summaryrefslogtreecommitdiff
path: root/aps_mm_2017.tex
blob: 89f4ef85b54533f48079b8d1cdb3a600df7c35c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
%
%  research_midsummer.tex - Research Presentation for the Topaz lab.
%
%  Created by Jaron Kent-Dobias on Tue Mar 20 20:57:40 PDT 2012.
%  Copyright (c) 2012 pants productions. All rights reserved.
%

\documentclass[fleqn,aspectratio=169]{beamer}

\usepackage[utf8]{inputenc}
\usepackage{amsmath,amssymb,latexsym,graphicx}
\usepackage{concmath}
%\usepackage{bera}
%\usepackage{merriweather}
\usepackage[T1]{fontenc}

\usecolortheme{beaver}
\usefonttheme{serif}
\setbeamertemplate{navigation symbols}{}

\title{Universal scaling and the essential singularity at the abrupt Ising transition}
\author{ Jaron~Kent-Dobias \and James~Sethna}
\institute{Cornell University}
\date{16 March 2017}

\begin{document}

\def\dd{\mathrm d}
\def\im{\mathop{\mathrm{Im}}}
\def\ei{\mathop{\mathrm{Ei}}}
\def\crit{\mathrm{crit}}

\begin{frame}
  \titlepage
\end{frame}

\begin{frame}
  \frametitle{Outline}
  \begin{itemize}
    \item Renormalization and the Ising model
      \pause
    \item Metastability and complex free energy
      \pause
    \item Analytic constraints on the stable free energy
      \pause
    \item Closed-form results for {\sc 2d} Ising 
  \end{itemize}
  \vfill
\end{frame}

\begin{frame}
  \frametitle{Renormalization and the Ising Model}
  \begin{columns}
    \begin{column}{0.4\textwidth}
      \centering 
      \includegraphics[width=\textwidth]{figs/fig2}\\
      \tiny
      From \emph{Scaling and Renormalization in Statistical Physics} by John
      Cardy
    \end{column}
    \begin{column}{0.6\textwidth}
      {\sc Rg} methods typically used to study critical points.
      \vspace{1em}\pause\\
      {\sc Rg} analytically maps system space onto itself.
      \vspace{1em}\pause\\
      Nonanalytic behavior is preserved by {\sc rg}.
      \vspace{1em}\pause\\
      Critical points characterized by common nonanalyticities.
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Renormalization and the Ising Model}
  \begin{columns}
    \begin{column}{0.4\textwidth}
      \includegraphics{figs/fig3}
    \end{column}
    \begin{column}{0.6\textwidth}
      Ising critical point has power laws, logarithms in thermodynamic
      variables.
      \vspace{1em}\pause\\
      Connected to line of abrupt transitions.
      \vspace{1em}\pause\\
      We've identified predictive nonanalytic behavior along the abrupt transition line.
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Metastability \& Complex Free Energy}
  \begin{columns}
    \begin{column}{0.4\textwidth}
      \includegraphics{figs/fig11}
    \end{column}
    \begin{column}{0.6\textwidth}
      \includegraphics{figs/fig12}
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Metastability \& Complex Free Energy}
  \begin{columns}
    \begin{column}{0.4\textwidth}
      \includegraphics{figs/fig13}
    \end{column}
    \begin{column}{0.6\textwidth}
      \includegraphics{figs/fig14}
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Metastability \& Complex Free Energy}
  \begin{columns}
    \begin{column}{0.4\textwidth}
      \includegraphics{figs/fig4}
    \end{column}
    \begin{column}{0.6\textwidth}
      Thermodynamics can be continued into metastable phase.
      \vspace{1em}\pause\\
      Decay rate related to imaginary free energy,
      $\Gamma\propto\frac1{kT}\im F$ (Langer 1969).
      \vspace{1em}\pause\\
      Ising metastable decay somewhat well studied (G\"unther 1980, Houghton
      1980)
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Metastability \& Complex Free Energy}
  Decay of metastable phase occurs when domain of critical size forms.
  \vspace{1em}\pause\\
  Domain of $N$ spins entering the stable phase causes a free energy
  change
  \[
    \Delta F=\Sigma N^\sigma-MHN
  \]
  with $1-\frac1d\leq\sigma<1$.
  \pause\vspace{1em}\\
  Metastable phase is stable to domains smaller than
  \[
    N_\crit=\bigg(\frac{MH}{\sigma\Sigma}\bigg)^{-1/(\sigma-1)}
  \]
  but larger will grow to occupy the entire system, decay to stable phase.
\end{frame}

\begin{frame}
  \frametitle{Metastability \& Complex Free Energy}
  Formation of critical domain has energy cost
  \[
    \Delta F_\crit=\Delta F\Big|_{N=N_\crit}\sim
    \bigg(\frac{\Sigma}{(MH)^\sigma}\bigg)^{1/(1-\sigma)}
  \]
  \pause
  Probability of such a domain forming is
  \[
    P_\crit\sim e^{-\beta\Delta F_\crit}
  \]
  \pause
  Imaginary free energy is therefore
  \[
    \im F\sim\Gamma\sim P_\crit\sim e^{-\beta\Delta F_\crit}
    =e^{-\beta(\Sigma/(MH)^\sigma)^{1/(1-\sigma)}}
  \]

\end{frame}

\begin{frame}
  \frametitle{Metastability \& Complex Free Energy}
  \begin{columns}
    \begin{column}{0.4\textwidth}
      \includegraphics{figs/fig1}
    \end{column}
    \begin{column}{0.6\textwidth}
      $\im F$ has an essential singularity of the form
      $e^{-1/H^{\sigma/(1-\sigma)}}$.
      \vspace{1em}\pause\\
      Near critical point, $\sigma=1-\frac1d$, and
      \[\im F\sim e^{-1/H^{d-1}}\]
      \pause
      Nonanalytic behavior is universal!
      \vspace{1em}\pause\\
      Can directly observe by measuring metastable decay rate, but what else?
      \vspace{1em}\pause\\
      Thought to be unobservable (Fisher 1980).
    \end{column}
  \end{columns}
\end{frame}

\begin{frame}
  \frametitle{Analytic Constraints on the Stable Free Energy}
  Analytic properties of $F(H)$ give Cauchy-style constraint
  \[
    F(H)=\frac1\pi\int_{-\infty}^0\frac{\im F(H')}{H'-H}\;\dd H'
  \]
  \pause
  Only know $\im F(H)$ for $|H|\ll 1$, so constraint only
  predictive for higher moments, for $F(H)=\sum_nf_nH^n$
  \[
    f_n=\frac1\pi\int_{-\infty}^0\frac{\im F(H')}{H^{\prime n+1}}\;\dd H'
  \]
  \pause
  Approach well-established in statistical physics and field theory
  (Parisi 1977, Bogomolny 1977, others)
\end{frame}

\begin{frame}
  \frametitle{Closed-form results for {\sc 2d} Ising}
  Near the critical point with $X=h/t^{\beta\delta}$ and $h=H/T$,
  \begin{align}
    M=t^\beta\mathcal M(X)
    &&
    \Sigma=t^\mu\mathcal S(X)
    \notag
  \end{align}
  \pause
  Our analysis with some considerations of field theory (Houghton 1980) yields
  \[
    \im F=t^{2-\alpha}\big[AX+\mathcal O(X^2)\big]e^{-[B+\mathcal
    O(X)]/X}
  \]
  \pause
  Yields moments for $n\geq2$ which agree with others
  (Baker 1980),
  \[
    f_n=At^{2-\alpha}\frac{\Gamma(n-1)}{\pi(-B)^{n-1}}
  \]
  \pause
  Cauchy-style integral diverges for truncation, $f_0=f_1=\pm\infty$.
\end{frame}

\begin{frame}
  \frametitle{Closed-form results for {\sc 2d} Ising}
  We can use the constraint to compute the susceptibility
  \[
    \chi=\frac{\partial^2F}{\partial h^2}
  \]
  \pause
  Yields a scaling form
  \begin{align}
    \chi=t^{-\gamma}\Xi(h/t^{\beta\delta})
    &&
    \Xi(X)=-\frac1\pi\frac AX\Bigg[1-\frac BX-\bigg(\frac
      BX\bigg)^2e^{B/X}\ei\bigg(-\frac BX\bigg)
    \Bigg]
      \notag
  \end{align}
  \pause
  Prefactor fixed by known results for zero-field susceptibility
  \[
    A=-\frac{B\pi C_{0_-}}{2T_c}
  \]
  with $C_{0_-}=0.0255369719$ (Barouch 1973).
\end{frame}

\begin{frame}
  \frametitle{Closed-form results for {\sc 2d} Ising}

  \includegraphics{figs/fig6}
\end{frame}

\begin{frame}
  \frametitle{Closed-form results for {\sc 2d} Ising}
  \includegraphics{figs/fig5}

\end{frame}

\begin{frame}
  \frametitle{Closed-form results for {\sc 2d} Ising}
  \includegraphics{figs/fig20}
\end{frame}

\begin{frame}
  \frametitle{What's Next}

  We have an explicit form for a new component of the universal scaling forms
  near the Ising abrupt transition.

  \vspace{1em} \pause

  Hope to form parametric scaling variables that include this, correct
  leading
  analytic corrections to scaling, and (maybe?) extend smoothly through the
  metastable region.

  \vspace{1em} \pause

  Remain on the lookout for other novel universal properties to incorporate.
\end{frame}

\begin{frame}
  \frametitle{Questions?}
  \small
  \begin{align}
    \chi=t^{-\gamma}\Xi(h/t^{\beta\delta})
    &&
    \Xi(X)=-\frac1\pi\frac AX\Bigg[1-\frac BX-\bigg(\frac
      BX\bigg)^2e^{B/X}\ei\bigg(-\frac BX\bigg)
    \Bigg]
      \notag
  \end{align}
  \centering
  \includegraphics[width=0.7\textwidth]{figs/fig20}
\end{frame}

\end{document}