summaryrefslogtreecommitdiff
path: root/aps_mm_2017.tex
diff options
context:
space:
mode:
Diffstat (limited to 'aps_mm_2017.tex')
-rw-r--r--aps_mm_2017.tex165
1 files changed, 87 insertions, 78 deletions
diff --git a/aps_mm_2017.tex b/aps_mm_2017.tex
index e85f277..89f54ed 100644
--- a/aps_mm_2017.tex
+++ b/aps_mm_2017.tex
@@ -5,7 +5,7 @@
% Copyright (c) 2012 pants productions. All rights reserved.
%
-\documentclass[fleqn]{beamer}
+\documentclass[fleqn,aspectratio=169]{beamer}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,amssymb,latexsym,graphicx}
@@ -19,9 +19,9 @@
\setbeamertemplate{navigation symbols}{}
\title{Universal scaling and the essential singularity at the abrupt Ising transition}
-\author{ Jaron~Kent-Dobias\inst{1} \and James~Sethna\inst{1}}
-\institute{\inst{1}Cornell University}
-\date{16 March 2016}
+\author{ Jaron~Kent-Dobias \and James~Sethna}
+\institute{Cornell University}
+\date{16 March 2017}
\begin{document}
@@ -35,107 +35,116 @@
\end{frame}
\begin{frame}
- \frametitle{Parametric Ising Models}
+ \frametitle{Outline}
+ \begin{itemize}
+ \item Renormalization and the Ising model
+ \pause
+ \item Metastability and complex free energy
+ \pause
+ \item Analytic constraints on the stable free energy
+ \pause
+ \item Closed-form results for the {\sc 2d} Ising susceptibility
+ \end{itemize}
+ \vfill
+\end{frame}
+
+\begin{frame}
+ \frametitle{Renormalization and the Ising Model}
\begin{columns}
\begin{column}{0.4\textwidth}
- \includegraphics[width=\textwidth]{figs/fig7}
-
- \vspace{1em}
-
- \includegraphics[width=\textwidth,height=0.5\textwidth]{susceptibility.jpg}
-
- \tiny\texttt{a plot of susceptibility with precision parametric fit and it
- isn't
- very good at the abrupt transition}
+ \centering
+ \includegraphics[width=\textwidth]{figs/fig2}\\
+ \tiny
+ From \emph{Scaling and Renormalization in Statistical Physics} by John
+ Cardy
\end{column}
\begin{column}{0.6\textwidth}
- Scaling forms of Ising variables that do well globally.
-
- \pause\vspace{1em}
-
- Incorporate the critical point in a natural way:
- \begin{itemize}
- \item singular scaling with the ``radial coordinate''
- \item analytic scaling with the ``angular coordinate''
- \end{itemize}
-
- \vspace{1em} \pause
-
- Typically do a very poor job near the abrupt transition at $H=0$.
+ {\sc Rg} analytically maps system space onto itself.
+ \vspace{1em}\pause\\
+ Fixed points correspond to phases, criticality.
+ \vspace{1em}\pause\\
+ Nonanalytic behavior is preserved by {\sc rg}.
\end{column}
\end{columns}
\end{frame}
\begin{frame}
- \frametitle{Renormalization and Universality}
-
+ \frametitle{Renormalization and the Ising Model}
\begin{columns}
\begin{column}{0.4\textwidth}
- \centering
- \includegraphics[width=\textwidth]{figs/fig2}
-
- \tiny
- From \emph{Scaling and Renormalization in Statistical Physics} by John
- Cardy
+ \includegraphics{figs/fig3}
\end{column}
\begin{column}{0.6\textwidth}
- Renormalization is an analytic scaling transformation that acts on
- system space.
-
- \vspace{1em}\pause
-
- Fixed points are scale invariant, corresponding to systems representing
- idealized phases or critical behavior.
-
- \vspace{1em}\pause
-
- Nonanalytic behavior---like power laws and logarithms---are preserved
- under {\sc rg} and shared by \emph{any} system that flows to the same
- point.
-
- \vspace{1em}\pause
-
- Not all nonanalytic behavior are power laws!
+ Ising critical point has power laws, logarithms in thermodynamic
+ variables.
+ \vspace{1em}\pause\\
+ Connected to line of abrupt transitions.
+ \vspace{1em}\pause\\
+ We've identified nonanalytic behavior along the abrupt transition line.
\end{column}
\end{columns}
\end{frame}
\begin{frame}
- \frametitle{The Metastable Ising Model}
-
+ \frametitle{Metastability \& Complex Free Energy}
\begin{columns}
- \begin{column}{0.3\textwidth}
- \only<1-1>{\includegraphics[width=\textwidth]{figs/fig3}}
- \only<2->{\includegraphics[width=\textwidth]{figs/fig4}}
-
- \vspace{1em}
-
- \includegraphics[width=\textwidth]{figs/fig8}
-
+ \begin{column}{0.4\textwidth}
+ \includegraphics{figs/fig11}
\end{column}
- \begin{column}{0.7\textwidth}
- Consider an Ising-class model brought into a metastable state.
-
- \vspace{1em} \pause\pause
-
- A domain of $N$ spins entering the stable phase causes a free energy
- change
- \[
- \Delta F=\Sigma N^\sigma-MHN
- \]
+ \begin{column}{0.6\textwidth}
+ \includegraphics{figs/fig12}
+ \end{column}
+ \end{columns}
+\end{frame}
- \pause
+\begin{frame}
+ \frametitle{Metastability \& Complex Free Energy}
+ \begin{columns}
+ \begin{column}{0.4\textwidth}
+ \includegraphics{figs/fig13}
+ \end{column}
+ \begin{column}{0.6\textwidth}
+ \includegraphics{figs/fig14}
+ \end{column}
+ \end{columns}
+\end{frame}
- The metastable phase is stable to domains smaller than
- \[
- N_\crit=\bigg(\frac{MH}{\sigma\Sigma}\bigg)^{-1/(\sigma-1)}
- \]
- but those larger will grow to occupy the entire system.
+\begin{frame}
+ \frametitle{Metastability \& Complex Free Energy}
+ \begin{columns}
+ \begin{column}{0.4\textwidth}
+ \includegraphics{figs/fig4}
+ \end{column}
+ \begin{column}{0.6\textwidth}
+ Thermodynamics can be continued into metastable phase.
+ \vspace{1em}\pause\\
+ Decay rate related to imaginary free energy,
+ $\Gamma\propto\frac1{kT}\im F$ (Langer 1969).
+ \vspace{1em}\pause\\
+ Ising metastable decay somewhat well studied (G\"unther 1980, Houghton
+ 1980)
\end{column}
\end{columns}
\end{frame}
\begin{frame}
+ \frametitle{Metastability \& Complex Free Energy}
+ Decay of metastable phase occurs when domain of critical size forms.
+ \vspace{1em}\pause\\
+ Domain of $N$ spins entering the stable phase causes a free energy
+ change
+ \[
+ \Delta F=\Sigma N^\sigma-MHN
+ \]
+ \pause
+ Metastable phase is stable to domains smaller than
+ \[
+ N_\crit=\bigg(\frac{MH}{\sigma\Sigma}\bigg)^{-1/(\sigma-1)}
+ \]
+ but larger will grow to occupy the entire system, decay to stable phase.
+\end{frame}
+
+\begin{frame}
\frametitle{The Metastable Ising Model}
The formation of a critical domain has energy cost