1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
#include "graph.hpp"
#include <cstring>
#define JC_VORONOI_IMPLEMENTATION
#define JCV_REAL_TYPE double
#define JCV_ATAN2 atan2
#define JCV_FLT_MAX 1.7976931348623157E+308
#define NDEBUG
#include <jc_voronoi.h>
// actual mod for floats
double mod(double a, double b) {
if (a >= 0) {
return fmod(a, b);
} else {
return fmod(a + b * ceil(-a / b), b);
}
}
graph::graph(unsigned Nx, unsigned Ny) {
L = {(double)Nx, (double)Ny};
unsigned ne = Nx * Ny;
unsigned nv = ne / 2;
vertices.resize(nv);
edges.reserve(ne);
dual_vertices.resize(nv);
dual_edges.reserve(ne);
for (unsigned i = 0; i < nv; i++) {
vertices[i].r.x = (double)((1 + i / (Nx / 2)) % 2 + 2 * (i % (Nx / 2)));
vertices[i].r.y = (double)(i / (Nx / 2));
signed f = (1 + i / (Nx / 2)) % 2 == 1 ? 1 : -1;
vertices[i].nd = {i, (i + Nx / 2) % nv, Nx / 2 * (i / (Nx / 2)) + ((i + f) % (Nx / 2)), (nv + i - Nx / 2) % nv};
vertices[i].polygon = {
{vertices[i].r.x - 1.0, vertices[i].r.y},
{vertices[i].r.x, vertices[i].r.y - 1.0},
{vertices[i].r.x + 1.0, vertices[i].r.y},
{vertices[i].r.x, vertices[i].r.y + 1.0}
};
dual_vertices[i].r.x = (double)((i / (Nx / 2)) % 2 + 2 * (i % (Nx / 2)));
dual_vertices[i].r.y = (double)(i / (Nx / 2));
dual_vertices[i].nd = {i, (i + Nx / 2) % nv, Nx * (i / (Nx / 2)) + (i % (Nx / 2)), (nv + i - Nx / 2) % nv};
dual_vertices[i].polygon = {
{dual_vertices[i].r.x - 1.0, vertices[i].r.y},
{dual_vertices[i].r.x, vertices[i].r.y - 1.0},
{dual_vertices[i].r.x + 1.0, vertices[i].r.y},
{dual_vertices[i].r.x, vertices[i].r.y + 1.0}
};
}
for (unsigned y = 0; y < Ny; y++) {
for (unsigned x = 0; x < Nx; x++) {
unsigned v1 = (Nx * y) / 2 + ((x + y % 2) / 2) % (Nx / 2);
unsigned v2 = ((Nx * (y + 1)) / 2 + ((x + (y + 1) % 2) / 2) % (Nx / 2)) % nv;
bool crossed_x = x == Nx - 1;
bool crossed_y = y == Ny - 1;
edges.push_back({{v1, v2}, {0.5 + (double)x, 0.5 + (double)y}, {crossed_x, crossed_y}});
unsigned dv1 = (Nx * y) / 2 + ((x + (y + 1) % 2) / 2) % (Nx / 2);
unsigned dv2 = ((Nx * (y + 1)) / 2 + ((x + y % 2) / 2) % (Nx / 2)) % nv;
dual_edges.push_back({{dv1, dv2}, {0.5 + (double)x, 0.5 + (double)y}, {crossed_x, crossed_y}});
}
}
for (vertex& v : vertices) {
v.ne.resize(v.nd.size());
}
for (unsigned i = 0; i < edges.size(); i++) {
for (unsigned vi : edges[i].v) {
auto it1 = std::find(vertices[vi].nd.begin(), vertices[vi].nd.end(), dual_edges[i].v[0]);
auto it2 = std::find(vertices[vi].nd.begin(), vertices[vi].nd.end(), dual_edges[i].v[1]);
unsigned d1 = std::distance(vertices[vi].nd.begin(), it1);
unsigned d2 = std::distance(vertices[vi].nd.begin(), it2);
unsigned dv1 = d1 < d2 ? d1 : d2;
unsigned dv2 = d1 < d2 ? d2 : d1;
if (dv2 - dv1 == 1) {
vertices[vi].ne[dv1] = i;
} else {
vertices[vi].ne[dv2] = i;
}
}
}
}
class eulerException: public std::exception
{
virtual const char* what() const throw()
{
return "The voronoi tessellation generated has the incorrect Euler characteristic for a torus and is malformed.";
}
} eulerex;
class clippingException: public std::exception
{
virtual const char* what() const throw()
{
return "An interior site has a clipped edge and the tesselation is malformed.";
}
} clippingex;
class triangleException: public std::exception
{
virtual const char* what() const throw()
{
return "A dual-centered triangle has an impossible geometry and the tesselation is malformed.";
}
} triex;
unsigned get_triangle_signature(unsigned j1, unsigned j2, unsigned j3) {
// this yucky function takes three unsignedegers representing the
// location in the nine periodic copies of each corner of a delauney triangle
// and returns a signature for that triangle, which is an unsignedeger
// that uniquely labels the way the triangle crosses boundaries of the
// copies. This allows us to differentiate delauney triangles with identical
// vertices but which should be identified with different faces
unsigned x1 = j1 % 3;
unsigned y1 = j1 / 3;
unsigned x2 = j2 % 3;
unsigned y2 = j2 / 3;
unsigned x3 = j3 % 3;
unsigned y3 = j3 / 3;
if ((j1 == j2) && (j2 == j3)) {
return 0;
} else if (((j1 == j2) && (x2 < x3) && (y2 == y3)) || ((j1 == j3) && (x3 < x2) && (y2 == y3)) || ((j2 == j3) && (x3 < x1) && (y1 == y3))) {
return 1;
} else if (((j1 == j2) && (x2 > x3) && (y2 == y3)) || ((j1 == j3) && (x3 > x2) && (y2 == y3)) || ((j2 == j3) && (x3 > x1) && (y1 == y3))) {
return 2;
} else if (((j1 == j2) && (y2 < y3) && (x2 == x3)) || ((j1 == j3) && (y3 < y2) && (x2 == x3)) || ((j2 == j3) && (y3 < y1) && (x1 == x3))) {
return 3;
} else if (((j1 == j2) && (y2 > y3) && (x2 == x3)) || ((j1 == j3) && (y3 > y2) && (x2 == x3)) || ((j2 == j3) && (y3 > y1) && (x1 == x3))) {
return 4;
} else if (((j1 == j2) && (x2 < x3) && (y2 < y3)) || ((j1 == j3) && (x3 < x2) && (y3 < y2)) || ((j2 == j3) && (x3 < x1) && (y3 < y1))) {
return 5;
} else if (((j1 == j2) && (x2 < x3) && (y2 > y3)) || ((j1 == j3) && (x3 < x2) && (y3 > y2)) || ((j2 == j3) && (x3 < x1) && (y3 > y1))) {
return 6;
} else if (((j1 == j2) && (x2 > x3) && (y2 < y3)) || ((j1 == j3) && (x3 > x2) && (y3 < y2)) || ((j2 == j3) && (x3 > x1) && (y3 < y1))) {
return 7;
} else if (((j1 == j2) && (x2 > x3) && (y2 > y3)) || ((j1 == j3) && (x3 > x2) && (y3 > y2)) || ((j2 == j3) && (x3 > x1) && (y3 > y1))) {
return 8;
} else if (((x1 == x2) && (x2 < x3) && ((y1 < y3) || (y2 < y3))) || ((x1 == x3) && (x3 < x2) && ((y1 < y2) || (y3 < y2))) || ((x2 == x3) && (x2 < x1) && ((y2 < y1) || (y3 < y1)))) {
return 9;
} else if (((x1 == x2) && (x2 > x3) && ((y1 < y3) || (y2 < y3))) || ((x1 == x3) && (x3 > x2) && ((y1 < y2) || (y3 < y2))) || ((x2 == x3) && (x2 > x1) && ((y2 < y1) || (y3 < y1)))) {
return 10;
} else if (((x1 == x2) && (x2 < x3) && ((y1 > y3) || (y2 > y3))) || ((x1 == x3) && (x3 < x2) && ((y1 > y2) || (y3 > y2))) || ((x2 == x3) && (x2 < x1) && ((y2 > y1) || (y3 > y1)))) {
return 11;
} else if (((x1 == x2) && (x2 > x3) && ((y1 > y3) || (y2 > y3))) || ((x1 == x3) && (x3 > x2) && ((y1 > y2) || (y3 > y2))) || ((x2 == x3) && (x2 > x1) && ((y2 > y1) || (y3 > y1)))) {
return 12;
} else {
throw triex;
}
}
graph::graph(double Lx, double Ly, std::mt19937& rng) {
// randomly choose N to be floor(Lx * Ly / 2) or ceil(Lx * Ly / 2) with
// probability proportional to the distance from each
std::uniform_real_distribution<double> d(0.0, 1.0);
unsigned N = round(Lx * Ly / 2 + d(rng) - 0.5);
L = {Lx, Ly};
this->helper(N, rng);
}
graph::graph(unsigned n, double a, std::mt19937& rng) {
L = {sqrt(2 * n * a), sqrt(2 * n / a)};
this->helper(n, rng);
}
void graph::helper(unsigned nv, std::mt19937& rng) {
std::uniform_real_distribution<double> d(0.0, 1.0);
vertices.resize(nv);
// the coordinates of the lattice, from which a delaunay triangulation
// and corresponding voronoi tessellation will be built. Everyone is in the
// rectangle (0, 0) (Lx, Ly)
for (vertex &v : vertices) {
v = {{L.x * d(rng), L.y * d(rng)}};
}
// set up the voronoi objects
jcv_diagram diagram;
memset(&diagram, 0, sizeof(jcv_diagram));
jcv_rect bounds = {{-L.x, -L.y}, {2 * L.x, 2 * L.y}};
std::vector<jcv_point> points(9 * nv);
for (unsigned i = 0; i < nv; i++) {
const vertex& v = vertices[i];
points[9 * i + 0] = {v.r.x - L.x, v.r.y - L.y};
points[9 * i + 1] = {v.r.x + 0.0, v.r.y - L.y};
points[9 * i + 2] = {v.r.x + L.x, v.r.y - L.y};
points[9 * i + 3] = {v.r.x - L.x, v.r.y + 0.0};
points[9 * i + 4] = {v.r.x + 0.0, v.r.y + 0.0};
points[9 * i + 5] = {v.r.x + L.x, v.r.y + 0.0};
points[9 * i + 6] = {v.r.x - L.x, v.r.y + L.y};
points[9 * i + 7] = {v.r.x + 0.0, v.r.y + L.y};
points[9 * i + 8] = {v.r.x + L.x, v.r.y + L.y};
}
jcv_diagram_generate(9 * nv, points.data(), &bounds, &diagram);
const jcv_site* sites = jcv_diagram_get_sites(&diagram);
std::unordered_map<std::array<unsigned, 4>, unsigned> known_vertices;
for (int i = 0; i < diagram.numsites; i++) {
const jcv_site* site = &sites[i];
// we only care about processing the cells of our original, central sites
if (site->index % 9 == 4) {
bool self_bonded = false;
unsigned i1 = (unsigned)(site->index / 9);
unsigned j1 = (unsigned)(site->index % 9);
const jcv_graphedge* e = site->edges;
const jcv_graphedge* ep = site->edges;
while (ep->next) {
ep = ep->next;
}
// for each edge on the site's cell
while(e) {
// assess whether the edge needs to be added. only neighboring
// sites whose index is larger than ours are given edges, so we
// don't double up later
const jcv_site* neighbor = e->neighbor;
if (neighbor == NULL) {
throw clippingex;
}
unsigned i2 = (unsigned)(neighbor->index / 9);
unsigned j2 = (unsigned)(neighbor->index % 9);
unsigned x2 = j2 % 3;
unsigned y2 = j2 / 3;
vertices[i1].polygon.push_back({e->pos[0].x, e->pos[0].y});
if (ep->neighbor == NULL) {
throw clippingex;
}
unsigned i3p = (unsigned)(ep->neighbor->index / 9);
unsigned j3p = (unsigned)(ep->neighbor->index % 9);
unsigned sig1 = get_triangle_signature(j1, j2, j3p);
std::array<unsigned, 4> t1 = {i1, i2, i3p, sig1};
std::sort(t1.begin(), t1.begin() + 3);
auto it1 = known_vertices.find(t1);
unsigned vi1;
if (it1 == known_vertices.end()) {
vi1 = dual_vertices.size();
dual_vertices.push_back({{mod(e->pos[0].x, L.x), mod(e->pos[0].y, L.y)},{i1},{},{{site->p.x, site->p.y}}});
known_vertices[t1] = vi1;
} else {
vi1 = it1->second;
dual_vertices[vi1].nd.push_back(i1);
dual_vertices[vi1].polygon.push_back({site->p.x, site->p.y});
}
vertices[i1].nd.push_back(vi1);
if (i1 < i2 || (i1 == i2 && !self_bonded)) {
if (i1 == i2) {
self_bonded = true;
}
bool crossed_x = x2 != 1;
bool crossed_y = y2 != 1;
edges.push_back({{i1, i2},
{mod((site->p.x + neighbor->p.x) / 2, L.x),
mod((site->p.y + neighbor->p.y) / 2, L.y)},
{crossed_x, crossed_y}
});
jcv_graphedge *en;
if (e->next == NULL) {
en = site->edges;
} else {
en = e->next;
}
if (en->neighbor == NULL) {
throw clippingex;
}
unsigned i3n = (unsigned)(en->neighbor->index / 9);
unsigned j3n = (unsigned)(en->neighbor->index % 9);
unsigned sig2 = get_triangle_signature(j1, j2, j3n);
std::array<unsigned, 4> t2 = {i1, i2, i3n, sig2};
std::sort(t2.begin(), t2.begin() + 3);
auto it2 = known_vertices.find(t2);
unsigned vi2;
if (it2 == known_vertices.end()) {
vi2 = dual_vertices.size();
dual_vertices.push_back({{mod(e->pos[1].x, L.x), mod(e->pos[1].y, L.y)},{}});
known_vertices[t2] = vi2;
} else {
vi2 = it2->second;
}
bool dcrossed_x = (unsigned)floor(e->pos[0].x / L.x) != (unsigned)floor(e->pos[1].x / L.x);
bool dcrossed_y = (unsigned)floor(e->pos[0].y / L.y) != (unsigned)floor(e->pos[1].y / L.y);
dual_edges.push_back({{vi1, vi2},
{mod((e->pos[0].x + e->pos[1].x) / 2, L.x),
mod((e->pos[0].y + e->pos[1].y) / 2, L.y)},
{dcrossed_x, dcrossed_y}
});
}
ep = e;
e = e->next;
}
}
}
if (edges.size() != vertices.size() + dual_vertices.size()) {
throw eulerex;
}
for (vertex &v : dual_vertices) {
if (fabs(v.polygon[0].x - v.polygon[1].x) > L.x / 2) {
if (v.polygon[0].x < L.x / 2) {
v.polygon[0].x += L.x;
} else {
v.polygon[1].x += L.x;
}
}
if (fabs(v.polygon[0].y - v.polygon[1].y) > L.y / 2) {
if (v.polygon[0].y < L.y / 2) {
v.polygon[0].y += L.y;
} else {
v.polygon[1].y += L.y;
}
}
if (fabs(v.polygon[2].x - v.polygon[1].x) > L.x / 2) {
if (v.polygon[2].x < L.x / 2) {
v.polygon[2].x += L.x;
} else {
v.polygon[1].x += L.x;
}
}
if (fabs(v.polygon[2].y - v.polygon[1].y) > L.y / 2) {
if (v.polygon[2].y < L.y / 2) {
v.polygon[2].y += L.y;
} else {
v.polygon[1].y += L.y;
}
}
if (fabs(v.polygon[2].x - v.polygon[0].x) > L.x / 2) {
if (v.polygon[2].x < L.x / 2) {
v.polygon[2].x += L.x;
} else {
v.polygon[0].x += L.x;
}
}
if (fabs(v.polygon[2].y - v.polygon[0].y) > L.y / 2) {
if (v.polygon[2].y < L.y / 2) {
v.polygon[2].y += L.y;
} else {
v.polygon[0].y += L.y;
}
}
}
for (vertex& v : vertices) {
v.ne.resize(v.nd.size());
}
for (unsigned i = 0; i < edges.size(); i++) {
for (unsigned vi : edges[i].v) {
auto it1 = std::find(vertices[vi].nd.begin(), vertices[vi].nd.end(), dual_edges[i].v[0]);
auto it2 = std::find(vertices[vi].nd.begin(), vertices[vi].nd.end(), dual_edges[i].v[1]);
unsigned d1 = std::distance(vertices[vi].nd.begin(), it1);
unsigned d2 = std::distance(vertices[vi].nd.begin(), it2);
unsigned dv1 = d1 < d2 ? d1 : d2;
unsigned dv2 = d1 < d2 ? d2 : d1;
if (dv2 - dv1 == 1) {
vertices[vi].ne[dv1] = i;
} else {
vertices[vi].ne[dv2] = i;
}
}
}
jcv_diagram_free(&diagram);
}
graph::coordinate reverse(const graph::coordinate &x) {
return {x.y, x.x};
}
graph const graph::rotate() {
graph g2(*this);
for (graph::vertex &v : g2.vertices) {
v.r = reverse(v.r);
for (graph::coordinate &r : v.polygon) {
r = reverse(r);
}
}
for (graph::edge &e : g2.edges) {
e.r = reverse(e.r);
e.crossings = {e.crossings[1], e.crossings[0]};
}
for (graph::vertex &v : g2.dual_vertices) {
v.r = reverse(v.r);
for (graph::coordinate &r : v.polygon) {
r = reverse(r);
}
}
for (graph::edge &e : g2.dual_edges) {
e.r = reverse(e.r);
e.crossings = {e.crossings[1], e.crossings[0]};
}
g2.L = reverse(g2.L);
return g2;
}
|