", "[", - RowBox[{"{", - RowBox[{"data", ",", "efficientData"}], "}"}], "]"}], ",", - "\[IndentingNewLine]", - RowBox[{"LogPlot", "[", - RowBox[{ - RowBox[{ - RowBox[{ - RowBox[{"(", - RowBox[{ - RowBox[{"4", "/", "5"}], " ", "x"}], ")"}], "!"}], "/", "4000"}], - ",", - RowBox[{"{", - RowBox[{"x", ",", "0", ",", "12"}], "}"}]}], "]"}]}], - "\[IndentingNewLine]", "]"}]], "Input", - CellChangeTimes->{{3.857755616497011*^9, 3.857755625893159*^9}, { - 3.857755675831479*^9, 3.857755681071005*^9}, {3.857755731557303*^9, - 3.857755830871949*^9}}, - CellLabel-> - "In[138]:=",ExpressionUUID->"35b92ab9-72f5-426c-91fe-d87a2358f71c"], - -Cell[BoxData[ - GraphicsBox[{{{}, { - {RGBColor[0.368417, 0.506779, 0.709798], PointSize[ - 0.012833333333333334`], AbsoluteThickness[1.6], - PointBox[{{1., -8.031685375634536}, {2., -7.3777589082278725`}, { - 3., -6.744786450703997}, {4., -5.7625775211667065`}, { - 5., -4.432394042037668}, {6., -3.307679716543695}, { - 7., -1.9544172318921198`}, {8., -0.5466445296323826}, {9., - 1.0163829142026093`}, {10., 2.5961112802916646`}}]}, - {RGBColor[0.880722, 0.611041, 0.142051], PointSize[ - 0.012833333333333334`], AbsoluteThickness[1.6], - PointBox[{{1., -8.334871634622283}, {2., -7.951879382366177}, { - 3., -7.410282099933433}, {4., -7.026538814972104}, { - 5., -6.608391701756518}, {6., -6.3105684895681025`}, { - 7., -6.0356254428937515`}, {8., -5.834802737094605}, { - 9., -5.637994734118198}, { - 10., -5.424561093122287}}]}}, {{}, {}}}, {{{}, {}, - TagBox[ - {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], - Opacity[1.], LineBox[CompressedData[" -1:eJwt1gk0ldv7B3BDLhkznYMMr+kcUbdCg256Ntc1JJeiiMhMEiWpRCQacERS -MmuW4UcTSWzKXOaSDHFQhgZD6ET89733v9d617s+691rv9Pe32cru/rv8uDh -4uLqI8c/5x/mfulW/vHbDAsDCllXKXzOnanRzPADA0mJswevUfj11yEfFuM0 -1M7+edIkmcITD/+M9WXEQXHa6Xec6xSOoE3L72NkgPakSYppOoUba7cPWzMK -gGMk03fpJoULjktY7VtWCFsind9Y3aLw8Ziw/LiZQvgzb0Z0xW0KCzzc6z3d -+QBcv+laXbxDYU0e0b6ytCdQwozd6pVDYf+soHpLRjloO8zptxVQePOjQUYE -vQLaQq9rnvgfhbncNQztl2HQ7a4OlC+kcP3xpMzYGQwMY0rDuYjC9pn+9pOd -VRDq821jx0MKh3xVbSlNqwGLTT47DpdQ2PnE+0Vr6VrIiwlqXCA24klY84VV -C50Ktvj8UwqL0BajlcLqINHBXPx6KYUz9N/9FenSAOlKR4/nlFG4Mjb2mQWj -CXoMz16IwBQuH+t6JZTTBJoKtFquSgqXmTL76rWagadupVUosQOPC9dNmRbY -LbHc9EgVhXeXz6soKbaC00L0gtFLCtscuqF1en8r3O8eefaYeJe8mW5vVit4 -l5xpU6umsFXw1b9SVdsAoUShReLtG9d701e1g3vjx860WgqbDnceDvJph/ub -Bk5x1VHY5Mrpk29y26F21dqzrsRGU43Rib93wOncrErlegpvK/DMF9N9A0aM -HQxWA4V1GGlT/NAJAW0HGmReU1j7jeG8Z3gnpFrA327E6yJHeWsqO8FFutw8 -j/h39kbpSKN3oLPyV4leE4U1Mlo3cW3vAkPZiXDDZgozLE6g/TFdEBUUNxtO -rL6gaFb+qgu412tOPCdWsfe1D7F8D39E7AvUaaGwPI0/9IdNNzhesBoUbqWw -XHV+lO3VbuAVi00FYtlAm7gnnd1wxeTawGFiWlt2ZqB9D9w/PLCymVjqjOm9 -9tQe+EvwtMQCseS6b4XavT1gU3g7ldlG4RVxW6sm9vfCjJW+TzCxqP5gg2V2 -L5i4LxRlE4t8vthewO6FuOdD8bXEgts7h3w9+qCOu0xGrJ3CyzmhXxrv9MGa -mfEX64gF7qnNao70Ac2kVnAnMd9vAfyjPh+AsvzmzyIeMQsTm777AR7c0Sq/ -S9zAiqX/GiLXTc92YeLa6PbEC2v7YV220KlvxCWr318T+bsfNn1Y4OHroHBO -U3/qZd9+YJ+IdpAljpH4ejMtpx+6Dn09s4045NH3u8p1/aB289ROS2K/PfO5 -dz72Q+dniRkn4v0/uAu1+AZge3XsoUPEVikCjwpVB0A3FD8LJjbYKlaywXAA -pvUj+88Ra/dJl5U6D0CXUH5PArFquDyGsAE4XCdalEospaL68mX6ABTqhjjd -IuZ7uarOrGwA0HTNcC7xrMe6V03vByAzusLkAfEn/k0t1pwBsPPaEFVM/C5H -v+MdnQ1U32zGM+J6c6N3jhvZsLimNamcuPTL9h62DRs8I+J9MHHepZ39XkfZ -YD6zpFBJnL7ebuhzAhs2JIwW/nM9rt1p5EghG3ZY09QqiMOPeXyebWKD45q/ -T5QRH6H7Tpz6woY+fruCEmLXpwHfuYQH4fMLTs1DYmuHkz+iNAdhm/6Pqnxi -o19hC4Jmg6C0g37zDvGGzHNc8V6DYFsr651BzDBgLZM+Nwi0c5USScT0wUSB -lFuD0O3SfDOaWCAqRVjpxSDs3MwrH0bMYWSvuDUwCL9/WRkSQDxWd1dqFdcQ -8Pl2vnQn7vYpkClQHAKl+1Ozu4lfCT+W19EfAqN7qySNif9nVaWmHzwEYqvf -CqsSZ03VaVQlD8HrhfJxMeLLV5pXmxQPwV/M+8XzZP4EvuvR3fl9CC5Mucm2 -EHsED25+KzEM0eEZhSXEe+THtjqsHwZx44ebsog3O88ZefgNQ7i/nowv8Sqe -RdOx2GGITxY7akUsd2uZhX/uMBSeu4h1iBc+ie8+OTIMkdkaG+fI+sD+qz1Y -rh/Bxlk18whxkbjOAYkzH6HFec0NC+IbD/UOXcv8CPfGjdI1iCPnjI9l93yE -sPsGp7vJ+jQLc4l6vOcTXCip/aVLrH2p0jg78BP4hXx4uJxYPlNZgHX5Ezxf -bnSkl+TDRPlAtHvTJ3BJ37ssgvjqoku8pPEIcBr2plWQPAkXrdq55DYCjYLh -6bHEPooqkuNnRqBGIP++HbH+NnZS1fMR+Cp/cPwLyauhUNfUIxtGgaN0hiZC -3MSq2udoPQoxSePn20i+laSrKJodGQWmzvjya8Qxz9lZVP4oHMobMlD4Jx9/ -ud5pVhuDOrvNCYqvyP1D3IrWSI1DW40Uc4bkq0/siwBZ7XEYKfYezCW2SVPV -5bMaB07n9xIXYmbZ4JOemHGId68vaiD53DTvVhbD+xlUKl+PJJA8lz/lXjs6 -9RkuMp/1zpB6UHzSo/d261cI1Q3cRa+g8J1tBzvlpr7CleT98Tnl5HvwHmm9 -JPENhEwVWrcQB7FCqk9aE6s7O9o/p/DG7MR8izff4MllySLWM1KPhvrLg30n -YMLg6ovqYgq/FxK7pHJ4Eh6jCa8wUl93fRUXdgyfhKA5e8lpUn8bWqQuXouf -hAQ00eZBXJokd1a4aBJ2/cyIN82ncIoS4/js5CQc2CoqxZtL6q+O/v6Go1OQ -XxuVs4PU9y77g2sDjk/DVa1xzw1pFI5mm/heOzcNXtxL7ddSKbzFRy2nLGka -RhK6wzkpFE472avC/2ga1n3Zn1pK9hvOyZa0tIlp6BBM6dUh+xOuf9t3eJ+0 -XiyG7F8+vdH5VX3gO7TUsYd5LlN4xmqhQXbfDKC1pw5Jn6ewuAnLsxLNQZtD -d4qiP1nvOWWgtXMOVGY3Jxv6UfiE0GeZJJc5yDi6+pXHIQr3N29v9I4g/bks -unIOUrjQTmDdipdzICGZc1nDm+Spz1mOk8kPmJl3auNyoXA862TsggUH1sbd -4CjuIvWmw+PBJod5sOpujVHTJnlK+eZEuS7Bj4rrZjFvlfDm3kONBpe50Qjn -ZvNppIQrf4bv6EjlRV4RbLwQo4iX/m286PzqjebqnorYu6KurjyCDx205LIX -6lDA193uykk786NXWkET2yUU8Bq7gdlFj+WoJ7mFvlxbHvdNWzYhMyHENxqe -4WezEk99kF1H2y2C3gsxghJs5TD3v99PFH0M3mQhwi2H43ODvWxtxVBdpkQh -spbFDDEBixOpK1CxnVKgyR4Z/ORweG5cpjh6nTEobqtHxx3qifw7L0sg+q22 -RxPqNKx2tl3D8bokmlpb5vJkUgrz/Du+FApihd3IPyaF9aw+6GamSqGpK+fj -0p5K4t7DUdtYsdIIWX+Qto2TwA/09opUJ9AQVmnkuBiIY9qe2q57UXQUbT9c -1sWzAgObK6EqUAb5DVtEWp0X+f//L4sKrsQcuCAkjK/TvEUYJ2RRQ5XP67YX -gjgi48D5DT5yyJflZSqqIoDTm5Jr4g6vRGM3Ro9d0uPDoX6JEwoB8mjDFt5X -j6x48LiLhsxeVwVUZazS3LRyqeK/8RWR1tTJD0W+8xUxv8aW9XkqolVyP412 -8nEqSj+bfBO1V0JxVvMB22C64q36ZvYWNQrpscwVtvCMV3ivclubeJtCj/9Q -cDZ71lNRucfhlIGiMnpuGej5U//hf+OHK6MUf+tOxzuvQcduLEcqWxl9Xvzx -4OCJN+B71rhTf6UKWjZa72aiSXLSU+And6IKwpO3e/MqJuG5gsvSmJQqeht2 -bKN15A94uniOVzNOFa2/eNtceWQR/nt+NXT/1KoLKSE8qOnhn2MscTWkU6Ao -av+dB1VTnjWxl9VQVejV39X8fkORxbuzBwTVUXhH7NnKR8vRPpUeJweWOrIv -rlbeYi6C5p+sXanFz0D1eo6u8XtWoBDe0VdJpxlo+J2icB+PBPrvfRjIsdGE -s8AvgWhqei7qXExkcGFOvLFTEh332/Nd8CQTBSfbfzRMkEbyG93rGKeYaM06 -qaTFZGmEfx1JMwxlog8qbqzSLGkkyGIZBZ9hohui9+x1CqVRRu7LK6MXmah+ -QtFLo1ka1Yxob6hLYaIStrkhJUJDUm5iQVFlTOQ8vP6t8UUaeqqpsD27nIno -eRdzhci8cprSVHyOmWguuLC+JZmG7p0xrvn+koyft6vf4R4N/ZEVSnN/zUTv -OPpBx2ppyLV3/IlhHxNxDtrBEz464r/NiXbqJ/3/fpERJkJHeb78+4PZTBSW -kWpsJk1Hs/Mq/A8+MlG5YYh/rxqZt3L2tsrfmEiP20Z9uREdrWV7aelPMtFS -TnhthzkddeQcW7KbZqIdNmNFWdZ0pKiXcDd+jomqovft13OjoxdcmafyOEyk -ILBX5beDdORdl2dZN89ETgeC17QH0JFwfKnq0C8mysopDc8KpqMi27q5pSUm -4q6WlPeLoKP/A0XAqdc= - "]]}, - Annotation[#, "Charting`Private`Tag$4811188#1"]& ]}, {}}}, - AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], - Axes->{True, True}, - AxesLabel->{None, None}, - AxesOrigin->{0., -9.19028308136882}, - DisplayFunction->Identity, - Frame->{{False, False}, {False, False}}, - FrameLabel->{{None, None}, {None, None}}, - FrameTicks->{{ - Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> - 15.954589770191003`, RotateLabel -> 0], - Charting`ScaledFrameTicks[{Log, Exp}]}, {Automatic, Automatic}}, - GridLines->{None, None}, - GridLinesStyle->Directive[ - GrayLevel[0.5, 0.4]], - Method->{ - "OptimizePlotMarkers" -> True, "OptimizePlotMarkers" -> True, - "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ - Identity[ - Part[#, 1]], - Exp[ - Part[#, 2]]}& ), "CopiedValueFunction" -> ({ - Identity[ - Part[#, 1]], - Exp[ - Part[#, 2]]}& )}}, - PlotRange->{{0., 10.}, {-9.19028308136882, 2.5961112802916646`}}, - PlotRangeClipping->True, - PlotRangePadding->{{ - Scaled[0.02], - Scaled[0.02]}, { - Scaled[0.02], - Scaled[0.05]}}, - Ticks->FrontEndValueCache[{Automatic, - Charting`ScaledTicks[{Log, Exp}, {Log, Exp}, "Nice", WorkingPrecision -> - 15.954589770191003`, RotateLabel -> 0]}, { - Automatic, {{-9.210340371976182, - FormBox[ - TemplateBox[{"10", - RowBox[{"-", "4"}]}, "Superscript", SyntaxForm -> SuperscriptBox], - TraditionalForm], {0.01, 0.}}, {-6.907755278982137, - FormBox["0.001`", TraditionalForm], {0.01, 0.}}, {-4.605170185988091, - FormBox[ - TagBox[ - InterpretationBox[ - StyleBox["\"0.010\"", ShowStringCharacters -> False], - 0.01`15.954589770191003, AutoDelete -> True], NumberForm[#, { - DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, - 0.}}, {-2.3025850929940455`, - FormBox[ - TagBox[ - InterpretationBox[ - StyleBox["\"0.100\"", ShowStringCharacters -> False], - 0.1`15.954589770191003, AutoDelete -> True], NumberForm[#, { - DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01, 0.}}, {0., - FormBox["1", TraditionalForm], {0.01, 0.}}, {2.302585092994046, - FormBox["10", TraditionalForm], {0.01, 0.}}, {-11.59630707390928, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-11.585496157805064`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-11.574800868688316`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-11.564218759357779`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-11.553747459490484`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-11.543384672454938`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-11.533128172287748`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-11.52297580082373, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-11.512925464970229`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-10.819778284410283`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-10.41431317630212, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-10.126631103850338`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-9.903487552536127, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-9.721165995742174, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-9.567015315914915, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-9.433483923290392, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-9.315700887634009, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-8.517193191416238, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-8.111728083308073, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-7.824046010856292, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-7.600902459542082, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-7.418580902748128, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-7.264430222920869, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-7.1308988302963465`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-7.013115794639964, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-6.214608098422191, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-5.809142990314028, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-5.521460917862246, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-5.298317366548036, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-5.115995809754082, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-4.961845129926823, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-4.8283137373023015`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-4.710530701645918, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-3.912023005428146, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-3.506557897319982, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-3.2188758248682006`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-2.995732273553991, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-2.8134107167600364`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-2.659260036932778, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-2.5257286443082556`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-2.4079456086518722`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-1.6094379124341003`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-1.2039728043259361`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-0.916290731874155, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-0.6931471805599453, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-0.5108256237659907, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-0.35667494393873245`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-0.2231435513142097, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}, {-0.10536051565782628`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 0.6931471805599453, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 1.0986122886681098`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 1.3862943611198906`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 1.6094379124341003`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 1.791759469228055, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 1.9459101490553132`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 2.0794415416798357`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 2.1972245773362196`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 2.995732273553991, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 3.4011973816621555`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 3.6888794541139363`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 3.912023005428146, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 4.0943445622221, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 4.248495242049359, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 4.382026634673881, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 4.499809670330265, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 4.605170185988092, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 5.0106352940962555`, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 5.298317366548036, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, 0.}}, { - 5.521460917862246, - FormBox[ - TemplateBox[{0, 0}, "Spacer2"], TraditionalForm], {0.005, - 0.}}}}]]], "Output", - CellChangeTimes->{{3.857755623125246*^9, 3.857755626126985*^9}, { - 3.8577556562208157`*^9, 3.857755681323565*^9}, {3.8577557499171047`*^9, - 3.857755831159169*^9}}, - CellLabel-> - "Out[138]=",ExpressionUUID->"27cd73fa-a836-434d-a96b-24533fc305f0"] + 3.857797404294942*^9, 3.857797851408039*^9, 3.8588497893548727`*^9, + 3.870503651391385*^9}, + CellLabel->"Out[9]=",ExpressionUUID->"3fd3b5f8-4da9-404f-8b20-64b6c99239f0"] }, Open ]] }, -WindowSize->{955.5, 1060.5}, -WindowMargins->{{Automatic, 2.25}, {2.25, Automatic}}, -FrontEndVersion->"13.0 for Linux x86 (64-bit) (February 4, 2022)", +WindowSize->{1915.5, 1019.25}, +WindowMargins->{{0, Automatic}, {3, Automatic}}, +FrontEndVersion->"13.1 for Linux x86 (64-bit) (June 16, 2022)", StyleDefinitions->"Default.nb", ExpressionUUID->"3a2ec9ae-362f-42b0-9bfc-c766461c7128" ] @@ -11485,116 +11480,121 @@ CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ -Cell[558, 20, 291, 7, 24, "Input",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"], -Cell[852, 29, 210, 3, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], +Cell[558, 20, 290, 7, 24, "Input",ExpressionUUID->"cb2d1f0e-8921-4d60-a098-a74598dfa8f6"], +Cell[851, 29, 209, 3, 22, "Input",ExpressionUUID->"ebe5eb4e-2760-42b5-9d9b-c166d8a7c2b8"], +Cell[CellGroupData[{ +Cell[1085, 36, 829, 21, 22, "Input",ExpressionUUID->"874f84cd-149c-43b3-8711-b9fd0129e036"], +Cell[1917, 59, 1110, 24, 25, "Output",ExpressionUUID->"2569ec7f-06f8-4d96-90ad-f6881e3c95ff"] +}, Open ]], +Cell[CellGroupData[{ +Cell[3064, 88, 1076, 29, 22, "Input",ExpressionUUID->"13ac0713-5c3c-49fc-a322-a9f53d13bda2"], +Cell[4143, 119, 918, 18, 25, "Output",ExpressionUUID->"d356300d-fbd5-438e-842f-b2e2d92bd3a0"] +}, Open ]], Cell[CellGroupData[{ -Cell[1087, 36, 829, 21, 22, "Input",ExpressionUUID->"874f84cd-149c-43b3-8711-b9fd0129e036"], -Cell[1919, 59, 997, 23, 25, "Output",ExpressionUUID->"ce3049a2-a872-4051-b925-2b210d981406"] +Cell[5098, 142, 823, 17, 24, "Input",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"], +Cell[5924, 161, 20093, 347, 162, "Output",ExpressionUUID->"1beeabe4-ee06-48f6-86f2-eb131e832f9d"] }, Open ]], Cell[CellGroupData[{ -Cell[2953, 87, 1076, 29, 22, "Input",ExpressionUUID->"13ac0713-5c3c-49fc-a322-a9f53d13bda2"], -Cell[4032, 118, 799, 16, 25, "Output",ExpressionUUID->"3221ce5b-1b38-40e6-a72a-522044bce1af"] +Cell[26054, 513, 606, 16, 22, "Input",ExpressionUUID->"516a4819-1b7b-40d4-a8ad-e2086998c231"], +Cell[26663, 531, 7198, 136, 175, "Output",ExpressionUUID->"cb4c528f-0710-481a-bfb2-44297fb7fba9"] }, Open ]], Cell[CellGroupData[{ -Cell[4868, 139, 823, 17, 24, "Input",ExpressionUUID->"59d7c94c-1b16-401f-9f76-aee317437f4b"], -Cell[5694, 158, 19978, 346, 162, "Output",ExpressionUUID->"4d2138f6-c507-4fe3-b575-f7a229cf7535"] +Cell[33898, 672, 199, 3, 22, "Input",ExpressionUUID->"58adee79-610c-4fdb-8124-fbf6f3d2f4f7"], +Cell[34100, 677, 147, 2, 25, "Output",ExpressionUUID->"76f32142-c2e3-4b66-9e61-ffed298db318"] }, Open ]], Cell[CellGroupData[{ -Cell[25709, 509, 606, 16, 22, "Input",ExpressionUUID->"516a4819-1b7b-40d4-a8ad-e2086998c231"], -Cell[26318, 527, 7079, 134, 175, "Output",ExpressionUUID->"ba11d116-bc7c-4392-9461-520d5c8b9511"] +Cell[34284, 684, 505, 13, 22, "Input",ExpressionUUID->"4534127d-b193-401a-b594-a6abec8f7edb"], +Cell[34792, 699, 30824, 838, 1017, "Output",ExpressionUUID->"1d11593c-279f-48a7-b332-deeff602eead"] }, Open ]], Cell[CellGroupData[{ -Cell[33434, 666, 514, 12, 24, "Input",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"], -Cell[33951, 680, 91727, 1522, 283, "Output",ExpressionUUID->"316a1105-8eff-4541-b7ab-c807e95c3253"] +Cell[65653, 1542, 1533, 38, 24, "Input",ExpressionUUID->"7b4a2b19-eb62-4fb5-9666-a81b70aa0106"], +Cell[67189, 1582, 12878, 342, 472, "Output",ExpressionUUID->"49d3eb26-ffe6-47e7-8e76-81dd108d6570"] }, Open ]], Cell[CellGroupData[{ -Cell[125715, 2207, 315, 7, 22, "Input",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"], -Cell[126033, 2216, 2124, 59, 59, "Output",ExpressionUUID->"c57d6a51-b537-4cbe-ac96-92ebb8cedd38"] +Cell[80104, 1929, 13821, 355, 496, "Input",ExpressionUUID->"df04d6a6-7870-45a4-a6f0-74b19e0194f0"], +Cell[93928, 2286, 545, 13, 43, "Output",ExpressionUUID->"911979f9-954d-47ec-b0a6-8c3dacdfaa49"] }, Open ]], +Cell[94488, 2302, 402, 11, 22, "Input",ExpressionUUID->"626c9442-a5ca-460d-9253-fd9b4c2f2227"], Cell[CellGroupData[{ -Cell[128194, 2280, 525, 13, 22, "Input",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"], -Cell[128722, 2295, 14514, 256, 179, "Output",ExpressionUUID->"f0af288f-6d62-4e20-864d-98a3f00e528f"] +Cell[94915, 2317, 560, 12, 22, "Input",ExpressionUUID->"a0cfb952-d05f-4bd0-a391-93fb881a8649"], +Cell[95478, 2331, 14364, 251, 283, "Output",ExpressionUUID->"85a2d28b-ab9a-4905-9bf4-82b4db4297e8"] }, Open ]], -Cell[143251, 2554, 999, 20, 22, "Input",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"], Cell[CellGroupData[{ -Cell[144275, 2578, 700, 17, 24, "Input",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"], -Cell[144978, 2597, 1715, 40, 42, "Output",ExpressionUUID->"af000ddb-e1d9-42c9-8898-089a4381de4a"] +Cell[109879, 2587, 316, 7, 22, "Input",ExpressionUUID->"b8e5bda5-41a3-4b34-81bd-4e69eb882a87"], +Cell[110198, 2596, 2173, 60, 41, "Output",ExpressionUUID->"e7286934-338d-4dca-a6d6-10f11548d20b"] }, Open ]], Cell[CellGroupData[{ -Cell[146730, 2642, 197, 3, 22, "Input",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"], -Cell[146930, 2647, 170, 3, 39, "Output",ExpressionUUID->"0d1a07f3-3dbe-4537-a762-6504ecebe3ad"] +Cell[112408, 2661, 526, 13, 22, "Input",ExpressionUUID->"aed31f23-624a-4974-a440-50445111532a"], +Cell[112937, 2676, 14567, 257, 179, "Output",ExpressionUUID->"2d0442be-aad9-4e64-bcb2-9c95e259b44d"] }, Open ]], +Cell[127519, 2936, 999, 20, 22, "Input",ExpressionUUID->"ad78b3b9-b015-405b-9016-22b03218ae83"], Cell[CellGroupData[{ -Cell[147137, 2655, 197, 3, 22, "Input",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"], -Cell[147337, 2660, 172, 3, 39, "Output",ExpressionUUID->"062f12b6-ea91-4e05-b0ab-1496de323331"] +Cell[128543, 2960, 700, 17, 24, "Input",ExpressionUUID->"df87b3e8-c109-44ef-8929-96220390800b"], +Cell[129246, 2979, 1737, 40, 48, "Output",ExpressionUUID->"b14ef501-bb22-4221-909a-74857a964dbd"] }, Open ]], Cell[CellGroupData[{ -Cell[147546, 2668, 651, 17, 24, "Input",ExpressionUUID->"772ae4ea-2c0e-47ab-b71c-c3d75bfbcf38"], -Cell[148200, 2687, 678, 18, 27, "Output",ExpressionUUID->"2382e905-c55d-4fe5-a155-2e47ebb339a1"] +Cell[131020, 3024, 948, 26, 24, "Input",ExpressionUUID->"564592fe-1f79-46a8-bf0c-12430c5a848d"], +Cell[131971, 3052, 874, 24, 48, "Output",ExpressionUUID->"a64bfe21-ffa8-4116-9178-4a9bd1ff53e8"] }, Open ]], Cell[CellGroupData[{ -Cell[148915, 2710, 536, 14, 24, "Input",ExpressionUUID->"6125225e-666f-4c16-afa0-2771438e275a"], -Cell[149454, 2726, 205, 3, 25, "Output",ExpressionUUID->"36e624ac-a319-4213-9012-0eee8ede07d1"] +Cell[132882, 3081, 197, 3, 22, "Input",ExpressionUUID->"792c5cde-8fb4-4609-8cc7-31f9f21afd3f"], +Cell[133082, 3086, 194, 3, 39, "Output",ExpressionUUID->"ad62f5d9-ff96-4126-bac4-f13c7cefde52"] }, Open ]], Cell[CellGroupData[{ -Cell[149696, 2734, 728, 20, 39, "Input",ExpressionUUID->"8ba93997-a470-457b-9874-6c8096818135"], -Cell[150427, 2756, 847, 24, 27, "Output",ExpressionUUID->"b6a790f8-ee2e-4fd5-8d78-21f66e34e2a1"] +Cell[133313, 3094, 197, 3, 22, "Input",ExpressionUUID->"d9922a47-308f-4b7a-97bc-eaf6d8d3ce2e"], +Cell[133513, 3099, 194, 3, 39, "Output",ExpressionUUID->"e1ce7d09-44f9-4c6c-a067-9b21492174d3"] }, Open ]], Cell[CellGroupData[{ -Cell[151311, 2785, 1501, 38, 22, "Input",ExpressionUUID->"47f1d4ba-afc2-44f3-aeb8-a071f0e8c4f9"], -Cell[152815, 2825, 574, 12, 32, "Message",ExpressionUUID->"a415b118-1097-4155-84e3-609dd9a85a38"], -Cell[153392, 2839, 614, 13, 22, "Message",ExpressionUUID->"8871feea-390b-4d51-8323-ededa45e1a08"], -Cell[154009, 2854, 574, 12, 32, "Message",ExpressionUUID->"d90fd7e9-775c-4fd4-8a1d-aa407ff8abe4"], -Cell[154586, 2868, 576, 12, 32, "Message",ExpressionUUID->"e5d7a12d-1671-4c8c-989b-ec0f9f4c67a0"], -Cell[155165, 2882, 652, 13, 22, "Message",ExpressionUUID->"bdad9088-50c1-4d40-ad09-4fbb47c24899"], -Cell[155820, 2897, 614, 13, 22, "Message",ExpressionUUID->"4c080a0f-6df2-46f1-bc2d-7a054fb75363"], -Cell[156437, 2912, 616, 13, 22, "Message",ExpressionUUID->"cbf1491d-6d6b-408a-9961-e6e37a65a0a6"], -Cell[157056, 2927, 656, 13, 22, "Message",ExpressionUUID->"c77564c1-0ba4-4c7f-959b-735db191f7a0"] +Cell[133744, 3107, 651, 17, 25, "Input",ExpressionUUID->"772ae4ea-2c0e-47ab-b71c-c3d75bfbcf38"], +Cell[134398, 3126, 678, 18, 28, "Output",ExpressionUUID->"2382e905-c55d-4fe5-a155-2e47ebb339a1"] }, Open ]], Cell[CellGroupData[{ -Cell[157749, 2945, 356, 5, 22, "Input",ExpressionUUID->"c6e27107-d1c1-4def-bce7-5bfc77efa117"], -Cell[158108, 2952, 431003, 7099, 264, 351059, 5788, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"65425ede-668b-4584-b959-e541ddaed240"] +Cell[135113, 3149, 536, 14, 24, "Input",ExpressionUUID->"6125225e-666f-4c16-afa0-2771438e275a"], +Cell[135652, 3165, 205, 3, 25, "Output",ExpressionUUID->"36e624ac-a319-4213-9012-0eee8ede07d1"] }, Open ]], Cell[CellGroupData[{ -Cell[589148, 10056, 1551, 29, 24, "Input",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"], -Cell[590702, 10087, 20336, 345, 282, "Output",ExpressionUUID->"3cc5cf10-40e7-4f49-b49b-2b27df5676e3"] +Cell[135894, 3173, 366, 8, 22, "Input",ExpressionUUID->"8a72abe3-fe5f-4db1-bdff-5188d3d18d6e"], +Cell[136263, 3183, 3306, 98, 91, "Output",ExpressionUUID->"55f9a443-3a9c-4c58-b340-624c596abd0b"] }, Open ]], -Cell[611053, 10435, 162, 3, 22, "Input",ExpressionUUID->"536d20a8-587f-4cd2-8d38-d67784bf6d33"], Cell[CellGroupData[{ -Cell[611240, 10442, 347, 7, 24, "Input",ExpressionUUID->"91e758ec-72b9-4894-b62d-8872e6b4ee42"], -Cell[611590, 10451, 369, 7, 25, "Output",ExpressionUUID->"7ebcdde0-d788-47fa-bc62-df9697e7a7a4"] +Cell[139606, 3286, 728, 20, 39, "Input",ExpressionUUID->"8ba93997-a470-457b-9874-6c8096818135"], +Cell[140337, 3308, 847, 24, 28, "Output",ExpressionUUID->"b6a790f8-ee2e-4fd5-8d78-21f66e34e2a1"] }, Open ]], Cell[CellGroupData[{ -Cell[611996, 10463, 1226, 20, 24, "Input",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"], -Cell[613225, 10485, 4586, 106, 179, "Output",ExpressionUUID->"33e7c0ba-20ab-4cf6-a29c-389c57994027"] +Cell[141221, 3337, 1501, 38, 22, "Input",ExpressionUUID->"47f1d4ba-afc2-44f3-aeb8-a071f0e8c4f9"], +Cell[142725, 3377, 574, 12, 32, "Message",ExpressionUUID->"a415b118-1097-4155-84e3-609dd9a85a38"], +Cell[143302, 3391, 614, 13, 22, "Message",ExpressionUUID->"8871feea-390b-4d51-8323-ededa45e1a08"], +Cell[143919, 3406, 574, 12, 32, "Message",ExpressionUUID->"d90fd7e9-775c-4fd4-8a1d-aa407ff8abe4"], +Cell[144496, 3420, 576, 12, 32, "Message",ExpressionUUID->"e5d7a12d-1671-4c8c-989b-ec0f9f4c67a0"], +Cell[145075, 3434, 652, 13, 22, "Message",ExpressionUUID->"bdad9088-50c1-4d40-ad09-4fbb47c24899"], +Cell[145730, 3449, 614, 13, 22, "Message",ExpressionUUID->"4c080a0f-6df2-46f1-bc2d-7a054fb75363"], +Cell[146347, 3464, 616, 13, 22, "Message",ExpressionUUID->"cbf1491d-6d6b-408a-9961-e6e37a65a0a6"], +Cell[146966, 3479, 656, 13, 22, "Message",ExpressionUUID->"c77564c1-0ba4-4c7f-959b-735db191f7a0"] }, Open ]], Cell[CellGroupData[{ -Cell[617848, 10596, 1328, 21, 24, "Input",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"], -Cell[619179, 10619, 11467, 277, 179, "Output",ExpressionUUID->"b7e91f97-bef2-4342-aa10-56fd59db8ada"] +Cell[147659, 3497, 356, 5, 22, "Input",ExpressionUUID->"c6e27107-d1c1-4def-bce7-5bfc77efa117"], +Cell[148018, 3504, 431003, 7099, 264, 351059, 5788, "CachedBoxData", "BoxData", "Output",ExpressionUUID->"65425ede-668b-4584-b959-e541ddaed240"] }, Open ]], -Cell[630661, 10899, 154, 3, 22, "Input",ExpressionUUID->"0feeca6f-7c3d-42df-96a3-eba02ed3f0e7"], Cell[CellGroupData[{ -Cell[630840, 10906, 434, 11, 22, "Input",ExpressionUUID->"ee96b162-d408-4f1d-829d-62c01734a1cf"], -Cell[631277, 10919, 397, 10, 25, "Output",ExpressionUUID->"a6438d16-9b69-47fb-b129-edbda292b468"] +Cell[579058, 10608, 474, 12, 22, "Input",ExpressionUUID->"d91d527e-9cac-4ce1-9ae6-5ff3208121a2"], +Cell[579535, 10622, 4330, 89, 171, "Output",ExpressionUUID->"559d6958-bbd1-42f4-b122-f3904597675f"] }, Open ]], -Cell[631689, 10932, 1030, 28, 41, "Input",ExpressionUUID->"d8cfd93a-f879-48e0-a27b-95b9cc513688"], -Cell[632722, 10962, 469, 14, 24, "Input",ExpressionUUID->"9e014371-5790-478a-a2c4-4dfe8ce3b446"], Cell[CellGroupData[{ -Cell[633216, 10980, 402, 9, 24, "Input",ExpressionUUID->"fcc52228-f93a-4127-9745-1d6483b4cd17"], -Cell[633621, 10991, 235, 5, 25, "Output",ExpressionUUID->"a76ccc99-43de-4a3a-91c9-6c5b0b9d3834"] +Cell[583902, 10716, 1771, 32, 24, "Input",ExpressionUUID->"5a79a2e7-c8b4-40fb-9154-88fdcc27bd73"], +Cell[585676, 10750, 14400, 247, 630, "Output",ExpressionUUID->"a6b30fc2-c088-4262-94f2-edcc475c95da"] }, Open ]], +Cell[600091, 11000, 162, 3, 22, "Input",ExpressionUUID->"536d20a8-587f-4cd2-8d38-d67784bf6d33"], Cell[CellGroupData[{ -Cell[633893, 11001, 934, 23, 41, "Input",ExpressionUUID->"56426949-8cfc-4977-90ce-38dc748eefaf"], -Cell[634830, 11026, 477, 10, 25, "Output",ExpressionUUID->"bd542387-dd30-48b3-ac8a-75c8be4d170c"], -Cell[635310, 11038, 574, 11, 25, "Output",ExpressionUUID->"0b0601b9-e2e8-40f8-bca4-46e6faaeeb0c"] +Cell[600278, 11007, 347, 7, 24, "Input",ExpressionUUID->"91e758ec-72b9-4894-b62d-8872e6b4ee42"], +Cell[600628, 11016, 369, 7, 28, "Output",ExpressionUUID->"7ebcdde0-d788-47fa-bc62-df9697e7a7a4"] }, Open ]], Cell[CellGroupData[{ -Cell[635921, 11054, 471, 13, 24, "Input",ExpressionUUID->"1905df0b-1226-4655-8431-1d968eb57183"], -Cell[636395, 11069, 233, 5, 25, "Output",ExpressionUUID->"012c854d-bc35-40d2-b50e-09b978f1c772"] +Cell[601034, 11028, 1225, 20, 24, "Input",ExpressionUUID->"deab78a8-001c-48e2-8e09-f201bb4cea29"], +Cell[602262, 11050, 4606, 106, 179, "Output",ExpressionUUID->"9cd66a8a-65ca-4fb7-ba2c-0e30d1efdb75"] }, Open ]], Cell[CellGroupData[{ -Cell[636665, 11079, 776, 22, 75, "Input",ExpressionUUID->"35b92ab9-72f5-426c-91fe-d87a2358f71c"], -Cell[637444, 11103, 16352, 364, 177, "Output",ExpressionUUID->"27cd73fa-a836-434d-a96b-24533fc305f0"] +Cell[606905, 11161, 1327, 21, 24, "Input",ExpressionUUID->"ac67b8f1-5341-473f-9d1d-922e2695ed9e"], +Cell[608235, 11184, 11492, 278, 179, "Output",ExpressionUUID->"3fd3b5f8-4da9-404f-8b20-64b6c99239f0"] }, Open ]] } ] |