summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-05-12 11:18:14 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-05-12 11:18:14 -0400
commit587a8223b47d1c7b21ff8ddea3cb6e4193d99a12 (patch)
treeeccee4dfd9a2cd9820519ecb6fc61adddcffa4ae
parent8268dd6c4a96308b5b8035c9db85296205890131 (diff)
downloadPRB_102_075129-587a8223b47d1c7b21ff8ddea3cb6e4193d99a12.tar.gz
PRB_102_075129-587a8223b47d1c7b21ff8ddea3cb6e4193d99a12.tar.bz2
PRB_102_075129-587a8223b47d1c7b21ff8ddea3cb6e4193d99a12.zip
Braket a frac opening.
-rw-r--r--main.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/main.tex b/main.tex
index 374519e..22b1405 100644
--- a/main.tex
+++ b/main.tex
@@ -723,7 +723,7 @@ The order parameter term relies on some other identities. First, \eqref{eq:eta_s
\end{equation}
and therefore that the functional inverse $\eta_\star^{-1}[\eta]$ is
\begin{equation}
- \eta_\star^{-1}[\eta](x)=\frac b{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg).
+ \eta_\star^{-1}[\eta](x)=\frac{b}{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg).
\end{equation}
The inverse function theorem further implies (with substitution of \eqref{eq:dFodeta} after the derivative is evaluated) that
\begin{equation}