summaryrefslogtreecommitdiff
path: root/aps_mm_2017.tex
diff options
context:
space:
mode:
Diffstat (limited to 'aps_mm_2017.tex')
-rw-r--r--aps_mm_2017.tex91
1 files changed, 83 insertions, 8 deletions
diff --git a/aps_mm_2017.tex b/aps_mm_2017.tex
index 47f5e77..eda12da 100644
--- a/aps_mm_2017.tex
+++ b/aps_mm_2017.tex
@@ -5,33 +5,108 @@
% Copyright (c) 2012 pants productions. All rights reserved.
%
-\pdfminorversion=4
\documentclass[fleqn]{beamer}
\usepackage[utf8]{inputenc}
+\usepackage{amsmath,amssymb,latexsym,graphicx}
+\usepackage{concmath}
+%\usepackage{bera}
+%\usepackage{merriweather}
\usepackage[T1]{fontenc}
-\usepackage[scaled]{helvet}
-\usepackage{amsmath,amssymb,latexsym,graphicx,soul,amsthm,rotating,etex,sansmath,listings,tabularx,tikz}
-\usepackage[export]{adjustbox}
-\usecolortheme{beaver}
-\usetikzlibrary{decorations.pathreplacing}
+\usecolortheme{beaver}
+\usefonttheme{serif}
\title{Universal scaling and the essential singularity at the Ising first-order transition}
\author{ Jaron~Kent-Dobias\inst{1} \and James~Sethna\inst{1}}
\institute{\inst{1}Cornell University}
\date{16 March 2016}
-\usepackage[normalem]{ulem}
\begin{document}
\def\dd{\mathrm d}
+\def\im{\mathop{\mathrm{Im}}}
\begin{frame}
- \usefont{T1}{phv}{b}{n}
\titlepage
\end{frame}
+\begin{frame}
+ \frametitle{Renormalization and free energy}
+ Rescale a system by a factor $b$, with couplings $K\to K'$.
+ From John Cardy's \emph{Scaling and Renormalization in Statistical Physics},
+ free energy per site $f$
+ \[
+ f(\{K\})=g(\{K\})+b^{-d}f(\{K'\})
+ \]
+ \begin{quote}
+ However, if we are interested in extracting only the \emph{singular}
+ behavior of $f$, \dots we may obtain a \emph{homogeneous} transformation law for the
+ \emph{singular part} of the free energy $f_s$
+ \[
+ f_s(\{K\})=b^{-d}f_s(\{K'\})
+ \]
+ \end{quote}
+ Defense: $g(\{K\})$ is an analytic function of $\{K\}$, while the singular
+ part is nonanalytic
+\end{frame}
+
+\begin{frame}
+ Follow thermodynamic functions onto metastable branch.
+\end{frame}
+
+\begin{frame}
+ \[\Delta f\sim\Sigma\gamma(N)-HMN\]
+ Near the critical point, $\gamma(N)\sim N^{\frac{d-1}d}$
+ \[
+ M=|t|^\beta\mathcal M(h/{t^{\beta\delta}})
+ \]
+ \[
+ N_{crit}\sim\bigg(\frac{\Sigma}{HM}\Big(1-\tfrac1d\Big)\bigg)^d
+ \]
+ \[
+ \Delta f_{crit}\sim\Sigma\bigg(\frac{\Sigma}{HM}\bigg)^{d-1}
+ \sim X^{-(d-1)}\frac{\mathcal
+ S^d(X)}{\mathcal M^{d-1}(X)}
+ \]
+ $X=h/t^{\beta\delta}$
+ The probability that such a domain forms and the metastable state decays is given by the Boltzmann factor,
+ so that
+ $\Sigma\sim|t|^\mu$, $\mu=-\nu+\gamma+2\beta$
+ \[
+ \im f\sim e^{-\beta\, \Delta f_{crit}}
+ \sim\mathcal F(X)e^{-1/X^{d-1}}
+ \]
+\end{frame}
+
+\begin{frame}
+ $e^{-1/x}$ is nonanalytic at $x=0$: all derivatives vanish, means that free
+ energy (which has no imaginary part in stable phase) is smooth
+
+ \centering
+ \includegraphics[width=0.7\textwidth]{figs/fig1}
+\end{frame}
+\begin{frame}
+ Analyticity of $F$ means that the imaginary
+
+ \[
+ f(h)=\sum_n A_nh^N
+ \]
+ \[
+ A_n=(-B)^{1-n}\Gamma(n-1)
+ \]
+
+ \[
+ f(h)=\frac1\pi\int_{h'<0}\frac{\dd h'\,\im f(h')}{h'-h}
+ \]
+\end{frame}
+
+\begin{frame}
+ Field theorists (Lubensky, blah blah blah)
+ \[
+ \mathcal
+ \]
+\end{frame}
\end{document}