summaryrefslogtreecommitdiff
path: root/ising_scaling.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2021-10-27 23:32:22 +0200
committerJaron Kent-Dobias <jaron@kent-dobias.com>2021-10-27 23:32:22 +0200
commit2acb7414c60879238fa4afbd58eb55a834a470b2 (patch)
treea53be4e8547c06fc6d4e287e42c4e331b34c23a4 /ising_scaling.tex
parent97c829f7a37f6877754b8ad57d8972fee16bd8b7 (diff)
downloadpaper-2acb7414c60879238fa4afbd58eb55a834a470b2.tar.gz
paper-2acb7414c60879238fa4afbd58eb55a834a470b2.tar.bz2
paper-2acb7414c60879238fa4afbd58eb55a834a470b2.zip
Lots of fiddly work, added some plots."
Diffstat (limited to 'ising_scaling.tex')
-rw-r--r--ising_scaling.tex90
1 files changed, 84 insertions, 6 deletions
diff --git a/ising_scaling.tex b/ising_scaling.tex
index 0bf301e..3f11729 100644
--- a/ising_scaling.tex
+++ b/ising_scaling.tex
@@ -246,7 +246,12 @@ The linear prefactor can be found through a more careful accounting of the
entropy of long-wavelength fluctuations in the droplet surface
\cite{Gunther_1980_Goldstone, Houghton_1980_The}. In the Ising conformal field
theory, the prefactor is known to be $A_0=\bar s/2\pi$
-\cite{Voloshin_1985_Decay, Fonseca_2003_Ising}.
+\cite{Voloshin_1985_Decay, Fonseca_2003_Ising}. The signature of this
+singularity in the scaling function is a superexponential divergence in the
+series coefficients about $\xi=0$, which asymptotically take the form
+\begin{equation} \label{eq:low.asymptotic}
+ \mathcal F_-^\infty(m)=\frac{A_0}\pi b^{m-1}\Gamma(m-1)
+\end{equation}
\subsection{Yang--Lee edge singularity}
@@ -288,10 +293,15 @@ $\xi_\mathrm{YL}$ \cite{Cardy_1985_Conformal, Fonseca_2003_Ising}. This creates
a branch cut stemming from the critical point along the imaginary-$\xi$ axis
with a growing imaginary part
\begin{equation}
- \operatorname{Im}\mathcal F_+(i\xi\pm0)=\pm\tilde A_\mathrm{YL}\frac12\Theta(\xi^2-\xi_\mathrm{YL}^2)[(\xi/\xi_\mathrm{YL})^2-1]^{1+\sigma}[1+O[(\xi-\xi_\mathrm{YL})^2]]
+ \operatorname{Im}\mathcal F_+(i\xi\pm0)=\pm\tilde A_\mathrm{YL}\Theta(\xi-\xi_\mathrm{YL})(\xi-\xi_\mathrm{YL})^{1+\sigma}[1+O[(\xi-\xi_\mathrm{YL})^2]]
\end{equation}
This results in analytic structure for $\mathcal F_+$ shown in
-Fig.~\ref{fig:higher.singularities}.
+Fig.~\ref{fig:higher.singularities}. The signature of this in the scaling
+function is an asymptotic behavior of the coefficients which goes like
+\begin{equation} \label{eq:high.asymptotic}
+ \mathcal F_+^\infty(m)=A_\mathrm{YL}2(-1)^{2m}\theta_\mathrm{YL}^{1-\sigma-m}\binom{1-\sigma}{m}
+\end{equation}
+
\section{Parametric coordinates}
@@ -425,7 +435,12 @@ where
reproduces the essential singularity in \eqref{eq:essential.singularity}.
Independently, we require for $\theta\in\mathbb R$
\begin{equation}
- \operatorname{Im}\mathcal F(i\theta+0)=\operatorname{Im}\mathcal F_\mathrm{YL}(i\theta+0)=\frac{C_\mathrm{YL}}2\Theta(\theta^2-\theta_\mathrm{YL}^2)[(\theta/\theta_\mathrm{YL})^2-1]^{1+\sigma}
+ \operatorname{Im}\mathcal F(i\theta+0)
+ =\operatorname{Im}\mathcal F_\mathrm{YL}(i\theta+0)
+ =\frac12C_\mathrm{YL}\left[
+ \Theta(\theta-\theta_\mathrm{YL})(\theta-\theta_\mathrm{YL})^{1+\sigma}
+ -\Theta(\theta+\theta_\mathrm{YL})(\theta+\theta_\mathrm{YL})^{1+\sigma}
+ \right]
\end{equation}
Fixing these requirements for the imaginary part of $\mathcal F(\theta)$ fixes
its real part up to an analytic even function $G(\theta)$, real for real $\theta$.
@@ -501,7 +516,7 @@ where $\mathcal R$ is given by the function
\end{equation}
and
\begin{equation}
- \mathcal F_{\mathrm{YL}}(\theta)=C_{\mathrm{YL}}\left[(\theta^2+\theta_{\mathrm{YL}}^2)^{1+\sigma}-\theta_{\mathrm{YL}}^{2(1+\sigma)}\right]
+ \mathcal F_{\mathrm{YL}}(\theta)=2C_\mathrm{YL}\left[2(\theta^2+\theta_\mathrm{YL}^2)^{(1+\sigma)/2}\cos\left((1+\sigma)\tan^{-1}\frac\theta{\theta_\mathrm{YL}}\right)-\theta_\mathrm{YL}^{1+\sigma}\right]
\end{equation}
We have also included the analytic part $G$, which we assume has a simple
series expansion
@@ -568,7 +583,7 @@ branch cut fixes the value of $C_\mathrm{YL}$ by
&\simeq A_\mathrm{YL}|u_h(\theta)|^{D\nu/\Delta}(\eta_{\mathrm YL}-\eta(\theta))^{1+\sigma} \\
&=A_\mathrm{YL}R^{D\nu}|g(i\theta_\mathrm{YL})|^{D\nu/\Delta}[-\eta'(i\theta_\mathrm{YL})]^{1+\sigma}(\theta-i\theta_\mathrm{YL})^{1+\sigma}\left(1+O[(\theta-i\theta_\mathrm{YL})^2]\right)\\
&\simeq R^{D\nu}\mathcal F_\mathrm{YL}(\theta)
- =C_\mathrm{YL}R^{D\nu}(2i\theta_{YL})^{1+\sigma}(\theta-i\theta_\mathrm{YL})^{1+\sigma}\left(1+O[(\theta-i\theta_\mathrm{YL})^2]\right)
+ =C_\mathrm{YL}R^{D\nu}(\theta-i\theta_\mathrm{YL})^{1+\sigma}\left(1+O[(\theta-i\theta_\mathrm{YL})^2]\right)
\end{aligned}
\end{equation}
\begin{equation}
@@ -857,6 +872,37 @@ Fig.~\ref{fig:phi.series}.
\begin{figure}
\begin{gnuplot}[terminal=epslatex]
+ dat1 = 'data/glow_numeric.dat'
+ dat2 = 'data/glow_series_ours_0.dat'
+ dat3 = 'data/glow_series_ours_6.dat'
+ dat4 = 'data/glow_series_caselle.dat'
+
+ set xlabel '$m$'
+ set xrange [0:14.5]
+
+ set key top left Left reverse
+ set ylabel '$\mathcal F_-^{(m)}/\mathcal F_-^\infty(m)$'
+
+ os = 1.3578383417065954956
+ asmp(n) = os / (2 * pi) * (2 * os / pi)**(n-1) * gamma(n - 1) / pi
+
+ plot \
+ dat1 using 1:(abs($2) / asmp($1)):($3 / asmp($1)) title 'Numeric' with yerrorbars, \
+ dat2 using 1:(abs($2) / asmp($1)) title 'This work ($n=2$)', \
+ dat3 using 1:(abs($2) / asmp($1)) title 'This work ($n=6$)', \
+ dat4 using 1:(abs($2) / asmp($1)) title 'Caselle \textit{et al.}'
+ \end{gnuplot}
+ \caption{
+ The series coefficients for the scaling function $\mathcal F_-$ as a
+ function of polynomial order $m$, rescaled by their asymptotic limit
+ $\mathcal F_-^\infty(m)$ from \eqref{eq:low.asymptotic}. The numeric values
+ are from Table \ref{tab:data}, and those of Caselle \textit{et al.} are
+ from the most accurate scaling function listed in \cite{Caselle_2001_The}.
+ } \label{fig:glow.series}
+\end{figure}
+
+\begin{figure}
+ \begin{gnuplot}[terminal=epslatex]
dat1 = 'data/ghigh_numeric.dat'
dat2 = 'data/ghigh_series_ours_2.dat'
dat3 = 'data/ghigh_series_ours_6.dat'
@@ -885,6 +931,38 @@ Fig.~\ref{fig:phi.series}.
\begin{figure}
\begin{gnuplot}[terminal=epslatex]
+ dat1 = 'data/ghigh_numeric.dat'
+ dat2 = 'data/ghigh_series_ours_2.dat'
+ dat3 = 'data/ghigh_series_ours_6.dat'
+ dat4 = 'data/ghigh_caselle.dat'
+
+ set xlabel '$m$'
+ set ylabel '$\mathcal F_+^{(m)}/\mathcal F_+^\infty(m)$'
+ set yrange [0.8:1.5]
+ set xrange [1.5:14.5]
+
+ xYL = 0.18930
+ AYL = 1.37
+ sigma = 0.833333333333
+ asmp(n) = -AYL * 2 * exp(log(xYL)*(sigma-n))*gamma(sigma+1)/gamma(n+1)/gamma(sigma-n+1)
+
+ plot \
+ dat1 using 1:(abs($2) / abs(asmp($1))):($3 / asmp($1)) title 'Numeric' with yerrorbars, \
+ dat2 using 1:(abs($2) / asmp($1)) title 'This work ($n=2$)', \
+ dat3 using 1:(abs($2) / asmp($1)) title 'This work ($n=6$)', \
+ dat4 using 1:(abs($2) / asmp($1)) title 'Caselle \textit{et al.}'
+ \end{gnuplot}
+ \caption{
+ The series coefficients for the scaling function $\mathcal F_+$ as a
+ function of polynomial order $m$, rescaled by their asymptotic limit
+ $\mathcal F_+^\infty(m)$ from \eqref{eq:high.asymptotic}. The numeric
+ values are from Table \ref{tab:data}, and those of Caselle \textit{et al.}
+ are from the most accurate scaling function listed in \cite{Caselle_2001_The}.
+ } \label{fig:ghigh.series}
+\end{figure}
+
+\begin{figure}
+ \begin{gnuplot}[terminal=epslatex]
dat1 = 'data/phi_numeric.dat'
dat2 = 'data/phi_series_ours_2.dat'
dat3 = 'data/phi_series_ours_6.dat'