1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
\documentclass[fleqn,aspectratio=169]{beamer}
\setbeamerfont{frametitle}{family=\bf}
\setbeamerfont{title}{family=\bf}
\setbeamerfont{author}{family=\bf}
\setbeamerfont{normal text}{family=\rm}
\setbeamertemplate{navigation symbols}{}
\usepackage{textcomp,rotating}
\title{Scaling and spatial correlations\\ in the quasibrittle process zone}
%\subtitle{``Broke again\ldots''}
\author{Jaron Kent-Dobias \and James P Sethna}
\institute{Cornell University}
\date{}
\begin{document}
\begin{frame}
\maketitle
\end{frame}
\begin{frame}
\frametitle{Quasibrittle materials \& fracture}
\begin{columns}
\begin{column}{0.35\textwidth}
Brittle with quenched disorder
\bigskip
Process zone of correlated microfracture, large as meters
\bigskip
Size and boundary effects dominate statistics of fracture
\bigskip
Depending on substance and scale, fracture can look clean or crumbly
\end{column}
\begin{column}{0.6\textwidth}
\includegraphics[width=\textwidth]{figs/concrete}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Crossover theory}
\begin{columns}
\begin{column}{0.5\textwidth}
\hfill\tiny Shekhawat \textit{et al}, Phys Rev Lett \textbf{110} 185505\hspace{2em}\\
\includegraphics[width=\textwidth]{figs/shekhawat}
\end{column}
\begin{column}{0.5\textwidth}
Previous work suggests a \emph{scaling crossover} between fracture regimes
\bigskip
Crumbly regime controlled by percolation fixed point, clean by nucleation
\bigskip
Avalanches dominate intermediate disorder, vanish when first fractures system
\bigskip
Analogous idea for crack structure: crumbly crack surface coarse-grains to clean one through microcracked crossover
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Our simulations: Fuse networks}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{overprint}
\onslide<1,3>\includegraphics[width=\textwidth]{figs/plain_square}
\onslide<2>\includegraphics[width=\textwidth]{figs/uncut_square}
\onslide<4>\includegraphics[width=\textwidth]{figs/perc_square}
\onslide<5>\includegraphics[width=\textwidth]{figs/med_square}
\onslide<6>\includegraphics[width=\textwidth]{figs/nuke_square}
\onslide<7>\includegraphics[width=\textwidth]{figs/nuke_voronoi}
\end{overprint}
\end{column}
\begin{column}{0.5\textwidth}
\vspace{0.5em}
Resistive fuses as scalar elastic analogue
\bigskip
Quenched disorder via breaking thresholds $0<x\leq1$ distributed by
$p(x)=\beta x^{\beta -1}$
\bigskip
Fractured adiabatically: fuse with largest threshold to current ratio broken
\bigskip
\alert<4>{Small $\beta$} is disordered, \alert<6->{large $\beta$} ordered
\medskip
\begin{overprint}
\onslide<1-3>\includegraphics[width=\textwidth]{figs/dist-all}
\onslide<4>\includegraphics[width=\textwidth]{figs/dist-small}
\onslide<5>\includegraphics[width=\textwidth]{figs/dist-med}
\onslide<6->\includegraphics[width=\textwidth]{figs/dist-large}
\end{overprint}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Properties of interest}
\begin{columns}
\begin{column}{0.5\textwidth}
Many spatial properties to study:
\begin{itemize}
\item\alert<3>{backbone}
\item\alert<4>{spanning cluster}
\item\alert<5,8->{all clusters}
\item\alert<6>{non-spanning clusters}
\item\alert<7>{final avalanche}
\end{itemize}
\medskip
Focus on $g(\Delta x,\Delta y)$: probability that site displaced by $(\Delta x, \Delta y)$ is in same cluster
\end{column}
\begin{column}{0.5\textwidth}
\begin{overprint}
\onslide<1>\includegraphics[width=\textwidth]{figs/prop-none}
\onslide<2>\includegraphics[width=\textwidth]{figs/prop-broken}
\onslide<3>\includegraphics[width=\textwidth]{figs/prop-backbone}
\onslide<4>\includegraphics[width=\textwidth]{figs/prop-spanning}
\onslide<5>\includegraphics[width=\textwidth]{figs/prop-allclusters}
\onslide<6>\includegraphics[width=\textwidth]{figs/prop-clusters}
\onslide<7>\includegraphics[width=\textwidth]{figs/prop-lastavalanche}
\onslide<8->\includegraphics[width=\textwidth]{figs/prop-allclusters}
\end{overprint}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Fixed points}
\framesubtitle{$\pmb\beta\pmb=\pmb0$ -- percolation}
\begin{columns}
\begin{column}{0.5\textwidth}
\begin{overprint}
\onslide<1>\includegraphics[width=\textwidth]{figs/perc-plain}
\onslide<2>\includegraphics[width=\textwidth]{figs/perc-voronoi}
\onslide<3>\includegraphics[width=\textwidth]{figs/perc-backbone}
\onslide<4>\includegraphics[width=\textwidth]{figs/perc-spanning}
\onslide<5,8->\includegraphics[width=\textwidth]{figs/perc-allclusters}
\onslide<6>\includegraphics[width=\textwidth]{figs/perc-clusters}
\onslide<7>\includegraphics[width=\textwidth]{figs/perc-avalanche}
\end{overprint}
\end{column}
\begin{column}{0.5\textwidth}
As $\beta\to0$, $L\to\infty$, reduces (almost) exactly to percolation
\begin{itemize}
\item\alert<3>{backbone --- $\ell(L)\sim L^{d_{\text{min}}}$}
\item\alert<4>{spanning cluster --- $M(L)\sim L^{d_f}$}
\item\alert<5,8->{clusters --- $g(r)\sim|r|^{-2(d-d_f)}$}
\item\alert<6>{non-spanning clusters --- $n^c_s\sim s^{-\tau}$}
\item\alert<7>{final avalanche --- $n^a_s=\delta_{1s}$}
\end{itemize}
\ \\
\includegraphics[width=\textwidth]{figs/plot_percgvx}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Fixed points}
\framesubtitle{$\pmb\beta=\infty$ -- nucleation}
\begin{columns}
\begin{column}{0.5\textwidth}
As $L\to\infty$, $\beta\to\infty$, reduces to nucleated crack propagation
\begin{itemize}
\item\alert<3>{backbone}
\item\alert<4>{spanning cluster}
\item\alert<5,8->{clusters}
\item\alert<6>{non-spanning clusters}
\item\alert<7>{final avalanche}
\end{itemize}
\ \\
\includegraphics[width=\textwidth]{figs/plot_nukegvx}
\end{column}
\begin{column}{0.5\textwidth}
\begin{overprint}
\onslide<1>\includegraphics[width=\textwidth]{figs/nuke-voro}
\onslide<2>\includegraphics[width=\textwidth]{figs/nuke-broken}
\onslide<3>\includegraphics[width=\textwidth]{figs/nuke-backbone}
\onslide<4>\includegraphics[width=\textwidth]{figs/nuke-spanning}
\onslide<5,8->\includegraphics[width=\textwidth]{figs/nuke-allclusters}
\onslide<6>\includegraphics[width=\textwidth]{figs/nuke-clusters}
\onslide<7>\includegraphics[width=\textwidth]{figs/nuke-avalanche}
\end{overprint}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Self-similarity vs.\ self-affinity}
Voltage (strain) applied along one direction---we should expect anisotropy!
\bigskip
Clean cracks are \emph{self-affine}, self-similar under different rescalings of $x$ and $y$
\begin{overprint}
\onslide<1>\centering\includegraphics[height=\textwidth, angle=90]{figs/skinny}
\onslide<2>\centering\includegraphics[height=\textwidth, angle=90]{figs/skinny_long_clusters}
\onslide<3>\centering\includegraphics[height=\textwidth, angle=90]{figs/skinny_short_clusters}
\end{overprint}
\end{frame}
\begin{frame}
\frametitle{Scaling theory}
Old: quantities like moments of $g$ depend on $L\beta^\nu$
\bigskip
New: quantities like moments of $g$ depend on $L_x\beta^{\nu_x}$ and $L_y\beta^{\nu_y}$
\bigskip
\centering
\huge FIGURE: EXAMPLE SCALING OF $x$ AND $y$ MOMENTS OF $g$ SHOWING DIFFERENT $\nu$
\end{frame}
\begin{frame}
\frametitle{Continuing work}
\begin{columns}
\begin{column}{0.5\textwidth}
Need to make consistent cross-property measurement of exponents; working on expected form of scaling functions through different regiemes
\bigskip
How does the established multifractal distribution of bond currents (stresses) affect this analysis, if at all?
\end{column}
\begin{column}{0.5\textwidth}
\begin{overprint}
\onslide<1>\includegraphics[width=\textwidth]{figs/multi-all}
\onslide<2>\includegraphics[width=\textwidth]{figs/multi-carriers}
\onslide<3>\includegraphics[width=\textwidth]{figs/multi-weighted}
\onslide<4>\includegraphics[width=\textwidth]{figs/multi-q1}
\onslide<5>\includegraphics[width=\textwidth]{figs/multi-q2}
\onslide<6>\includegraphics[width=\textwidth]{figs/multi-q3}
\onslide<7>\includegraphics[width=\textwidth]{figs/multi-q4}
\end{overprint}
\end{column}
\end{columns}
\end{frame}
\end{document}
|