summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-04-15 16:22:14 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-04-15 16:22:14 -0400
commit387f50a927630b1639bc817616cdbb051584418c (patch)
tree303b9ea66989388dd0f695ec81f711f5ad50ebcb
parentaf124ddbb90ad7e33a4dbb3c4943487355ab4a7f (diff)
downloadPRB_102_075129-387f50a927630b1639bc817616cdbb051584418c.tar.gz
PRB_102_075129-387f50a927630b1639bc817616cdbb051584418c.tar.bz2
PRB_102_075129-387f50a927630b1639bc817616cdbb051584418c.zip
Draft edits to Figure caption to reflect new theory lines.
-rw-r--r--main.tex11
1 files changed, 4 insertions, 7 deletions
diff --git a/main.tex b/main.tex
index 15a0268..3da57a9 100644
--- a/main.tex
+++ b/main.tex
@@ -472,22 +472,19 @@ corresponding modulus.
\caption{
\Rus\ measurements of the elastic moduli of \urusi\ at ambient pressure as a
function of temperature from recent experiments\cite{1903.00552v1} (blue,
- solid) alongside fits to theory (magenta, dashed). The solid yellow region
+ solid) alongside fits to theory (magenta, dashed and black, solid). The solid yellow region
shows the location of the \ho\ phase. (a) $\Btg$ modulus data and a fit to
the standard form.\cite{Varshni_1970} (b) $\Bog$ modulus data and a fit to
- \eqref{eq:static_modulus}. The fit gives
+ \eqref{eq:static_modulus} (magenta, dashed) and a fit to \eqref{eq:C0} (black, solid). The fit gives
$C^0_\Bog\simeq\big[71-(0.010\,\K^{-1})T\big]\,\GPa$, $D_\perp
q_*^4/b^2\simeq0.16\,\GPa^{-1}$, and
$a/b^2\simeq6.1\times10^{-4}\,\GPa^{-1}\,\K^{-1}$. Addition of a quadratic
term in $C^0_\Bog$ was here not needed for the fit.\cite{Varshni_1970} (c)
$\Bog$ modulus data and the fit of the \emph{bare} $\Bog$ modulus. (d)
- $\Bog$ modulus data and the fit transformed by
+ $\Bog$ modulus data and the fits transformed by
$[C^0_\Bog(C^0_\Bog/C_\Bog-1)]]^{-1}$, which is predicted from
\eqref{eq:static_modulus} to equal $D_\perp q_*^4/b^2+a/b^2|T-T_c|$, e.g.,
- an absolute value function. The failure of the Ginzburg--Landau prediction
- below the transition is expected on the grounds that the \op\ is too large
- for the free energy expansion to be valid by the time the Ginzburg
- temperature is reached.
+ an absolute value function.
}
\label{fig:data}
\end{figure*}