summaryrefslogtreecommitdiff
path: root/orthogonal.nb
blob: ca7f675e42456997e5080735ddfb81f166adf86c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 11.3' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[    135006,       3021]
NotebookOptionsPosition[    127469,       2893]
NotebookOutlinePosition[    127804,       2908]
CellTagsIndexPosition[    127761,       2905]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
 RowBox[{"1", "-", 
  RowBox[{"Exp", "[", 
   RowBox[{"\[Beta]", " ", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{"Z", "[", 
       RowBox[{"si", ",", "sj"}], "]"}], "-", 
      RowBox[{"Z", "[", 
       RowBox[{
        RowBox[{"r", "[", "si", "]"}], ",", "sj"}], "]"}]}], ")"}]}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.73409578958169*^9, 
  3.734095877606771*^9}},ExpressionUUID->"d5a382e7-4383-492c-bea6-\
cfaf2b22c9c3"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  SubsuperscriptBox["\[Sum]", 
   RowBox[{"r", "=", 
    RowBox[{"-", "\[Infinity]"}]}], "\[Infinity]"], 
  RowBox[{"Exp", "[", 
   RowBox[{
    RowBox[{"-", "\[Beta]"}], 
    RowBox[{"(", 
     RowBox[{
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{"si", "-", "sj"}], ")"}], "2"], "-", 
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{"r", "-", "si", "-", "sj"}], ")"}], "2"]}], ")"}]}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.734095917107708*^9, 3.7340960035730867`*^9}},
 CellLabel->"In[2]:=",ExpressionUUID->"fc4bd527-4630-4b4b-8294-64045ce8369e"],

Cell[BoxData[
 FractionBox[
  RowBox[{
   SuperscriptBox["\[ExponentialE]", 
    RowBox[{
     RowBox[{"-", 
      SuperscriptBox[
       RowBox[{"(", 
        RowBox[{"si", "-", "sj"}], ")"}], "2"]}], " ", "\[Beta]"}]], " ", 
   SqrtBox["\[Pi]"], " ", 
   RowBox[{"EllipticTheta", "[", 
    RowBox[{"3", ",", 
     RowBox[{
      RowBox[{"-", "\[Pi]"}], " ", 
      RowBox[{"(", 
       RowBox[{"si", "+", "sj"}], ")"}]}], ",", 
     SuperscriptBox["\[ExponentialE]", 
      FractionBox[
       SuperscriptBox["\[Pi]", "2"], "\[Beta]"]]}], "]"}]}], 
  SqrtBox[
   RowBox[{"-", "\[Beta]"}]]]], "Output",
 CellChangeTimes->{3.734095937120956*^9, 3.7340960042554207`*^9},
 CellLabel->"Out[2]=",ExpressionUUID->"69feaccc-ee6e-41dc-a156-61a7acec4119"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"(", 
    RowBox[{
     RowBox[{"Exp", "[", 
      RowBox[{
       RowBox[{"-", "\[Beta]"}], 
       RowBox[{"(", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{"r", "-", "s1", "-", "s2"}], ")"}], "2"], "+", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{"s1", "-", "s2"}], ")"}], "2"]}], ")"}]}], "]"}], "-", 
     "1"}], ")"}], 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"Exp", "[", 
      RowBox[{
       RowBox[{"-", "\[Beta]"}], 
       RowBox[{"(", 
        RowBox[{
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{"r", "-", "s3", "-", "s4"}], ")"}], "2"], "+", 
         SuperscriptBox[
          RowBox[{"(", 
           RowBox[{"s3", "-", "s4"}], ")"}], "2"]}], ")"}]}], "]"}], "-", 
     "1"}], ")"}]}], "//", "Expand"}]], "Input",
 CellChangeTimes->{{3.734118592695376*^9, 3.734118594975409*^9}},
 CellLabel->"In[7]:=",ExpressionUUID->"f9ca7c98-275b-495d-b8cf-300968ef81d2"],

Cell[BoxData[
 RowBox[{"1", "-", 
  SuperscriptBox["\[ExponentialE]", 
   RowBox[{
    RowBox[{"-", 
     RowBox[{"(", 
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"r", "-", "s1", "-", "s2"}], ")"}], "2"], "+", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"s1", "-", "s2"}], ")"}], "2"]}], ")"}]}], " ", "\[Beta]"}]],
   "-", 
  SuperscriptBox["\[ExponentialE]", 
   RowBox[{
    RowBox[{"-", 
     RowBox[{"(", 
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"r", "-", "s3", "-", "s4"}], ")"}], "2"], "+", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"s3", "-", "s4"}], ")"}], "2"]}], ")"}]}], " ", "\[Beta]"}]],
   "+", 
  SuperscriptBox["\[ExponentialE]", 
   RowBox[{
    RowBox[{
     RowBox[{"-", 
      RowBox[{"(", 
       RowBox[{
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{"r", "-", "s1", "-", "s2"}], ")"}], "2"], "+", 
        SuperscriptBox[
         RowBox[{"(", 
          RowBox[{"s1", "-", "s2"}], ")"}], "2"]}], ")"}]}], " ", "\[Beta]"}],
     "-", 
    RowBox[{
     RowBox[{"(", 
      RowBox[{
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"r", "-", "s3", "-", "s4"}], ")"}], "2"], "+", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"s3", "-", "s4"}], ")"}], "2"]}], ")"}], " ", 
     "\[Beta]"}]}]]}]], "Output",
 CellChangeTimes->{{3.734118590317026*^9, 3.7341185951950827`*^9}},
 CellLabel->"Out[7]=",ExpressionUUID->"a979fe05-e1a3-459b-b8ff-242ed53d7a9d"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Sum", "[", 
  RowBox[{
   RowBox[{
    RowBox[{"(", 
     RowBox[{
      RowBox[{"Exp", "[", 
       RowBox[{
        RowBox[{"-", "\[Beta]"}], 
        RowBox[{"(", 
         RowBox[{
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{"r", "-", "s1", "-", "s2"}], ")"}], "2"], "+", 
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{"s1", "-", "s2"}], ")"}], "2"]}], ")"}]}], "]"}], "-", 
      "1"}], ")"}], "/", "n"}], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", 
     RowBox[{"-", "n"}], ",", "n"}], "}"}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"s1", "\[Element]", "Reals"}], ",", 
      RowBox[{"s2", "\[Element]", "Reals"}], ",", 
      RowBox[{"s3", "\[Element]", "Reals"}], ",", 
      RowBox[{"s4", "\[Element]", "Reals"}], ",", 
      RowBox[{"\[Beta]", ">", "0"}]}], "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.7341180172973423`*^9, 3.734118140929793*^9}, {
  3.7341182082312613`*^9, 3.734118248940027*^9}, {3.734118618165935*^9, 
  3.734118621701569*^9}, {3.734118725971922*^9, 3.734118730456127*^9}, {
  3.734132231225616*^9, 3.734132281883586*^9}},
 CellLabel->"In[12]:=",ExpressionUUID->"c04dc9c1-4ad5-4ea0-b8a6-f79e010285c4"],

Cell[BoxData[
 RowBox[{"Sum", "[", 
  RowBox[{
   FractionBox[
    RowBox[{
     RowBox[{"-", "1"}], "+", 
     SuperscriptBox["\[ExponentialE]", 
      RowBox[{
       RowBox[{"-", 
        RowBox[{"(", 
         RowBox[{
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{"r", "-", "s1", "-", "s2"}], ")"}], "2"], "+", 
          SuperscriptBox[
           RowBox[{"(", 
            RowBox[{"s1", "-", "s2"}], ")"}], "2"]}], ")"}]}], " ", 
       "\[Beta]"}]]}], "n"], ",", 
   RowBox[{"{", 
    RowBox[{"r", ",", 
     RowBox[{"-", "n"}], ",", "n"}], "}"}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{
      RowBox[{"s1", "\[Element]", 
       TemplateBox[{},
        "Reals"]}], ",", 
      RowBox[{"s2", "\[Element]", 
       TemplateBox[{},
        "Reals"]}], ",", 
      RowBox[{"s3", "\[Element]", 
       TemplateBox[{},
        "Reals"]}], ",", 
      RowBox[{"s4", "\[Element]", 
       TemplateBox[{},
        "Reals"]}], ",", 
      RowBox[{"\[Beta]", ">", "0"}]}], "}"}]}]}], "]"}]], "Output",
 CellChangeTimes->{
  3.73411812838361*^9, 3.734118200325493*^9, 3.734118326430814*^9, 
   3.734118688225526*^9, 3.734131450767784*^9, {3.73413224413542*^9, 
   3.734132273909436*^9}, 3.73413230772922*^9},
 CellLabel->"Out[12]=",ExpressionUUID->"0467c94a-dc8d-46b5-b3bd-048819302822"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"m", "[", 
   RowBox[{"{", 
    RowBox[{"a_", ",", "b_", ",", "c_", ",", "d_", ",", "e_"}], "}"}], "]"}], 
  ":=", 
  RowBox[{"{", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"a", ",", "b", ",", "c"}], "}"}], ",", 
    RowBox[{"{", 
     RowBox[{"b", ",", "d", ",", "e"}], "}"}], ",", 
    RowBox[{"{", 
     RowBox[{"c", ",", "e", ",", 
      RowBox[{
       RowBox[{"-", "d"}], "-", "a"}]}], "}"}]}], "}"}]}]], "Input",
 CellChangeTimes->{
  3.734202299770143*^9, {3.734213992596615*^9, 3.734214092171253*^9}, {
   3.7342141266113253`*^9, 3.7342141300832787`*^9}, {3.734214162326742*^9, 
   3.734214165241444*^9}, {3.734217534713975*^9, 3.734217537784528*^9}},
 CellLabel->"In[17]:=",ExpressionUUID->"cc17300f-6b33-4c64-876f-bc9dbc35ee7a"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"Total", "[", 
    SuperscriptBox[
     RowBox[{"Flatten", "[", 
      RowBox[{"m", "[", 
       RowBox[{"{", 
        RowBox[{"a", ",", "b", ",", "c", ",", "d", ",", "e"}], "}"}], "]"}], 
      "]"}], "2"], "]"}], "/.", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"a", "\[Rule]", 
      RowBox[{"(", 
       RowBox[{
        RowBox[{"f", " ", 
         RowBox[{"Sqrt", "[", 
          RowBox[{"1", "/", "3"}], "]"}]}], "+", "g"}], ")"}]}], ",", 
     RowBox[{"d", "\[Rule]", 
      RowBox[{"(", 
       RowBox[{
        RowBox[{"f", " ", 
         RowBox[{"Sqrt", "[", " ", 
          RowBox[{"1", "/", "3"}], "]"}]}], "-", "g"}], ")"}]}]}], "}"}]}], "//",
   "FullSimplify"}]], "Input",
 CellChangeTimes->{{3.734215149268038*^9, 3.734215192965322*^9}, {
  3.734215757856928*^9, 3.734215881508437*^9}},
 CellLabel->"In[79]:=",ExpressionUUID->"ab43b56b-32bb-40d8-a152-fc31f9268d37"],

Cell[BoxData[
 RowBox[{"2", " ", 
  RowBox[{"(", 
   RowBox[{
    SuperscriptBox["b", "2"], "+", 
    SuperscriptBox["c", "2"], "+", 
    SuperscriptBox["e", "2"], "+", 
    SuperscriptBox["f", "2"], "+", 
    SuperscriptBox["g", "2"]}], ")"}]}]], "Output",
 CellChangeTimes->{{3.734215865541996*^9, 3.734215882086557*^9}},
 CellLabel->"Out[79]=",ExpressionUUID->"ecda54ee-d4cc-47c1-ab49-18e2fcdd7bf3"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"MatrixForm", "[", 
  RowBox[{"test", "=", 
   RowBox[{
    RowBox[{
     RowBox[{"#", "/", 
      RowBox[{"Total", "[", 
       SuperscriptBox[
        RowBox[{"(", 
         RowBox[{"Flatten", "@", "#"}], ")"}], "2"], "]"}]}], " ", "&"}], "@", 
    RowBox[{"m", "[", 
     RowBox[{"RandomReal", "[", 
      RowBox[{
       RowBox[{"{", 
        RowBox[{
         RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", "5"}], "]"}], "]"}]}]}], 
  "]"}]], "Input",
 CellChangeTimes->{{3.734214120801552*^9, 3.7342141476454*^9}, {
  3.7342141953579063`*^9, 3.7342142116842318`*^9}, {3.73421436371597*^9, 
  3.734214429117947*^9}, {3.734214469254676*^9, 3.7342144734020853`*^9}, {
  3.7342145221911697`*^9, 3.734214537737403*^9}},
 CellLabel->"In[49]:=",ExpressionUUID->"642d4fda-c92c-4f5e-8df5-412c73634b76"],

Cell[BoxData[
 TagBox[
  RowBox[{"(", "\[NoBreak]", GridBox[{
     {
      RowBox[{"-", "0.2121879030644091`"}], 
      RowBox[{"-", "0.39238168735792145`"}], "0.05945224929903345`"},
     {
      RowBox[{"-", "0.39238168735792145`"}], 
      RowBox[{"-", "0.03164707316428249`"}], 
      RowBox[{"-", "0.010369736196555526`"}]},
     {"0.05945224929903345`", 
      RowBox[{"-", "0.010369736196555526`"}], "0.24383497622869157`"}
    },
    GridBoxAlignment->{
     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, 
      "RowsIndexed" -> {}},
    GridBoxSpacings->{"Columns" -> {
        Offset[0.27999999999999997`], {
         Offset[0.7]}, 
        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
        Offset[0.2], {
         Offset[0.4]}, 
        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
  Function[BoxForm`e$, 
   MatrixForm[BoxForm`e$]]]], "Output",
 CellChangeTimes->{{3.734214143293004*^9, 3.734214211968211*^9}, {
  3.734214375962687*^9, 3.7342144296211357`*^9}, {3.734214516724793*^9, 
  3.734214544499289*^9}},
 CellLabel->
  "Out[49]//MatrixForm=",ExpressionUUID->"55501bc2-6a0a-4392-b2f0-\
241683335d9e"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{"RotationMatrix", "[", 
      RowBox[{"\[Pi]", ",", "#"}], "]"}], ".", "test", ".", 
     RowBox[{"Inverse", "[", 
      RowBox[{"RotationMatrix", "[", 
       RowBox[{"\[Pi]", ",", "#"}], "]"}], "]"}]}], "&"}], "@", 
   RowBox[{"RandomReal", "[", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", "3"}], "]"}]}], "//", 
  "MatrixForm"}]], "Input",
 CellChangeTimes->{{3.734214861147612*^9, 3.734214873303179*^9}, {
  3.734214906179936*^9, 3.734214983095716*^9}},
 CellLabel->"In[57]:=",ExpressionUUID->"771b659d-cc63-4ceb-ba97-d2825564331a"],

Cell[BoxData[
 TagBox[
  RowBox[{"(", "\[NoBreak]", GridBox[{
     {"0.16400071192627297`", 
      RowBox[{"-", "0.23141782216574336`"}], 
      RowBox[{"-", "0.08878171707873715`"}]},
     {
      RowBox[{"-", "0.2314178221657433`"}], 
      RowBox[{"-", "0.23460569426396366`"}], 
      RowBox[{"-", "0.32472895370355265`"}]},
     {
      RowBox[{"-", "0.08878171707873717`"}], 
      RowBox[{"-", "0.3247289537035527`"}], "0.0706049823376906`"}
    },
    GridBoxAlignment->{
     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, 
      "RowsIndexed" -> {}},
    GridBoxSpacings->{"Columns" -> {
        Offset[0.27999999999999997`], {
         Offset[0.7]}, 
        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
        Offset[0.2], {
         Offset[0.4]}, 
        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
  Function[BoxForm`e$, 
   MatrixForm[BoxForm`e$]]]], "Output",
 CellChangeTimes->{{3.734214861813512*^9, 3.734214873687706*^9}, {
  3.734214913929411*^9, 3.7342149190928593`*^9}, {3.734214950230049*^9, 
  3.734214983387472*^9}},
 CellLabel->
  "Out[57]//MatrixForm=",ExpressionUUID->"d924e63b-0dc4-4833-83db-\
2b864132564a"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Det", "[", "test", "]"}]], "Input",
 CellChangeTimes->{{3.734214402875448*^9, 3.73421440413581*^9}},
 CellLabel->"In[50]:=",ExpressionUUID->"0b0e8934-aa92-4fe3-a02b-08310bbd3183"],

Cell[BoxData[
 RowBox[{"-", "0.0352857910490461`"}]], "Output",
 CellChangeTimes->{{3.734214404360485*^9, 3.734214430606154*^9}, {
  3.734214525547155*^9, 3.734214546562787*^9}},
 CellLabel->"Out[50]=",ExpressionUUID->"41138d64-0bbb-46a3-b541-a5ac5dfa73f3"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Total", "[", 
  RowBox[{"Flatten", "[", 
   SuperscriptBox[
    RowBox[{"{", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"a", ",", "b"}], "}"}], ",", 
      RowBox[{"{", 
       RowBox[{"b", ",", 
        RowBox[{"-", "a"}]}], "}"}]}], "}"}], "2"], "]"}], "]"}]], "Input",
 CellChangeTimes->{{3.73421521995964*^9, 3.734215244093848*^9}},
 CellLabel->"In[62]:=",ExpressionUUID->"3a2b8edb-85d7-4fbd-88f6-9846f750f29e"],

Cell[BoxData[
 RowBox[{
  RowBox[{"2", " ", 
   SuperscriptBox["a", "2"]}], "+", 
  RowBox[{"2", " ", 
   SuperscriptBox["b", "2"]}]}]], "Output",
 CellChangeTimes->{3.7342152442801437`*^9},
 CellLabel->"Out[62]=",ExpressionUUID->"e9d6adb9-b457-4d36-8c0a-6bc9913646bf"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Total", "[", 
  SuperscriptBox[
   RowBox[{"Flatten", "[", 
    RowBox[{
     RowBox[{"Identity", "[", "2", "]"}], "-", 
     RowBox[{
      RowBox[{"RotationMatrix", "[", 
       RowBox[{"RandomReal", "[", 
        RowBox[{"{", 
         RowBox[{"0", ",", 
          RowBox[{"2", "\[Pi]"}]}], "}"}], "]"}], "]"}], ".", 
      RowBox[{"Inverse", "[", 
       RowBox[{"RotationMatrix", "[", 
        RowBox[{"RandomReal", "[", 
         RowBox[{"{", 
          RowBox[{"0", ",", 
           RowBox[{"2", "\[Pi]"}]}], "}"}], "]"}], "]"}], "]"}]}]}], "]"}], 
   "2"], "]"}]], "Input",
 CellChangeTimes->{{3.734219630880183*^9, 3.7342197177293463`*^9}, {
  3.7342197779813137`*^9, 3.734219819852071*^9}},
 CellLabel->"In[91]:=",ExpressionUUID->"debfdd9c-0082-4632-872d-ed2a4b4c0f38"],

Cell[BoxData["10.345797838550446`"], "Output",
 CellChangeTimes->{{3.7342196638748903`*^9, 3.7342197097266197`*^9}, {
  3.7342198203836184`*^9, 3.7342198247068157`*^9}},
 CellLabel->"Out[91]=",ExpressionUUID->"7813d4f5-6c53-4c3a-a0be-943b0dad909b"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Total", "[", 
    SuperscriptBox[
     RowBox[{"Flatten", "[", 
      RowBox[{
       RowBox[{"Identity", "[", "2", "]"}], "-", 
       RowBox[{
        RowBox[{"RotationMatrix", "[", "0", "]"}], ".", 
        RowBox[{"Inverse", "[", 
         RowBox[{"RotationMatrix", "[", "\[Theta]", "]"}], "]"}]}]}], "]"}], 
     "2"], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]", ",", 
     RowBox[{"-", "\[Pi]"}], ",", "\[Pi]"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.734219630880183*^9, 3.7342197177293463`*^9}, {
  3.7342197779813137`*^9, 3.734219977972704*^9}, {3.734220074797818*^9, 
  3.734220075182467*^9}},
 CellLabel->"In[98]:=",ExpressionUUID->"9897ef18-b864-40be-b817-432256680ce9"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJw12Xk4Fd//AHDbvXcsyZZK9uYqS0LCCPMmbaKEyqdFiPYiomwhe6SFRJIs
CZWUtSwzyRplSUiSZEtCtmT9np7n97v/3Of1zHPnvs/7vM+Zc+bI2TtZOHJx
cHCEcHJw/Ps22SG4eVaOlx5e/PchYFOe9ygmzUtfuVbG/GcVuZ8J4hLo+tlV
q+aQpa79txMX56XX7ufX/4Ms+LdqWl2Elz53KerMKPKig1YaKchLm3nmZfQj
jzakWprx8dLxl10nOpC79EQ5DzJ56UuyDaYNyI3p/lknuHhp8wvvX7xGLhMb
Pei+gNFtLBeF58gv/Gx4A2cwmq+79NF95JShuvybUxitEvBS6ypytPUmh8Qx
jK7uOfbBFTmoPEP46TBGZ3nU+RxEdldbQb0axOjf60Y3GiJbY5MrW7oxWpI7
op6JvOPC0arvnRh9/oDI874FAnS7Gi/8bsfoKX3XB+XIkoVZ9QIfMHp6Z1+6
J/ISXMpHoh6jS9z5yiyQF66HK62txWht1XU/1iJ3HT8RtPkNRgt73LGrn0ft
+9CisYfCaJOWiReJyGXkli6bIozusfQWOYeculx+k2cORtOXdOd4kI9XfR7N
TsHo4aPfvVbNoXg3mNwvTcTogXMLZMcsAdsTC3fWxWO01aXnIvHIShdvp/VH
YbSAi0yPCPKwwu5D0oEYbfpzQufnXwK+3irhVfHD6ODANNd7yA0LygWEN0Yf
0/cu2Yn8ogUT2XsBxbPi++XUaZSv4LKqcAeMjtnQ/crgD4pnTM0tzhajCZ1J
564pFI9NovyjQxhtU9ii5Yesq+XtU2aF0QfNj469nCRgvnfjhr/GGC2/01xZ
fIKAwC0Z94+xMfpGknPR+VEC6HBPcxk5jG6xKW3/MULAXONOrjZJjI7a25F7
BNnVZthxhxhG70pdc9d4mAD7ixvWqXBjtKXwxXXjPwkgM0qKfnexaC3liXvf
+wjwHIk8m9nBop87afloI+dvtJU52saiBSYFV4X1EqBaxhXQXM+iU3+a3GD3
oP78vM2koJRFe3wIP7b5GwEzAk1t3vdY9PYq4rfIZwK0LFOuboxl0WuHMt8Y
tRPgEndBbziKRTdXSu13/kTAD/byB0fCWXQf58zr8lYC2gwOHTfyZNF3SJMs
i2b0/859kyxrFs1u3bOS+x0B55tnRKJEWbTJnzqJwmICYix2H4heyqJVW50V
cooIKG5ISbrNz6JF1jsYP3lFAPOdqVosN4semCULYwsJuFdx3yxhnEl39iwL
OZBLQHW+UeijD0xaNl1y3v8xAdJxV+eLopj0cpUiI/tYAoyXfzUuuc6k33fG
ysreIeDk7Q0RpeFMWm+8Z2XHbQJyb3ZIvA5g0nd/89vuikL1f1VVp9KVSV/2
CdssGUnABa8mlwZLJt1e6pR9OICAt4clBnpEmXRlUn+AxxkCdifqkTNLmXTq
7IFprtMENHfZxCwVYNJtV5MfXj1JwJejKca6PEzaImD5k+hjaPyfVEm6PsGg
/bbddImyJWC5u8EB3Y8M+vLfn1p6VgQ4RNrXXY9h0O9T0vX0dVH9lGZm665k
0KGF12NEOQmoa18vMCvGoO0fqi5jLOrAvanc40VCDFrBLePuxJwO6KlS0noY
g471Dyl+N60DngkfIvT/8NA33+w9c2JUB6a85k7ARx5awuA6J3zVgVGdXXJb
b/LQdz/+3OFdpAPfX/y+uYeXhy4c47YyO6cDWknM5mv83PSQX9NqmVpt0JNv
Ug2f5qRbSs8GZHNog6SXoE/EIAcdOXQj9PJqLWi4p2597Msida5Jb8TfeCPU
n8jp31g0T605LGQWbqwJaYqNOuYls5S7k+hSddMNoHa3wdml5i9lOXjndp6l
Bsip6beLP/5DyR9WLWowVofBV1sYzOeTVJfwyrwBEzVYdbrI7mLEOLVd3Zpp
FaIKC29FHo6e/03tMq3ga7irAq6kgNXJP8OUuVUks3JICQo3vKMn8wapym/E
jllDRXgmXJm9vKSPirmWZLzr6xqwsBE26XrcR01llN198WkNTGUe+p5+t48S
blZzk2heA3rG48t0L/VR7l5nSyaq10C1u6zXoQ19VD7Tt/rDizXQ9dlzS1JG
L2UQcFBVP2QNCKetb1eK6aH8RrXXVWusAVfdOG4Dp24Ku/dLWvS2AkRHr+rY
Z9NNRYwMHPe8oQC5wwm5Tmbd1MyWG8694QowlZzsmKTcTQmxFisqryjAJf4n
VTwD36gup77UfGcFuNxRGl5r+42y/pG709RMAUIv94j+Z9FFJUnvq9vPqwDp
bceGzht2Uc0nzjoTDAWo0fhRflWti+Iw4J+V5lQAvv5fbsWCXZRVw9nqyWk2
SCQOPyNjvlJDzrFHmwbYwDYU03kX0kkpjOnGbK9hg27Qke0DpzooX+5boWrX
2FAz7fPQZmcHdacgkKgPY4P1mXtcH5U7qIgl7mfPB7PBzfJT8euhzxS0xtrR
vmzIlrNUjz/3mdKKjrgZ6sKGNaVbJXa5tFNjD96WlVmzQezPuqEcjzaqu2x/
0/c1bEg5ZbpD6UAbVbRh5PgEzgaNzlNpD3TbKKl3XHGYPBvMKx7ZXpttpZrG
XRs2SbIhPEru4zGfVoq9fXX6OyE2cKktK13p30LFCs5HJ87gMHJi7rpvaDOV
J3QB42zEoTlLXWjXsWZKUePxsj3vcXg1ceyGpHEztc1qncfDWhwC/RpvvFz8
QNn1SW09WImDRGzazXH3D5Tij5cCs0U4GFeZRx13bKL4li7/zZ+Og+KSYFGt
zU2UA4MqSnqIg6BlURSPXBMVwbF7YFMKDp862dFJHY1UZ2L3SZ/7OJybmon+
bNlIXYzLkdt4G4dY9sOY3UYN1HqpgqmLATj4nG4Xl5ZtoIgio/VW/jhU2Muo
fpqtp64qizZr+uJwwHNCVdS1nkpN/eXA7YVDUMZ9tRC791SYlFruRxcc2lnj
G5wM6qiIobmw3UdxCCiP1yWnq6i2xLi2+G04DLwnohwLq6iyk49PyW3FYden
1p/hl6qorZJ+fZnGqL3Doglt05VUDKPvXo0hDtnLIxbP/62gmr7dEdTSw+HL
Ke/y1Jk3FPdKDotadRyM3CSkal+9ocS3v8u4roZDum+h22/PN1TMwaLR/etx
uBA9oWAwW0YpeKw3m1DBga/0TFjr7GuKkZe3/dBalA/5V/fEZijqwafx0B8y
OBDaU2Z2nhTl7cicHJLGgcdUY/HpTCk1uinBakIKh3i3TLttsyVUweZdI4KS
OFRX31XwnCuiDjGN41xX4BD1paW10ruI0hRipscsx8FmTCRMdP4V1VAh86RE
HIfJVeE/n8y/pCzV1G8vX4aDvJNX9teFAopZ6DY6I4zDr4ACOxXfAsr01cNn
+siFseMiHov5lBL92jFQCIfdZafdRDjyKY2tbgVSS3HwXnZIdwtnLpXOc2fS
VwCHbUqxP2/651Cnmmecu/lxECGb73Vy5lDiXxJ7tiNnnDBdvMj1gmpz3pIn
x4dDS5FeeSZ3NmWvMbzIheEg6WHfOSbwjBLgfPIshIVDhOdOzRsiWZS3nJq6
EPJpH6mut1JPKOWSuQwVJurvy0ytE6sfU57JXkk0AwcTv5FwhmIm9eDputPW
yEoBr7VBM51ymLvmFsWDw93AzGtfiEdU5IHT+VrIfMFR3z3JNCpWtL3mCzcO
g6GO1/NMUimDEuqENvKBq7t6LcxTKOVLNhM/uHB4G669aXRvMhUl32nxADkj
krdfye4B5VpbEboCWUO21+PGu/uU0+Zdtu2cqP2rC9i1bfeojoRpvgfIY+yw
RkbPXWrV+6bQk8iNaw/6wEgsdeTLj09ayNnK6xS9ZmKoR4M7FljIN1QXm/MY
t6nXSguTHRw4OKs3+o0KRVFbB4Re5yGba6aoKEvepKIDwo/cQj5ybjC7dlck
1eTi3uiCLH0hEjN0vEr1GH4S34/c6aFhm+8VTHneerWeRE7wbSlQvnWFml4l
K6mMXMg3KW20x4cKeyzYIYGsLa7/XuWyGyWCX3USRD69mW9Wdd9pSuvy7RYG
ckOuZg5mu5+yqtYQ5kRuvvDEQOM5SQYqHJXh+Hf/i1t+mN87SsY1KXBy/4s3
+0CFftJ5co2kTz4vcmOqiLjlBQ/S7YQDKYacYeq4ITfFj7yq0R4vjzy49fVn
g2uBpCL/51pNZCVDqcAa91CyKda+3uRfPJs8VKxsI0j6zuk0B+SWu6dOjeA3
yPFPI+ZXkKfuxJbmrrxFrt428D4FWfx2pYinYDTZ3GEqW/OvfbcmjpHcMWi1
JrZlDNn6unwRz/QdMrJno74Myv+lCPOlb4fiyAulDzFz5MLgJwVWLQmka4Xh
yhLktoB2fonaRFLri6XNX2Rv4Mke+fqA/HPWz51A9ZCgr8GT15xMLlCDMhXI
qno7spbXp5DZEqznQqi+SnVtrT1rUkmQmxWzRe7UjnxClqaRWXul9vKh+jyn
9XBfcuEjkqiTV3dEXtAs5mDkpJM8fllf3yBLawxavX2USR6Rn8+JQPV+RGXr
vNXNLDKm8I2WKRoverFpkVMPnpEyZ2ekG5AFrnALmVpnk6mjn4Os0Xj78eto
0q/jz8mb13nq3XlxSK7Ay9VCckjroJMmP9B4vTHbHMG5NJfM6fVefRON78vq
QXubYnLJ3rAeD/0lOBxM6O1zTcsjGyx/JaQI4iDmlsZbUFFAhiltK3mI5g+u
x/uaQswKyY3Uca/zIjiMdjHjrT8WklfXbcwzFMXhnelxlZmel6R43+DdETEc
gvG1u/V5islZU961/mg+m/th9dZOjiY7bJSXesniMM7zVNXEkSZDMzpPRsqh
+pBhRGlk0KTFp/lNafKoP/bmHeRWf02GJmze8h3HIe/1sl+paJdVYM7x/ZYi
ymdcy9KBI+Wk99PixaoNODjmql5oSCkny0QCM+Q34nCoPritsL+c/BqvWeGv
hcNOhnZSmFMFuTWy3NyMwGHt+Tsayr6V5IzslacrSRy+bbfee+5+Ndl5/Ixs
yE4cDHq97d59qSZ14vuyBMzQfOOfdFZFqoa8Vn1JPGYXDhavBoMG42tI8qS9
U+4eHMqUffKPxb0lLR0C9GWsUf4Fk5cfia4jrZIyfz9xRPPJ4OTQmi0NpMG6
gpKH6Ploq4O5tjo0kE8i2MkPg3CIDJb4GxzYQIp61e3JCEH5kCcZfW8aSFPv
GqHicHS/g6FSqUaNpOZul0XBaBxE30nskoUm0ngNU+UUel5PPCOfrdjUTNqW
9E/+fotDnfImEefDzeSuVAWHxHc4pDzScqvybSYPBQVp7GlA8Seu2+Re3kzG
XwkZev0Rh+eRq6o+mH0k05ZGU61dKL9n/3RG2raQBtvPrWv+g0O/0jNBRnAb
2fk7cDOfIhtK0zLPH0pvI7GGbEkjFTbEyKc157xtI4egRPfyejZslUi4a7/0
EznZU2zIrcWGVN5wBTr2E3mpYtIWNrPBduCYgdfjdvJxmMGSYBs2tD+UPve7
oYOcanyP68SyIZ/5xCJ9rIM0/iWp3BvPhqjjhPYRsS+k82Dl+phENpgqWnG8
2/+FtDsvpsbzCMXzJOxWeucX8rVI0sjSfDYk5UzkHxnqJN+k6fv2NrMh17Z3
sS+gixzt/Gnqv0wBvM4Vbd+b2E3KzLR6bEpWACNy0kHwWTf5NAc3vZ6G1pdC
6/2rSrtJIzvv/X2ZChD7PPkl0dlNmvdJLLufowD5E2FK0lLfyTGja4KaFQow
5mkt0H/3O/nJIYD/74ACnAqZrL8U00NuXb//+le0frZ+sH7/vWt9pPepWIuv
9WvgWEgN19eGQXJQ6U3/n52K8CZQWTmidpgMK3S/XNquBDbCvWVi//0m1Q4n
P30XqALjulUG39zHSZvdK/mEXFXhmdOSv/bOkyT7zTJRB2U14PHt87eP/kNq
rjDxCCDUwT9u9Y7l0X9Je5tacQFCA3by+CqWh82S6/a4tRZpbICsHWfbhjPm
yfdVW5UN9TRB5y5V8f7hIplVMGW0VHkjZNk3gXgfB/zy7bF7IqMFx2StlA0n
OOG76IGJffNa8OI7K2/rKBcsPk6fXleoDSZiDIVwTh4oc77zX+ZJHVjduCU5
hMEDeULmj/nP6MDctWDpQF4ekG5rcTiN9mNPWdhyH2EecM8ZF1Bw1QGhWT7M
SY4H9HO45EK9deDjN6FBC0MesLkT1LIQqQO2zySzJPx54MffIu8XL3TA3URT
K5ODATPvT+iKTerAyOZHybd4kHOzDTj/6MAJfYmlXhgDzJyuxA2h/eNBNY6B
nUIM0KsZNi9F+0sQr4v7JcMAc1X1V2Y8BPB3H51XIxmQH9MhLClKwAOPqPIC
Hwb4FndWuq4nYKUrU/2BPwO4U6doJXUCbp3xSAgNYoD3uQLuLg0Cgo4ccf/v
GgOyXt6y26JFwKktymtn7zHA3s/WdVaPAE3hN+EGxQw4oLIxRsyEgJr0MYuK
GQaUxdqwp+0JmK7iKuJaZMD5S4xfdxwIUOgXWQ3cTNiaKpq0Ee23r7A3jL/i
Z8Jw2u26U2g/rpfsGpUtyYQ+n0S82ImA7PiJD/EGTEgsWO8+40VAbOSUlcsV
JgzE7M3ovkVA5VNmybNgJhhFyK8lowmYrBNn/7rKhDSYCIq7TYAFv/bk8Sgm
BFjLfdkWS4BA6MXbh1OZcG5w9cjVBAL8/Kc/bq9kQkxb/e7MRwScuDCzT4aP
BV09kVE7XxHw9GCIopggC2zPuCeaFxEwZiQ2h4mwIJfYXmVZTICXsGrS2EoW
TEQ/PWlVSkBklt3PCkUWnCh/OmZQRkDeQLXvmR0seEr4dBXWEDBTv9fCzowF
fbX7IhPfEmBQ0I3v28OCn+sOWQXWElAdNFdD/scCcz7+tdvfEdAhryYmehLd
r/tPf2EDAVyH76S/DGWB4JGIeINWArYZ415ZESzQ0h5+wWwjIEL5uVnKDRZ0
52l+rUNeNvN2LCKWBZqQ5WbZTsDaOwt6tuks+MzAb+/4QsCuRsdGZjULMmUV
3T91ExBVOJYyW8uCH0545ZXvBLQl+rqP1rPAZt/GtUo9BNidi1vV3soCgeQJ
OddeAi7wv3N82s+C4LyI/l/9BMRv0ZyxZGEAn2rjgocIyHy6/04pPwYzXz1H
ZX8RULjMS1NRCAPPQ3RHIXJL7+tzCyswGDTY5/ZtmACh4N3f05UwEEmpTVr2
mwCZYRc/0fUY+Clte3APWXVfjNTlDRik285qyI0RsFPhy35LPQxcps+IrR4n
ILjyVN28Gfo9pvOGd5KA26qRJ09YYBC6RPuID3JqzHPmh30Y6G2AyGHk18em
If0IBuLJ/ak1UwTMMYPzLM5jMPZ2PNt+Go0fpwyLEjcMNh999K0MWaK1bmSN
JwbjHY6psn8J0H4kqjR/BQOe3ptfm5FdtiXdfxSNQUxLrqLsLAH+z8o3icRh
0POpuv8M8o3lA23eCRjQ3cu1C5Cf9quKWqRhoKOyJMx4joDi3RbZxZkYTB8I
DQ9BflvgZrbmGQZ3Tw9IVyMPhBSHzBVgcE2bd9pwnoA/I1/x48UYbGxI1fdC
ZlpzlzXSGFxmfBZ9gbx6rclcWg0Gp5U+nl+xQIDGjbNxwu8xsOj3+LsNGaZv
aHk3YeD82VPYDdmmutV5z2dk1YNjVchn1WaXFH/FQHqnXNEvZO9Y6ccKPRjc
kxAWE14k4CqH0fabAxisbJWZV0eOO+HYOzuEQd+lze7myOkNoVeO/cbAO9/F
9wxyvs4TmcZJ1P88D1cEI1c8qC/eNINB1u0mwwTkZmz8v7QF1H8HJ2b+vU//
7iz+R4ibFxq5eYzLkcfaiGgvFi9sn5+VbEbmMDys3sfPC3yurUHfkJdm+L03
F+KFjl23Lg8hSwunni4S44VSHUXW5L/zAY8qTGElL/TExMnM/js/+Db48IYU
un7tW9UC8v+dL8D/ny/8DwifN3s=
       "]]},
     Annotation[#, "Charting`Private`Tag$68036#1"]& ]}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 10.000000935414626`},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->
   NCache[{{-Pi, Pi}, {10.000000935414626`, 
     25.999999999999936`}}, {{-3.141592653589793, 3.141592653589793}, {
    10.000000935414626`, 25.999999999999936`}}],
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.7342196638748903`*^9, 3.7342197097266197`*^9}, {
   3.7342198203836184`*^9, 3.7342198247068157`*^9}, {3.734219875151*^9, 
   3.734219942917346*^9}, 3.7342199787253923`*^9, 3.734220076075754*^9},
 CellLabel->"Out[98]=",ExpressionUUID->"4f7ee14d-12a7-454f-b3a6-5baf84da3966"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Total", "[", 
    SuperscriptBox[
     RowBox[{"Flatten", "[", 
      RowBox[{
       RowBox[{"Identity", "[", "2", "]"}], "-", 
       RowBox[{
        RowBox[{"RotationMatrix", "[", "0", "]"}], ".", 
        RowBox[{"Inverse", "[", 
         RowBox[{
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "1"}], ",", "0"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0", ",", 
              RowBox[{"-", "1"}]}], "}"}]}], "}"}], ".", 
          RowBox[{"RotationMatrix", "[", "\[Theta]", "]"}]}], "]"}]}]}], 
      "]"}], "2"], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]", ",", 
     RowBox[{"-", "\[Pi]"}], ",", "\[Pi]"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.734219630880183*^9, 3.7342197177293463`*^9}, {
  3.7342197779813137`*^9, 3.734219977972704*^9}},
 CellLabel->"In[97]:=",ExpressionUUID->"b9abf49d-46fd-4dd7-83c5-30661af69ba6"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJw12Xk0Vd/bAHDk3ntE5iEqonMNGTLFPch5kuobaZBKk6EiaaJBJVLKLBHJ
ECUyhzKW4ZwkImVIyJRUSGUWGX+7td73/nPXZ911z372s/d59t5ryx8+Y+nA
w8XF5cfNxfXv22yL4IYZeT6azfXvg4NhvscwJstHz39zH+VGVpP/GScpw0fj
eHU1C3nFrX3muCQf/XTnDx8RZMG/VVNaouh3oU+KcsgLR/WSSUE+2pH/bqYm
8nB90i6LxXx0DY+01CbkbiMx7gNMPlqYsnW0RW5IvZ7lxMNH20kdifFALhcf
PuA2j9Hbh5flxiE/u2bDd3Mao38aeueUIyf+qi0I+4PRyX+D7/xEjrA2PPpg
FKNP6WnvW8qNg09FmsiTQYxOFDjGuwXZTXMp9WIAoxWS5CI8ka2xCenmHoyu
/ttnN4q85fyRqq9dGC1r3h6nzYODQXfD+ZE2jJa8KU25IS8vyqoT+IDRgk46
WYsX4bAEX+EpU4fRN0R/XtmPPH87aLXyW4wOTXysnoXcfczJZ8MrjO5a0mBk
z4v696FZeyeF4tslGUMjl5Mbu22KMXqtNat9FQOHJCkFQ/dcjL4mGMT6g3ys
qn04JxGjcQ6BVbNQvDpm8WUPMFpdYdG1zRgO/z0oMq+NxWhrobi2auTVF+8m
94VjdO+yl/ptfDgMKm4/KHsTo4+rSIaoCODw+U4pn9o1jJ7882xpFXL9vGoh
4YHa92H5OC1B+W3GRHefx2iD9wRPoSDKl295VdBRjG6MMgz0FkHxjGpeiLbD
6Fu3JWRJURSPzQOFlIMYveG25Z0FZAM9D89yK4zeakssCxbHYe77Wp2/phj9
/Lht2gcpHG5uTIt3ZGN0T4lswHI5HOgg9x1y8hhtZXLDTG0lDrMN5jytyzG6
3WpzJMjjcM5m0GGLOEYfKcx567YKh8MXddTVFqH+doo8llbGgUwrLR7pZtF3
0qQqOdo4uA+FnErvYNEPV4YzwnRwKFhrJ3eklUUPSPRU/9bFQaOc50ZTHYsu
Unb+nKePxrN9s1lhGYsW3NevfXkdDtMCja0e91m0q2vwirYtOOjtSgxcG8Wi
nymlX3I3x+Fs9HmjwXAWve9sxU45Cxx+sKUe2gax6LWz/B5uO3BoNT54zMSd
RX+8diJx/17UvkvvBMsatbfz4Lu/Dji4Nk2Lhouh54s41tz2xSHScvv+CCEW
nbhTNjfaH4eS+sSEu/wsuiNB/2JKIA7Md1s1oxaxaC3s2u33ITjcfx1vETfG
pDfpNY2Y3cPhTYGJf8oHJl2aXcmYTcVBNjpwrjicSTemBLgb1uFgKvXZtPQ2
k7Y3eV9GNeBw/K5OcFkQk/aX1qvd3IRDXliHzMsbTPrt8n7yyCc0/wM1OJXn
mDQv4/elqq84nL/SeLZ+F5O28F75wPQvDjWHZPq/iTHpsyWaUwJKbNj+wIic
FmLShZiZ0LQKG5q6bSKFBJi05cCLvAE1NnQeSTQ14GXS+//WpzRrs2H4uFrC
7XEGzeXaKfPJmA1Sbsb7DT4yaN4lynf89rLhaMjh2tuRDPpoUZavTxAb5srS
cwykGfRISHdj6xwbatvWCMyIM2jD/EcfJ7gV4f6fvGPFwgw6X+JJjSRTEYw0
KFkjjEE3zA77HhVUBPe4D8HrJnnp7ktWSmvkFOHPlVkn+MhL1974Muu1XhGG
OdvkN4Xx0u+slE+yAhTh67ORsJ18vPRtmam9DquUQC+B2XSLfxGtNL+/6OVx
ZTBSaNQImuKmd3rjf+PnVWD5FUHP4AEu+rti1yDPc1Wov69l7di5QK064Cs/
66YOdU65fWuL56inGz87/HBbA8kqDZwdpTNUUOiv4fe5mqAZU+9ytvovlSXh
5GyWqQXymuvaJDMmqc+PGkzXFGvDwIuNDObTCWrlYK+ZVL4OLDtRbH8xeIw6
2PdhdneJLszXiD4edh2hWvfFTd97thbOkQJWxycHqdaPRbP3A/SgSOcdPZE/
QMkKHTnAY6sP2SKVOVKlvdRaIrvTWpgDljYiZt0ZvRQzI/6ZohgH/qQf/Joa
00tN3T32elSCA0amYxIGl3qpjSZbEnyWceCN28orB3V6qWQPelmkIge62903
JqR9pw4bNzrZG3FAJHlN2+rIbxTFOvoj1pED5wyiFxmf6aHmtAJc3PI5EBGx
rGOPTQ9l4M9fW17IgbzBuLwzFj3Uos7CzUteoPYfPXJIUO2hLnlwxd0v48Al
/swq3v4vlPCb4CdJVRy42lEW9NbuC2UVxG7b94kD/le/ie2z7KZyhpukrWY4
kNrq+Mt1fTcVaV69+cgcB6q1f1QEanZTXPbu3i4LHFjc9/tCiWA31SJVvcxn
EQEyDwazycjPVGCVzvtIfgLY68U57/y6qEHfnrwDywgw8LH9r9+5g1o/X1B8
jCCgesrzsY15B6WXtO7IUkMCrE/e5/mo2kEZ/DXdUmVEwIVdn0pe/mqn7CJ0
6uSAgBz5XVqxp9upb/lEYfEmApTKNslsO9tG+WXHxMfvIkB8Uv1X7uVW6rZs
k6TgSQISnbduWb2/lVJwxGp9ThGg3eWc/NCglXKNvpo7c5qAHa9T7G7NtFBL
mZVSPa4EBIXLf3T0bKEGDwyqRl8kgEdTokz6ejOVd+n62hxvAoacZm97+TdR
yZOvr3jdI6ApS0t4m2MT9dNx9YWWKAJejDuGLjdtojp2H9+gHkPAzWsNoc8X
PlDvBUYONt5H+YlKDhtz+0Cd4E+8zPOIANOqHeHHHBop90vnWdMZBKgs8RXT
29BIbfNcqbDmCQGCu4rDeeUbqRderfyHswj41MWOSOhooERyBM1f5hBw+s90
RPuuBspUR/GMQz4BUezHkdtN6ikn1yRe0zICPE+0ScqurKeOPrLp300R8Pqw
nManmTqKcP5z14EmYL/7uIbYuToqSz3A4mo5AT5p8Zp+9u8po5E+9t1KAtpY
YzpnjGupFwHchtbvCbhREWtATlVR4pq5YtodBPS/J8IdiqooWfN0syHkbZ9a
fgZdqqI6R6jg9E7U30GxuNapSmrtXLDWss9o/KSCF1z/vqakhPKmvn0hoNPZ
oyJp+hV1dWxhj0wfASYXZFa8ffGKGj8grVqEnOpVdGHE/RWla/mIZdVPwPmI
cUXjmXLq5AanTz4/CFhcdjKgZeYldZX9uL3hJ8qHwov74tMUpSnma8g/TACh
/8fC3p2iTN55+AQg827VXngyXUZhh59+ZIwQEHsh3X7zTCm1qsvafwr5zZsY
RffZYqpx9pBO5RgB4Z3NLZUexVTf5GyG7jgBNqOiAWJzL6ilK4ZVEpAnlgX9
zJx7Tn08dmzt+QkCFM5cyfk8X0jNrXrtxzNJwO8bhfZqXoVUm4K6sj1yUdSY
6OWFAmpATu5dKfL28hMXRLkKqN6DG3HXKQI8JA4abOTOozI9dRn0XwI2r476
GXY9l6q5610lOE2AKNl0v4s7l7ogknPrAHKa09aFizzPqIjNh9hDyM3FRhXp
i3Koul7s2vwMAcsvH+4aFcim3BdUlI1mCQh2N9cNFc2iTIaO9V1EPuG5ortm
RSZ1MoE74wdy21WmntOqDOqVhkm23BwBZteGghgq6ZSmyvGaXcirb7zUB91U
6j03sbEAOeZm+q1OIoV6blmT9A15sW/4V3cymdL9I7pMZJ6AAX+H2/lmSZSd
/EPzo8j7A7d9t9yRSA28qmcEIdcE6RsO735EFQ2GNmcjp4Xw9a22f0htkokr
HkPWXvn9cui7eMqsq7VOdAH1f1Uh+23rfUr06Y3pNcij7IAGxrcYaiQq0tAc
uUH5gCcMRVE7RPjDjyLnqKqrXJmOpDIXt3N5IIdqLDTlM+5S8QNcPmHILloN
14aFw6muoItyj5F36CaqqS4Po/SMDeoLkG1PD+S83RZCRVaa3qtElj0fgq13
CKQEbcPPNyF3Xda2K7jiS1UUKDh1I8d5NReq3vGmGKNDrgPIRYsnZE12elJG
6VNho8j6kuveq129QE3+NngzhXxiw+IZjT0nqF7IF59Drs/TzcXs9lLNsY4X
F5Cbzmcaaz8lybKT24b/Oe7ixh877h8hn0We9Jr/F2/O/tfrElzJX64v8Zl/
/U8Sldx1/jJZ+daiewI5bauDTl7iNbK4V/TZIPLAppftxrdukifdRWO+I69e
v+JmtZs/GZW7LartXzyGl9Ws7ILJlbo1me+Qm2OcnYfwUBIT828pQ/5zL6os
T/oOebojaGkWsuTdSlF3wQgyKuzTmdh//bsz7kguiiTbUy90+iJb31Yo5p26
Rz5f4mDvgnwpeIdQza9osnLlk5m9//Ljm1lo1RxHblphe04eufVGG7/M2wek
o0jzjkXIHsCbM/T5IclbTZl+RfMhbp02b37TI5L74WKXOGQNoy1ZUnWJZOpZ
j5SLyGUGdtbu1Umk3Rnvie3IXfohmWRZMqmy2/XjNJqfp/Ue73lUlEJ+iz59
7B3yvG4JFyM3lZynlIXjkWW1B6xqUtLJxtPcyQSyrdqmOauwLLJgVfy3fej9
MIpKDvnzMJt0qfYelkIW8F4kvNU6h8xiiZZ+QO/bj99HEn4fe0pyijyjTJEf
vcYrNP1ySat1b/fzo/czdKYpmFsoj1S8tf50IXq/r2r57G6MzCMFipdssEc+
EPe991xyPrl0D59WFqoH4heS+QpfF5IvnA/Kq6N6wZOxp9HPoog8unKrSdUf
Aoa7mbHWH4tIo+MObFvkd1uPqU1/e05OBgdq+6N65Isrb1/HW0J675s5QaF6
NvvDqsZenibv7HC+VD5EwBjvEw0zB5o0yhB+y0EekGOEa6fR5F4x7p7MQTQe
u/MPLNJ6SRpp2RwK+U1A/kuJ30nolJXU4hWi96/eRjcL9dtWkCZp8lzLewlw
yNM4X59YQT78sy7j9HcCDtb5thb1VZDCzxxWUN8IMGfoJwSceU12FcXt3feV
AGXXe9qqXpXkjSFjlXPdBHz5z3r36fg3pEht9RmjNgKMv3vYv+t8Qx59Fpx6
+ROqN9cTTqmtqCZfxL4az2slwPLFgM9AbDVp93bbG3YLAeWqngWO0TVkq4Wx
/fAHlH/BR1K2EbXk7uzVfirvUD0ZmPiltLGePHwcl1dH66MdBzvXcrSeTCd+
a6iXEhDiK/PX92Y96VYuvVe1BOVDgWT0vqon29bHTsq/QM874L8iyaSBdGzd
dG0Krbdi72S2rYRG0vbX7A8ztF6PZ5PZSw2byB3yAgw/tP7XqhqKuhxqIj89
+WWhGY32Iyl6F6q8mkjLdaWOLWj/YPlA3dCtool8ZlzCJ3eXgKchy6o+WHwk
1afWroy4jfJ7arIrxK6Z/NL+3w+JmwT0rc4WZPi2kiJ+67rcT6D5npzuejC1
lZy9lzLSdZyASIXkptyaVjLQNqEHnAhAdTTmsNAn0veWvO38UQKS+IIU6ahP
pOkKnzpbG9T/fkfjKxltpGqx3d+SHaj+P5Y9PVLfQTLvRf3+qkNAATPTMnW0
g7QJcHVeoo3Ww2OEvq14J/kmcHm/riYBW1WsuN7t7SR3VE30eaqheDID7qR2
dZLxbmuwKZyAhNzxAttfXeQDNXu4JUFAnt33hd4b3aS/cOA+coIDV04X/7f7
QQ85zCO+oSeLAybkxFHB7B5SNfn3vqJMtL8UXnO9qqyHtKtb3xSczoGop4+e
E109ZGvw2QnNZA4UjAesll3xlfSzeT7lEMeBUXdrgb6Yr2SEhbH7jSAOOPtN
1F2K/EYecrLihKL9s/XDNXvv3+oly2ty9wgv5YCjXzXP5/oBMshZVoB3vz68
uqmqGvx2kCxJrKAf3tEDG5Hv5eL7RkinBg2V6NK1MGZQZfzFbYzcaT02fbFS
F7LPLPl72GWCbDca+BXbpAO8Xr3XD0dMkrV9+b4eldpwPXrVFqmIv2R8gu6P
sUotMOf1UqkImCGbsgKVTd9pQtaWU62DaXPkUZezaZ5+a4ATQ71+/3iBTAoV
df+Spg5ZhxtBspcLFLn0jVJoVXBcaaW6fpwbOK3mUpaM1fDsKyt/0zAPcKVm
CSbdVgYzcYZiEDcveMg2bM1QU4JVDRsf+TF4IaLLNq1fSQlmb/nK3uTjhYrt
lnoq6Dz2hIVJeYrwgnj00t5caSUQnlmMnZHnBd/o6dIhphJ8/CI8YLmeF0wa
xi15ehTBLnt5lsx1XtAQ8GfGxiiCm5muXjoXAwQOawS1SCjC0IaUR3d4GcAf
Ge89J6IITutkhK5gDHCSn6lVROfHA5pc/ebCDAg8pWBzA50vQbI2+rccA+wT
44KOTrKBv+fInCbJgPDGTR1Vn9jw8HJ4RaEnAxh+JmeXJrBB+hxT6+F1BkwX
il5Nj2PDnZOX4/x9GICtCpsiY9jgY2vrtu8WA5KC24wuhLPBeaOq8sx9Bhgu
GEvz+bJBV+RVkHEJA7am3P3QfIIN1amjlq+nGXD1vUm+kAEbpqp4inkWGCAr
NMGu12ODYp/oKljEhLOFraUROmzwZuuMveBnAv6syXG1OhuMHp0Lz1nOBF3e
lwV+K9mQEzv+IdaYCeWhD8X4MTZEhfyxOuvNBI1GqycGbThUPmGWZvsywbPv
Rfb1FhwmaiXZvwOZUHBVary2CQdLfv2JY+FMmNtWutGlDgcB/4t3DyWh9lSL
5AcqcLh2ferjf5VMaNpmZ5eRg4PT+ek9cotZAHo9rU5BODw54KciLsgCUkns
pU0ADqMm4rOYKAuigs+4WvvhcEVEI2FUmgUSzUlqe2/gEJJl//O1Cgu0LybJ
eF/BIb//jdfJLSx4HMwgQ07iMF2329LeggX6TpZfaWccjAt78D07WaCetHnv
pBMOb3xmq8l9LLD/+SP7jAMOHQqa4mLHWbDGUFgzxAYHnkP3Up/7s6Bnfd8b
7504bDbFr2QFs+Bu2KqY0e04BKs+tUgMZYFRROR6x204SEzXjAZHoXi9EsX3
meOgfG/eyC6VBRbjhR9PbsRhW4NDA/MNCzLLnohZGOAQXjSaOPOWBRorC89N
c3BofeDlNlzHgk277mZn6ONgfzp6WVsLC34US5ZIr8XhPP87hyd9LBiP6NXE
NXGI3ag7vYuFwXULp9pRRRzSn+y9V8aPwWJYLFfGxqFI4oquijAGApu9NoXg
ODR/f3l6fikGat67JNYp4CDsu/1r6moM2p87lTStwEFu8Ow1sTUYcGW4UpXL
cdDYE7niqg4G2cZ8MaXLcDBX7Ny7ywgDGSHFlufSOPhWOtfOWaD/D92+/EsC
h7saIcedLDEY/ha2noGcFPmU+WEPBv7RXl8VxHF46TgFqbYYNBVrFpwUxWGW
6Ztv6YrBcuel8QZCOPCfSbMsvYCBO/HUyF0QB5mW2iEld9TeJt3CsiU46KeI
rZ7zxmBibQfsEcDh7OaE+JQI9DzLyEyKD4fr2RWGotEYcLae1lREDpXqb/WI
Q/kxqA8Lw9D86tMQs0zGIDTl+283Fg4l2y1zStIxEDIb6h9m4lBTeMFCKRuD
t8prys8g9/uV+M0WYtAf+lvIg4HD5NBn/FgJBpG2BTf5kJnWi8obaAx4Jra0
xvLisErZbDa5GoPVGbuX1y3CQTv0VLTIewwOagkscUGGqVA9j0YMVm5Z3CmB
bPOmxWVnOwayiVuWufDgcEpzZknJZwxeHy8NwJE9omQzFL9hUFXT2dLJjUMg
l8l/Yf0YvN9JM+4jRzs5fJ/5hYGW4GUxW+TUen9vxxEMsHAZbiXkAk6mXMME
Gv/J/PdjXDi8flhXYjiNweOm/R6vkZuwsX3J8xh0bJFafB/5q4vkpPAiPrCb
mrx4EXm0lYi4wuIDFwZWuReZa/0hrV5+PvglvXPcCFko7dr7HcJ8sPlwO48S
sqxI0olicT64EfJkROLf/cDlKkxRmg/0G2tpvn/3B18GHoeu4AO/b0YuPMj/
d78A/3+/8D94cxK9
       "]]},
     Annotation[#, "Charting`Private`Tag$67199#1"]& ]}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 10.000000000000066`},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->
   NCache[{{-Pi, Pi}, {10.000000000000066`, 
     25.999999064585374`}}, {{-3.141592653589793, 3.141592653589793}, {
    10.000000000000066`, 25.999999064585374`}}],
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.7342196638748903`*^9, 3.7342197097266197`*^9}, {
   3.7342198203836184`*^9, 3.7342198247068157`*^9}, {3.734219875151*^9, 
   3.734219942917346*^9}, 3.7342199787253923`*^9},
 CellLabel->"Out[97]=",ExpressionUUID->"20a8654a-797d-4e6c-b763-99591d7f6cbf"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Det", "[", 
  SuperscriptBox[
   RowBox[{"{", 
    RowBox[{
     RowBox[{"{", 
      RowBox[{"a", ",", "b"}], "}"}], ",", 
     RowBox[{"{", 
      RowBox[{"c", ",", "d"}], "}"}]}], "}"}], "2"], "]"}]], "Input",
 CellChangeTimes->{{3.734220246134494*^9, 3.7342202808213263`*^9}},
 CellLabel->
  "In[102]:=",ExpressionUUID->"c59d655e-6965-4c7a-9300-deac08b8d5f6"],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"-", 
    SuperscriptBox["b", "2"]}], " ", 
   SuperscriptBox["c", "2"]}], "+", 
  RowBox[{
   SuperscriptBox["a", "2"], " ", 
   SuperscriptBox["d", "2"]}]}]], "Output",
 CellChangeTimes->{{3.7342202541940527`*^9, 3.734220281205372*^9}},
 CellLabel->
  "Out[102]=",ExpressionUUID->"98d63f74-fe5a-4ae9-8ed0-5362fb6cba51"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Det", "[", 
    SuperscriptBox[
     RowBox[{"(", 
      RowBox[{
       RowBox[{"RotationMatrix", "[", "0", "]"}], ".", 
       RowBox[{"Inverse", "[", 
        RowBox[{"RotationMatrix", "[", "\[Theta]", "]"}], "]"}]}], ")"}], 
     RowBox[{"3", ";"}]], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]", ",", 
     RowBox[{"-", "\[Pi]"}], ",", "\[Pi]"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.734219630880183*^9, 3.7342197177293463`*^9}, {
   3.7342197779813137`*^9, 3.734219977972704*^9}, {3.734220074797818*^9, 
   3.734220075182467*^9}, {3.734220217886148*^9, 3.7342202334016027`*^9}, {
   3.7342202875034*^9, 3.734220293588852*^9}, {3.734220341598076*^9, 
   3.734220341739382*^9}, 
   3.734262761841463*^9},ExpressionUUID->"4fc9b904-b65e-406c-9d16-\
1ebafc7f92fc"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJw13Hc8Vf//AHDuNa7RMKKMNJCskCLU66Q0REbaKimjXUJFKDOjsrKzs5KR
nXEORSrlXjuRkXm599juNb/n83j8fv7xeD2u+z6v9+s9zvt5PO7dan3P3IbE
wcEhycXB8d9vw+NrDy1u5cMOr6wSPzjoFj2doGzmwyhWh5NHiFh569hbMQk+
bC8fV2AyEUu/PH9CVowPGx00KVch4rXsryx1YT7s0i+mZsAKDqvX96bBWj5s
2uPSQskyDhPU1FPG/HyYU9ivtSVLOPTqiXBe5OHDGu4rOvst4kDLeJ5jT+LD
0mDdnp0LONSITlx0XqFgvq1U0zgWDh+fXebzXqBgzMTHjb1zOKSMNxSHzFGw
baG1JXMzOISf072eMEXBPDmUhf5O4eDzJVPoA5OC/X3Z+i9iAgdntY3oJzoF
s+dJ0t7KxOEcZXZTWz8F8x5Pep01gsNxx2tf//2lYI6e0umZgzjo9NIcJzuJ
mPPoLZd+HKRKcxoFmynYlMukUsgfHNbISrtJNFKwjISLh9rbcVh5Haio8IOC
LUUZ7Mebif7Z2fsc+kzB5DbJir35QfSvuU3DDKVgfhC/YftXon9g0Hu5nIKx
F5K1vWpwSBXfputSQMEkIrg1PpXiYPf1z0ReCgW72qguxp1C5LvbML4qgYI9
yt5sJv8Wh2MJpScaYimYj7joKYlIHBQfvUkbDqNgQ51z/K4BODDlTSw3e1Ow
6CkBvm33cOgJreRTfkbBOPx/7+myw4G6olSy7ykFs+vYxb5hRdS3jSJ82pGC
nXeQLuUwI+rlW/M18DpxPX3VO5vViHym1JyirShY2eGihMc7iHwuJ2xLt6Rg
e++5XUvfTNRr71O3GgsKJiTaqOAliMPy4J7d7MMUbKZb6Y3WEBO8DTLjbeUo
2I1NpNtFIUzAAl1MZbZSsO/KKjucfJiwRDtB6pCiYPECA+VcT5jw8DLT5rgo
BUvGfM6EX2GC9aPdKspkCqZLM8ZcFZkAmZXlk728WML1uNSkEga44K/uZHXx
YqsnZj1cMxhQvMdK5loHL+ZYs1VhZzQDVGtIXi2NvFjkoBaLw4UBUn+OGpZU
8WL8X7seZu1jwIJgU8fTOF6sYPe/A/L547D3VErAniheLFNG3fFKwjg4RDvq
McN4MS1q+O4HL8dhVE488UogL7a2LCha5sY4dBywtNN34cWGBlN35G8eh+L7
Q7O853ixV7/ScqY8x+BBy4JwmAgvhj4oH7mlQYcIc5ML4et4MV6xT7QOaTpU
UFOS3gjwYhcvrJqr8NGB56eRWhSZF+MTSLZ/1TMKcbXxxm+nebDOtP6lfYGj
UF+s/yK9mQcr/+Da/uzvCGyODlguD+PBlCKtMlUfDcP3SxIjAyI8WOz+8dNj
3gNgkqAHC+t4sDduciL37wxAS+/liHWCPNiYygfl6dMD0H0t5bAOFw9Wm7jQ
NSs/ABM3lJNez3Bjb7lj1szX/wNx5wMXdFq5sdMTg95aa/7B9VfWDa8juLGS
c7vj5aL7YLTRe/u7UG5s+ePmNbKefXBXKN3l0ytujKKiw698qw8ehY8pDPpy
YzFtGusu7O+DgBhHH51H3Fh68niXVn8v5KX5Hhg8y41NlgxXHVHtheWqrDyd
TdzYZc2Q10Kp3dDQuUtwUZQbu6rXX6Pk3A1xc4V25eu5sT8xnt5Ox7pBTxXd
rEfhxmZ/zNFjGF3g8rY5aP88F2Z+RSD+kE4XzLku2SOtXBhtp8nNiu5OqIt8
/oWDxoVtjbi9X7WgE94U8GypbuDCxp31NnS96ATNsfXtB79wYZnJP34yNTvh
4QU5g0MFXFjTw9+c3MG/YUL75NYjIVzYtdqZyjfmHYBZND/lecmFvWu9OrVZ
uQNe3z/XUfeCC6tOcQjDuTtANcP69dFnXFhE+dMfNz61wx3xR8vH7nFhNX0n
Ylvk24E+m/D7hDEX1uuqniaytg0+CcntETzOhUngoy+vjreCv0pWcMNhoj/7
rCicP1pBwabwqLEeF7Y/L2itln8r2LbUF51U4sIunb3u9pqvFf59nAwx4+PC
XtUtj9+RaIE4ngXPC9xc2NuDjxLZq81w5gLJ8RonF7bbvQ1vHmyGek6RM05s
Mua5un3J6WMz5JhqSkSPkrFhlbpyF5NmsEvVE0geJGO4ftJRX61m2MI6vJTV
R8aCnfZ7/ZNphrCE038rfpOxQKV1T8Mnm+Ax0zm59xsZ+8mKNO6MagJ1fY+w
0Voylnvl0z43ryagv/HznqomY4PZutGOd5vg0v4oW65PZCzjcuXiVYMm0A8q
U1TIImOPHQ14kXkaCCoufbwXQMbqrqBphrdoUOvGlfrYl4zlKC2ln7tIA3ea
4JvnnmSi/q8z0BM0mHws/SjMhYzVN76JjVahQdvXA7olN8mYy3n5dK9ZKgRL
HlXGbMlYxUwOv9UIFY7fM5H+Zk3GOuCBeuQfKlSIWa12XiBj8ep6wWKfqZBk
8/zziiEZU6utKrscQYULZf6FvEfJWGF9qp1YEBVE14S+W3+IjOle8zik6EkF
38Jkv226ZOxsR5qM3T0qIJT3j5W0yNh5iY83gm2pwL5YcENzNxnTTFRxErtM
hdvkLyeOKJGxu40nLPadpILc2QY9kx1kzPfhMdu2I1T4m9Wicm47GVu6aF9M
BSpErXRtvipDxu5rGVgp7KOCmfngupuSZEyxgc+9W4MK/GkMjofiZEwv5IHC
hDIVvrBnJ11FyNgJ43pnqx1U2JvE0/JSgIzRNQ6eviBNBZ3GB98O8pKxJ8d0
P7zYSIUDy11VsyQydlLS6JKcKBX0lY4VZq6QsKKVwidq66lw5HxB5qUFEuYU
VCaaJUgFQ7/NCUJzJOySacKBUD4qnCzyD6+dJGFH3D5wj/JQwfzfjP8TBgnj
fa/snMNFhbNCVh4qoyRs+K1tTD+JCpbww7FvgISRxdNcfDipYHVn7803vSRs
bc5e6UgOKlyPTbpyvIuEnSy87itOxPbfBE8vt5Owsi1upTxEfHv+kWF+Mwm7
4vOz4DoR35f7BzaNJIy+JtVZnWjP8dTJPZt+kLBYP5Pl28T1Hj8vU/xZR8I0
HWT0xYl8nubKbnleQ7QvcX2/GpHvs+7XG/ZUkbBPFXcHSyhU8BZY5B8tI2Hn
C0JUcwSo8GKfLcfbIhI2krVFQGQdFYLsaLOm+SRMtv/+rSFhYn690Rvj+kDC
lB1+71cQp0L45/Te0gwSNplQcLdDkhi/SeG226kkbGzvxZG5LVSIk3H/sSWR
hEkwVMO85KmQaDyKtcSSsNnG4NPuxPiluloUv4gkYb8+DYkME+ObkYm+1wsj
2m+Lyaskxj+7XTFp4hUJO7FFSpB0kAp53BERqQEkbHrlL1fhMSqUXb39XNCT
RNxPNx2wOk+FqtftzpgbCesXiVW/YE2Fmkr9245PSNh1cFCovkWF75s2ne26
T8IuPw++3+pBhV9HvY2CbxP18dlh4xlAhSYn/OBhexJ2YaQoJfYNFTpptcrZ
V0gY4O27hD8Q83VVbZvVRRKGf5ISuldGhX6VOHHRsyTs2s7Ka1p1VKD7O5Ce
niRhb59L3ePro8LCQZmOE/tJ2G7RZLVsSRqs3Av4uapNjF9kZsUlJRqQ4mdr
CjRJmL7VluzHujTgX/jxQVKZhO3kEg8YtaSB5MfHXmMSJGyXnVNmTioN9LY1
qQayOLFOgftBrkebIFFEQPPUDCcWdCFZXvNSE5C5D++TnODEsmvvcBk/bILv
w0WH3g9zYi/T+lbfJjbBuQ/R5360cWK9R7435K82gaP2VU+BIk5sl4CgqH5j
M3TsjPFrzuPEOKUD9/2kN4OuZHNQbDYndmNtfFk+TwuQVg5HKqVyYm7SQe3e
0ALBnxWyT4RxYgbG3REGRS2QfXKiNfABJ5bDdTesIq8V1iM7/5y6w4n9UiEN
JtBa4aG6da/kDU7M+pWCZMtUK+iIttDfW3Fi7jntA8p726D+d8nqDxNObGdf
+53XWBsMXPfYKajKiek+5R5+/a8dpFzXugXRObCfvaHP5y91wo3U7+Jvhzgw
kqZ9J9O7E4p/+n780M+Bke9fvyaR3QlmW1aHf3VyYKuirmkCi53gW4ubC/3g
wGSXQxWPxP4BfB1NIeI9B1YklusbOtAFNalhLQm3ObA6qwZfmYgeoMapn7Pt
XkW/NizFzaT3A0fqvYjullW0XRNJtq/uB7X3H1osGlZRPSXUrL+zH4LLdpod
Kl9Foz4/7RkgzhOmbVsNt0Svombp4ZwSjv+Auk5Yr9NiFZ3MqA/8iwwA1XNK
5mTDCrqrtikxqWMQOALULtd+XkFfntgdMTo5CGohd+P0ylfQN3bC+QoCQxCc
QN+olLWComJ1gQH7h8C0ol+I8mIFrfgueJKaNATU2SZyzaEVVFToohOH/TA0
2hcM7ylfRllXN3z9NzwCTT3zpgcKltG1riXCWcsj0HZG79OR98uol2NciKXI
KHQdrg06G7uMXmfuonkfGAX6lnb1J67L6C/KUc7fYaPA9XvBtUJ3GY3gaQw8
okMHneP66w9VLKHvEz3Slh6OwQHM98mJwiW00NHnTKbvGBzU+tF/KnsJLVsn
paQdPQbH5CyKrsctoVesZyUXK8fgNKftBd+nS2g/8kZ5Lc843C/zT/2mt4QG
b4btSsHjkLaTpm1auYgaeFPW3g5ggP2O/OpnRYuowmKGYHAUAxTlQgzzPyyi
zJdGTq/TGJCzxcxSOH4RVbTIy5WpYUCJOM2jxX0R3a5pvOHZPAPquWl155BF
tCDkd7foRSYEkPNN/LUX0Zx31Lx2WyYYcYZ0lKktotZnzP84ODCBtmRKl9i6
iH5+8tJX3Z8JndPUNd2ci2hjtK33j0ImjPVRLa5+XkB/r6BBJ7lwyOnJ6w4p
X0B9+Nbc8lqDw/3uYNuaggU0hve+3CsxHGY6TB9vT11Af8prvpNVwGGpkRo7
6L2A/mBq7zY/jkPVzzxZMbcFNFnynKkG4ZVnP4I/HHFaQOV4nx0dPocD91dT
NN1mAb25j8ekkfDO2ipq/40jC+hAbHdhuBfhn/K8WzEHFlAlu5LXGwkvhZYF
z3zfu4C6iWfduh+Mg1iRKY/yjgXU0b22LjYOh46Paq8tZRbQEJcX4veScYjJ
W7/xpfgC6hIZLSiWgYNMNnUnk3cB7auQevX3Iw79mXkfN3MsoDKzDyZXSwjf
pQfrmrDY6G7DrrSZChwUUkyN80bYaIsdT+XZOhzoiWptvb1sdKPYErv2Ow7Z
8euvCP1moxJ7Hh7kbcRBLYZ63+EbG9Uw+ZBLIrz5wsiZxMbYKIJXlAsQHu1d
kQz3KGWjphGXQ3r+4qCdXy3Hk8dG/Wyvy7gTfn19za4kKJ2Nlr57fXqY8O3Q
hjXHRRLY6GOeEFnJURwO1H/sjI5go/7jFPdN44QflVeW03yI+OfLWKdJHI70
pLxWcWOjN/YGHW2exiE+5PjWQkc2ant7wHhxFoe5Q/hHndts9HXlSCpjHgfj
ufDD1dfY6JY7XYey2ET/M3Tajl5ko1Wd09vUCe8vXei1+2XORmPeWeh6LuFg
scaXbWHIRjl+bPB7u0z0H1UK/HOQjXJXA6fXCg5cDjQp631s9FNQwzuNVRws
ZR/ljKix0cMt6Q+yibiwTQq5p8BGs8ZzrCeIWMC/hjYrw0aD/uU9WiFia137
a0/F2ai69928NiL+xFgzS1rHRvFzMWueELFwYoGvPw8b7U3vCB4krnfT/PzG
9SssNPoWqidFxDVcq5kRsyz0ydE2UWkiP4mSVF1pBgvtehQhPUL0x+GG4c+U
ARa6oeqmpdsCDt8kJy4rdrFQrmO57V0sHLb8ejOR18xCI8LyI3iI+jx+puup
9YOFrhrnJS3MEPNRo0+kqoaF1qv+4SybIubHoO+7w59YqM0v8+qDE8T8jlTW
+pHPQlmPFcbCGcR8PN5Ub5bJQp8uXQr8SCfmx9KjCx2JLJThMJgTM4yDX470
+OUoFnqSknTNeACHv1af3QZfE/lVWJd+78Vhr8iNdbf9WOjfzeMVwt3EfHhU
qPHEmYXGWlI2kVuJ+aB44cvqHRaaF/ct/D0Vh4iu1dO+Niw0piCHItOAg8HB
E0/CLFioUq2bkt1/zy/4+9EPGixUs/VYs3s2Mb4Vfmaaiiz0XFOFx/M0Ynzv
qfz7tJWFSr4O7zNJxIHc8pinfj0LvT4YtMc0jBift+uM+5nzaCn1tXW/MzE+
JkV/7Yfm0fNhSfMG94jxIV28j3fPo++TVvY5E+u5xjYtbKlhHkXLq07tP4vD
VrX9nWLv51E75wejNzRxMDIfjVBNmUd5+eTF25SIeju+OXUkdh4N5tj9Vmw7
Dr9KGQ1OgfPogc5K3Q1COLgcjEdbbs2jh896ZQqOMaHFfDU1VHkevWUY8447
kgmrju+vZsnOoy0vtzfWBzJBMfLs5hqpeXTV7nGN9TMmPPuTGzkpOI/+/mlW
JnmDCSrXrQJMGXOoXcAJZpo2E3ydqu+tzZlDGWKUHCMqA/Ij7yjLp82hkgtI
biix/3aVbRrdHz+Hnn8SHPSxkAEaKw+s77yaQzUixgqfEft3j++20w1351B5
y02NlpcZoB3lpROwaw7dZrwx6si/caB/MuDmyZ9FD5F4nYKbx+B9SMn3hxmz
aJ7J11AObAxu2+8M7kuYRQtc2iWMs8eAsWGNZOWrWdR77nLLU+8xmLjfouZ4
exY9G3iGjewegzn5a5b9O2bRWxv238gJoAMp7FlBVfwMWpOic+3X9lGQvFV+
9VHQNJqmh7bvERuCmPr6I2u8p9EvohIPTi8PgoR8m1KK6zTK/fC13u0BIu6b
mP11cxrVFu3d9vzjIGw8Kx8gf3wa9bewOWxxchBED4V8bOWeRl0t385w+AyA
oKQdWdNjCpUqjj33bLIfVr4Lv5t4MIn+VQ6prqvqAbMo+SLxm5PolYP5AYmh
PZBqo1N7wHoSdb2r9TnGtgcMOawHg8wn0T7zoh3Ta3sgYk++3M7dk2jZ3Tr5
I1f/gkqiSdrVmQnU12zOhWdNN1g6BaU3OU+gJbZSLEufTsjVTyxh351AM4KX
p59f7gTS+sKvW+wmUPOP123/aHVCRtaf4btnJ9CXu8mcqmO/YaZHUUFAm3j/
nfVbrC1+g9ibUDO/KRzd962o20u9Ax6CoMWNeSbaseCYckeiDQ4fQn2uDTFR
ikJd2mtWK4gddSi51MpEDQX3nCC3t0LpyQ4J8wLidfWg1r7wVli6lNqnc4+J
vv+4rBYk2greT/XuCQ4z0Kjn97aIyLbA6Wd4Ik8bAw23VFMI420Bee/kJo5a
BsrxcX/snTHC94GUvbPJDFRkxzV0d2EzrIltWeq+zEANuM8GCBs2Q0TZ7YDc
tnFUVvikxHO/JrCrlKnIrB1HudwzV3vuN4F2dRMjpXAcbcGLnydeaILOem2z
qNBxNHHtJsbRXU2wuYNr4/OT4+jGxZ55nW4a4H9KjrvuH0eTO8pt8r/RAOu5
6eqkPI5KCuraBBXTwHqY+vcG/zj6tFbY4UEIDdLn4t6Z142hIa/u/uQwosHj
BZN2o6IxdEFWrCeVOO8brpD4jqaOoQwJP+48wgPj3Ddu63qOoXNm47lLgjSo
5JOK3/NgDL3A7K06sEKFV2saG3dZjaExSm9ZIzgV1Dbs2S17YAydeKfOdG6h
AuemkeubVcZQTytj+YtfCc9IxUZslBpDT3oXPc/4RHhRlnNBcIGOZsn5+Hok
U6F0909stoiOak8fjZN9RLQn/vKYcBodvebrm7p4h/DYghFVNYKO6menv9tl
Q/iuuqHHzpmOJrEZkrkWVFj/LsjO25aODscpNhF/Ci9eGOGJZ4j2vz0ipxpQ
4ZFJw8rvvXTUhjf++DptKjA1gnzn5Olo/19KOE2dCrZiRmtFxOloETvty6QS
4Su2QMQuXjp6TzB16h7hxTPdP6SN5kfRT2vLdhttJbyGBb6zHx5FswaV4nyl
CK+nnlDxaR9F60UaD8gQvq/yEyhK+jqK/rzLqSJG+H7vrR96VSWj6K4/H5xv
Eb7PORn4pTN9FNVdc0JRZg0V5DVOGM1HjqKbTf9YqPNTIX6DQIvIi1E01nyc
M5mXCmLs7xfVHo+iluwI3QfcRP27Av4Z2Y+ie7U8+BPIVODBDG/dODeK8ow1
OykR/nZP4Z/2OTaK3vl80kuM8Pms73eXZO1RdLuCppbVf56/GUBCFUbRAztP
hVOIeMDYMODPxlGUw5E7bh0RW6rzC7MoxPWNd510IuIW0e/RouwR4v4KmfuI
9oxY/lvVR0fQyepdWZbE9b78OZ5p/HsElVv1MvpL5KOH8qnf/DaC0lROBFQR
+RYmfyv1LRtBN3PJWC4T/VH29UdSMkdQloJsWQzR39Qbx+vR6BF0+Qx/ZARR
DyljPtMu/xFUwUeQPkHUK1ztWzvryQh6eMNkaiZRT0FR/ysbbo6gAhT+Moyo
t/f8sWH1CyOotNYesb3SVHhYVT93U2cEfXx/7pruDsLDSS/c/RRH0PTP3Co/
CO9b+xzjSZUYQcefSUyUEt43N6rf0L0wjF6aOsOdA4TPd714y6YPozrh1rJF
R6igL3JMTuzPMLrDQK9900kqaHR+1TQpH0Y/++t7Ll6iQlalX8Wt98Po/uPf
dR/bUmFb0tHDL2KHUTfbdgHze1QQsv96qtp1GF3vf8daypOYnyf8/nTfGkb9
bnTECwZRgWPX0WsLF4fRh54vL52PoMLEbJ3Dbr1h1EdwpJI3mwr2v30XTJSH
0UfGFP4bJVTorTjieVtqGO0quaEi/5kKVK+6kHdLQyg3pykU/KFCrlBdnnjl
ENqOXJIXEaKB+WUhw973QyjfJj8zzy00mMuy/JcRM4SKZ+69dVGN8Pzh6Q06
j4dQN8l0fUMzGtQ7b3G13D2E2tiEk4SjaHDr8y1RuW1DKFlQQa0+iwZr15d8
YKwfQkXO9vwYrKSBRaZxrztzEB2zrxg9PUiD3j8uBkmZg6hFzt7YVe0m8FKo
+3sjahC9byeyffhkE8g7CT3W8BtE7XmXtuy2aYLbazOyPl8fRM9OifTOhTYB
C2ldNyQziFqbWOVsnW4CobRdnYoRA6hYoNSvxNpmKJxyeTjtPYDWLT+zi+1r
hnNQJ1jxcACNPD+kMr3cDPEdlmBsNoDivCyNUq0WUBQISL0nOIDGLpSf989t
Af37A3cLPf+h+tU/IxtyW+GhTjT5wL1+NHXjR8hgtkN4uGTXmcv9qIyRGd1Z
tAMKmW8L7xn3o6/uDKQF6XTAXHKyTZJSP6oZHp0d4NcBjwWyv3KN9KF1XQLc
VbK/wb2rKvCHVR/6Qmi03/ZWJ7xwHxA5b96L8kbaHsyV7QYdnyvHRm52oW0T
kVs/vewD3H7ptceLFtQ3t7Bt1XYYWnLU15+0bUH3VHoXv/YYhk8ztsFSh1vQ
KZs9ceuihsH7GS24bLUZ/f17sqy7fhgkotJCpp2bUbWRStH0nSNw+KtpmJ1N
E+rDFqe8IrwdJfcuwkSfihqJczpXmdHB7Van2OYtVFTlazWPmx0daq1lVH8v
NqKRV36c3exGhwsuM6oiDxtRs7cSebwZdPDJjFfzu/oL5f9l8vLmEh06ead3
3zvQgCb6HbwlnTAGXl9idYD1FdUhPY3/9G0cRn7tC7Mp/YpK689yz/8eh5O/
28cCH39F9b6u7FpPHwcJpsjbDlYdmjY++aOdjwF54kGrD9i16IE7nw8VHWVA
982nX1IXPqNbZ21FHCsYoO8kIf3j02fUdqGt5cp3BmR4lDpNunxGY48Uxsp2
MMAxfEb+wGINevTI2iva0wzgr7rt375Yjb6Ymf3nuYMJd7d9ihNdQNHuH9G7
Hr1gwj6tOeOrLii6qYFzsjOMCVxGGqsfFqrQNUZ5b0QTmBDrlHX16GIl6r+2
ro1SxIT6+hh5l6Vy9NkdEfeJv0wI625rr3tajp7nvxS7MsKEy1PC/iLLn1C9
oLljfVNMmJUMHMteLkPnHM+XbufBYds917yelRK0WLX0S5QiDgyvkqvKHiVo
V1SK3tHdOJRGTQs/WS1Gd9/cIv1NFweTmltOwhzFqKY1d8gRIxyebrDUMeAs
RGUt11bI3sLhqGLUWMjzAjRDC8ZuOhDnd2iJ+8tZgPpdSvLzeoJDpr3R6iPS
R/RizodIJT8c2sr1vmSR89Ag60JFC8IHUk+s/04J5qKbNvuPryH8EORyQjNY
OAe1zsuVjH2Pwy036d7v0tmodHfqnV3FOHS68+y13/4efaHFsttbjoPhMzyQ
e2cWGuaV7r4ew0HRq1oL0cxAjzd7luz/RvjdO+tl9750lCczpDj4Jw78vmH/
XCANrYmpCSymER5/YfO6yDAV1fhQ/sTlNw4XAk4OmpumoNniPx03El76Hqil
O3E6GT2YEsbvT3gq8xXfsOLVRJQ9e7SpbwgHjS2DT4J/xqP+0eNj3whfC28v
kfvREYeucyy85034ekrOn8Y9EIMW56meEsJxoClcdEPwKLRyfXTQfcLbeUoq
O10XItD69b3CyYS3g1VXW4q436D5Agnd7whv31enPZtYH4ZGXNgy6Ep40lQz
RVlJKgS94HBpmyzh7St36Xk/Tr5CPVdWXsUTHt3s+Ipy0CYAjWFbyo0RXv37
RMOq2NUXfV3j3stHePatR1uJUqgnKq0mWbFAxKX8s5v1zdzQr4lRhZWEf7XE
9v9SdndCyXxrvpoTXr51iH9R9cwtVHpl/2QZEVMLNQsoVmfRsqpE9WkibnHM
PqCRD7Bu3wW///z99pHBqGncNahYA1N/iNg070Lt/qQHUBnc7BBIxLRUYbFT
jk/A9OsJ/jVEnGlks7sw5RnYXwv8ZEVcn36k+s+Bl95wrULO15fIT/GgtPc3
5xewr/bSffclIh/dJ8oWVkEgzCHvdozoX1vMzZu4bDCs3N2SP0DUYy4yqqpw
Uyjc9IwXOkV4XOxNnbDL2nDI4UpKDZsj+hc6YwvkCJAid9xPIzx+7vW2ci5W
JJwpTHYLJDz+OMh03ffxaDCwXNesT3i81De7xKLtLbTIObgqjBEe9+oUkPiR
AN5MZt+ZEWI9IFx5eE8i6OdLlJ4dJPq/X4OrqCUZNC8L9FP/4qCqdzxHvDEF
ZNK/nTz+B4cqHatzLt9Sgf/Yzkvh7cT4aL3Khqo02GS8Nyq5EYe7e9+dSS5N
h8Zfx//Z/MBhRbOCg7sgA8zufRdcqiPGV4Nu8T09C46+NoKkSmL8lY8sW4Tk
QKpHsBwtAwe9qLRXc4m5YPJluTkvGQdBT/J6o3N5cO6asZRlHA6jjGtJDLt8
+Nzpz9jwGofkWtkvan4F4JkfSd9ErN/gxZYgznWFUPALLTt/Ewd3dZ/TTRGF
cCrfc4utNQ4X3w4OPUwrAqNvi4cHzXAQdUrjK6ktgbZewTXPVXEgvT/T5Gdc
CvLy5OKdcjhM9PLEnmsthZDPO1QTJXH4aWSnvDBQBmaZmdrzvDj4yiqY7Oeq
gGT5W4nmxH62NGrx/epWDK5dbukbec6Eaa4PqoY2GFypyfb1dmICXYY7TCMT
A73BfKFJeyZ0nC66SFavhhVSQuV+EyYUVW9gpCI1oHDBs+n9JmK/jW5bN3Ll
C6TPlNWsT2OATaGqIzXlC4w0d0u1RzDAstG3o3T4C8SdWjjq4MeAE9xaSf73
aiHKWnGHgj0DFB5Eaih51MGVis8/o3cwoO/YudN34+th6Zf70db4cTgw+PTq
z+560BDKPqT3ahxinifdUZb+Bs6Geh+fu42D+Se6Dz32G5ibOjEyLo5DjZJb
sW30dzi/bdfO+2LjkLw2WfxKeAMUtGmVS/uOgQZ9dnwH4YS7Pj+WGCZ0mMmF
3I26LbDngrG7Z/wwdL7bfHeS2gVS/0pukw71QTFPtnnGVBdUbzXddVOxD8Ls
9mldEe0GcbWXfn+F+sBopwXHz7Pd4Kj/PpvZ2wtV2f6hGX+7Yfnp1bRSj15I
KpgpvjL+F0hPdBuTn/VAodXg6pBXL6SKdScwErtgm5CyQ014L+yPnxR1d+yC
4GqHgbfvesExOLPh4LEuuLON45vF1154971K1HbiD8gPSITW8PfB2L0zx7UO
/YEoO1PZ+JA+sPpdoZoy/Rtc75YfO53QDwaerLYk73bQh9nra3P74Wz7Wd3H
1u3Av37X869V/XDLfvznK6QdovKTy/b97Qdl2YIX7sttUDzjr7hZ+h/QpUNu
Oru0wZTLOcHhmH/wr70N9jxvhU8nQhUSs/7BFe+DVcevtcJzqYbD5z/9g03j
d7emGbTC+ipw+/H7H9R1My5rC7SCKucOZu7GAbAy5Jj/Fd0CN/1mGx9HDMDU
7fjpbcT5TuPcrnH1tAE48y+CPfK+GdgKNyhjRQPgLO7tsxzaDC++dyGXWgfg
kLporoh1M6St+ZJ/UHQQvlXOeK+Qm+Hu3+WfC9sHYcGtakWf0QR7crXoBbsH
wXVq5G9HWxN8MX2/Tf7UIORcfqS0kNUEfWGhYfyhg1DrXisjdbYJMq435H5O
GgTjT/dXZ/Sb4P4enoan+YNQknyqfSvh8ZW2J1w4dRD0Mr8nPqY0gZTEVafm
dUNw8bJZ1jaUBgP0mJAgmSFQ5bC5nvKBBu/LWz4Y7BqC+9qPzrrE0UDn0rGh
kpNDsHn0zoSSKw3OJe46G/dyCM6aaf9J1aPBDO/fq5nxQ5Dll0JPVqZB8L2g
28W5QxBbXpZFkabBtwOjz6m0Ieh6E3JGcJXwa1pkUHf/EMj5BHzPmqACae2R
SPr0EGyKjlnN76eCTndyNpfYMITf5spcJDzedtisRGjHMJBKiiMOlFPBIXu1
erP2MKSJ7tIey6HCe1fLdu0Lw6Dv8cLRM5LwmIQY6Q6xDr4KcT/NITxe+vyL
oEsucS5NVKw6fJ0KFqMO4n7YMJyxUYcjF6nwsrRROal/GG732icEGlJBcYu7
Vs70MPQdjfreqE+FOj9l/XKuEehkpDZ46FJh5Yz/2Vb5EfggcaJjuyoVYqq0
rPu1RuDM4/DNGxUIP8sP3caPjcCFnE1Fj7dRoell+KOl8yOg+dqmyIDw3t1Z
fU++WyOw+b6YlgfhQf5Lk0FiT0fgb2W3yX//X0/7khC5/eUI7IvxENEmPKmv
fDJZLX4ENDybwkoEqdATtpS9P3cE+peqelP4qPB0MavEEBsBi1NAWeahwsZr
52vO0kZgxfSK2GcuwrPfeX9e7x8BlqDehjnCv6Yaxe0PpkdAoYK8JoLw8Xj0
9X53rlFgBM6SUwg/v+AUYQRuGIU5n6srUkQse6N6Pkp+FDyeZqyQiRij3iOl
aY2Cz6ou97n//K29eU3BsVFgXohfv4loj5XQII6dHwXJt9bSR4nrhfO6bvt5
cxR805Tl+wlvq9/bqdLpOgqa+vnb6YS3f7W1aw0HjUL5kWLBKxQq3Dzgqz/z
dhQMMOE2RIAKPGmaxpy5o8S5Kdfh9VoqJK/5d3YtNgp7/XyaDYWpcMApxFqS
NgqJ40nDDmJU6CS2HIX+UTjwYlscryQVnA8zH+2ZHoUPm7S7KFuoIJId56nP
RYf24/IhznJUyBM58dJkAx3khQ8nmypRwciVHWkpT4cY5aWZCHXC64ZnPjgf
owOr58SYHeHtLR+5Sr3O02G7xBbTKcLbFZsKaoJv0oGfh+/JCOHt2ZF1HVlB
dOI+4eMtbkWFUNOq/pK3dNgdQNlkeoMKqqW3GV9y6MS+7NU67UCsB79vpB4q
HQJlTm546kfUc92tkm+9dHCghDxJCaGCWaTg7cIJOixln4rfEUcFvXSTVv/1
xH3AwPa5wUcqCH9tTdc0HQNqkFRdE7F+KCaPLGWsxsC+tN70D06F5baNQvz3
x0DmxIo8LFNhZOiiS8/rMTheFdUrvokGlTz9RgGNY7BHt/ca72kafHzlxenU
MwbK1zaoDVynQYaYXPEVfAxgJPCxhBMNQuXtZfasGweWvsLT0Aga2B9hTvac
HIfwhWdTGd00EPVdiNjzaxzWVp06ova0CfjXxp3Y8nccznA5fPEKaYLVN/s5
BJjjcPj8z43K6U1Af/fsRu8aBgg2r449aW4CrJZHL9CYAWXWLf4cas1wm1uk
r7eBAWK8vzrsWM1g/bLwzY8uBgwkK5V1C7fA2Q1nDIvHGZCbb+mSrEJ4WS66
IFCQCXaSCnNi11tgo4GM714jJow/PDeR0NICn72VlIJ+MOGSy9LUr8+toLP6
JlH+DxNsrpz8YNXfCh+fcIhV05nAy51rpsXZBsl3Wznm+IhzUuRZz3xoA89z
Hm1XjuEwkPTrbgPaRqzP5ue7a3EYDv0eqtbQDr039t++c2UCRJS6PbYKd4JU
+lSajt0E7OdJc7ug3QnnBtL7eO9NwLIxefjr5U6gXhY+m+w+Af/2L37cn90J
2Knhg+1vJ2DSrZjkc/wPJOwPET/YNQH6nIdzV4K64LLQYI3o+Ukw3XafZLm7
B7hiWmYCr05Cyc+p/fnWPZC17Ys8+eYk7Dhotk4ltAfmd6cETLpMAuqss+XN
ZA8En7lq/ituEo6IW33lPd8Ln2O7+/x6JyEptnb7Y6k+UJBv41i0m4J/lIQx
lex+mNb5eqDPeRrsFEs7zNsGoe5UnsFX92kgWz2qLWMMQtTtaKMPvtPQqrhR
ZRP3EByIv3XhScQ02FPCObDdQxDAud5ZqHgaiieC61OCh2Bb/bkPB2enIeeC
SavjsWEwO02XTH44A4te8X0/P4yA7N3mbS9cZ6A2dk12xOcRmPOt2HnXawbM
QyT/Gf0egbjSV1o6YTPgo1Rx+Bmxb41I7j7V9HEGHGnr09jEvvOs3zWANDUD
wzHe15kcdMi9t4ZtfX8WTocXlH3QG4PxZrX5qcezIKdgHCFhNgaK2hazns9n
wXsfc8zGZgxSOWInk0NnIdhj9FXEyzGICVGg9xfOwkeOoJzTXWPgXXDojzV7
Fvbsxg4sOxDnNXG731Occ2DMM/Nwh884rLoGtHvyz8GllKR4xchxcDlMa06W
nAMLaXbAp0/jcK/1ckP//jnIqj46OL86Dhfmn1Rae87B5UUP9VRPBkRefFs+
FTAHCtkfkrVDGdCCYmWeYXNQ5W+vnZTEAJMXvMXJqXPwZt9ACQNlwOFNb3L6
6+aguZL/2e0FBni6lWY7NBJxur5/DIUJaN+fLFLHHHC6h0XFiDFBJ2tb+rbR
OWhil3xbp8GEXbp5CdYC8zDstzPtqy0Tbic0v50SmQfVngB+j4dMyCLPx3pK
zcPK6t5AnmdMkG3YH5WsMg9HVNKWvKOYIHHpR3C/yTwIhVBf7fvKBC6PoefW
4fPgzVNVf4o4z999SD59NW4echkzp8xlCR/ZbVGwSp0Hg2bKRVkVHLJNL/y6
VDgPonu8TPUP4GCx7ZfE+ZZ5kLemKFpfJjwkNsY42zUPgtlhvSwbHBQEKNVn
BuZhQS9X0PoODkvTB+0sZuahoKPb5L0rDim1RQUmoiwYz+J1EIsg1u2nJt+T
UixIZwli+wnfOOfg541lWTAg2Zi1l/CPYeROjhOaLBDZTJuP+4BDYeCR5uN6
LJDb76PMX0B46tm1tGOHWbBs15N8rJTwuv1boyMWLKgyd+DcV4OD5aVPMgaW
LNhzaraaTvirzqx96tB1Fhz0KHC8Q/gsRkco+qAjC0owvxuDzThw7VK9jTxl
wUPOev9Ownd3t58A8GbBsxNR5xIJ/+kL+gzqhbNARuFi3dt+oj4cyaW6cSx4
dcjqeCvhR7HZqkCdVBZ4j0oc6iZ8+Wz0z+V92SxYrLubXkT4k97NUtcuZMGJ
tOWbl5lEPZs2cGtVsCAsbodXO+HVqjqNjj1fWHBHU2BoyzRRz3KT95oNLJB8
4xOgM4tDaO5t990tLDiZrmEvO0/UN8XfTKOLBdf33nn0l/CybVSarPoAC3au
M8m3XyC8H/R5ftc4C25K5q/7THhb53nvd9UZFpxxUXrJIDye6rT8VmWJBRci
NsiNEF5fe1PigTIXGx5r+TZ/JDz/+LLWYSVBNuiFnXpjTHi/39xCXFGUDeTz
IvalRGx09AFdQYoNY+UShv89TyjWfVW5Q5YNJ5646/z3PGGL2vtgeWU2POsS
3vebiANk66/JabIhHL11xJuIZzYO7pXVY0P7i65rq8T1Lq8h8W8/zIZPco/D
DIm4nlOme6sRG6xJQh02RH4ac7p5WyzY4LGivceMyD+Ofs5LxpINM5cP5goS
/ePpcTqz+TobYip0TkSxcbjfHLpT+jYbeCdm1s4Q9er8mrsk6ciG+wsrHFvm
cDhc0dAo8ZQN2mNpClIzOOTkjSZv8mbDXA375cgkDs+jtx8XD2fDKclXe6bG
cVDmfbfEiGWD0Wb+P/vpxHpxlM/7ksIG41efqi4O46BqulPcoYAN3S4f76zt
w+F3Zdb3Y+VsCHytYpbSjYO3krK7zGc2hAwcSuHvJPLh2TXY0MQG96+7fpg2
4eDjmBeV0skGLVpe1a5fOKj1qxu59BPtJW637PuGg1+lZsGOKTbomn5sr8Bw
0HTUee4ptAA7jLV+nMnGoaevXPP8pgVY4TAg/0wj6m2yf2TX1gWo5vN5KpaE
Q68iYtKttgBCH/gCt7/B4WWfgbS26QL0Gr7JUCDWp7bJV+racwuQLjvhpOtI
3EcrjnkPXlkAhJF7ZBuxnnWiToyF3luArub1VreJ9T900qyM8WoB1uatRMwS
+0NIRdPtLxELkL3qk/B+Lw56ihZbYuMXQOZZV+ReVWL+cp/1O5azAJeO+3T+
kMIBKixPp/wk8hNLuDQ/z4SonfaT5wQXYeVVqoxDGhMORY6m7hJdBMk8p89+
sUxgct06xyO1CEO7/2Y5BjPBoPcOWqC0CFJuu/CWJ0yYinj4cu2JRegS6ZQo
NGTCCS6PnV/8FyH03mvLDYMMsKrUaTkcuggqiT5pwW0McHaec6+NWYSUGzlP
e74yIHnkTkvd+0W4Wz7SzspkAKvB0uPbz0XovJxcufU2A1Lf6LT+EloCY428
qwEj47AkP/fsd/QSrIuwUPr1eQyEe/OVLiQvwRnnCW7DvDHYEX2nrTNrCZbV
N25PiRsDc4FBpa7yJSjd3fKC6TgGGXhz29/uJRBnbfs7vX0MTpfmKw9sXQZt
PsknfE/pkHP8TgczcxlKt2hKkMVHYSJ027m/+cvwPmAX303OUdDoam//WbYM
Qf0NhyvHRqD4rn579rdlCAl0nN9JuAMNE2+7OboM8f+C8uXsR4DaXd08pLAC
RrzXo6cKh2H6gVjj3/QV4FBVJJkeHgLtGLT217tVMHuvlSF58h8MqObq2ees
gsWOx7yWmv8g5HN8AWfJKiS8ZYgkShCOH3dL0qxfBefOHev3DPdDHOi5xdBX
IUifKyzhWT88c7CUKBDnQFYOXjb5W9gHg+K/ae6WHMjvhBfBe+V7Qa/f9OUP
Kw4kw/7FTeqaXgjNrj+20YYDcb7MS2bTe+DAwVI0/w4HMqlZYCIR0ANRNyM/
DLhzIA9DTm3a9/0vGFae9jdM4kC49HVvZph3Q451EyI2xIHUrT3HoxjQCe9u
PB0/SedAUg0ex5+16oS4+/JRfkwOhN64NFy9txMC3F1w1hwHUnZR8aHJwG+w
idkW/4eXE2nJOnnDWv83SDU5LCbu5ESOOolu5RLoAJHfUum/VTgR1qbgfWaD
7cDfW2curMGJFMQ+XD+EtgOLIZHlpcOJuCwuhI46tUMz3+dztic4EVdybNuN
wTYIOChSrHSHEzmXef5WZ1MrPD9WefX6A04k8N2rUmZ+Kzw2sVvz1okTufuY
N9QipBVsL5VfX+vOiYxQTqqIm7XCwSfXRCZfcSJ1elde+hHnZVZewf3iPE7k
+a0V66CxZsBLLknhhZzIwV+0swuNzTBUxVu/o4wT0UA49GoKm6Gl4aJMdDUn
InNoqOiqRzPkjpB/uTZxItL+r03GNzaD7RYLpYMznEhJY1pTyKUmeIi7HFRn
cSLJ8LvvyPEmeFaVdHbrEify5dnmzaZ7miDWEvfi5CIhVhzK5lZrm4AaFdBV
LUJCynSf/PL4QoNuu/ypfHESkmVh7PT3Iw3oezsoyZIkhG51NDgsiQZcrXJ7
PLeTkINfPFVIz2iwT6j6pf5uEhL3SJmXhdDgSO9wioYWCXmSf+OCkAYNLHLX
ftqmS0J2KUpv8NpOg7vGlkOkQyTEP+tw0n1eGrhKeS1NHSEhLV2BPeNswstj
mcL/DEnIg2XG5Zpxwqf+8wc+m5OQAwwq4Rkq5J7bfLrgDAlJWbS4aPmV8OIO
g1spF4j8F1iNUeVUaK8NjfSyJiGtbz+4bXlHBUGS6sQhBxIiIvE85N5TKmyi
WfBoOpMQG8VDnfIPqSCf6Col60JChJ5G3t13kwoHD3w7xuVJQjyNyeQH56lw
cs3E5RkfErLPTvFwhBnhyS4xpwF/EtLB5jwlbkh42OV60pcQEiJtEGOkokcF
r+OBJYVvSIhb/Ik7NXuoELzx48/UaBKi1Pfya8EuKrwd7vgX/paEZJzqcuBU
pEJW8SrbO4mEcFka+byXpUKJj/x6p3ck5JziS5GPMlT4YmEsb5NJQpzth9U2
EP5u2u6od/oDCQFcD28hfN4zFWNukE9CjJ9TrkwSfh+vrrbfU0RCeAMvvb65
jgoLwSPucmUk5OjI8EtEkAq8VuvebKgkIeq5Y7YP+aggumvve+5qol4cBnJk
XipsXbGsnv1CQvC/dk04F+Hrn17tg/UkxILXynkfmQq6cVmM1gYS8r2FKt7L
SYVjt2jkOipRH7nZ8n8cVDitw9pU3ELU1yDB9jARW/PJqKV1kBCdfm0J0n+f
H+gwOBLRRcyf1Zr2/56HuKXftvTtJSHsqdb4cCIOcA5zcB4gIXL2SXduEO1H
GXx6YTtCjI/NOBJLosI70b74M+MkZOTsBlFFIr+P/3iLjkyQkHwF4b4NPFRw
7PhRFzhDQvpuKyiFU6ig9fN1B5VFQn5+ksn3ECDqUX2KvmGZhOzgzbTpWEvM
n2LxpQucZEQuzWtfPFE/9/d/1iRykxHxEDdJGlFfJDFBZpCPjBQXPmTdJ+pP
enNNXXEtGbE+Zl7utoUKtf47Dt0TJiMGqhuM5+WI+es+ZlEoRkYELevDu5Wo
YPgw15YtQUZ+G714pKZBhV+WWgFe28lI49BslCRCzA+zxdj6HWRkMXZ3VMFR
Kpw6gn5Yo0xGThknFJSYUKFj11FapCYZcbk8kUW+SoUYWYF/XdpkRHY9h/YJ
Yr5e2tQ4s3U/EX8LO7RCzOd+0tmN2QZkhMvTf3vaCyqkzksoTh4nXn9VFx0T
RgXb8b+6e0+Skd12BFniqTDWansFO0NGioSyS+eLqZDzXfEB90UyEu1yhP3m
MzFeKNPT8AoZKafd2hpPpcJMhnNaix0ZaWvp0R4bo8KKqy9j5DHRfqLA6wc7
aIDdN1xVcSPq9bJ9+zktGnjZrBV6+JyMzD4LD047SgOKSYTmsj8Z+SFdXffk
Bg2EtqW5CsWSkWPSQkKT+TRoEbv58kwCGRnrCOpeU0uDCAHVhNgUMtLfKr70
uoMGErNFNXLZZMRYYPhbDUcTyNbX8ulUkpG3/HS3jtNNMFThL+lRTUaknQUr
N9xugsx8Y5UvtWTkgdqMRZFnE6jGtpqe/EVGvnH2T2zKbwKtu4OR1j1k5Ov3
eNk7ws1gKMotH8jJhYwolmp3DDXDdppBsh83F7LZeitJjrMFll76bvbm40Lm
VYJ0qiVb4AMvRdxNiAuJ87cwHTJrgfWL/JR7W7mQKx8HNNqrW6C1bz3d/CAX
ckSUf3UitxWscqVyJJ5zIZTsjXfzq9th3+1LiuI+XMhp+qunFOL+JLwzPk3E
nwsJNf7uk0DpgM/JMgmCIVyISZaAeaBpB8hHbAteSeRChnMcpQ3/dcDYUwWH
fowLUWzoqv4n0gnOhpp7szi4kQH1937mb7sAP5SeHMrFjXhbql/Lq+sC+/0S
61wp3Mgf/88b9010wUU1jpET67kRoxKZyPpD3YCINUQzZLgRj9LnV3+Nd4NA
/7VlNeBGpO8qHRo26IHEJ2FfSty4ETOTNV59vH3wLWPKvHaBaP/oDzdt5j9g
fSWVk1a5keloueEM3gGQHxbejpB5EO97Iqqbtg6Ap9zu6U8CPIgl39XA+VMD
oJf8MCxPigfROvOdnFA2AHmxM82xB3gQr7z96/d4D0LUqzkLB08epMiay/+a
yDDUfeCpzPXlQaYzZO5PKw3DbIOYHCOAB9F+ekDM6fAwcV7TmrUL40Fe68Hw
CadhEHzx6M2lVB7kS/7uJN22YXj2nNV6rI4H8RAXe/0lfATsHRfOyPDzIrSA
ybIITjp8uOi3U3QtL1K3bbZfXIwOU/qiSxRhXoQkO6XzXJEOrkKqSVObeBGH
6VJtgVN0eJVzdax2Jy/yW8C/bjqZDkUj9R63j/MiCc3rDJv3j8FC42nzq8a8
iFDnSv1H0zE4UNIve8aMF/k82JjudG0M6n2WvsF5XoQu1Xsl9cUYdG1TExW5
wYuoOOz69ZY2BqRLkRllL3iRIqWUbzWXxuHoYVnXnCBehJ+8q6v47jgEKeUb
pwTzIkEkG9zfYxw2LHyfCoriRf4sstY3JI6DQuSKnlUGL4KeDVUp6xuHkzQb
Gk89L/LJLWZs1ZIBYaVTKYs/eBH5R9ymdbcY0JHg4TzRyItIX+xos3NhwNW7
0ZKd7bzIvOBhO91IBjgK/LT5MMyL1G/kcdzcyIBYA82FU7wUxC6sUOmdFhOy
PpyNrBKgIAUOWOcDAyaUbnDV3Lmegrxom38oeIoJbYPVd1c2UpD4cF/LrDtM
WO9r8i9DkYJ4vbjJ6ZnIBBmmwzORXRTE8N3DueJsJqieiZB2301BIk+J/S0p
JXwg3332lB4FaTPjiZOiMsG37mbDsjEFYfikZN1aYsIb1Vc37M0pSP+2ZO4F
HsLLEfk8zWcoyJi3WKy5EA7Vtiwk4wrx/q2x2VflCI/z+BaZP6Ag2qMO8lOG
OAjcyzSvdKIgKubn+X+ewkGivQHf4UJB3uze+PG+JQ5a6SKKy54UxEL1/Tsh
wlcOR5Pi08MpiFqn7peiQMKfuV90haMpSK1+im1TKA7B4iMdT99SEIX28Oji
aBw+DKuKmKdREP53qFIr4b0KE/O8iiwKsjtl1XDdBxy+lzgZ78ilII6vOlzW
F+Aw4lfht1RCQfL8jKLsqnCYx3tk7SooyBqD2JOVnwk/nyPX0DAKsnBxLO13
PQ7bFQyX0r5RkE9+rE4bwqcawXeihX5RkNT1O160tuGAsIL3Pm2iIMZVOi7/
fb7hcn37fbM/FASR4O/61o/DHbXFNRU9FMRSnSxvPoTD06jN7+UHKMjknOWN
xFHCpxz6x0JGKAi1mfWmkPB1tL3N4OI4Bbns0Bz3Cschg/rC03aSgrjxct9X
ncKhWDtbhjZL5B9RTQonvF6b2Fihu0BBNNTOH0cJz7dQps+nrRD5KGrvy2Ph
8O++2Px6Mh/y3GK43nYBh6mOfeGuvHyIoLzgRP8iDhwHL6kPCfAh94bs02WX
cViX+eyX6Xo+pIPaNaK0gsNmodRb5aJ8CK5+PZdFxMpPvlLkN/Eh559tnA/4
7/sX+ujvgqX5EOyeWmU/Ef/f9zMg///9DP8DjJRbMw==
       "]]},
     Annotation[#, "Charting`Private`Tag$70645#1"]& ]}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 0.25000050125848683`},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->
   NCache[{{-Pi, Pi}, {0.25000050125848683`, 
     0.9999999999999507}}, {{-3.141592653589793, 3.141592653589793}, {
    0.25000050125848683`, 0.9999999999999507}}],
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.7342196638748903`*^9, 3.7342197097266197`*^9}, {
   3.7342198203836184`*^9, 3.7342198247068157`*^9}, {3.734219875151*^9, 
   3.734219942917346*^9}, 3.7342199787253923`*^9, 3.734220076075754*^9, {
   3.7342202295513687`*^9, 3.7342202338172417`*^9}, 3.734220294690735*^9, 
   3.734220343155871*^9},
 CellLabel->
  "Out[104]=",ExpressionUUID->"409a9fc0-315c-4211-95bf-d93c8e697053"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Plot", "[", 
  RowBox[{
   RowBox[{"Total", "[", 
    SuperscriptBox[
     RowBox[{"Flatten", "[", 
      RowBox[{
       RowBox[{"Identity", "[", "2", "]"}], "-", 
       RowBox[{
        RowBox[{"RotationMatrix", "[", "0", "]"}], ".", 
        RowBox[{"Inverse", "[", 
         RowBox[{
          RowBox[{"{", 
           RowBox[{
            RowBox[{"{", 
             RowBox[{
              RowBox[{"-", "1"}], ",", "0"}], "}"}], ",", 
            RowBox[{"{", 
             RowBox[{"0", ",", 
              RowBox[{"-", "1"}]}], "}"}]}], "}"}], ".", 
          RowBox[{"RotationMatrix", "[", "\[Theta]", "]"}]}], "]"}]}]}], 
      "]"}], "2"], "]"}], ",", 
   RowBox[{"{", 
    RowBox[{"\[Theta]", ",", 
     RowBox[{"-", "\[Pi]"}], ",", "\[Pi]"}], "}"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.734219630880183*^9, 3.7342197177293463`*^9}, {
  3.7342197779813137`*^9, 3.734219977972704*^9}},
 CellLabel->"In[97]:=",ExpressionUUID->"b6ff0a95-3e62-4896-8924-31ba8f285cae"],

Cell[BoxData[
 GraphicsBox[{{{}, {}, 
    TagBox[
     {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
      1.], LineBox[CompressedData["
1:eJw12Xk0Vd/bAHDk3ntE5iEqonMNGTLFPch5kuobaZBKk6EiaaJBJVLKLBHJ
ECUyhzKW4ZwkImVIyJRUSGUWGX+7td73/nPXZ911z372s/d59t5ryx8+Y+nA
w8XF5cfNxfXv22yL4IYZeT6azfXvg4NhvscwJstHz39zH+VGVpP/GScpw0fj
eHU1C3nFrX3muCQf/XTnDx8RZMG/VVNaouh3oU+KcsgLR/WSSUE+2pH/bqYm
8nB90i6LxXx0DY+01CbkbiMx7gNMPlqYsnW0RW5IvZ7lxMNH20kdifFALhcf
PuA2j9Hbh5flxiE/u2bDd3Mao38aeueUIyf+qi0I+4PRyX+D7/xEjrA2PPpg
FKNP6WnvW8qNg09FmsiTQYxOFDjGuwXZTXMp9WIAoxWS5CI8ka2xCenmHoyu
/ttnN4q85fyRqq9dGC1r3h6nzYODQXfD+ZE2jJa8KU25IS8vyqoT+IDRgk46
WYsX4bAEX+EpU4fRN0R/XtmPPH87aLXyW4wOTXysnoXcfczJZ8MrjO5a0mBk
z4v696FZeyeF4tslGUMjl5Mbu22KMXqtNat9FQOHJCkFQ/dcjL4mGMT6g3ys
qn04JxGjcQ6BVbNQvDpm8WUPMFpdYdG1zRgO/z0oMq+NxWhrobi2auTVF+8m
94VjdO+yl/ptfDgMKm4/KHsTo4+rSIaoCODw+U4pn9o1jJ7882xpFXL9vGoh
4YHa92H5OC1B+W3GRHefx2iD9wRPoSDKl295VdBRjG6MMgz0FkHxjGpeiLbD
6Fu3JWRJURSPzQOFlIMYveG25Z0FZAM9D89yK4zeakssCxbHYe77Wp2/phj9
/Lht2gcpHG5uTIt3ZGN0T4lswHI5HOgg9x1y8hhtZXLDTG0lDrMN5jytyzG6
3WpzJMjjcM5m0GGLOEYfKcx567YKh8MXddTVFqH+doo8llbGgUwrLR7pZtF3
0qQqOdo4uA+FnErvYNEPV4YzwnRwKFhrJ3eklUUPSPRU/9bFQaOc50ZTHYsu
Unb+nKePxrN9s1lhGYsW3NevfXkdDtMCja0e91m0q2vwirYtOOjtSgxcG8Wi
nymlX3I3x+Fs9HmjwXAWve9sxU45Cxx+sKUe2gax6LWz/B5uO3BoNT54zMSd
RX+8diJx/17UvkvvBMsatbfz4Lu/Dji4Nk2Lhouh54s41tz2xSHScvv+CCEW
nbhTNjfaH4eS+sSEu/wsuiNB/2JKIA7Md1s1oxaxaC3s2u33ITjcfx1vETfG
pDfpNY2Y3cPhTYGJf8oHJl2aXcmYTcVBNjpwrjicSTemBLgb1uFgKvXZtPQ2
k7Y3eV9GNeBw/K5OcFkQk/aX1qvd3IRDXliHzMsbTPrt8n7yyCc0/wM1OJXn
mDQv4/elqq84nL/SeLZ+F5O28F75wPQvDjWHZPq/iTHpsyWaUwJKbNj+wIic
FmLShZiZ0LQKG5q6bSKFBJi05cCLvAE1NnQeSTQ14GXS+//WpzRrs2H4uFrC
7XEGzeXaKfPJmA1Sbsb7DT4yaN4lynf89rLhaMjh2tuRDPpoUZavTxAb5srS
cwykGfRISHdj6xwbatvWCMyIM2jD/EcfJ7gV4f6fvGPFwgw6X+JJjSRTEYw0
KFkjjEE3zA77HhVUBPe4D8HrJnnp7ktWSmvkFOHPlVkn+MhL1974Muu1XhGG
OdvkN4Xx0u+slE+yAhTh67ORsJ18vPRtmam9DquUQC+B2XSLfxGtNL+/6OVx
ZTBSaNQImuKmd3rjf+PnVWD5FUHP4AEu+rti1yDPc1Wov69l7di5QK064Cs/
66YOdU65fWuL56inGz87/HBbA8kqDZwdpTNUUOiv4fe5mqAZU+9ytvovlSXh
5GyWqQXymuvaJDMmqc+PGkzXFGvDwIuNDObTCWrlYK+ZVL4OLDtRbH8xeIw6
2PdhdneJLszXiD4edh2hWvfFTd97thbOkQJWxycHqdaPRbP3A/SgSOcdPZE/
QMkKHTnAY6sP2SKVOVKlvdRaIrvTWpgDljYiZt0ZvRQzI/6ZohgH/qQf/Joa
00tN3T32elSCA0amYxIGl3qpjSZbEnyWceCN28orB3V6qWQPelmkIge62903
JqR9pw4bNzrZG3FAJHlN2+rIbxTFOvoj1pED5wyiFxmf6aHmtAJc3PI5EBGx
rGOPTQ9l4M9fW17IgbzBuLwzFj3Uos7CzUteoPYfPXJIUO2hLnlwxd0v48Al
/swq3v4vlPCb4CdJVRy42lEW9NbuC2UVxG7b94kD/le/ie2z7KZyhpukrWY4
kNrq+Mt1fTcVaV69+cgcB6q1f1QEanZTXPbu3i4LHFjc9/tCiWA31SJVvcxn
EQEyDwazycjPVGCVzvtIfgLY68U57/y6qEHfnrwDywgw8LH9r9+5g1o/X1B8
jCCgesrzsY15B6WXtO7IUkMCrE/e5/mo2kEZ/DXdUmVEwIVdn0pe/mqn7CJ0
6uSAgBz5XVqxp9upb/lEYfEmApTKNslsO9tG+WXHxMfvIkB8Uv1X7uVW6rZs
k6TgSQISnbduWb2/lVJwxGp9ThGg3eWc/NCglXKNvpo7c5qAHa9T7G7NtFBL
mZVSPa4EBIXLf3T0bKEGDwyqRl8kgEdTokz6ejOVd+n62hxvAoacZm97+TdR
yZOvr3jdI6ApS0t4m2MT9dNx9YWWKAJejDuGLjdtojp2H9+gHkPAzWsNoc8X
PlDvBUYONt5H+YlKDhtz+0Cd4E+8zPOIANOqHeHHHBop90vnWdMZBKgs8RXT
29BIbfNcqbDmCQGCu4rDeeUbqRderfyHswj41MWOSOhooERyBM1f5hBw+s90
RPuuBspUR/GMQz4BUezHkdtN6ikn1yRe0zICPE+0ScqurKeOPrLp300R8Pqw
nManmTqKcP5z14EmYL/7uIbYuToqSz3A4mo5AT5p8Zp+9u8po5E+9t1KAtpY
YzpnjGupFwHchtbvCbhREWtATlVR4pq5YtodBPS/J8IdiqooWfN0syHkbZ9a
fgZdqqI6R6jg9E7U30GxuNapSmrtXLDWss9o/KSCF1z/vqakhPKmvn0hoNPZ
oyJp+hV1dWxhj0wfASYXZFa8ffGKGj8grVqEnOpVdGHE/RWla/mIZdVPwPmI
cUXjmXLq5AanTz4/CFhcdjKgZeYldZX9uL3hJ8qHwov74tMUpSnma8g/TACh
/8fC3p2iTN55+AQg827VXngyXUZhh59+ZIwQEHsh3X7zTCm1qsvafwr5zZsY
RffZYqpx9pBO5RgB4Z3NLZUexVTf5GyG7jgBNqOiAWJzL6ilK4ZVEpAnlgX9
zJx7Tn08dmzt+QkCFM5cyfk8X0jNrXrtxzNJwO8bhfZqXoVUm4K6sj1yUdSY
6OWFAmpATu5dKfL28hMXRLkKqN6DG3HXKQI8JA4abOTOozI9dRn0XwI2r476
GXY9l6q5610lOE2AKNl0v4s7l7ogknPrAHKa09aFizzPqIjNh9hDyM3FRhXp
i3Koul7s2vwMAcsvH+4aFcim3BdUlI1mCQh2N9cNFc2iTIaO9V1EPuG5ortm
RSZ1MoE74wdy21WmntOqDOqVhkm23BwBZteGghgq6ZSmyvGaXcirb7zUB91U
6j03sbEAOeZm+q1OIoV6blmT9A15sW/4V3cymdL9I7pMZJ6AAX+H2/lmSZSd
/EPzo8j7A7d9t9yRSA28qmcEIdcE6RsO735EFQ2GNmcjp4Xw9a22f0htkokr
HkPWXvn9cui7eMqsq7VOdAH1f1Uh+23rfUr06Y3pNcij7IAGxrcYaiQq0tAc
uUH5gCcMRVE7RPjDjyLnqKqrXJmOpDIXt3N5IIdqLDTlM+5S8QNcPmHILloN
14aFw6muoItyj5F36CaqqS4Po/SMDeoLkG1PD+S83RZCRVaa3qtElj0fgq13
CKQEbcPPNyF3Xda2K7jiS1UUKDh1I8d5NReq3vGmGKNDrgPIRYsnZE12elJG
6VNho8j6kuveq129QE3+NngzhXxiw+IZjT0nqF7IF59Drs/TzcXs9lLNsY4X
F5Cbzmcaaz8lybKT24b/Oe7ixh877h8hn0We9Jr/F2/O/tfrElzJX64v8Zl/
/U8Sldx1/jJZ+daiewI5bauDTl7iNbK4V/TZIPLAppftxrdukifdRWO+I69e
v+JmtZs/GZW7LartXzyGl9Ws7ILJlbo1me+Qm2OcnYfwUBIT828pQ/5zL6os
T/oOebojaGkWsuTdSlF3wQgyKuzTmdh//bsz7kguiiTbUy90+iJb31Yo5p26
Rz5f4mDvgnwpeIdQza9osnLlk5m9//Ljm1lo1RxHblphe04eufVGG7/M2wek
o0jzjkXIHsCbM/T5IclbTZl+RfMhbp02b37TI5L74WKXOGQNoy1ZUnWJZOpZ
j5SLyGUGdtbu1Umk3Rnvie3IXfohmWRZMqmy2/XjNJqfp/Ue73lUlEJ+iz59
7B3yvG4JFyM3lZynlIXjkWW1B6xqUtLJxtPcyQSyrdqmOauwLLJgVfy3fej9
MIpKDvnzMJt0qfYelkIW8F4kvNU6h8xiiZZ+QO/bj99HEn4fe0pyijyjTJEf
vcYrNP1ySat1b/fzo/czdKYpmFsoj1S8tf50IXq/r2r57G6MzCMFipdssEc+
EPe991xyPrl0D59WFqoH4heS+QpfF5IvnA/Kq6N6wZOxp9HPoog8unKrSdUf
Aoa7mbHWH4tIo+MObFvkd1uPqU1/e05OBgdq+6N65Isrb1/HW0J675s5QaF6
NvvDqsZenibv7HC+VD5EwBjvEw0zB5o0yhB+y0EekGOEa6fR5F4x7p7MQTQe
u/MPLNJ6SRpp2RwK+U1A/kuJ30nolJXU4hWi96/eRjcL9dtWkCZp8lzLewlw
yNM4X59YQT78sy7j9HcCDtb5thb1VZDCzxxWUN8IMGfoJwSceU12FcXt3feV
AGXXe9qqXpXkjSFjlXPdBHz5z3r36fg3pEht9RmjNgKMv3vYv+t8Qx59Fpx6
+ROqN9cTTqmtqCZfxL4az2slwPLFgM9AbDVp93bbG3YLAeWqngWO0TVkq4Wx
/fAHlH/BR1K2EbXk7uzVfirvUD0ZmPiltLGePHwcl1dH66MdBzvXcrSeTCd+
a6iXEhDiK/PX92Y96VYuvVe1BOVDgWT0vqon29bHTsq/QM874L8iyaSBdGzd
dG0Krbdi72S2rYRG0vbX7A8ztF6PZ5PZSw2byB3yAgw/tP7XqhqKuhxqIj89
+WWhGY32Iyl6F6q8mkjLdaWOLWj/YPlA3dCtool8ZlzCJ3eXgKchy6o+WHwk
1afWroy4jfJ7arIrxK6Z/NL+3w+JmwT0rc4WZPi2kiJ+67rcT6D5npzuejC1
lZy9lzLSdZyASIXkptyaVjLQNqEHnAhAdTTmsNAn0veWvO38UQKS+IIU6ahP
pOkKnzpbG9T/fkfjKxltpGqx3d+SHaj+P5Y9PVLfQTLvRf3+qkNAATPTMnW0
g7QJcHVeoo3Ww2OEvq14J/kmcHm/riYBW1WsuN7t7SR3VE30eaqheDID7qR2
dZLxbmuwKZyAhNzxAttfXeQDNXu4JUFAnt33hd4b3aS/cOA+coIDV04X/7f7
QQ85zCO+oSeLAybkxFHB7B5SNfn3vqJMtL8UXnO9qqyHtKtb3xSczoGop4+e
E109ZGvw2QnNZA4UjAesll3xlfSzeT7lEMeBUXdrgb6Yr2SEhbH7jSAOOPtN
1F2K/EYecrLihKL9s/XDNXvv3+oly2ty9wgv5YCjXzXP5/oBMshZVoB3vz68
uqmqGvx2kCxJrKAf3tEDG5Hv5eL7RkinBg2V6NK1MGZQZfzFbYzcaT02fbFS
F7LPLPl72GWCbDca+BXbpAO8Xr3XD0dMkrV9+b4eldpwPXrVFqmIv2R8gu6P
sUotMOf1UqkImCGbsgKVTd9pQtaWU62DaXPkUZezaZ5+a4ATQ71+/3iBTAoV
df+Spg5ZhxtBspcLFLn0jVJoVXBcaaW6fpwbOK3mUpaM1fDsKyt/0zAPcKVm
CSbdVgYzcYZiEDcveMg2bM1QU4JVDRsf+TF4IaLLNq1fSQlmb/nK3uTjhYrt
lnoq6Dz2hIVJeYrwgnj00t5caSUQnlmMnZHnBd/o6dIhphJ8/CI8YLmeF0wa
xi15ehTBLnt5lsx1XtAQ8GfGxiiCm5muXjoXAwQOawS1SCjC0IaUR3d4GcAf
Ge89J6IITutkhK5gDHCSn6lVROfHA5pc/ebCDAg8pWBzA50vQbI2+rccA+wT
44KOTrKBv+fInCbJgPDGTR1Vn9jw8HJ4RaEnAxh+JmeXJrBB+hxT6+F1BkwX
il5Nj2PDnZOX4/x9GICtCpsiY9jgY2vrtu8WA5KC24wuhLPBeaOq8sx9Bhgu
GEvz+bJBV+RVkHEJA7am3P3QfIIN1amjlq+nGXD1vUm+kAEbpqp4inkWGCAr
NMGu12ODYp/oKljEhLOFraUROmzwZuuMveBnAv6syXG1OhuMHp0Lz1nOBF3e
lwV+K9mQEzv+IdaYCeWhD8X4MTZEhfyxOuvNBI1GqycGbThUPmGWZvsywbPv
Rfb1FhwmaiXZvwOZUHBVary2CQdLfv2JY+FMmNtWutGlDgcB/4t3DyWh9lSL
5AcqcLh2ferjf5VMaNpmZ5eRg4PT+ek9cotZAHo9rU5BODw54KciLsgCUkns
pU0ADqMm4rOYKAuigs+4WvvhcEVEI2FUmgUSzUlqe2/gEJJl//O1Cgu0LybJ
eF/BIb//jdfJLSx4HMwgQ07iMF2329LeggX6TpZfaWccjAt78D07WaCetHnv
pBMOb3xmq8l9LLD/+SP7jAMOHQqa4mLHWbDGUFgzxAYHnkP3Up/7s6Bnfd8b
7504bDbFr2QFs+Bu2KqY0e04BKs+tUgMZYFRROR6x204SEzXjAZHoXi9EsX3
meOgfG/eyC6VBRbjhR9PbsRhW4NDA/MNCzLLnohZGOAQXjSaOPOWBRorC89N
c3BofeDlNlzHgk277mZn6ONgfzp6WVsLC34US5ZIr8XhPP87hyd9LBiP6NXE
NXGI3ag7vYuFwXULp9pRRRzSn+y9V8aPwWJYLFfGxqFI4oquijAGApu9NoXg
ODR/f3l6fikGat67JNYp4CDsu/1r6moM2p87lTStwEFu8Ow1sTUYcGW4UpXL
cdDYE7niqg4G2cZ8MaXLcDBX7Ny7ywgDGSHFlufSOPhWOtfOWaD/D92+/EsC
h7saIcedLDEY/ha2noGcFPmU+WEPBv7RXl8VxHF46TgFqbYYNBVrFpwUxWGW
6Ztv6YrBcuel8QZCOPCfSbMsvYCBO/HUyF0QB5mW2iEld9TeJt3CsiU46KeI
rZ7zxmBibQfsEcDh7OaE+JQI9DzLyEyKD4fr2RWGotEYcLae1lREDpXqb/WI
Q/kxqA8Lw9D86tMQs0zGIDTl+283Fg4l2y1zStIxEDIb6h9m4lBTeMFCKRuD
t8prys8g9/uV+M0WYtAf+lvIg4HD5NBn/FgJBpG2BTf5kJnWi8obaAx4Jra0
xvLisErZbDa5GoPVGbuX1y3CQTv0VLTIewwOagkscUGGqVA9j0YMVm5Z3CmB
bPOmxWVnOwayiVuWufDgcEpzZknJZwxeHy8NwJE9omQzFL9hUFXT2dLJjUMg
l8l/Yf0YvN9JM+4jRzs5fJ/5hYGW4GUxW+TUen9vxxEMsHAZbiXkAk6mXMME
Gv/J/PdjXDi8flhXYjiNweOm/R6vkZuwsX3J8xh0bJFafB/5q4vkpPAiPrCb
mrx4EXm0lYi4wuIDFwZWuReZa/0hrV5+PvglvXPcCFko7dr7HcJ8sPlwO48S
sqxI0olicT64EfJkROLf/cDlKkxRmg/0G2tpvn/3B18GHoeu4AO/b0YuPMj/
d78A/3+/8D94cxK9
       "]]},
     Annotation[#, "Charting`Private`Tag$67199#1"]& ]}, {}, {}},
  AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
  Axes->{True, True},
  AxesLabel->{None, None},
  AxesOrigin->{0, 10.000000000000066`},
  DisplayFunction->Identity,
  Frame->{{False, False}, {False, False}},
  FrameLabel->{{None, None}, {None, None}},
  FrameTicks->{{Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, 
     Charting`ScaledFrameTicks[{Identity, Identity}]}},
  GridLines->{None, None},
  GridLinesStyle->Directive[
    GrayLevel[0.5, 0.4]],
  ImagePadding->All,
  Method->{
   "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> 
    AbsolutePointSize[6], "ScalingFunctions" -> None, 
    "CoordinatesToolOptions" -> {"DisplayFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& ), "CopiedValueFunction" -> ({
        (Identity[#]& )[
         Part[#, 1]], 
        (Identity[#]& )[
         Part[#, 2]]}& )}},
  PlotRange->
   NCache[{{-Pi, Pi}, {10.000000000000066`, 
     25.999999064585374`}}, {{-3.141592653589793, 3.141592653589793}, {
    10.000000000000066`, 25.999999064585374`}}],
  PlotRangeClipping->True,
  PlotRangePadding->{{
     Scaled[0.02], 
     Scaled[0.02]}, {
     Scaled[0.05], 
     Scaled[0.05]}},
  Ticks->{Automatic, Automatic}]], "Output",
 CellChangeTimes->{{3.7342196638748903`*^9, 3.7342197097266197`*^9}, {
   3.7342198203836184`*^9, 3.7342198247068157`*^9}, {3.734219875151*^9, 
   3.734219942917346*^9}, 3.7342199787253923`*^9},
 CellLabel->"Out[97]=",ExpressionUUID->"bef3a898-f5dc-46b2-a070-f2c3997001ff"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"A", "=", 
  RowBox[{"Array", "[", 
   RowBox[{"a", ",", 
    RowBox[{"{", 
     RowBox[{"3", ",", "3"}], "}"}]}], "]"}]}]], "Input",
 CellChangeTimes->{{3.734306923031836*^9, 3.734306938102682*^9}},
 CellLabel->
  "In[106]:=",ExpressionUUID->"b7d9da66-d9fa-4096-85ab-b614aee68d27"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{
     RowBox[{"a", "[", 
      RowBox[{"1", ",", "1"}], "]"}], ",", 
     RowBox[{"a", "[", 
      RowBox[{"1", ",", "2"}], "]"}], ",", 
     RowBox[{"a", "[", 
      RowBox[{"1", ",", "3"}], "]"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"a", "[", 
      RowBox[{"2", ",", "1"}], "]"}], ",", 
     RowBox[{"a", "[", 
      RowBox[{"2", ",", "2"}], "]"}], ",", 
     RowBox[{"a", "[", 
      RowBox[{"2", ",", "3"}], "]"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"a", "[", 
      RowBox[{"3", ",", "1"}], "]"}], ",", 
     RowBox[{"a", "[", 
      RowBox[{"3", ",", "2"}], "]"}], ",", 
     RowBox[{"a", "[", 
      RowBox[{"3", ",", "3"}], "]"}]}], "}"}]}], "}"}]], "Output",
 CellChangeTimes->{{3.734306926860515*^9, 3.734306938390451*^9}},
 CellLabel->
  "Out[106]=",ExpressionUUID->"d233d87d-f829-465f-906e-5727acfbfe18"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"FullSimplify", "[", 
  RowBox[{
   RowBox[{"Sqrt", "[", "x", "]"}], 
   RowBox[{"Conjugate", "[", 
    RowBox[{"Sqrt", "[", "x", "]"}], "]"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.7343075777303963`*^9, 3.734307594996893*^9}},
 CellLabel->
  "In[122]:=",ExpressionUUID->"d6ad40dc-f675-4087-b332-4080336ac54d"],

Cell[BoxData[
 RowBox[{"Abs", "[", "x", "]"}]], "Output",
 CellChangeTimes->{{3.734307580411415*^9, 3.734307595272644*^9}},
 CellLabel->
  "Out[122]=",ExpressionUUID->"42627eb9-00a6-46af-8897-51614e38f323"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"FullSimplify", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{"(", 
      RowBox[{"Tr", "[", 
       RowBox[{
        RowBox[{"ConjugateTranspose", "[", "#", "]"}], ".", "#"}], "]"}], 
      ")"}], "&"}], "@", 
    SuperscriptBox["A", 
     RowBox[{"1", "-", 
      RowBox[{"\[Epsilon]", "/", "2"}]}]]}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"\[Epsilon]", "\[Element]", "Reals"}], "}"}]}]}], "]"}]], "Input",\

 CellChangeTimes->{{3.7343069400585814`*^9, 3.734306958555189*^9}, {
  3.734306997496871*^9, 3.734307024205228*^9}, {3.7343071066369457`*^9, 
  3.7343071140133038`*^9}, {3.734307454277466*^9, 3.734307531654573*^9}, {
  3.7343076023009253`*^9, 3.734307640374107*^9}},
 CellLabel->
  "In[125]:=",ExpressionUUID->"d394aa4c-8613-4d1a-83a7-6a9e460d602d"],

Cell[BoxData[
 RowBox[{
  SuperscriptBox[
   RowBox[{"Abs", "[", 
    RowBox[{"a", "[", 
     RowBox[{"1", ",", "1"}], "]"}], "]"}], 
   RowBox[{"2", "-", "\[Epsilon]"}]], "+", 
  SuperscriptBox[
   RowBox[{"Abs", "[", 
    RowBox[{"a", "[", 
     RowBox[{"1", ",", "2"}], "]"}], "]"}], 
   RowBox[{"2", "-", "\[Epsilon]"}]], "+", 
  SuperscriptBox[
   RowBox[{"Abs", "[", 
    RowBox[{"a", "[", 
     RowBox[{"1", ",", "3"}], "]"}], "]"}], 
   RowBox[{"2", "-", "\[Epsilon]"}]], "+", 
  SuperscriptBox[
   RowBox[{"Abs", "[", 
    RowBox[{"a", "[", 
     RowBox[{"2", ",", "1"}], "]"}], "]"}], 
   RowBox[{"2", "-", "\[Epsilon]"}]], "+", 
  SuperscriptBox[
   RowBox[{"Abs", "[", 
    RowBox[{"a", "[", 
     RowBox[{"2", ",", "2"}], "]"}], "]"}], 
   RowBox[{"2", "-", "\[Epsilon]"}]], "+", 
  SuperscriptBox[
   RowBox[{"Abs", "[", 
    RowBox[{"a", "[", 
     RowBox[{"2", ",", "3"}], "]"}], "]"}], 
   RowBox[{"2", "-", "\[Epsilon]"}]], "+", 
  SuperscriptBox[
   RowBox[{"Abs", "[", 
    RowBox[{"a", "[", 
     RowBox[{"3", ",", "1"}], "]"}], "]"}], 
   RowBox[{"2", "-", "\[Epsilon]"}]], "+", 
  SuperscriptBox[
   RowBox[{"Abs", "[", 
    RowBox[{"a", "[", 
     RowBox[{"3", ",", "2"}], "]"}], "]"}], 
   RowBox[{"2", "-", "\[Epsilon]"}]], "+", 
  SuperscriptBox[
   RowBox[{"Abs", "[", 
    RowBox[{"a", "[", 
     RowBox[{"3", ",", "3"}], "]"}], "]"}], 
   RowBox[{"2", "-", "\[Epsilon]"}]]}]], "Output",
 CellChangeTimes->{{3.734306944047996*^9, 3.734306958826148*^9}, {
   3.734307006195896*^9, 3.734307024689034*^9}, {3.734307107132586*^9, 
   3.7343071142360163`*^9}, 3.7343074559591084`*^9, {3.73430751409499*^9, 
   3.734307531965774*^9}, {3.7343076063412523`*^9, 3.7343076476230516`*^9}},
 CellLabel->
  "Out[125]=",ExpressionUUID->"c93e04f0-31dc-4f42-b7ce-ff758415db0e"]
}, Open  ]],

Cell[BoxData["Full"], "Input",
 CellChangeTimes->{{3.734307609610599*^9, 
  3.734307610100314*^9}},ExpressionUUID->"86ecb7f0-8a5a-49a9-8632-\
b35287cb05ce"],

Cell[BoxData["2"], "Input",
 CellChangeTimes->{
  3.734307563632634*^9},ExpressionUUID->"142781de-b484-41d6-854e-\
a5066056ccec"],

Cell[BoxData[
 RowBox[{"MatrixExp", "[", "A", "]"}]], "Input",
 CellChangeTimes->{{3.73430740282703*^9, 3.734307408737081*^9}},
 CellLabel->
  "In[114]:=",ExpressionUUID->"d8a4f652-0088-44dd-bea5-3b91a54f005b"],

Cell[BoxData[
 RowBox[{
  RowBox[{"M", "=", 
   RowBox[{"RandomVariate", "[", 
    RowBox[{"CircularRealMatrixDistribution", "[", "12", "]"}], "]"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.734307856369668*^9, 3.7343078741980963`*^9}},
 CellLabel->
  "In[127]:=",ExpressionUUID->"bef00eeb-7dc0-4119-b2dc-9e8e77c1c0f9"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"Chop", "[", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"ConjugateTranspose", "[", "#", "]"}], ".", "#"}], "&"}], "@", 
    RowBox[{"(", 
     SuperscriptBox["M", 
      RowBox[{"1", "-", "0.01"}]], ")"}]}], "]"}], "//", 
  "MatrixForm"}]], "Input",
 CellChangeTimes->{{3.734307879331596*^9, 3.7343080043205223`*^9}},
 CellLabel->
  "In[135]:=",ExpressionUUID->"29ab42c0-ee58-486e-b7e3-16c049180c04"],

Cell[BoxData[
 TagBox[
  RowBox[{"(", "\[NoBreak]", GridBox[{
     {"1.0178942207489374`", 
      RowBox[{
       RowBox[{"-", "0.0014605245884353624`"}], "-", 
       RowBox[{"0.005489125542235465`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0011485660281160548`"}], "-", 
       RowBox[{"0.009530023739355617`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0004490956528353622`"}], "-", 
       RowBox[{"0.004471844694188308`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0001052788975050567`"}], "-", 
       RowBox[{"0.0012228811036105363`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.005402958545063098`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.008639872919234005`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0011560111705664483`"}], "+", 
       RowBox[{"0.0007154475992549826`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0034939243958303536`"}], "+", 
       RowBox[{"0.002780251591637914`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0010533825564266602`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.002296476473886544`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0019050731699246995`"}], "-", 
       RowBox[{"0.0015428590523832177`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0019562829193655994`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.008034552202559466`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.002083469616588585`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.0008335241782473957`", " ", "\[ImaginaryI]"}]}]},
     {
      RowBox[{
       RowBox[{"-", "0.0014605245884353624`"}], "+", 
       RowBox[{"0.005489125542235465`", " ", "\[ImaginaryI]"}]}], 
      "1.016202141664014`", 
      RowBox[{"0.0012919551167620003`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.0014514542006177772`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0017731518409710573`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.008132983237484579`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0019292454293095285`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.008233160328117809`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.00045937619166044885`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.0014588157070691042`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0023424252770576637`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.003916203040165039`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.004414380040080806`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.008722092012849847`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.002041066772335287`"}], "+", 
       RowBox[{"0.0009924407502729924`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0029962369417896664`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.007337420167066016`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0023174393268258937`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.008348958588683881`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0017725540793092145`"}], "+", 
       RowBox[{"0.0006331357420744613`", " ", "\[ImaginaryI]"}]}]},
     {
      RowBox[{
       RowBox[{"-", "0.0011485660281160548`"}], "+", 
       RowBox[{"0.009530023739355617`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0012919551167620003`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.0014514542006177772`", " ", "\[ImaginaryI]"}]}], 
      "1.0189458991197806`", 
      RowBox[{"0.0035847159834015985`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.010374465447038394`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.00042594032959505923`"}], "+", 
       RowBox[{"0.005233091227458822`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.00015348348860136363`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.012205681637731718`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0008816846156947389`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.005502910926425598`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.001421919448185885`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.008543101818619872`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.001292594707601319`"}], "-", 
       RowBox[{"0.000022067633514431632`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0026423288091259878`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.005822117935560199`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.00014339930813655338`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.0062832416496589535`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.00130369697165017`"}], "-", 
       RowBox[{"0.0002972534522092639`", " ", "\[ImaginaryI]"}]}]},
     {
      RowBox[{
       RowBox[{"-", "0.0004490956528353622`"}], "+", 
       RowBox[{"0.004471844694188308`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0017731518409710573`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.008132983237484579`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0035847159834015985`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.010374465447038394`", " ", "\[ImaginaryI]"}]}], 
      "1.0168941601927706`", 
      RowBox[{
       RowBox[{"-", "0.0006427370102967261`"}], "-", 
       RowBox[{"0.003952826542629469`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0010618593782213553`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.00016506325087215596`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0033328674797913`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.006940074841363796`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.000159867964575032`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.0001951493640441938`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.002658707267083782`"}], "-", 
       RowBox[{"0.0050344231359760626`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0013458999334763425`"}], "-", 
       RowBox[{"0.0012747922742852354`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.00023109289634338712`"}], "-", 
       RowBox[{"0.001854395251012734`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0011472440369253087`"}], "-", 
       RowBox[{"0.009396632625016632`", " ", "\[ImaginaryI]"}]}]},
     {
      RowBox[{
       RowBox[{"-", "0.0001052788975050567`"}], "+", 
       RowBox[{"0.0012228811036105363`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0019292454293095285`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.008233160328117809`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.00042594032959505923`"}], "-", 
       RowBox[{"0.005233091227458822`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0006427370102967261`"}], "+", 
       RowBox[{"0.003952826542629469`", " ", "\[ImaginaryI]"}]}], 
      "1.021492777262698`", 
      RowBox[{"0.001088019677381341`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.0009941886175069974`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0022250402598862247`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.005820429942008254`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0004008709445118275`"}], "-", 
       RowBox[{"0.003472555403263821`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0025066169498924457`"}], "-", 
       RowBox[{"0.0012791681053216965`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.001047942347463679`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.006071173964217423`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.00045866599513494713`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.00546819776204014`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0006363697542311475`"}], "-", 
       RowBox[{"0.00043078640037083187`", " ", "\[ImaginaryI]"}]}]},
     {
      RowBox[{"0.005402958545063098`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.008639872919234005`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.00045937619166044885`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.0014588157070691042`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.00015348348860136363`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.012205681637731718`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0010618593782213553`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.00016506325087215596`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.001088019677381341`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.0009941886175069974`", " ", "\[ImaginaryI]"}]}], 
      "1.0204766664131664`", 
      RowBox[{
       RowBox[{"-", "0.0017908611726500448`"}], "-", 
       RowBox[{"0.006818558120899694`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0033559135325380157`"}], "-", 
       RowBox[{"0.00235761167833513`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.000036852517857899336`"}], "-", 
       RowBox[{"0.004223646218113547`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.000312091391420119`"}], "-", 
       RowBox[{"0.0001642809318045536`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.003280717760438121`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.008109816001388036`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0030338947048902942`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.009250912691910548`", " ", "\[ImaginaryI]"}]}]},
     {
      RowBox[{
       RowBox[{"-", "0.0011560111705664483`"}], "-", 
       RowBox[{"0.0007154475992549826`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0023424252770576637`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.003916203040165039`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0008816846156947389`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.005502910926425598`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0033328674797913`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.006940074841363796`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0022250402598862247`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.005820429942008254`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0017908611726500448`"}], "+", 
       RowBox[{"0.006818558120899694`", " ", "\[ImaginaryI]"}]}], 
      "1.0190526728829032`", 
      RowBox[{"0.0025873260352948426`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.007601636851073229`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0000443120887992296`"}], "+", 
       RowBox[{"0.002806171180005249`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.000608793431125125`"}], "+", 
       RowBox[{"0.0006642263823452294`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0005639156152209288`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.008940864612190102`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0009864107646054103`"}], "-", 
       RowBox[{"0.0006676665863204577`", " ", "\[ImaginaryI]"}]}]},
     {
      RowBox[{
       RowBox[{"-", "0.0034939243958303536`"}], "-", 
       RowBox[{"0.002780251591637914`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.004414380040080806`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.008722092012849847`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.001421919448185885`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.008543101818619872`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.000159867964575032`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.0001951493640441938`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0004008709445118275`"}], "+", 
       RowBox[{"0.003472555403263821`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0033559135325380157`"}], "+", 
       RowBox[{"0.00235761167833513`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0025873260352948426`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.007601636851073229`", " ", "\[ImaginaryI]"}]}], 
      "1.0166648773241265`", 
      RowBox[{
       RowBox[{"-", "0.0007906639615174044`"}], "-", 
       RowBox[{"0.0017032630974100856`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0011460423825025295`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.003546175847430059`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0029165500956132937`"}], "+", 
       RowBox[{"0.0024238383784450234`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0004123254016693764`"}], "-", 
       RowBox[{"0.004384500660220932`", " ", "\[ImaginaryI]"}]}]},
     {
      RowBox[{"0.0010533825564266602`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.002296476473886544`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.002041066772335287`"}], "-", 
       RowBox[{"0.0009924407502729924`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.001292594707601319`"}], "+", 
       RowBox[{"0.000022067633514431632`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.002658707267083782`"}], "+", 
       RowBox[{"0.0050344231359760626`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0025066169498924457`"}], "+", 
       RowBox[{"0.0012791681053216965`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.000036852517857899336`"}], "+", 
       RowBox[{"0.004223646218113547`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0000443120887992296`"}], "-", 
       RowBox[{"0.002806171180005249`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0007906639615174044`"}], "+", 
       RowBox[{"0.0017032630974100856`", " ", "\[ImaginaryI]"}]}], 
      "1.019019272503022`", 
      RowBox[{"0.0036915559426283773`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.0068288467860780746`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0009862096893671138`"}], "+", 
       RowBox[{"0.004023430014400343`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.002548900238739618`"}], "-", 
       RowBox[{"0.007900826615883415`", " ", "\[ImaginaryI]"}]}]},
     {
      RowBox[{
       RowBox[{"-", "0.0019050731699246995`"}], "+", 
       RowBox[{"0.0015428590523832177`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0029962369417896664`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.007337420167066016`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0026423288091259878`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.005822117935560199`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0013458999334763425`"}], "+", 
       RowBox[{"0.0012747922742852354`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.001047942347463679`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.006071173964217423`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.000312091391420119`"}], "+", 
       RowBox[{"0.0001642809318045536`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.000608793431125125`"}], "-", 
       RowBox[{"0.0006642263823452294`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0011460423825025295`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.003546175847430059`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0036915559426283773`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.0068288467860780746`", " ", "\[ImaginaryI]"}]}], 
      "1.0156236805009151`", 
      RowBox[{
       RowBox[{"-", "1.9634689705765734`*^-6"}], "+", 
       RowBox[{"0.0034493161512668485`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0004622348840551613`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.009859332527700104`", " ", "\[ImaginaryI]"}]}]},
     {
      RowBox[{"0.0019562829193655994`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.008034552202559466`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0023174393268258937`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.008348958588683881`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.00014339930813655338`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.0062832416496589535`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.00023109289634338712`"}], "+", 
       RowBox[{"0.001854395251012734`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.00045866599513494713`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.00546819776204014`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.003280717760438121`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.008109816001388036`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0005639156152209288`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.008940864612190102`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0029165500956132937`"}], "-", 
       RowBox[{"0.0024238383784450234`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0009862096893671138`"}], "-", 
       RowBox[{"0.004023430014400343`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "1.9634689705765734`*^-6"}], "-", 
       RowBox[{"0.0034493161512668485`", " ", "\[ImaginaryI]"}]}], 
      "1.017101512881194`", 
      RowBox[{"0.0020303497834208793`", "\[VeryThinSpace]", "-", 
       RowBox[{"0.007612853854616712`", " ", "\[ImaginaryI]"}]}]},
     {
      RowBox[{"0.002083469616588585`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.0008335241782473957`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0017725540793092145`"}], "-", 
       RowBox[{"0.0006331357420744613`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.00130369697165017`"}], "+", 
       RowBox[{"0.0002972534522092639`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0011472440369253087`"}], "+", 
       RowBox[{"0.009396632625016632`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0006363697542311475`"}], "+", 
       RowBox[{"0.00043078640037083187`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0030338947048902942`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.009250912691910548`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0009864107646054103`"}], "+", 
       RowBox[{"0.0006676665863204577`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.0004123254016693764`"}], "+", 
       RowBox[{"0.004384500660220932`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{
       RowBox[{"-", "0.002548900238739618`"}], "+", 
       RowBox[{"0.007900826615883415`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0004622348840551613`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.009859332527700104`", " ", "\[ImaginaryI]"}]}], 
      RowBox[{"0.0020303497834208793`", "\[VeryThinSpace]", "+", 
       RowBox[{"0.007612853854616712`", " ", "\[ImaginaryI]"}]}], 
      "1.0173613953920433`"}
    },
    GridBoxAlignment->{
     "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, 
      "RowsIndexed" -> {}},
    GridBoxSpacings->{"Columns" -> {
        Offset[0.27999999999999997`], {
         Offset[0.7]}, 
        Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
        Offset[0.2], {
         Offset[0.4]}, 
        Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
  Function[BoxForm`e$, 
   MatrixForm[BoxForm`e$]]]], "Output",
 CellChangeTimes->{{3.734307962886264*^9, 3.734308004887388*^9}},
 CellLabel->
  "Out[135]//MatrixForm=",ExpressionUUID->"37cb2771-8d82-4a60-8b09-\
ffb835974a85"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"T", "[", "n_", "]"}], "[", "\[Theta]s_", "]"}], ":=", 
  RowBox[{"Total", "[", 
   RowBox[{"Map", "[", 
    RowBox[{
     RowBox[{
      RowBox[{"ArrayPad", "[", 
       RowBox[{
        RowBox[{"RotationMatrix", "[", 
         RowBox[{"\[Theta]s", "[", 
          RowBox[{"[", 
           RowBox[{"#", "+", "1"}], "]"}], "]"}], "]"}], ",", 
        RowBox[{"{", 
         RowBox[{
          RowBox[{"{", 
           RowBox[{
            RowBox[{"2", "#"}], ",", 
            RowBox[{"n", "-", "2", "-", 
             RowBox[{"2", "#"}]}]}], "}"}], ",", 
          RowBox[{"{", 
           RowBox[{
            RowBox[{"2", "#"}], ",", 
            RowBox[{"n", "-", "2", "-", 
             RowBox[{"2", "#"}]}]}], "}"}]}], "}"}]}], "]"}], "&"}], ",", 
     RowBox[{
      RowBox[{"Range", "[", 
       RowBox[{"n", "/", "2"}], "]"}], "-", "1"}]}], "]"}], "]"}]}]], "Input",\

 CellChangeTimes->{{3.7344303584746513`*^9, 3.734430549714932*^9}, {
  3.734446418026773*^9, 3.734446499871093*^9}},
 CellLabel->
  "In[313]:=",ExpressionUUID->"9a0a6487-cd13-4e31-ba94-320d7940a893"],

Cell[BoxData[
 RowBox[{
  RowBox[{"\[Theta]s", "=", 
   RowBox[{"Map", "[", 
    RowBox[{
     RowBox[{
      RowBox[{
       RowBox[{"\[Theta]", "[", "#", "]"}], "\[Rule]", 
       RowBox[{"RandomReal", "[", 
        RowBox[{"WorkingPrecision", "\[Rule]", "30"}], "]"}]}], "&"}], ",", 
     RowBox[{
      RowBox[{"Range", "[", "6", "]"}], "-", "1"}]}], "]"}]}], ";"}]], "Input",\

 CellChangeTimes->{{3.734436594522162*^9, 3.734436595767201*^9}, {
  3.7344367341248426`*^9, 3.7344367383590927`*^9}},
 CellLabel->"In[80]:=",ExpressionUUID->"136204c3-5db9-4e55-9153-7dfd4b00ee7f"],

Cell[BoxData[
 RowBox[{
  RowBox[{"P3", "=", 
   RowBox[{"RandomVariate", "[", 
    RowBox[{
     RowBox[{"CircularRealMatrixDistribution", "[", "12", "]"}], ",", 
     RowBox[{"WorkingPrecision", "\[Rule]", "30"}]}], "]"}]}], ";"}]], "Input",\

 CellChangeTimes->{{3.7344362129909897`*^9, 3.734436271332966*^9}, {
  3.73443637678279*^9, 3.7344363913982553`*^9}, {3.734436718681147*^9, 
  3.7344367277738113`*^9}},
 CellLabel->"In[75]:=",ExpressionUUID->"e4ea03c5-a998-4717-b39d-4498499c374c"],

Cell[BoxData[
 RowBox[{
  RowBox[{"M", "=", 
   RowBox[{
    RowBox[{
     RowBox[{
      RowBox[{"Transpose", "[", "#", "]"}], ".", 
      RowBox[{"T", "[", "12", "]"}], ".", "#"}], "&"}], "@", "P3"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.7344305795900507`*^9, 3.7344305894545517`*^9}, {
  3.7344309040624*^9, 3.734430942999845*^9}, {3.734435354734314*^9, 
  3.734435357806473*^9}, {3.7344360205859632`*^9, 3.734436037250965*^9}, {
  3.7344361096608543`*^9, 3.734436177838737*^9}, {3.7344362774533377`*^9, 
  3.7344362886645613`*^9}, {3.7344363997163963`*^9, 3.734436407963112*^9}, {
  3.7344366175922947`*^9, 3.734436618292441*^9}},
 CellLabel->"In[76]:=",ExpressionUUID->"e44d0944-b7b8-4d56-ba4d-ad9caffcd6ec"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{
   RowBox[{"Total", "[", 
    RowBox[{"Flatten", "[", 
     SuperscriptBox[
      RowBox[{"Abs", "[", "M", "]"}], 
      RowBox[{"2", "-", "\[Epsilon]"}]], "]"}], "]"}], "/.", "\[Theta]s"}], "/.", 
  RowBox[{"\[Epsilon]", "\[Rule]", "0.1"}]}]], "Input",
 CellChangeTimes->{{3.734436495551292*^9, 3.7344366000466013`*^9}},
 CellLabel->"In[81]:=",ExpressionUUID->"38f93129-3da4-4d03-9c2c-70bbe0590095"],

Cell[BoxData["12.845623706344556`"], "Output",
 CellChangeTimes->{{3.73443649606188*^9, 3.734436652758144*^9}, {
  3.7344367477550573`*^9, 3.734436787532053*^9}},
 CellLabel->"Out[81]=",ExpressionUUID->"b285ca7f-8cd9-46e5-a9ac-ff45fbfbdf20"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"FullSimplify", "[", 
  RowBox[{
   RowBox[{"Total", "[", 
    RowBox[{"Flatten", "[", 
     SuperscriptBox["M", 
      RowBox[{"2", "-", "\[Epsilon]"}]], "]"}], "]"}], ",", 
   RowBox[{"Assumptions", "\[Rule]", 
    RowBox[{"{", 
     RowBox[{"\[Epsilon]", ">", "0"}], "}"}]}]}], "]"}]], "Input",
 CellChangeTimes->{{3.734430954036313*^9, 3.7344310139324713`*^9}, {
   3.734431075987632*^9, 3.7344311158525343`*^9}, {3.7344311882002087`*^9, 
   3.7344311944663057`*^9}, {3.734431233546858*^9, 3.7344312443795652`*^9}, {
   3.7344353506993933`*^9, 3.73443535088142*^9}, {3.734435423451275*^9, 
   3.734435423634005*^9}, {3.734435459336075*^9, 3.7344354598222303`*^9}, {
   3.734435569346534*^9, 3.73443571412999*^9}, {3.734435857111292*^9, 
   3.734435882037012*^9}, {3.734435913112486*^9, 3.734435923671789*^9}, {
   3.734436011804735*^9, 3.73443601244615*^9}, {3.734436052770152*^9, 
   3.73443606820138*^9}, {3.734436415626543*^9, 3.734436437314316*^9}, 
   3.734436486447556*^9},ExpressionUUID->"eb3339cb-6e55-44e0-8fc1-\
0354909b03fb"],

Cell[BoxData["$Aborted"], "Output",
 CellChangeTimes->{{3.734430957072818*^9, 3.734430991101211*^9}, 
   3.734431136736092*^9, 3.734431216904612*^9, {3.7344353454687643`*^9, 
   3.734435367143673*^9}, 3.734435424971869*^9, 3.7344354605364656`*^9, {
   3.734435637398678*^9, 3.7344357145146503`*^9}, {3.73443587228749*^9, 
   3.7344358834866447`*^9}, 3.734435924653911*^9, {3.734436014052247*^9, 
   3.734436070250386*^9}, 3.734436368676011*^9, 3.734436418427985*^9, 
   3.734436483238648*^9},
 CellLabel->"Out[14]=",ExpressionUUID->"53849444-06ae-414a-b0b8-a41886e86282"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  SuperscriptBox[
   RowBox[{"Sum", "[", 
    RowBox[{
     RowBox[{"p", "[", "i", "]"}], ",", 
     RowBox[{"{", 
      RowBox[{"i", ",", "1", ",", "n"}], "}"}]}], "]"}], "2"], "//", 
  "Expand"}]], "Input",
 CellChangeTimes->{{3.734437319580488*^9, 3.734437355498891*^9}, {
  3.7344375151940002`*^9, 3.7344375176561747`*^9}},
 CellLabel->"In[86]:=",ExpressionUUID->"6fe0e92e-f0e9-4356-98f0-e4bbefe7836a"],

Cell[BoxData[
 SuperscriptBox[
  RowBox[{"(", 
   RowBox[{
    UnderoverscriptBox["\[Sum]", 
     RowBox[{"i", "=", "1"}], "n"], 
    RowBox[{"p", "[", "i", "]"}]}], ")"}], "2"]], "Output",
 CellChangeTimes->{{3.734437332134939*^9, 3.734437340214789*^9}, 
   3.734437517861434*^9},
 CellLabel->"Out[86]=",ExpressionUUID->"987c4967-c9e6-41b9-841a-fa8f4e84ae73"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"Sum", "[", 
   RowBox[{
    RowBox[{"Series", "[", 
     RowBox[{
      SuperscriptBox[
       RowBox[{"Abs", "[", 
        RowBox[{"x", "[", "i", "]"}], "]"}], 
       RowBox[{"2", "-", "\[Epsilon]"}]], ",", 
      RowBox[{"{", 
       RowBox[{"\[Epsilon]", ",", "0", ",", "2"}], "}"}]}], "]"}], ",", 
    RowBox[{"{", 
     RowBox[{"x", ",", "1", ",", "n"}], "}"}]}], "]"}], "//", 
  "Expand"}]], "Input",
 CellChangeTimes->{{3.734438108460535*^9, 3.734438181723693*^9}, {
  3.734438227013962*^9, 3.734438255934042*^9}, {3.734438324362691*^9, 
  3.734438351589591*^9}},
 CellLabel->"In[99]:=",ExpressionUUID->"4eec5607-fc41-4732-b949-331a87466e72"],

Cell[BoxData[
 RowBox[{
  UnderoverscriptBox["\[Sum]", 
   RowBox[{"x", "=", "1"}], "n"], 
  RowBox[{"(", 
   InterpretationBox[
    RowBox[{
     SuperscriptBox[
      RowBox[{"Abs", "[", 
       RowBox[{"x", "[", "i", "]"}], "]"}], "2"], "-", 
     RowBox[{
      SuperscriptBox[
       RowBox[{"Abs", "[", 
        RowBox[{"x", "[", "i", "]"}], "]"}], "2"], " ", 
      RowBox[{"Log", "[", 
       RowBox[{"Abs", "[", 
        RowBox[{"x", "[", "i", "]"}], "]"}], "]"}], " ", "\[Epsilon]"}], "+", 
     
     RowBox[{
      FractionBox["1", "2"], " ", 
      SuperscriptBox[
       RowBox[{"Abs", "[", 
        RowBox[{"x", "[", "i", "]"}], "]"}], "2"], " ", 
      SuperscriptBox[
       RowBox[{"Log", "[", 
        RowBox[{"Abs", "[", 
         RowBox[{"x", "[", "i", "]"}], "]"}], "]"}], "2"], " ", 
      SuperscriptBox["\[Epsilon]", "2"]}], "+", 
     InterpretationBox[
      SuperscriptBox[
       RowBox[{"O", "[", "\[Epsilon]", "]"}], "3"],
      SeriesData[$CellContext`\[Epsilon], 0, {}, 0, 3, 1],
      Editable->False]}],
    SeriesData[$CellContext`\[Epsilon], 0, {Abs[
        $CellContext`x[$CellContext`i]]^2, -Abs[
         $CellContext`x[$CellContext`i]]^2 Log[
        Abs[
         $CellContext`x[$CellContext`i]]], Rational[1, 2] Abs[
         $CellContext`x[$CellContext`i]]^2 Log[
         Abs[
          $CellContext`x[$CellContext`i]]]^2}, 0, 3, 1],
    Editable->False], ")"}]}]], "Output",
 CellChangeTimes->{{3.734438121017508*^9, 3.7344381410420523`*^9}, {
  3.734438175338325*^9, 3.734438182269245*^9}, {3.7344382282488613`*^9, 
  3.73443825618834*^9}, {3.73443832606809*^9, 3.734438351778803*^9}},
 CellLabel->"Out[99]=",ExpressionUUID->"88ded28c-c9fc-45d1-b8e3-cb8875818cb8"]
}, Open  ]],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{"Limit", "[", 
  RowBox[{
   RowBox[{
    SuperscriptBox["x", "2"], 
    SuperscriptBox[
     RowBox[{"Log", "[", 
      RowBox[{"Abs", "[", "x", "]"}], "]"}], "n"]}], ",", 
   RowBox[{"x", "\[Rule]", "0"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.734438653098727*^9, 3.734438663743045*^9}},
 CellLabel->
  "In[100]:=",ExpressionUUID->"29edd88d-acaf-449a-9e26-e4da337d9645"],

Cell[BoxData["0"], "Output",
 CellChangeTimes->{3.734438665038623*^9},
 CellLabel->
  "Out[100]=",ExpressionUUID->"9e267547-bb7b-4f2d-aa91-62d06e7bc212"]
}, Open  ]],

Cell[BoxData[
 RowBox[{
  RowBox[{"While", "[", 
   RowBox[{
    RowBox[{"Det", "[", 
     RowBox[{"M", "=", 
      RowBox[{"RandomVariate", "[", 
       RowBox[{"CircularRealMatrixDistribution", "[", "32", "]"}], "]"}]}], 
     "]"}], "<", "0"}], "]"}], ";"}]], "Input",
 CellChangeTimes->{{3.7344391340048027`*^9, 3.734439157346796*^9}, {
  3.734446196999722*^9, 3.73444622566385*^9}},
 CellLabel->
  "In[297]:=",ExpressionUUID->"0c99d37d-271a-4ed6-a3de-b24035a507ba"],

Cell[BoxData[
 RowBox[{
  RowBox[{"permutationMatrix", "[", 
   RowBox[{"n_", ",", "pairs_"}], "]"}], ":=", 
  RowBox[{
   RowBox[{"IdentityMatrix", "[", "n", "]"}], "[", 
   RowBox[{"[", 
    RowBox[{"ReplacePart", "[", 
     RowBox[{
      RowBox[{"Range", "[", "n", "]"}], ",", 
      RowBox[{"Flatten", "[", 
       RowBox[{
        RowBox[{
         RowBox[{"{", 
          RowBox[{"#2", "\[Rule]", "#1"}], "}"}], "&"}], "@@@", "pairs"}], 
       "]"}]}], "]"}], "]"}], "]"}]}]], "Input",
 CellChangeTimes->{{3.7344441377189703`*^9, 3.73444422545747*^9}, {
  3.734445411088903*^9, 3.734445411858485*^9}, {3.7344458228938913`*^9, 
  3.734445825381316*^9}},
 CellLabel->
  "In[282]:=",ExpressionUUID->"087181e7-293a-40ff-adfe-07360a5e4cf2"],

Cell[BoxData[
 RowBox[{
  RowBox[{"permuteMatrix", "[", 
   RowBox[{"M_", ",", "pairs_"}], "]"}], ":=", 
  RowBox[{
   RowBox[{
    RowBox[{"#", ".", "M", ".", 
     RowBox[{"Transpose", "[", "#", "]"}]}], "&"}], "@", 
   RowBox[{"permutationMatrix", "[", 
    RowBox[{
     RowBox[{"Length", "[", "M", "]"}], ",", "pairs"}], "]"}]}]}]], "Input",
 CellChangeTimes->{{3.734444266177408*^9, 3.734444301979157*^9}},
 CellLabel->
  "In[231]:=",ExpressionUUID->"8ae00e1c-ab1b-4ee2-b490-86f3a85903b9"],

Cell[BoxData[
 RowBox[{
  RowBox[{"moveEntry", "[", 
   RowBox[{"M_", ",", "pair_"}], "]"}], ":=", 
  RowBox[{"permuteMatrix", "[", 
   RowBox[{"M", ",", 
    RowBox[{"Join", "[", 
     RowBox[{
      RowBox[{"{", 
       RowBox[{"{", 
        RowBox[{
         RowBox[{"pair", "[", 
          RowBox[{"[", "2", "]"}], "]"}], ",", 
         RowBox[{
          RowBox[{"pair", "[", 
           RowBox[{"[", "1", "]"}], "]"}], "+", "1"}]}], "}"}], "}"}], ",", 
      RowBox[{
       RowBox[{
        RowBox[{"{", 
         RowBox[{
          RowBox[{
           RowBox[{"pair", "[", 
            RowBox[{"[", "1", "]"}], "]"}], "+", "#"}], ",", 
          RowBox[{
           RowBox[{"pair", "[", 
            RowBox[{"[", "1", "]"}], "]"}], "+", "#", "+", "1"}]}], "}"}], 
        "&"}], "/@", 
       RowBox[{"Range", "[", 
        RowBox[{
         RowBox[{"pair", "[", 
          RowBox[{"[", "2", "]"}], "]"}], "-", 
         RowBox[{"pair", "[", 
          RowBox[{"[", "1", "]"}], "]"}], "-", "1"}], "]"}]}]}], "]"}]}], 
   "]"}]}]], "Input",
 CellChangeTimes->{{3.734444996378807*^9, 3.734445077717638*^9}, {
  3.734445111710424*^9, 3.734445190329878*^9}, {3.734445318750935*^9, 
  3.7344453192761087`*^9}, {3.734445384773395*^9, 3.734445386360465*^9}, {
  3.7344454167963867`*^9, 3.734445432154488*^9}},
 CellLabel->
  "In[280]:=",ExpressionUUID->"d32c840e-9383-40ab-bfec-68e9cad9efe2"],

Cell[BoxData[
 RowBox[{
  RowBox[{"permuteSchurDecomposition", "[", 
   RowBox[{"P_", ",", "Q_"}], "]"}], ":=", 
  RowBox[{
   RowBox[{
    RowBox[{"{", 
     RowBox[{
      RowBox[{"Fold", "[", 
       RowBox[{"moveEntry", ",", "P", ",", 
        RowBox[{"Partition", "[", 
         RowBox[{"#", ",", "2"}], "]"}]}], "]"}], ",", 
      RowBox[{"Fold", "[", 
       RowBox[{"moveEntry", ",", "Q", ",", 
        RowBox[{"Partition", "[", 
         RowBox[{"#", ",", "2"}], "]"}]}], "]"}]}], "}"}], "&"}], "@", 
   RowBox[{"(", 
    RowBox[{"First", "/@", 
     RowBox[{"Position", "[", 
      RowBox[{
       RowBox[{"Round", "[", 
        RowBox[{
         RowBox[{"Abs", "[", 
          RowBox[{"Diagonal", "[", "Q", "]"}], "]"}], ",", 
         RowBox[{"1", " ", 
          SuperscriptBox["10", 
           RowBox[{"-", "6"}]]}]}], "]"}], ",", "1"}], "]"}]}], 
    ")"}]}]}]], "Input",
 CellChangeTimes->{{3.734444349007833*^9, 3.734444467676013*^9}, {
  3.7344445347401333`*^9, 3.734444577808527*^9}, {3.7344447083569117`*^9, 
  3.7344447819351892`*^9}, {3.734444938716387*^9, 3.734444946453759*^9}, {
  3.734445942362815*^9, 3.734445952514806*^9}},
 CellLabel->
  "In[288]:=",ExpressionUUID->"8adf49d5-1518-421b-a2a3-f8fdec6da16f"],

Cell[BoxData[
 RowBox[{
  RowBox[{"get\[Theta]s", "[", "Q_", "]"}], ":=", 
  RowBox[{
   RowBox[{
    RowBox[{"ArcTan", "[", 
     RowBox[{
      RowBox[{"Q", "[", 
       RowBox[{"[", 
        RowBox[{
         RowBox[{"1", "+", 
          RowBox[{"2", " ", "#"}]}], ",", 
         RowBox[{"1", "+", 
          RowBox[{"2", "#"}]}]}], "]"}], "]"}], ",", 
      RowBox[{"Q", "[", 
       RowBox[{"[", 
        RowBox[{
         RowBox[{
          RowBox[{"2", "#"}], "+", "2"}], ",", 
         RowBox[{"1", "+", 
          RowBox[{"2", "#"}]}]}], "]"}], "]"}]}], "]"}], "&"}], "/@", 
   RowBox[{"(", 
    RowBox[{
     RowBox[{"Range", "[", 
      RowBox[{
       RowBox[{"Length", "[", "Q", "]"}], "/", "2"}], "]"}], "-", "1"}], 
    ")"}]}]}]], "Input",
 CellChangeTimes->{{3.73444652301226*^9, 3.734446540636747*^9}, {
  3.7344465793981133`*^9, 3.7344466664298964`*^9}, {3.7344467253539953`*^9, 
  3.734446754862545*^9}},
 CellLabel->
  "In[322]:=",ExpressionUUID->"386b25eb-c542-4740-abce-ea3a1151ea4e"],

Cell[BoxData[
 RowBox[{
  RowBox[{"root", "[", "M_", "]"}], ":=", 
  RowBox[{
   RowBox[{
    RowBox[{"#1", ".", 
     RowBox[{
      RowBox[{"T", "[", 
       RowBox[{"Length", "[", "M", "]"}], "]"}], "[", 
      RowBox[{
       RowBox[{"get\[Theta]s", "[", "#2", "]"}], "/", "2"}], "]"}], ".", 
     RowBox[{"Transpose", "[", "#1", "]"}]}], "&"}], "@@", 
   RowBox[{"(", 
    RowBox[{"permuteSchurDecomposition", "@@", 
     RowBox[{"SchurDecomposition", "[", "M", "]"}]}], ")"}]}]}]], "Input",
 CellChangeTimes->{{3.734441751007285*^9, 3.734441889682276*^9}, {
  3.7344419250690804`*^9, 3.734441964717955*^9}, {3.734442018135976*^9, 
  3.734442030209919*^9}, {3.734442066603153*^9, 3.734442068748541*^9}, {
  3.734442954785481*^9, 3.7344430042911253`*^9}, {3.734443036128446*^9, 
  3.73444306778021*^9}, {3.73444632743225*^9, 3.734446335839416*^9}, {
  3.7344467973127337`*^9, 3.734446862067038*^9}},
 CellLabel->
  "In[325]:=",ExpressionUUID->"90e67cbe-ca43-467e-9ff8-9727c558d8fb"],

Cell[BoxData[
 RowBox[{
  RowBox[{"coursen", "[", "M_", "]"}], ":=", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{"#", "[", 
      RowBox[{"[", 
       RowBox[{
        RowBox[{";;", 
         RowBox[{
          RowBox[{"Length", "[", "M", "]"}], "/", "2"}]}], ",", 
        RowBox[{";;", 
         RowBox[{
          RowBox[{"Length", "[", "M", "]"}], "/", "2"}]}]}], "]"}], "]"}], 
     ".", 
     RowBox[{"#", "[", 
      RowBox[{"[", 
       RowBox[{
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Length", "[", "M", "]"}], "/", "2"}], "+", "1"}], ";;"}], 
        ",", 
        RowBox[{
         RowBox[{
          RowBox[{
           RowBox[{"Length", "[", "M", "]"}], "/", "2"}], "+", "1"}], 
         ";;"}]}], "]"}], "]"}]}], "&"}], "@", 
   RowBox[{"root", "[", "M", "]"}]}]}]], "Input",
 CellChangeTimes->{{3.734446949986018*^9, 3.7344470296613894`*^9}},
 CellLabel->
  "In[332]:=",ExpressionUUID->"09c9c859-67c4-424c-9bdc-57a171c376f8"],

Cell[BoxData[
 RowBox[{
  RowBox[{"test", "=", 
   RowBox[{"coursen", "[", "M", "]"}]}], ";"}]], "Input",
 CellChangeTimes->{{3.734447031726432*^9, 3.734447040576002*^9}},
 CellLabel->
  "In[334]:=",ExpressionUUID->"c8a49ed5-0d55-4e26-8fcd-bef88bf4c12d"],

Cell[BoxData[
 RowBox[{
  RowBox[{"test", "=", 
   RowBox[{
    RowBox[{"M", "[", 
     RowBox[{"[", 
      RowBox[{
       RowBox[{";;", ";;", "2"}], ",", 
       RowBox[{";;", ";;", "2"}]}], "]"}], "]"}], ".", 
    RowBox[{"M", "[", 
     RowBox[{"[", 
      RowBox[{
       RowBox[{"2", ";;", ";;", "2"}], ",", 
       RowBox[{"2", ";;", ";;", "2"}]}], "]"}], "]"}]}]}], ";"}]], "Input",
 CellChangeTimes->{{3.734447062881668*^9, 3.734447102961961*^9}, {
  3.734447377862091*^9, 3.734447394204185*^9}, {3.734447500577207*^9, 
  3.734447551753469*^9}},
 CellLabel->
  "In[346]:=",ExpressionUUID->"3f436140-1785-4ab3-9631-c0e22702f5fd"],

Cell[CellGroupData[{

Cell[BoxData[
 RowBox[{
  RowBox[{"test", ".", 
   RowBox[{"Transpose", "[", "test", "]"}]}], "//", "Chop"}]], "Input",
 CellChangeTimes->{{3.7344470473777227`*^9, 3.7344470522544117`*^9}},
 CellLabel->
  "In[347]:=",ExpressionUUID->"1decfe19-4d2f-4ac1-9555-8f8fd9cb17b6"],

Cell[BoxData[
 RowBox[{"{", 
  RowBox[{
   RowBox[{"{", 
    RowBox[{"0.3167101033997214`", ",", 
     RowBox[{"-", "0.06479646485112149`"}], ",", "0.03191457886623266`", ",", 
     
     RowBox[{"-", "0.12976974337565034`"}], ",", "0.1334020736627092`", ",", 
     "0.08755690254718833`", ",", "0.021952053689913834`", ",", 
     RowBox[{"-", "0.09201950793251656`"}], ",", "0.03039645633058153`", ",", 
     "0.05272606391918427`", ",", "0.09813378083569575`", ",", 
     "0.06100628291551563`", ",", "0.017509158732084855`", ",", 
     "0.038777995083748455`", ",", 
     RowBox[{"-", "0.09547902532010263`"}], ",", "0.04702923375295084`"}], 
    "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"-", "0.06479646485112149`"}], ",", "0.16599660768437632`", ",", 
     "0.052513142506905655`", ",", 
     RowBox[{"-", "0.034161541503658424`"}], ",", 
     RowBox[{"-", "0.11550970620078782`"}], ",", "0.03105344697406797`", ",", 
     "0.03212436807475873`", ",", 
     RowBox[{"-", "0.09185338605727628`"}], ",", "0.03207824494049382`", ",", 
     "0.05634726992182131`", ",", 
     RowBox[{"-", "0.1479532189280818`"}], ",", "0.05813571508328424`", ",", 
     "0.00994164406436068`", ",", "0.02011126790617698`", ",", 
     "0.018731335725778248`", ",", 
     RowBox[{"-", "0.01984551726410124`"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
    "0.03191457886623266`", ",", "0.052513142506905655`", ",", 
     "0.3496004076527619`", ",", 
     RowBox[{"-", "0.03850479997447098`"}], ",", 
     RowBox[{"-", "0.007594579661413713`"}], ",", "0.21301190107989854`", ",",
      "0.027191117339582842`", ",", "0.02621204528295224`", ",", 
     "0.12856113219325627`", ",", "0.06882740412953085`", ",", 
     "0.05369312666423786`", ",", 
     RowBox[{"-", "0.009160628562154986`"}], ",", "0.046650833718259635`", 
     ",", "0.03171282786552979`", ",", 
     RowBox[{"-", "0.004236240131066993`"}], ",", 
     RowBox[{"-", "0.04335199254884713`"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"-", "0.12976974337565034`"}], ",", 
     RowBox[{"-", "0.034161541503658424`"}], ",", 
     RowBox[{"-", "0.03850479997447098`"}], ",", "0.27808153199916447`", ",", 
     
     RowBox[{"-", "0.018826057419421782`"}], ",", 
     RowBox[{"-", "0.05773895828549687`"}], ",", 
     RowBox[{"-", "0.025847771477204753`"}], ",", "0.08215247465994363`", ",", 
     RowBox[{"-", "0.04462564425197128`"}], ",", 
     RowBox[{"-", "0.08036510571919066`"}], ",", 
     RowBox[{"-", "0.02231269158619022`"}], ",", 
     RowBox[{"-", "0.0645703237289191`"}], ",", "0.04351996468973494`", ",", 
     RowBox[{"-", "0.02119577092676374`"}], ",", "0.04434172578337779`", ",", 
     
     RowBox[{"-", "0.009228998078081968`"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"0.1334020736627092`", ",", 
     RowBox[{"-", "0.11550970620078782`"}], ",", 
     RowBox[{"-", "0.007594579661413713`"}], ",", 
     RowBox[{"-", "0.018826057419421782`"}], ",", "0.37626612898799056`", ",", 
     RowBox[{"-", "0.022344218694091863`"}], ",", 
     RowBox[{"-", "0.000728779341728136`"}], ",", "0.10059389848318062`", ",", 
     RowBox[{"-", "0.07832754048514622`"}], ",", "0.10323157226905809`", ",", 
     "0.1528690895556612`", ",", "0.03053681590137384`", ",", 
     "0.05290320746090933`", ",", 
     RowBox[{"-", "0.11584480325631162`"}], ",", 
     RowBox[{"-", "0.13323043482101096`"}], ",", 
     RowBox[{"-", "0.0078067952587123745`"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
    "0.08755690254718833`", ",", "0.03105344697406797`", ",", 
     "0.21301190107989854`", ",", 
     RowBox[{"-", "0.05773895828549687`"}], ",", 
     RowBox[{"-", "0.022344218694091863`"}], ",", "0.35454604287230856`", ",",
      "0.03835090296736614`", ",", 
     RowBox[{"-", "0.03150490040537117`"}], ",", "0.042048614409970056`", ",",
      "0.002939836793781684`", ",", 
     RowBox[{"-", "0.08141136425976422`"}], ",", "0.013564712994512626`", ",", 
     RowBox[{"-", "0.013392701264616166`"}], ",", 
     RowBox[{"-", "0.0852008282456183`"}], ",", "0.025914691011554546`", ",", 
     
     RowBox[{"-", "0.010662442778406275`"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
    "0.021952053689913834`", ",", "0.03212436807475873`", ",", 
     "0.027191117339582842`", ",", 
     RowBox[{"-", "0.025847771477204753`"}], ",", 
     RowBox[{"-", "0.000728779341728136`"}], ",", "0.03835090296736614`", ",",
      "0.08700685371544455`", ",", "0.0019964691374175364`", ",", 
     "0.05512231169449684`", ",", 
     RowBox[{"-", "0.05389906981851193`"}], ",", "0.03368977972438634`", ",", 
     "0.11187957947675337`", ",", "0.012335953759836394`", ",", 
     RowBox[{"-", "0.019692620635095283`"}], ",", 
     RowBox[{"-", "0.015561771238143325`"}], ",", "0.01206918949756452`"}], 
    "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"-", "0.09201950793251656`"}], ",", 
     RowBox[{"-", "0.09185338605727628`"}], ",", "0.02621204528295224`", ",", 
     "0.08215247465994363`", ",", "0.10059389848318062`", ",", 
     RowBox[{"-", "0.03150490040537117`"}], ",", "0.0019964691374175364`", 
     ",", "0.2915999076376135`", ",", "0.01356827016107125`", ",", 
     RowBox[{"-", "0.009047541101649077`"}], ",", "0.03739660295424243`", ",", 
     RowBox[{"-", "0.002589207756249064`"}], ",", 
     RowBox[{"-", "0.0526913934241328`"}], ",", "0.060305579776825664`", ",", 
     
     RowBox[{"-", "0.05965461318105857`"}], ",", 
     RowBox[{"-", "0.045350788983290515`"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
    "0.03039645633058153`", ",", "0.03207824494049382`", ",", 
     "0.12856113219325627`", ",", 
     RowBox[{"-", "0.04462564425197128`"}], ",", 
     RowBox[{"-", "0.07832754048514622`"}], ",", "0.042048614409970056`", ",",
      "0.05512231169449684`", ",", "0.01356827016107125`", ",", 
     "0.2514372086181147`", ",", 
     RowBox[{"-", "0.08479142557027378`"}], ",", "0.10828205172294139`", ",", 
     "0.07556421810361105`", ",", 
     RowBox[{"-", "0.017191133008902973`"}], ",", "0.13900718519157884`", ",",
      "0.10344209181122069`", ",", 
     RowBox[{"-", "0.022517333726499892`"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
    "0.05272606391918427`", ",", "0.05634726992182131`", ",", 
     "0.06882740412953085`", ",", 
     RowBox[{"-", "0.08036510571919066`"}], ",", "0.10323157226905809`", ",", 
     "0.002939836793781684`", ",", 
     RowBox[{"-", "0.05389906981851193`"}], ",", 
     RowBox[{"-", "0.009047541101649077`"}], ",", 
     RowBox[{"-", "0.08479142557027378`"}], ",", "0.24740652176370956`", ",", 
     
     RowBox[{"-", "0.10237665401619422`"}], ",", 
     RowBox[{"-", "0.04125285742784809`"}], ",", "0.010248230271184482`", ",",
      "0.042519020636048614`", ",", 
     RowBox[{"-", "0.11777739758535846`"}], ",", 
     RowBox[{"-", "0.038989315733200074`"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"0.09813378083569575`", ",", 
     RowBox[{"-", "0.1479532189280818`"}], ",", "0.05369312666423786`", ",", 
     RowBox[{"-", "0.02231269158619022`"}], ",", "0.1528690895556612`", ",", 
     RowBox[{"-", "0.08141136425976422`"}], ",", "0.03368977972438634`", ",", 
     "0.03739660295424243`", ",", "0.10828205172294139`", ",", 
     RowBox[{"-", "0.10237665401619422`"}], ",", "0.3922918379020482`", ",", 
     "0.04307362204061704`", ",", "0.06373257288730613`", ",", 
     "0.0224204002929064`", ",", "0.0429870797287381`", ",", 
     "0.034427682170838234`"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"0.06100628291551563`", ",", "0.05813571508328424`", ",", 
     RowBox[{"-", "0.009160628562154986`"}], ",", 
     RowBox[{"-", "0.0645703237289191`"}], ",", "0.03053681590137384`", ",", 
     "0.013564712994512626`", ",", "0.11187957947675337`", ",", 
     RowBox[{"-", "0.002589207756249064`"}], ",", "0.07556421810361105`", ",", 
     RowBox[{"-", "0.04125285742784809`"}], ",", "0.04307362204061704`", ",", 
     "0.33071125252175476`", ",", 
     RowBox[{"-", "0.02161510471016153`"}], ",", "0.10698379079413546`", ",", 
     "0.04935359797819296`", ",", 
     RowBox[{"-", "0.0474221761366256`"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
    "0.017509158732084855`", ",", "0.00994164406436068`", ",", 
     "0.046650833718259635`", ",", "0.04351996468973494`", ",", 
     "0.05290320746090933`", ",", 
     RowBox[{"-", "0.013392701264616166`"}], ",", "0.012335953759836394`", 
     ",", 
     RowBox[{"-", "0.0526913934241328`"}], ",", 
     RowBox[{"-", "0.017191133008902973`"}], ",", "0.010248230271184482`", 
     ",", "0.06373257288730613`", ",", 
     RowBox[{"-", "0.02161510471016153`"}], ",", "0.08962101742751791`", ",", 
     
     RowBox[{"-", "0.06146273024307271`"}], ",", 
     RowBox[{"-", "0.04537411849730513`"}], ",", "0.046354874324210496`"}], 
    "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
    "0.038777995083748455`", ",", "0.02011126790617698`", ",", 
     "0.03171282786552979`", ",", 
     RowBox[{"-", "0.02119577092676374`"}], ",", 
     RowBox[{"-", "0.11584480325631162`"}], ",", 
     RowBox[{"-", "0.0852008282456183`"}], ",", 
     RowBox[{"-", "0.019692620635095283`"}], ",", "0.060305579776825664`", 
     ",", "0.13900718519157884`", ",", "0.042519020636048614`", ",", 
     "0.0224204002929064`", ",", "0.10698379079413546`", ",", 
     RowBox[{"-", "0.06146273024307271`"}], ",", "0.42595757322370775`", ",", 
     "0.04910944991502509`", ",", "0.008231967311515933`"}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{
     RowBox[{"-", "0.09547902532010263`"}], ",", "0.018731335725778248`", ",", 
     RowBox[{"-", "0.004236240131066993`"}], ",", "0.04434172578337779`", ",", 
     RowBox[{"-", "0.13323043482101096`"}], ",", "0.025914691011554546`", ",", 
     RowBox[{"-", "0.015561771238143325`"}], ",", 
     RowBox[{"-", "0.05965461318105857`"}], ",", "0.10344209181122069`", ",", 
     
     RowBox[{"-", "0.11777739758535846`"}], ",", "0.0429870797287381`", ",", 
     "0.04935359797819296`", ",", 
     RowBox[{"-", "0.04537411849730513`"}], ",", "0.04910944991502509`", ",", 
     "0.27907083005196964`", ",", 
     RowBox[{"-", "0.08128774667077497`"}]}], "}"}], ",", 
   RowBox[{"{", 
    RowBox[{"0.04702923375295084`", ",", 
     RowBox[{"-", "0.01984551726410124`"}], ",", 
     RowBox[{"-", "0.04335199254884713`"}], ",", 
     RowBox[{"-", "0.009228998078081968`"}], ",", 
     RowBox[{"-", "0.0078067952587123745`"}], ",", 
     RowBox[{"-", "0.010662442778406275`"}], ",", "0.01206918949756452`", ",", 
     RowBox[{"-", "0.045350788983290515`"}], ",", 
     RowBox[{"-", "0.022517333726499892`"}], ",", 
     RowBox[{"-", "0.038989315733200074`"}], ",", "0.034427682170838234`", 
     ",", 
     RowBox[{"-", "0.0474221761366256`"}], ",", "0.046354874324210496`", ",", 
     "0.008231967311515933`", ",", 
     RowBox[{"-", "0.08128774667077497`"}], ",", "0.1568848536812223`"}], 
    "}"}]}], "}"}]], "Output",
 CellChangeTimes->{
  3.734447052547162*^9, 3.734447104081974*^9, {3.734447386642874*^9, 
   3.734447395330525*^9}, 3.734447512978507*^9, 3.7344475528851423`*^9},
 CellLabel->
  "Out[347]=",ExpressionUUID->"e5dc1483-1f4a-486e-a685-6d75b00ff5e2"]
}, Open  ]]
},
WindowSize->{1330, 732},
WindowMargins->{{18, Automatic}, {Automatic, 18}},
FrontEndVersion->"11.3 for Linux x86 (64-bit) (March 6, 2018)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 447, 14, 31, "Input",ExpressionUUID->"d5a382e7-4383-492c-bea6-cfaf2b22c9c3"],
Cell[CellGroupData[{
Cell[1030, 38, 605, 18, 39, "Input",ExpressionUUID->"fc4bd527-4630-4b4b-8294-64045ce8369e"],
Cell[1638, 58, 747, 22, 79, "Output",ExpressionUUID->"69feaccc-ee6e-41dc-a156-61a7acec4119"]
}, Open  ]],
Cell[CellGroupData[{
Cell[2422, 85, 1013, 32, 39, "Input",ExpressionUUID->"f9ca7c98-275b-495d-b8cf-300968ef81d2"],
Cell[3438, 119, 1534, 50, 43, "Output",ExpressionUUID->"a979fe05-e1a3-459b-b8ff-242ed53d7a9d"]
}, Open  ]],
Cell[CellGroupData[{
Cell[5009, 174, 1265, 33, 39, "Input",ExpressionUUID->"c04dc9c1-4ad5-4ea0-b8a6-f79e010285c4"],
Cell[6277, 209, 1345, 41, 65, "Output",ExpressionUUID->"0467c94a-dc8d-46b5-b3bd-048819302822"]
}, Open  ]],
Cell[7637, 253, 775, 20, 31, "Input",ExpressionUUID->"cc17300f-6b33-4c64-876f-bc9dbc35ee7a"],
Cell[CellGroupData[{
Cell[8437, 277, 928, 27, 39, "Input",ExpressionUUID->"ab43b56b-32bb-40d8-a152-fc31f9268d37"],
Cell[9368, 306, 402, 10, 40, "Output",ExpressionUUID->"ecda54ee-d4cc-47c1-ab49-18e2fcdd7bf3"]
}, Open  ]],
Cell[CellGroupData[{
Cell[9807, 321, 819, 21, 39, "Input",ExpressionUUID->"642d4fda-c92c-4f5e-8df5-412c73634b76"],
Cell[10629, 344, 1183, 30, 83, "Output",ExpressionUUID->"55501bc2-6a0a-4392-b2f0-241683335d9e"]
}, Open  ]],
Cell[CellGroupData[{
Cell[11849, 379, 664, 18, 31, "Input",ExpressionUUID->"771b659d-cc63-4ceb-ba97-d2825564331a"],
Cell[12516, 399, 1201, 31, 83, "Output",ExpressionUUID->"d924e63b-0dc4-4833-83db-2b864132564a"]
}, Open  ]],
Cell[CellGroupData[{
Cell[13754, 435, 203, 3, 31, "Input",ExpressionUUID->"0b0e8934-aa92-4fe3-a02b-08310bbd3183"],
Cell[13960, 440, 257, 4, 35, "Output",ExpressionUUID->"41138d64-0bbb-46a3-b541-a5ac5dfa73f3"]
}, Open  ]],
Cell[CellGroupData[{
Cell[14254, 449, 446, 12, 39, "Input",ExpressionUUID->"3a2b8edb-85d7-4fbd-88f6-9846f750f29e"],
Cell[14703, 463, 269, 7, 37, "Output",ExpressionUUID->"e9d6adb9-b457-4d36-8c0a-6bc9913646bf"]
}, Open  ]],
Cell[CellGroupData[{
Cell[15009, 475, 803, 21, 39, "Input",ExpressionUUID->"debfdd9c-0082-4632-872d-ed2a4b4c0f38"],
Cell[15815, 498, 248, 3, 35, "Output",ExpressionUUID->"7813d4f5-6c53-4c3a-a0be-943b0dad909b"]
}, Open  ]],
Cell[CellGroupData[{
Cell[16100, 506, 761, 19, 39, "Input",ExpressionUUID->"9897ef18-b864-40be-b817-432256680ce9"],
Cell[16864, 527, 9854, 179, 246, "Output",ExpressionUUID->"4f7ee14d-12a7-454f-b3a6-5baf84da3966"]
}, Open  ]],
Cell[CellGroupData[{
Cell[26755, 711, 1001, 27, 39, "Input",ExpressionUUID->"b9abf49d-46fd-4dd7-83c5-30661af69ba6"],
Cell[27759, 740, 9820, 179, 246, "Output",ExpressionUUID->"20a8654a-797d-4e6c-b763-99591d7f6cbf"]
}, Open  ]],
Cell[CellGroupData[{
Cell[37616, 924, 386, 11, 39, "Input",ExpressionUUID->"c59d655e-6965-4c7a-9300-deac08b8d5f6"],
Cell[38005, 937, 367, 11, 37, "Output",ExpressionUUID->"98d63f74-fe5a-4ae9-8ed0-5362fb6cba51"]
}, Open  ]],
Cell[CellGroupData[{
Cell[38409, 953, 844, 20, 39, "Input",ExpressionUUID->"4fc9b904-b65e-406c-9d16-1ebafc7f92fc"],
Cell[39256, 975, 23763, 408, 246, "Output",ExpressionUUID->"409a9fc0-315c-4211-95bf-d93c8e697053"]
}, Open  ]],
Cell[CellGroupData[{
Cell[63056, 1388, 1001, 27, 39, "Input",ExpressionUUID->"b6ff0a95-3e62-4896-8924-31ba8f285cae"],
Cell[64060, 1417, 9820, 179, 246, "Output",ExpressionUUID->"bef3a898-f5dc-46b2-a070-f2c3997001ff"]
}, Open  ]],
Cell[CellGroupData[{
Cell[73917, 1601, 305, 8, 31, "Input",ExpressionUUID->"b7d9da66-d9fa-4096-85ab-b614aee68d27"],
Cell[74225, 1611, 931, 29, 35, "Output",ExpressionUUID->"d233d87d-f829-465f-906e-5727acfbfe18"]
}, Open  ]],
Cell[CellGroupData[{
Cell[75193, 1645, 336, 8, 31, "Input",ExpressionUUID->"d6ad40dc-f675-4087-b332-4080336ac54d"],
Cell[75532, 1655, 206, 4, 35, "Output",ExpressionUUID->"42627eb9-00a6-46af-8897-51614e38f323"]
}, Open  ]],
Cell[CellGroupData[{
Cell[75775, 1664, 830, 22, 39, "Input",ExpressionUUID->"d394aa4c-8613-4d1a-83a7-6a9e460d602d"],
Cell[76608, 1688, 1790, 52, 37, "Output",ExpressionUUID->"c93e04f0-31dc-4f42-b7ce-ff758415db0e"]
}, Open  ]],
Cell[78413, 1743, 156, 3, 31, "Input",ExpressionUUID->"86ecb7f0-8a5a-49a9-8632-b35287cb05ce"],
Cell[78572, 1748, 129, 3, 31, "Input",ExpressionUUID->"142781de-b484-41d6-854e-a5066056ccec"],
Cell[78704, 1753, 210, 4, 31, "Input",ExpressionUUID->"d8a4f652-0088-44dd-bea5-3b91a54f005b"],
Cell[78917, 1759, 322, 8, 31, "Input",ExpressionUUID->"bef00eeb-7dc0-4119-b2dc-9e8e77c1c0f9"],
Cell[CellGroupData[{
Cell[79264, 1771, 445, 13, 39, "Input",ExpressionUUID->"29ab42c0-ee58-486e-b7e3-16c049180c04"],
Cell[79712, 1786, 18935, 372, 253, "Output",ExpressionUUID->"37cb2771-8d82-4a60-8b09-ffb835974a85"]
}, Open  ]],
Cell[98662, 2161, 1123, 33, 31, "Input",ExpressionUUID->"9a0a6487-cd13-4e31-ba94-320d7940a893"],
Cell[99788, 2196, 580, 15, 31, "Input",ExpressionUUID->"136204c3-5db9-4e55-9153-7dfd4b00ee7f"],
Cell[100371, 2213, 493, 11, 31, "Input",ExpressionUUID->"e4ea03c5-a998-4717-b39d-4498499c374c"],
Cell[100867, 2226, 720, 15, 31, "Input",ExpressionUUID->"e44d0944-b7b8-4d56-ba4d-ad9caffcd6ec"],
Cell[CellGroupData[{
Cell[101612, 2245, 435, 10, 39, "Input",ExpressionUUID->"38f93129-3da4-4d03-9c2c-70bbe0590095"],
Cell[102050, 2257, 241, 3, 35, "Output",ExpressionUUID->"b285ca7f-8cd9-46e5-a9ac-ff45fbfbdf20"]
}, Open  ]],
Cell[CellGroupData[{
Cell[102328, 2265, 1063, 20, 39, "Input",ExpressionUUID->"eb3339cb-6e55-44e0-8fc1-0354909b03fb"],
Cell[103394, 2287, 571, 8, 35, "Output",ExpressionUUID->"53849444-06ae-414a-b0b8-a41886e86282"]
}, Open  ]],
Cell[CellGroupData[{
Cell[104002, 2300, 430, 11, 33, "Input",ExpressionUUID->"6fe0e92e-f0e9-4356-98f0-e4bbefe7836a"],
Cell[104435, 2313, 360, 9, 66, "Output",ExpressionUUID->"987c4967-c9e6-41b9-841a-fa8f4e84ae73"]
}, Open  ]],
Cell[CellGroupData[{
Cell[104832, 2327, 685, 18, 39, "Input",ExpressionUUID->"4eec5607-fc41-4732-b949-331a87466e72"],
Cell[105520, 2347, 1712, 45, 64, "Output",ExpressionUUID->"88ded28c-c9fc-45d1-b8e3-cb8875818cb8"]
}, Open  ]],
Cell[CellGroupData[{
Cell[107269, 2397, 398, 11, 39, "Input",ExpressionUUID->"29edd88d-acaf-449a-9e26-e4da337d9645"],
Cell[107670, 2410, 153, 3, 35, "Output",ExpressionUUID->"9e267547-bb7b-4f2d-aa91-62d06e7bc212"]
}, Open  ]],
Cell[107838, 2416, 470, 12, 31, "Input",ExpressionUUID->"0c99d37d-271a-4ed6-a3de-b24035a507ba"],
Cell[108311, 2430, 743, 20, 31, "Input",ExpressionUUID->"087181e7-293a-40ff-adfe-07360a5e4cf2"],
Cell[109057, 2452, 495, 13, 31, "Input",ExpressionUUID->"8ae00e1c-ab1b-4ee2-b490-86f3a85903b9"],
Cell[109555, 2467, 1393, 39, 31, "Input",ExpressionUUID->"d32c840e-9383-40ab-bfec-68e9cad9efe2"],
Cell[110951, 2508, 1235, 33, 62, "Input",ExpressionUUID->"8adf49d5-1518-421b-a2a3-f8fdec6da16f"],
Cell[112189, 2543, 1007, 31, 31, "Input",ExpressionUUID->"386b25eb-c542-4740-abce-ea3a1151ea4e"],
Cell[113199, 2576, 986, 22, 31, "Input",ExpressionUUID->"90e67cbe-ca43-467e-9ff8-9727c558d8fb"],
Cell[114188, 2600, 980, 32, 31, "Input",ExpressionUUID->"09c9c859-67c4-424c-9bdc-57a171c376f8"],
Cell[115171, 2634, 254, 6, 31, "Input",ExpressionUUID->"c8a49ed5-0d55-4e26-8fcd-bef88bf4c12d"],
Cell[115428, 2642, 637, 18, 31, "Input",ExpressionUUID->"3f436140-1785-4ab3-9631-c0e22702f5fd"],
Cell[CellGroupData[{
Cell[116090, 2664, 272, 6, 31, "Input",ExpressionUUID->"1decfe19-4d2f-4ac1-9555-8f8fd9cb17b6"],
Cell[116365, 2672, 11088, 218, 565, "Output",ExpressionUUID->"e5dc1483-1f4a-486e-a685-6d75b00ff5e2"]
}, Open  ]]
}
]
*)