1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
#include "fracture.h"
int main(int argc, char *argv[]) {
int opt;
// defining variables to be (potentially) set by command line flags
int num = 100;
int width = 16;
double beta = .3;
bool save_clusters = false;
bool voltage_bound = false;
bool output_break_data = false;
while ((opt = getopt(argc, argv, "n:w:b:cVo")) != -1) {
switch (opt) {
case 'n':
num = atoi(optarg);
break;
case 'w':
width = atoi(optarg);
break;
case 'b':
beta = atof(optarg);
break;
case 'c':
save_clusters = true;
break;
case 'V':
voltage_bound = true;
break;
case 'o':
output_break_data = true;
break;
default: /* '?' */
exit(EXIT_FAILURE);
}
}
FILE *break_out;
if (output_break_data) {
char *break_filename = (char *)malloc(100 * sizeof(char));
snprintf(break_filename, 100, "breaks_%d_%.3f_%d.txt", width, beta, num);
break_out = fopen(break_filename, "w");
free(break_filename);
}
bool periodic = true;
double inf = 1;
double cutoff = 1e-10;
// start cholmod
cholmod_common c;
CHOL_F(start)(&c);
/* if we use voltage boundary conditions, the laplacian matrix is positive
* definite and we can use a supernodal LL decomposition. otherwise we need
* to use the simplicial LDL decomposition
*/
if (voltage_bound) {
(&c)->supernodal = CHOLMOD_SUPERNODAL;
} else {
(&c)->supernodal = CHOLMOD_SIMPLICIAL;
}
graph_t *network = ini_square_network(width, periodic, false, &c);
graph_t *network_p = ini_square_network(width / 2, periodic, false, &c);
net_t *perm_instance = create_instance(network, inf, voltage_bound, true, &c);
unsigned int c_dist_size = network->dnv;
unsigned int c_p_dist_size = network_p->dnv;
// define arrays for saving cluster and avalanche distributions
unsigned int *cluster_size_dist =
(unsigned int *)calloc(c_dist_size, sizeof(unsigned int));
unsigned int *cluster_p_size_dist =
(unsigned int *)calloc(c_p_dist_size, sizeof(unsigned int));
printf("\n");
for (int DUMB = 0; DUMB < num; DUMB++) {
printf("\033[F\033[JCOURSEGRAIN_SQUARE: %0*d / %d\n", (int)log10(num) + 1,
DUMB + 1, num);
data_t *breaking_data = NULL;
net_t *instance = NULL;
while (breaking_data == NULL) {
double *fuse_thres = gen_fuse_thres(
network->ne, network->edge_coords, beta, beta_scaling_flat);
instance = copy_instance(perm_instance, &c);
breaking_data = fracture_network(instance, fuse_thres, &c, cutoff);
free_instance(instance, &c);
free(fuse_thres);
}
unsigned int min_pos = 0;
double min_val = DBL_MAX;
for (unsigned int j = 0; j < breaking_data->num_broken; j++) {
double val = fabs(breaking_data->extern_field[j]);
if (val < min_val) {
min_pos = j;
min_val = val;
}
if (val > 10 * min_val)
break;
}
net_t *tmp_instance = copy_instance(perm_instance, &c);
for (unsigned int i = 0; i < breaking_data->num_broken; i++) {
break_edge(tmp_instance, breaking_data->break_list[i], &c);
}
unsigned int *tmp_cluster_dist = get_cluster_dist(tmp_instance, &c);
for (unsigned int i = 0; i < network->dnv; i++) {
cluster_size_dist[i] += tmp_cluster_dist[i];
}
free(tmp_cluster_dist);
net_t *instance_p = coursegrain_square(tmp_instance, network_p, &c);
unsigned int *tmp_cluster_p_dist = get_cluster_dist(instance_p, &c);
for (unsigned int i = 0; i < network_p->dnv; i++) {
cluster_p_size_dist[i] += tmp_cluster_p_dist[i];
}
free(tmp_cluster_p_dist);
free_instance(tmp_instance, &c);
free_instance(instance_p, &c);
if (output_break_data) {
for (unsigned int i = 0; i < breaking_data->num_broken; i++) {
fprintf(break_out, "%u %f ", breaking_data->break_list[i],
breaking_data->extern_field[i]);
}
fprintf(break_out, "\n");
}
free(breaking_data->break_list);
free(breaking_data->extern_field);
free(breaking_data);
}
printf("\033[F\033[JCURRENT_SCALING: COMPLETE");
if (save_clusters) {
FILE *cluster_out = get_file("cluster", width, 0, beta, 1, 1, num, false);
for (int i = 0; i < c_dist_size; i++) {
fprintf(cluster_out, "%u ", cluster_size_dist[i]);
}
fprintf(cluster_out, "\n");
for (int i = 0; i < c_p_dist_size; i++) {
fprintf(cluster_out, "%u ", cluster_p_size_dist[i]);
}
fclose(cluster_out);
}
if (output_break_data) {
fclose(break_out);
}
free(cluster_size_dist);
free(cluster_p_size_dist);
free_instance(perm_instance, &c);
free_net(network, &c);
free_net(network_p, &c);
CHOL_F(finish)(&c);
return 0;
}
|