1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
#include "problem.hpp"
class nanException: public std::exception
{
virtual const char* what() const throw()
{
return "The linear problem returned NaN.";
}
} nanex;
problem::problem(const graph& G, unsigned axis, cholmod_sparse *vcmat, cholmod_common *c) : G(G), axis(axis), voltcurmat(vcmat), c(c) {
b = CHOL_F(zeros)(G.vertices.size(), 1, CHOLMOD_REAL, c);
for (unsigned i = 0; i < G.edges.size(); i++) {
graph::coordinate v0 = G.vertices[G.edges[i].v[0]].r;
graph::coordinate v1 = G.vertices[G.edges[i].v[1]].r;
if (G.edges[i].crossings[axis]) {
bool ind;
if (axis == 1) {
ind = v0.y < v1.y ? 0 : 1;
} else {
ind = v0.x < v1.x ? 0 : 1;
}
((double *)b->x)[G.edges[i].v[ind]] += 1.0;
((double *)b->x)[G.edges[i].v[!ind]] -= 1.0;
}
}
unsigned nnz = G.vertices.size() + G.edges.size();
cholmod_triplet *t = CHOL_F(allocate_triplet)(G.vertices.size(), G.vertices.size(), nnz, 1, CHOLMOD_REAL, c);
for (unsigned i = 0; i < G.vertices.size(); i++) {
((CHOL_INT *)t->i)[i] = i;
((CHOL_INT *)t->j)[i] = i;
((double *)t->x)[i] = 0.0;
}
unsigned terms = G.vertices.size();
std::unordered_map<std::array<unsigned, 2>, unsigned> known_edges;
for (unsigned i = 0; i < G.edges.size(); i++) {
unsigned v0 = G.edges[i].v[0];
unsigned v1 = G.edges[i].v[1];
((double *)t->x)[v0]++;
((double *)t->x)[v1]++;
unsigned s0 = v0 < v1 ? v0 : v1;
unsigned s1 = v0 < v1 ? v1 : v0;
auto it = known_edges.find({s0, s1});
if (it == known_edges.end()) {
((CHOL_INT *)t->i)[terms] = s1;
((CHOL_INT *)t->j)[terms] = s0;
((double *)t->x)[terms] = -1.0;
known_edges[{s0, s1}] = terms;
terms++;
} else {
((double *)t->x)[it->second] -= 1.0;
}
}
((double *)t->x)[0]++;
t->nnz = terms;
cholmod_sparse *laplacian = CHOL_F(triplet_to_sparse)(t, terms, c);
CHOL_F(free_triplet)(&t, c);
factor = CHOL_F(analyze)(laplacian, c);
CHOL_F(factorize)(laplacian, factor, c);
CHOL_F(free_sparse)(&laplacian, c);
}
problem::problem(const graph& G, unsigned axis, cholmod_common *c) : problem(G, axis, NULL, c) {
cholmod_triplet *t = CHOL_F(allocate_triplet)(G.edges.size(), G.vertices.size(), 2 * G.edges.size(), 0, CHOLMOD_REAL, c);
t->nnz = 2 * G.edges.size();
for (unsigned i = 0; i < G.edges.size(); i++) {
((CHOL_INT *)t->i)[2 * i] = i;
((CHOL_INT *)t->j)[2 * i] = G.edges[i].v[0];
((double *)t->x)[2 * i] = 1.0;
((CHOL_INT *)t->i)[2 * i + 1] = i;
((CHOL_INT *)t->j)[2 * i + 1] = G.edges[i].v[1];
((double *)t->x)[2 * i + 1] = -1.0;
}
voltcurmat = CHOL_F(triplet_to_sparse)(t, 2 * G.edges.size(), c);
CHOL_F(free_triplet)(&t, c);
}
problem::problem(const problem& other) : G(other.G), axis(other.axis), c(other.c) {
b = CHOL_F(copy_dense)(other.b, c);
factor = CHOL_F(copy_factor)(other.factor, c);
voltcurmat = CHOL_F(copy_sparse)(other.voltcurmat, c);
}
problem::~problem() {
CHOL_F(free_dense)(&b, c);
CHOL_F(free_factor)(&factor, c);
CHOL_F(free_sparse)(&voltcurmat, c);
}
current_info problem::solve(std::vector<bool>& fuses) {
cholmod_dense *x = CHOL_F(solve)(CHOLMOD_A, factor, b, c);
if (((double *)x->x)[0] != ((double *)x->x)[0]) {
throw nanex;
}
cholmod_dense *y = CHOL_F(allocate_dense)(G.edges.size(), 1, G.edges.size(), CHOLMOD_REAL, c);
double alpha[2] = {1, 0};
double beta[2] = {0, 0};
CHOL_F(sdmult)(voltcurmat, 0, alpha, beta, x, y, c);
std::vector<double> currents(G.edges.size());
std::array<double, 2> total_current = {0, 0};
for (int i = 0; i < G.edges.size(); i++) {
if (fuses[i]) {
currents[i] = 0;
} else {
currents[i] = ((double *)y->x)[i];
graph::coordinate v0 = G.vertices[G.edges[i].v[0]].r;
graph::coordinate v1 = G.vertices[G.edges[i].v[1]].r;
if (G.edges[i].crossings[axis]) {
bool comp;
if (axis == 1) {
comp = v0.y > v1.y;
} else {
comp = v0.x > v1.x;
}
if (comp) {
currents[i] += 1.0;
total_current[axis] += currents[i];
} else {
currents[i] -= 1.0;
total_current[axis] -= currents[i];
}
}
}
}
total_current[!axis] = 0.0;
CHOL_F(free_dense)(&x, c);
CHOL_F(free_dense)(&y, c);
return {total_current, currents};
}
void problem::break_edge(unsigned e, bool unbreak) {
unsigned v0 = G.edges[e].v[0];
unsigned v1 = G.edges[e].v[1];
unsigned n = factor->n;
cholmod_sparse *update_mat = CHOL_F(allocate_sparse)(n, n, 2, true, true, 0, CHOLMOD_REAL, c);
unsigned s1, s2;
s1 = v0 < v1 ? v0 : v1;
s2 = v0 < v1 ? v1 : v0;
CHOL_INT *pp = (CHOL_INT *)update_mat->p;
CHOL_INT *ii = (CHOL_INT *)update_mat->i;
double *xx = (double *)update_mat->x;
for (unsigned i = 0; i <= s1; i++) {
pp[i] = 0;
}
for (unsigned i = s1 + 1; i <= n; i++) {
pp[i] = 2;
}
ii[0] = s1;
ii[1] = s2;
xx[0] = 1;
xx[1] = -1;
cholmod_sparse *perm_update_mat = CHOL_F(submatrix)(
update_mat, (CHOL_INT *)factor->Perm, factor->n, NULL, -1, true, true, c);
CHOL_F(updown)(unbreak, perm_update_mat, factor, c);
CHOL_F(free_sparse)(&perm_update_mat, c);
CHOL_F(free_sparse)(&update_mat, c);
graph::coordinate r0 = G.vertices[v0].r;
graph::coordinate r1 = G.vertices[v1].r;
if (G.edges[e].crossings[axis]) {
bool ind;
if (axis == 1) {
ind = r0.y < r1.y ? unbreak : !unbreak;
} else {
ind = r0.x < r1.x ? unbreak : !unbreak;
}
((double *)b->x)[G.edges[e].v[ind]] -= 1.0;
((double *)b->x)[G.edges[e].v[!ind]] += 1.0;
}
}
|