summaryrefslogtreecommitdiff
path: root/ising_scaling.tex
diff options
context:
space:
mode:
Diffstat (limited to 'ising_scaling.tex')
-rw-r--r--ising_scaling.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/ising_scaling.tex b/ising_scaling.tex
index 8c41c07..a1c8205 100644
--- a/ising_scaling.tex
+++ b/ising_scaling.tex
@@ -28,7 +28,7 @@ linkcolor=purple
\title{Precision approximation of the universal scaling functions for the 2D Ising model in an external field}
\author{Jaron Kent-Dobias}
-\affiliation{Laboratoire de Physique de l'Ecole Normale Supérieure, Paris, France}
+\affiliation{\textsc{DynSysMath}, Istituto Nazionale di Fisica Nucleare, Sezione di Roma}
\author{James P.~Sethna}
\affiliation{Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA}
@@ -206,7 +206,7 @@ literature \cite{Mangazeev_2010_Scaling, Clement_2019_Respect}.
In the low temperature phase, the free energy has an essential singularity at
zero field, which becomes a branch cut along the negative-$h$ axis when
-analytically continued to negative $h$ \cite{Langer_1967_Theory}. The origin
+analytically continued to negative $h$ \cite{Langer_1967_Theory, Isakov_1984_Nonanalytic}. The origin
can be schematically understood to arise from a singularity that exists in the
imaginary free energy of the metastable phase of the model. When the
equilibrium Ising model with positive magnetization is subjected to a small