1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
|
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 176759, 3347]
NotebookOptionsPosition[ 174365, 3297]
NotebookOutlinePosition[ 174757, 3313]
CellTagsIndexPosition[ 174714, 3310]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{
RowBox[{"f", "=",
RowBox[{
RowBox[{"h", " ", "m"}], "+",
RowBox[{"r", " ",
SuperscriptBox["m", "2"]}], "+",
RowBox[{"u", " ",
SuperscriptBox["m", "4"]}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.802791902918301*^9, 3.802791927748726*^9}},
CellLabel->"In[1]:=",ExpressionUUID->"753c512e-9306-40b6-9314-d26559d3dcb9"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"s", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{"f", ",", "m"}], "]"}], "\[Equal]", "0"}], ",", "m"}],
"]"}]}]], "Input",
CellChangeTimes->{{3.802791929638956*^9, 3.802791944475851*^9}, {
3.802791975576153*^9, 3.802791975797247*^9}},
CellLabel->"In[4]:=",ExpressionUUID->"93804cf2-11dd-4055-995c-81663300bb65"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"m", "\[Rule]",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"2", " ", "r"}],
RowBox[{
SuperscriptBox["3",
RowBox[{"1", "/", "3"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "9"}], " ", "h", " ",
SuperscriptBox["u", "2"]}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "3"], " ",
SuperscriptBox["u", "3"]}], "+",
RowBox[{"27", " ",
SuperscriptBox["h", "2"], " ",
SuperscriptBox["u", "4"]}]}]]}]}], ")"}],
RowBox[{"1", "/", "3"}]]}]]}], "+",
FractionBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "9"}], " ", "h", " ",
SuperscriptBox["u", "2"]}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "3"], " ",
SuperscriptBox["u", "3"]}], "+",
RowBox[{"27", " ",
SuperscriptBox["h", "2"], " ",
SuperscriptBox["u", "4"]}]}]]}]}], ")"}],
RowBox[{"1", "/", "3"}]],
RowBox[{
SuperscriptBox["3",
RowBox[{"2", "/", "3"}]], " ", "u"}]]}], ")"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"m", "\[Rule]",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"\[ImaginaryI]", " ",
SqrtBox["3"]}]}], ")"}], " ", "r"}],
RowBox[{"2", " ",
SuperscriptBox["3",
RowBox[{"1", "/", "3"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "9"}], " ", "h", " ",
SuperscriptBox["u", "2"]}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "3"], " ",
SuperscriptBox["u", "3"]}], "+",
RowBox[{"27", " ",
SuperscriptBox["h", "2"], " ",
SuperscriptBox["u", "4"]}]}]]}]}], ")"}],
RowBox[{"1", "/", "3"}]]}]], "-",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"\[ImaginaryI]", " ",
SqrtBox["3"]}]}], ")"}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "9"}], " ", "h", " ",
SuperscriptBox["u", "2"]}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "3"], " ",
SuperscriptBox["u", "3"]}], "+",
RowBox[{"27", " ",
SuperscriptBox["h", "2"], " ",
SuperscriptBox["u", "4"]}]}]]}]}], ")"}],
RowBox[{"1", "/", "3"}]]}],
RowBox[{"4", " ",
SuperscriptBox["3",
RowBox[{"2", "/", "3"}]], " ", "u"}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"m", "\[Rule]",
RowBox[{
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"\[ImaginaryI]", " ",
SqrtBox["3"]}]}], ")"}], " ", "r"}],
RowBox[{"2", " ",
SuperscriptBox["3",
RowBox[{"1", "/", "3"}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "9"}], " ", "h", " ",
SuperscriptBox["u", "2"]}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "3"], " ",
SuperscriptBox["u", "3"]}], "+",
RowBox[{"27", " ",
SuperscriptBox["h", "2"], " ",
SuperscriptBox["u", "4"]}]}]]}]}], ")"}],
RowBox[{"1", "/", "3"}]]}]], "-",
FractionBox[
RowBox[{
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"\[ImaginaryI]", " ",
SqrtBox["3"]}]}], ")"}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "9"}], " ", "h", " ",
SuperscriptBox["u", "2"]}], "+",
RowBox[{
SqrtBox["3"], " ",
SqrtBox[
RowBox[{
RowBox[{"8", " ",
SuperscriptBox["r", "3"], " ",
SuperscriptBox["u", "3"]}], "+",
RowBox[{"27", " ",
SuperscriptBox["h", "2"], " ",
SuperscriptBox["u", "4"]}]}]]}]}], ")"}],
RowBox[{"1", "/", "3"}]]}],
RowBox[{"4", " ",
SuperscriptBox["3",
RowBox[{"2", "/", "3"}]], " ", "u"}]]}]}], "}"}]}], "}"}]], "Output",\
CellChangeTimes->{{3.802791936044683*^9, 3.8027919446370907`*^9},
3.8027919760843973`*^9},
CellLabel->"Out[4]=",ExpressionUUID->"89c83715-b44f-4979-96d2-6c5c480657a5"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ss", "=",
RowBox[{"Series", "[",
RowBox[{
RowBox[{"1", "/",
RowBox[{"D", "[",
RowBox[{
RowBox[{"m", "/.",
RowBox[{"s", "[",
RowBox[{"[", "3", "]"}], "]"}]}], ",", "h"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"h", ">", "0"}], ",",
RowBox[{"u", ">", "0"}], ",",
RowBox[{"r", "<", "0"}]}], "}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.8027922300043983`*^9, 3.8027922905050077`*^9}, {
3.8027924466692543`*^9, 3.8027924546582403`*^9}},
CellLabel->"In[18]:=",ExpressionUUID->"36b88d47-8535-4327-a5fd-2bda948247f6"],
Cell[BoxData[
InterpretationBox[
RowBox[{
FractionBox[
RowBox[{"6", " ", "\[ImaginaryI]", " ",
SuperscriptBox["2",
RowBox[{"2", "/", "3"}]], " ",
SuperscriptBox["h", "2"], " ",
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{
SuperscriptBox["r", "3"], " ", "u"}], "h"], ")"}],
RowBox[{"4", "/", "3"}]]}],
RowBox[{
RowBox[{"(",
RowBox[{"\[ImaginaryI]", "+",
SqrtBox["3"]}], ")"}], " ",
SuperscriptBox["r", "4"], " ", "u"}]], "+",
FractionBox[
RowBox[{"4", " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"\[ImaginaryI]", " ",
SqrtBox["3"]}]}], ")"}], " ", "r"}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[ImaginaryI]", "+",
SqrtBox["3"]}], ")"}], "2"]], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "r", "]"}], "2"],
SeriesData[$CellContext`r, 0, {}, 0, 2, 1],
Editable->False]}],
SeriesData[$CellContext`r, 0, {
Complex[0, 6]
2^Rational[2, 3] (Complex[0, 1] +
3^Rational[
1, 2])^(-1) $CellContext`h^2 $CellContext`r^(-4) $CellContext`u^(-1) \
($CellContext`h^(-1) $CellContext`r^3 $CellContext`u)^Rational[4, 3],
4 (1 + Complex[0, 1] 3^Rational[1, 2]) (Complex[0, 1] +
3^Rational[1, 2])^(-2)}, 0, 2, 1],
Editable->False]], "Output",
CellChangeTimes->{{3.802792226746502*^9, 3.802792290870102*^9}, {
3.802792447247487*^9, 3.802792455208564*^9}},
CellLabel->"Out[18]=",ExpressionUUID->"6128b3bc-b4f3-41b8-beb9-30626167fdbc"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"Normal", "[", "ss", "]"}], "\[Equal]", "0"}], ",", "h"}],
"]"}]], "Input",
CellChangeTimes->{{3.802791977901902*^9, 3.802792015525413*^9}, {
3.8027922959153957`*^9, 3.802792302231861*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"0f64c6d2-37ea-4770-917b-01d655ee05a5"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"h", "\[Rule]",
RowBox[{"-",
FractionBox[
RowBox[{
SqrtBox[
FractionBox["2", "3"]], " ",
SuperscriptBox["r",
RowBox[{"3", "/", "2"}]]}],
RowBox[{"3", " ",
SqrtBox["u"]}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"h", "\[Rule]",
FractionBox[
RowBox[{
SqrtBox[
FractionBox["2", "3"]], " ",
SuperscriptBox["r",
RowBox[{"3", "/", "2"}]]}],
RowBox[{"3", " ",
SqrtBox["u"]}]]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{
3.802792212112611*^9, 3.8027923025103807`*^9, {3.802792448366267*^9,
3.802792455388856*^9}},
CellLabel->"Out[19]=",ExpressionUUID->"1168cba1-72d9-4628-8d4a-c2a8a405b1d0"]
}, Open ]],
Cell[BoxData[
RowBox[{"Plot3D", "[",
RowBox[{
RowBox[{"Evaluate", "[",
RowBox[{"D", "[",
RowBox[{
RowBox[{
RowBox[{"m", "/.",
RowBox[{"s", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "/.",
RowBox[{"u", "\[Rule]", "1"}]}], ",", "h"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"h", ",",
RowBox[{"-", "1"}], ",", "1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.802792505696527*^9, 3.802792548588385*^9}, {
3.802966706726089*^9, 3.802966730514402*^9}, {3.8029667663981867`*^9,
3.802966766531074*^9}},
CellLabel->"In[25]:=",ExpressionUUID->"fb5ba0f9-929f-4175-a8d9-fe5d7fde3e32"],
Cell[CellGroupData[{
Cell[BoxData[
Graphics3DBox[{GraphicsComplex3DBox[CompressedData["
1:eJysfXVUVcv7Pih2i5iIoqDUtcV2TAQTUVGxMLABA7EQ7EYFBbsAEyxUREBG
DtJ9aA556A47+XFlv+++zGGv7/qs9bv/nMXj3Nmzn3nnnbdmtuoaSyOzJnJy
cs6t5eSa1v2qZsx5WVtbSeE3/clnx7XzA+h6q+dXvcxLER8wO9nP3UxEH7dR
PGguKUA8pWr49ikXA2mFy671agZSxHsZr/muJvlAzf72I0HctSg+m0wI5tqL
EY/reWLNhzchHC5CfEGTatNZemFUjvsPcOvmz3anZodDewL40FtJqb/3RUL/
iF/u90/Q3qbRMB7En6fdv97cLAbGj3jkzZtGy6bFwvsivrHLnH7lHrHAD+KZ
I7+YDc2PhXEjfkz+wtTmpYgjr0+MS0Znmojwb/i93WTxFJurgcgz4HK2Qx4O
//4BeQZ8xOq9et1tgpFnwEuuSweV9AtFngEf9vbeqBZlYcgz4J8OaPX6FBeB
PAMevz6hv3NYFPIM+IALP4JOvI9BngEPLaxK0I2ORZ4B7z+/R/bMW3HIM+Ce
qpGWFkSMPAO+c7zO5nuuOG7EdQ9dVAgLRLlBvG221Tvju7w8AX+Hg4d+MHQM
xPcEPFKsmJ/aIgj/ht/3S4yWdHgcjDwDXhUwLLPXgVDkGXCbjT9MrxwJR54B
L3PU84v0i0SeAW+vo7e9Zb8Y5Bnwrf7G2o5xscgzjrPLd0fbTmLkGfB1Wbnu
8uPikWfAR2z8vrX98ATkGXGDe5fksxKQZ8DLXWYrv9BJRJ4Bz1i1M+Ba90Tk
GfDAaBI57GkC8gw8rRsdtndu8yDkGfB9s7a2WBsUjO8PuLFbzbRRgaH4N/w6
L6joptsyAnkGXKenkvmM61HIM+Aq2n9UNxDkDfHQYddVvBPjkGfAK3/YaOsc
jUeeAVc7UkXnDE1EngG/abogNPpVEvIMuK79wOwBGcnIM+Bdj+1oomSXgjwD
3v7cgbltT6Ygz4CLWxy2PN8sBXkG/EaW9+zwXsnIM/CxN2hhGo0MRp4B13f1
uL2xJhR5Brxf+sXQaqsI5AXw3Z+1PXXWoz7E3+5zx078VRqLPAPeMSrzwpFS
MfIM+FQi8QocnIg8A65jGnLZwi0ZeQZcVFjS9YlSGvIM+Ox7I3vs0kpHnnE8
hXtu6u3LQJ4R3/2BFAdkIM+Ab7Xbrba6bQbyDPjwyTqTw11xH0J8QHDZy/7Z
qYw8i+n9CPXm61uGMfIspl12ZK/vEBTByLOY1twtmG+pFMPIc50+EGvkbHaI
Y+RZTJsbXTd41yGBkWcx7Vfz0upmn2RGnsVUd0CbXdbRaYw8i6ne5wtfyn9k
MvIsplb3vfyG2ecw8lzXPjfpH78OuYw8i6lHZvL464dyGXmuG6fIT/FuspSR
57r2igtOfLDJYeRZTPsWfpO7F53FyLOYisfnHU31TWd4FtHQLXurLT9FMDyL
6IeqnyOe34lheBbRH5l2ITUaYoZnEb0WvPuk5vhEhmcRDS9eaOJimsrwLKJF
Z7qdDemWxfAsov6/FVr2OpjL8CyiRi7mlqHORQzPIqq8R6Vpq23lDM8iekdl
bdHHvAqGZxEdfm58t6AFZQzPIjrJY0Rp9coihmcR1cucF9GR5jE8i6iJ1qzI
u/E5DM8iOkhsemthJ+Qf3yO809IBcnKxvD3B/dejZEPy48f8vgW4yuyuN9av
T0KeAVfL6jVVTg7XKeLd//bDy33D9mXIL+AumUn700bXQP/+jeMi0jgulsGB
Z4H+EYfxAM8N3xftLcR7cu8FPAMe+ZfPbFaeyelXkftU28ez8kyW7rswV84u
mZVnYrNGu2JXiyxWnslY79LdD6IKWXkmDd+rxh/wnx3CKj/ExRNGPsmtxuWT
eDQun2Rs4/JJpjQun2RG4/JJljUun2QII58wrjTvtlVm21NYfUsm0sm2BmNz
WH1L1lyyzu27oZrhQUzuPp05yHh2NMODmKx90Kg+JIsb14fkTeP6kLRqXB+S
p43rQ6LeuD4kiYw+hOdrd5mmekIxF3koSJwn1b9XJ9f+y/uczvXG94L2wSWN
7qfEu/H9lExsfD8lvRvfT4lV4/sp0W18PyVa3H7K2FeEnmrUviInVjdqX5HT
jdtXZFzj9hXp27h9RdIat6+IK2dfcfIz0SllWWfHuv5+rjZrnVLO24fwHNq1
UTuc2DRuh5O1jdvhZHTjdjipadwOJzmN2+FExNnhIP/w/w0+du/62gU+KCeA
f73VqL9GzIoa9deIceP+Gols3F8jxxv31whp3F8jHTh/DcYP/65S9elDQPlL
HD/g7V0b9etJlXqjfj1RkjTq15PYxv16crBxv54UNO7XkwucX1/fD8hvBL0Y
rr6238gU/Bt+T3snz3oSlM6NxxPx3ksvqZ8bCXrJkwC+blVL8z+GedA/4oPV
rljE3y6kff+OIwtx+YilvdrYFNDZi6d91HfMQ7z18w1tvBbk0Zbvc9o6qhUj
rrx/dc7jplJoj+MKjdrVzEycCP0jnkZTSgJd0/B9AZ9WWiK3ozob3wfwg3/9
vgL8G37r/bUqfF/AG+7jETI48MDiwAPg90VNcjaMrkAeAH8++LWD6Ygi4AGf
r3z8sXeXL0ksD2Su0/0gC+sMlgfydd6aPgcz8lgemH0Z34sIvBcReC8i8F7k
YePvRTy59/qgYTdA4lWOz9HZdOKU+Z9kfF/A3bss66SzNBvfF/A2Qz2C/ZqW
sXJIlM0alUMyoXE5JC0bl0MiIIcE5BDGD89ZZ1ASeExNiuMHnOUZ+tujdW/N
GeNY7Ad+94k3HX22mo8nAm7t1f5u97gA+JsAfvau3h75sDhc74Anh3W6pucX
h3IMcmEQEKUyxCgBcZCLbm/kXS/2TsVxQvsti45tXbqElxto/zg6vtfyGek4
H9Det4OLz8fJqE+w/bWFnaad0chCXqD9uW3jXvaLTEUc2o8/NXrNaftsHDfg
I4aG6P0icYjDOu5SNfaz9b0EbAe/RqcWlvS1iWfkX0zzmuUeVTqaiP8//Lvq
zQ39VqskMfpBTN03KJqdy01h9IOYfjBWdd2Wls6sIzEd0XmB2Ux71DOox3a8
+BQjl1zArCMxndYl2X6gZS4r59RruarLuqw4Zr2LaNk+wzfPnHEfx/ar2smH
nzBMYvSAiC5Muak5RT0Zxw3tXVL9z5iYsHpSRK1n9xj9r98Ef0P79M/tupju
yWL4EVGP/R1Tz6/MYfgR0Y8V1acuVeYz/IhoslirOn4MbzdDf9OOnTqoaYd+
BOIivcjdipMKGTswgra5qjnQb3c+o3/q/N+g7ZotVpUw+kdEJxY72d3eW4Dr
GsYr19FjdnXbPFxf0P9T09VFnTOyEEe9LT4nf7FTDquf6QKL7vM7mPP+KeDL
cjRu3PsVj+3RXyu6bd1tBdpd2H50mmX2WvkUnHdov8f+tNW/ctjQz/KkSl4f
VDIzeP3P+n0w79B+ibrzVqcDuTjv0F6Z8yuBL2jv9DfOWYrzzvqtDeMP/H6H
/Ar4ywLtBf1oof1XyL+G9k8cuypm96jGdce2B/lpyFsVyg/gu//yX8TKD2Hk
B9+jm1vPga+yxYyf6ElmHHe3sPBKYNqLiHSy2oY/zRNZ+SHKV5f1DA5LZeRN
RL6dNg42fJHGyg/50PRRluK4HFZvEMUdVnn/xgcY+SHrB9k8+k5LWL1B/tw2
/rZXu5qVHyIwjwJ2hYi8TGy43oXsDfg9xOlJZh7JC2Yeof8SpWTz8i/AoxTb
B9cMcfUoK2H8L08iaTY1oWVNPhOXjiC2c3Z/vuwsYeZFTIaP+HRPcRfr/0aQ
7Ip+LbrM4ecL9z39Vhe6rchj5ktMnHUGh/HrS4rtgQeYr5Dz6557fYqT4Rna
97+7PDHOJ5/dZ8kdZp+F30XcfsroT9Ke0Z/Q/p283q2Q6GzGv44gHSNzf3wc
iPsUtld+6+Ywus5Oa5i3SiIfZ2UG/LteGtp7EhIsGhvyb1yrYf4riZScLL4w
Y0YGyg/gSiH19kZDPzeJvJZrMzQnPIO1K0gkZ1fA3/CbbriuT4tXafhcwM/O
Xnf13/XO2D/EdGO9/cPYOUSrY72dA+2Bj2az545e9gH3V8R7+c05qaqZwLxX
AZF6h46I2RGH7UGvXJ7X7ZzV5jh+PXP7z8eekWMj+kZhe8AHO13rvCYjGtuD
PWj1tuBg1VP06xAvmmzaznNKFGtPErAn4W9obxleusa4grdXgb+CmjmvrVIC
2PZ0K9e+of8oof980znDx2nBbpdQzy/9cydKUxg9IKHb8u/2MRwmwfnF/HzQ
bFtRVTqjr8T0xokefaoozz/gQ3cO2li1ScrobRHtOev2nk7Dc5n9XUQHJeQZ
7LqRje0b7td5TP8isvrKopKD7yvY55Lz3HMZe48Yc/ZeQ7tFTPKjZ238NTOX
sVvEpPd6+dZtR0tZHsj8hjwgvq3V3IFr3mfgeoF//yU+cdhxIZ/ngufUdizd
YrmPjyPBe/e5UJJ8UwrzWDMReLoz/tIDpyA+/wv40zlBJwPko1l/hGQ28EfE
aOf/WfZ2aVP1bCYfF0FnS/OPxwVKWb1HY+/U6z1Gz9MPjet5msbpecY+J7N7
1tvnjP1J5jduf5LQBvYnyi0Z0lvtr9wy70W+cO/VMM6WRB7GJO+VBmcz45ES
e41nZrwd6Ilxp/FHhve6ERxNRX95hPl0oTve6D8/mp/JyUkC4nd6D753Kg78
32DE6/N9lfg3/Dbcf30Ji9fLTYwMnmq2L7i2thD/P1PVTb8vTUijvX+ne3iZ
5yIe026h0bHSHBw/4N3S5l2ZW1aO/QMO/dfLXyriqyPHtMxcXUWdortl6zuW
4f+3bXPNFvkW6TgewF3a2D9etCiffupY0bOzfi7NDz76W39WLGHfF9rHtn52
Wi5aiv3D89uq2fwxMSnB9oAHbs9tXtRXgjjVb9/XUS2HXDSbvfLW+0TER/U0
WKBmUELGdvJQiu0Zi7xzz6XOI0pajZiVzY6HFreqHw/XnsB8Drrmv2/ikALg
E3GXaK8L/ZsXA/+I6zxyer5WswCfxz2HPvtbzyPFv+G3vg6nCP9m5x3GA/9e
X1eDciUjJ9w4ZHBObmVw4BH6H7nb7c7nVqX4vtDecZyLxZLiKrr/hfsYiVc+
tjca+k/i9LUFyAO0X+fcbP0B1RLoH8f7Z8Kvea8ug55PRbxmRtZ56YIidn2R
zM1Hcs06VWF7Vm6BZ2iPPGwZOFqyJJiW9VM7br7AjbB8su2Z9SjTHv497W49
/wzP7HhkcIZ/GRz6X7JoRRfLd9Us/+Qixz8n3/j8Ncf/2NqpSWBeEB82S/W8
5b5cxGFceZdX63eprsB5gfasHgC8ffmO9gE9S3Cc0I9lVeQWhTH5OE7Aj58N
W7WubT6tOVyw1VxSgf+fT8qEzd2y03H8gG/Qf7dE91Ih6hPAYTzQHsYFOPQP
z782TiM+M6Mc54vrj3yfEf7O+iLqAdQPq3bplffTjsH3Bzl6ubvz5hX5uYyc
iKjdk8OnNlUUM+vUk6s7wriqjBw29NNl13Xj/rWvgP/uKagfBNrLrHcGJ6ze
aNyvj5Dph8Fl5JntB+YJ8IlzT6Qpjqtm9IAnOTnZcuf+jZVMHDKY7V/GL0Y9
rvxtqmTzCzZ+LqQ3UM5NHod5Vx8uwfWCcY5yhe29rQpxvfTUOuZfO78O92hq
Nrw4kEB7sEdYvxL3R0aewT7p3NxLozSVjzsDT9A+oaJrsJ1mEbaXc564vWSS
H+oL4Nv0x9r8ImM+bw79XG8eVOU/rxDXC9ilrPxAe6slm0/P+87zBfjbXu/S
FbukYHvYN5Y/G7tvQRKvr2EfUP8yoNKhXzz2A7iafbTnxOJ4bA/7Sbz5gc6J
7+IQB7vylt2UFYv7AV7jD+u3YR7TBe3nVtlTh7t14Nc7Z1+Qk5fnTU2xisLx
AF7QSuHtnrXgx9VMhPFomo/r2+lUPPIGv807nm7ZMzEA/iaAr5bSbJFxHOvX
07cN/Ppg/PXcfPpV0UEeh3Uv/7eONw/XOf770qz+v4fwOLSvr8stZe1V4jC5
q+btF7m4XmDd7eLiadBv43rDhVZb2aXrd7aQ2R8bj+PFyOCgr1m9weDYP8gT
tNdzK0+7d7CcxYk+h8M8QXvdKe9X3bYsZHEymsPBTob1/tvaYpydJ+hzCfLm
/dvpeer7fIZPtq5GTNnxr/n4Y51aoYiOF71P0Xe5jfU2YN/COn0z+v1vm6c5
uN/BeK6VBn0OTgV9V4B4ft/f/sp2fHvQM9E1Bi/0CkswrgXtB8RvPURH8HXk
8NzFrkou33rlob0NfhK7n8L8DIxyUA+7XifUqgnL3LwLaKaWaJwkmd+XPf1i
fnWq01uDNp1NspuVQ+QeqSWaWr4msI5g/21YL1HjD+tOXWeY7rBib9RjsJ4U
nBbK20ZFsuuLbGTWF8wL5B3q/26Cfl/TGavUW0alsXEDOoiLGzDxTCptEM90
QXvm47W+WkqOWKfE64NPPw91uBCA+w6sJ4OALSofcjIYu1REk3XfxIi2oN+B
7bdoWrpGTpUydoWIPqi5XhT1NI+1n2lsyQPdx3MliMO60+i4U/3ffASsd/QX
qlulFIzMZvdNqngzfdDp/lLWfqYP/ta1FjO4J1e/nc/a7XT9j/GjnwfkIM7G
bRr6xZ5cXXcR9s/G/xk7iqunLcW/oZ/6+u1q1m+lppzf2lDP8PYV7GfQfvP4
qZXJ4nLWfyHrOf8F9Abgc6R+Z/LfpDO4JxmVtjpZ+j4L5wXkOvDZ668BowqY
efQkP08sfTYiXcrYG75k98TVLi7jMmlDu0JEjnt1fmhUns3oJU/SZviwLY83
FDL9i8iwZb6TV5eXMnlbX5Iy8+62Z5uK8X1Ab4g96v1caAe/G//W+VTj8wC/
+rcuqArbQz/HRzrv9VEsYvknAvyTrRz/Df0dT/JrxED1rR2qWP+U6HL+aUN7
Jobc3mto9GhMCuKgJycVHDimqZfGxE8iyMLvhxLb95CiPQb9KI09kbMuNBtx
6Efj0g9/5Q25mF+A9p3c746+7Ctl4jARZPLcToPvZ1ajvgV90zH4sqZFWh6O
E/RwoHvfW3ZWBWgHAn97Widcuu3C+1PQj9bCA3urNLNxHkHPt3Gu6vDRnrcD
oJ87lZd95AN4/xn2yWTRgb6rN/F5JsDXpo5r/01RjO1Bn7faYPztvSZvp4F+
fte9dqf8F6zvQfz1t57tW6zh9Tno0a8OTRR0K/g4J/y7+jPbwXP68vYkxDPb
2Z4t0X0WiXFOaL9q7lXlWfPjkB/oP0110jOtSwFse7qYa8/ECelNLk7YUF+J
6ImWc96PNJMy+kdEPfwuH82dWIjrsaFfg/pQxi4CeW6ot3l7BvAi3wu9//WL
G+oZEVFMX6s+J5vfx0E+v0wtbD1Dhbf/4fnt784dsnIXH+8CPnadiL27TElm
XkgTx/p5YeKEMvoT9OoPbp2C/oTxJ7kdufpvHI/xo8nGiHo/GuQE9IZ/s4FB
wzULGXvPk0h/nizQsS1j6wrIFK6uAJ4L7zfiw1Lzs/ZFjD73JIdfBv1odpB/
LsjzwMhlTtJM3l8AHgJ3HtFQ0MdzMdj/9W35rmYBxThOGP+QM/Ovxd4rZOM5
1JiL5zTMI/jSkkiz9l+7VTPvKyJDhotvr1xRzMbZyEIuztawbsqXPF91pstG
C5BD8G/cUd/+udtxiMQ7jF4o+9TWUfkR2qU/7PxUO2/Ppn6DTPaaPwojciZF
HmdFH4gk0dNAzaCCVv+Vi0w2H4rr4OHfcyvV8DwOd0Q5qR8/5Gm9eD9CNHat
mks8jel7eqnakzeIi1N6x9r9yKWHSz/2cRwcR+S62hj4KwVwdhiV6Z/rVwb/
MCxwiZpcCt35SGuzeS3F/seMn+pVG+hPzw24Y6I25jLy4HC4KKLW9zVV/O2s
LXE+g/g6hT1dHdXyufnh88JxV59oSKLSaXC55VHzVkGIc3xx8/OB9wvysqcs
y8qhjhZNNSRdohAveVEWYmdWSHXoqir9kETEHVdmLVczALmOR/ya/4wrugpl
1OSSoabkVDriHvtnNXVUK6eX/uoDHm89pOcFL/NK+vB62i99x2w2708fjte6
6nXPHd+3of3J8wm4nk3Tk+ZnLsrEYdj5BX3I8gD6ih0nPI99Lvf/Ay4ghyzu
KdMP+Gu/fVW7Ouq/JnIdn7Y8+VjMxS/iZNZLc8NHp8wlUlhPTP9SOnrGJXVJ
92giV3jmtutjEUn6PHmqxAv0fZhM/IeVH5ATceJqE7UFITLxK3Y8P91ixkge
8PkNuVDT6t/HYgiMsyRdu5/kaJ3/3WaDKL6HCOIyMuMBe/LNmIVxtXviZeSH
jTv1NVcaIvEq5uymZMRj28kPWUaLZeKx+mZrLMrH8/EluQKD2vMXvXDf3VE9
SG+ZbTbDp4vgvOtqrXnu9fkuyiesC+PpbT7pkwQiV51gnX3Xn6CcL4jw1P3E
9u9IH1dOW6VmsAj7gXn/1b3vE6/5LxGHeWTrQ0AP7B8yR9nxtZiZryzasu+X
D7V3Q5n1xeepANf9a0+mcf8fr5cuTdm4QG18Gu7vTJxEpj3Yh8OCHWeo6dTx
HH9Tfst3L4h/4f7TMytkcEnfclrV+WmxvmMR6GPsB3C2bhbsZLY9xBNg3v32
27evdatGO/nHyJ+tHSvr7J0Rkz85fHuL43m9eUuJ/tQUIjfXoHfoAF8CcgX9
3ztvedpjcwXa1YCHJ/j2Hh6C53cmQnzvxrXMb/L2cTT0Yqa65HsGvTFy4SHz
RXx8OOWp8xy3R2V03MZDs9ROZsjMS7iB92f9s4GIb4w81dSxdRSNzT+mLlF5
ivLg9XGlfOeacjpxxrnfDqfqeH6VvOV7hBfaPZONtLs6TjvG8zOge7SdGOJz
YiJXpGB8Yt17tIfaVl8v0E/j6xrgv+7xCuMkA3i7T9LCska/NIFqeja76dXK
B/sPV1YpCG1fQnN8RhXqX+XX3eav7ypDWxdQ84g+J8xL+HU9bdOg13ajKqnF
muBku9BsIvfl6gXjzNfgD1C37jt/6msEELnpZ3IfD4B6pgLq3mfeOEmLRCJn
G/o2LeMdufU162D5sQI+rt9EV3/cPH/itzpBddmjSrRf4LnG7p+Savvk+M/R
uLXFfF0luaPh19+45iURjUxv19mviI7qq2Jr7sHrk4irtd/1A+Po3pA53R1N
X5GDP7+vGjIqnhiMnHnBvNtzOtB82Qsv+0PYflzxyflqChI67e2HL/rKgeRg
n4t33KeFgf9DLc9vWaRm9pbIXQjfd+9yLOnRJ2OUZHcSfTzgpE/tTz+ZvIB9
qH6Gvv87IrfhpAbNiCLRXQZPXnZJSt2UNuqrxdfp+b43HXqsEpFrZqurQ5fl
01djW3/Vr62b3wODJJO+UPLjcuRvB8ss+slJqVT/VwiR2zO1y/w3QcQxboiT
7txyqp7cy0DtZCaRe3lvhcWsNwT0bacEize1enX4lF70/dY3xFHzZWGoWTH9
WDZxsZpL3XoZtFjxT7YPGa+k6qjrVEH1lm99pavH67fMKaqL1I6m0ik3vyTW
ngqQWdftTxJXr23JjD6Ec3CezHnAGn/Q28rrHPu5fA1EHOxN+qyH94sYShr2
IyVpMbssRnUNZHAXpv8mqFdV5t8/p+Ajxvbgh7UNijyaMDaYOO46kxfqVUKf
vNPebe6YJpNH2/VwZLe2F17jfjE/prp0qL4j7eBv8r2V/iJs3/9xZ3OLOtwj
e+82Q/1FMucfgzV6hrVr5s/aCST7TMLXE8F+MvbDkCmrNuRr3sT+77stXfVN
v8Z/5f0JSyL1+Tjwkd2ebl3r3qv77Eppy//wAO8ZqfGwdErQJWw/Nt3ptulF
OfriSay45k0Ytp/yNFBryv4y2up8Dum6g4/T7vNXrN5ct07/LDI7t/A/+aYr
X9bee5AVRA1v7vja49UNHP9H5+HzM7ZlUBffzIonx3j5NyicvaPFrFiiv1j/
V8JVHvfT6xcjUXhDJ/1x+Jna0x37Ge/Q8pKCw0My8XfB4WADb36/9nOT07D3
I9wv4h0CLM+d9Qki11p9tdnz7B3i5gN13TqPTiQ5w4sTzyfx/Ry5uOWrx4dk
skCUPLVfBT+/gwbd7uo9OJlmdZ/e9sfX5zjOieZ57Xf0SaK2RtZTzT2fIp50
sH6c25sV/jtOxPPe14+nsn48vP7kxlNWPx7EvQp9B6YcL6bz/FbOzOkqe67E
zHRfhP0c3i8GfWJlOHvJtMpn2N7olfcd8ZBImTwL2OFDZ765c3/4FuxHv91t
seqAG2jPMvsXuVIvP4gPbKv157qmbJwT9rsldzs0//md30fAbrmWbdrKx0E2
r6HQZ/uo2dEvEX+1/Vfth9dxtGbsHe1N0f85l9Th2zOvOjvq2tBfN5z+Y0f9
GBC8MO/IM5m4X56ygl/W8WOkcf0jIv9o/l2P7HhIVf16RFyz4fuy+pxUX5s/
d6bBG6YfKb18UafrVN1IxHdecD3WZ02ujL03yED9SFRcHtXKX/VzjD6/vsDu
stsQ80DzAO+/eNosLBgdXimTV4V+j4501Jxlz7/X/rNtb4wMCaf6v21e9Ym1
wvn6pfpk5d6Lz/EXcHVLr+zR5jFkuWHWxGkXeR6OcetlSf16QZzMi5vZv87v
uHLJZtwcC/69rCR7PXvX+deGWmmXuwzm/RGjw189dtW+o6H+Te1dtj7A57qm
mK7vJX+aNPGfHD/jFL8eS991N6iQTyeiIa3KPx8/jHhKRljBhNUJ1N7CINwm
zhX73xYd06Xj/jQqGvttr78i7yfOm/fivcPyOJq087T3Qkd7xM9G7donjnAm
I14mTD2i/QhxjUOpn3p1siRDrAwHOM97gfIzaVuPWScMVpF37zbXNG/Nn3Mv
MvbOPk32kxZ9P7Zq84eXz+WTz/5ZOS+BuCnHBrdfw68LeK/I+vdCfMnX+Vuk
x/Np8hoT6+pVfD3bRqL4bdvOHNpiaG2fmtt8HOD9xomKH02y6ZMz8bOrX/F2
pr2fd6v9wwvpK4WAveQ7L1dulbfXmU4som+mfvc6ocTn15ZsNrAq71FKg/vk
hNceTmbkypf2b67d/snTh8x6j6DOS/vdP9vsvoy/H1S1Vb/dMndm3bmQbP/p
e6Xr3jD7nSftHWpv2MXoGeIBz5YXS/uly8Qz5/3q5df5aDJl1yPYmZ57bKck
+L+SiRs0b180UNGKH+dRpwPtrgyRrdMAf7a9UdenTap5f3ZEi32bHwXy5/1Z
PzfNeOiUL8dimefmUb9Bn4NMOkXz+0Wv5G8fdfJl6jTOmnbwCPoue64Q/J2m
22b0K9Pm5wX0w2r3vcOV5Pm42aAxq5XvmFXI+NfxPmLNLitk/a+2rskLe3Us
ou+t8qo2afD4tLsJbzfdl63fAP86Q3s9VTXgn7tSdLX4lvQgHSt5OHWP2Stm
nwqmF6a3OLJ1hjPiWpafMpZbpxE55TaV+5I9ENfh8A71OPafdqxTtt8vKfUq
mvRy4W3e/43b+WP+katZMv4sxIW6hn/3O9+e92dzfR7uvtuGrwdBO2HBrLKQ
5Vdk6gSUveQGr11vS1g7E/xWxzPKepalvB8E+l+5k+qNNhV8vMX+bt/lZk9l
698cL6k/LciXzY9D/Gqly2Kf8jTeLg0qODlocJ099jFu7YRjLXh/Odx75379
4wU064acKOg/9WydrnS7fD6lzm86Z71TaRbvN8F+sax+v0D+b/n0XzpPFEFX
nItLHzzADHGIF4lMT97qPOkI874uVC6p/H3vvBfYHvz2+P3dKqwX8XYCrK+Z
TdTUJ03g9VjHAaVVpc3WkdL8VbM+XOX16pgai27fF/vgL7TvWVgTrDXOjzyX
t9g65Y4PMx5PYqNSejh+3FtWP5CU+vEg3sz6o+G/+Y5Ba2KHBf5nX57G2auj
6u1VHP9Qbn+cVr8/In6hve/peW3XoH0B41/G6f879fqftd9Irk3VubCWvD5M
q5hgPPZJGHVstrioS1t+Pxo6+H6zzt5hdN4hGmnVi4+rJwbtV+kbEE6HrtBf
YPuTrzu9tOxpjVd4GB3T3LZJ/8SH2F6y9nPE/s45dMxt69jg/rx8Jt97+fbX
kGwa/nDNI7vO/PraFHzMt8ijgibenXQqT1E2Pr/tyu+g+/3v4vg7hh8dpt01
AOUC8KWlTi0G/sqlnYpro98M5e2B0Jb6u+ba1tkPZ24nfhrI6083i+YHjiuI
aHCc93sPXb7/mhG2i/XOB9ALtDwzYNxubG+aM6N60xNKqx3sLfZfvIjvezP0
XXayvx99qhBcPHchv8++PHHlxIvF/vQfT9PVW2dcwvZhx8fen9nzFfWcMPfX
2s4HsH111w5vH416TRXvRFzSsjqB7Ts5p462NH1Lx4/YaqIi3Ynt5fd18d2Y
60UvJR1adrb2GLav3tE/Z2FOFp29O7z1vuO8vvK7FHr72oAc+iJ4Z68iY14O
Iy68/S5RL6ILH1l4zk7i9fPbLx1CMuILaGzk/pSpS/j9qDro8Zc4y1Jq8Wle
a5uHvD4pvOe0MWdNOe2z74jSYyXennSYuDLzWmmdPWnv/HRdF97fJxvGf/hy
tZJuaurufCeTxzeRlq+cF0RSn0S3+17n+bjx5hnuW+7ujaDWvp3uOLrx+77V
83arz/n503NrvzWvGnIZ2xtaf3y2TeRP7U/3s906is+PpFjJ53iEv6ZauXu+
2746w9tj2zV73H//mhqYXutJ7vB5E9jfh287em78ON6fSnfrs3ykNJBu1b3e
JyCMf67z+FcHPdoG0mt7vvxoYX2Lj79Nn26ucl1Es62rN3TTvYrt9X/EtQ6R
iKjDMo0sWw++ve+78rz+ie/pYI3pWVkBvH/9PXP+qZ2rKN37J2Vu1StnbD91
2KA5N2aJaZcBWp0/zebtZ01R0NXf76R0tGm7gms6vJ3gkHzZY+LmXOrcOuia
835eHqIj1V8W3JJSrakj9m/I4vMFVUHHomtnSOm4/sFN2nbl+6ns7KreoquU
3p+14oj0Ab/eC/3EKj+u5dB9DqN2R5/j7ZxeHtr22oZ5tOtvBe/lmvw6jdh5
aoL2i0T62FurvcZlnueXBY/vP5JIqc8dDacdx3h7BvIFORuO5JhZ8+OJjRt4
4KM0m34PTrzUfxH/XIhTKceOeDahlrdbtP2PxzjplNCAwMsnTnfh7R8T+5VS
7xvF1Ey9aPW0ESn8vqlSklI8vYIOmhq4KECDt1tGFVgaRl/5QBXnR/ba8Ocu
4v36r53e6+IHGjU1oCr6y11Grj7Q4hk2ZgXuvDwAfs1s/IwdhrL5ghOZLQ7p
h/D2QLuSfvaFro40csCuTk1bGyO+4Ors6Mn2jnSyb7lEmsrGixzp1NZbevzs
cpaxkx2p1O3s0yGbjlLU5wus3N6oxtG9hdt7fZ3N+9E7F/Xe6FDnL/dVa7X/
9X/8ZchHbIj/023/SD5uALj6igDdEEO+/fFC0aGmW3PoYOmJtydX8XKo2HXx
pFeW2TSl9K3xxPv8PB7emvLL67JsPmLHqGFnj/SroEt9dt18V8XvI7NeG3v1
XlckU4f/xG9pwPNDRbTvbOe9Q/J5Oyd22/Hq7elF1O/zD81T/XjcpqBPsvma
Upk80ZOL7dKGby2lqs8cQpq68vpw4PpaXXfzUnosfar44X/ag72dGbVArmwv
jzc1mlbadmYJXeWmcby0ischj2DRXr7psSG8fL6c1kLb50QxrX5or/tEKUWm
/ahB/m/twvnxj1ygq9lXqVgmD5JX3m+Z+5womrlKNWRX5yeIe3dY3rJ/uyh6
PmV858td+DxCxoDwkv7DKmhl9hsti1a8/C/LsqxcF59HJTWnei+Yye8XO++0
cl6zuJIS7dIvNx5mM+NMpcrnzt5v7vae57k6+Zt1MzF9tbFMOW0xL28jw6Z/
zRkpofO+z3SP8ub3NYhTzan9/WCUNx9PsDM+cGP8tXxatER8Z/VhfjxJbY6W
3QnIohOf3m+nvYTXV59/L37c0aWcrrKNUtmW/R+/povViy4r8mnJqmJjBXl+
3UV2U+nrrZ5Kxbvu39+lycerjVZdslywPYsGDqu5OvsP3/+UbQnuEzpHUePY
wV8Utfn43phRpE9G6yg6cMIIsVEfnudtuq83LUxLonYab9ar+fHxvSPjh9qW
ahZRz1PdvjZP5/frQ73SYy9cTKD5GbuvHN7A26UqqWfevOtXTIMc58e7TeLl
5Fwnp27pChLqZH2lvE1v3q8ffdq38ph+Cf2yQSftQQUvh/mTHNN66VbSobVz
9FeH/Cf/rnC29tqFBNp3i9u5jmv45468fTP+0/PXVLThytybh/l9tvOQEdoH
vV/TtwMT926/wO+zEeq1HXdlJ9Fbzglnh4fy76ufmFBz2jyLfgzZPPvbd57P
/YeKcrQfJ9LmNx5vU9/B64HrO42LtO4l0iNl5/u7buTx5u6Kuzf3L6cD/Xal
jZjO64eOo0Onpq0vptvGd1rn6crzI79MdLdsQgU1mjEoNlyOf9/ZScbOZXV6
eKfRmgqTSbw+udy1e9l7/QLawy7hbsBEHt+uXDMpLrmSNt9+rNP+mbx/NHKh
U77q6Eoa2ePJrSZh/7F/vkbf3TQmjs44ZNddfxevJyV+YwcNXpZP9ytXP93/
5z9x8uF9JixqIqGulUeUTHvy8+jWodzgdp9Uqrppgt60/rx86vjfHSCfWUDT
1UdGmbfh9YB8zstFqzNTKZ39Kbb3Vn49nmuaV9ZvbQEd7f5rYMJ/8nG/hn5N
vKCfSCNMD3gujeXjk7X9C1tGXS2nu4ZrzLOJ59eRUF5DaD8S2teE8hFCfrRQ
nE0ofisUZxOKywn5ZUL+plB+RCieKeS/CPk7QvaVkF8vJA9CfqKQPygUrxOy
54X2HSE9KeS/CNkPQvanUPxNyG78X/1ZIbtFyM8Sio8J2SdCcTahfUHIXxPK
xwnFhYTiSEJ+n1B+QSh+KBQHEIoHCuUp/ld/Uyh+JaS3hfxNoTiAUDxByL8T
8hOF/E0hP0LIHxHycwXjCQJxCaF9XMgPFcrHCdl7Qnk6IX9EyO8Q8luF8mhC
/q+QH/2/+qf/lz/I+n1C8QShuIFQfEAofiUUpxKKn/xffiXrPwrVLfyvfpOQ
/yWUVxLKawj5+0L5EaG8+f/qZwn5lUL+qVAeTSgvIJSPE6qvEIrv/a95KKF8
olAeSihvJZTnFYqfC8WvhPLgQvkdoXyKUFxLKM8ilD8VykcI5VWF6hmE4rr/
a35KqH5GKK4iVHchlAcXypMK5VWF6mGE6k+E6mSE8rBCeXyhPJ1QfZRQfl8o
byVUJyOU/xKqnxGqrxDKewrVTQnlU4TyIEJ5FqH6CqE8vlD9lVBeXqhuRCgP
KFRfJJQvFqq7E6oPEaorEKofE6qnEqorE6rfE6o3E8qrCuUNhfKMQvWBQvlE
oTo3oTyjUP2bUN5WqO5LKI8vVD8mVM8jVO8hVCcjVN8oVD8gVMcllBcWqncS
qvsSqusTqv8RqjcTqpMUqssSqvsSqj8Uqn8TyqcL5d+F8uxC9ZBCdXpC9VdC
9RhCdbBC8XmheL5QHFUoniwUrxaK+wnFn4XieELxdqE4oVAcWyh+LhSnFYpv
C+UXhPK8QnVfQnUIQvUMQnF1oTyCUFxaKN4uFBcVyiMLxc+F4vb/az5IKI8p
FPcWygsI5V+E4s9C+QKhfJBQPFwojyBURyFULyGU9xfKIwjV7wnlqf/XvINQ
Ploofi6UnxKq0xPKhwrl74Ty2kJ1ev9rfkSofkwovyCU7xbKswjlTYTquoXy
0UJ5baH8plB99QHVPL/aWv47p6rmmocebg9E/x3OtXuEKH9In8Hj0F6jj0/0
9Lsf6MjHHWNra3Oxfb8qw+ZDTHkcv2/WVuVMk9Ig2o/zH6H9qj69zIed5XFo
f/7Pk7GH5oXQtPrzkNjeqtduh6ERwYhD+/xg7c6LokOpGufvQPsXl1T7re/F
49B+TcnxbYfNwulA7rwztE8Whfa/uRe+b3vFj/2+LbSHfjr6kuVFHSOxPfud
1l7ceULoZ4y7w5y3MyIRh/Y/w187PDoUQ1W4eAS0P3BocbjJ3SjEob2kdmd3
H8dYmsydF4X290eOidieHY04tL+rWbJsqmEc7cOtE2iv1mb7ncwvMYhD+81v
ax6kV8TREfXziO31NtvJOW6JRRza+2g/b9fUTExTuHP+0D5o+ajhf3xiEYf2
bu2CDZ+6i6lNvRxie/nrw+/tK4xFHNp3evLMdx8Vo9zC+bmpDl/fa6R+YO53
qsPfHP55aHIwyiHgttf+aH+NCkF5A1zXybmPycEwlCvA13/Tbdp2aQTKD+Aj
9h5/1Ms4CuUB8IFdP5Zr74hBeQAcvicL8w64XLhC80PFcTi/gPvrPMq/UyXG
eQS8YKGDW6ukeJwvwF8tiZFreSoB5wXw1NZHN/T/lYD8A65p5HzMfWAi8gy4
T3mkaE6bROQZ4k/dit/sOmgfzNyLJaV92juMFE0NRZ4Bz6yOOWk8KBx5BjzH
65DIf34k8gy4Z6z776vPo5FnwFuaq6/+6RaLPAMetWXUneNtxMgz4PA9WeAZ
8N6d19g/+pmAPANOHo09XrEgCXkG3ObXqORmFsnIM+ADWs2p7j0oBXkGfOfD
L/7bD6cgz4Dbefh3Nd+QgjwDHinViDAuSkaeIY517oH8iZdPQpn7cyS0rJ2J
7byEcOQZ8K+ljte8ZkUhz4BvUns461SHWOQZ8Ne/R/2Odo9DngG/Ubzi2kWb
eOQTcPhuLPAJuK3291NxoanIJ+Arg7bcWPNUgnwCfjuq2/H+ihnIJ+Ddn92q
6HYrA/kEfPS1EyOTDmQgn4BnPnPbMs4zHfkEXDz/qOWiLRJGbsVUr3fY2H11
djlznxv9oaS+ePHkaEZuxbSFqItHYXQsI1diOp37rmtDuRLTdQEZ90fPyWHk
SkzHuTeZleQnZeRKTDP1Lu/9sDOXkSsxXWo4U+OWTi4jV2Lq1ldp1blFUkau
xPTelpvNNnbLYeSqTl/Mt3aYtTWL4UFE1e+c0dHQjmF4ENGFZkQ50jGO4UFE
k+dc024vl8DwIKLzue+uNuRBRMPP3fXfLy1jeBDRDcuWb/IRVzA8iOjXnUOW
9D9XjuOEuEeHDnqHFi0S4zgBV+65rBVdnYjjBFyaM6jo8eNUHA8bPwF+AO/0
t38pyw8Zv/V1Qm2dH8XwQ3y+TDJZm57Ovi/JPd/o+5Ljjb8vqeXet+E8isic
F+fajFTIY+ZRRIaLH6RPOZ3DyjO5+TztkNe6bFYOSe8Pjcoh2dm4HJIKTg4Z
uSIPGpcrks7I1QB1OX+7UxLyZ05rzwHLpCgnye8WfhgfE08udCk7+vm+I2H0
BjEd1ajeID+/uHSfek9Gb5BITm8w+oFMbFw/kPzG9QNJ5PQDsy+QHUNNNSf9
ktkXiJN7o/sCafW70X2BrGl8XyAOje8L5Hzj+wKJ5/YFxk4g+rVbfcWydgKZ
80+jdgJpu6hRO4FENW4nkMzG7QQyqHE7gbzj7ATGjiUtU/QlbQ/HsPYq0Wpi
1cBeBfwXY5cC7sDYn4CLGTsT8FeMPQl4D85uZOxwMtkp/p2OfiRrb5Oyl3rF
Sq5RrF1NBo6qt6sZ+5mYcPYzYycTI85OZuxhksrZw7CO4NfZS9L51Czez4I6
l9NDTZ7MX8j7U0/gPoPFdl1D1/F+E/jZTfb2u9TCjveP0rn7pVKc19wNvxWC
+/5Hrm7l6sdnhob+oWhfwf0uUos5b18l8X7QBs4OFzN+jS03/kqVob8c1Ph5
h/HfOFSZ1lKLn3cY/zCDlnedXGORTxj/sZCYzG/feP8C7sea2WNnr24accgn
jP/6s8yebsPikMcAbz1XL/NCqu96znKsJ+8XwO/oI/GOJflByGc1d3+DdVF1
mJs27xe04uJYyXlvF6TYhSKfcJ/K6e5F/W+nhyGfo7k4a1Fiu+MnxkQgn/NC
bKzNJSU0JuNav55neT/RXcAvEHHjvz06uV+RO7/e07jxnx/zeIzROn69w/jb
jP5ycUK5GPmE8WvPWTX2/sR45BPGr2Fks23DknjkE8Y/p9kfKp0Uj+vIkBt/
YetTE7rKxyPPzbj6EckPBSq3ivcL4P68T5U/ylYlhCDP8HssUfFC4bow5HkO
l29vV+F6b2jbCOQZ7gFyVe3lHBkQiTzbcHn+SycO39i1Jxp5vsjFY1yN/uhu
6sDbb5WcvV3B+AVQ/3J25oo5xvd4/a/Cjf9h1C+fH2cSkWcYf3Odc2VL+iYh
zzB+ty+v33RamoQ8w/ibrTW+ZjYxCXmG8Q/41eNFkZTXq5e48Sd0SPeUW8r7
Xxfr7++iZSOrTPKteL8gkMuff/tq0L29Ae8XfOTuu2q9W/dRR4NI5Bl+pbuH
zuy2LRp55u4ro4rqmx8mL4lFnt9zdQEDto2cYbs/jolvSKg24xc4cePUPjJf
Z8kAfn//wI3zcFrpphG6acgnjHNwdPgT9zdpyCeMc0CTLx1OxqQhnzDOL2tG
nO80Ig35hHEmj9WM+Dk3FflM4e6XurGqw7ecSSnIp3L9PW/00K+5u5oNiGC/
g0D1+y259+RsFPJpw92rVzV+Ub/YvrxcVXH29jTGL1Dh+ne3buoQ55mNPMzh
+g8NriyUM8pBHg5w/V9emX3l3MwcfF/uHjA6uMfSf4K8svB9W3F5kiWpl3vV
+GXg+47h7rt6MMlVMzKY94NmcnVbqjqqlfejotl7sKnt5/1NlnTj7f/6/sPo
oK9eEicv3r+u5uz2eYz9P5frv7T6ygo9jVJ8Xw+u/xZF2st/ZJTg+7bh+n86
MSAlJrIIx5nN1WddPOK4/0YXMWOHu9DRKy5/8dmUgOM05+5BVDHKSohYwcuh
gmt9P2ycU43793CFl9PMFydhe/jN0Et4PlC7CvkU1Y+H/PxuGrxZj/cX3nP3
y+39NHZE+IQs7Mefw3umerpe/UfK6xPu1zw833blxzzkgXL33WV01lgz/UoB
PlePu8cvs2VH7dJ1vP3/LfzK7vJ1aWTY2Qs+xRP49x1ZP+9k+qDCczOvp+Fz
m3N53X8OuA46+CgDnwu/RUeW3tzWIxvlaiZX31WS5Pqkbd06g/H05O5FbLF2
cXJCR/59ufvbyKPdKh2+7EnE5/pz91Oleu+bvHp/Mj73AXcv4q/d1v5rDVNR
zuHeS5plYKYbKcHxBHD1t+dVx77xCJfgeBy4+wybJd6cEt6Zt+e5eDyJ2Oqb
ajlBjOPZx93rGRnV/Vonz3gcz9p6/Uzi1Med9+qfiPpnFnf/0pot68d2Wcnr
c/g1NVQ7O3hSMo5Tmbv31KHJuNLBHsk4ToX6/YV4v+8hcb3Gz9fc+v2UeJk+
+qb4k7eXdLnvLPzpdfTFIuU4HGef+v2auOkd29phDL+/t+DuZ+setMZi4hh+
f+fuoyLWeW8UaEvenoff4yYru+6u00Mwzvf19gYpPP9xkmdYAo6zVb0dSFrd
cCqf4MbbyXB/7YWM3FLzbXycOa3eTiM399veKVDm7bpA7j7hi7uX9VhQzdt1
XH6JxNr41Rx4yNt1l7j76jN9VDa1HCHGfSqIu2/VUidQOUw7GfFmnD5Z7Vht
2uRgCu5f8LswcbrpvZpUtBMCuLzKiFOOJbdfp7PrkcZy6xHGv4HL68px39EG
fC2HN+FweC8Y56lPNlHPP/HxnObcOG94/Mk4OzEf3xfGuW6GyatR73MQvw/f
rfBYkrRiNW8/3efuYf09S3dAkkci7utfuLqUFO678IAXcLiEw4G3p1w/xtc/
X14gykJ8BadXE2suKjss5eMJq5l7iYGHGq5/+M474CUcDt9JBx7guQntlYoU
SBHi8Nw2azN+VmgVs/qf9N5k+njC0yRW/5No3xcaWt0y2PclH7nvwjP8kG8c
zvDA57W59/3C1F2AnOxi7gtl3pc8Znjg+CEsD9z7knbc+zL8kI97T9h9MS1i
93HSXnfuTcmtZOShNXfvaLOF7eRVJPw+25bDXU8emzgzo4iVW9KKkWdOzkkL
Rp659UV6VJo0PWacz8o5ATln5Ja85OSWkXNixsk5vBf4m77lvk891olQL7Xh
8DDD05vVVeIQ537pbIODqt2OiXFdJ3P23oakBypJVrzdUs7kBaC9I2evBmUl
x678loD4aM6OGpWR92KUdhL2s46Jh0P7Xpy9Zxl+8v2ENWns/ki93ii5d9yf
yO7Xde+vntLdJY3dN6kOt28y+zj9ZNNwH+f2U/qW20+Z/Z3Gcfs7yL8HVz8y
nPu+POAPOXwEg2/i9Jsi9915wFdzOHyPHtYR/B75MYd2S+H19j7OvrUbN6BJ
y7vxTN5HTMu6d7KuHZCI+hrs224jXZfWHE1AnLNPqEuI/azaW0lMnkhMCzxy
y5zkU5g8kZgu9bwgt2u+hLXH6ArOHoN1FMDp7eFjc4cWRMQxeZMIOv16ut9P
32QmnyWiC7jvzjfMp0RQJYOI0qYXJMz7imj48IfvNZZIcJzQfq9RyYUTPbOZ
uGgEXdaLaChpFzJx0QiaoJO/LfdEIZNPiaDyzPoFfKbWEsc3N/KYuCX/HfmG
cUsRrb16oOenmgJcv+ZQP/v1dxv59XmIZ3L2ecdBqz+5j8nn7Wdunz3SLH7f
JHEWa9/StDPTvJaZ8HFmHY4Piy43eqi48rg/5xdMdKvOWTdNyn6Xk94fMLut
/CzWX/CkyQ/uWKeNiGfyGp40z3CEn1qdXddwHj1pKrM/Aj4y5OS0uG38OoI8
QgT33fmGcuhJ13LfbYF+oH3Pv/mLfEY+PWnW33xoGZNn4etLG8arebxhvNpT
Zl+G50Zx33mB+QV8YI8WJz7dKmbnkcA8MvNO1Lh5B72dyflHV64s1P7HW8zk
KTyJ75yQ9NpJCey8kBsdjmwqX5XCriPyk/sOO8MD1rcwPMjs10I454eSJdz3
5hrG4T1JxendHQ/U5jF52AiyeeF+E/vnaUzeM4KoOs74udw0n/Xribhxv554
MH499DOLWY+PuLpaf+77ZYC7c7gfhzfMd0QQZ9d+FjFOUuyf07dkia+Wp/hb
NuKcPJLtwzdqzfuSxdRRJJGmrXx3/cksYPIOSWT2sHeltZsy2LgN2cDEbeA3
g/v+eMM4eRaRcDgTFyJVXFyIib+R2HOGGt8sEtn4Jzl1+beyrxHv3zlz/oJt
jz6VO1ViWTuBLODsBMauIDGMXQHx+ZZc/QnwA3UpSZ8//VgxRcTobQk98KRy
y9YDiYw889/pZvJ99MWlr6qdvuey+T4ae+mFe9Ix3v6Hddqb0xtMvhi/o83k
i0n3CdtmV6+Ssnl2/F42rC+ol1P6XJBx+WMgri/AF41uMeGoUjK2bxvL35s9
KXvdBMDhvuL7Z1p3Ugjj4ymAv89quqpkNh93hXvFX+teHXuV8nFv+O5MrdyM
z0fCopg8VxKd1Vz0U/9tFlOfEEFncd/RZtYp3XWhfp025MeTWvft4rxTWsTq
AQp6oKH+EZNl5WHWc/WiCbMvk02N78sku/F9mbTk9uWG45eQHQUuyQt1gwnz
vkSPe9+Geb0kUmLSd2P2dV4/AP6O0w8Nxy8lvdIzXfd1DiQN47elxPVwYHH+
HB/EiwT2HRPOLxPwj2TwAgZn/FYy1uOiycoF2YhDXK6arOvVfZaU9Tdl9Pkm
Bgd+7nD9r7k1r7lVcTXiGlz/Cxer04UrKvk4Hue/fJW8eh4ZLcHxBDLfoQAe
wN/5lthsyKZp/H6Rwj2ndtQ/2f/up9Ae9O3YMV+v5+3i6wfg+yAzlDdvu3Ka
j0NyeRniYRjxxcuWjzOXcfpkBhdnBnwj2HWM/HNxSDo4pT4OyYyfLuPGD/JT
BXUdjB0Icd2RYUpXDs0vQDsH7EAP7vvagK/g8OccDnoSfuMid14/HMfbP65c
HEC0e2P/C07F+F7H91sX1M6Q+jduz1zwi2TsmT+cfVjRSb/82OFixk67Mz6K
s9PAHuPak5bhP5zUVhTi+MH+gecC/ofBmXFOZOWEiz/LyI8JEzdg1otMPIF7
3/HwviDP+lwcwE5efWJyyzJsX87pqwJuX4Bxrlz5vY1j3Xp/pFQdOk+fX+8V
UqsG67Sh3uBxmC/Yj9j2LN7QHpPVD+x5FsbeJrYZT56221vN1GcGy7Rn696h
/4dc++WcvQfr+tzgx/lLVWNl5oXL1xB9o1eXF9zg62rAjjpzYFSb/Av8utt1
R+V1bZ3e/j67vGDesGDks+OLrMtedfMw6czHHLNKfj/l8mJkYtOEvdld+Dql
Ks6OWrbbZfCCV/w+W3DWP6VWX0qOnnNudqc9r7evKKzcoCaXTVak5pyvqOTx
L946n/Tr9Lzrj+VFbTvw+LTJ9mZqdftvVYqyloaI35e5vCfZfmbVGD17Pt4L
66lzzPIOyS/4OsCF5j8Pmtf101xzyo40EcX+4bvArFxZnN4wUFInb/0/lcx5
V4czdQLEYqEdkescg8+FOHC4e17fm8OiWbuXejP2MGcnUx9mv1vD6cM5nD4E
vBTq3Li8FcgJK7dMfI+yeLRLw7wSgxN2v4N43TGr6g5OgwoYP1FWn7D3AjH5
SvLjp9zEtVZ83MwG7PwpMVnNDPIRh3P6LStKYsbm8zx47Knn+dn29iMcu75G
HL4PWzn6l8bbTG+cL65uhCypbht0e0MUGzfA78BCP2Dn3HOK+HnVU4zyYLM0
btytwlSy5/zKJYqrr2D7TOsWsyT6YnJufEftIBKN7b3O5UnTLCKI65Tvqy54
iDE+DvHwmdz3XgF/yuF6DA52dRL3HVjQYwbcvuak6JP4MYffpyAvqd3Z1/hP
bTbjp4vosD2Ge6y65bH7i184EweAeMhj7ruuzD5CXTic2Y8ocdXc3KZLHrYH
+Qxn9D9nz9B5nD3TsD5NNg5QBvLP7O+wD1Zy+ybILfj1OW/6y/lEpbHxEyIa
dTT64fVM5KGEk4fvnP/OxFXIZyYOD3o7kfsuKsx7FxMbQ8etEcRtZHXm5Mdi
lMN53DrqsNjEPyegBPUGxKWNt+wdqFdYwPIgs59yPBDgoaE8e5JHXHy+YX11
BAlcv8HxaHYljvNPdO4h87p9tpPOyLNak3m5XaQ/xda8bl+gbW50vDU0GMfP
1YGQkk0j9Iqq+To0rs6H5Po/CLp9M47fF7j83aX9fTcObs7XXfQIcVaX1Pmn
+2zu+M7Ie4nP/cetVNtvdCXZs7eJm+Sfh6y/QBMa9xfwO+nQntWHTD0w6Tyw
TMEmKJe1w2XkDeTwAZPvgH6aXKuPKwKuzL23X9LuL05HCll/jVzfPkFveFoR
ex6HVKgcHbmzjoeG/pcvvR8570yJXxUTb/ElNQ41k378LsT38uPy9bHTNo1q
fukVgfUuZvQ81sUxdQWwfnN0nKZL/vD3V0D7hAfL3R56XpG5L32h42uLz3eS
ZPS/lLGXQA9Ilb9NlWx+IWOXst+tA7yMaQ/rrjXz3TTYL+D8d7B9hL2OuALH
Y/SR/37We73V6O+3Hl4fP3HOPGTz1sCfjydsq/dfJuwq7m9Uxe8v6+Tr5T8+
Z+M6A603VKgfph6Djpg+SXHUG17vgb+wivPvgP+VHA+D/C+WRm+oRP53cPt4
3oQwrbKwKnzu8xq/b7Uz+Lgi4DEzrw521BfJ4DoLBiXoz+TbA581nDzL32kY
t/zE6GHA2/2cf9PrP/fvwfs+Y/KPDe0BkcxznzP2cMN9Stbvbu4/NtNLN06m
fSKn50cbD5r/dkow2huPtpy6b3UkXaZ967vqtet1nIncPa2azv94Yf/FnxS7
6gyOI+8ntZdYHX0Mfi+ttb0xV71Wdl2olVgZJX92k+FnB3PfBfAzbGbp8/BB
72T8iDbvNhkdcfaT8Qs8uvnOP6jwUobPV3rvN/73vDzgH1rs+PjfexphnAoO
LXT8ow7IrKObzL03sO7imPtVQG5rrV+/LTN6LfO+xeP+dHx6J0xGHqZqB46R
aPjJ9NNy999+ZOxM6e4+k1r+5z4ijM/4/eVHRh6GtnjxdGX/OBk9cGx+vp3G
GYnMfI1/p610zpa/XwvzZc+3ZC76z72OQnwKva/QeIT6/7/Gyc7X/zV+ljeh
+RWSK6F5//8t5+w8CsmVkJwIrRcheRNaL3AOE+Yhts2DoU12BmJ8HPDbFh/F
W0eL8Dwk4MvKDA/tioTvy/L1dHF2SenfZwTz8XQOPxTUN39EQQjG0/G8cr58
hu29MLTLAT84N7ep3cEItJsBD/WZd852axTaMYAXdbI+mbQY88eIf79xz/nB
pVi8XwXzJJdiy+NM4TvsUsRHzh/Qtq2cGN4X8R2Lh6yOXicG3hCPSKYdv5xA
HPNjAbfW2Uzx+IB8Am5fskrValog8gl4R6nB1pQJwcgn9rNp2re0XyHIJ+BL
dlklbC0NQz4Bt12usux6y0jkE/CTk+iypnOjkU/A3a//XGdqHIt8An5L9UfB
4GNxyCfgB1QHfom+LUY+Ad+2JuBUhn088on2Ua1FhPKoBOQT8LmnPgy2OJ2A
fAI+fOM4o/VHEvC784ArKdqH/tTC9qhXxqicuTZPJRh5BvyZ+fNFMfs+IM+A
/zmhOzv0ewjyDPjXXzOmtO0SjjwDfrrbmVCzHZHIM/aj0/1Fu668Xwp47cCV
Dz/9jEWeAZ/oZrFl2CEx8ozx6beKHUybJSDPgA+88ChDdUMi8gz4IvLl1YoD
Scgz4HfPTX/brj+ec0Y8Z6R7r/DpeK4e8aST45++LEtCnjHOsfeMzYthScgz
1onsPhufLwnh7wUAv/BPe60TxUHIM+DjJwUe76IcjjwDflytndnQN5HIM+D/
SD58uv2Wr/8AvJuNxdJdTnHIM+DNxviWvDscjzwDbv+Py+o5lxKRZ8B3vDbf
csAV61QQ/3T4Q9Vdy1TkGevVx8b6e7mnIc+Ad7XtpWrXV4I8A+53fN9b3fA0
5Bnww2qLUzwSUpFnwLPFRnJfD6Qgz7AvJXQ01dogH448Ax4+MFBLxTUEeQZ8
XkHn9L5xkcgz4K/b9G5r3RX1HuIOz2xd1vUQI8+Af/GZq9fOLgF5Bjxj5D/+
erP4ugfAu3wzWpa5jv/uMuDPoiTjduzOQJ5xnDtzZ/ebgueZEb/yreOzHdOy
kWfAv/+zcNauFdnIM54j+aOvbDgd75VAfEttd4P04RnIM+D3HQ2kJ2pwXnCf
p/M3XPvqG4k8Y/zp5Y+DGwPDkGfA91o5b9MbFos8A37v/K/TPW1QHyLuOTj6
VL8hicgz4DlmY+R++aUgz4C3OHd22pb+Gcgz4NaDuk1265uDPAN+x7WVQRM3
POeM+NQRQ5J3zMhHngH36mxkkmyajzwDfvKfnTefDsxDngE30jO6sniOFHkG
fIrqtgXr12Qjz4Brrpk6a/T8DOQZ7KYrur12uGjH8veGcPZI95INyY8fi5F/
rOc9nP0rZxc/L9C+Pm4Wy9/LwLV37PPYJuumGOcF8IMRu1T2lKP+RFySvm1W
tV0azgvgkSueDjY8mY3zAvjQBbURqmvycV4AH/LGcJPO8DKcF8Bntw+9G6pZ
jfMCeD/n4i0tFatxXgD/+fJbWmBEOc4L4Nnvhl81bVKM8wK49sOzUdFt8nFe
ADcSPS0/XJGDOPDW8y/PUpwvaL/sl1YXrcF4bwu2j+Tin8A/2rOTJhqu8ODt
H8AXcM+FfgBf0bB/tFvT4y//HJ+F+wvmyaczcgW4DidXwA/Yxb8Z/QD4VkY/
AL6N0Q+Au3P6ob7/Gn+IezX8jrMI62F+i08cdlzI7yOA3znScB/BegFmHwH8
H2YfATyC2UcAP8XsI4AXcvsIjB/iZFlKDw5ue/kexw/4YMsyuYFF8Th+wAMZ
ewPwG4y9AbgPY28AXsnYG4BnMPYG4PM4e4Mb/0So4/i52qx1Snk8ri/At8Vv
H9l+H2+XAv6GsUsBv8PYpYCvZOxSwJcwdingYxi7FPCunF0K/EMdkEdKadHM
W2+Rf8Dvz3yim2TI+ymAe99s6KcAnsH4KYDPYfwUwI8zfgrgCZyfAuMH/EjP
G686bxTjOVvwa4IWBz0W3f+A50IB13wZe+Z3nb0N5xgBH3Jx2MnqtyF4Hg/w
vnYRswdZh+G5NcAvdOqq9nRuBO3P6QvAq7hzx3AuC3DPEVXJfWxiufsP0xDX
+L6x79uZcVAvjvjANvZt4srj4Bwp4rc2jh3ot1gM53gRv/Fy5snyg2KoX0d8
q6Hm1slbxHgOFvyRT0M8Y1VvhOC9x3gOb4CJifehMDx/CLi2U3n3hc4ReE4P
8MUdMvudTID7XmLQ37nAnQtuwcVzAe+h//V4ytJ4uOcZ8SGzDhfGt0+Ae7N5
P+6wznbT7QlwbyTiTS7f3bJifwJ87wBxU9+FJleGA56Jfo3SmIPdvj6LwPOT
gCvelLS/NikazxkCbjDOwvr7yVgK58QAn9zT7LSjNInCeS3Ax1tF6j/USKZw
PgrwX/JzO47/lEThPBLgr2Js91wxScI6eLCrOz955XoxPZZCPQ3gQ15v3er0
RkzhPBjgk5rsUvQNSqNw/grwO4UJM0qV0iicdwL81/o3Dqk1KRTyOmjfNte4
PFYpk7pz+W/AzxOHHzFt0+kGAfsHzo0D3nt21xvr1ydROOcMeL+sXlPl5NIp
nNcFvCu3v8P5VcD7/G1fRuGcJ+AYFzK1/rd/fxbn8uuExbm6JRmcO0chg3Pn
NBBX58bziNNXOM6/71vA6T1Zu6WvgH0C5+rB3iidHL7rmEs6fgcBcPncPmbO
6XkUzjMDDuOEc56Ae42KX1LUqprCOUzADymmXHx/poLCOUmsz3IoC9r5qhju
D0Q8+sREQ22HfArnA7Fua+1aj8+rpRTO4wG+w9PifUJqFoVznmD/7Jf3XvTm
Qj6Fc5iAn9Y70y3pUR6F85CAZ6xeYTChSErh/CHgS75WPLf9nI3rHfBoUWyr
V9aZuE7BLhrW8Umm0YJsXKeAn/x8qX95aBauU8CPfR0TXb02E9cp4KeM4oZc
6pGO6w7tpSaqIT/UJLjuAH8Y+Mvg20l+3QFufqFGL3xVKq47sB/C/K6+nTwx
Ge63RHz7MAPPyA9JFM4fwn5dTne+D9uXgOdPwH8xySwrXfU4GesSAF9luT27
U7iEbuHykYCPLOthGnYjkzvn7IJ+UBNzjVdjC3Ogf8TfHhkVHbI4H87hI36Y
m0fuHgHE07h55O5xQHwRN49wPwLY8x4mv43nKcbD+sL1rsLpEzgfBe3nZu3y
3/wiFeQT18XM3103BS1Pxu/ggJzc3mto9GhMCsgV4kpjT+SsC80GOUQ89/Jq
/S7VFRTO3QH+6VpfLSXHHAp19oBvq4rcojAGzlkU8vW53PkyTq4wLj69jb/V
QFMpyCHisK7hHBrs43dGhp9xXI7xZdzf4dwZ2EWA23F2EZzDBP2vHxClMsQo
Ac9hAm7A4XAeEu+57PHtQZ9+KXQZl78EfLnqcNOZNAXPN0I/mxcd27p0SRKe
b2Rxrh/cX1q9jPW5oyLBc4+AV126alLlI4HzXdiPTwcXn4+TU+A8mAwOdRjQ
z9q3Id7xuRk0mKuXBTx4o8nbZpsy4bwZ9mO/bdzLfpGpsC/L4FCHB/3ojHJJ
LcvMolz9HPJj/s112i+tOO4cF18H1E51S59rJgl4Dg3aT+759eL3xfF4rzK0
H7tR4dP19CQYP7ZX3tTM/9H8RDxvDPijY0dD3krBD+LviexxYVfKzQTw4zwR
P6CgvjvYha+PATzc+59NapZSPI+B98rcGGV74EQ+3nsCeLLxafX2r2PxeyWw
Tl1iUlvfVE/A73QAPsKx7KpUIQXfF/BvFie13u7JwPEDftvygds0bymOH3DR
Satvay4W4fgB3xTdamlwEP+9K8DvKxgvXrUI6tLyEE/z6f1hXlEB2tWAB3L7
HehheN/C/k8+SRKz4N4ixGm0i6717Excp9APnCOD8x6Af2p+4WtoXT9wLw/g
GU5qRcd2gz/F2109OLvrsYDdBfddY/ui29bdViRgfAnw/pw9BvMF+G7701bn
clMw7gR4twb2DH/uAc6dVTD2mypnL8H8ol3UwF6KkLHrYH4bx2XtOpj3xnFZ
ew/qqFgc5JzFQX4a2m9VKD8NeSsCuwj3I/Mh2erBTeIxfgj4wgmXkySRSXhP
FuCWaarJWw6gX494v22jvrfyzsD5Bfz9qVLRIVEqzi/gPdtIHJpoFuD8Aj5K
o61C9NMcnEesC5v+4Pn87HKMAwDe8HtVnmjvWS84HtV3SwWF82yw31l5LAru
MSwP4wBY5/uqPk4IPANuqDDztKR7FcYBANdpGCfEffmn2e89Ts34+8UAfxr9
7vL7MWnIG+AvR+9393Di71UEfJpbffyZq7NEe0/bp36/gPNygFtyeh7iGNDP
WSb+DHiWZa/Jy43q7FjOnoN+dnLn3eC9APe4a2MZ3LWCwnl+wFdIRpYOUpDg
+AEf9/Ow1qWMdArn9MDOjOT2KXcGj+JwOP/Gno+DOCfg/6+xM4/rMfvieHaV
JbuQQTSmLGNLRPbKZJfsUSIV6Wcp25ixDVIkZRkmyh4viWSLb7ZQSrto0de3
XShiqEY/P53PudPz9bxevz9793zvc59zt3PPveccz3EOB//XzxFHAHz+4up1
/J2E2xGHPz+4oU71uuwo4UbEEXcAem+rwOt73d8nsj4A7r9k14fHNkm8voNv
WWa8r4dLMq/v4B7dJqY1epzM8wP05+6PZ/u/zIqHnszcqN92n883ExSId8P2
qMNdZt7a9oTnbfBlZFfBfMV60bZGcx8uS+P3gp9NOxXb0jWd5x/wuNUf1lYa
ZvG44HOuqhW6wxtm8zjlddbU0PPSxSQuB3ySb7PDq4/mYH7g9WXq+qClO5xU
GC/MH099ciXiWjY/z/Pzt/Uih8vHeNQ7FNnPb0cpc/TzHfRe1B/civQEzJ/g
fz9OvL1ZlcPzJ3jLnWFayjEqLoft2ySHYJn+jPLx/PqRARWdp7Lc1Pr5G8m+
vmuNdUrs6zvSOoV2RD0vK6r1Iqwv4NMk51bgt2ucW13kev6VUd0f3siML5SP
5+0k548cd6HG+eNF7v8/bj45ytMwiTn6rdEZXdWPc+NofhTrOOwSpyXrdXuS
Q5nMOkv7WV5HeqS+UC734Dhp4h4x+dNBTwbfbD4sKF6nBOOH+9sMuk9O/rQ8
n7s6v3Op1SAD+hhzN+KISwh+VNs7eNo09h9nHkT8B7KLMqfvavJzfHlKH3UO
P0DwBK0QT424lwonGX6e4kuivUKN+9m5DctTBNH8Br708OxmXcLS+b4+xrV/
/yLN/lbZfF8f3I84+8MTL9Csfu9cCc8njrhCmAd6Ov3T8EqGkv3fwJeOcZ4z
TDNfkUz3MsEH6oa1O21UjPuszNeF+qb3/PW1okCmn5TK6G/2MvpYiYz+dlpG
T4P9HPW5RnYt2IXAR3XUXrghDPt/db0O9nY8H0N2MNiRwC297YKXu+bBzsnl
6NN8grgqUnvdxOSCEenmIg6xVn7f96c8khTwxwN/dKNanvAH43Gx3GJL2f4S
3oeCd3c7nrt8Tgnvy9APs8mOYSVjr0BcM/BtXo/mOTTKVSDOptQu0UmiJ3iR
ngB/RaynlRbRN933xrO/Ing5cay/6J+hHs2d5+aq4D/D/CJx+CNB/nEBt06t
for8yjdk9gtBMnp+lBqHn5KUI+8yuNmEbc9bmJZyfk/ITUlyhr4tnTdgj4Lc
wM2pP2De3tVyRG2rueFcf6nc6tPzmM89ktevMrC6oPiV+g+4g/eI3tf14hQB
NM+A+0a1d9byj0OcTdY3epK9FP5IkHPWzXYzTg3JYX8k9idYfzRSaaTC/CDy
luiMG2Pbv4jvu4MvM9415V42520V909p34RzJZl2VOPwo/j+fu2JGu8iGe8x
NN7HS/Zx7lQfnItJxy/schgX0ZZ1PMKPCH0Dz58hO4Pzt3pW3EJ/MEnOTWxT
Es9++JBPbdKvoOeAF589/TJcs0QBv1z20yU7JPJpsj0katKWSQuUPC7AzS0U
2hmL83CuwfLsSnYA5F0FN9BZ0S0rM5PjSaEc3SutAqJvv8D+iLnt/tZleQOy
cJ6iZjdAPjXwtqRnov7g8C+juFcsB3c6v4DcOZ4x6QlkH2Y+PnfY5gktXiP+
LPOM32d5vW1bjHMQbt8vl+KvhNXO5/iz4GkefcpmWRRzfiXwNZPMLb0Cszgu
MPiJ7YntzHKyeX4Azw4OrNxTL5vlDO6x9erhPc0LFfC7ADePOJ/W3/Qtzn2Y
W9N3wV8XXEnfhXENPprWO6k9PIDs4c8kelEg6UUmEjt5S7KTw/4ArnM20GT/
jZccHxzto/lB08/hz3zep4O/+mneOV+ViusDftJn25MMe6XCePjukPDxvqwX
TTlU8bauxXPWczAfajnafIr8KYH1HI5HSxzzCdp95F2zsP4hvI4wH6+nfOKy
vZDHO/rh0G/zvJL9kaTzCc6vwbt/Gy+v+fwavOCGj56xn4hDjXZ5W5ZuWrhQ
5KnC9/6+8O6nWrov8DyXk3p888FZs4p4XUA5x8Or10Hsp9hf/LhOdJ2yPJwn
Mjc1segxzF3EOQSHvxvH6SC+rIn3AyOdQswDPI4mkx4COwnfEyM9BPJhf+5p
pp2C+xVhvDC3Ij1Kbn1EHBCp/FPcTEeZpR1T4y4y+kCZTDnzZJ5vkBKyQ+v6
UTXeWea8xnKhvevrIaL+Pjljq3bvDSe7mS+XUzM/Y7ra+jJQRm/E/CnlmuHf
5xinvC+2rpi7ZvkjxZdVkxt//FCgVn8LSf018qrr73P1rscSjTS18hH3ge8B
vtEe6qhdqqA4HaLd31Zz7Fu/v77f4ee9JfcPeV9J9w/hVy8tB/YfPK+fOvFg
jEYp7huovRd5SKVyWCxTfueIZ0fnjFPfD+KeD59j0vk74rmAN6X64H6mtHzn
rgN/mdBIvfzQ9dZ5JtFv1cbFiyZVsYs0s9TaparTRccNG5xYDuhvJhV1Ngb2
fqX2vTXz/P5rfFE+eml9kN9QWp9rf3g9iDnkq/ZdadPX3Ry4Vb3/T6iR71s8
77+y6FMPffXxNT7PNt/cUr1838H3F2+2VC//necvRTM2/P/lyNVfTp5y7SL3
vXL1lGsXOfnLtbucPOXaV07OcnKTa/cMmt9w7jyq3COmx6BY1gegX9xboVn+
55x7dA8niLmPbZ7+kjbxpDfe4HtcK+ZcvjjZPIHzi+De1OGZxr2G+N7nPBng
d1pVDS+b80CxhPYd4G3GuPz8T8NExQnSr8BtnxkvdvROonU/lnmvLZPDfP5O
Zr0F578pr697za6M4jwc4LEtNBYb6j3ivBEc93fc7opQvxjOd4J9Vl8DzZDM
Mw85bwf4A/tNXXYOi2F9EnxvA1PzH23ipHHzFL0oDj/yjrC/tXX6ntXno1l/
A9caU1AyuiCW9y+8jzPpesarU6wCeVPQrx5SXHrMY+gP+XRuvobWfdSr3fFm
Jw3upSgQPx28+FKqKu1mKt8n4XwppqWfkpIS2f4Afqv1+aUG4UkKxDEHb1S/
gafhpGQF4r9jP6s1qLFDZHC8AnHYwfOeO71ptCJBgbjn4PrDO5h3bJyoQJxx
8IvrThSmuiRyvFfIzWrX/NRlXVLB2S6xhO41of7gKclteyR9yeH6gzcc5Lv7
rL+K76Ny3D7LK45X7VI4XjB4QV2dzjr7Ujn+L/jHrgPu9d2YjnJ4fekQm+w3
3roAeTjU7DmIYwiuRfWB3RX9Kp7i9GIfBO6vmhVzJyKe83Dgu2yVfV65tU/C
3/y9syieLcmBn7/Q5sRtx6sJuK/L9b9cdPLV9q/j56zEDq9H9mdHyf06XdpX
4t4vyomvnVf4eVAi7tfxvI3ysR9EfzYOWOBp+0u2woDqj/62k+I6UtxY7ifv
NRraT3Pn+5lq8yriQaP8LxSHjerH7zWjOGyI/8772Sbrqua/z1a8/BYPS/1+
o5XEXrGa7BXV8RrUn8+zr+kXULWg2i8A8UfAK8kvwIjqie91o/hI2G+yvYjk
dk7GHnvrG/9ohu8NyVi602WKiOeM5xGvBnHlwLuQHfWc5DxCl/rDKxk9CnKG
PHtT3Abh/1ndPjO7a92KWSvyWLFf8Fozh9G3RB4r8B562gn27UX+X457VOL0
8Mgekc+X82e1VrUq7yjy8/I97Z2fRq9QxPA8K703jvEJHhEZusbOVuSrAk/M
CtALay3ylIGXVp65vCBU5CkDHzpbK/hoNxH/E/xY92iLp0uEXyjkFKf/cVik
ncg/Bd5g6OlBuhrivhH4iHqh7tmR0SwH8KiRtpZFgY9ZDuBHDZekGQTE8feC
S/NJgVftS36TOljkjwMvmbJf76lK5JsA/xw5PsDMWuSbAPc0aXJw8VaRb4L9
lz/6TdV1F3HFIY+R89OL/eaKPFDgTeM6z7y6LVbcpySeeGFRb2OlsMeB17Ur
/+luH9Fe4GNutI+yjhN5Pdg/N/TRKmcDkdcDfIp1scqwm8jrAR6/QKW57kkq
1xPf0U9v/rWgwyKPEvixA6/ttxok8nvBjQOzWi/JEPmMwHtdOaXRzO05v5fz
Zg8IqW9y+Bk/j/fbnM9su39tFj8Pru+879mmBOF3gfGLPJs14w2Kc5macWi/
rgsUh7ZmPs0DEcinifphnNnT/RaUz3GFyU4rZw/Be8EHWUdptx8g8mOCGzlr
f9E/oeTypefdKB+8qb3++KilIu4un1emnj80qI+IjyQ910Z9wDN7uS8wfCXk
DN5U5z8ejhUZ/F6UtznwSGa6vshrAz74xI2N+8+I9gXfVPVPv5VXRPuiPKPc
si33hot+CH6t9b6QRS9SRd4r+l0Lv+mabX8Tdn+0/wOKh4C/MR5Hag684brl
Hj8Pfo78/SF38IaKp48jF4q8e+xHn+HqHvD2PpcLvjFv0dvBex5w+eBDyc+d
8yMQ/+j6wyb7zCSer7icTNc2tzuI/Gjod19apo2oc/wBv5f9voPtPI4cFn4m
4HF33qRMzozhcjBe2rW63OxixCMuB1y37bM9G77u91AOeGHjQA335mKcg9dy
rdr24r1YR6T6Htqb1/fp28PSJqjF6+Z9R808Vk++rjsTXe0dHnM9wcvnuOSt
9BHzI/sjOwbM2uMh8glK9UbUEzwx7m+ndl4i7jT4ucaJgdbJYnyBD6lT78tE
Z7Gus79th6j0CKVYn8Ar74/xy3sj8o6Bewfp/1axK1n23AGc54+Q+ueGNBH5
+MBfNu90unViKn8vxoUn6ZkoB3zsxJm3034W6x3vm5ocHKivFOsd+OjSirXZ
M0XeQIy/FO9HdfbPEO3OfnNLA52im4v1CLx54bjRa0OE/gCeaB5Wt4eB0B/A
xzq8m5O+TPghQ/4dh06d0i47k+XPfq+kD+P30nvsrP9R//WieAhsXybeKl3h
8We4iAsq9evne73Ey1Ld7HJ8Rd4rlOP21yWXsEmC4/m71++XmKsyWJ543mbs
pZTotDT+HvD3QZ3CG9QV+RrYn31d39ytv4n73Pj/tWd6+1ZpizjtqG8/uheN
59gv26bNJWW8mM/BD7nUm3fcLp/lifccmqkyCDYQedOk95Br5rM+ENH+u/ms
D0QoKZ91zTil/7p3QXKQcrQr32cgewLeC67dKMWo0kucF0rtbHgv3nP9dl9/
h9As7oec15f8LCAfPL+S7luiXPAhtP/ivGY0Dvoeq25H1Ae8PsWlx/vAc6k/
gOP9PgF3ttyqEvqk9P4e6o92Kbpf3npHb3FvAPUt/qPZ55n1RPxw9k+h+ZDP
Kam8IXo5+/InS/O0PlUEkNzwXajPKorPgHLA79pkONUaJPJ88bkV3eNCfTie
tCSeOeeRK/BYbvVHJpcjtWdy3GPintOr34t6SvsVnof8bSR5ASD/3avaP199
LpL7JcaBe+7l9IS917je0n0uuPS9+Bv1vPAl4/m0vHiWF9oxks7f5fa5NeOp
Hoh4SPptzfwsByLaSvIsoPxTEn0VzyN/Ss342Opyw/970b6Yf0+8J8WFwHey
PwL1w/8CmK+W8w==
"], {{
{RGBColor[0.880722, 0.611041, 0.142051], EdgeForm[None], Specularity[
GrayLevel[1], 3],
StyleBox[GraphicsGroup3DBox[
TagBox[{Polygon3DBox[CompressedData["
1:eJxFmwnYVtP6xvd+v3ePRUhk1kCoNBhColJKg5RIpUGjBnHMJ5mKylCITMcx
U2ZlToYyh0PmIZTZMUVCUf3vX/c61/+6vvU9z1577fWuvYZnuJ9nNxh2Yp8J
lSiKVlajqEb05CyKNhc9L4mi2/Io+qf4T1V3eRpF1TiKuopeprJE9bVEB6nN
RPG3i+6ijnZWm9d0PUn9vSB6tujvaveh7q0S3a6IokfUZlvRcbH5VWp3ieij
KsPEN9S9u8TXFT1N9GGVT1XfWH00Ummo65Hqa3vRY0UXq9wjfhvRV0Xnqryn
9rtWzJ8l/qTYbc4XP0X9nit6oegwjfsD8R+IfqL7D4XfaqlnW6g01fVg0UEq
zcV/kno8z4vuWrh9fdHNVc7Tc1NFN+jepqo/UvQ+9Xux6h8WXaR57C1+jeb2
S93/S/xxKk+rxLoeJXqwnhki+qfavKH2g8QP0LOb6vc3Uflb15uJ1lFZF3nO
mLv14lfpt/fVM1eVmnvRo1R3tJ4drPqv1KaZ6FHqfzPmXfQltemnNv9R/Sy1
Gy++uehwlZ10/2T1M1b0I9XvIHoV6yh+O9EBeibSGNqIdtf18ewZ0dXq+1uV
Cbp+UNcV8Z1pL5qojFH9YbruL3qI3vHd3PtqP9F5qq8Rf6hoXZW3eFeNsYXq
5qi8q+sGgWfPMX/M4wL61Fg+F19H/HKVFeI/E+1ecRvmuU/sNivENy1c97b6
71pxe/1FL2ocXXgH0eUaw2f0I7pAbT4Sv1zlpcT7tIvox8yJ6j4SfZ/C3hN9
V+U98e+IXi/6gkpjlUE6D7uwp0SPYO+qn6poouux+o1ROoSL9dud1eYr0YFh
XVifE1W3JPY+e1njPkY00rP/SV0/IvV+5wy0hqrNsWpyOWdT7/sB42C/M079
1nWip8YeM7+3r+oeEJ2mZx5RuytFF4oeqPr7Vb9M1w+IfyN2u71C/VTVHyB+
vvgrxB+qd5mr6y6i7WpcP1r07cJ7p5H2VTfdm8760EblXrU/SPRR/d5Vqv9a
9Fq1PUDPjhftp/tXc9ZU2oe1YJ1e1b1Rem505rWh/hbGoDafiu/OeVabu1R3
vWiz2OedOeQcfxLOe3/d21b8Is6fxvmN+D1Fh7MfVa6PfPaXiW+V+Xc+Dr/1
oq6PFn1d7XskXq/anBe9wwni9xR9U+W/4s8Q3Vf3OiJj1Hal6M/sTeZc111E
9xbdL7WsaCN6up75Tvxpom+ofCv+FNF9dO8I2ou2UxksvrXos4nHc7DoM4nl
wEGiP4n+GLnfFxO3PxQ5o3FX9Fz30vL5GL3XW+q/ne71VZv7kXniDxW/l+jX
or+qHKmyWuX3yHJq/9TvsZvoK2o3gnMp+oPoH5Hl2mvq/y/6Kj0fv0Ue34GJ
+7tXz+6l0kF8C9X9Gfl5nu2ncX0f+Z2fz70uz4l+r3b3qO5U0UO07olKT9ZV
1/9S/ajE42b8zdT3tNj7/n9nDLpI9GWVrpzv3HvsYJXDgizoEs7O1hp/J/HP
ij9bfR2iPncRbaX+O4lvIv4r0b6xr1P1cYT4Xir/1L0HVPdPtV2jPXOr+CXq
p4fuHa4yn3nVvYdEzxIdqmc7hnc5S88+pvqJoq11r7P4PZDRev4b8f8I9KjY
9yalG8VztLNopyAbkX+9df0c40otRxsEuTo3nP29VJ5AR6kMVXkz8z55U++d
iq+l+z31+z0rlvObqFydW963EH0r83NfFZatyNiH9VvXIr/Y8+xlPfMvZDVn
W/2cGVsnzde9d9TmF/Z5Yhl/hOjSzOu/VH2eqHKsnjledDo88hZZVbVsuAq5
qvrdxN+r+nf17HA9O1l1O8XuH5vmfdWPFO2q+l7q75fY5/9IXWe63k/0CGwW
1W2nMpBzqPbnsw5BViAzns28H19V+/lhD7AXdg17gz2ybWq741dsFpXJ4nfS
czuKn8Kaqf2HuXVrJ9GPcuvczkEXf8w5FW2r8Vyo3z1IZZvCe/MV1U+PbSd9
GvRe76D7kM0tg9xeoXbvcw5Fawd9h55sI35yWPfjdW9H1dUVHZ1bT8I30jj3
Ft9Q43wqnFPO64Tce/0E0YfCnmRvooMaxbbBGmALidZKbFNiW2Jr/ie3HDlR
9OkgZ5A3AzSePSpev8ulM15D34t2Uj/PqM0Gznhqm2md+J0lR3bWXI4tbGvt
gT7jPVSfq7676q/Qdab6K0Xvyj22noV16yL1Mzu33tkPmc675Naf2J8r1Ecr
8X3Fz8ttixwtvoX6n6bfv0/8P8R/KH5RYZt5B7W5Q/QZlUNYF2zA3LZNbbW5
KLddVIi/UPxajaGj+EuCLfR2brv6VdXPEb1MJWXvivbJfT7PEj0vtxxeL3qu
yi/i/xY9MrdNdA72e275uRT9o3K6+hmq3+qrNdhP83yU6PeqP0P1LVQ/orR+
mqS640vbapdiG2sezkTGi/89sSw6V3RMaftvpupX6/pRfjex7Xdp7DUaHVvG
Id9W6fph5JPobyqPcEZE0zzIxtTrNQ5dod/8WOWMyPbhBpWZ6qedxrm3ykrx
w0T3UflV/HDRCaVlx7OFzwj2OXb6b7n3+VHIjNJ7eozqjhG/lv0nPtK9yzhf
tMltm13AWrGHVL+96ODSZ3scciz3udtd9VtVPLbn9czU3HY69va03HY6tsQ2
evY5/VZT9pr4e5kv1bcWfzVzJr6++MXi91CbvcT/W/w81W8r/lXxzVRfT/xj
4puI3660PCoZg/jHVb+b6rcUPw85hM4S/4T43cU3FL9UfEfxe4u/Ufx8PdtG
/J2sh/im4j8Xf7jaNBP/rfhe4ieJf5fzJ765+O/EH4E9I/4O1lXP7iF+BfpB
9U3Efyy+m/iW4meKv19t9hS/Unxv1e8ufrn4HuJ3E79MfHfsVfHvYQ+J30l8
He2DPnp2f/H3sf+Qf2FOnhHfUfzzyCfxHcQvEr9QfFfx6xP7OO0Zm+bqB/Fd
xP+d2Gb7Ird/WE98K9XPVv0D7Cvxt6OPxX8e7O8txR+Cf6X6p8W3Fb9A/BPi
DxT/pPgF4tuJXyj+SfF9xP8k/kV0ivgfxD8vvrf4H8W/IL6n+K/ELxZ/uPiv
xT/HOS19Zl7Cdyt9Zl4Wf5D4FvgY2JziK5qfLuIPEH+/2jwu/ujSZ/IV8f1K
n9sl4msqPhfzKva5ZsSWq/ig8PihxxTWNWuC3EDPX4MOUbtZ2HuiU4L8xD89
tWo9fppof+yjyD7hB4n9iCHYcmp3QWwd9HZiv/iYJNrow+DLdEwsI5Hzo5Fl
sc/sdPHbBDuB88VaXCL6DvujYhvreN2LVX83uhh5ntnew95+LrPOOiq3jEPW
YYc8n1nvgEV8mPk3PxL/Geda/L6iH2Sej7dUvzy3DdBG9AqN+SLxq0VH6N7Z
6rOt6m9KjX9kem5SbBk+JLWPPlZloa57V60b+4huEH0qsq1cu8a6fWKNsRFw
EWyXXO2Woi9E/0rt97YXXYqPrPo3RSfE5tvH9rfeju2LvYX/rvmZndq+w3dr
p9Khar5j1X7ru9gWokN1fY7qjxNtUjH/emTZiBxDnqEvsN2uyy1PWaNV2H6J
fcd+or/q+vzYttx/M/t0T+Veb9adMW8IchJ5uRJ9huwVvU33btDvT8jsx2ED
j4rtt3EGz4t8Zi+NLIvOqAY7UvSx2DL8hcjzzbzjq58V8ChwKfAXfCB8rG/E
3yn+pMRn7g5+Q7SO3usnrcMt6MTYfgH2Omf0dtEJovUr9u2xfZdxFnU9nfXJ
7ceci4+TeE+ekhijuSTsAWxibOO/RQEe0JXYo9gC6Hds6HW5fa/zSuv6hWEP
v5x4X3RNjG0wh+h79Bj+F37Y+bn3FfjP17HX7kmVTVOvZ6G53QIMILaP+jg2
emxMb3bYM3Uzn1vOLzgG9tHJsc/eN+p3NuclsS2DPcY5uS5gC2AgtWPbG+jR
kYl9aHCS64M/Dob2fWF85eLSdgnt8SOWJJ6PbqLfZ/6tU9RupO53iz2nPye2
Gc5MLF/v57yLblL4/HKOp1Stuy+oWn/Dx4Xl7n1qc7roJ2FsjBE84OEgG7es
WFbgL9UqLB+QE8jve8WfJpoXfm/kxES9Q5fUMmR84v1ST/Vfir8NOznxedq9
4jXAf2oSeGxm8EpsU3TI4ao7ILSnDdgReqYn68ue1fs0Vf0c0WPAXSt+Z9az
ccBI16TeR3+IvpkY8+wjWk/Xb4tvgK+WGo9qJ/4c5kjPnhvkDBjj2tR7B/7J
sF/Zt9Qjj7erWCYfWni98KsOLrynwD/Wqd3mFWNcYCr0zznsUHhs+It9UuuX
J0Trhnlnzpl7eLDUHExBdTuq/WH4chX7bmNi4whgCMODHYh8fiSzPwJO8p2e
/U319UX3jO3TIcc5u6vD+f028MzzCbH7AeM+oWq/dYLow5n9O3yWeZkxCrCK
WcH3xAddF/u3JkX2sfC14qAP0AubpF6bBhXPUY/C+PSduc8ke6FOap+TcbJO
+N2051n0TMOwvn+mxoRZX2QAPHKgW+Hfn6s+TwDDUv140QfVT/vINgMYdT3V
rw/riH7FB8d+PEBtdhcdnNqXGSS6QLLwcbX5We94X2rZOiO1z4Ke/yizb4Jc
Bef+Qu0Xqf3hNT5PT1R8ps7O7Rc/pDbTgsxEdk7MjYnNx8/IPbfM8QL93utq
s0j9zFY/42Pvg7FVYwjjgp76NqzdR5x3Xc9S+5fEvyx+ivhrwrqyptdVjetf
X/VcNgjziZ8FPr0ss85Gd4PjPZBaH88UHRiwAmIB2NRt1WaPxPPC/DBPvVQq
4ifV2AbspTZtE8/3VuG8EBtgXz8ETlB4D4KjgD0MqxgLiDSOrSvGak5U/9uK
P6lqLH+b0M/Kwmt4WemzWC/U902toxdg31W9B2ZW7Vscpvtt8DGwj5H9+p3v
dO8GtblRY65f9fh5j1NzY2bn4OMWfpdnMvuV4B7gH/ib6J3Fmf2bbuhW0TfU
z0vq5+kazxfzhox6TPXPqH6h6h8S/5r4Z8Vvk/ks74l/n1kGTs5ta4Mvdk78
24zh/cJrDg7F3D2WGTvFtkff9QjxEbAEMAWwD/B6bIEvU58t8B3kwBaZbTls
urWq37tiTGxIbtqvMBYIJtglvEevIG/BWMDBwVn4rf4Bu9g+syy/ObUd1Ce0
6RdspB/QZfQbO4YCZtk3YH2PJl6XfRLbtkcFDHFAkAtJZhnTu+JzjkzkTBSp
5SJYOfJoRmG78j3db13xOKfqenBuHAy8bZ+KcX/GhE8wpBLw8MK4EfY/egI5
tFVqPUM8jPVsnDkuRj02JzEA7Nc1KvtX/PyYwnjXOPwslblq2780bgV+NUh1
AJU8i726eWbbGFlN7IcY0Jbi74wdk+PcYscyZjAr1oY1wv5sqPbzxG+deV2I
WzC/vGOb0J7z26rifseFsR2M3CqM0d2f26YiboRMnVC4PW141+PCu+8f+5zy
PHE37DGwRvZa87DfiBGwZ3jPwYn3GHsNX4V1BRP+JTEuMlH0uNzPgdWx5rR5
PLIfUFT8G/h5ZcV2ETbDX7H1BzY4/hLv2DKsAfOPDUh79gFYL/ub+RoZ5Azy
5q9QTz/bhv3N/ByY2hYlFomuARM+KLWfTVypU2K/nD7ANocFTAa/Cf8bn64D
tlnq8bDnwWQ5H5uBaaAnxH+eWq6vDLJ9bXgvMLg/M8dYiLGy7utj79Unc/s6
X+bG/PERuoexDwzri/2KHftb6jUZEM4m2CoYMtjrsYVttLMDjkg92CxrPjCs
NWeiQzgXXwS7bnw4m13CGqHriSOCvYK1b4xHIucr3t/s7RG514Sz1T3Ev3qI
bpJ5fLVZ28wxbmwA+gG7J6bJ+x0S5ANxLfwifKJctF3Fc0GbQ8M8JKF991Df
ObRHb6A/0PX9c8dhXyGWmHu9iCsiq9aEfYScAP8EMwdDY03ARz/T+9+gutGJ
12puWK9jgg3UX3RwbJ8BfwFcdt/YNuggZF5sPxDcFN9waGJfAjv/OOzfqnMA
elV91vcJ53dcar9vcmqZEQWZsz7IBXzbx8EJI+Pn4ITs6VvEP6YyIzLGzu93
CGP4MuylteCcuWOOXXPLEOQHMpM5xsfeuOcKP7sw4CLoodeD/MR/wM7BNiHO
ge24onB8qoJ+D748Pv2DFcdTib20DfuSPTm8altmRNVnFFmDPfBj6vc7CX2s
Pl/R/btFv6yxnbOkxpjZBWp7tOjnWsvLIscOXlN5EJNCdJTKZuJPyRzjBp+9
RLR15n1SP7NvhV/8jyTEhiqe389rrLufr7Hv/G9kfGKM8EbsssS44E3IV9FF
GuMStV+MP596/qekxv/miD9ZdKvMft3Fql9e2Fdaq7orU/v85HW0zIxHoT/Q
Y62DPv0AzEt1nXV+z03to8WiAxLvkzGp46XENMF6ntP1kNj7h3wFbNduyKXY
+5W9+nHhPJftS8fWiTEdqf76J75/fOrck4GxsWnsxB1jY9bsHfrnPbG9kb1t
0VGF7ZqDS8dyj46NT+1WGEMGSz4ntW3TUvSdwjkXjdX+s8Ix8F3FH6i2Q2Pv
718y+63EK7/L7KcTD/2uMJ7zbeazxJk6ObX/DH+B6DLs7diYTBH7HRg/PgM2
BVgWPgk64YDccTjicVun9jGxl/Ff8GnI+SHmfXjhHCBiK8Re8CvxL4kzEjfh
eXwx7CLsI/wtfDD2+s+529+dW/6jq3onjjfyG/T/Yx7yP0RH6zduCXqEnJvz
OKO512qP+P99XShy9Z2wdqwhOv78yFgTsQNsqltz5xGRH9AXPDf3XB+WW+e3
CrrgwdxntH1uW4g67EByAdD36PpRqeUmc4UtuTbIxqnJRpM++gvZD3YgfoP4
68RvKz7FRkg2Qm1RnNgO3E98k8R+DjJlvOiFyUbINFoj/vzEcd5fxF8gHjj1
D/HXBh8HX+diVWrrRDWJ7Wzs7edEH9R1a9YPjEqlKfqfc6myG+NHxqvswByK
HhliRsSO5up6d/Sy6D0qzcRvJ3oXfgVnFj+ysN0yE92t61aq3ylxXGIv7BHR
f6lsj40iOjlgNWA2kxPno60SP0W8SLRa/y5hT4hP0BGp43o9RT8Gz8TmFH0g
9zpugb+SGqMmv4GYyf6cucS4AlgDPtgMtR+g+iXkQ+XOiSI3qmNq+4l8hQ6p
7TBkDbGhjfFotZmj0iZybsYValdX/O8aw2WJY52/ir8KGSd+nfgZ4FPiC+ST
Sm1ksug1KvUZp+gpAUsHU79W19uovip6JT4ksrFq2wD7YoXKTapvIFpH9HKV
LdDVanO9+O3E56KzeGfxf6J38OH17vM0wTervqHqNxO9RaWR+M0Tx1yJvZ5e
45gMeuTYxPEcZM/AxLYLNkxPfFLNwzWRz8vEgGN3r7H+Ro8fIXpWjXMnNqlx
7OsgtW+aOJ5zsPhmifOikANDqo5HMbe7iH6p/q+OrJfJuQKTvUg0DfoUvTor
9dknDwqbCntjdGqcHH39D9FrAo6JXrg6tR2APCdWS/8/ZI59XSt+ROJYFu81
PHGcijbDRPfOjF2AYcwJ53TXxLGX9uKbJ97zHcTvmTjO1lL8Doljei3Eb58Y
pwCvaFnjdeSM7Ehb3kf1V6q+qfhLxTcT/Syzfu+g8d6qdo3FbyH6pu49rTZL
q/Ztwbnw2YgrNhGtR99hTYmrXxb2zKaJ43I7i98ksb0xMvg19DGq4n7Iu4BH
7kFHh3rifvuKNk6c44UfuL/oHRrnPpFzA4g3oid7id6msov4uolz3ch5Gyl6
Z+Z+yGPZH3xB7zEGKsHVKrW/j6BrG+y9HkHXoHOyMshQPZuXYd8ToygtpxqI
T8twlrDZSs/dzsEWIleC3ASEJOdnS9XVlD5vW4tPynA+xVdKn6WtxMelz3w9
8bVLn5+dxNcqfa52FL+h8JnfQvxvheV1Lv6vwrJ+U/RdYX2wCWPRe8/Rey0X
7RRsxM6i9xKDRC4UzjvYWsNdr+uiDDJUz16u+dopcry4LIPsJsZSWAfUEb++
sNzZXPx9mc8g8cr7xbeLHMd8IPN5JHZ5c+Z9Szzx2sx6gf1+TeZ9Rbz4xsz7
mZjsTeL3jBzXXhr25DKt78TM8o13PCezzGcMV4vfNXLs+OzM8moz7I7Mco/5
mZRZPzL+39XXs+pzBXs4874lfr1p6b1FrHZhZpyc+OzczGcTXYrPeBB+neqf
Un2PyPFi8C/wFuLFQwImQo4HOAl2JrkfNwZ7G7v7isxnh/NKfJh93ohznzjv
Dn/2lsxnGRlwZmb5X1v9/VlYf8Mjf5HD82vsG7K/yaslNkQMixzdTYO9BTZO
/uR9sePUdQMmQr5ig8K5keQAYDNhs2FzgMnvUHFcGMy8qnFcURr/x3YBRwL3
IM+Z2Hrzwhg9+Y/EyfHN8dHJdwVT+yK1HQvOBt5WP/gL+2T2i8HItsyM+YCV
kJNDni3+JjnIx2Hz6V27greVzstsUjifkrzKvTJj1/i/vQrHLt9FjqXOX/1Q
dHrpHF1ybtEDJ+XOIyKfCBwVvLSTaF/1dbnWq41otbQOJqZPbIg416jCOdt3
BDuBmD/7cMvEsR7wYnJ1pmU+a+RmEOsBgyZvZ11hW4S9OjS3jiNvfXVh26VQ
3ZrCNh85Qr8XtmNK1f9R2FarlTv/HN+DvILzM/tl5Ej8VNi3Z6/2CnNCLhM5
69i0xHOIoWDDkDv0s+aiKn5lakwJ//+X1LEY4i/tsZEz2yTIfuw57LqGqfNd
2G/su81K23ANc+NRtfTsgchaPXtSxWt3RmY7hPGfntmu4L02ZPYxyetYnzk2
hx+Jb4+Pf1pqLBIsingEvt4Z+DylfeQzxR9JnkJm35CckynBt8XH/SmzX0lu
yerM/ik+6B/i50bORflG/HWRc0i6J/ZpiF98UthO7FbaRsRW/ET068y6nhyV
V3X9JthdjXUtOrd51boZHf2O6Bfsq8h5KcvxSSPn0mBDkt9OrtTTwbfCxwJj
eVZtMNjJZ2I85PAwn6vU3wDR00P8mjj2j5n9aPJhfhZ/c+Q8nH+LPxA9K/6G
zHGHRrnjKeQPk691V5BjyLp7MuPw5AIRWyHvl1jVePFfin89N57fVnWd0CGZ
4z6s+5OZ7WHylO4V3z1y7tCCzHgRuUlfYJtqzB/oHa4LMha9cGtmmwe5d3vm
WA85SCODrp9d43xc8nJPxxfMLKM4p7dljgHtovZ3Z45TkOPUKMjYxqltLH6r
ufjrM9vz6Pddgq3YVPVjGV/k/K7GwT7ZHX+/8JjRoYsDLvEWTobKReIvFr04
s1+DnXBJZl8Gu+LSzP4RdsXUzDYMtsEFmW1mbIALM9tj2AYXBV2JzUAuPXYm
+YFXZfZ9sBPWhT3MGekXcDPwM3Ai8CJyfj4t/I1LA+yRzP4adsWUzHY7tko1
dyybPJ+a3LFpcoSS3DFxcn6InxFHe0H0tMx+CjLq1Mz+AjbJuZllArbKjMw+
HXbFrKDL0HczxTePbFdMDnoQeVIEO/yVGmOq4KVg+wODv8D3JPtl9veJSf2V
OY+C3CewHjAfcqKw/cAm+U6lfdU5KuSq/Jp5z5AfVSf4/mAAN1Ytw28SnZ05
TxW7bmHAqcCriD8Rh3pNtAt2qdoeK3p8YgzzVPAjbA/V985s32Pnn6j63zJj
XMiZMcEHJ/b4uuoHRs49W6bSQ213KJ0jBSb4s+reyRxvIt8AfAGc4ZvCeTPE
5n4R/3fmnBNyw1ZlHg95X+Qcki8yPXduzO3qf3LpvBxyAoaJjlL7Y6uO3ROn
+zby9wHknhK3JQcSLALs5Y7UOczgViMDFkRuKu9OvIS4CXoc2QVWdFrp77X4
bquW6uenzm8kXkneGXn44FTky+JPgd2SOw1OQswEjPQu3T9V/YxTeT3xdxDk
P4Nz8l0ReSzktBBX3bw0BoFMA3/Bf+ed+V4Am4pvLMhJRl8NKI0Vghnekzqu
BC66IHfuLz4geA/5r8TDyfcBz2E9T9GzU1N/13G36Iml87TAuMDNsDVOL421
goETu+BbA3TXGaVzeZk35o+8bnBZvosarnt/JM4DJ59kWuif/LepseeC3Dkw
TLBM8DrG8N/C8grZNrB0zs/FsXN6ySO6KHZOL99TgD+AQ4AZEgPAdiK/aHqY
B2Q73x8MKv0NCLFUYqrkmZNDfkJqzHBEsJ34LovcHexC8ofJ7yAPlhxPcFfw
V/K42DtTSud7I0eHlMZdybngOzP0Cvpl72CP8V3C0NLfJiCPjyv9DQsye1jp
PMA54i8kLzIPMdLS36qwhy9NnUdDLjTfHU4r/T0VcwUWCoZJ/hGY9v++q2C9
WXcwgJFqX5P6mwVypsmdJj+ZfE/ylMgfJyeUPEPyytkf7BNiW+QdgfmA/dAv
/fPNBWtLLIyY2Fj1/1rib+VGiU9Sf5sws3S+C2efb2o2fjeROZcAjJR9xrcq
5C9h94C5g71jp41Tu6lVf7/HWQGzArvCbsB+ANPm2xDyqLGThqnd1xXnYZap
8xr4LhMbnvj27NI6Hl1PrjI+NHngfB/E2MHNwM/4VoI8IuxJMGdwa+IkYODE
xsl5ZI3IOyHP8dLS33NiExKLAe/mO60ZpWUE330gC5AJYC3MDbk8fHcCfssc
cOa2KI0bYs+g48BUwVbrlsYlsQHwyfHN+YaFPDFyvsjxJO9kbPBHWOfFkb+l
m1U6j+2bIJPBHMgfBwMCC2LP8d0T3yxh91wOKJpZDvPtD/bImaVz+MB28DfA
mDgv+DXYkOQh8F3m6NLzTl4oORjEefjG5f8AnutupQ==
"]],
Polygon3DBox[CompressedData["
1:eJwtm3nATVUXxs+97z3n7HORopEGQ4VEaBANhpS5qFRCKrNEo0iFBtGklNI8
SmnSPPc1afy+JhENmgeN0kjU9/x69h/7fdc6e599pr3Xetaz1m187ISDx5eT
JHmyJkkq+t9Vf94sJcl9Orif5IuLJLlQ/8flSXJlNUn2ll5Lfb9lSXKR9DEh
ST7XeTtIHyx9nvq/1lwddc7Vklvp/0Ua/7paa8md1PYp+RqdJfdUWy95pubo
JXmg2gbpZ0g/UvIRmqODzj1B8w/U/E/q2Euaf73aU5LP0P+y+rvpnCmSX9Ox
e6W/xTUlr1R7Q/ICtY8l/6h5/i75Hn6QnOj+79S/lZJnaf4haZLMkT5Zcx2r
Z+6hdoLOHSv9GMlXqG2v/ls0ro7GH6jjz6n/OrUVkttrnp/Uv1ptT8k7af6B
vFeN31Ljd9OxH6T/qLa75Cc0Xy/JL6h/K/UfqvFPSu+sviOqfq+830N0v2dK
flzje0p/Ps7XRse+k364+s+SPFatg+SzdWxryQs1vqPkxzR+c40/STrfe7r0
X/VuL5K+tfRrpRfqv1j6NtKvk16V/pDu5wLpS6SfJ/0dnTNS+gGae5T05vr/
hfSf1TpIvlPnd5D8qMZvpv67pO8l/XHpW0g/XmP20v2do2PbSm6p+Y+UvF98
/us0/1d6jyt1k9dLvk7n76z+u9RfT/0jdE5rnT9RxwZJvlb9LSUvVP8m6q+n
c3ZW/zQd20TyLepvJ3mR+uur/3GdU0f9/9OxjSRfo/6dJN+p/o3Vf7X0FtLv
kF5Xejutme3UtlXbVW2B7rexzj9dY4ZInqPxTSTfpPG1NP5W6btKv1/6ptKX
acxgjZ+qY+fofu6Xfr7kd9R/jvrvlP5f6TfqXqZLP1bXOEvjt1cbJvlnHU/1
LnpLv1DyccHvm/d+lMZfrus1lX6z5qst/UXpx7F/1T+N7605Gur8STp2suQx
7FuNP1n6VZJr5763PaTXkbxM99hZemvNt6/Of0/6QYnX1mTptTRmheb7Um1A
7j3KXm0ufZDkt3ReS8m3Sz5M/T/pWw6UvpPaavaK5muva12p+U7UfFOC90J/
tYMlb5H53e6iMSMlH6bxu5f9znh3l2jeYdKHq82WPED9u0lup/G/qn9Bxdff
We0OyZvoHvaUfAi2RPIwje8nvaHG7y75TB1fzF7RsbMkN1FbqvauWlNsVfBa
OkTPNaVqG4Ytm6PWRvKhmqOd5Bka86nmn6/x22nuydJvlXxb8PO8qfPHV31P
3NvNGnOn5GN5v9IbSN9N8oCK7/dX6YdJ7s7+5Buq7S/5seD9wz46SfO9lXl/
dtGxtyV/UrGte0TtU8lna/yB6t9L1++m8bvq/wCN/VrHHpI8XecMkr51yfvp
SN3D3jr3Q/UP17njNKan+jrp2OeSJwXbm10yr48pOnag+vuorZHcNrWtwmY9
IHlR7vXzlOR9NH6k5j9Cc52qY3XwJTp+sMZ/Kr2x5rwv9/0+qeN7a/w90vtK
f0L6XtL/0f//SK/ROfdr/Abpz0gvS18k/U/pj0tfp9ZJegvdb29scbQ/u+n/
YRq7SsceZo2rHSH9G+n/YW69s7Vap39i/9WeVlus+52F0ZR8VrBtP5g1Ibl5
sP1uH+3rEukVzdeddVy1j8JX/cVckt9W//ca3zbup2bB9nyPaC/b6f+hOv9L
HXuQd6N3tIuuvanGb6f+F/Q+xqr/HulTpR+t/r5l27Rv+Ta6RknXmq/2veRv
9f9u/b9L7bsa2zBs2TZqu6mdo3mO1rl7q43PfP8DJY/W9S+U/KCut5/kHaO9
GV6xbVqsNkLyMh1/T9dfqvae5NW59eWSZ2r865nHXqO2p/oa635fZP/r3Lns
bR3bX+O7qm0heZau+SpuWeddVvX7wrf1wydL7oEdLhkzgB1O0bj9JF+v/tF6
X5dJH49/13z1NN9QHTtR+gy15Xzr1P3nluzT9gu2h0dKPkPXK+mcBjp3guY+
RPKHmu99jX0CGyR5bub5lqq9I/kRjRkj+SLJZ+n8d/Fn0sdoztmS31MbUvIe
vUfyWo0fIX1z/T9T4/fXO9hMc5+o610j+Wy1YRpb6FhHyUep9ZZ8jI61lLyp
zhuu829JvB+3Aj+o/zDpz0qfWrEt+xofKLld5vX2p9o+kk/WmFPBW6wXye3x
9xp/GbZMclvuo8Y+r120gdjCJaxd8I3+N1DbSm2a9OV6puWae2l8f68F39vx
0g+qes2z9tepPYM90j0M1bU7qh0n+XWNX6jxp2A3ql4XrI/b8U8VN+SWavMk
960YK94p/UDJH+j8YyRfoWOPSB6heU6Rfr7aR2AkPdMLer771d9O8mhd80LJ
J0UftFBtGOsz8XjeL7auu47NUt/FmfHYrLjnLlF7SvoF0cdenfl6y0te8yt1
D8cyN/Yk+Jl5dmwKtgV7dZH6E7X9NP6g3PuTfdpP8sM6Nlt9j6oNkLy/+hbh
y9QOkPwg98D6wadlxgRgg4/VPpG8hdbIA6x/zXeZ5BaFvzff/QK9332lb6xz
NyQsMq9p1vYn+J/cuA58d3G0r/iXd0reM+ydx3ROG7Cb5I7RHjO2pNZNY1/M
jKc/5P1LbqbxKyWvjvj6UeyZ+rfReR2kPyK9Nf5X+p7SZ2Z+9+y5f/ee2oqS
3zHf9l3py0reg+ztRTp/C55Fcjudv7GeoU3Za6a+xmb6Bo+q+3f1H67+2fq/
kVojHZumsf/o/GpqDHxWbjuLvWUO5pqp8/9WXw+NuaIa7V28H77988H3s1Ty
+eo/j29W8hjsIT4cX05Mc7jktprzcc39UHw/PwXjvaPVN0f3cqKOdS75nePP
wR3gj9ekv5F5jazSt/2s7LUzX61b9LWDqraxozTXyIpt73ma/wVeD98V+515
rglqcyQ/pGvuqP7NdP4e6n9YejPpm2Mbqo5/ftP1flHbAdsYjJe3VH+u/q2C
8fIW0rOqvz/Pxpq7hvWo/h3UX0/9NeqfoTk2l36F9ErV9gD7e4/GvyB5S3xq
vH6q/s66n3p61uPx55ITHaurvsYSz9ZcF2j8axyO8Qg+Dl+3UO17yaP1v67m
vhabDJ7THBtpvvU65x+dezv+J/raoeAz6d0jNjhW+gL2RMRKx0j/A38pfS02
VXKhdiXfVnNuq7Hnas7ngQo6PoL3o/93qf8Etcsl11KbJ3mc2mzij4pt2zTu
UfL9ur/twEa63q46/4HCa5U1uxvxIZgt8ZzP6/yGwfHPVjoe8F/sgdQxyTnE
q5pzy5LvcS6xjI4N1r2+nzg+xP9iG7GR2Mondb1O0ltFvIZfwj8RQxBLfJbZ
1+BzGrCWNX4ffFPEZ+A7nu8xjZsj/XTwTNkxzM/sM53TP+LbVZnfGe9uu7J9
fneN6SP5K/W/zJ4FA0mfXnLMBAbeQ/exe8TG3XS9LdU/Xvewn+Qn1PaVvHPE
jw9pzCHSn5Y+RHpj6UdpfCO1zXS9zdWGlH2MvlG5cQ2Yhf1zSWFf3DM1//GU
9B4Rr3WRfgE2H/xdtk9/Wv19pHdQf9eqMQ3Y5mi1Jth3tUPV/4z6j1Z/fen7
lm3PwBbwHPAda0vmJ54pjH87glWqxjRgm8A9p45pDgaHJY51eJ4lkkepf3vi
M7U1NeYw2L/E/GuIixJzAX9KX8c3ln6a9N+l/y69vvRTpf8lvYwflX669I/g
h8rmVOBW/qP+QerrRpyg+/tN+q86Xg+frvF/SP9T+qbSJ0pfL70CbpE+Rfq9
+CPJqzWmTdU2AlsBx3IeeFHHp9c4JiM2+1vjg/obqv9M9W+QnklvIP0M6esK
+wJ8wmS4Ds23SeoY+dzcNgXbgo2bmdtmYbuwObNy2zRsGzbtgtycSIPUewyu
hD3GXsMGXij9xtS+EJ94WW7OpGFqzgIuBU5gO+KixFwBMXqj1JwEsTscUuPU
nAHc0gLJO2J7pc/LjcvAZ+zhORVzEs3wlYm5CjiL5qk5F7gMOJAWqTkfuJFp
qd8t73ikbEUjtd0SX5Nrbx18rzwjz7pt8L1xz9w774xvNyf1u1wj/VbpXxAL
Vv3O+Jbzov3vq/e/Q9mcBtwG75Bvc3X0F3xT1trl0R88r/HXsl6l95X+RDA3
B084v/A3Yu1dFf3BC3BCEesfKP1l6XexVrEz0l+Vfg9rmThP+ivS72btSR9Q
tU1kbV+W2layBqt869RrEwxQh2+XGhuAz4kHiAtmg5/AS9jnsu0//gQ89gBY
Uf3r9L9u2RhrfWYeD/zIsb8y+w/OxQetzcxp7ZSaI4PrSvX8j0j+Ld4/a7oW
ay31WmfN12Ytpt4L+ED22qWpfSP8DFzLe1J/0fw1mu8h5Ph+0ty2jxj8SOxt
xdiSmIrY6iKNTyX3Ut9o8Lyuca/OnxTx02Lpt0mfIL2/9PG5/Rb+61ad85L6
56v/BOy2+m+oMTcKR/p5jfm3q0v26QdntjkZez21LcJG8CjnprYdc3U/z0n/
n/Tjqt5z7P1ror/DxtSABVLbHmxWBd+X2pbtjx9OjLnhB+Cb4Af+UP8w+DPp
ufr+K30s+CH3+vqYOKlqDhwuHAzereKYmti6hf7fpv8h+P1jU7Gt2EhM0KzU
trMIXm/YRO7vWbVtdL2jMvNBQ/T/OPVvG49hswK2KbUta0N8UDYn/Z6OnVWY
34bnvoG1p8GZzu2jc8dovr0rHss5+0h+InPsjY88VPJzmbExMdZAybXVxml8
I/A0+L3w/h6va/XTfNXg/Y9P4H3uCl4oG8OCZb8tHD/NiPh3bm68dys4u2o+
ZijvW21vOIxgW4cNxBZO1fiNEnM/R1Ydc4/XtSYk3nP49y3gXiRfqv4D+K7s
D7WXiDELc49wkL3AssF8RZvU/Ottue1d08z5ibr63xTfqFZg79WaSD6zZA62
b2qs2VjHMmxfMJaqG/cXfGkr9TXX+IOxoZnHMgdzTQL/sNb1DHfzrXV+q8Q+
Ad+webBv2yTa064aU79sjA5Wx34Q6/+V2F5smRkrwQni3zcL9mUbR/tFXEJ8
Qkz6iuSNg/dHFu3FJsGxTYj2YlL+76tMZkhfK71OsH1N4nrbKNiel+P6rRts
vyvRPtYLzg9Uo318AHwDHtJ9Dtf9jC6MLxthZ1iPqXMDX0QM9n1mLpccDLmY
2sHxABiE/b9Gx3KdvwKfBBYqzDf/njnfBA4Dj/2i/lcld1L7VfK3ifmPWsH+
BcyB/fg2t39Zqb7TdH5F82yi86twSpnzWOSziG/hjhYSr0gOOm9bjd9H563R
+V9FzNaL76jxT0t/DR/EmpM+RXofyaMy217WCHw68QvX2wCWrDpmJ3YHU/+T
eT2Si2jBPWELM6/32rqH/pk5dnhzbDq2fa/C1y9L7oP9lT6i7Hd2CLG12qqS
Y57veJbg77NL6vwHa561jw0m/8H3AGuCscHajYOxBBgDrNEkGEuAMcAaTYN9
FRgDrHFGcL6rffz+20vfO7FPw7fxzk/NzM/wLcg/7ImtK5lz61BjvmJftdpw
lrm5PDg9+BNsMLa4q/RnpJ+s88/NzLHAtfQI5lrQP5L8QeQM4HN+1lzv69xj
UnNEcEXY+D6soZJt/+3Btg/MwvdbqXPGJrbR8Pfv5cZeYLAD1L84mOsh/v8m
Xm9W5Cxekt4lmEs/DR9CbEnOIjHH+r7kp4PfBffzYTAHuFluzgxuEA6N98L7
WR7H8+zXxvdHDqKv/t8ccxMv8w5K5gR53i11jzdr7AfSdyzMEd+dOQaCO4aj
3DlzTAt32U3nX5yYk1uBL1QbLfkgfKLkFRpzvOSr1Gppvo+DY1diPPj75bn1
ueyZwjmnezPHOOSiyH/g215PnC+DH+xVMgfK8y4Bw0r+smR+Ex+PDa5Vsu9v
r7am5Hv4hPVQcS5rnL7HRMm3xPifMeRz4FCGVryH4VbuDY6v4XT6F85PYbex
3/2kf50aq4BZftW97EzMK/12fAzvOfLRq0vOz7RW/2T134cNA2tJHyv9Buk/
4BuknyR9AT5Tekvpx0m/UfqPufOp5Np2KpkPfoz4V32fc0zzn1I1B0Q+5wvp
VwbbAmwC8S0c3seZ+T64PTh2eEfW5A7Srwi2bdgc+JK3c58PJzFYfRM0vn/q
HOYP0p8KvhY5uYfjfoKbZU18oXPbA2awLWojJJ9cdZ6AfMHj5C6CZdb4l7lz
Uttl1slV3YH/LNnn4p/BCDMiRwZ3RgxBLMEafiXYXmCrDwCjSJ9YNadGfmFV
YY78hIoxOdgczhjumBjg08IYdVL8PnB/P6X+ngvi9wKTnhC/74bcnA/cz5dg
nmCMTCxBzAB2BuNOiOtjfe49z95fEfc7MQWxBTFHJTgmITa5Pq4nMBRYCsz8
V25OHG4cjPVJYQ4Av4J/OSEY44DTwGtgn+dzYwFiDvJNR5JPSIyBzgnmmOD1
4ffhnk4Nzm2xv+GuTgv2jeQo2O9wWnBbjJmovuODnx0OES7xtdy5C2KAi8He
ubkuMDP5WThE8mrrIl55OTf3Sw7u8GAODg6Z/BzcHDkceB34nZ5wJ4VlbCq2
lZiP2A/M/Uvu/Tgm7if235DC3MpQtVeDYyJiO2ISYiWej2clp/cW/iGYzyPH
+abkOWqh5BhiUHx/yBx7U/OvCubP4aibF56DucgTdqo6R0fumxwUuagGhW0b
OcOGkl8IXqtg4FW58xnkQkepldhvwe+WnN4bkvcM9g3kXJcG5winZs65kXvD
HoN9qOF4VPIXwdwQHNGT2KLcubln1Qay/oKxHzlB7Ducf50a18OQCwAzgXFm
JcZSJ2vMJ/imxHzA5Mz2bFFie/+s2pKSfTLn1w/OzX6mNjoYo4PVOTYqmHOG
eybfO1b6K5p/VOIc7RHB/g+ukZw19uAAfCZrlTlz1/TcAU9dcq0PHB04Ebw4
jm8RjLX+UVuc+/t+k/gbwKXtqPHjMtss/H8z6cN0/lXRHlFDQwzOHmIvweG2
zMyvsD/Wpo7pWePPRUzVNHd9AViL/dIqM98CN9wL/5Q5Zrw0eP/ulHnNcT/k
SKnNID9M7hT8cpL0uYljS+zVpMxrhLWCPZ2QGcN8Ee3DaZl9JL4S+9RC+h6J
uWreT7PMawpuk5iGGiFiHmId1ixrt7v0pbr/r4JzXWAu8mPUAOyVOX6iNgDM
Bnaj/gIsf19q7gcO6JZoz6k14JsN0/hdM9cwkY+9X/29Y0x2lPQ3iberzqkP
kL688PrYHp452hfWT5PMMcTU+P3hPOF8Pi/MVzXKXKMEP3lA1Rgfzvm/hXNI
5JIqDAjOIZFLgn+7KWJ2cDR4GixPDAIPCh9KbALZUMq8Rlmr4ElyyNfF74O/
WZI5v/uczj+7al4DfmN19FcTM+MxuDBqohZk9un4dvAZORtqfmYWxnfwwtiw
wYVrfG4iBi2ZH6MGaH7mehfqW8BP5BXJL24IxmvkllnzpwTjOfKQ5CP/CsYL
d2bOb6+Tvov09RVzCJMjZ0UcTTy9WtffvuqcP/79XeLTqrkDOIQOOqlp1XkY
8jFL1N9Y+uDMmBZsC/4gl7iQ96X+rauuIaEe6wPpD2XOYYLpwHZz8e/gda4n
fXfpm6bOOV2Z2z9UctdvkPtvK/3vivnb83Pn3IhxyYn/Uni/nxv308cR/6yQ
vqzs2gNyiOQSyTHekDtHCT8L/3qz9EdSxzbEONSqUVNBzu8d6XvG5x2Quj5t
ZWEMDha/W+3Y4BoNuP8e8XxqPqj96Jm41o4aE2pNeiWufWsi/bDU9o544NPg
WJOY8xjJDavOIYExwZoPqLUpuaboqOD32yNzTQn+ok3wtyTGI9bbuHAtETVF
dwc/3+5x/2OviPmI/brE/cz+prarc3wfcO6rYz6AfCj50TWRv4dbZL1sk9mG
E780lz5cY+ZJ/yo3vpoU/TF4ao9grExMQKywA+tH/bOjvWd9Nczs44g34Gjg
aohRqZ1rIL136hjsjdw1gdQGUkNJrSQ1pR10fzfWuNaUGkhqK49IXBvJej4o
tY/9sDCH+S+Xmdh3kqMgVzFY+uu57VXHzHzCO8H8O/kA+H/4dfh9uB84IPh7
cqLkD5on5ufh8ODtiHGIdcihkkttpv6rcufsyN01TpwfIKdHbq+R9Nm5c9Zw
L3AwcN3Y113i+zg9uMaqdfx+1F6Rk2sVvx+1VeS4yHWRs6N2ihwcuThyYPdE
f9A6MwYE27SoGl+BT4m1yW9doPc5q+J6E+x5OTNGAl9iL7vG9w/e6Fz1+mL9
E6/0kN4lvn/8Pfb6r9Q+e7r07vjf1DEO+LBL3D894/f61x+lrhFbUThnRu6M
nNdTuWsEqdPAh+HLiOepW6R+8Wuwa8RHy2I8gX/ePzVG/qhwzozcGTVlz2i+
d1Pnvcl/fxaMB8jtfo2/Ce4fmLpmh9qdE4P79o/+l2/Et70y9bcbVDgXR84e
fIZNw9fdlkZbV9h2UHPC9TYrbFvJeX8ebOOwhXNT2z4wALaZGAtswJrBt92Q
ei2dnjk276c2JbOvBMv1l35G5pif2J+ava0KxzzEPqtTx66sOWzj9anX4tjC
+U98JL4SGwiXVDfaxt66x6sT73n2PjaMvfV2atvG3iJWoOZpWuZ6yLaS301s
v7qqnZfYBjIeG0et46OZbR82Adu4LLWtwDc/mxgPg4uJcYl1wehgdWwg2Bmf
g208Ojj32Z86ocI2BS4DH4atqV+4VmgmeCzYhsHF4AOxbXNlR8aSr9KxtpJ7
Bds2MCRYsnfh2LUasQUYE64JH4Qv2rkwd/GizpkR7OOm617GRt8Hf4FvpOaU
2lPsI7WP1HxS+7lXMHdNTny49M7EWGXXOC8KroGmlp6aemqjf+EdJK55pfaV
74Xvahv5P3wAvoAaWPiNgVwDrFR2Pefa4NpOcszg7cPV2pddYzs0uN6Y2OWB
xPn6TsFzH6N2XOEa5tt0P7dWXNsMRiKWJ0YHO4GxwFo8w4TC55+dmKOEqwST
/OvbU2OV7wv7KmwKtoX6ArgQ7AV2A5+Erbwkta9qXbi2bTFz8KzB+RN8Br7j
88y1A+TcqN1qovGvl7xGWCs8A8/Cmh9TuEaBPBj5sJHRn8INUbM8Kn4PsMDg
+DzEoMSiD8b9RYxArEBN8vGF4z1iefg28Pn7MV7rnTk/Qz0zWI9vyPsmxiXW
/SY194QPxZf+mJqrAHOxP8AkYJOvC9cuc8/cOxwZXBk5HOJb8nv0UwNAfQP5
JbjMsfEdwWHAVfyQmtuAk4Dr+D41V4HNh1sA0+MLuhfmPpvG2Ih4ERtETRX8
Cjad2H99altPfon9zZqk/uqnwrWp5Prgv+FE4FK+Ss2VEPPDjXyZmgvAhxA7
/p3at+CTibWJKfDV+Ax8zXOpfQk+iPXyaeb1g8/At7+Y2pdg8/EFi1P7AjAh
vvHu1FgRDhgumDV0WbBPJza8PbWvJ6bAt96TOtbAp5FvICbB1/1cmGuHs4G7
wecTq81PjQXgZOBmyIHBv4G58N33psam++TmKodQs0WckDnWHZ44v0F+Du6U
e4S3Jt9Ebp1vTn6KGBeu7YNor8BkYK0Po72GWyFWgUOGR4ejJDb+NDV3SSwF
9zFS7SfJI1Nz53Aa8HB3ZeZqwfvUi+LP8J3UfIKHu6tdmhjjYb+3Vv8jJeek
yoU5ULjPVam50VNi7EB8+53k0yuudWQ/T6mYG4MLhw+EF4QzxR5/lppL3SW4
1oeaZ2qfaxfmmojn4KfBNMTSn6TGOl11/9RajkicrxkQsTjxLL8/gRMgVl+X
misgHwe3dbRal8L1onCj4AFwAfVcPDu/MaH+6v3C18ZXweVQXwe3S/xHvR4x
1aTEmBRsWhSOdUYm5svhDB+W/GtqLpF8H7aK+JD6qFbBe5tvT+4CzoH1DcYB
6/B7CXwtvznol9o+UttJDdXQwpgX7NYzMxbuH8z1TI54gHwBtqxG4//Mvd/A
wg9Hfgu+C5nflMDnlwrHcnxjvjX+j1o6apSpVT5Q59+UmPPme/UN/v5j43rr
E2zvxsTv00/6HYk5c9YHv69hvZ9RMj99dXBu9LSS81n4WHwtNRfU73UMHksO
5/bo3+CS8Hn4voOC8c+J0b6Oq7gWkBjq+Ip9CGuPmtskridyHa8l5i+rhWvn
iohXqEnZt+L8OrUq50mfX7FPxDdSI8Zv5cDUYGtyNORqblKbUTiWh4uFH+H3
BvhQfOktFfMF+C+4PN4x9W/Eezz7RmrzJC/UmFcqrgGgFmBexMLgSeqpqamn
zo97ptae9UZuhviS+Jqc74aKc67kgqnXYa2Rwzww8kXkp1akxt5XZK5dnJ44
HwunArdCzSr5FTBXv4oxFv6V/Tmx5JwDuYurgnMPHOP3CTwjz0oOC66E90VO
F3vHbw3hMMDS5EDgNohJiE1mVlwbP67w2Gr0t/Abf2fOp5IPeDDuZ3KSZ2qu
Z3PXHlADz+8H4Pv4XR6/4eC3HHBYcFn8poX4Cg4MLozf6BF/vV64n9/qUS9C
Q+Y3S9SSwE/yLfEJ+Ab4WHw/OeNpwRwbXBs+CF9EjRB1P9T//Fs7VLVvpB6m
c+RPqBuifoha7T+Cf6sAZwB3gD2mdp+aQ2oP4Z/4HQNj/iReDOaqyHmR+wJf
UttADoZczN/B3NJT8f7go6h7YMyP0tcHc0vgp6nBePPskjEiWPHn4FpMOAq4
ii+LWA+b+dnAg3BnxGTEZmBusDdz8Pss8Di/1QKTgc3g127LbE/vC/7+M+L5
cN/wY9R9cs01wfX32CL4IOod3sm9N6ihwF6/XdjXkqMgV0G+j9+hsUfZq9gL
cvXkwMiFsaZYW+erLc1dk1w/dQ0LtcrUsDRJXUNCbUvvGueqsTF9JL9VmPsk
B0Muht8T8NsDMDF5LvJnnUr+TRW/rWodXF9CjpNc5xuFsW6XiHf+V5jr7Bzx
1DJd86KKf4PL/rhZ7Ycacz51Jf8fhLUh3w==
"]],
Polygon3DBox[CompressedData["
1:eJwt1wm8j1Uex/H/5S7/e8muyZYt0oK0WBqaVxnJTqOZVzEzicaENNNEpqGQ
rWxXUchWmLEzSfZqEpooMXZqSJERskRZ5/17Pff16tt9vp/z/Z3n/J/nnPMc
VR976sHehVKp1GLKos9zUqm8jFSqXXYqVYi25KZS/6I9Gh+lV2WWpVOpjTTZ
9R+wvnIf8x/KfcP3ppnaTutrJ1ZX+23UDluCbcBOyDxLC7FL2CbsPN9Y7jz2
ATY+L5Wq7++wzFRqKI1wj8U01fUUmik7WKYd9q3aHjRd7Tk169LJWGPMfeQ+
4j9zjyv8L/kMv3Gj3KfYJawplsI2YO1lj2I9aQZ8HtslV0/mdvod9j42Ua6Y
mqvYFfpeZiENU3fR+C5RXeN7SNtyuef4v1IjtRvlzsj1p6X6K6Svzvid2itR
RWrO3yj3pfrJ1EcftfgmeGftnaiWl/eotgZYPj+WumHV+eL6fFn/hamIe/TH
SmAj+Swqig3AdtBwdT1zkud9xj16UBXXlWmw3BN8U7U7Yg6435+M5RDfQXt5
tQ2oPjXjl8rOlCtNZeguz6CPbAP91ORrq+/L/5nqYzWwW7Cn+fO0C+vO/4N+
TCfPdLjMFf1fpp/4U/j2mH8ys+k0vw3Pcz2WehnfbmPZimXxHagothWrI/tp
VjLHY66P55+ku/R3A34T3judvJN4N6exfthBfV1QPx87FvMXO4Ato79nJb8j
fs/rMt2wDt5DRdcz5E7o60GsOH+aHyTXgV+PNzeGEdgeqoGtKZi7u/U3F/sa
a06F1LbEHtd2f27ynGfx1akaFfOcG6nN1t9Yf/fLf0FHXP8FmxjPhf6rbnn0
ZXzl4nlgO7DfUgu5XvoqG3OM/4C28O2psrbZ+vonNpWvSHWMJV/2bWwaX4nq
YmOxz7HC+m5f8Jxjb2moPtP1SH/38vuoo+sL6hrJnVL7At9J7T3GV1r72Xh+
MTb8de2PyT6FrUwn6zXW7X38RXxzPHf8e9dP0xzNV2M/wA9HHc3CzmCr5Ba4
x22u56g/JNOPvjLHDtK72gbyi2lCwVyOOZ3pOU+gHuoGyh1x/9oyH9F3sd9k
JXMk5krNeF58VboTm4W1xg5kJb8jfs9xrC32Fd+NJmEnsS2U1ndbY2tDX+j/
frmx2jvF+8C68uvlrmL38nfTbrnGdM71mexkPXWJHHY89mtagF1UtwSv4x6P
y3WmL2W+xff67dv4/9DR+F100HX5gnkT8+cdbHZWsmZi7byGfYO9Lbc0O9kb
t2E13GOJTBW6Q24mdimdvOvGMZZ4d/zHas/yA+gdbYWxm+O7wjegltgqtQ/k
JmugmbpMvgVfRG6IzHnvI7byZ/FeeFdjHY2Nop3YtXKvyP3Il5UbirWSS+ck
+2jsp+34vbHm+Hx60u/Yk5PMg/FZyR4Ue1E9cyBPfy9iP2Qm38++crdg65iG
1ApbjRXFhvI/ycWU7ed/92FbYx+K/QU7ULAeYl08oe/W7r3fPf9NP8g8T8vk
MtX9LPYI/oL+rsWGxXzBHjLWO/Bb1T7Dj6IWrptij8iN5m+lTXwL99ikbjPl
YoOxM/rzX6oP9knMIewFejfOB7FX0U7+1zQUOyRXFhvHn1NYBhuC/c/1es9y
bWHLk47xy+P7GGOje+SmyZ3ELsd7pA9j74zvdHyX6f3cZJzljXN17Iuuf05t
47wS98B2qNueneyXR7HfY63dt7nc19nJulxJq2J/odZyi2LtY6v5u6kNtjDW
AvZa7H1UExuOncLihWXra53LScb3XuzbMs2oM7ZGewbe3bM/EPsrHZM5kE7m
TsyhB2gfdoRWuC5Cn6h9S2ZNnLH0dS/9Bluhv1KxttROy0zOO3HuWRt7TJxf
qJPcWrkV2KL4ptIvsBnYImwMf03sEdigOENhM/QzPTPptyTfUp/7spK9JPaU
w7EW4rsRv4vysSPYdbHv8oWoHPZSvB/sV/qph90Y3xW+DR3ku9JEuRNyN2Er
+ZvjbIctwG7A5vMVYtzYVKw6Ni/edcwPbApWEXuDz4vvSsxdrCo2h78u+sQm
Y5WwKXGeoeuxMViFOJ/y6fhOYaPinIJN4rPj3tjImAfGXtzv+KPn0p0aYlfk
TmtvIrdI+2U+L76Zrh+Os6R81fheaj9srrU2v4diu2Kd4AviPENN9DFdf99p
n6fvufSm3HG+ZKxNmZx4T3LPy9XCVsT5I+Y5Nj/Of9hyvlbMVWxewXqNdZuv
LUd/4/ztH2epOGfLNY1zHZ9hLOO0D3bfQbRdzXK8EdZDtlKsHZly2MT4rsXz
V/uy3DXYCP6qulgCz+UkZ944+26I8cV5RUNPuZquB2Qn8yHmRXf8Yc/lpN95
gorHtzydnHk6xvc3zsp8Ohh/yj3EUs/kJGf8OOsPyUzGXkjtfqyL6y7xTVf7
Hl+bNmcl38b4Rr7Cl6LRWC4Vi3OE/j7DOmq/PeZLnFv562kGX4Kqy70qVwbL
58+6b2nsxdjXcpNz7nh1FeJbyJdOJ3Ms5lo1rDtfmd7kS8a3UNt4tcWwl/iM
mL/Y32JPp3767+XZlMhI/h0wRq6VfgbSI9h2vhrNjbUW80jtG3JVsLf4UlQD
m4D9H7SJwVk=
"]],
Polygon3DBox[{{2153, 1571, 1314, 1315, 1572, 2154}}]},
Annotation[#, "Charting`Private`Tag$8796#1"]& ]],
Lighting->{{"Ambient",
RGBColor[0.30100577, 0.22414668499999998`, 0.090484535]}, {
"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{0, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 2, 2}]}, {"Directional",
RGBColor[0.2642166, 0.18331229999999998`, 0.04261530000000001],
ImageScaled[{2, 0, 2}]}}]},
{GrayLevel[1], EdgeForm[None],
StyleBox[GraphicsGroup3DBox[{Polygon3DBox[CompressedData["
1:eJxFlllsVVUUhs89+3LPPVUapkKQCAhIUYGEMT4YYhSJYGIcGTREhZBgFEsL
AgIVlYoIIkQqyFAoo9LGiIpgmVqLAlVBUN7URI0MYRSEwovD97OW8WGdf521
p7XXuG8ZV/LIC3EURZlMFAVwDJ/vwFHgRmS3QVP4/51JU8GuyO+HtiK/FazK
RdEB5KPBAWkUzUI+MB9FFcwvh/7hv1U2io6ArcFqxjrCJ8ydAL+MOdPhV8G3
RT4VfhKy+dBu/k9D8+DXgJ9DE+GrwP3gjtjWjOPsYvDuJIpGwreBXwX+yvhV
+PvQ8xL7TkbPxWAu2L26gMOgtfCdwHWsmQO/Hjyds3N250wHnd8aOsOeS8Bi
5q/P2Lll7HsvZz+LbAR4jjn7kV0F3+K8ucy5IpukZsNBedNrAeM93Y6yZy34
GjI55EDG9DnC/PHgZqgt4xPYfz/8S37Haex5Br4f2DNr+xWDK2Ozo+aVpmYn
2Vj7av/DkflO/mqS/di3VPqAvRPTrU9iPijzO1fqDHRoDx5iTROyXon5ejb0
KfSu+138zczbpfhJbY9XfJ9ewXw5Hnwb2TTpw/+LPk8xoLmlPn8UZ7UDV4PN
ebOn7NrH9ZSPdH6Fx1u589Lh0WA2aBVMLv0Ui7JhHXhHYjG1xONqBrhY/oMv
ic0fB1w+F/oEeiO2mFQ8TXd5M3MOt4iima7nUmSLoJqM3U/3HASfAWfG5u/u
wcYfB4egxxDwgcT+Je8GzuGe34CrwONZW38iaz6Wr3uBV5AdRZd8sPxUjPUG
J7PmGHN6gMtlJ+hj/r8HN0EboT9jy3fl/eXY4q0Q/gf4n+Fr5Ed0GotsTGIy
jX0JNWQsBxT/Kxh/Dlkd+DR0ENmF2PJMdUT6Pcn6G9B3GHgKnUqR9cefJfy3
DpZ3Fz02+/D/pueL8uYL9liasVqTS60mrWFtNrXzV8N/zfoNytOc6TySvRL4
E36Wzqznv5o5e8F9rpv2kp4bnN8LvpOxHC72O8ouZ/Pm3/4e/6sVV+Al1/ka
eCpn9a1TYnExw2NjXrC4mQ82MKcDsuNgJf8LkS8MdgfdZQBYhJ1eRt4evDFr
cd0S3OV1SfWph9cN1eNuHjMjlJ/BauBPseWUclC5+G3O4vqexGreHqgI6spY
pdfkLqnZuQXYOTU7BHBPzmx4ENwWW9yXy+7BcqEiWA4plw5mTM+bkE3krPqM
2VxxdgL5efiT4GTGRger209Jb+S/sP6sz5du8rF8op7yF2OdoceYO5w1U2Kr
P5XgHmgWlMla7sXgEq+912uG66z8Xey9oB/yatVIaKDsEgwLwGXMGQh2B1fE
5otjHi8dPZ4bPN4Ud/Xeg9SLChMbb5OzvqOaurTAal6V9xHlu3ykfpVz+8sP
473mK4YVd40eezMZ26A7pmbPtW4f9SHVyKJgfmvnOfIb89awx/Oc+0xqNlff
WZBaDVAN7xsshjsGu8c5j3/5SPkbEqsp1+/i+dgB3AKuV0/JWm2R7vKd1jzB
eF/lXbA6OsNtLn0U82vRYafnl+7/YAuLeeVjo+ea5hWmVp90X63p4DHZ5D1L
d/uA/4eVP6n1OPW7stT2aPB9Hgpmj/Oq26nZfiX7nUvNj3qPKK9ly6q82bXe
Y/V95gxl/eDUxoo8F1QD9np9qCiw3qz+fs3rwEXvveqd6j0LC6w3KK8v6M7+
lgr+1lINrvT4PZSxmiZfKhdH+/tKdey/N5DuIP2VQ5MKzJY7XR/Vuu3I5xXY
G6rM9VCfU7/7Kmfz69z+V/2tcja2nKv3uFIdk66K4bGsvYyuQxN7Z+i9ITs3
el5UQSezpv+prPVN9cye7kfF2GzwQ8UOY9vVi/nfHJv8zmA9uRH8LFiPaY7t
X/LjwXppteep/CcbyO9/x5YXW4LliGrSXXnTUW9EvXv0nlFN6ptYDVA91rwd
wepVebD6qzq8KNj7SG8b+fKP2OJaPU19fJ37qM77XU2wON3k9bCl1+pC8Ghs
tUN1oza2u6teb2XNj/Afee3U+1L16PXY3m2KGb0V1vnbSO+FWl+rPWq8N9f6
2O3c671gb+ltblvVxlfB4eH/2jYgmO79g9lXewz2d/4+r2vaY7m/E/4FjhyW
mg==
"]], Polygon3DBox[CompressedData["
1:eJw1l3esVUUQxs89e7jvXkxoUiRESkRAmgKiRgliTUR9icSIGhMFYoIBpDxA
eYhYEBEUUBCkNwtFEKSJjyZKM3QUCyLG0AQBY0RjAfx9fusfk/vN7pzZndlp
t1H3vl2eTJMkOQBlUI18kuzlt24uSU6Au5QkyUUEtsDvgC8pJslE8DZkZheS
pCf7XUKSzGCtgv2G7H8KLmM/D16b9954dLRCtitUI/iMKuD17M9m/2eotFKS
hBLr/gX5PuBr0HGSverQy+A7+PYPcBPoMvDV0FbwLr75lW8aILMRfoDsAS9k
vxfre1i7Adyd83YnPnMDuDo0D3wV1AO8HfoEvBWZGXn74yx869T3bYzOL+Br
4qy54FLWWgWfXw3ZYeCeyH6ETDNw26JtqyUbC+bLdV9sHVM5STrzfS3kxrN2
G3g6MjXBE3K+f31onfyN7pGVfd89nLWJtc/BvVmbye9Q+HZFy0l+FrQO3If9
4/yege/G/vS8z9+Cjq7gMUX79k/uPB98N3f4DlyDtY7gAaydAl8K9QffEuyP
gXx/BLm56BgOfxLcF/nHoF7yB2u72esE3xRcibV+4JnYVzvnGFJ8yAbZUgfa
mPeb349s/dSxIJtOs3c02lqpaN/ojWahqwzZiv/vFywn+XlRX4/gt5gp+4N1
Srf8cYz969D3u3zP3nvgesG+U4wE8API/I18x2B/KEYUK7J5DvjBvO2R/xUv
Q9ExD/np8FXA7QqOxdL43ooRxcp29neCN0NrwG9Aq8D3cMbh1DGg95mW91tI
Zkveb1jKfr0Sv63yR/qbxngORetar/twdnPu/XHOOmoHx4TsuxPcP75vH/RN
hdqA28e3GwzfSPmFzHx+M+L9VvAKfvex9za0EnwGmgNuzzeXIPch/M6c174P
/ka1Y25qXRdZmw1+LXXB+QyqAKsIbc7sP+kexnY5uFnmXB/NWnPwYNZeAs+R
HvDAot9eMTAIXBuZZ9nfBNUBn5BO8DroW75ZBS0AH0L/SvAy9iemvrPu3jBz
rIzUG7K/BP4geBlrH2TWKd0zoIOKrcy2ycY14F2Z7/4Oa4fZfx0am9qnygvV
QNXCbfAtwVvzvntf9nrAP4UNk+J5o8Hjgn11LfxdwtCYyBfBKedNgF8IHzLH
8+2s/8Rah4Lrr3ynmnkSfACZ51Ofqdw5H3wX1azV4Mrs75c+6Eb4ZtypLMaz
4nVJ8N3kk6XBMpKVT98HP16wb5eDF3GXRfwuzXl/MbhFid9vSIznEZVdJ+Sf
K4rOEeWKambb+L4DkB8FTSv4zU8E1yTFwgTkm6CzP/tlRfvsevYnB/tyBPSP
YgH+FfAzRdsim4aBp6LzL3DV4P6iu7yo+h5cy2qz1iRYp3SrBqvG9sfGY7pL
0Tms3BXfBn0n0NcT+XHwl0PPpbZhULyv3ryf+hX8AqhlcD3V/doXjJXj3eJ9
3435ViWer7OU4+oNslm26wydJRtky83BvVM1QrVC/fx00W+yIjjG9FbyqXyr
GqD6rhqgWqA3kn+lQ7pkk2xrEFz/1L/PKQ4L7vWnY/9RjVYNVj3/EX5W0bkq
fW0Lrt//1fqce7VqlGpVeeyP0qdaqpqqXqF6pt65Lto7GeoQ3IP7Fd2/7gt+
Q72l5hPZqhlEs4jO1FsdSn2XK4nvvqlrSpPMMafYU92bBO4cnEvKOeWealr7
WM9U65Rzyr0h8GPBg6CnY/5fjDVzcKwn7ZRPUV45+2pwjZDsOPj98N9krn2q
gV/qDtCb4OXQgeC6oFxVzg7XWcH1LAcdjzVYsaEYWQWuqvoT551qmXui6uNq
rQXXMOXvWt0RfpTiPnU89gGXBM866vHq9Zp5xD8cPLttjvd9QTaDm7LWm70n
gucXxVpp/F7z40Pwj6iPKj5LHK+yRzmgXFDN07k6X2vNVQPhb1L9SN2jFmd+
Q/Wur8DbU/fPr8EleetWvKgX72RtRewfqsVHg30hn8q3x6PvVJMaw+/LXMvV
Myo0W0LlUeZe8A72J6fOl7eijZrVlHOy/Qj7e1PHo+JSPpFvFGO7g3VK9xT1
gOCertnrdOpevyHYFtm0DXwhOLbUI9UrlXPyjWZg5eKZ1LOp5gPNCZ2CZxnN
NOdT54Tm3SnBuaK5S7OBZsbfUs+tuqvuVCvzTK94vyJ41m/B79qcbTyVei7S
fKQYV6yPCO6NipmRwT1GvpaMek8VdF7MOQYVi+rxyiX1qBz4XMH1dXes/Zo7
NX/qP4L+R7QNzh3FuGJdc6VmLdWcPHz1zO8pG2tk7jnqLYoVxczZ1P8fFA+P
wv8QY0Mxojg8lvltpf945v8QqgX6D6H/EprP1B9aB8/21YJ7lXwi39QN3teM
dyF1f1A+qS9O1Kyf+n01c2n2UozqfZUzyvV/AQnUv6M=
"]],
Polygon3DBox[CompressedData["
1:eJwtz88rJlAUxvFjXuYdkjIsNGUxsRCizLCykDRlp5lCyUZZKexEJMXGvIlS
FuRnqbFVNrOQZoQS/gGFhV/FDguKj1g83fN8z3POvfdrR8/P7g8RUUAZNJsZ
sZ6IOFb/1xjmkx8jdvgmvJ0KkxHX2ENaxKnMF+wvXyyblx7xmbrwXn7xU8Su
2XP9C7rB6s2nyyRozY59/JvcgQfMqfOxOb6Wruz5Y/+Kc8Dssn4un0NH9i7x
JfbtmdnE/tnZyKdk2/gU/TZ7b1cDXi03wU+9/oXvk5tR17z/uVOumm7l6rAn
2dHMt/nXPdNYpTsmsQVsS27PG+bpDJt19mO/5B7lm/kR/ITfMLeKDfF17m7F
WujQvR1yVfaN6ZfpbfOXcnfYqroz+f4frIi+q/MSb73RrIgK/RW+1B3jdpTz
P2hQ/ew92Xgb/wIKokGk
"]],
Polygon3DBox[{{2447, 872, 876, 1831, 1830, 2546}}]}],
Lighting->{{"Ambient",
GrayLevel[0.8]}}]},
{GrayLevel[1], EdgeForm[None],
StyleBox[
GraphicsGroup3DBox[{
Polygon3DBox[{{884, 629, 898}, {934, 671, 770}, {925, 667, 923}, {
809, 639, 894}, {1060, 629, 882}, {1633, 724, 1850}, {2425, 930,
2468}, {1080, 628, 880}, {1886, 839, 1771}, {880, 628, 878}, {1857,
126, 1851}, {1261, 671, 934}, {878, 628, 905}, {1216, 617, 868}, {
952, 693, 967}, {1855, 126, 1857}, {1855, 854, 1887}, {882, 629,
884}, {903, 504, 901}, {1852, 724, 1633}, {770, 671, 989}, {2467,
930, 2425}}], Polygon3DBox[CompressedData["
1:eJw1kD0PwVAUho/eG1WrFYmxf0ElYrIbjBXSxYLBYqlJxGwUImEzS/wQg91o
shk9J4fhTZ/z+Z7bxmjamwQiUkEebSORmhNJQpFZ2b4ap6gDN9GdgQd6FU1d
alVnNe3R3j5qwwP0hnOxOEMb4jnzMZzDS/iKbvAC/wN8hE+R7VevJ0pDm/kU
RNbOdl1Kdk/rd+//ZvXTWkbfODCPGF45m98R7+EzHok3T/Ue4ufJ153t1Dfp
2zSnNd2vea3rv/oCQsYlfw==
"]]}],
Lighting->{{"Ambient",
GrayLevel[0.8]}}]}, {}, {}}, {
{GrayLevel[0], Line3DBox[CompressedData["
1:eJwt1FdsjlEYwPGjLVVaXLoi3JMYNxI1a7aoVu1ZWrX3akvtPVp7U3tF1E5E
4lrCjSAEKWKPEgQh4XdE8v2//3Oe85znnO99T75m+dNyptYKIbT11TMhhBin
cjXPSg6hES/hplzOLfkAp/NZzuLrPIxv8W1MFD/hBdxKw6fileKO4oKUEHL1
rzC+Y3yjbggZnCDXOCmEfokhlKIEaahQn87j0Q6pKEYmsvDSuvy4l3iznu31
SEcHHLW2I3dCZ3RBV2SgG7qjB3qiF3ojE1nog77xPMjGMb36cw4G2y+XByAP
AzEo5jEEQzEMw1GodgSPxChs1mc0j0E+xmIcCjBebWE0ijABEzEJkzEFU5Gr
bhpPx279ZvBMzMJszMFczMP82Cc+Hy5GCUqxEItQhsVxHzVLeCmWYTlWYGXc
39wqXo01WBvPI7eO12MDNmITyuNzMVcRfyu2YCu2RZx1O+/ATuyK58ee+Lus
2cv7sB8HcBCV8V2YO8SHcSS+1/jM5Y7xcZzASZzCaZyJ7838M3fjjXuRLX7L
7/AeH1DpLB+5Bp+Qp+aF+gdoZ26NuzSydgh1jT8af60TwkPxa3V3+T4+ie9x
W652hyut+SFOlKtCG/Ej+ZPywT1PkqvRp1Cum7i1+SpTzXm0cR/5AVxs3/Py
fY1LxBfEpXyRF/IlXsSXuYyvcIm+2erzrL9q3IOLjJPte874jz1O8Hc+yDW8
i19xOT/nFVzN8/lxPDsmiG/yUL7GmXyG2/M+bsEbuQkX2esZ97J3Q87gHGeo
74wNjFM4jZM5lWtzfU7kelyLU+JZk/49rvCbf0H78JPrxPOzsvCNfcIXX15f
+MwJ8Tkp6v//v+wv9NSYTQ==
"]], Line3DBox[CompressedData["
1:eJwl1Hloz3EYB/DvNsyW3Lc/bI5tzbHCKMo5cscQc2RIkWMkDSWJpNy1TBFG
suVmc4T8gUUMWe5ryjHmNjfj9c0fr72f5/k834/v9tvET81KnxsRBEEtXx5F
BsF89YFqMjoIBkQFQQui+OwsQ45lHPOcV5eV5rVlPbLMXutrqFvyRV1T1g+f
czZeRtOHZ87iZHsKYoKgifxt1lv+kaPlHM98UGeq38vJskxOlBnOJskRvDN7
wlCzt/Ibb0h21piH6iHOeqp/qUfJurSjQp8oGzHYzkw5mxmUO+sl6/BTPVLm
e9cf6vRwx35z+VTfXzYlhU/673ykg364vY6yGVVmBfKVTJN73ddPLuRveK/d
1uoxtArfiQ0Moi+xrGUC0+02kF3Y7J5UGU9nOrGIl+5sIwfSln0c4DhFfHXe
VebSjQRy3HVQHuYQD+wc9DtxiBL9GX0uV/Vb9IXhvZ45JrfKK3KZvGCnlFh7
3c3204Nskr37kvCzUg8jQv3c3gteUs5987PmORzRH+WxWZ4+1e9rmjsq9ZPk
JjmLTHVDucL5Ru+Q4pkc/RrWEcN6FrujKvyZE9iJIJIoqpEffpbu2mXvpP4U
peFnoT9KNoWUmF/jibM9+pvhXF/EccrMl3uPBeaD3Hfe7JzZJS6b3dHf5R63
zE6bXVBfpJjr4d+VWVt1AokkkcxuZx3decn3+kd9gqUkMY0pbHcWZ3ebeiWr
WB3+bYU7ns0KP6vwHf0bt+0tUM/nRnifWTEV7ijX7/R95MkdMf//r/gH4Y+O
sg==
"]],
Line3DBox[{739, 728, 724, 2219, 126, 1009, 1887, 854, 862, 797, 2451,
798, 772, 796, 839, 1886, 739}],
Line3DBox[{636, 691, 982, 918, 997, 962, 824, 938, 953, 921, 2455, 828,
1252, 721, 665, 974, 955, 1234, 669, 987, 1047, 1046, 1045, 1044,
2466, 1043, 1042, 1041, 1040, 1039, 1038, 1037, 1036, 1883, 1035,
1862, 636}],
Line3DBox[{667, 504, 1833, 628, 1080, 880, 878, 905, 1892, 903, 901,
925, 923, 667}],
Line3DBox[{460, 618, 1029, 870, 869, 917, 817, 912, 935, 886, 460}],
Line3DBox[{874, 624, 1010, 1882, 1011, 1013, 1889, 874}],
Line3DBox[{617, 639, 693, 967, 952, 894, 809, 868, 1216, 617}],
Line3DBox[{898, 629, 1060, 882, 884, 898}],
Line3DBox[{906, 649, 709, 1258, 1259, 1260, 932, 1065, 933, 769, 957,
768, 906}],
Line3DBox[{915, 658, 715, 652, 1067, 1068, 1069, 1070, 1072, 915}],
Line3DBox[{928, 670, 1083, 2468, 930, 2467, 928}],
Line3DBox[{946, 685, 1200, 945, 946}],
Line3DBox[{963, 716, 1203, 960, 963}],
Line3DBox[{964, 703, 1207, 956, 994, 964}],
Line3DBox[{965, 717, 1210, 961, 965}],
Line3DBox[{718, 679, 694, 2432, 664, 984, 1251, 2476, 1250, 1249, 1248,
1247, 1246, 1245, 1244, 1243, 719, 718}],
Line3DBox[{969, 465, 1030, 1031, 1032, 1033, 969}],
Line3DBox[{686, 720, 983, 1227, 1226, 2462, 1225, 2474, 1224, 686}],
Line3DBox[{970, 712, 1223, 899, 996, 970}],
Line3DBox[{972, 711, 1231, 958, 972}],
Line3DBox[{978, 714, 1217, 1218, 978}],
Line3DBox[{980, 657, 1242, 914, 816, 980}],
Line3DBox[{985, 668, 1257, 926, 995, 846, 985}],
Line3DBox[{988, 702, 1232, 1233, 988}],
Line3DBox[{989, 671, 1261, 934, 770, 989}],
Line3DBox[{993, 704, 1014, 993}],
Line3DBox[{734, 998, 2460, 999, 2456, 927, 1081, 2457, 1082, 2461,
734}], Line3DBox[{866, 1016, 1017, 1018, 1019, 1020, 966, 1211, 1212,
1213, 1214, 1215, 866}],
Line3DBox[{896, 1049, 1050, 1873, 1051, 1052, 1053, 1054, 1055, 922,
1073, 1074, 1075, 1076, 1884, 1077, 1078, 1079, 896}],
Line3DBox[{897, 1057, 1058, 1059, 977, 1235, 1236, 1237, 897}],
Line3DBox[{1262, 779, 1262}], Line3DBox[{954, 1263, 954}]},
{GrayLevel[0.2],
Line3DBox[{1907, 2150, 1408, 1906, 2548, 2056, 1908, 2549, 2057, 1909,
2550, 2058, 1910, 2551, 2059, 1911, 2552, 2060, 1912, 2553, 2477,
2607, 1913, 2554, 2061, 1914, 2555, 2062, 1915, 2556, 2063, 1916,
2557, 2064, 1917, 2558, 2065, 1918, 2559, 2066, 1919, 2650, 2151,
2067, 2152}],
Line3DBox[{1921, 2478, 2608, 1920, 1423, 1922, 2560, 2068, 1923, 2561,
2069, 1924, 2562, 2070, 1925, 2563, 2071, 1926, 2564, 2479, 2609,
1927, 2480, 2610, 1928, 2565, 2072, 1929, 2566, 2073, 1930, 2567,
2074, 1931, 2568, 2075, 1932, 2569, 2076, 1933, 2570, 2077, 1934}],
Line3DBox[{1936, 2481, 2611, 1935, 2482, 2612, 1937, 1439, 1938, 2571,
2078, 1939, 2572, 2079, 1940, 2573, 2080, 1941, 2574, 2483, 2613,
1942, 2484, 2614, 1943, 2485, 2615, 1944, 1447, 1945, 2575, 2081,
1946, 2576, 2082, 1947, 2577, 2083, 1948, 2578, 2084, 1949}],
Line3DBox[{1951, 2486, 2616, 1950, 2487, 2617, 1952, 2488, 2618, 1953,
1455, 1954, 2579, 2085, 1955, 2580, 2086, 1956, 2652, 2153, 2154,
2651, 1957, 2157, 2158, 2655, 1958, 2161, 2162, 2657, 1959, 2165,
2166, 2658, 1960, 1462, 1961, 2581, 2087, 1962, 2582, 2088, 1963,
2583, 2089, 1964}],
Line3DBox[{1966, 2489, 2619, 1965, 2490, 2620, 1967, 2491, 2621, 1968,
2518, 2622, 2168, 1969, 1587, 2170, 1970, 2660, 2172, 2173, 1971,
2654, 2155, 2253, 2156, 2653, 1972, 2159, 2254, 2160, 2656, 1973,
2163, 2255, 2164, 2686, 1974, 2167, 2256, 2623, 2517, 1975, 2540,
2624, 2346, 1976, 2492, 2625, 1977, 2584, 2090, 1978, 2585, 2091,
1979}], Line3DBox[{1981, 2493, 2626, 1980, 2494, 2627, 1982, 2178,
2628, 2521, 1983, 2519, 2681, 2257, 2169, 1984, 2507, 2659, 2171,
2130, 1985, 1529, 2174, 2131, 1986, 2648, 2132, 2175, 2300, 2299,
2687, 1987, 2133, 2176, 2302, 2301, 2688, 1988, 2330, 2331, 2258,
2629, 2520, 1989, 2134, 2177, 2630, 2508, 1990, 2509, 2631, 2135,
1991, 2510, 2632, 2136, 1992, 1536, 2137, 1993, 2664, 2188, 2189,
1994}], Line3DBox[{1998, 2586, 2092, 1996, 2193, 2195, 2666, 2093,
2194, 2139, 2197, 2667, 2094, 2196, 2367, 2368, 2702, 2543, 2199,
2282, 2400, 2095, 2198, 2371, 2372, 2704, 2545, 2201, 2283, 2351,
2096, 2200, 2544, 2703, 2373, 2458}], Line3DBox[CompressedData["
1:eJwVzksug3EUhvHTDmjLEkw6dlkAIWGAYiQxESFpgki0nXfo2pKWJmUl5hYg
0qtrdNgVWAC/Dp6873nO+X/5svnSdjERETv4GY+4S0X0UcdJJuKbu9V7KI/m
dMQXNyEnccMf8139k0/JNKp8g8/p6/iwW5Vr2OIXZAGneLeryUe+Ludxhjf+
Vzb5iu8l9Skk0Ld74Gf1A8zh2k3IJTyN+Wc30/o+ZnBl/4dFvebtUHbdLMsV
XNod8R29w++ZL3DItbk215Kb5nN+Fy1uwG1w9+YXc05/5l71f01rMDE=
"]],
Line3DBox[{2014, 2211, 2213, 2496, 2670, 2212, 2141, 2215, 2285, 2671,
2106, 2214, 2380, 2382, 2381, 2217, 2689, 2286, 2404, 2107, 2216,
2378, 2383, 2379, 2590, 2218, 2287, 2450}],
Line3DBox[{2016, 2114, 2594, 2015, 2113, 2593, 2526, 2224, 2112, 2415,
2408, 2592, 2410, 2409, 2411, 2111, 2414, 2387, 2360, 2591, 2386,
2385, 2222, 2110, 2288, 2690, 2223, 2322, 2321, 2438, 2109, 2683,
2440, 2262, 2435, 2437, 1488, 2384, 2220, 2320, 2407, 2319, 2465}],
Line3DBox[{2017, 2388, 2142, 2226, 2289, 2290, 2691, 2225, 2390, 2143,
2391, 2291, 2389, 2292, 2227, 2323, 2338, 2144, 2470}],
Line3DBox[{2019, 2119, 2597, 2018, 2118, 2147, 2674, 2232, 2117, 2266,
2596, 2516, 2231, 2116, 2265, 2595, 2515, 2325, 2275, 2115, 2684,
2264, 2146, 2324, 2274, 1492, 2263, 2221, 2228, 2693, 2296, 2295,
2273, 2145, 2364, 2700, 2361}],
Line3DBox[{2023, 2123, 2600, 2022, 2122, 2599, 2021, 2121, 2233, 2675,
2020, 2120, 2269, 2598, 2527, 2279, 1498, 2267, 2230, 2278, 2673,
2497, 2229, 2236, 2532, 2676, 2298, 2276, 2235, 2395, 2542}],
Line3DBox[{2024, 2537, 2678, 2241, 2277, 2242, 2695, 2538, 2025, 2243,
2244, 2679, 2026, 2237, 2268, 2238, 2677, 2027, 1651, 2270, 2239,
2028, 2601, 2124, 2029, 2602, 2125, 2030, 2603, 2126, 2031}],
Line3DBox[{2032, 2696, 2341, 2245, 2280, 2246, 1755, 2033, 2247, 2248,
2680, 2034, 2498, 2637, 2035, 2499, 2638, 2036, 1511, 2037, 2604,
2127, 2038, 2605, 2128, 2039}],
Line3DBox[{2040, 2328, 2342, 2329, 2249, 2397, 2396, 2685, 2041, 2250,
2639, 2528, 2042, 2500, 2640, 2043, 2501, 2641, 2044, 2502, 2642,
2045, 1519, 2046, 2606, 2129, 2047}],
Line3DBox[{2048, 2697, 2343, 2344, 2281, 2345, 2698, 2539, 2049, 2251,
2643, 2529, 2050, 2503, 2644, 2051, 2504, 2645, 2052, 2505, 2646,
2053, 2506, 2647, 2054, 1657, 2252, 2055}],
Line3DBox[{2240, 2327, 2449}],
Line3DBox[{2405, 2359, 2394, 2148, 2393, 2297, 2392, 2649, 2531, 2234,
2469}], Line3DBox[{2432, 2424, 2476}],
Line3DBox[{2453, 2337, 2314, 2587, 2209, 2356, 2402, 2102, 2271, 2317,
2406, 2706, 2535, 2210, 2357, 2403, 2103, 2272, 2523, 2588, 2261,
2104, 2011, 2524, 2589, 2105, 2013}], Line3DBox[{2457, 2456}],
Line3DBox[{2461, 2460}], Line3DBox[{2462, 2430, 2474}]},
{GrayLevel[0.2],
Line3DBox[{1265, 1409, 2548, 1266, 1423, 1294, 2612, 1438, 1309, 2617,
1453, 1324, 2620, 1467, 1338, 2627, 1477, 1349, 2634, 1613, 1614,
1484, 2666, 1356, 1548, 1631, 380, 2671, 1361, 506, 564, 2389, 386,
508, 1097}],
Line3DBox[{1267, 1410, 2549, 1268, 1424, 2560, 1295, 1439, 1310, 2618,
1454, 1325, 2621, 1468, 1339, 2628, 1595, 1478, 1350, 2635, 1538,
1615, 1485, 2667, 1357, 1798, 1549, 1799, 1695, 2689, 1696, 1820,
1769, 1560, 1809, 1880}],
Line3DBox[{1269, 1411, 2550, 1270, 1425, 2561, 1296, 1440, 2571, 1311,
1455, 1326, 2622, 1583, 1584, 1662, 2681, 1585, 1586, 1597, 2661,
1539, 1616, 1540, 1789, 2702, 1618, 1721, 1550, 1801, 1551, 1802,
2590, 1800, 1632, 1853, 1894}],
Line3DBox[{1271, 1412, 2551, 1272, 1426, 2562, 1297, 1441, 2572, 1312,
1456, 2579, 1327, 1587, 1588, 1589, 2659, 1527, 1596, 1528, 1599,
2662, 1541, 1617, 1542, 1792, 2704, 1620, 1722, 1848, 1739, 1895}],
Line3DBox[{1273, 1413, 2552, 1274, 1427, 2563, 1298, 1442, 2573, 1313,
1457, 2580, 1328, 1590, 2660, 1591, 1592, 1529, 1598, 1784, 1783,
1785, 2701, 1714, 1715, 1619, 1791, 1790, 2703, 1793, 1875}],
Line3DBox[{1275, 1414, 2553, 1277, 1428, 2564, 1299, 1443, 2574, 1314,
1571, 2652, 1573, 1661, 1574, 2654, 1576, 1593, 1530, 2648, 1600,
1787, 1786, 1788, 1716, 1717, 1621, 1849, 1897}],
Line3DBox[{1279, 1416, 2554, 1280, 2610, 1430, 1301, 2614, 1445, 1316,
1577, 2655, 1459, 1330, 1578, 2656, 1470, 1341, 1710, 2688, 1711,
1678, 1480, 1352, 2708, 1846, 1899}],
Line3DBox[{1281, 1417, 2555, 1282, 1431, 2565, 1302, 2615, 1446, 1317,
1579, 2657, 1460, 1331, 1580, 2686, 1676, 1471, 1342, 2629, 1594,
1601, 1481, 1353, 2710, 1900}],
Line3DBox[{1283, 1418, 2556, 1284, 1432, 2566, 1303, 1447, 1318, 1581,
2658, 1461, 1332, 2623, 1582, 1817, 1472, 1343, 2630, 1531, 1602,
1482, 1354, 1794, 2636, 1827, 1847, 1876}],
Line3DBox[{1285, 1419, 2557, 1286, 1433, 2567, 1304, 1448, 2575, 1319,
1462, 1333, 2624, 1761, 1818, 1762, 1344, 2631, 1532, 1603, 1533,
1712, 1605, 1796, 2705, 1544, 1822, 1545, 2587, 1719, 1625, 1729,
1555, 1808, 1556, 2591, 1807, 1778, 1562, 1684, 1563, 2595, 1731,
1666, 1643, 1688, 1644, 2598, 1668, 1651, 1652, 1384, 2638, 1510,
1391, 2641, 1517, 1398, 2645, 1524, 1405}],
Line3DBox[{1287, 1420, 2558, 1288, 1434, 2568, 1305, 1449, 2576, 1320,
1463, 2581, 1334, 2625, 1473, 1345, 2632, 1534, 1604, 1535, 1713,
1606, 2663, 1546, 1679, 1547, 1720, 2706, 1626, 1797, 1557, 1825,
1558, 1828, 2592, 1824, 1823, 1564, 1642, 1565, 2596, 1667, 1646,
2675, 1647, 1378, 1504, 2601, 1385, 1511, 1392, 2642, 1518, 1399,
2646, 1525, 1406}],
Line3DBox[{1289, 1421, 2559, 1290, 1435, 2569, 1306, 1450, 2577, 1321,
1464, 2582, 1335, 1474, 2584, 1346, 1536, 1537, 1663, 2682, 1607,
1680, 1608, 2588, 1665, 1627, 1637, 1628, 2593, 1365, 1566, 1645,
2674, 1567, 1371, 1499, 2599, 1379, 1505, 2602, 1386, 1512, 2604,
1393, 1519, 1400, 2647, 1526, 1407}],
Line3DBox[{1291, 1569, 2650, 1570, 1292, 1436, 2570, 1307, 1451, 2578,
1322, 1465, 2583, 1336, 1475, 2585, 1347, 1609, 2664, 1610, 1664,
1611, 2665, 1612, 2589, 1359, 1489, 2594, 1366, 1494, 2597, 1372,
1500, 2600, 1380, 1506, 2603, 1387, 1513, 2605, 1394, 1520, 2606,
1401, 1657, 1658, 1659}],
Line3DBox[{1374, 1810, 1681, 1781, 2700, 1782, 1779, 1803, 1877}],
Line3DBox[{1402, 1521, 1777, 1675, 1760, 1759, 2698, 1395, 1514, 1707,
1674, 1814, 2685, 1813, 1388, 1507, 1812, 1673, 1755, 1754, 1381,
1501, 1706, 1670, 2695, 1749, 1748, 1375, 1496, 1705, 2676, 1649,
1745, 1744, 1368, 1491, 2693, 1703, 1639, 1805, 1804, 1362, 1488,
1878}], Line3DBox[{1403, 1522, 1656, 2643, 1396, 1515, 1655, 2639,
1389, 1508, 2680, 1654, 1382, 1502, 2679, 1653, 1376, 1497, 2673,
1686, 1640, 1369, 1492, 1682, 1636, 1742, 1363, 2683, 1869}],
Line3DBox[{1404, 1523, 2644, 1397, 1516, 2640, 1390, 1509, 2637, 1383,
1503, 2677, 1650, 1377, 1498, 1687, 1641, 1370, 2684, 1493, 1683,
1561, 1730, 1364, 1700, 2690, 1699, 1902}],
Line3DBox[{1660, 1568, 1408, 1264, 2608, 1422, 1293, 2611, 1437, 1308,
2616, 1452, 1323, 2619, 1466, 1337, 2626, 1476, 1348, 2633, 1483,
2586, 1355, 1629, 1630, 2670, 1487, 1360, 1559, 1638, 1701, 2691,
1490, 1367, 1772, 1774, 1773, 1648, 2649, 1704, 1840, 1495, 1373,
1890}], Line3DBox[{1775, 1776, 2697, 1758, 1690, 1732, 1757, 1841,
1843}], Line3DBox[{1780, 1811, 1685, 1746, 1747, 2678, 1669, 1751,
1750, 1689, 1752, 2696, 1753, 1672, 1756, 1671, 1844}],
Line3DBox[{1826, 1815, 1845, 1816, 1842}], Line3DBox[{1872, 1871}],
Line3DBox[{1873, 1861, 1863, 1884}],
Line3DBox[{1882, 1829, 1864, 1889}],
Line3DBox[{1898, 2709, 1764, 1351, 1479, 1763, 1677, 1709, 2687, 1708,
1340, 1469, 2653, 1575, 1329, 1458, 2651, 1572, 1315, 1444, 2613,
1300, 1429, 2609, 1278, 1415, 2607, 1276}]}, {}, {}}},
VertexNormals->CompressedData["
1:eJzsvHdQVNn39ktQQRQMCIoJlKhgwBx5REUEEcSAIqKIYkBBBZEkRpKoiIAK
KCIKBgREosRNzjlnumlSd0M3QQFR8GVs5r31Vl1u3bk1U9/53fryz6lZtWuf
s9d59lqfZ58eFxle2m/Ew8XF9VSAi4t39LqqNO31k4JgGMe7ewdUBWEOo0A9
qZ2NaYpP2LkWn/Bi8szl6m2h2Nk9z/QRlQ0b3wXVZyU+Q5ayfOfb0s8IPjfD
KbaGjQst60Ri74dDt/d0rZFnJLSfVO1vKWJDz28R3xl6BK63eDpkJcWgrOC9
RmoaG9sNuaRuzIuCaPsFJft98ZA3LqtbHsXGvQWP+swHonCNYXnh1yYClvjx
iuMBbPh4eBny74pGpJV9S2RICnLVad7i7mxc641kPM6KwsmQJQnb4tKg1/JG
f9otNnif5olxIRLB9xe8VnuagRrjRzteXWYj8zBddZ79Z7yV8jqzXyALSpQN
tOAzbFw5czu0SfEjLge+vCvTmIUH6RqqD0+zMTxj455jV/xha67JO9SehQOp
tTTeC2zQXZbP5glwwSDXh5nb52VBxWWFUbQVG72VLr9mr7xFIjS1Zx1+lIFv
9GzdcBc2ZMwu061vhYH3/pnwt2s/wbxpl1t4ExslH1W3kXXhsOc1fsNcGY57
veY3bCrZ+Cx/ICRjaiTcjZl1TJUoiJeVmRjnsvFq6zkex69R0LMXV9jS+QVl
L6+rpcax4SE5K51SFgODew9vvFVMBMtjBSX1LRvnFBV4H9+MRXnd0jmKU1Pw
XjJlK+MhG1wWO8JfR8dhTkjkmh2ZaRCYK7jYcDQ/d6V87G8visfFvuz4fR8z
IayUcMlPiw3249TSQN04HBfRXfDWKQdN/F8ejCxn46qdzuQ5v2IQ+Ktb77tg
Ps7WcFlXCbNxqqSTW60+As9ktG5RmgqQ2Wly9tgENqKZ3DwL5wXjo0ycmteb
QtxZvzxbYuLo8y8sMthz6AUe9ATaf15ciOLE6wk3Rdmw+PHMT5aiQVgVIzPX
n8qHQYTrzpHVbAx0JStu7H5OLLhcgiWDcvD6sNknJx021uyEYemKCFTuuCf3
1CQcw+1rXwWWsVE365VPk3kUHo48mXuwOAoOJUqb1TLY2CVsbSDfEwO+A4su
srtjYbG9ODDxMxtbJku/PvMsDovk0n8s7k1CeItx2O5nbCQsTXibvj0RXqEX
TwdZpUJ8WuupEXM2ju0Icg3/TGB7Tftr2c8MUCVhjV1sPC84QdVJTIadaE/H
6YEcHGs45VggyEbY6tU/XSekYILPhivnNxSC3ez1+EEBC6H7+Ac8dJKR8U00
8d3KElhUXj1s+JCF7P31pYdzE6A3R/V0XE8ptj5E27WjLNx5eslhkWQ0Dso9
eqE4pRxxidUP3XawUMpbos+vEoQF8HBcuLYcy2ZVs9y0WbilO2Nb+EknVHUf
vH/9QBlMo95k8N5mITBoQ7tJ1XNyy8B81+F7JWifX+C/P40Fw/exiqIHQ4ly
+APz2XqFEPR9oGHHN5pnUTFVi+hoVExtidq6PBqZCrx9aclsuHxtfHO9KBZf
9WZtWJ8ahwNpR8tlPrAhdUl5bdq+RJjumLyRimScm/1F+5QTGw9zed499kyG
S+mV9hsVaeBaGtGy4jAbaQHfe3vcU9GwBsaWytmQnRGUrzSqK9fCOpMhk3Tw
LzluYORRgCz7ws7D0Sz0dlXQe7MywN4covWppgQrP2XymSixYL5URMNmdiZ+
+l2TVllUgWQtgVy18C5scjf8dCYhHUHxFwZ2KVfj0T3tyErZLggfPaQQsSEF
pZ/b+/pCa5F5IjiGO70TJk0S84x5Y5CZ9iucXlqHq9tUb1kHd8KF3+qF0PdX
iEtZeHCfch1u5jrmTGV3YgWjL37BUR9SbrZq74LBamyzdYpsNO+CtrCp2UXT
CPJGfsW5JxYVGDAwehs6lQWve+KzNXUSSEGkniPjRgk8dyRpP/dgIXaK0eD1
m/EQfH12Va9OPNznGFBs/NnIuyDZn2uejAPeAjtevkyBYNP0/rMmbMRPnqaj
ci8VzrbNeXuEM6DZPCT5esOoDqvVpZqtMjDj0dGhQbtczCr0eNtVxUJhKm1p
mU82TlnXvdeIKIYy2X2mWIUF3hwdSsm9PDQ8neGh/q0cRkX8G4cud+FYL+OH
kmMBqslB7YLmGthOXqNUrN2JWWHLnlZbF8Bnb/qTaL4mhFer+nf8YqAvI2C2
ukoubuSJuiKfCs2UD4ylGXRY3ZJYun5vGqRSa14c30sD6MM9gtPpqN+4X2GI
Jxyrfe12Jj6m4XH5joru9XTkRliFLch4SnY9rl1WeLAZAx73ZBU2MCAg9719
zpR4cn+p+LMkhyasPZrREBnAhOqOvMiJOenk/D3zslWzajB8pXnIcagTKfeH
SjpWZpPkVoGZW5tLMbLttc+bwS5YGXYtubMoBTz9vTK8x1PQo5wgWnuejUjt
CBWxi+novxAn9H1RJiZMVrktMJeN46FGfnuuZGPrU4mVWU/zYbF6ftf+pywI
tXgm5y4twNRXfhTZgFIcq6zJ3BLfhScrfr3/tLAEKXaaq/wPVOPABZ/YI4c6
cWfLzfJv+8sw22bZ7EDVJkjeuPRtsyIDNvt4a+3UyhFyKuSdizENC9SzHroe
aMcEto3sy5+lEE7c8+0UtQ3eDTcsaMotkOUxXdP4tgDfdj48VXqJjril7QGU
HipyBPY+u3CIAA3RNhIBDBzZJD34U42KPVZo7B7xILsdhhNq+um4E5bd+fFz
My54KfsFVaeTk/YVu+va25BSqVWaENcKy9SCg4XlxcSfzqZeHKJCOkCAR1eM
DhqjRO71tjKyaDMle3l4DZqeW6yzCGVi7vxIg8WFpaTrurXYW4cSSPTtY2tq
dmHAzkyuSTYTFSOB/md6M7Ez28HObZiFE/czk1fo5eGl1rkrB0wKsaNQMmz5
fhbqPFm/rg8W40KluaTbrXI4PL5HEZrbhekir+ZcLi3H0fW5vgmkDtubrz6b
0MJAxT27yM5r1Xh7NOCL3KlmpAeFHT0m1w45fZ/DJ1Vq4TzMv3lwajuGrolu
1W8ZzcPWE4uaP1Wj+tZyjZAyBgLrchjX3lUj+vo6uT7dMuwvXyfmerILRsIa
RcKniiEVWLz86+N0PFoYoWTXxUKwtcrLE345qP/VNrTjyVty3/zB/AMLRzmm
r0fIQKMARUd06yzPlRKhq9evrbPqxPPg1Ik/P1ciJmertItEI0m+zNv2eVEb
TlhMPejsREVLVdDL7gcUEkXZd8LQtAFv63vmLBFrR3tBR5zhskbicrHs8YqV
pTD/PmM6iWZAQzGidr1bDZnU7nPCSz8TJ9vWmVnmd0Kj+r1n8fRCqCTWe0XS
ihCw1WVC8XQWPllZz7Y5XIZyfQElf7lKvJTJUHxzoRMFzGI+xttqCGYkPVrc
3YiPC9MaImXpuOZ/8lyedwNkg3he7U5vweQFF+XTDtJgIlZpo3WsCccWCzUG
n6Xjk90MLV2BKlQ/dS/ju1mPCBn/q8UqnZj2QuKD2ItUcP3f/nX/4/FDzRkf
mLkM8niJ+No9N/0TOFcqliTNryo2aiNL9gcEl9dGJ3CubdDm2nR8AnczuWH6
6bzpVZ8EzpWB8xPvrJbxqyeZD+NxzDIqIeKsVpC0Xye6cy+vOOlaARXlC62u
dlUwmOKpJ0+YcJVN3FR0oB5Ol3SaGPkUqEWq0qR3tOPiXplQJwEqpoxIM20v
tIF3rc13yulGSA16WdSdp0Kr5HQqz1oGFvbtd9fUyvrr6/Xl6LOMo09SasPR
517u9t/6dOHok7we0+fXMX1O4uiTvB7TZ8qYPuM5+iQGY/qkjukzkaNP8qc+
aWP69ODok5iN6VPz/9Qn+VOfy9KPPdz6rAlZCtd3Hkunwmrrw9NvL7TCICUl
+VhOM8Kyj0lf29mO62unvU/PrMR6ObO0V/bNWK2eNF2Sb7Q+Ule0b78eioIk
q/dKo9zHTLd7ENabBStbGbH26ghsbjD5XQ8VVH7XQ7J5OaceruDj1ENtTj0k
B8fqodMNTj3cyamHxHmsHgaP1cNjnHpI0sbq4Z2xeviKUw/J4rF62DlWDxdw
6iFpGKuHi8fqIYtTD8mf9bB+o2LV5pktuJLsu3Pm9XbU6Pka9X8qRv3d+A+T
9SnQqhcM8p7GxE9tgYoQ9zQknOf009Ds3/2USORw+qmxDaefPkn53U/JwFg/
vbKO00+XcPopeT3WT7WiOP10A6efEi5PTj81Heundpx+SjaO9dMjY/1Ul9NP
ya+xfpo71k+TOP2U/NlPl74++ZuvNsT85isi+4TDV91qHL5q//Sbr0ipAYev
rlRx+MqVw1fkxRhfPeXh8FUoh6+I4xhfibE4fFXD4atR8ObwVdYYX73i8BX5
k6/qx/gqj8NXxH2Mrw5Jjfz89YtNmvgj3+5fTk+au3Kj8JrH81A3gcPhsazf
HE6GazgcPlGTw+G9HA4n68c4/OZjDoev53A4KRzj8Es8HA6fweFwsmKMw2V1
OBxewOFwcnmMw5d/5HD4bQ6Hkz85/PYYhytyOJz8yeH3jMxqpr0b9XN32z/L
W1wkt/1yPKYWpsIGyb/9Gpv3t18jL2Zw/NqjUxy/Npmn5w+/RtzH/Jp+Hsev
TZH97ddI0Zhfc27n+LVrHL9GnMb8ms5cjl8T4vg1Uj3m1+JkvH77tQ6OXyN/
+rVBFsevWXL8GvnTryml6byvV6Th+Bz1uWUCdELEGmv0DmWAR57j610+/fb1
xLSN4+ur9nN8vY3jb19PyAWOrz+9n+Pr1Ti+nuwb8/VnjTi+fiHH1xO3MV/f
KsTx9QYcX08Ojfn6404cX1/F8fVEdczXD9VwfL03x9eTP339dDvZPStqK3BO
+4rAHH4q8usrPLbkdmBJjLrtDM0qbFBSl+w/1Io1g6tmChS14GHxQoEnIxXw
F4L21EV0sNQOPG6yocDkuEur7KESDGd7FxxtYGK3d9i98B21eFCy8gn6vMie
wNjcgZVdaMmI1zqpUIvsrOTYrKFcYheyWX7hUQbKe2WPZ9ZSEDDl5sms1ZXE
2kH65eqYFtyas9r8QUwrpLN7c9KFaki+or6Ub0o9Lkl/LdsSTseRkgkbfiRU
wlDoKFP3dAO0AzUaXgky8GH4onG6cB26Z8WJmb+lwbB88yLx/a3IKfe84cLV
gCX6lU3nTTvwI9B3hbp5A2rF6jYcaKjFTClP04EaJgxsra8I2xSj1VOEvyKh
HJ8Djhx9OJGFH6fcWpsVyN/W35cWLOfT82olVkNcffLqNMyNKPpyXqkOO9+c
i+1payUnEhX2M2SrcOH1QIT8KCerl559V+VYi92pHxezFCjQvh6efW59B8yb
74dc+9oEgdMLduqFt6Jdxdx66g4qpvosm381kAKfW1vK3nynw39XdwRGiv9x
blk+tq4rnHWROWPrUhtb1wHOusj5sXXpGdr5ck1qRMylTd7bDlFhlt9Cn7u/
DV/82yM3jvL6zFJuxV72qF/YFvdw6aVadFp0znoysRmOeZ9Mv4z6DaH1E57O
YSXgXeS93zq8UPtbh+Qo4ejQvpqjwx0cHRK+TI4OhbI5OrTm6JD8qcPXYzq0
4eiQ3BzT4bIxHWZzdEj+1KG+naVJoA0Nb1RXixtfbkf/Z8XXrXfKxs1PTmS/
j+pQIrzmxNTyZeURFqW7l4+XDVW+ic39EmEoupA198OsT0jMzDvylMLG3YY1
8t1ZoYjZt2y7S0swlkxyzZ/bwsZ7ofnH9n83J1xtKkIJAdmQWnxvZ8Bo3fC5
k+komO5GNC4tXr7NMQsfoigaR8xH93v4ZJbr0xyUBO2vGjhXhVxmZ8UR0S6c
WrhevfdUCZwyWpY/uUSFM9fs+OuGdHwv27VqJDsbl850MmdZ1sG3W1ZAbXMn
OsLvPJrfXoSCWJl3W460QOL7GnLLoB17lAW0dh/NgJ9VmvrjhkZMDra0muIw
2v8XimY6amWj8pOy6TqTNhw4O2D3mqsNHisu6PZzJ0Fn6Nhny/MUvAlo5v24
jolVUr57Xa98QR1vTtDKUf/zbPvZ9yZNrXDtN1JMrc6FyxapM2eDS0DxSN39
mZcFHn6jykPdpXjIt//d5qm1eJTzrHP7OyaS3b819WQVwkn2g1Tpy0rIKt4R
junqxOQtHbzVWqUIeV/udftjHcLme/pM02eii+fRrHW9xcgr6LQacazHK9Hl
C/hG408fyszS4CvHV/7FbwwdR33OcX3egvIOmH4xed0wWAbehSeI+6ZWjJzP
O7I9rRWz7TuK3+0qQdGPNzPX7O2AulJasWpPM3wsw/yGI1IhIboFNfpdKP/a
I3wloApFN94IRsd8RPm+vfwTPRmguweYv02gwqJ365UglyKwu2+4NjwtQ943
+bWTTbqgSV1536O2FMarzn7Z11gFhdiK7HDZTsTVWQg42ZWjPkLwxPPWBvTm
X+ePOsGA/AV5nfkplSg4nhBqPZWCjaxvrpJb6XjasHjCjNpK+McbnRBaRUMA
c+7AE3obpt5Skz4aU4On57uT9me0YPUn2k/bjy14XvtqT6BgFSTqL6blH25H
kI3YfZfnzQg48cls4tcaTLwokiE2h44f9PXSa6Y1olnA1W+DTSVIh+Xu/Uqd
OJOqKPLjVxmKrjQ4ND0vBDt10c6qXSwEeC17EcbKQ4qS+zOuojD4721rELvf
BZGndonMTdWI6lB1PHY7icxa27rt1ZJOHNpo8vyecQOW1s1sTnEoJe9p++cd
zGuHzPWpVgNqNPT5GdvLba0hi8wOuu0PoYMysJTLPages9+e2J18kEKehEXf
OandjFmvh13077XARjvLnPm1mdQbfD5l4J2LG9F50o4dHTi142YWM7GKJIfq
8q9KK8WRL047r6zqRLTmVV7FwUbSFxFpkvQjCYuV/a9KJDDRac5SCF9aCpP3
4l/k9CuQ/eSka3BaJ/zuKCcYnCqHrqTJGVmRGvzKEWs585KJEEvB4xR6BWbH
zdaI2FALD9/jRjZCTMhBZWORYA02xqcpnp9Lhfu2nXM0BtuxM2LXwc2H6uAg
u4S1eVYzXA8tD7/4rA3L4kRLltvVYyDwTbW1XBsmfJ1yaYd8Mwy1pI6cm9IE
6dU8x113t6PZ7mDa2dH/3si9qWfhtXos3rIidZEOA4qnNfc0+FYiQflrqr91
I06kNs3YMYUJYxIZWz2nCCdiFJoEd1fjkfCCzbVTulC1UmBrY2/mf8wX/9X4
a7Ip9vtEGtlldKGdK6odxwUH0nbwlI87XtV8JXXUH5ODJ0e4R/3ylnlVw4el
/erx/Jfd0OGgDjLZbtYev8qULS9+blb8Zfh/6aeVox/yp34eXDnkssGmHHlP
BrTXNlUi7+3XOL5ZncgLidn+9mwVInj9b0nsqEPZXI1KaVsGVP0je49XVqNO
Zd867RX1uKG+V2VTBx0B5uGGE+81YK7iyx6f3ma816vaXi/ZCvma+1t8XzRh
ishlwyVhNJic0TJT/EADl/gW3TejfT+/RF+Bb34Hbh/IPt2SUIO9tWXcZd5U
+FKvOssGdCBKdD3jTVg5DD2vjFzmGeWE2W9i6XuZmPKEhK6vSEVWVJPEO28K
Hus/NuvczsT9A3MLow6E/+X8PxDl7PfJ2b/3O5EN4Oz38cavuMapk3KcOkm+
jdXJ4LH3uJXzHsmf79E2nE9NRzGDvDCc8vLODha51OFHc2wpgcoiS+dpZ9vI
1ievl5hubCR3J25a6yVJxcHnMp+ifFuIhtwBOpdbCTmcWHNaoboN8dfiHu9L
o6B0ZC2XsPool7xJ8OhZ3Yw1P4fd0l5RsX5VVINIcgu21YmaLS6m4PKbVheZ
lbW4873vovT3egy2x0nSdelwzkhOn3O6GYJRzw9GMzog/yyx4/SCYgSrqIvb
C9DgWpDqUjDcgdhFx1Pt1LL/cj6tZ6jxzb2RB01lux+nsztJW8taBTW9agQs
4PTZXk6fJZpjfTZNnNNPP3D6KWka66cbxurnG079JEvG6mft2qEXfP6e5G7c
J3aPaBux6hOQzpdqh/oWr+W2B6sJz4nMSTctqYT7qMrjxpZ2iLjmNRxzTybp
a88eMpSlkYivWz8oaNBxinn1erEnDWf3y67tZXbAO+6Fetu7FAz5hdAtBVrQ
bOO3/01KB25Wf2ZUvP4C2cVNvglGzfAukD8oMqsVNvME922d3oQTp+x/88b8
N795gwy3c3iDZ15qYHZ0PhZ85Z3e6tBKzlTaH2W6tcFLjsMVWhyuIFljXGF1
JTrD/OAHHNy/76GuDoVozHI12WY1yidbO9aEXGlBU8nAk/POHVjYbn6CfTQM
6V7Kv/lnqftv/iEWK+R+88/F9RzO2Wj5m3NI+xjnFD/SnFI8IQ0u8faP3wqV
Ebn7Bw+ILmPBso1fY9+eFLjI3Xl86UIFeSp1MKa4qgv9EYOdsSXJSN8VtKZF
vph0e4emJgSzwIsgBerEBLT9uhR8cnIRkZnybHF2NQv8PZ+21R36ghaLO41S
shlkmcMSA3KejROPDIzVF8bgUWqQkppVFrmsfndg2gE2hgca0u2kojH03iqa
GZ1Kdr7+VM1yZuPH6qLuAtkopHl+HXr9OZ303D+yrdKSjdqpHJ5kt/7mSSIz
xpMpUy/uKnhzCpqmcl0XjTPJtmyvuJO32UBmmoL+/FBwp1aVaOUG49XABa3K
US6dLcIZr8MZjz/Hr4jZfcCwvAArBheF7rKuR+LHiMyqj0zcoEgdW3YgHyu+
1Vzp+UKBsNKKIBFdBk6lG5hs3Z6FnlZJ45chzfhWdzdpeD8dKwsEvuj8SIDU
0Y3O8KVBZKtUHXMiHa1GpzxWRRbB+EcrxUyrAr86NH7uWtAFqf41a+W1s7DS
dhnf+S0MzDj83Pb+cSq41Fekz+WnkBvP55q3bayCTXt25DEpOuZ6f/B7SK8j
WkL1z6iW+ajQ1yPS7UxYS8X0t0u2kOL1yin9DV5bONcO2LKgldUVhoactlf9
29nkuf9K69aRHHQxOfdV5tyXlI3dd4c1h/cKObxHhsZ4756Zv/8Dvi/EWf9t
WElCB2kUqDTRE27B1YY4n8zN+SS0U2bWsicthGue4Hr/a+3ozuLkYRknD0R6
LA/JqYJGzA4v2EthgrAUjRRnTd7b4k9HpLb84yDTLPgdPqGbsKeBPNFG254q
JlqSapgL9VNBb5lf+H1POfHrXLg/5lcXvq1eHlOLRMybvvR04bUCsuhSx1FK
JwsWMvY//jh3Utnr8X3d0/YkseFNzcsoEhB2OtzJbo7BFvfsvGeHM8mu7MSX
Pfps6N/l+JGtHD9CPo75kTWLVs3Zn5qK6f5tBU3DbbipwtBgpLSC1vJd2UC0
HKvqnU/7BDDgPxA/adPaBsjM59S94m2/6x42jtU95bE6v4tT52E/Vue1x+q8
FqfOQ3eszs+QaP/N52ZiAX/wOTE/z+Hz9C0c/nzB4U+ydYw/99I5/CnI4U9y
eow/Ty2c91u3rqtr/9AtOZTE0e2FsXUJcNZF7oyt6/3c98zqtjdQnm6jsqSx
jTxQdoh4pNsGO2Epi5r3GZjfs9prdlIl8UHt6iLjLqx1aNYwZcRBQ636Z+XC
bKLwgv32lxIbMlraS/rzG5B2/V1Cckobeiy9jv8a9a3ma2t6hp0a8CB4n1Rf
8qiP2MnsEP5VCtnHLV++DVRjud4JM7U1XWiLlb9TpfT3nWOEHt9SdPdZIxpc
z9jGHqIhTVOJ582ZFjy9KsqzXnrUxzgtPCp4vgPbatqfeC+tgkPEWYfi/RTc
V3/6MVKLiZluwjW6avHjzr9u6bHVQzcrSZfprjtN/p2kV3V+7my/Eixf97x1
1loqJI1Fp9wY5Xh64xOHJTepmBXySUo7vhlfeW+/S/neAcf3fl8G5+SPO7/I
ygrfc+LFmDnLJHVXMoNYaTl1pq1uQkBR9NH8EhqorYKKy2s6MDlViMJ4n4hh
8Ve6R3gKQLNVcGoSohFRC8uqYx86MDxli7VZaCaO1dpzbS6uId8r9z5dH9eJ
CK+SvPj5CbC3dnqp6J9LvkV8t5gzl40vUneWrblbDnakcfX8aR34Of/YzXWX
m1Gyi/M8M2b+fh48Uuc8j8G27R2lxqV4a5CzzDypE7ezpD9qba9AZd72y+tX
FxHfqaaZtwOZcAsLrXdbXQ+6StPBxqQa0pY1fdK3iFaYWvqdpIXQ8DEnUU5o
Zx0mupxd8jybDmnPzAzRQ7UovTRD8tjVKmgZKxa/TOhEyxGKClW2aNy8PVw+
NZPvTRF+vjHd1PaWhZ+FIsv3ffn7vpelW9uUaTZSiWT/tLn1Xq3QX1TFut7U
CDsH5uYmIwbp8DtMPehZi+iQb9bF96rRvyr/2scZNHJQTaGl/1UdmrISaas/
tuLWNnP1J9kdROyYk5bfUD6yshZ/6WlrxtH9IZg4jwIp9pwavoR2OOiUOf86
UQ+R+Ac2jRpNCHs0/2D8Biamq3UfWhiSja5VHrLrJRvguuyH9+C+Tly6UiC9
Z0Psf8zX+G+a/Dv/xqW/80+Gpoj+rfkPvt5PmkJyCa9Hpd3cABZpmH15ZPKt
HNway38zJ//kz/y3KyZ0v9pDgZw738NA7ha4NtmmzO9qxtSohddpvM1I25K7
M7+wA0bx13hUD5VCfmay0HfVZvxo2J8gIMFAvaeNxyLPqHGfR/L7Rq/uzykk
NlH1reCFLjLxw/Qjxp5V2LHmfoXb3E/42LnBrWRVJ3ky83vMPO5GCC+678xo
iCN2kw5omD5mkKtRCyeY2VNhpqefvndSM95FLZoky2qBZJ5Ew2w5CvrYHfVh
+2lYsKI8JHCwAx/nHKZeLEz/y3nLWmpr+RAtiDou73H+bQc0L7u3H1kXiWBd
4Z+n+ggMvoWuN/yeT3Tk3so/o7OwbcDnhduDBBjL0iw2Tcshsi/aD+gtY8NS
9Vfr0M0cjLj2+HS/YuLj8fLtlkENyNa+OX/kSgmWZdhPDqzrQnf2h9WHphRC
qMTMm+lfCd7JgdHbXUf5kmu0mLH+c9+v/6fExU7vDv9o2EWEV/SwT+rkbOFc
a5C8IN7S/XsjJI52b80rZeL5NuninXv++f3uNvXjjDaDzxixyfhyyo1F5ESj
r2SblyL97Hr5QfVm9AUstLsyynNBEpnzbmRnItIx0lKhposs2D3Q1jaliqgq
Kz1z3v34L9/31d6NEgKj/ZvHwft0uREdeWQocJLq+H6/pOdNQ8aEBnwIWrpx
y91OOJc1DtDKn0I3h0pd87IIT39MDNbraSOPdPr6Vte3wG3v1nO/RrmAvogt
5iTXgZOqVybIBaaNO3/rRPHJNVPzsM5zN5rWNJCl9sYLPr5notK8jDc1JwdG
ktPvZWo3kWtBXXWFMkxUWDwfLrqZhcgT7mtdZlYTMxHXVz3TurDHv/Q23+10
7NCefVR9Rjk5ELrL4nRfF5ryI7nm9KVB4IK5Q69tBfl6q9pPNa4LFcJ+KXKT
UnHuQZVAck8xCSx8cfmXIwtbZk9Z5tiXDE1m5/sYtSLyJtnDenoiC0u2v7/c
EtoBu3wx70P2NNK2p3B4aEcW5G0ffZVSSIKSxFm7sI5ccnfFV24HITZu2p6P
KYuIhbe9292DbRlErGQ4RnGUkyNssyZlH4vF0U8DlsPrsohV649+WS02fqlz
D/zB2yUzNX9Jq3OTrqFr0tnesjBkrJYKMw9FfUdkEKM6GG6mOauvjfqvGZMP
6uz3sSEvSkMdDfmy4Mn2qpexYcNnDcfXu3F8PS6O+XqtPs3b5i7V+MIbqXxn
Vwdo13ZTleso+LU47/Pr6hoEzZB6tu8iE+1uYSe97cpxsXj3qc+6FYhcnUtt
uM9EqGbf7Hte1QhM1hClipdDIXA+7968LkwSTqrY+ikLHayl9c9XUiCwdlNn
QQIdSaZRivq9ZdD76uE2+KIB079SrHQjmNDQ2jO/3fqvn4f803F+tU0HZogw
iG5byNmlb8rwQ522J8a8CZPG4hc4cfJtLH5cOmpR16juXTYXwflKBlgx6pSs
t60wGIs/4MRJ11j8XnuO1dRR/0ffUcT/fiMDDoukX74LSAVfnr1q9M8mbPV8
FCriwsCWwo4jFwfG57G/GreYpz/1pjRt1IdPtxo53o7wlVrO22ZXwEb2TZKj
IxWy6ve8RSPb0HHgyBUlw3pIJ8xx5muiomempcWU6nYc3Kr2pfBgFXaLlCsx
65rR2Z++j7jT8TJIWuibRhKiL3Gpth2lQjNdZbFJAgMXWe0Cx55H42aj4ctd
ujTkCbgNvhzV25ORNtGd08dfl6Xru0r9HBoWVXxqSLduR/ON69JMgdJxx1c5
aQ2ZdzIx9Yji+ZXKTeThrhSdtw43sOrp7eE/9pFXXJPoRte+JNuvN0SEc+fA
wU36XRxPF75r5huVKdci+RZLxP1ALHgTNp/fwheDmNeP5uaYpJOvHsHLdC3Y
gCBnfzlz9hf5c39NesX57iDO+e5Aase+O5TK5F1+N3rfafmlhdMGrpHJtgHn
l5XZYV0v59ygjnNuAMWxc4OZY+eZ/pzzTJiMnWdeKv1ceiGmFKJT93SWPKAT
NZOn1F1VFFjIWhY9TAuB6q+ixzsqP4J77429PG1sGDMHu40Lq+H3Sjpp36Y2
cKupl3udpmGhh9QT8021GIi3fRw7rwPP3n14XXCVgp1XtDZeMKrCyHTjyQum
MTD3Ztwe35pRH3FPv5GEV+GGwXzGW3cmhP1u+Iqtq4TJht7sCXr1OEN2H87f
1AKdE4k8Ow63wPtZhgm3eSNchT4kTZjehgeO1lCwoYJfPIBnQUgdVgSEyY7k
tGOT0HmXmgMUWHfuSGtoqMdF05LdYpfocHVwm9b6owZW6t+sbiXVQUBL5oad
RCcOKaysmXI5Byq139Osc+uQYJB7vUCSCd9Bt7D5JmWQWSmyLW1zI0Qyvbqv
jfLbMZNerr6NtVg8tHCp9vRRni/5bvZ4NwMvbT9q6ywrg2SQTcm2zzVYwbY2
d7TthFltr2ONfx5SOn9tLVhcB3fhJrVV2Z1YeKszPn9xPNod99wZsq5FrELo
3g+fO3Ev6NHL1UvSoTZ47o2UZynmOac9eWvOwrDvr8rZ+bFQGPOt3RzfCtaY
bx1Pt0eDLS63GTSSJQaNUxxv0rHjp2bm5a4q3BnzL4Ic/0LSx/zLkdhVda8L
GvE9Z1VPknIrHocfv7NobzM0eN2ND5ym4NXOzuk2/W3geZo6bc/qRviv2pRv
JUiF23y1uzGjvN1/zN54zeV8/Fh9fbFWPAUdJ9Lr3RfQUfqeIsjaXYGh8KmK
BxwpaHsVcytApA2y89+HKm+kIPf9y5azxlQUOObpaLxoR+uanx4uD2swV9Pk
svsZCmaUS171DWfg1IIdhr9+jfJrofu96cJUrOC50UrNYoCxRe6qpBKBb+77
G5tTKUj9oOrRmsHAvPmNB4yd0zEYoPTb51bW//a5pFhV5rfP5VYxKysvToeW
KHTitNhkr9C7MknlZIgNGhyQcsyFF6XxkBkPm0gKJr2iK6QguKP3ac+6ApSL
Y7tSUBcJFPLy8RIY/7v8mbH8S3LyT9TG8n/lqk1F7/0W0rO83nX+nVbyGmp9
x72rkDXmTyU4/pScGPOnPasP7xMqa8TWNZFtPG5UMD8FrZvb0IpZS95oimRQ
4MFzlsKnRsPxJYq6dGUaNIR0VqqPcp191qOWNxM7MJsZOnJxTQWKUz/IJRk1
w6vA1C1TvB1R21/GPH1UjUnPfQ4kTaJhpjFynDZ3IJs9LPNiTwkCvy298i64
GS90u2IOy3TAW9Vv54mVZZDtJ3PvPqeipIQeMPMdA6/3NqYuuxAKRpFaDW8g
DUIXG05zq3VgvZnf7nmFebivplEsJ9+CvVcypIs3dIC6qPfhO7FMCCjkB8cx
aFCa+WHo144OuLwciTMtyYZXXlr/u2k03NizSnerfht6FFv9Ekf5We7c7M0W
V0tgmFClq+LfSt69ZYu7dLSiYYeMkz1/EebVONq+LKMSGal1TXHGdBRvubo6
3j8FLjbrFq4WKyUJjw/uVzBgQcfj6fmdjSmgWGS0SziVkLreb05HR/dZzs5m
y4YTBMLrK2X0GgtJzjo61+PC0fHruY7c0YhBZFbhAda+NLJSJ9cp9yYb+6bE
7py+KganDw+ZrKKkkeR5Q+KOo3W7QD1+/yeus+T7YppXLHcm5jKuLv7pwMbW
LzK//ugXtmIXP08My1ZKzZaPT7ksiA19DXIO5l/QLtne6Xg/nXDRrJdXXWJD
ZMh14gQtZxIlNEFiskMmMWgKk3g9et/g2xU8ruYh2LDUiDKc9xFDlup3D43W
544BzvgYznj8OV5nIeecUI1zTogbY+eENkEbtz28XAMXx9UW6lwMHJAqc76t
Vofv2yKrVvBVYPJSeSOp6k5onB4JnyNYikObTp5+frQJUiYz+Nec7cC2qImL
2/jrxtX/3Vu/aGXJTLLl1WmPya0xCT+WOqZPrW/CN0FHjeF77eSW7rDulZDA
BM61FZnrf+Q+8KLCdDP/5vRbdEwvVlYtGynCS03lDVf2NaNBJaLEf04bRNKP
WE/Wqoev+cfm+0Y0PHv9VJXXvA3+AX7vYn9U4XmwNE/PcBTk7Xb7hW5MI6zZ
Pxov2bPx7QTnvTRx3guZP/Zexnv+02P7dISzT/FqbJ++nOfURFLopENib/ea
4ddbONdmfBa3/e2jMw47/OGjyeOLQb999ANVcYMtfsX48p5bSn5rF9mUqF26
h6scI5MM90uvaiPtfTxTRSVHdev5SX5ZRSMWjP2u4DHndwVEeOx3BcZiVuFF
IjSyu7BBL8iJSiZfW0mbk9mMHJ6u5+K728j0919evrhdS8AbJyyX2gypo/uG
PWMJyoMc38xjFRBuj8Rwdh0LD33fkxVbolE2RGuKWJVKTktF9N5+OMr57osr
lr5rJikBC2J679PI2nLtW5ekqZj8wmdavVUFabYuPMvDRSczEqh3l1VT4Dx2
njOBc54Dyth5jshWbtnHP0sIEujlftldyGdE1NzuLYDENHf3roE6oqWVtSFg
sJ1s1bw9MKVhVA9j52yHOOdspHHsnG2wPGB/xRoaqT146tOsdU3ktNnAPk+1
lr/MpbWm5YesP1eQiWv55XjmsMhSg4ImXaHn4453qJY5wlhXhb2ix7wuB3ch
oiziFfVDzN/GycYyazOj7tSSGmt5EzfxLijv43FRlXL61/mU/8b/Z8VjH+zz
fvKQQej3yzcW1FGJrPvdS3vMDP/yPHHm3a4TMnPI9Z9TuhiH2aRMR15EYcPt
f/z5qyeuuBtvV4eZzhIXfrZ04nkmRV9DxQVXpuy0fDrIJHqXis0vizaRRdmX
Xsu/O/8fy/OqDaX+XkYs0pPcfmTzcBmRSPW0Uaz/+/av1Dxp+eRfbGS82yvc
MNWanOh9+2y4yvxfp7d/Or61f95AzOpWkn5jKr/aQDuxoRSIS7LsUSloJ9U+
l4ZN1zqVpEZ9zTvV+8Sc9vfVZ62AM1N236fhzYlHcdq76Ti36L6WZEsQDnqq
v50ncQqnK0SkqkY57mHI+ltXoy2x2+R8sOriAuJWpGxkK8cm2aYWS7YddISN
zdrguxtosPp+TFrMnA57bb40+o9IONpLlXFPpSFXw2nnwvd0XL7hy7K2/og9
2r7df/BhjEeQ6Lbcr0l1yV+p91VW/ON5fumyYe6SWhoJStV87z6HTr49r7Vx
2X/nL87zv/9u/Z/X/z1+vPj/6+ccL75WuOiwV0Mb4ZOuEKEYthHXsIV2G43N
sK6smN3ziwU1eV9VJVJELt1Rocx+boaVyS/bqjY2k3sN3ivP7WWQpx8/M2oP
X0o6c0vK94ZjF9mYV2E1L6Sa9GbM2m2X9pf3HRlv/DIDrS0zbtaQEp+bvoW6
XeTr83NDjTAdd37nJzpfhIrbiJfPdf24y21kaWXfcKW2MdyC3d+oq7HRsG+z
5VRKLnEoOpghefnquPOkrXdzFZTxxXy7W7sDf7IJdd+LZkb9WWinU6XPsCmE
u2t7hZ8Mk3BtGT4hrn8NqyTXPdns0EbSTMSLrsa3kTk/+kYCrW6jnzlfyuJd
G5mltWm2j3cbsR9Z+iRD/ho66rLumREaOaZdO6K9jE76Db/KNXc5YbZnVRJb
vgx3/C+9dHJiEeHa9e52nrdw92zOYwMqm0jwXFusPz2aXGh/FGXUbvmP6zxp
c5iSTyUbpj71D1UT7YjO9RNL+l7Hwnyx+4acyk74HprsMcmoGg0ypbl+p3Ox
SKjV0KCIDe/pAZ/3VR4nydMCixOqx/9dgXJvrdO8PjZ2e53aPnjJkcgMLtAV
WBKMvkfv5ne0s7B20bEr2/ULSetytwu2mXF/27qGj5n9UTfgnTOxLP/BCpLz
aHLM9eYApb9rfr12vwuNLfNxhS/x9/8flv2gQTC8NfIvz197eWLNSC8b8j7+
Ry+kvsXGtqZrn6P80aH3zvJTNA3reg7TLVbQIZ2Xk/Pp/qt/XT/6b/z/H3GN
OT4N73/UoPrZ0morpS48EfzOe+OYEaKS9ny0f1eDqToWmhO1u/BK4kjlIk2j
f93z/9NxvQviQR68LVgl4TLyo7UD7XHWjPwfIbDffj0p6nQL+JcFfJTx6YBI
UXF7+VDQv+75/xv/b/zfHHd/pPiV92sdnM9L3tDI6cRn56TyuXt0sXSajFeO
BwWnj16rLz3OhMnKO/LuhXb/uucfL/5ao155m2QLxAW0bBYVdcC2pjnd/NXH
v21+/XypkBWbW9ApwRQz+dIB8aGc4VN6of+6PPxPiV8s9clOrqLhkjD15dBU
OgqCFUqXXAiCpe103f4sGvJcj6zQmENH26+M43Nujv8epeKnTOXe2ELm8T+z
KMnvQIR3/EHXqROha1j9TC+jBdmOt5YkHu4gVccf2zh3Tf/X5eG/8f/nuKrT
kp3Dfa2YuuDthG2728lh4TkSC3co/OV5Iu8eSr+YS4GyTPig4XomnumJMe2d
X6Pohx8taTUFklO9nZW9mECjhrrPBTNkPFWo8VVsQVWuNJ2e0oGzPjW60weC
//J9Uzb72cSYfCBBYhbdtG9s3DwYM8+Uf8G/Ls//qXjbN82dIwV+4A/tWzP1
JxtJ1sN6Winz//I8wlO4PtHaYsmhWVGF3yrYWP/gZnrMMVkwa61P0HpoQOoE
Da3+Diw5NbctWTIYLO3SC/sutODyObZDhEcHogPtTY/VfETYwOt5L9e24OyX
E0I3RvuIbvjhJOFbl/+29cacn+WcXMaEaM+Nc8neTaCyWtxkK/kw0aNX6HYN
hYR9K79usIaJ0j1n6nY5zBp3nvyPJz+dlKuDUF2zV8P3TpydYvVtwoXj/7r3
e/p93aZdw2zSmn38VtR5H7I0v71Zbfe8/9jzpMZXJyxvokBtpVeR/XImtr74
MdfvwdNxxwt83bVisWA9zooLePamduJ1z9PrMmdvYFX/xXN9v9gkZSC2efOp
i8TPZuLb/IsD455LuHoGnd1gR0HIqV3vrlxkgj0zrfpa5D/PV4krF/acGWGT
iZbF/RobPYn1JL4z2jvE/7b5Z6UdvfJIrBm9y/tNPU4xwCcc2cQnewVnB7Oy
Kkbfu/Bxp2oNl2dkaPv1BvWl0/7x9aYrbDU9+4uNRLX1lxMjnAmLe0b1lQBx
xN6+Fnq2qAYja85IFqt2YZBpu6F0ncP4unWMmd/9lILtD98rS+uP9ovr+/Ve
V5781+2vvytewkWSpMRoOPRgk+f3YDp6HS+8WNF8GcaGVx2njOpcJs510jyV
RyTxhVuLsMLsf93z/7X4eH/dEPrh8jZetwFzTIO4ky6N7vfFEhGBy49CeAE1
QbeiBg4D3F/6dnWhOrRM7PgJI5S4zVjSvKsRRYl8IlqKnbgQIp0spGcw7vPY
xfeUmw1QkSr2fJKtDQO97mFUqad3kbBX6WSwKAX7zhe/V/ow6r+aXXdftjUb
d57+/ihpnQnt5NCrA2dlN7dhOOnr9VkXJKHJ7387YFUD2SM470uhdSc2MGTY
Vrn8+Di05kgidzt5HdtwvmprG2bKfbYwHJmNTsrnmzHGHUQs5sz8yZ9asL8p
r7E5R+ov57narEvO5JclCTx0jrt+dP+lnlmsHtI/ohSpaV8tcqKJOL9rpx9o
YcLTeti5f5nAuPM8s/06YkZpI3Mi9sUKG7QhxH/q6vNBPP+4TmJvKUzSrG/D
cmPBMK3TbdjybbFJrggf3HafVAuls4nm8HCjYXM4iRRvV5FYNj5/fmsJzDzQ
fIssqTeM+zKah4Xn9Fb2CIy/3vHijAHNmv2j7+tx66OHKkpteKR39duxMglw
y/0U5Jl1k1wzNnuVNjr/08vpgnuaZkHBc7nG1CnN6ExeyONlwkA8A6ZuRlZ/
+Zx8Z98232K+dtJlymI8WN+GTev36y9cKfKP53+872IrUxfQygcasMH5XaDE
rk582DkpvkvwFlylVpp5SjRj8ueU+ynHGdAavGeqL3UFB4QlBRtr6tA3J833
dFEnOu7EaycfvzHufcf7fuExhe+0++ssfG69Ut9hxsb9dXNTPcXHn2e87xT9
i3gMfJ2zYVhc9lLfiE36UvbuWKXug6HOra7TZYuQ/37S5TU9LLJrSIefbRWB
PZUUvZhPhWgM42bZfGORvbGr7q0Lj8T2Ocf2GIgWI7x13TSbUhbhcn0x7Zfh
F6z3UVfqWl2G6sS4i2bXuohFdERVSXcR6BsVe+5tLUNfa8IBx/NdJAAL+nft
KUZtkkPDsHoZeueXXF5xpIuYpk5r5ospHndd3nrXG/Ld2/C++9nds6Gj+7Kf
J3H54Uk4ryX7zTKbCoPCR/vvPGVgbgBDiPes77jzXJBcc1HYhYpF14cqc9IY
6N/n13LR+PK47328ecbzgwsp3CcV1asgpnzGUbKwCw/c+sU1v9vgyPzwtKY7
VYjbcyiQO60L4jG8Om6tNvigp6w7vK4KrqKWQjNLu3BEs+GG5DINdHFV2A7e
rwJZzD3fKKULpoUqvk8vafzL+tdfj+/6Mql2xSjvvnA4YWZLoyD/6jPfmRtm
YoKrTfiUKWwMvjgevWJGEdp1c6ddebUKufxHPgR7NONW99zy+UIMiOX8SOC6
fg22ovVpC/ObkXik5vpAMx37pNXPLHjxDC5vxHYwXzTj11vd5wF8DLSu56kf
dhi/D/43/v8tTvN9wLSQayEqWzYkqNR2EH8LpfnPtt9TGs9X2l+3ElK5VgoF
sv6b5xsWFJU/cUXSrPE1uvrAlqhyBB1Od+XexcKWuzqJ4q2PMbnomIH0QCl2
Dbrs4nNjYeTgmZr8LYbwpDv1+CeUISnEJify8h//3v3TzV20k/gQUzKpNaIc
M+KtHpuoslAenTDL/cw1UJ1kj34cKIdBps/StM0sKH14Wdy67tq46xrP/xrd
zTmvNFrPbr65Y0z9ycIcC6k5tVb7cV1ZfeamWYXwTmpt8J7LxoYS7mVaJqv+
Y+9lPN8x3nipLYI5r0bHF3+K/vT87l1y7cnK2MOv5yM72nsvm4uKgCpu98Xz
mAi5xcfXzusM/pGjF5X5qei1vNEnMpuJxFf8/dGLrmKt6KFDijOpUDpTV1I2
nYmaEPd8xZXj/x6j1zOr89Y8Ks6V7FveK8BEir/Ebe/R8eP5xIkqS8PlRMvB
11Zzb6YhC3HEd8oWsRWwvWHyedrVMtxaonTH6DoLjXeNboZIrYH5dVuvQJUy
vFv28HTaXRbknZaX2hhKgP/Q09TEwhJk0bVe3Upgga51bJJC0VLoZrYF7j5e
Cru++pNH3rEwRTbGlvebLg5lvZg8M6kEAw4Vq+lJLATL+ln4OO8Yd13j+U2P
xKsL9TZk4ksTl6zzXTYWV3yx9xIZ/3c18pPEauij72Wt4LTQ78VmpMKPx2eH
nyRsmxwVdtynIcqnZemR3XRQrQ989KMGYcVSWJY70TC42O7bHA068uOHF0wu
+4DXMvXVvxxo0Ht4q4S5nI5Vl9s2892NAZYsCsrdR8PJiPdRey7T8ctdc8up
hZ9AbD3fm6jRsMM1aY++JR2+0vPqpKkhMLF47LJoKw0F749ZjNymQ3xK3s6M
mGB4rgzpNpKm4eEixueUx3T87Nl689ztUFg6n8p7JEDD2TyHNTZBdCTUJpRU
KwUhWqClpXQSDWkrB10uhtCxxOp5d9nMIDQqxfp7jTSP1ncVndZQOigZWmaX
doei+t2X+FBKM04KbHabmEUH345ze7JMg6G8WDe2oL4ZL8VVFuqm02HBcI6d
4BSG3doFhbTcZiR5CN5SqKBDUCLoh/uPEPT/3BzU96QZDnNY6o9G6GhuCWvo
nPER3Ny2Ai/sm0H9vFhv6Wi/6O5I8Wq3CoWsicqE0FvNOJ6RML10CgPuOzcu
u1cZjNe1RHPy9WYU7Sy8/WoaA4M7U2KdTgTDsGUnI0GpGe6qSSs2r2Hgimdk
6bKOMCy7seSNxMpmJHBzqTzfxkBPm3MG/8Qw+KYr5euJNmMZ+crcc5CB6ec+
RA6ahOKZ8TSPlG4qvn5hD701ZqA8P+DOOq8w9LoRWaeJzbiZallTpchAh6Fo
qQw9AT+Pr9l75zkVOoXko/A7BixZXy4nGYfCcaqG2iFvKsQU1t089IGBEceG
wzZhISgvcnwW+JSKiFaRet2PDNzbJuY60SoE/AYn7j9wpaLxJ4/ASx8GFitW
n3/1PBqPviUb2GhS4dy+k4u7jIFdM0TWeuZ8RmbLvTLlLVRwL4uqlqcyEBe4
6q5PZRiiSdWbH2JUrNR+IzDtOwOdOp/0lnCHoSPfZbb6jFHueuT6VXaAgeIZ
LV9fN4Yj6J77vrI+CmJ/iaNdkInt17erTdL8jJUngylTQylQspzXH7aFiZiw
e+FDYZ+QdGgwQOEJBdf22Hfk72Zi1TSltjULPoP3QqqMiysFAefOq5TvZeLM
YYuZpVFhMGkwbZK6TYHV2taKIh0mBpWOvPl2JAyXZS5mL91IwfK6I9UbbZm4
/OP5VZ/WcPCu75BhbaaAemzQ6NhFJm4d0JmZvzYG4msdWwZeNGFCgZ/izyQm
5Ff1STx4Hoavhy2H9B81QQyd3QapTGQLVfOvLQyDtuVEVtT5JkQvHEiYHs+E
d/3617IzYhBs4rBuTUEjfFZGyov3MGHRfjHMIjICh3NfvFwp0ogP7w7zSsh1
wvTlwobIws8wcJPbocPdiP3Da99mLemEfWHAkaOKEeC/vbl4T1sDtg5Rp3Yu
78S1rpDHNV0RmB4z17XbvgGZp7XFj+3txKvQvR1hi8NhuVr3F8+3ejAkdt7t
u9CJXp3tP3UcIvFj8HxrzGicEiczom/UiTgMWk/wj0b+UW4Rj1X1eCbvLa/s
34nqaUNPFWrDQfFmv6C31MF5zX6LZ587sTymb5N9ZQSmlK1xUn1fhzmTpF+u
jOiE3wmfperzvkBK0c6G2VyL1saS2V70TvBHvQtkfopCvumj6sHimtH+H2lp
o9CF7R3LXeQmR6Kcf3BqaGINnPUbT7Yu70JO2Ub9laO+Q/Sa+7x7ATXwiMlc
R1vThaHmZbcdnCNBPDy69ljUYOJPA7YvutDw1t/Q4lQkNn0/5DvoVA2nMniq
GnchuvvrqXLBGPRM2TCUrl8Nm302j1MuduFhb10G/48vaNW69+OlRBXMs30n
+kaOcrv9tM+BptFIepbxXn9iFR5OvdlcGdeFomGu1MyF0TjxUaZQIroScivt
xN7ndqE66+VySWYUvl6YU5KxqRJuTXtdB2q6sHOx10Yzyy+Q6VXtn5JZgUef
1eUzu7sw6WZk1FWhL4i0Eq3cO1KOEoVT6uoiLLRc2s2/Ki0Gu/jeOs3cXY55
guGv9VewoCkySbzkUCzMaHrKpVPLIS90yWzCOhYerOaD+e44PBTUKC69UYrO
875f31uz8EZN5Ij/wBfcaupPfyBQCn6Zmy2F91lg5+kx1yd+gZ3S5RlOG0sw
zYZ2mvqahXOilO7T5XEwOXREfxerGLwXvY0oo30w6PTSd9ePJmCB9aaXQwLF
wAL1WNs8FtJD4iTcWXHgkj2vuiSyAGe/ORt7MlkwfbVsvo9vAkQfqC5V1MtH
Yn2B7MdRXvIevNmpYZ6IoS02Te+v5iJeyVzBfQIbD04P79QXSIHDaaFFR0vS
EVhIpd7cxUbqqSH70AMpqMOgnJJZMvQFGk9uM2KDn3VYpeVOKrrlaQZ3rkcj
bT7Ltfv+H//Or6iGgXoqLDQlb56a7o2QZP9ND5+xce9O51DronTIth2tofO/
J0MuL2fu82Dj0brqNXktaagWLl3cuSaMNKUH4rsDG0bs8O3fr6VjvqBrmH12
EtHKnqtjAzYmJUaHNLVkYmi5sPXLu3kExQcjlN+ykOh124yYZEM9VtJ2ytoS
8okS9/XKUhYKGnZVuGjkwKPom0BAZiUJ2LToYeaMLrReS1f3npWPkZliEfzz
asn3qnfxRls7MSIYMW3TYAFidApsr3BRyfetPPO6Cv8Xc28ejVXU/v8TJUNK
JUpkCimNiJJLKQ0oFJlSShRKMoQiUxJFKqLMIlPmedrmeZ7neb6nMlVCv/vp
nD6f9fRZ/b7r+a7nWZ/vX5a9ztr32Xtf+3q/rn3f57ynINT8hdb6gEZoIZhE
JrEOIXGnvuyrVL17vtF8lWhoI3h/43/bJT+GLrRfuXb+5xiI7bAg5hQ2g97s
132TPkS0PPRD/wMDlY9WO3Hf/dgG/KW1pgffkZCDkVk9saYQfIae/4CGdvh5
PVt1VRcJnXDVIzJ21spINDoIHN3UAXz49W+w69FL/HptvP/tw7/6R054/0/w
+9HE7gftxe9nAL//Pdj9o1f4/Wfj4/2GjReF4eNl24TNzzw2P2gTKzY/c0/a
Qkk27SjiPFfDsx0klB2pu9AhWgu38PmPw+YfdeDzv3Uftl7HsPVCxfh6PcTX
VxlbX8SGr6/GZiwe+rF4QA/weLCfwOLnKxY/6BMeP7KnsXiLw+INVeLxlrUH
i89cLD7RIB6fCseweL6NxTOaxuPZgje1XSW3BD7NRZTX61P78XG6ZtFQAEpz
+aJ1daVA894ogEaTgg6XhsY8f1gAlWdVDikoVEGK0Hv5zUIUFPBmOdKgMB8O
5Sn82ndNE7/2HUrd5/hr3237AT1tYuWwXT6SgXSPgornzwg/vZIMBtYcIWvL
K+H6eY1ecT0KitT9ILCj/gNsZIzeenRHGTRcOLrG5gUFTaTelAxLf/tvq1NS
6k32elD51uPAG16l9CdohqnVeNeWf/13EZYLdlzr749D/23fD/X144jeqILl
0QTbv+0+d7ErgPoEBULXSohSulLRc13LWO8re//lfko448rz9o0DT6yDx+X1
E4j2aIUYzw2uv557P79zetVzyQ6Qsto2I9JMgninxQ11bN2y3pt51vPFtMO6
y94ryiQSvDT/wTK5bVTW1ndJ82lSOzzPuC0wQSCBx3udloDxTQAqORfnuNqh
UlzCO5qBDB53NeMF1/39e/91Y0mfWlcosOHesSM9Sj5odleyD2sjI3gmUtjG
T/fC/Us096rSiJAySTokaqf1H69nHS/Flg8sU+Dp3heGaRffon3yFBdt400Q
GGR65wQ1fkiaz2eS3D3Rpj0+taN5wqC1UVN0dmIYHqxXtlBonIL8e8ahXSxe
8NC8bDvv/DCVI6TLNKh1xMA0zI7JOYGqaOh1tsVh6DwXaZZaMgWOKzyaM/L/
vue8JtRXtxNXxsCn2ekB4dgEWuPo4rW0nwNIdoLq17LHQEXu1MlFhwn0SVaJ
ZnijMKSzzvoTRUaBPmzWsqFrEvhPM0jkPPv79/5/+75A3J6upSC+HgRVHror
sFGAxXJd9OhhbTie8XR9fFYTBGrHrHdEZOCkSRJRvP7wP76O2117uEgkCphp
pD+eXUlC3Lc7TPQXdsA5uy3THj8oQCd1a4vUSCiq7ayLOVPBA0lcWzubUkdg
8Yfrl+2Hp6BX6/rn7QeuwYYEh6GvwyOQXazp6b5hCuocoixdj/qAZVuiXOjo
CDxJTPc7vH4KclZb8tjI+MDo2gSuqskR+MSZbTjFTK1DJ94IH5P1ge3BJKny
ryNA43/YpZKGev3Z84VP9z2FpQgxzoHFEbDM+1JyfmUSTitKpLodegq7Yptr
y1dGwDD44cTeH5Pg8zPHJlfyKWSYeWzsYB4FG3MJK+4vk3Bgn/rJAs7/vd8r
frRMi2mh7gvGoHiKfLgdWlp7g4+9gw7U+O59+KDRhe6P11e8uE5CEchnOezw
XRBkPf3Ea6oTnj+Wej5mSwKNof7xwrcMspsC+rbEU9vDVzUoDVDbj6xiynQr
dv03PU9BQ2M348NPQ5MCJ0CT/WB/MsRzSxmmdFAgMJLt1KaKJPi5u1ul+Ugy
uF9MaynrocBVRvlvOm9TgdSR3VjqmAYN79qP+dZRID2GndubLgXoo4Sg1TMV
nLSsH2W1UMA37kl85bF0oH0g5LTOKxMWZIXPDxVSoIujzyb+SCrox3PSZ+3K
AEv3KG66agoY5v3Ivz+aAcZ0RlIy63Nhj17F2W3J1Dx4uvSqqm4aXHzH4+XP
ng2fe9Y4OBZQdau9+q6PZRagk9N+L9ciWHH2k+oIosD1lxYKgWrpYMSaYnRe
MQ9uhz66s5vaz55lQfqIumyIzXxEns4pAuKGKNoJNwo8UB501KHNgKebZVbt
RggstPW4JcIp8B73t03H/W1rcH/b+UvLhgdKc2CTXIgws0ApBH61f/zE9O8+
rVM8DFZWHemgdiQur8imBARXMpXNnCnw9a0Lfcv9HDAySSg/t6cKLh1fc0n5
EAUeHYlQPhmWBu+3X5k2ouo/2bHofrwlBfYneCXQ+2VBuXHawQzTGhhjR13L
2yhw3Kyr86JHCrgVBZ397lAODBlX10UYU2DC87NhxO10SNR9YPvqQB28C3zc
GsBEAZPeJhdV7kQIyXr8xNyyAvwTtvGMUrne7tNNK6n5JOBlkWs8eaIenEdP
3T+3mgLclTM7Pj/7COwWZx05hyugNc3yjqoRVQ+e8X60HoqCK/EKlbMW9TA3
fnBCi4UCo2OfoocdgsDjxdnsjekVwPPwB9TfpUDA3Dml3DW+wPDlwvrnqXXg
ZPxdN4yHAtLSJ1epSjwBHn3bKV5KOchIfOpesqPAwa1HAyZ5zdHro2dXebDU
gu+GxM3NUhQYu3jc0Hx3OrxxXk23wSAdPjCafj9QQQE5NjZmFjVq3aZ6K+vn
ZBYkpJXkjGdQYB/r+Zj7AdnwLO+q1I6N+eCoNjnzKYwCjl2gmkTKhbGiPTNH
vxeCrmcMnxo1Hh4WCFBExArAXERfFFVT+VK7dU3sDQqgNmNf/Y2FoOm1U4p1
qRzCma5Ukqn34+2y9qxreSH0iZ6Mn3tcDZcbPf1Or/lvP1m6P/xkLT/5VvqZ
FkJuoOawHrXO28I0LDHmS4aBx+ctykvyoX2DXNGUUzOwe13R/2xErdu6On56
hWfBFp0fZlLhLXByKDeESZkMc0VCRLeIZIhZ+eI1z9sKfN+PM5QrkkGS7oye
alA4rL9yqc9vqAXCp26/o7tJhpzrFnbsZF1Q+KTyaNVwM5xTD8s4/5oMHX1q
RcEzIeinl5WblWwTjO+anBqvJYOP28d5N9NsaDtr6TO6LwccXhtpqMRTIM5b
WIR0Lw/8vg6Fj29AwG3xRufKSwpw1r3OW85CwLD18vZv9sUgGF0iBtQ4XL9O
wf3dmyJwcvFZ9GAph1VjP3ZmSVKgYOvsmtMKJXDbpOhK0/FqOBKaontxhgxx
j6wMystKgaEwIP8ydwM47C5bc/YdGcoyuf0rm8vgYHCPnb58M9xN0/ohuPfv
frLPOxjDAiZLYZpYky/e3wEGLA+fnTlCAtrO0wEfthWD6Jd+Nhr2bjjJFWru
10+EPa4+vN7nc6FWgDlV3agH3qvf4VbKJMJBF+ELGi6JMOwXErf5RQ9Ib30T
39dIhKS4y47WCW7QGlex1Hq7G458PqYns5MED1y2bih7H4HOcjIrD23rhCTG
0ggIJoGarbDK5+dpSG7aPPXCt1a4sE9Ru3oHGdasbXgcyF0ITTErJB/eIuBj
KnZ9Tt3v9fe99LToi0H7mTVdmGQpsL4vfP2OWpcTNhjXPL1WCsavcuPKHlTC
/SMft9qtkIFucylbAksFfIm4Yzs/XweqJ6K8gl+RYd90pm11VhVcvzQrL3Ch
Gbz4Q+fX/yBB4PD+4sl1tbC1aJAYKN4OzHDBR28vCdj/8I1NxX1jUyaFBnqr
qqHE9IuXoPsQLF41vS1JmAL/RfeJhDNlkDKbVau5MgyppZfMPh6cAhuu9wx3
ZXNghP8DQe79CCxfruLw2jQFTyPD9vHG+0PuiIrz0vdheBkdenB30RSooTGl
d/fjUM0BZjMewyFgu3Xl6vG6aThufZjxe2YBWh6d2S011wefjU5uU6Mnwo7u
LYLnpMvQKTHduAzVTnjKdkOohocEsi8FWK7RlcJJ8lDqDo8y2Hhb3ndWkAKD
e1K+8t6vgHLnC0sMS9VgIP7tLEsOGb7Sqt7MM66B2rBtN86uaYI7Y4abzTaR
YfUfvq7vcV/XwVdz26RG6qE/LVjZcNcUSHBHNV8+NAzR5uzTpxxL4L7Z141m
Fv/wLR3TuqwxBIYRdIXdSuFw+GGj+Pd707B0VfpMzdIQpAkw0HywykTXyJaG
TS8m4SRLobrRhVF4bZpnWF1VhbZ0asfo7h4D18+B4frcE+DDb7Ywad+ELita
KkagQTAMZbri0jIFR37u5jc53II2t6Wv2p3aCYw3Ln3tmCKAbUPsp9aMapAT
mmo86lgHspJ9YzO3yXDB7JY1rWgj9BGv7uU91AIvd1C2NpqRIKq04YyxTgtU
xKsJ6XZ3QuY6o4qpbgJk4b6rF3HfVSPcdzXfN5HxOGcFfPf0uEuoJMMdT14u
j8PVYFcyd6vf1w0u6H8lPDpGAcv3Diqrk2tAIM9YyVO4ClGWeNwThkhQt7TO
rpy/BTz3hZ791tQMsmlXrYsN2yDdmOgxE0WEHPUtoxYqHWC4jm/sfHAvrA70
N+UVnIaT19qLCTM9EMcmuS2hchhO2HyLedE49lf+URZVenXMewiJko6wrp0P
zTsymdxlVzgNviecFj4+7gE6lxW2fUKDMHavo2rvwgSkMDIYaDwchJPhm1Jn
eMdAtdF6TZT9EDTbYOMVfPFrvGjSCxtvWDI2XmVsvCgVH+8TfLxT2HhRIz5e
Z0betXLHB9EamKk6kteNPB2NfNZzTYI/6xaR8PA+9HS+vFxSvQlFfxiZeElL
gGZrZZdTr4ahf8E2fHv6OIj7EJIUX3XBt5LZX3HomvsrDtHCLiwOQ02wOHTA
4hDR9GJxaBmMxeEBLA4R4zUsDgPxuNLA4goZ4HElj8fVRiyu0Fo8rrwfjyYp
wTBcUalZ5hCYBsLea24ZNlRuiwszdHAkgZOMZmdfYjuoy9EwrFsqgWsHBH/l
jeO2v/IGMnfF8sb9ExypnKxl8PhL50QMZRjl03ziLJWbgoQtWN6YxPIGYtXE
8gZ7IZYfEJYfEAeeH17j+YGE5Qc0g+eH/Xh+kMLyA3qG5wftpL2R3V9LoX88
wrF/sAO9H7K0YJUmQY43pgu3yL90AWXxYLqwzgLTBQL/L11AGzUwXZCywXSh
ANMFdB7XhZ4ATBdqMV1AMrgu7H6C6YIipgsoAdeFIlwXZDFdQOdxXeCS3PzD
1qoQ7taLSryhNKKq3TWzd6icoKOBcYLj+l+cgAg4J3xqxTjhGMYJSBnnhK0I
44Q3GCeg3TgnMKzCOIEe4wT0AecEWyWME2QxTkBKOCdo9GOcsIJxAhrDOeFR
WjwHyT4H6m8wm7mJVaFTSY25HFSO3bgG41W+W794FXFzYrxq4oBxafeVX1yK
PuFcahqD8Sdg/Ime4fzJ64Zx5nqMM9ESzpnsXzCe/Pj5F0+ipzhP3uXBuNEL
40b0mxuVidk3S4fTwbVe5dyibQlavzTbIU/l8D4Rv+fmqWngaMG2nlawDJEr
Lh1XpOpvkhrG1ZfQL65GN3CudmnH+FkB42cUjvPz+XKMk7vu/+Jk1IlzcsMg
xsN3MR5GvDgPh4QO7L+WnAxXL/RkaT5NhkV2iUyBLgq82zC4Pv5bCjAeftYc
2JQKrtYd65obKSAsH/4jdmca0MRoFhvKZ8AGTwY2Kyr3Xt2vXDWwPx2svIsY
z45mgaDRgjwljwJSkt7q/HQZsNvgW7poeC6k53V/CKLWQTaGHVcaXDLAoNu2
11e/AJ5YBrTyR1GgbeGFc1tQBpSeZulmdiwEVL3zkNZ7CjjjdY3JH3XNoeDZ
0tTObCj0/qnc/qIS3qnal4hT873fUJdhnkUmGOW+b27/UQXMoVMhcgcpcFHB
z5RElwavOJNyqyuq4as3KY3lAAUSjnw08vJNhBa+1zInu6uB22z+A5Km1h2H
WTzkVaNg2u6SudqRakC1gV+kz1HAnHfRuuNLAHS5lEScWVsFfA0LJP6rFBhX
3+CW20atSxNmtUiM6VC+v+XQ6ipqXXByjehl6ngP7Kh9VEybBddUr3Cvps6P
nm2q5qxgFljUFO1WvJgLaxxWr9hQ+fYeo1TC3uBsqPaK6ur8UgAyAaRbTu8o
4L7E+zCwOgem3bP4w64VgfJMrxKi1gt+7alx2s65kNV1qbTubAnYfBGytblP
gUx/FqmViFxQyEs42LOlDLhMro8+uvo/64LPeF1gLqKbPvUTQZUOQ8f9B41g
VHHdMTWGyr1LdTtoJPIgRtpUzca4CR4+uaJJ+5YMt0J27trVmwHeIXFpGfVN
EBl1qPwOlZP9uDxU37kkQbPOtv20b5vANWyVdnkKGZQD063SyyLgSFTsqcdt
jUBOcLou3kWGs0oRd66/fQ4H046sEbneANJe+mZ8/6j7xo3CdiFHZOoythgX
UQs7N8Q9W7ufApuVcj0Fl7Ig5XXx2MmsbDhRzUUvm0gBs/tiWpd1ckF0Uie+
ry0ftrJLnP/iT53P7I6oxcx8ABmfrraTRRBy/nLZIXtq3RdhZ2g5huCE26YZ
56ESoN/c5javQ43bXfJ8h1sKYXRpZsUnphzIjyXptKn1AsulhPN52kXQUUbZ
f8eiCjoLpLccXU+BSycZPt65UwTFG0N5PNfWQnT9i6HpaTLcx+uCH3/UBRIS
AopSSqVwcP3BPTcFO2BwPs/T0JAEnLr07rZMRcB1eZc6t14nKHEzMq4/Q4Kr
zMb6WyAbBtonWTZ7d8I780bPt1QOKmxrqw1PSgCd3WX7r6R2QJMCnURmDAnc
mOc0CUt+ENE1VnRhTTtEPXksZ8ZIBhPWzcXCmk8QE91olMJgC7xVrLxuZUyG
Uo3mpMxTEWj+xKh48bMmuBRyWeBaIRlIx9Vva0YgUHq/rTmpvhDYQ/Y8zbSl
wN6TzAxyAkXwKSvmzY1dJRATvXtusxZ13lpPrJb4XAzEqJH0s5/KgeljalIV
PwVmPsxXWYaXgs+efZpzcdXwQkcgy7+fDOxmZINNtOUQIrYw9/Z7PSjnHpcv
8yKD0PPmOu3qclgbY6pxNKwJUmU5HOuOkGETXhf4/1EXlE8OH1g3VwUDKxP6
jE2DcHB14poaKuey7HvspaJfCl2sd+pibw+Bru+bB5y60yDhvjRnz5ILlLMT
jzcfGQLNhpjHQkXT0LK78zG7URi8jx1cE3ZwEFZNe+S5vibAOWP9N5y3XqOQ
Amk22i+9ILpzeX7EnQjCWrTRxVkJKKUu6qYjUxcInBI3GLhOAppVI2pObJmI
fWv5RzPhNpjI66GHDWTYJcrJ99q/BFie7XJTZy+DbWuvOO/bS60LpCrv6NiU
Q4ezdqLQYBV0TLkaklqp/P+tr1r+eBXcP3M6lkGpAfxnLLbs1icDPV4XbMTr
gkC8LijV1jHL1KuHPInohoKzk3Ce06Rv1nAENio+p8hsLYUaO9ave+MmYVW4
Qc9M4QjsZXOzmeJLBtme+F0vSRPw4WA8V7jAGDTwzX6ppc1H1tx3wsMvDsP0
5p3XaH5MwcgL1eXQ7hI0zLD/jufBfti9/5Q3XzkBPga/a7MnlaOvVbGZy3s6
wepuj1oxGwmkLrEOeWyrhpTal2oxzbXQwSd7uOERGd4RJfRHYuuhWbD4Rbl4
M9SWkqTU00jg/Kx+u/HmJmDctr1vY1IbpHRetc6j8s9v/lfD+d8E5//9bLfi
j8tWwomOmtlzWlSegH3xlxUa4fZOiz7BC7HAu5JRVviADK+NHfSaz7aAznS8
RKNsJkpKXiXwTYIEcxdzBe/adcFemRHpXbrN4Efeei9sqBXOfxKXfNRMBDkF
/5vC7m2Q1llz/rNSNzwgETxEuQlAW+72+WNsJyyW/Yho0h4ETeGUjlTfyb/y
v5TdJTuzp91wBUY/WW0fgGmVUu8rwZPg4vTAnim9FJYNBW9wClJQ+43U6pnZ
UmD2+tSz+/YQ6nhQb6Ng7oeqEjvLv7VPQ8KD4tm124bhBUEw6z3DOJDfsqW/
WdcHjpxaO2UX68FA4Gr7WZ5p9JiQvmq0ahA+8F/p65Qvgs+6+jdv8BORlH14
B0m2D7iLDSLf1L1FUugIg7UDEXk2PDTP2dIHF+xTTImNvWhFnzXtrWAz2q5K
6yvJSYDXcV3RpXzDQAjnkzhGNw3zfpnkW8eo+79hn1x0VA2wZLrKW5oNoyCm
np090lOQJMdMcustgxXfh9/bpkcR743bnCFvJ0Dh9sWkvSMZ8FJdNdDlwjhy
Kvq5oah4HG41iU3SBNQjIUvWB6TUQWQ1Y8vueGgaglKK2TfeaEZFwiXfzwx3
ogN9PsqcdEQwOHZziSejDDaxPMjyYuxCUbKnVua+ECGCmTCSrlwCoyqdW71q
e5G6UHtSgigRaJzHuQzO5EHOM1FKWsAAUuZ9toHpHQEiSauXy2X80dmwRe9a
qUHkv65aKesVAZK4mhsHJLNREAfboZccfaj/cZ/80kUi5FnmlMQsliDbsGwt
RpFOFPODg/kJNY7A3G+DxlIhPPvel8Ed2YRSJ3RTt1HjzuI4I31lCoLULwPq
zPtb0VCT01Y1LqqexptJldbmAJsRh/3sq3Y0kB2coldEgtPKtlt8uVNAhibR
Y8fGTnQiXb1a8yU13v1270/8GAAmV1xlLdQ7keSutw0/fEnA/lxN90DJO8TP
dm6uS7ADCU6eDfNvJoGG3u04NJmCaEUr0rISW9Hpt6l+wfvJMD8SoKR8lMph
un1CTzdXoxNdZ7fEC1LgjoEG2366HPjgJnbN9nkdmnUeNdv5lQziuyPrzKQz
4fxG6wAdi0ZkGl+7oaaKDN1xAlNG21PgSMnWMuuUJuQeaXdAOo4Mtfcf8HMU
RoKaN2roV2xGsonlmw3CySB2irkjltMJ9Ee4ojexNqOOgLc6C1QeUHG8I1zS
+x7p8bU+F51rRG9Yps8f7CTDGk5fbXOjDLhDFlvHurkUhV795ldsR4H5ppgr
ownpELP9ySrPp+UoRPGj5aHrFPiZy7j97WwqiE4sbrtJqkTO31WOFp6lwDe3
/Cv78pLAtNQg32OoGinevWllcJgCXXtyKcPc0cB4vruJjbcWHaLXe2dLzcM/
Rn8EWfv5w/WWkhP8N2rRpnOcB99Q+XDhxRRDGmqFx1x7FI4XDsAe1cFOzfIp
EOjiSIt0bYepNNXWG/pDkGkY7KF6cxJU9Na+8n/UBtWPnJN5I4ZhR0SmSn7S
BGznatQT7m+FlPlDKvU/R8HVXGCzffkYVfew/SiH7Ue4g+/HUtzP3QH3c2/D
fbSr/2hvwdtb3620tV1sQTOkMhmhy2MADWlbvGrHwJtGP8DtZwca2dr/dcPR
MbhP65a+MWsUUiRuzySubkMy7Go1SzKD8NCsyZJoPwVtj6RWa+3qQ1PI02St
WB9k+lQbajyYBOFrtmQP+XbYnHo4smipFx5dZDKOODkNUbgvPBn3hTfAfeFj
//CL18fbd05l3VgQ6YX+c1aygrsm4ILcwosnq4agoflmoVhYH/T6MEUtpE/C
gTYTgnXX39+rLIL7oT/Cfd634n7oe/B2qz/aa6wWblk7jSIape6Y5IFe4Lu2
9Yj94AhkMN+IXTCdQI9Vrx9JH2mGb9Yd4e2RI/B4asgy0b8LMgasHx/9OAD6
j95tU06ehNF186Mh1weAy5+bnu/hGExFvrv7o3II1uG+8AG4L3w87gv/u/09
3h76b/aLP4CP1wz3hf/LPPyXX3wOPl4rbLxoHh+vo+0hrtr3o0jRlCfi1qk+
pNtblxcZMgJ1mdp+YUW9cJnvnEohZRAYKUTZSYYJEHkxUGszNAR5M/TeUZLT
kHKK5G7lVQh6V3P3CHSnoRORU9M1OiRUHi+Zt5XYCRtwX3g73Bf+d9wy/tH+
O845+rLdmOQ7EWP5EL2KwBhqPtmnk5o3Ct14nH/B4hz9jvN2PG6nsbhFGXjc
5uFxfhSLc2SLx/nzTmPB1uhE+FLFbjj8JQGeHzGIUR2igKV7QiTjIyfIO8ci
N2pfAWuOMdr/4zw8bOGa8bp6PXTZbbDygGUNDH6/9VDjOIXKjzl1hMJyUDUM
5lx1ogXyP657YvyDBJY4/y//wf8FznnXDZ7Xgpp1w4c9Cl1Q5fz6FN0TItzl
bHVpJNbDprK+79ske6H7x7JMXQwBOHDuDcS5NwXn3sBrH+0a37QAY4j8cZ3P
wzAw23iMoW8CXjJJyDQXlUG22oYITbYuYM+uH8uiEOErg8GXbxk18Pr5+x0G
VsNwcCt7rIH4FERwYrrprvZLN0F7J6abV05iOr7f75eOQ/51TMePPcP0tBnT
UxDB9dTmDqbvOZi+wxlc31/g/vLPcH/5Idxf3vsvvvM0uO+8B+47/xL3nafD
273+8KN/UV92w+tUHdg3vA7WE6XyNomzMEKJBO+7c1B0VAPctFZZWbWuAxyl
nZ/2VBJBXzjmxJnVzSBW03R7e2c3VOp+LqwIIkCRGA9yqakHvuQI9lf1nbCG
IH2i15YIQ35xBsd2NgPb5GW+FEIfRDvJVbDUTENf9epz7kktMDVnSvj2dhA+
9mTL3H06BbGdFgc3SLWCcnSo7tGhEbCVahZ6MzMO8oIYj41iPAa7cR7bZ3F9
9b7ZehiTP7tsr90CXFnfK1mcSMDAsERJd2sDidcBz949GYScO1aFxENTIIr7
ztfivvNHcN/5vrsZSoHbOmBCrEW46OwobCs6mOA8PAbftDp7vO52AR2dMt3b
g6MQ5/ZDpE1lDCJGuKaE69shMGLP7df1E1DsaLeldMswBC+GN0jy5YJD92qV
ZDsSZPAYknPnOuCW1LF3mhHRaGbO227kKxHqzfmG2el7oOIvOjX7/q3nR9U2
1HIzam/akzHgUcpXtNo5BjO4jzw/7iM/gPu5EDMEYnnWDaJHSR19gyoj0F/V
eD2sdQSej9MWBk8PId2VOKl07zYIJInoSkhPQr7P0buFraPo/mLKYSYqT9V9
GBAQXT8Jn4qy1OFWK6ItKxDdT9MJr83oP5V1E0BEZSFxJaAXOZhrml3TbgZZ
Sd/gNCrPn7Bn9L9j2Y9OLxoJB8o0wHKdf6kQEwEKNxXRi1E5XG1LQe0jlhDY
FPhlQ0vrNLhxURZmfZogJ2jA4RylFSIdGbqsqPvrm8Bx5ehzLeAbkxDkeqwD
LCJThdQlibBuff5+m8sdoBAuS0kP7QeDoI+39nhPQTSujxRcH2/g+oiKpxsU
Cb1AUDJfdh6fAJZ2nYEgKar+4L7zgrjv/BjuO6+A+7bk4r4tobhvC7leiqey
sh8Uw2N7JT9Nwz2VqIsMV5uoeWnwnLF1B/AF3NzWcZ4ERrIOJuwz/7of39/a
f/u86+M+79twn/fMI9IublJT6MuDuww7/TNkHgmkhzKmjEAevo6vsXVEtfg6
euDrfgNbd/R73Qti28xNQ1vgxzo+6Vca7XDrZ33idg1qPCZVP9dObodsqaNf
l/Z1Q/mUtY3exDTEv7HY8pOzF7gNam2t3g3B4eKrQ/dyx/+HD7vf/6UP+9/a
A/7wmxPF/ebSn3km2DaOoBPGapd6J+rR8qpNysuTE+Ahx8V6Vm8QVu95gba+
G4H3h3XFHM+MgLWfxBYfpTrIiOEXX3hJROM81qpnOjvB4SxW1w9jdT1aCcPq
eqt1WF3PidX1qBev6+f/eT+i3/uxB/clf/KHL3nVH37ltni74ouRm8G5nSiJ
/GB8/9gAupz18p1f2yTEc5AXnyUWocs/dckZgqMIDO4f76Pq77VVP1U2quSg
aT6Tw9HfhtF9XUPXndT4TykL6uQOG4H03fT7UMgkeEdX3h9A5dDHdzEoy7UO
dHWHwxuPjqEwn0+7oXwctjlj5zbj2LkNssbPbexw/3H1P/zHHf5oV8bb2YSx
cyEp7FwIifhh50L7Pu6iv6ZQBP06l+XPbOpEn5QSOS6pU/OfPVnki3EesB4X
20+SaULChYN88YFk2FhI9yHDOxN2Ji/thdIqtDxuNlcnTgHW1fq/OOE8xgno
NyesdsO4IhjjCsSAcwWLJPb7E3rs9ydIFv/9yUcu162WOxJB9fQRdpWrCRDZ
PdV3c5gC1Y26szLv6+C43jmenGfdECmesSF9F/F/+HTTTGE+3V/0Iq6nqQ4i
t9XbVtDVbvAp2yl1c9ck8PG/XE0f1ocMKwT5qiWaQMxl3Z61DATwMJTmmD03
hiZXpJW2RYfmndp1TPvIyAS44T7az3Af7QHcR1tg5sqsinE12hfWJpi5bwyV
yXcKMLNOQA3ul/0E98tuwv2yH2oV+5u2U4CidDz5nagDeuR36vv7pGzYfebr
hr6yCuhwu5eg2tGLZm99u0X/hQAD56nbifTqWOYJGhq5VY7Hfu+vQ1cPcaW0
EyH8slS50w1qnmc23t9oUg23u2n1ZZ4WQ8nVUebupRYkuv5pox4zGSr8V3j8
7+bDrZXlRytMdchI4+pBrxkyNBxQl836mQmBBnKWT5nL0bhAbfLCNQpU3Buu
t/UoA99uxl17M8fho8xjge7h//bR3o/7aIfiPtpic9g+LYj8tU/hKTu2T5sY
yFwBG8eR9MDKvfvfO0FZIpCJ1XUEUv85D8AKngcCSswcLDUoICzxtF2XWAEf
2p+Jiw6ngsQ3TJcdMV1GPbguqx7FdHkS02VEwHWZBedqW5yrW3Fd7iaY1j2d
IMNOv/QP4dfqUbWrNsNMcw5I4uMNwcaLovDxTgS9J5S3pMF9ul15oRwTyNTU
w7Xx5xjU/pEffucNbT/jHXsbKODGWxfXwnsN3VffxL84ngvZcesWK6IocGGt
pqd4myl6oVzv5tP2n/dRFZZbK8pBrb+cOS8/v797Agwl1ui/XO6FLhp5E4dr
QxD3gPhs8ekk+F/i8Ooit/3L/bM+tnyS5dSFcp907R1RIaL76wNj/PrrQb6+
xEY0tBHN57cV0viR0OAledjW0QStDpyJAUuDkPBWTe6k8Shsdi7L/9419Nf+
efcfGA0i14Hdt71MOi0EFPnzivmL9h6wD1k/HJU6AkLXHn/5OTwJV1ZL1VnL
FsLrohZ+hvFaCEt1esioOoqGvmocG/4wAWmCdMnqbBVwwCbotbJPD3rzs22n
qBIR9r0+oFCdkAdibecOP2KpRd6UyaLV9BRYg58zs+PnzAH4OfOf8R+Fx3/G
cewcUp7/1zkkOE5i55AXlLD7P/X11/3D2BJ2/59xDhTAOXAI50CN5ccPL57r
Q323Hqy0s41S94va9gHR0f/y16bH/bX34f7a8X/4bvPj7XetjjHlCHbCUlTr
yZA+AgS0RAjJibVC1oD1g+dDHfCTi53xzCQR9n9+ormLreb/yDO0v/5v+i+e
KRu1dRUZnUR3Tp36EbMnHyzvbwgaLadyHM5pO3FOG8Q5bUS6ew1lrB8YvhID
tAUJYPnQPcVo7O+f+7/V/s/jzcv7Pd6EU2Mkqwcl6KAhS/DhQRIyI1zfnVDc
Ch5/6EIfrguL3GvNHKn7XeAMvMiUuYNcOW2zGPv+3/NN3mNoZ8eu3Q+Putqb
360ngkGSgJ4fY9q/3M+f/sJCOO/97fq+/PPi40n1IGU8IEY+OolG7BLH+O+N
wCGHeeYP++ph48OoIyYwjghPDjXJ54yB8Niq1QepebuGjbaF4UY9emB64XHV
YA6o3QyKkqPqKWuc7teKSAeUabL/zof8bODqF1zbyFINmw8P+H/NH0Q3Owsv
XHk4DTwH09vCgiqBrVNQyEmlH1WrO3pFOBJgu5Mr93I9BTjKePZkEa6hUy3v
zzTO5QI9Y6adDLV/vT5R1vpHDihKtkd2B8oGa/uCge/U68UehCklx11Dn6Ku
T5XN50LmlbhVH6i6XHlT82S3fidYMC0QBu9XA+MWSaNDWqVQduk+PQy2oze5
RyJ2WZCgNEug21KkBHzaKj9cHm1FnwNfNnv0kcDPwTLZk9qP4Dm520eud8Ld
t8HvhSyq4fiX91dFEibhItsq1n2uI2hY0pPJUq0CPEduGD2mxpvwxYVUO4E7
aHHHWL0wNd6eHhWLcO7JBpakaJGAq5UoaKC88C5Q4FNVSgYxJAvkNCu4tSvK
0Tzzec5wqu66/sXP97fPrw/eboK3/86HB/B8GIjnw8w/frd2A//e6t8Vt39r
ry76cV6xYAicL3DalXlMQfXA3rddAvX/cj/XRR1+kL8Ow+u15+m01CagTDCq
/y2lDcr5z3p8tBoBzw3LXKtPToKzag0bK1s9KIpWj3qdHAHX98NeEl0TcNnG
63PgpWYgG1kyecXUoOMeOxu+6ZFhwcbES1u9DkZcDoykriLBphr5bja5blDc
ELbL+342CDSdbztplQlaPE9Wuq+XIXA+MTpymwL0uA8sL+4D24XrxXuJOq0f
M1RefsGtQXv+KfrZtldR5kQ8lBBMSWE9BFBx2Zmmkt6LkKu11eRIFcSLvn6d
SV1nesHtP/XHKoBHV5miNJUKn26E2zZQ+yk2/l5StcYdqT7rEFhvHA8muN9r
KO73SoP7vd7C2wPxdnq8fccfPrABuA+su41mUSZrJ7Rf3Hu032oafC07vDaU
Ufk91b43UbEDtlx3IZaUT8IyBBSw+wyCSGY1heVQJxjxdEtzSxAg4bnmCet7
HXAN1xd+XF+mcX2x/cPX9QLu6/q7fS3eboi386Iny3R2/TBuL6SSsn0aLmTf
TMr71grFf/i0CuM+rYI4zyxiPAN9OM/8LX4W/nLOU4Hrpiymm8gC103dYwbK
R/b2QY2Q8pRNwQhIE7YvPXUbhefGtJKeBwdh+wbRboLmOGSLT0UGHhiEyj/q
90S8fv993v4OP2+Pws/bg3Ff1BLcF1UA90Vludm5eoS67mE3HqTPS7uj1wGp
Lmqq8cDtvG3n5OdKyOgrvsagQ0YGs1Nm0tMNsHSdizdSvxZOv14/ES1HQnWJ
iqcMsv7OjWv/8C/uxOdhH34+b/HH+bzyMiO9YfMQ1D9bthM0m4a6U/e7+Tdn
QAA6YPX6H3EbEfRKcaICkr7tnb1IToXlQpoaAaoupG0sXfXAoB5tdld/d6M/
B0S9n14SpymGHUtjdCaHWhBHA/c6uQNkeJ6kUp1IVwgsQs27dFQa0ewm71N1
CWS4F8fkyKpSAIKH6D+Xi9aj3K3qq4h9ZOiuGB0zPjACYebdIVeZplAc84Et
EgZlwCR64gK/YA9SDG9Vuvk5TXYX3+nTg4tElByG1QvvsHoBxPF64flf8urf
5i1B45BxaOAQMPnPqOtyTMGZfMG3gTp/11NRfD5t8e99fs/nDH6u+AA7V0S/
zxVfbW5k9sodQnFrJr0HZoZQA/tEb3LCCJjdUvbj4RpHKe2HxGs6O9FdwcLr
rdR6LfkZzyFT6jxYaWwiX6HOQ1HdIP8J6jyMRD2YuC/fih56jJRnypCgV9/u
9GWVRjhQ595FEBlBYt8dwx68GUReTgNWzp4jgMwVtv243onWq7/fp+JLApq1
yVl7tj/7f46L/tPtZnuZ9xxNHoHAlpYbYpun4MDTzzn3XqaD3ykamsKDL48x
36X+DXqW//v6N3V6Im9Ce1H1i9GHX5cJ6DhTbl1+dwV8VtkexhHRhjoDGwXz
e4hIo35jy5JUE2Sd1ZgwN69FepFCt4PNCHA5u+SiYkbfX/sReEqoHs8qhfwT
65fuC1IgvdkyI3WiFBYdsPquEKvvwAiv7zzvSZ2LCOiHidN6njHNBOBCj8o4
ahBcZpxmFRhsh+vukd4i4STo4JOWSVuN/m3z9ue5peu/+dzyP92+TshCocyv
GUwEbC/UBpMh1cki1m3v330MrzK86v25oxk4zSRHgpLIYGmTr9nTcgZ8v4j0
HjjcgfZnsrc8aiLB3qkNdwtb3f7j9381W6+1Qiwebfnu/mbVCwpiX0lUlBf7
+/l5SY5l0P7Te4F5r9+Xf7yPMXrL0r7LW2Zl43luPPC5eAISS1fH/aNd2/uw
x5ltG0Dc8rl0ZWAL0M3ZLoMVGbbeZtWXCXL/a/87/3i/Csvv96v4fuX1tutB
ZZ4xb88OEEAiiin4kjc1bttGYhvmKTDAtNnJJzQUmCbr61v0IoDpJ2flVygG
v8xLfO8NKChlXwBkNhT+nTMdjl0yoOpUdvW2s7upOrVrWcPu3saMv16vki1S
M/J2Akr6RJ4pBY+hIhfF8cwajb9ev1/EVpIw2wQ8gq2rODOp81BwgN+9Ytd/
fH0b3t5Uu7zmLeowFUkjLVMg5168Zs32Q+AUkXHkXFILLBzfbnrAnAznElNO
P1F5/W/73D/fa7QXf6/R1op0Dl6lfhAr6uwncRCht1g1Wuvq3/e7+nlfL0br
dpCOOvK9vJkEya739ctlM8EMf68LPf5el4/4e11YBj68GPlcDEEbV+K/XqLA
Kz/H/WXtRbAnC4tzTizOYWn5/z/Om/F4K8HiDZ3A4+3fNT8yJQc9VSeSIYL2
iKJcVzJUKesLzXdQYFJfxeiKdBIE7ShhMgpLgHBlJ/3WQQpMJ72TUElMBc8f
cznvOtJAAVYUbGopkEzSr3v5NB3qyioDjfWzYB3/+OHAfAo0qez/XKORCa2H
X21/5ZIHXDE2B1NiKRCUZVV0ezYLFGjDiZSQQtiyCnEpvKZAlLBUnPyOHCCa
CAh5HS+Bb8plPK4PKBA5LW5U45YDP+ZFmA6zlIPRtChXtSYFdORtc09XZgNn
3U6JtvpKuFs2cUbiCAUEK34oMrpngpFTKfDI1QADG8Sn8lLAULMGuF6lwrez
XavN1tTBI+ZZlWU2anus6rftP+OA3di+QqC2Ds6Xtdqob6SAR3LQl5/CQaDk
saxxQ7cObNvKf4rwU+vzzRJjUfRKYLPGqv5HTg101326Yn6MAivrXcvLPqRB
26mbHdGTaVAyTqjoraJA0fqm3i2uKdDYXTC1kpUMip4K/u3U+v/2GbnK698y
QO9Cb8aT8izoGH5nrZn1j9+TO+8+apYNfisTgkrm+UA40MvUHkqByuD9/ksT
uVC273COolMR9JTGOCMn6v1EdjVnCRXANqmTCflFpbBicOlTpRYF1DpHfnLW
Ilhx23Ru0bQSImPKxFtFqNf/bNPV2FUIlB5xzj2atdDXmHhJ/wsZOk8XfPTf
jmDmxbkTCRyNcFPe+Ns/nqfbf7irnS4wF3Y+PPmTkN0EJ25Y3il7QQaZRYFa
Zt90WPhUx/WsohkcxFsvD9uQoXCHa1hQQSyMK1Z47PnZDHOrHh/lcCFD4En/
tIJMb6Cv8ssQPtUM28a0fNhjyVC8WZ9emNsX2ejF9HenNYJEbNRj0WEyPJi8
ueGDbCwae6cl+3p/HbhlyiSwc1OA4H2DMUQsC7xPtHHRTWYBEkqm00yjwJzn
cfejBulwXcFDQa48DWjD3UNlKingXuEw3KacC/Ymx3wkmQvg3h7XNnV/CvC0
bWWWSiuAJakjNb2HiqFPREf95z0KjHdsvvp1axFM8JHGjnGWw8E3x+KtqHHl
5i4mScwqBpWAM1kMqBpUq6xEWKjzVk1MtsibLIG8aNX7p5ka4aPU5JzzazKM
D21xvXu4FI6vpq2aH2uGd+cdBNYIk8Gn3QyWeEqA7pzHum8f2oA9U+/ii1wS
bBDcqUA8UAiSHoOxPq0dMHbh4oU5ExK0mUgRt+RmgFoo74a5uU6QPzCVqX6J
BG/pbly/4vABDswvzGh+7ISUK/rJiY4k+Oz4OMj8kDuKtBC2vjXUDpF3yfmL
QyQIfLTcqej+Cdnxh4d+o2kFl0SjRfHLZJiUSfkSeisTubQYO9qFNwJJsO37
eDEZMokdnRpX8uFKqYhsGC0C9tgrGoepeWt7ednTt1zZsHLt6V7xkixQHSi8
NpFMgRrmO6d53hWCTXjxI6a4YrjHPMlheZ0CCas/WtxmLIEL4jeXaMQqoGwn
l9YMFwUkXW+fvBFYBqdXTG/r99TCQR29TVppZCCt5L6IWFMJdMxfHB9PNIHM
+TAiLx8ZCjZOl3HkVIFZweosM3IbSBgOXa+7QoLRSdv5A2NVIFRyS0n7QDfc
HtLfZWNDhHUvnWh8wisgbqXBtJmjH3yd3hRPBFF121DM3OZqMbw0GFeaNKHW
vSekQ9ZtJoB2Wd32rpA0WFw1K/+jdRBUvo9mdnIQQNcixoV0zxreJVqs5WUe
hDtp8TITiQSwNwwtjupJQmejRVz4VXshQ0VXMimYCKxRq2TLPQuQpdy2+WTl
DnCSofMs8yKBr9/TmvMHSxDJvlIwXLwZYjM2hgwokUHRa91LoZki8FeZ7pVU
LYGTTt6HVFQosPGG6txRpgIYvak9pcBTAAG9ymLcXhRIGXXO/FlSCndpTssM
T1aAlHzpuCotBaKXpS3UDSpBhevHcu2bejC60+S8mbofI+gjFqoUa2G1xa01
ikEtoKt5CvmFksBFdozPoL8BdHe9sOGY74TiZ5L19npEeMgqbpax2AhbOgdv
v6UdgDbhD0FT8dOgqxup4fu0ES4+cHhT9HgYNhZ8bMgtnYSzlKvmK8Qaar1v
vH5udhQag3mbeEQmoDNvxWuOUgwt3YG0DjzjoJX+vsQ+fBwGd9N5f/n+ES4U
yKs/ZB8H85klOrbtE8B50c1L+FIqon+axqezfxSyveIsk9MnofiFb//4rjK0
9Kmo8VPMIGzljmrRqZsGSkfe9WuPa1C6/f4VvatdcNrUJITsTYT73izn38nX
oe/180WbDJvhTRzZ+No/3g9txrt9aXc5rD+8U+u8dCVYvz1d1Egiw7eAOp4U
g2I4JPZjQ35pMXgfSvF/rEoBezB1PNJbDXtUOFT0CxqAsGHBPlaeDI59ba9U
DjVCoYODO/NKK2irNZZV7iBBdJr518D2ZnDmzKofEukBERmWW+OGBFjq317B
JtIGlkpC7+7ZDoE+WSe+K2wSsjJlu96Ut0G+mYts80NqPX9vwSSRbQw6OaWH
Nke1gJdlUr70xCTkF3d/Lnw6BOEj1UdLcmphYT6O5SK1TuGV72VaOtsPL5/1
eevty4LnEnN+H6SJ4HOZdgObZx/IrT8eXtGUjPLDehidRQkgOd55L6FkEBx4
gz9xM9QhegP+jy+MJ0Ds+Odu8BmFvk0M2VysbejZ1rWmDueGoOCMhaRp5SSs
DbxH2rypHe2czC8cnu6Az1KW3C9fEMDFzLab51krCs2pJe383AB5rh8NEbVe
p1f0ebxSXwtDGmrBvNsaYaUiSJ93BxkSbGw57C63QMsVJtkwkXYIFio7EGFC
BOaCzqHNIhWgF8R9s2JTJRiTWnQ4R6n7ojP6TeOGejiZ3+ufNtIAH4550Ddu
IEPvo1NLnh1NsHLBkHExtg3cOAhb+YuJoE1WWKdBagPvnOXCfXf6QOVlspHj
4WnYHVgRZPSqC27MHCYJ3xqB3ek39+n/HIOQl0Tm4LluMNBaYLRemQDWHGaT
Y5cGQbNDK/Rncic09+sZLTkSwLH+lbGmZRukzx0h3IlpButjwa0OnSR42Zh0
uUesBpx0GhaNUovA0NtDPvMkBeK1OxS84krBM4D1rGtBBjoj/mmuVZoC3hFu
mf4+VXCNQpB2f9OBXF5q5NL7EcDs0nCV66l2cBP9Vme9fgjNs25gtH81Cr4W
rg3aAUMQJU3bGBQ1hLTi7toKv+2Gz4JBxew7J2C2tP9rI+sAGu5X71BfagDJ
odLllYZpUKU5okdPO4x/3+Qv8/hu4u27ltOQesRpJ8tKF2KOjJInvCsBJi+W
AbZWItxe7XxIKKQXvz4+L83oQuzOECIs9SjpHi1vha2plhrmvu1Qvpnm5c/N
xP/63HHsc9Hvz83A+1+D9Y9+96+3LekC/ypqPJ4ZumR1YBCe6GzxMXk4ARvx
uBLA4gpR8Lh6jsdVIBZXKBePq9d4flh2+5UfEMLzw2c8P3zD8gP6nR/WdGL5
IQ7LD+gMnh+c8PzwFcsP6DWeHxDu48z3HvNxvoz7OGeo7vaJvVsB4ZevauUp
9iE/VSradBBgow6mIy03fukISpPHdCQYYToyhekIMsV1hEMT05GXmI4gC1xH
DhlhOnIK0xGUjuuIPq4jJpiOoN86koDrCBHTERSD6wiNWzYDYiFDiE6lEZNX
M5CmJSZaP1TA0VH2D8Jfi0Hz8Vq3KsU2tKzvVyldR4K1WzHeOPjsF2+ghyoY
b3w2wHhDEOMNpI/zhvrP6794QxjjDZSJ88aupxhvRGG8gX7zxnn7f+IN9Js3
th/DeMMR4w30mzcO+jkt/6Nuf5UzsEXaa7bAfs6BfVM1J+yNsfA4/a0AuuzE
pUdIDcjwvMbp0QIyCIlhXDqGcSk6h3PpwhzGpRSMS9ELnEtjuTEu7cS4FH3F
ufQzYFxKqvzFpYgb59In7P/Epeg3l6bgXNqDcSn6zaVRomp2zEwUsDwX2HXz
QzUMc8akD28tBI+0pBN387JBGS33bMqrRKe67946d5QCXNFYnTLo/KtOQap4
nWKphtUpaud+1SnoCV6nhERhdcrg7V91ClLH6xTWT1id0vvsV52CnPA6ZWBc
/Fedcg+rU1APXqdw3j9XfmdnAJoKYT9hzFeFghdDmZn1KDBUf2Oh0DkV6Onm
e2s90yDi5Ze7cXUUmJk7NqWunQ43JlpuGTJmAcn7+TQ/ooCmQnm/5u5MsH6Q
5fqaJw/GGQto38dTwJxt9bRTXRasN2F8ss6oENLOqTwM8KWAOFvoaRn6HCg1
WuCXpisBOdsEehk7ajv+3HHxH88dK/r/iAzNzgQRR43NQqtrICfs+8OLAtR6
LSxoqnMqFcYKW85rd9ZCr5LjSO0mKp9vJNneXIwH46A7wzPJdfA+WVqehtp+
r/HCVK5/CGzz0uLS0amDcUnPvaF8FBhuy+eweWMKdDuUZwtba2C38JdrC9R1
ufZmH1on7ofKc16l8N+uAnsR2ZdL2hQ4d7ozeHE+Cxz51qU/dM8Dp2Ru30+R
FLi4Z/8rYfNcaGJf/13yeyHcO6CXxeBOAfY1JmbH8vOBK8Wfr2lnKRTYekpk
6FNAPdg0UskRgTUZBtpRBci+ndhrcJAC5fhzwbF/PBe8aOdK0AzJgMZXc35A
3dc1TutkIhyoOlgs6UIb/Qm0Ws/lyU80g3rKuujtrmRYLSLlnd/uB7R2DC6h
6s3A+izhtFsUGaJTj663C/BEtQeFwkVJjZCs17b0tIcMa9Zk2SX0RaFTtGvz
8wbqQFzRSlaHnQJOVz+q3X9fCOIqsYyXF0tBObnFba0itW7a3vTEQ6EYCG9v
2Ly9VwW1ZYschDUUYDGnu/nErwQeyUm42b+vh5pm96bPCWR4/cV31atTceDa
+fO4UUAnlG5OaOdyIIGTK19kD4Mx2DgRw2UOdwAxPFniRxMJGO4krqPljkLr
I+H9iYRWOJXfLGouRwbZyQekBfU09CnYmNvFrQn0Zuqs5+LIYBom76vFVwHc
tOrzd/wbYWP9pg+bdMkQVCS489bWKjg8YD62w6wVBISHcg/HUfPbMZErx/3D
0YXKdD3Bh31Q+vkn/Wp9ImiJajnI8mYhG2YueXX2LtDfcdpl4QwJdDZlSCn8
KEQKAo7S2hKtUHuO7oonlUPyntyl30Fbgd7vzNp81LEPsjmLqwUbCBAqruHt
vL8GHXaIKNO61A4WL05035Ig/Rf/NOP8E4LzTx2hkWE6qhNYygq8+T/3QwJP
SV+a8BRYhenfqgnoA6HYVaFnSkeBhdt0d8mlETDd2m53QXcAtPlZ++ONpiDD
nu2CFlMHdPu9amF43AupQmGWjaeIwB3IG7M18H/v9yHqw2UxhOpphP1fLvNy
1w4JxcdDsKtge0fjzXG83V9GRO1DfGv3OKj9E7dEyzjg3GKM8wl2/Ye8VJxP
zLg5+dVgEPjvOF+JXhyFAJXdX9HwEJAGAls0dIbAqUxBi9F0CjYwmLhttv/7
96rFA7fPXDgWj1hDF0y/6VGQb4Cd3nWohKNr8+qYHraiq44Rnd5+RPRk+c39
E/tawVCKmF5oP4juNS8o9I6NoWGjtD4u50EgCue23m0dQlIdjSEj3r0onC/M
JPTWOBx6IBx+nWMQVYQMs3+laUIxNZba/GrTYOXbE83/tRuJ3HthwRxWgoL7
XLbceEeEGE5rxhdv/ZCxvrFQYxYBCUiu2UGiDMCZb2IyKmsqkXffzbG7BZNI
ke6uSrP+CHz13ntN5U0LyvRo2pRyawQdq7pFG0vlq+y0IOWpA+1I6ILnxvsK
PSjm3Jb8yLxpuNVbk8mY24a0qrVzEwubUPTXQkIElZ+HnncYVUv4IhOZfXKC
B8fQNdeUxImFCTjziO3OjTiEQtJ405rVh9FTV45qWtIUvNaR7uWsrkK3vSPm
X2v3ISOCZsBsMgHurXNT2x5bhx6m5j195tKGxGLaXVgkSeAus2VXSrI/aq3R
2lG83I+eeAnuLFoigH+gKHGreiaKVPa45BfQjXS1DuwzmSdC6yGLBnhShDRH
tdbzXm5D9uWLRy53kUDScSX54vw79FrA/f13qXa0W/0xo8JPEly8vLkrvTsZ
3b6iNfmVtwXRWE2vhFiSge8crZ3V0Htk2dIs/lKvETF8Co7UI5IhcPyLD/e7
VthrfGehVHMQIqZzFHY4T0GWRqeiWGsb9B/K+b711ih8zDLMrt06DkpkmweK
Wm3gPuKrGv1oHGZOc8ixbB+FY/6ch2ovNcPkrLZpduAUuCmvz5XpHoRK6a2a
osdi4IxLgqnkJiIEdhO23HneDzT4Ovpg6wjK+DqS8XVMx9YRjuPrGI+vozC2
jhCHr2O2w5mlJttmcK3bUeVS1w6+sVZfx8z+O5+sw/NJPJ5Poh/WvWHj74IB
URGuqYxhSD3+YpVOxjikLUuEzAz1gG6eT3BB5CCIMBWZXXOagJlDl1VYW/pB
VjxtfNXLISAmxkpu6xuDxuIYkYKbw+Bfd/dl+Y4JyDgRnOnn3Qm7Nxayfj89
DD/61PKYeKdh4I3da7436XC3ObnZJLMZOFgUiU3Pp9DpO35DCh2DsE/cs+3l
tkSIJ0q9bDpIRG82fs/kou2HYvz5siP482V2/19zXx5O9df2W5QIhSgqZYxE
4acQuhMpGjQYQrMSZaiMDTIkEkohEhr4JVLmIWSZ52Gbh8Jm29i2vXcypZTX
aa865/Ec13M953re6z1/ui/X+q7v+q5935/7c0+4vkyZNc7i/EsShO62T7nv
OADdt7nq9pTNH7/+edD49BPLJGiTNMq6IJcIOpOvP1O7GZCH684M59SdiV5h
4iIqExfBM4yLlqVw0O8/roDa+COtk5atUEUdbj62kgbLsbx+jnzB1ROuTmUE
MBpanqZmRgSV6qNZjgpDIF5kutP0AwH2yRBUPk4Swfiu9KvMWgp8bdRR/Fle
DtYWw1R+548Q9Vlqqa7aMExiuS2WR2L5OnnJVZ8t6kD8/NTuD3+RoKxcg//i
iUF4EjPYcvtuLUwHe/Mm5JCArXVTRvXCQdinuVR/r2kJRLgU6T3s7IKlCc4u
nHeooIvlkXPkVcuyDg31lEOSIedHhhEZ2i6V0iQXD8CCTh+3YqEysMwyVfBN
JAO3ZYZzQ10/hGy5ZDKxMA8Mvx1PdrYiQkxML+ubbVQInEcu5/+d78iyXPib
TdNXYWc/bCCEskdk98NhE6+2WN1KkH4je/CMbT28/uuz92v+WXxyseJNLHsD
PHmhGOOj0A4S/p0v+BcMw0TUvXC/qRp49SF+UGdrC7REnyt8vpwGGT69j8NE
myC3m3pjy0gXqGSpuk+LD8Hne4rc8ZsJ0L/V9ulfiR1g2BItxfeZCkVWxg+p
Fwiw/Da64ET8CFrDwe6ZEVRgVXK+ZlPQDFt7zAUeeZJgFftBGSKlHyQ3iJQO
CDbDuha9OM6DA3BbmdvztSoJjG8Kb9pxoR7Kzp077aI2BAJxF0c5RYlQ4Oz7
xT3yPujXP+b4PrvvlOa+vffGusBymOUEL3s13J4xdFebJICpqJz6rVn/bQf/
rcV+HY2w+7Cam5JuO9A3HpC9+oYKZ/kWq+sNtgLBseWB2IIeEGh+lrLdcBC8
R71quuI64AVFlotWQYbpwR1LDuuQgOJdxJOk3wEZCgLIgkIB3rwWT2JVx6xf
mbpGS6QFuO/LK0xWDYOEkZy7Oms9fFufkxUQWg0xWTomq97SwbHw++vakFJ4
vupuvgVP16x/WB5x03QQZCw9kkpefAJ214dL7Np70ISmgMvmfCJQOG9oW0f0
gSK2d0VMewdvsL2jnFcN/vteM2IxvmemtqcFJtUCfB/PUOH+vuQA6Vm/tGT0
5dZq6QaQ1/Hco182/KeOTHNOHdnhj6IvLUc6ULTLQ48tb4rB9LT/Z5bAYSh+
mmLj/ncNkFXWZ4yUEsB+PMjc/hsNEjHuaprDO83FXW+xnkxw5j5JpDSDQPaq
/akqHRAcefL89WXUP3hMCuMxTozHtFN1DNQMP8IdqY10Nf5eCDTcnGId2v8H
p5lhnJaGcdrcurN+nG/WPge/CWH8lqs5VvjiWhecLOzm1eKkggNKe98mWPf/
XR7CfPLf+c8sv/5uUhfG+c9PZ1y/GccP/skDj5xWU5g52wdo2x27x7rNsHBR
8aIdRq0gXB9vmt5EBbHI/RzRGz+Cj2C7MifX7H27JLJWVGQQlpL1R/zLW4E3
ia00g9wB95bnFF5xHYKzzwsCHAOIsE18dcZMLBmShlV3uhYR4S3DY5mDfRf8
FCtTIxF7QfJ5dqkYsQ8idnDV/zzYA4a3lll+qqOAqD9LHYdHLXx8eiVgXLcH
hB11G4U5BiE1xuppwZ42GH20atv+FCIEftk85DT7XdgT+rexZX+Y9xwWxYV8
7w2rBge6yy3Bt3T0/htr9OLgUui9dFEk3Kwcaj+/NpZ5SkWBERHhI9OdEIh5
wmtMnhDZY56wnne0VMatBoFm+JDYQjrqzHcWosYSIBbzhEZMnhAxME9ov8qz
MmWgB2ImHx2Q+EyGj718pzprO8HZYelJtktEkBjhEF0oTYLSr+wZWokkGKL+
rODz6wUD16zY3WEUMCfcy7i6uBgIVUz+2W7iF/+M+Pcw+eeqicxf9kKJaS/Q
kA3TXpTdYer500w9j+5hPZ+J+ecFTP4Zbcb887dll0cJUU0ofU+Fa1ZBDyLy
29xQ9huEq3Pq3a7gejeON2dSU4NJsDQnuGS1CAXU+Kc/5VhkQZiW1umtnnWw
u3OzudpaErJrqMxJsBkE/kvXyBEy1RD5XXfYNLoPPbhjIOxwaQDCpZl26hDT
TqFSbKeCsFwfy0uw/Mo8dXDTGoNKb6/0QXf9ZIjV3UGQHrA/xTBNgpIwzV92
fNOjX3YcOW6R/mXHi7FcFssdsNxWmWmX1Zx/2WU0iO2yDZarY/kAlvMsoHxR
KCqC0EOqNI3ARhSxukny9ax/6rn4lvVC1yKQtu2vP6fThJQWxq05ME6DfaaR
AuPShXCp/sf1h2ItKMtj4xaedzTgcg+dZugWgOvRI/LV+S0oXLDD+koYDaRM
D/0Ifo+gNd47eg29BrEEfUhhfKTDjWKCQ4hpHmz2kz8GZgSkJNOmuzGNDlq8
3G9X+L2H/N7Pm/kWVSA97TSikQoDuEKYvEoRk1dBv3mV50Yaa5SqCcAojPp+
M44Isu8aD8rPUEDlUd/2DL46OH95jVHddRKI/tQ64L9pEGpXhx62XV0OFk5u
JLZ7ZBBx91TO6e2H4Bu0dRkv3oO7Z6DJucP98J4F3VdM7weRzE0Pci7WA7+y
2yGT9FYgm2iQtWf1P7Ez4oP+uhLoPDyq3DhCBSdVKa99xp1wq3LfdxsCEcnW
+pQ31zZBrB3RnmMjBfT8UsT70j+hCWcdBVbNCrA/Wkpu6KPCdYnMiQHxPqzH
stTrlTULJjoHAXrveEq8eQF73+0PXOPNQGay9ycn/UuArY35XBrzuUh7O/O5
m84zcYIuEyegGowTFi/ZPFD1oAglLeb3XvuCgj4nbqGle/fCWf9GG9JfDWjd
+b7LhSl9qPBuk3VrTD8MOTHP4STzHNAIPoewee75qYBJA1svT6R6a+m6jLNk
JPr6YcjtmgFwnKcO1OAf/Pp89Yf/V79+wQIZ7NefcFj7CxcJuf7CRSi3nImL
Mr2ZcasgZtwKheO41TkeZtwqkxm3Qqo4btVlRfp1H4qv/LoPqIlf+9d9mO/3
5ZHDjD+mMOOPyB/HH02lmPHHvcz4I3LF8Uf59XkCHxOLYJ2A3uWg6Ubk/Lxh
LHLWr+w5sF8ofXc2jFtbyumdKUNj1MuJW/QYf+z477qkPmzHc7C9PoXtte2/
sNeVQllBX1d3w5RFDsvt2yTInVF658be90/1dOG4nk5FcNCR6kQERxf1RHs9
KjSCpfSNugwwxPnko3Pq4+S2PSXzb+0BsYsrOW/59gG1K+TOxtnvtRnLxbGc
guX8bxMlDuf0wiirR2zB1CA8fP0s66tg9R/5GJbfxfJ/Fw+slG+OtFxPAD5+
m0Kd/CHkpO8zXPRXN/Bj+Qosd8Ty1KvULxJ5JEi1MZqW3zUIwp0uloPcVXD2
zNCPUy61QH22/RslnYTeS11lr1syCJkSnnJKt5uAnnaxbe3yQfi59rjbtsu9
kIXlw1g+g+X1Ong/fL+eCyF6zOc2Yjkvlodiuf0Gx6R3zzrgju9d/RZ7Crxt
yRhfuO0TJNXpCm743gLhyQvaND2HQYcUSv1SXQ815tUUyWf1EOQxE7R/1p/J
1OFZubimAuTPXd9aL1EHHh/Sdqy/SYc4efNPd4zL/sdw2inMazkyeS3ow7yW
1dL8Gq/XXajond1GavEAxNmo8rxkdM6pa2v9U8dHwTzYViYPBjGYB2PIuVSc
LOpB279neT5ZT4Tvt3wG/OXIc/RJnvojrE/m2+eOsIK20uh6WKTNar+Tn46s
TqpUaxRUACnH5dd5Elt+nScKMmCeZzW3l+FWlXwUyDq+TewHHXHbGbV9u1UF
uiKsCismytBJHrsIjtn/N2HJEm5KqP3DY3zDPAYd8xi7MV/xFvMVQZivEBD1
uzvUmY1usR3db/twCNmnr1t01Wv+/c/FCSIYJ5QfWzFtPorg3Pg75bNT1chU
+tWmUAodEk3+UW6M5Tf2zJC/uVXA9P2R8M/PqZB0smmXc3wnOGL5jznym1kn
HJ+8IsziX8sNK/XoQK9lU6BZlv+33yuhc3tT3pylYfzfpc6/ZYRxxqj9n/ii
fnzO/+76reEKCmuLyTATL3LKQvUVZH1sf+R2ceDPuZnPObeKhVaLktb0Q1QH
ezTjaC5aHK3pW/6pHzpO8b620s+GL5zL9ZpZytCoEIeo3UEGGK+Mf/JOPBs2
C5Q2fo8vQ6vyJnk27WHAQz8mX+rI5EvBGPOl684IrVHb2w7846IXd0lQYbHB
alv+xy0wpt/x+cSPdthmbFcWaDIEOt9CTvUeb4cz6kv79+c3gu1TtW73pzRo
7Bk7dw+qweZz4JMU02ZYItG988IqGhD8GpIXDNeB2VhQ4NeITlg+RnQxSaWC
of6+tQPX/vu/4z/+3hvU1+Pfezj245j/R/jjx823jvaexp0pW0kwMH7fR+hi
P3QVkqOOpbXBB8wzODB5BiSBeQZSxXLhxzUM+Gtt1sLW1xkwIR4YE8OVDKcH
mPhKh4mvQB3jq5c2LjPB0dXocdPf3OICdDCM2W0v7kwAH8xD8mEeci/mIWVe
d9f3V3ZAluT620t+DEK01jFfSOgEfiUHp6SIVtBSfnzFT3EWL35wUDYebvgn
HmAp5gHCQktsFs76lQHL4vIW8fTDfe9rIHu9B1bObGeVn+6ACcvGVnbbAfCl
jg9/Fe6BVfHL/ro1+1wPrW+vB8z64cu9K/rXA3v/8AbHMW+QjHkDsW/rZA7z
dENS/dTVh3uHIObGm8NGco1QMKe+bDOuLxPG8YtzzPgFeOP4heQ8dWdrvp0V
3O/ThqoFrqtJi1EhZNVzw8rLrfAldWt7SvtHdKX4vJfGcwpMGPhrCxp1wJSg
2+tn6j1gkO42flh2CDw7voop9szqnV1vdCOJRCDsD+3zLh0Cu9hU3siPhUBQ
0euXq5jFLRXi5x9o9sMxD2G31TbdoPLSrrpsQw9cvXX/8/SNAdg4o/6antYB
7hbnTY8t6AFe0qXsDFI/tFvIDMRxd8Ia7wmT7wI9kH787nHpWT/f80uTE+vy
UuhYy1lLKayAltrwyaMddJRBOKCVLlYKWvi9CpjvhSLxe7GnMd/LmvleiIHf
yxPbu2ymvUO/7d1nzIdrYD6chvnwubjIH+OiuTx5LubJX43LXIlN6IVIE1qm
8YZBiNzzTPuUfCNEcB63Xl9IApPkjWccngzCWXbuJt9jJWAnFmPOkkOC6NCl
iXv7BuAEp8UWoak6EKpIk0h0JEH4vf0LDSb6QWV6+Tu+nGYgKNx7uiyYhC6J
SrdwrexEZKUJsmdmH1Rp9zp3nkKwSrllg1lXLarcRlnwsJYO1VguMEe+m7Jb
0yexHY7mB99JLhiCRz0uuz7QWsHqwloPh/Am0AgbSwwxowFUsHKX0mvAYPuZ
c09Nu0Hchpdd6cIgaKcvFutnn7/f4G33GVJjPvV3Xbz6tIx3Mdenbhjn9t7/
w3cA65MUdXeTHyZX3pJB+6V4wEuLHiis+7mJawEFZAZah/MiG+GJxxHbYnov
JB627l9WS4YdSSNrdII+QtQan25UQMHrl6tTRA58VvrRC/ZE0192cONBq/9l
B1GwxpJfdrCiS+O7d00PmqTU+/v/JKLvGqZFHvZ94LZLFo1I9aBM0mXz8WES
8tObDuXQ6IUgXO+WgOvdCLje7WXotLxEPxE9bCZHppH60PIXE9xKZ3rgMsYh
QUwcAuwYh3xfz8QhZ5g4BC5gHJLO+d5GldGNBgx1+nNb+1FdqFVK/9VumMA4
SpGJo9A0xlH/KT3/PyVXVWl4EXaejsrzB46p/WhERwuDryt88vkf248SF+vS
7PY4NDquQn00ykDk/WO8uTcfz/v/Unj/qgXM/Qv/i/0XKUufXVyRC28uRfhk
nmTA9RU7zj4tLQYdRaY8mylHY1g+3zqixsz8w7vM/EO0x4yZf7g7nJl/qMPM
P0T3cf7hfOv4af9o9Tl9DLj3FOV1uzFQ+haf6vv+pf/t53y9ixl/52HG3+EJ
jr+ndTD3s5y5H/D7f9yP166beenn+oBdLubNhvBBWFVHGGj6Fg+6P0rJd3cT
YU2/QYigIxUeVcprczv9+3V/v+f8/tIzO3v/zPn9d9cRdEzdK0dhIG5lx71H
BVMh7mTsso8/dYFXXJccVcNAG/xtj306lgslNA7XnFKdP/O+x/G8b10873u+
9UOucbwS7GJAnUygkKB2JnSMiQ+OHdeBtJWdHx3yGfBuiPGtqgFB3xH5dvpR
LRAPZT9CGu2F8zoBOorlFJAPNeapcfL8t99LtLEzBZwaIE9DVniyl4aSOZq0
7Rf+5/q09Larjtv7kKAx/IhwowoFBnYPZbwzToPI4h3VZit7QQ6NUfcZDMEK
y7i0rzbv/mPPLSmuuWt9igGP8gR4mrdVgJzKioKkdfPPFc3Ecy2v4bmWe/Bc
y4AHHT99XbPhvNSnsy8rS+DgpsmZUjMG+DSOt7krp4Fx8w0DO600WNGS9+BF
NQN4VrBzqwrng2pMon3f8yrIiFZvF5mmQ8r5I2znDiO4sipdRuBGHdw8xNVE
LKbDCCW+ossgE2p2ypIKozOhlUCaKMhmgFM/7JM6nQ26ewt2nHPPBU/tFpu/
XjDAP+pC2AHRYjhpySd3VbgB3FfEE1/p0IFnw4WaiPNFkMhjLjjc2wRSCfIZ
Rz7S4NDjFYLFn/PBbqOdxHuFVhiJSDubfYcGpFOWNlMNORA/Ey7U8T4X3ju/
XWf9lAFslyVSuJ0RLMtlK/fTKABzo+bYOCcG3P75ZtfVlYUA96ZFu86XwOiX
a5yGqgwY7Lnot047H+KkrFDDx3zQPH4k5IUjAzyXDV/Uul4EvjLf4niKS0Ds
wkxJpxQDdjWUcK4KK4XxSa6RBxpV4BceuSQmnw7l8/Th139yhLU/qwiCySND
x2b1pjpnd+wxBQZ4TQTY3Owrg1f7eCZsxyph8+kw4fE0OhQ/avWw3VcOk4On
JfVTKkD4qSNNuoAOW3FfehPcl572uy99BzNufoYZN0fqOG6eHMo60k/8ANs3
uX5SVG9DulFmZy+eoQH/2eh8GZNUSBG7yce3uB0NUAYGw01ps7/z/fzSj7Lh
iGrD1eDRepS+RNKZw5cOvvtXRJJF0qApePcqUncDovDu3LH6Gh3WcDc+ubIr
FkYP8sn5MBqQg/6A1um7dLD++ujKRflMYPjvTTazrUL+2rxN8usZcIzD/kMY
fypwxYwG1orUoHbja4nxvAwwCg39yVMWD2olNr43a2qQ7wbv5qMrGPDYIi9t
mVM4uA8k2K3VqkGqZScKQYIBFzhF9PsfN0J4g1TKT5NOSNp3Nlk5ZQgW8THz
mi4z85qAH+c1Ge9Z7pL8/AM67MJyeofeECwduvlsY2cPxN3+W3ujBQFpekzk
7hsiQxUXZ6F4ExkK5JzD1Q82wxbXw66XZD4Bn3KzVHviEBCtkxUF7rWAMM/Y
1aa2LhBw47p1JIECjM/T222J7XCDXMJxel0fnI/rvR2vOYsTp462hnD3oAqF
LwZSJSQ4XFK16bF7L6zHfI4r5nMcMJ+D8H40mPtB1Xg/DrhPbxbu06uH+/S+
XWcZte1OBUxbWOwbDiJA9jqC0U+NWVztck6lrZYANUrF5I2WLcASsOlsQckw
aOJ+tr24n60i7md7cisX6ymzWvBYfphEEW4EL46uqwXBNJiy1me07O5Baq2l
JbSAdhjYmsD4mTEA0v/Awwfn/ubh/7Eu4P6fuoD1usTN+rvrQTei2589qwn8
2Zw9BhfR4CteX4W5PhrE618teeuXY3oO/DPO6IIbGekpOm2VTRuATNzXkXdO
X8fO3YX748oyoSvOlmpBqUTpAg5CcbP3ZD49ObcP28k5fdhicB+2LtyH7YxR
uf/Pzg4Q2VW3ts1jEML6F1upy3bPu37E/xl3dm9Qj/gXfEUerguIjGTWBaTN
qQt4MacuwBf3R+KZ0x/JZoh5bmHMc4Od+Nzme+5GjiDKAlYq+lQ+WRu4ohst
Vb30kypU86dfjTiOOwziuEPbnPwB/nnyB1z+RTxCYk7fhiLct6E64oAg295U
sNgh+VNxYxpIS5JXKNcxQIioI3+ZmAZr77ad61yfCfG1Mg1rixiQX+2oG+Wc
AQ+UR2MeeWVDbkqO54Y0BoxqctyPnMyEI5kL0mNN88BzJ3XJ1KzdOW5wdvyx
5nu4Z0ux+nCwYPb9ZUds/BlQy7NbrUc2G7ITupadjSqC5Xoq8gX2/ztvvGBO
3jgvt8fwz0VZEF8wpmuZVgkygktjSjcwoHDT586YL2lw9HaA9ZR5New1m5op
XcUAj43RP4bikyCpzbCyzrIGzBroH77xMSCd61m8dMkroEVlex2JqAHTV7or
HIUYoOsasEqsPQR0VIy9eWjVIHPj3kUZGQZsWKewXfZFFowoxfTuH8wBevvU
vS+vGcAqrdolUpoNeZMJQoqq+SC/+MxUdCADXJXia9kac0H2UfCO+sZCGJl+
qr/9KgMsP8V0HwvPAy5/r53mBSUwpqaTIX+AAS68GtuKuxCwlSwMrRkvB1uf
Z2r5ovPnjcudEBnf5ZAJEts5NLguNQDtVbidowcdere0x93hT4bezywLlnY2
gGTKofrv7nSwuSDNeVQgGjgvRoZ8jW+AYEMeT0IIHfivt5M/kpxBQtRljVhj
PUxWLA3LyqHD8ZwkNkmVJwhdYb2bb0UA4yf+Bx2pdHho9tz3jFk+pPzkGXez
LobTGmveLjg6ay+m3ien1xaAZ267adDqcvB1MHuqv5YBmcvu3GPhKwLDwlTS
tF41CCz54B3WSgeBuLX7Do0VAZtg44vZGw0KBQcryF50iA6gFnsNvoNY8U1e
pglt8M72kPcDJxoo7b4Xd8H4ETRZxXE2VLXCu5F1E7tTaVDwqXvnxYkwFJxy
Jyh6YQtUTPMGkjnoEGSkasRSnIjqLawlyZ6NEE3dbuxgRYd1Wn/7d+WXgjnV
s0t3GQFc5dz8N9nTYcPNZwWcD8vhC8vJvT82NcJu8+sqSwZpsD4hrHzIJxzF
2pLPBUnM2p0yocXnlYehcWz10jseaYhf9ImnSUYHBJ6ruWw2OQzfvbj4Qi0R
ehuqd3CVbwvECytGyifTIOWHsra2ZSka/1ZU61LZBWpRte1fb1KhJDaKKHCh
Ct3vFbH0P9EG7J37Q3Qrhv9pzmYGnrP5jzxti/oazNP+7kPL/J3HqP/uQ/t7
niZTflP99zzN3/ktD3B+y0qc35Izh6cVwzztfHzILiuL1zOre5BZ+7PVInJt
KCNRqnqfwiBcnjAw2uDRhc5wf4io1ahFb4rScmIFqcCC493Jc+LdwmzfdXsP
1iN3Q6tpt0NktMGHssJtRz8sXdHEO8negq5d/ftE3kALOvikoetCKRUOzolr
i+G4dqNYYOV1jjJUOnsXUgq70ZP7ajmP5ajA/bXxk81IFQoIKtRcFtGGIk4d
9XyVOgwpbxYkBoo/RGmuS907tLvR8jU7rpwaokIh67Nx09VpyI1v0+IOp4+o
3EKmz6RqGNIdU6MXvEVoH/XZdQqhBQmGZjQdfUmDyyOy1XYsj9G6DW77j11p
QSUvWjZWjNOg1/1WJTU0Ef21RVjWP6MR7XvvYHzgDB0OjpDknNzC0F4jJ6UC
XwI6uXdlhdEAfd5+CCuNNhyXtE0D5/ow9WWP08DCouqhZhUDNuN6f/qcen9H
290ivMoIrjcuNzrYXAcV69XW30J0ML641NWSnAm1yztXfr2RBQ7rPgTezmAA
/Xt9v3ViNiRMCktzLfoAuk22HnpRjHnr3H0jd8SWbisCb1IXy6tzzcAi13pI
tZQGKy0OrDmcnA8X7jcKKlm2Asn21W01Vxq0ORyI6f+WC66UEt5PdnkwlGFI
75jVk1bNoiajMvkwfilizZWxArh2ZEdUjjUDFKeUc/SPFsI5zRKPqtYSKOEs
U9isyID6W9LtNhEFYBHqURM7q1dFdjTcEp09nyeVBIrPzmIwcLju3sVdBspR
iiprZvFtRrySl/DhMsh3eXizMbgaPD55ht6MoYP4K0JA0EAF+BP7F2kurIfn
4mr6gRvpcGMevMfVJWcWFO2JFnRkZ0wdI4OavFOJRssAVM7jd7Q9VbNWmfVb
ehMbCjxeloFU3WLXtCk6vAlGp6/1VICPc59DjXQtrLSjb5W8RAfe7z1SH8pq
4IKK6YElIQ1APJF+lzir33TmwY2PFDxmdlnZIO2jwZK3u6hwMW/a2cu+G1ho
MwJd1kVo8VGiQbYfBQof5962e9ULHt5n9P5WqkcTzZtK3+uTYdTv1fcj2v0Q
uMGA/alsNQQmLLE5o1sHvdbfpKRV6MD5fSu9uIsAtIYiqiRfEyibpfQsUKCB
aDsP561jTVDzMmIyVrMDrAXZkKYpdd64A5Wh3avHlgNTWRkHwrzbUNrOhRwc
J2hwW2iJovDdZHgrkPuNZbQNLXt0dxGLOQ2yMM7kmYMzDTif6IjxZ0HDhd25
9ScaENJRiveYtXfamsY7uonJ4KCy1+HNUANa0HZ0dKkrHQ5dozsNpcVAyKnT
vK6NDWiD1BGi3306LGcV6mZdkQW85uYDMWGVaO/6ENNV0gzgqA04YbI+HTJS
Q4qajauRgBpFZWYWP7CtSLq2ayAJWH+YL396sQZNeDhsOTGLH0YWE1fL7osF
6cUF4c/e1qCntrY0DsFZv1ual5JY+xhuX6KaO3DWoL8lo8W2z67vybGFmx7Y
DEoObxlCP8iQMZr/ID+s75/wsDnGw5dxHrvRnDz23/0QJOb0Q3Biea9pmFwB
61mWdZgdaIEXjh7PzffT5q3rJ8eWcCZQCHB1v4I1I6gbdr26xhriNQS50z6f
N9LLwLBzsPLElU5Yrr5EPGhW32YMPInVJFTDdkL66c6APrBuH7pScGUAXr82
L9reXQRmYREqhz91w74Ve9h+HqCC4rD3eGtCDrg0Xvbp9yKCRaXKybEtVOgN
qrq9rrMRLJTNfac3dMGRZ4llxZeGIG6q/hNRiAAMrw+FeWs7oJRRcPiRwDCc
mScvWkGpT4tg3QHR646NJ+8kg/nYmPXjERJ0ut9c8CqqBwnKxTPESnsAwgzv
138mwcnjfJZOdc1I0fOY02mhVghvCRi6VkYFLZyHvGtOHvJ7PM/6HJ5nzYbn
WWvhedbxeJ611r+YZz2ffBvmE0wxnzCM+QQp9ekKkaZuMD1ideSlVh80r6bm
UKZ6513nQVWr9dvMEvgql1mj1ExGqkvf1EUU9EPBnDk+LrjOwhrnWw7PybcM
wf5XNPa/urH/5UVmfkc75ndEPvg73sR96Z8fZPalT8B96aWjmPeB8fjXfUDy
/Mz74Gd203loOB80tx7MpKxtRTWpD8dGfGl/8vdWzMnfS7WjKL4U60E1F0R0
fvxohdUSCT+jlAfhfbct/wuXp6jhAe9TwlUGWkRamKRpVQaSV5n6UIOpD5E7
1oerz1wz3iiLIHVTYZGCRR1K87NxrSmlQ0IN89zYN/86N2DH5/a7P0PAnP4M
o8KxaSJutZAXp0jbx0KF5rXt0mOoC9pwHlc8zuN6hvO4DmN9OIbztX7rw/xv
b/luB/VA5tTze+27yNB1MqBwRJk47/fd/v3Vr+d+if/1XLRVlPnc+f5fFs8F
aJszF0CuzYB+kosOy7irBN77NUBklJJJVmoZTDZ6NBE5GNAi/zKzMrISHFPN
+KmzeOK3n7t8jp8733MtY7oONNUwwCLDKt/KPQNERa7qCEsm/4m/Z+L4+ysc
f5/bl5WC/dx8HO8OxPHurTjezZgzn8UJz2eJxHj1Jq5fkMZ49ff8lF/bc6/9
Mz9lvv3LzPGLi7FfnDmnL0QQ7guR1868h83Mewijvcx7+F86livP
"]], {}},
Axes->True,
AxesLabel->{None, None, None},
AxesOrigin->{Automatic, Automatic, Automatic},
BoxRatios->{1, 1, 0.4},
DisplayFunction->Identity,
FaceGrids->None,
FaceGridsStyle->Automatic,
ImageSize->{344.87131519548615`, 334.9340953898767},
ImageSizeRaw->Automatic,
Method->{"DefaultBoundaryStyle" -> Directive[
GrayLevel[0.3]],
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "RotationControl" ->
"Globe"},
PlotRange->{{-1, 1}, {-1, 1}, {-1.1388802373384483`, 0.3096783010153101}},
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02],
Scaled[0.02]},
Ticks->{Automatic, Automatic, Automatic},
ViewPoint->{-0.54010668672324, -0.0028529713095565637`, \
-3.3404006687090364`},
ViewVertical->{0.9871650246161731,
0.005214439225188788, -0.15961836923774572`}]], "Subsubsection",
GeneratedCell->False,
CellAutoOverwrite->False,
CellChangeTimes->{{3.802792508122835*^9, 3.802792518400569*^9},
3.802792549335681*^9, {3.802966707367893*^9, 3.8029667310980062`*^9},
3.802966767114212*^9, {3.802994545325727*^9, 3.8029945460576572`*^9}, {
3.80299515668832*^9,
3.8029951574757147`*^9}},ExpressionUUID->"6c8b5603-c079-4ac8-b72a-\
8ccbeb62d684"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"z0", "=",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"Exp", "[",
RowBox[{
RowBox[{
RowBox[{"-", "n"}], "/", "4"}], " ",
SuperscriptBox["m", "2"]}], "]"}],
RowBox[{"Exp", "[",
RowBox[{"\[Beta]", " ",
SqrtBox["n"],
RowBox[{"RealAbs", "[", "m", "]"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"\[Beta]", ">", "0"}], ",",
RowBox[{"n", ">", "0"}]}], "}"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.803129540826277*^9, 3.8031295471701736`*^9}},
CellLabel->"In[33]:=",ExpressionUUID->"36902d2c-3e42-40c6-b06a-20eda501752d"],
Cell[BoxData[
FractionBox[
RowBox[{"2", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], ")"}]}],
SqrtBox["n"]]], "Output",
CellChangeTimes->{3.803129547753653*^9},
CellLabel->"Out[33]=",ExpressionUUID->"0d512952-64a7-4e22-85ca-a10616acbcd1"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Z0", "=",
SuperscriptBox["z0",
SuperscriptBox["n", "2"]]}]], "Input",
CellChangeTimes->{{3.803128558045075*^9, 3.803128603474378*^9}, {
3.803128654352323*^9, 3.803128661131139*^9}, {3.803129347211932*^9,
3.8031293522383833`*^9}, {3.80312955350373*^9, 3.803129553658773*^9}},
CellLabel->"In[34]:=",ExpressionUUID->"da4dacdb-a6c6-40ca-8121-3e5dd107cecd"],
Cell[BoxData[
RowBox[{
SuperscriptBox["2",
SuperscriptBox["n", "2"]], " ",
SuperscriptBox["\[Pi]",
FractionBox[
SuperscriptBox["n", "2"], "2"]], " ",
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], ")"}]}],
SqrtBox["n"]], ")"}],
SuperscriptBox["n", "2"]]}]], "Output",
CellChangeTimes->{
3.803128604890726*^9, {3.803128656247582*^9, 3.803128661956772*^9},
3.803129353270632*^9, 3.803129553953936*^9},
CellLabel->"Out[34]=",ExpressionUUID->"a855578a-2db7-4634-912b-3e7d73b2e76d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Z1", "=",
RowBox[{"\[Beta]", " ", "\[Lambda]", " ", "y",
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["n", "2"],
SuperscriptBox["z0",
RowBox[{
SuperscriptBox["n", "2"], "-", "1"}]],
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"1", "/", "n"}], "-",
RowBox[{"2", " ",
SuperscriptBox["m", "2"]}], "+",
SuperscriptBox["m", "4"]}], ")"}],
RowBox[{"Exp", "[",
RowBox[{
RowBox[{
RowBox[{"-", "n"}], "/", "4"}], " ",
SuperscriptBox["m", "2"]}], "]"}],
RowBox[{"Exp", "[",
RowBox[{"\[Beta]", " ",
SqrtBox["n"],
RowBox[{"RealAbs", "[", "m", "]"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"m", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"\[Beta]", ">", "0"}], ",",
RowBox[{"n", ">", "0"}]}], "}"}]}]}], "]"}]}], "+",
RowBox[{"2",
SuperscriptBox["n", "2"],
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}],
SuperscriptBox["z0",
RowBox[{
SuperscriptBox["n", "2"], "-", "2"}]],
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
SuperscriptBox["m1", "2"],
SuperscriptBox["m2", "2"],
RowBox[{"Exp", "[",
RowBox[{
RowBox[{
RowBox[{"-", "n"}], "/", "4"}], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["m1", "2"], "+",
SuperscriptBox["m2", "2"]}], ")"}]}], "]"}],
RowBox[{"Exp", "[",
RowBox[{"\[Beta]", " ",
SqrtBox["n"],
RowBox[{"(",
RowBox[{
RowBox[{"RealAbs", "[", "m1", "]"}], "+",
RowBox[{"RealAbs", "[", "m2", "]"}]}], ")"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"m1", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"{",
RowBox[{"m2", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"\[Beta]", ">", "0"}], ",",
RowBox[{"n", ">", "0"}]}], "}"}]}]}], "]"}]}]}],
")"}]}]}]], "Input",
CellChangeTimes->{{3.803128684300309*^9, 3.803128717325837*^9}, {
3.803128782663151*^9, 3.803128788726447*^9}, 3.8031288375385303`*^9, {
3.803129362766914*^9, 3.80312937168909*^9}, {3.803129402529358*^9,
3.80312941166441*^9}, {3.803129649942243*^9, 3.803129674669229*^9}, {
3.8031297597550097`*^9, 3.8031298412981443`*^9}, {3.803129881797874*^9,
3.803129882267334*^9}, {3.8031300074565277`*^9, 3.803130050952516*^9}, {
3.803130351318615*^9, 3.803130351696361*^9}, {3.803130407697094*^9,
3.80313040807018*^9}, {3.8031304392095613`*^9, 3.803130439902772*^9}, {
3.803131273271802*^9, 3.803131274558401*^9}, {3.80313133000248*^9,
3.8031313340861197`*^9}, {3.803131503348876*^9, 3.8031315044404182`*^9}, {
3.80313157724098*^9, 3.80313157743565*^9},
3.803241591744605*^9},ExpressionUUID->"ed67eef8-11a6-497b-b2b2-\
021f82ba41a2"],
Cell[BoxData[
RowBox[{
FractionBox["1",
SuperscriptBox["n",
RowBox[{"3", "/", "2"}]]],
RowBox[{"\[Beta]", " ", "\[Lambda]", " ",
RowBox[{"(",
RowBox[{
RowBox[{
FractionBox["1", "n"],
RowBox[{
SuperscriptBox["2",
RowBox[{"3", "+",
SuperscriptBox["n", "2"]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "n"}], ")"}], " ",
SuperscriptBox["\[Pi]",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+",
SuperscriptBox["n", "2"]}], ")"}]}]], " ",
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], ")"}]}],
SqrtBox["n"]], ")"}],
RowBox[{
RowBox[{"-", "2"}], "+",
SuperscriptBox["n", "2"]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"]}], "+",
RowBox[{"2", " ", "\[Beta]"}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "+",
RowBox[{"2", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
SuperscriptBox["\[Beta]", "2"], " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}]}], ")"}], "2"]}]}], "-",
RowBox[{
FractionBox["1",
SqrtBox["n"]],
RowBox[{
SuperscriptBox["2",
SuperscriptBox["n", "2"]], " ",
SuperscriptBox["\[Pi]",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["n", "2"]}], ")"}]}]], " ",
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], ")"}]}],
SqrtBox["n"]], ")"}],
RowBox[{
RowBox[{"-", "1"}], "+",
SuperscriptBox["n", "2"]}]], " ",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "12"}], " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"]}], "+",
RowBox[{"3", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ", "n", " ",
SqrtBox["\[Pi]"]}], "-",
RowBox[{"40", " ", "\[Beta]"}], "+",
RowBox[{"8", " ", "n", " ", "\[Beta]"}], "-",
RowBox[{"48", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"8", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ", "n", " ",
SqrtBox["\[Pi]"], " ",
SuperscriptBox["\[Beta]", "2"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["\[Beta]", "3"]}], "-",
RowBox[{"16", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
SuperscriptBox["\[Beta]", "4"]}], "-",
RowBox[{"12", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "+",
RowBox[{"3", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ", "n", " ",
SqrtBox["\[Pi]"], " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "-",
RowBox[{"48", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
SuperscriptBox["\[Beta]", "2"], " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "+",
RowBox[{"8", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ", "n", " ",
SqrtBox["\[Pi]"], " ",
SuperscriptBox["\[Beta]", "2"], " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "-",
RowBox[{"16", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
SuperscriptBox["\[Beta]", "4"], " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}]}], ")"}]}]}]}],
")"}]}]}]], "Output",
CellChangeTimes->{
3.8031287206888103`*^9, 3.8031287900055428`*^9, 3.8031294126189404`*^9, {
3.803129661225165*^9, 3.803129676088873*^9}, 3.8031298487150707`*^9,
3.803129885656212*^9, {3.803130014116147*^9, 3.803130054863118*^9},
3.803130355433423*^9, 3.803130428461495*^9, 3.803131278936133*^9,
3.803131338024816*^9, 3.803131508191101*^9},
CellLabel->"Out[62]=",ExpressionUUID->"66230ca0-e586-4da5-9244-3b7babf69011"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"tmp", "=",
RowBox[{
RowBox[{"FullSimplify", "[",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"Z0", "+", "Z1"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"n", ">", "0"}], ",",
RowBox[{"\[Beta]", ">", "0"}], ",",
RowBox[{"\[Lambda]", ">", "0"}]}], "}"}]}], "]"}], "/",
SuperscriptBox["n", "2"]}]}]], "Input",
CellChangeTimes->{{3.803130175901119*^9, 3.8031302629284773`*^9}, {
3.803130366709255*^9, 3.8031303735627823`*^9}},
CellLabel->"In[63]:=",ExpressionUUID->"1e253819-cd87-42a3-bc5d-cb9324cf764b"],
Cell[BoxData[
RowBox[{
FractionBox["1",
SuperscriptBox["n", "2"]],
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"3", " ",
RowBox[{"Log", "[", "n", "]"}]}], "2"]}], "+",
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+",
SuperscriptBox["n", "2"]}], ")"}], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"Log", "[", "\[Pi]", "]"}]}], ")"}]}], "-",
RowBox[{"2", " ",
RowBox[{"Log", "[",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "]"}]}], "+",
RowBox[{
SuperscriptBox["n", "2"], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], ")"}]}],
SqrtBox["n"]], "]"}]}], "+",
RowBox[{"Log", "[",
RowBox[{
RowBox[{"32", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+", "n"}], ")"}], " ",
SuperscriptBox["\[Beta]", "3"], " ", "\[Lambda]"}], "+",
RowBox[{"8", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
SuperscriptBox["\[Beta]", "2"], " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"3", " ", "n"}], "+",
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "3"}], "+",
RowBox[{"4", " ", "n"}]}], ")"}], " ",
SuperscriptBox["\[Beta]", "2"]}]}], ")"}], " ", "\[Lambda]", " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], ")"}]}], "+",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}]], " ", "\[Pi]", " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["n",
RowBox[{"3", "/", "2"}]], "+",
RowBox[{"\[Beta]", " ",
RowBox[{"(",
RowBox[{"4", "+",
RowBox[{"5", " ", "n"}], "+",
RowBox[{"8", " ",
RowBox[{"(",
RowBox[{"2", "+",
RowBox[{"3", " ", "n"}]}], ")"}], " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"16", " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "1"}], "+",
RowBox[{"2", " ", "n"}]}], ")"}], " ",
SuperscriptBox["\[Beta]", "4"]}]}], ")"}], " ", "\[Lambda]"}]}],
")"}], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], ")"}], "2"]}]}], "]"}]}],
")"}]}]], "Output",
CellChangeTimes->{{3.80313018495855*^9, 3.803130232678484*^9},
3.803130271582457*^9, {3.803130360189734*^9, 3.803130373830789*^9},
3.803130430711117*^9, 3.803131292903603*^9, 3.803131347443241*^9,
3.803131518079821*^9},
CellLabel->"Out[63]=",ExpressionUUID->"c96d8106-59de-4eaf-a6f8-c955c480da9d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Series", "[",
RowBox[{"tmp", ",",
RowBox[{"{",
RowBox[{"n", ",", "\[Infinity]", ",", "2"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.803130374306663*^9, 3.803130392018983*^9}},
CellLabel->"In[64]:=",ExpressionUUID->"81e9ca5c-eb78-4ec5-8f56-5192bd2775e5"],
Cell[BoxData[
InterpretationBox[
RowBox[{
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"Log", "[", "\[Pi]", "]"}], "+",
RowBox[{"2", " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"2", " ",
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], ")"}]}],
SqrtBox["n"]], "]"}]}]}], ")"}]}], "+",
RowBox[{
FractionBox["1",
RowBox[{"2", " ",
SuperscriptBox["n", "2"]}]],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-", "4"}], " ",
SuperscriptBox["\[Beta]", "2"]}], "-",
RowBox[{"3", " ",
RowBox[{"Log", "[", "n", "]"}]}], "-",
RowBox[{"2", " ",
RowBox[{"Log", "[", "\[Pi]", "]"}]}], "-",
RowBox[{"4", " ",
RowBox[{"Log", "[",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "]"}]}], "+",
RowBox[{"2", " ",
RowBox[{"Log", "[",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}]], " ",
SuperscriptBox["n",
RowBox[{"3", "/", "2"}]], " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], ")"}], "2"]}], "]"}]}]}],
")"}]}], "+",
RowBox[{
FractionBox["1",
RowBox[{"\[Pi]", " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], ")"}], "2"]}]],
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "2"}], " ",
SuperscriptBox["\[Beta]", "2"]}]], " ", "\[Beta]", " ", "\[Lambda]",
" ",
RowBox[{"(",
RowBox[{
RowBox[{"5", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}]], " ", "\[Pi]"}], "+",
RowBox[{"24", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ", "\[Beta]"}], "+",
RowBox[{"32", " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"24", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}]], " ", "\[Pi]", " ",
SuperscriptBox["\[Beta]", "2"]}], "+",
RowBox[{"64", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
SuperscriptBox["\[Beta]", "3"]}], "+",
RowBox[{"32", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}]], " ", "\[Pi]", " ",
SuperscriptBox["\[Beta]", "4"]}], "+",
RowBox[{"10", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}]], " ", "\[Pi]", " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "+",
RowBox[{"24", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ", "\[Beta]", " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "+",
RowBox[{"48", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}]], " ", "\[Pi]", " ",
SuperscriptBox["\[Beta]", "2"], " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "+",
RowBox[{"64", " ",
SuperscriptBox["\[ExponentialE]",
SuperscriptBox["\[Beta]", "2"]], " ",
SqrtBox["\[Pi]"], " ",
SuperscriptBox["\[Beta]", "3"], " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "+",
RowBox[{"64", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}]], " ", "\[Pi]", " ",
SuperscriptBox["\[Beta]", "4"], " ",
RowBox[{"Erf", "[", "\[Beta]", "]"}]}], "+",
RowBox[{"5", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}]], " ", "\[Pi]", " ",
SuperscriptBox[
RowBox[{"Erf", "[", "\[Beta]", "]"}], "2"]}], "+",
RowBox[{"24", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}]], " ", "\[Pi]", " ",
SuperscriptBox["\[Beta]", "2"], " ",
SuperscriptBox[
RowBox[{"Erf", "[", "\[Beta]", "]"}], "2"]}], "+",
RowBox[{"32", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"2", " ",
SuperscriptBox["\[Beta]", "2"]}]], " ", "\[Pi]", " ",
SuperscriptBox["\[Beta]", "4"], " ",
SuperscriptBox[
RowBox[{"Erf", "[", "\[Beta]", "]"}], "2"]}]}], ")"}], " ",
SuperscriptBox[
RowBox[{"(",
FractionBox["1", "n"], ")"}],
RowBox[{"5", "/", "2"}]]}]}], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[",
FractionBox["1", "n"], "]"}], "3"],
SeriesData[$CellContext`n,
DirectedInfinity[1], {}, 0, 6, 2],
Editable->False]}],
SeriesData[$CellContext`n,
DirectedInfinity[1], {
Rational[1, 2] (2 $CellContext`\[Beta]^2 + Log[Pi] +
2 Log[2 $CellContext`n^Rational[-1, 2] (1 + Erf[$CellContext`\[Beta]])]),
0, 0, 0,
Rational[1, 2] ((-4) $CellContext`\[Beta]^2 - 3 Log[$CellContext`n] - 2
Log[Pi] - 4 Log[1 + Erf[$CellContext`\[Beta]]] +
2 Log[
E^(2 $CellContext`\[Beta]^2) $CellContext`n^Rational[3, 2]
Pi (1 + Erf[$CellContext`\[Beta]])^2]),
E^((-2) $CellContext`\[Beta]^2)
Pi^(-1) $CellContext`\[Beta] $CellContext`\[Lambda] (1 +
Erf[$CellContext`\[Beta]])^(-2) (5 E^(2 $CellContext`\[Beta]^2) Pi +
24 E^($CellContext`\[Beta]^2) Pi^Rational[1, 2] $CellContext`\[Beta] +
32 $CellContext`\[Beta]^2 +
24 E^(2 $CellContext`\[Beta]^2) Pi $CellContext`\[Beta]^2 +
64 E^($CellContext`\[Beta]^2) Pi^Rational[1, 2] $CellContext`\[Beta]^3 +
32 E^(2 $CellContext`\[Beta]^2) Pi $CellContext`\[Beta]^4 +
10 E^(2 $CellContext`\[Beta]^2) Pi Erf[$CellContext`\[Beta]] +
24 E^($CellContext`\[Beta]^2) Pi^Rational[1, 2] $CellContext`\[Beta]
Erf[$CellContext`\[Beta]] +
48 E^(2 $CellContext`\[Beta]^2) Pi $CellContext`\[Beta]^2
Erf[$CellContext`\[Beta]] +
64 E^($CellContext`\[Beta]^2) Pi^Rational[1, 2] $CellContext`\[Beta]^3
Erf[$CellContext`\[Beta]] +
64 E^(2 $CellContext`\[Beta]^2) Pi $CellContext`\[Beta]^4
Erf[$CellContext`\[Beta]] +
5 E^(2 $CellContext`\[Beta]^2) Pi Erf[$CellContext`\[Beta]]^2 +
24 E^(2 $CellContext`\[Beta]^2) Pi $CellContext`\[Beta]^2
Erf[$CellContext`\[Beta]]^2 +
32 E^(2 $CellContext`\[Beta]^2) Pi $CellContext`\[Beta]^4
Erf[$CellContext`\[Beta]]^2)}, 0, 6, 2],
Editable->False]], "Output",
CellChangeTimes->{{3.8031303858883677`*^9, 3.8031303973207207`*^9},
3.803130433224594*^9, 3.803131305071972*^9, 3.803131349577737*^9,
3.8031315669699907`*^9},
CellLabel->"Out[64]=",ExpressionUUID->"f2595578-18b1-46e8-aaea-c752ac8c5c00"]
}, Open ]]
}, Open ]]
},
WindowSize->{476, 1056},
WindowMargins->{{Automatic, 482}, {2, Automatic}},
FrontEndVersion->"12.1 for Linux x86 (64-bit) (March 14, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"a9c60a01-1e54-49bf-abc8-931b474b862d"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 374, 10, 30, "Input",ExpressionUUID->"753c512e-9306-40b6-9314-d26559d3dcb9"],
Cell[CellGroupData[{
Cell[957, 34, 392, 10, 30, "Input",ExpressionUUID->"93804cf2-11dd-4055-995c-81663300bb65"],
Cell[1352, 46, 5491, 166, 456, "Output",ExpressionUUID->"89c83715-b44f-4979-96d2-6c5c480657a5"]
}, Open ]],
Cell[CellGroupData[{
Cell[6880, 217, 744, 20, 53, "Input",ExpressionUUID->"36b88d47-8535-4327-a5fd-2bda948247f6"],
Cell[7627, 239, 1562, 45, 71, "Output",ExpressionUUID->"6128b3bc-b4f3-41b8-beb9-30626167fdbc"]
}, Open ]],
Cell[CellGroupData[{
Cell[9226, 289, 347, 8, 30, "Input",ExpressionUUID->"0f64c6d2-37ea-4770-917b-01d655ee05a5"],
Cell[9576, 299, 804, 27, 68, "Output",ExpressionUUID->"1168cba1-72d9-4628-8d4a-c2a8a405b1d0"]
}, Open ]],
Cell[10395, 329, 744, 20, 53, "Input",ExpressionUUID->"fb5ba0f9-929f-4175-a8d9-fe5d7fde3e32"],
Cell[CellGroupData[{
Cell[11164, 353, 140164, 2310, 355, "Subsubsection",ExpressionUUID->"6c8b5603-c079-4ac8-b72a-8ccbeb62d684"],
Cell[CellGroupData[{
Cell[151353, 2667, 814, 23, 93, "Input",ExpressionUUID->"36902d2c-3e42-40c6-b06a-20eda501752d"],
Cell[152170, 2692, 400, 11, 61, "Output",ExpressionUUID->"0d512952-64a7-4e22-85ca-a10616acbcd1"]
}, Open ]],
Cell[CellGroupData[{
Cell[152607, 2708, 390, 7, 34, "Input",ExpressionUUID->"da4dacdb-a6c6-40ca-8121-3e5dd107cecd"],
Cell[153000, 2717, 714, 21, 67, "Output",ExpressionUUID->"a855578a-2db7-4634-912b-3e7d73b2e76d"]
}, Open ]],
Cell[CellGroupData[{
Cell[153751, 2743, 3386, 87, 296, "Input",ExpressionUUID->"ed67eef8-11a6-497b-b2b2-021f82ba41a2"],
Cell[157140, 2832, 5756, 152, 408, "Output",ExpressionUUID->"66230ca0-e586-4da5-9244-3b7babf69011"]
}, Open ]],
Cell[CellGroupData[{
Cell[162933, 2989, 585, 15, 76, "Input",ExpressionUUID->"1e253819-cd87-42a3-bc5d-cb9324cf764b"],
Cell[163521, 3006, 3154, 91, 224, "Output",ExpressionUUID->"c96d8106-59de-4eaf-a6f8-c955c480da9d"]
}, Open ]],
Cell[CellGroupData[{
Cell[166712, 3102, 298, 6, 30, "Input",ExpressionUUID->"81e9ca5c-eb78-4ec5-8f56-5192bd2775e5"],
Cell[167013, 3110, 7324, 183, 327, "Output",ExpressionUUID->"f2595578-18b1-46e8-aaea-c752ac8c5c00"]
}, Open ]]
}, Open ]]
}
]
*)
(* End of internal cache information *)
|