summaryrefslogtreecommitdiff
path: root/lib/src/graph.cpp
blob: 10f62b76f7bf2d515fc7361b83a39678e73258f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

#include "graph.hpp"
#include <cstring>

#define JC_VORONOI_IMPLEMENTATION
#define JCV_REAL_TYPE double
#define JCV_ATAN2 atan2
#define JCV_FLT_MAX 1.7976931348623157E+308
#include <jc_voronoi.h>

graph::graph(unsigned int Nx, unsigned int Ny) {
  L = {(double)Nx, (double)Ny};

  unsigned int ne = Nx * Ny;
  unsigned int nv = ne / 2;

  vertices.resize(nv);
  edges.reserve(ne);

  dual_vertices.resize(nv);
  dual_edges.reserve(ne);

  for (unsigned int i = 0; i < nv; i++) {
    vertices[i].r.x = (double)((1 + i / (Nx / 2)) % 2 + 2 * (i % (Nx / 2)));
    vertices[i].r.y = (double)(i / (Nx / 2));
    vertices[i].polygon = {
      {vertices[i].r.x - 0.5, vertices[i].r.y},
      {vertices[i].r.x, vertices[i].r.y - 0.5},
      {vertices[i].r.x + 0.5, vertices[i].r.y},
      {vertices[i].r.x, vertices[i].r.y + 0.5}
    };

    dual_vertices[i].r.x = (double)((i / (Nx / 2)) % 2 + 2 * (i % (Nx / 2)));
    dual_vertices[i].r.y = (double)(i / (Nx / 2));
    dual_vertices[i].polygon = {
      {dual_vertices[i].r.x - 0.5, vertices[i].r.y},
      {dual_vertices[i].r.x, vertices[i].r.y - 0.5},
      {dual_vertices[i].r.x + 0.5, vertices[i].r.y},
      {dual_vertices[i].r.x, vertices[i].r.y + 0.5}
    };
  }

  for (unsigned int x = 0; x < Ny; x++) {
    for (unsigned int y = 0; y < Nx; y++) {
      unsigned int v1 = (Nx * x) / 2 + ((y + x % 2) / 2) % (Nx / 2);
      unsigned int v2 = ((Nx * (x + 1)) / 2 + ((y + (x + 1) % 2) / 2) % (Nx / 2)) % nv;

      edges.push_back({{v1, v2}, {0.5 + (double)y, 0.5 + (double)x}});

      unsigned int dv1 = (Nx * x) / 2 + ((y + (x + 1) % 2) / 2) % (Nx / 2);
      unsigned int dv2 = ((Nx * (x + 1)) / 2 + ((y + x % 2) / 2) % (Nx / 2)) % nv;

      dual_edges.push_back({{dv1, dv2}, {0.5 + (double)y, 0.5 + (double)x}});
    }
  }
}

namespace std
{
    template<typename T, size_t N>
    struct hash<array<T, N> >
    {
        typedef array<T, N> argument_type;
        typedef size_t result_type;

        result_type operator()(const argument_type& a) const
        {
            hash<T> hasher;
            result_type h = 0;
            for (result_type i = 0; i < N; ++i)
            {
                h = h * 31 + hasher(a[i]);
            }
            return h;
        }
    };
}

class eulerException: public std::exception
{
  virtual const char* what() const throw()
  {
    return "The voronoi tessellation generated has the incorrect Euler characteristic for a torus and is malformed.";
  }
} eulerex;


graph::graph(unsigned int Nx, unsigned int Ny, std::mt19937& rng, double spread) {
  L = {(double)Nx, (double)Ny};

  unsigned int nv = Nx * Ny / 2;

  vertices.resize(nv);
  
  std::normal_distribution<double> d(0.0, spread);

  // the coordinates of the lattice, from which a delaunay triangulation
  // and corresponding voronoi tessellation will be built
  for (unsigned int i = 0; i < nv; i++) {
    double rx = (double)((i / (Nx / 2)) % 2 + 2 * (i % (Nx / 2))) + d(rng);
    double ry = (double)(i / (Nx / 2)) + d(rng);
    vertices[i] = {{fmod(L.x + rx, L.x), fmod(L.y + ry, L.y)}};
  }

  // to make the resulting tessellation periodic, we tile eight (!) copies of
  // the original points for a total of nine. note that the index of each
  // point quotient 9 is equal to the original index (we'll use this to
  // translate back)
  std::vector<jcv_point> points;
  points.reserve(9 * nv);
  for (const vertex &v : vertices) {
    points.push_back({v.r.x, v.r.y});
    points.push_back({v.r.x + L.x, v.r.y + 0.0});
    points.push_back({v.r.x - L.x, v.r.y + 0.0});
    points.push_back({v.r.x + 0.0, v.r.y + L.y});
    points.push_back({v.r.x + 0.0, v.r.y - L.y});
    points.push_back({v.r.x + L.x, v.r.y + L.y});
    points.push_back({v.r.x - L.x, v.r.y + L.y});
    points.push_back({v.r.x + L.x, v.r.y - L.y});
    points.push_back({v.r.x - L.x, v.r.y - L.y});
  }

  jcv_diagram diagram;
  memset(&diagram, 0, sizeof(jcv_diagram));

  jcv_diagram_generate(9 * nv, points.data(), NULL, &diagram);

  const jcv_site* sites = jcv_diagram_get_sites(&diagram);

  struct paircomp {
    bool operator() (const std::array<unsigned int, 2>& lhs, const std::array<unsigned int, 2>& rhs) const
    {if (lhs[0] != lhs[1]) return lhs[0] < lhs[1];
      else return rhs[0] < rhs[1];
    }
  };

  std::unordered_map<std::array<unsigned int, 3>, unsigned int> known_vertices;

  for (int i = 0; i < diagram.numsites; i++) {
    const jcv_site* site = &sites[i];

    // we only care about processing the cells of our original, central sites
    if (site->index % 9 == 0) {
      unsigned int i1 = (unsigned int)(site->index / 9);
      const jcv_graphedge* e = site->edges;
      const jcv_graphedge* ep = site->edges;
      while (ep->next) {
        ep = ep->next;
      }
      // for each edge on the site's cell
      while(e) {
        // assess whether the edge needs to be added. only neighboring
        // sites whose index is larger than ours are given edges, so we
        // don't double up later
        const jcv_site* neighbor = e->neighbor;
        unsigned int i2 = (unsigned int)(neighbor->index / 9);

        vertices[i1].polygon.push_back({e->pos[0].x, e->pos[0].y});

        unsigned int i3p = (unsigned int)(ep->neighbor->index / 9);
        std::array<unsigned int, 3> t1 = {i1, i2, i3p};
        std::sort(t1.begin(), t1.end());

        auto it1 = known_vertices.find(t1);

        unsigned int vi1;

        if (it1 == known_vertices.end()) {
          vi1 = dual_vertices.size();
          dual_vertices.push_back({{fmod(L.x + e->pos[0].x, L.x), fmod(L.y + e->pos[0].y, L.y)},{{site->p.x, site->p.y}}});
          known_vertices[t1] = vi1;
        } else {
          vi1 = it1->second;
          dual_vertices[vi1].polygon.push_back({site->p.x, site->p.y});
        }
        
        if (i1 < i2) {
          edges.push_back({{i1, i2},
              {fmod(L.x + (site->p.x + neighbor->p.x) / 2, L.x),
               fmod(L.y + (site->p.y + neighbor->p.y) / 2, L.y)}
               });

          jcv_graphedge *en;
          if (e->next == NULL) {
            en = site->edges;
          } else {
            en = e->next;
          }

          unsigned int i3n = (unsigned int)(en->neighbor->index / 9);
          std::array<unsigned int, 3> t2 = {i1, i2, i3n};
          std::sort(t2.begin(), t2.end());

          auto it2 = known_vertices.find(t2);

          unsigned int vi2;

          if (it2 == known_vertices.end()) {
            vi2 = dual_vertices.size();
            dual_vertices.push_back({{fmod(L.x + e->pos[1].x, L.x), fmod(L.y + e->pos[1].y, L.y)},{}});
            known_vertices[t2] = vi2;
          } else {
            vi2 = it2->second;
          }

          dual_edges.push_back({{vi1, vi2},
              {fmod(L.x + (e->pos[0].x + e->pos[1].x) / 2, L.x),
               fmod(L.y + (e->pos[0].y + e->pos[1].y) / 2, L.y)}
               });
        }

        ep = e;
        e = e->next;
      }
    }
  }

  if (edges.size() != vertices.size() + dual_vertices.size()) {
    throw eulerex;
  }

  for (vertex &v : dual_vertices) {
    if (fabs(v.polygon[0].x - v.polygon[1].x) > L.x / 2) {
      if (v.polygon[0].x < L.x / 2) {
        v.polygon[0].x += L.x;
      } else {
        v.polygon[1].x += L.x;
      }
    }

    if (fabs(v.polygon[0].y - v.polygon[1].y) > L.y / 2) {
      if (v.polygon[0].y < L.y / 2) {
        v.polygon[0].y += L.y;
      } else {
        v.polygon[1].y += L.y;
      }
    }

    if (fabs(v.polygon[2].x - v.polygon[1].x) > L.x / 2) {
      if (v.polygon[2].x < L.x / 2) {
        v.polygon[2].x += L.x;
      } else {
        v.polygon[1].x += L.x;
      }
    }

    if (fabs(v.polygon[2].y - v.polygon[1].y) > L.y / 2) {
      if (v.polygon[2].y < L.y / 2) {
        v.polygon[2].y += L.y;
      } else {
        v.polygon[1].y += L.y;
      }
    }

    if (fabs(v.polygon[2].x - v.polygon[0].x) > L.x / 2) {
      if (v.polygon[2].x < L.x / 2) {
        v.polygon[2].x += L.x;
      } else {
        v.polygon[0].x += L.x;
      }
    }

    if (fabs(v.polygon[2].y - v.polygon[0].y) > L.y / 2) {
      if (v.polygon[2].y < L.y / 2) {
        v.polygon[2].y += L.y;
      } else {
        v.polygon[0].y += L.y;
      }
    }
  }

  jcv_diagram_free(&diagram);
}