summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2019-10-30 11:25:56 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2019-10-30 11:25:56 -0400
commit2311327bbfbfd96470a5d1c9cf559376ec8eafe9 (patch)
tree38c7f9a98b2a41ce64daa3b666b5d9a3d9cdba7d
parent31172eb6d3e57a99ab0909a9908f9d37805b6611 (diff)
downloadPRB_102_075129-2311327bbfbfd96470a5d1c9cf559376ec8eafe9.tar.gz
PRB_102_075129-2311327bbfbfd96470a5d1c9cf559376ec8eafe9.tar.bz2
PRB_102_075129-2311327bbfbfd96470a5d1c9cf559376ec8eafe9.zip
added small clarification
-rw-r--r--main.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/main.tex b/main.tex
index d79ef78..2e57f26 100644
--- a/main.tex
+++ b/main.tex
@@ -420,7 +420,7 @@ $|\Delta\tilde r|^\gamma$ for $\gamma=1$. \brad{I think this last sentence, whi
$\Bog$ modulus. (d) $\Bog$ modulus data and fit transformed using
$[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is prediced from
\eqref{eq:susceptibility} and \eqref{eq:elastic.susceptibility} to be
- linear. The failure of the Ginzburg--Landau prediction
+ linear above $T_c$. The failure of the Ginzburg--Landau prediction
below the transition is expected on the grounds that the \op\ is too large
for the free energy expansion to be valid by the time the Ginzburg
temperature is reached.