summaryrefslogtreecommitdiff
path: root/src/correlations.c
blob: 98106dd7242256419d4f14019864950a06c35d86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

#include "fracture.h"

// I implemented a fibonacci heap because wikipedia said it would be fast

struct fibn {
	uint_t value;
	uint_t priority;
	uint_t rank;
	bool marked;
	struct fibn *first_child;
	struct fibn *parent;
	struct fibn *prev;
	struct fibn *next;
};

typedef struct {
	struct fibn *min;
	uint_t rank;
	uint_t trees;
	struct fibn **vertex_to_node;
} fibh;

uint_t fib_findmin(fibh *heap) {
	return heap->min->value;
}

void ll_setparent(struct fibn *ll, struct fibn *parent) {
	struct fibn *curnode = ll->next;
	ll->parent = parent;
	while (curnode != ll) {
		curnode->parent = parent;
		curnode = curnode->next;
	}
}

struct fibn *ll_merge(struct fibn *ll1, struct fibn *ll2) {
	if (ll1 == NULL)
		return ll2;
	if (ll2 == NULL)
		return ll1;

	// link the beginning of list one to the end of list two and vice versa
	struct fibn *ll1_beg = ll1;
	struct fibn *ll1_end = ll1->prev;
	struct fibn *ll2_beg = ll2;
	struct fibn *ll2_end = ll2->prev;

	ll1_beg->prev = ll2_end;
	ll1_end->next = ll2_beg;
	ll2_beg->prev = ll1_end;
	ll2_end->next = ll1_beg;

	return ll1;
}

struct fibn *ll_delroot(struct fibn *ll) {
	if (ll == NULL)
		return NULL;

	if (ll->next == ll) {
		return NULL;
	}

	struct fibn *ll_beg = ll->next;
	struct fibn *ll_end = ll->prev;

	ll_beg->prev = ll_end;
	ll_end->next = ll_beg;

	ll->next = ll;
	ll->prev = ll;

	return ll_beg;
}

void fib_insert(fibh *heap, uint_t value, uint_t priority) {
	struct fibn *newnode = calloc(1, sizeof(struct fibn));
	newnode->value = value;
	newnode->priority = priority;
	newnode->next = newnode;
	newnode->prev = newnode;

	heap->min = ll_merge(heap->min, newnode);

	if (priority < heap->min->priority) {
		heap->min = newnode;
	}

	heap->vertex_to_node[value] = newnode;

	heap->trees++;
}

void fib_deletemin(fibh *heap) {
	uint_t min_rank = heap->min->rank;
	struct fibn *min_children = heap->min->first_child;

	struct fibn *trees = ll_delroot(heap->min);
	heap->vertex_to_node[heap->min->value] = NULL;
	free(heap->min);

	if (min_children != NULL)
		ll_setparent(min_children, NULL);
	trees = ll_merge(trees, min_children);

	heap->trees += min_rank - 1;

	if (trees == NULL) {
		// min had no children and was only tree, return empty heap
		heap->min = NULL;
		heap->rank = 0;
	} else {
		// min had children or there were other trees
		uint_t min_val = UINT_MAX;
		struct fibn *min_ptr = NULL;
		uint_t max_rank = 0;
		struct fibn *curnode = trees;
		for (uint_t i = 0; i < heap->trees; i++) {
			if (curnode->priority < min_val) {
				min_ptr = curnode;
				min_val = curnode->priority;
			}
			if (curnode->rank > max_rank)
				max_rank = curnode->rank;
			curnode = curnode->next;
		}

		if (min_ptr == NULL)
			min_ptr = trees;
		heap->min = min_ptr;
		heap->rank = max_rank;

		struct fibn **rankslots = calloc(max_rank + 1, sizeof(struct fibn *));
		curnode = heap->min;
		while (curnode != rankslots[curnode->rank]) {
			if (rankslots[curnode->rank] == NULL) {
				rankslots[curnode->rank] = curnode;
				curnode = curnode->next;
			} else {
				struct fibn *oldnode = rankslots[curnode->rank];
				rankslots[curnode->rank] = NULL;
				struct fibn *smaller =
						curnode->priority < oldnode->priority || curnode == heap->min
								? curnode
								: oldnode;
				struct fibn *larger = smaller == curnode ? oldnode : curnode;
				ll_delroot(larger);
				ll_setparent(larger, smaller);
				struct fibn *smaller_children = smaller->first_child;
				smaller->first_child = ll_merge(smaller_children, larger);
				heap->trees--;
				smaller->rank++;
				if (smaller->rank > heap->rank) {
					heap->rank = smaller->rank;
					rankslots =
							realloc(rankslots, (heap->rank + 1) * sizeof(struct fibn *));
					rankslots[heap->rank] = NULL;
				}
				curnode = smaller;
			}
		}
		free(rankslots);
	}
}

void fib_decreasekey(fibh *heap, uint_t value, uint_t new_priority) {
	struct fibn *node = heap->vertex_to_node[value];
	if (node != NULL) {
		node->priority = new_priority;
		if (node->parent != NULL) {
			if (node->priority < node->parent->priority) {

				struct fibn *curnode = node;
				curnode->marked = true;
				while (curnode->parent != NULL && curnode->marked) {
					struct fibn *oldparent = curnode->parent;
					oldparent->rank--;
					oldparent->first_child = ll_delroot(curnode);
					ll_setparent(curnode, NULL);
					ll_merge(heap->min, curnode);
					heap->trees++;
					if (curnode->marked) {
						curnode->marked = false;
					}

					if (oldparent->marked) {
						curnode = oldparent;
					} else {
						oldparent->marked = true;
						break;
					}
				}
			}
		}

		if (new_priority < heap->min->priority) {
			heap->min = node;
		}
	}
}

uint_t *dijkstra(const graph_t *network, uint_t source) {
	uint_t nv = network->dnv;
	uint_t *vei = network->dvei;
	uint_t *ve = network->dve;
	uint_t *ev = network->dev;

	uint_t *dist = (uint_t *)calloc(nv, sizeof(uint_t));
	fibh *Q = (fibh *)calloc(1, sizeof(fibh));
	Q->vertex_to_node = (struct fibn **)calloc(nv, sizeof(struct fibn *));

	for (uint_t i = 0; i < nv; i++) {
		if (i != source) {
			dist[i] = UINT_MAX;
		}

		fib_insert(Q, i, dist[i]);
	}

	while (Q->min != NULL) {
		uint_t u = fib_findmin(Q);
		fib_deletemin(Q);

		for (uint_t i = 0; i < vei[u + 1] - vei[u]; i++) {
			uint_t e = ve[vei[u] + i];
			uint_t v = ev[2 * e] == u ? ev[2 * e + 1] : ev[2 * e];
			uint_t alt = dist[u] + 1;
			if (alt < dist[v]) {
				dist[v] = alt;
				fib_decreasekey(Q, v, alt);
			}
		}
	}

	free(Q->vertex_to_node);
	free(Q);

	return dist;
}

uint_t **get_dists(const graph_t *network) {
	uint_t nv = network->dnv;
	uint_t **dists = (uint_t **)malloc(nv * sizeof(uint_t *));

	#pragma omp parallel for
	for (uint_t i = 0; i < nv; i++) {
		dists[i] = dijkstra(network, i);
	}

	return dists;
}

double *get_corr(net_t *instance, uint_t **dists, cholmod_common *c) {
	uint_t nv = instance->graph->dnv;
	uint_t ne = instance->graph->ne;
	uint_t *ev = instance->graph->dev;
	bool nulldists = false;
	if (dists == NULL) {
		dists = get_dists(instance->graph);
		nulldists = true;
	}
	double *corr = calloc(nv, sizeof(double));
	uint_t *marks = get_clusters(instance, c);
	uint_t *numat = calloc(nv, sizeof(uint_t));

	for (uint_t i = 0; i < ne; i++) {
		uint_t v1 = ev[2 * i];
		uint_t v2 = ev[2 * i + 1];
		for (uint_t j = 0; j < ne; j++) {
			uint_t v3 = ev[2 * j];
			uint_t v4 = ev[2 * j + 1];
			uint_t dist1 = dists[v1][v3];
			uint_t dist2 = dists[v1][v4];
			uint_t dist3 = dists[v2][v3];
			uint_t dist4 = dists[v2][v4];
			uint_t dist = (dist1 + dist2 + dist3 + dist4) / 4;
			corr[dist] += instance->fuses[i] && instance->fuses[j];
			numat[dist]++;
		}
	}

	for (uint_t i = 0; i < nv; i++) {
		if (numat[i] > 0) {
			corr[i] /= numat[i];
		}
	}

	if (nulldists) {
		for (int i = 0; i < nv; i++) {
			free(dists[i]);
		}
		free(dists);
	}

	free(marks);

	return corr;
}