diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-05-12 11:18:14 -0400 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-05-12 11:18:14 -0400 |
commit | 587a8223b47d1c7b21ff8ddea3cb6e4193d99a12 (patch) | |
tree | eccee4dfd9a2cd9820519ecb6fc61adddcffa4ae | |
parent | 8268dd6c4a96308b5b8035c9db85296205890131 (diff) | |
download | PRB_102_075129-587a8223b47d1c7b21ff8ddea3cb6e4193d99a12.tar.gz PRB_102_075129-587a8223b47d1c7b21ff8ddea3cb6e4193d99a12.tar.bz2 PRB_102_075129-587a8223b47d1c7b21ff8ddea3cb6e4193d99a12.zip |
Braket a frac opening.
-rw-r--r-- | main.tex | 2 |
1 files changed, 1 insertions, 1 deletions
@@ -723,7 +723,7 @@ The order parameter term relies on some other identities. First, \eqref{eq:eta_s \end{equation} and therefore that the functional inverse $\eta_\star^{-1}[\eta]$ is \begin{equation} - \eta_\star^{-1}[\eta](x)=\frac b{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg). + \eta_\star^{-1}[\eta](x)=\frac{b}{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg). \end{equation} The inverse function theorem further implies (with substitution of \eqref{eq:dFodeta} after the derivative is evaluated) that \begin{equation} |