diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-05-27 15:41:50 -0400 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2020-05-27 15:41:50 -0400 |
commit | aeacccad3a59ad69dcbd4de3f1d731efcd5a1524 (patch) | |
tree | 56fcaefaa880c8319534d978ed41f7226bd6a657 | |
parent | cda89e678be9b2a7789e1eb4a92dca7f0640bdac (diff) | |
download | PRB_102_075129-aeacccad3a59ad69dcbd4de3f1d731efcd5a1524.tar.gz PRB_102_075129-aeacccad3a59ad69dcbd4de3f1d731efcd5a1524.tar.bz2 PRB_102_075129-aeacccad3a59ad69dcbd4de3f1d731efcd5a1524.zip |
Added a comment about new analysis.
-rw-r--r-- | main.tex | 2 |
1 files changed, 2 insertions, 0 deletions
@@ -204,6 +204,8 @@ coupling to linear order is \begin{equation} f_\i=-b^{(i)}\epsilon_\X^{(i)}\eta. \end{equation} +Many high-order interations are permitted, and in the appendix another of the +form $\epsilon^2\eta^2$ is added to the following analysis. If there exists no component of strain that transforms like the representation $\X$ then there can be no linear coupling. The next-order coupling is linear in strain, quadratic in order parameter, and the effect of this coupling at a |