summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2019-09-25 14:03:19 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2019-09-25 14:03:19 -0400
commit75b35bedad9a9b06caedf3083785ac3867b0567c (patch)
treedb262a8f66ca52bd0be3f24cf2c9cc07a37ba4e8
parentf2f4e6e51ace0412dc771b44b3bedac3cd425d55 (diff)
downloadPRB_102_075129-75b35bedad9a9b06caedf3083785ac3867b0567c.tar.gz
PRB_102_075129-75b35bedad9a9b06caedf3083785ac3867b0567c.tar.bz2
PRB_102_075129-75b35bedad9a9b06caedf3083785ac3867b0567c.zip
Abstract reword.
-rw-r--r--main.tex15
1 files changed, 8 insertions, 7 deletions
diff --git a/main.tex b/main.tex
index 60c7185..a809312 100644
--- a/main.tex
+++ b/main.tex
@@ -57,15 +57,16 @@
\date\today
\begin{abstract}
- We develop a phenomenological mean field theory for the elastic response of
- \urusi\ through its hidden order transition. Several experimental features
- are reproduced when the order parameter has $\Bog$ symmetry: the topology of
- the temperature--pressure phase diagram, the response of the strain stiffness
+ We develop a phenomenological mean field theory for the strain in \urusi\
+ through its hidden order transition. Several experimental features are
+ reproduced when the order parameter has $\Bog$ symmetry: the topology of the
+ temperature--pressure phase diagram, the response of the strain stiffness
tensor above the hidden-order transition at zero pressure, and orthorhombic
symmetry breaking in the high-pressure antiferromagnetic phase. In this
- scenario, the hidden order is a version of the high-pressure
- antiferromagnetic order modulated along the symmetry axis, and the triple
- point joining those two phases with the paramagnetic phase is a Lifshitz point.
+ scenario, the hidden order is characterized by the order parameter in the
+ high-pressure antiferromagnetic phase modulated along the symmetry axis, and
+ the triple point joining those two phases with the paramagnetic phase is a
+ Lifshitz point.
\end{abstract}
\maketitle