diff options
author | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2019-06-20 10:44:32 -0400 |
---|---|---|
committer | Jaron Kent-Dobias <jaron@kent-dobias.com> | 2019-06-20 10:44:32 -0400 |
commit | 7550ebfb5245c71eeef8f7543c33e98d2c238c69 (patch) | |
tree | 57c0b4c973109517fd54913aa6b7ca54c77d6a7e /hidden-order.tex | |
parent | a24618d7d487447d4df38f87bad1abc9bfdc8bcb (diff) | |
download | PRB_102_075129-7550ebfb5245c71eeef8f7543c33e98d2c238c69.tar.gz PRB_102_075129-7550ebfb5245c71eeef8f7543c33e98d2c238c69.tar.bz2 PRB_102_075129-7550ebfb5245c71eeef8f7543c33e98d2c238c69.zip |
forgot to add bib file, and some spot changes
Diffstat (limited to 'hidden-order.tex')
-rw-r--r-- | hidden-order.tex | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/hidden-order.tex b/hidden-order.tex index 5031d69..4bf9bde 100644 --- a/hidden-order.tex +++ b/hidden-order.tex @@ -159,7 +159,7 @@ for \end{align*} and the susceptibility near the disordered--modulated transition is \[ - \chi(q)=\frac12\big[c_\parallel q_\parallel^2+D(q_0^2-q_\perp^2)^2+|\Delta r|\big]^{-1}=\frac1{2D}\frac{\xi_\perp^4}{1+\xi_\parallel^2q_\parallel^2+\xi_\perp^{4}(q_0^2-q^2)^2} + \chi(q)=\frac12\big[c_\parallel q_\parallel^2+D(q_\parallel^4+2q_\parallel^2q_\perp^2)+D(q_*^2-q_\perp^2)^2+|\Delta r|\big]^{-1}=\frac1{2D}\frac{\xi_\perp^4}{1+\xi_\parallel^2q_\parallel^2+\xi_\perp^4(q_\parallel^4+2q_\parallel^2q_\perp^2)+\xi_\perp^{4}(q_*^2-q_\perp^2)^2} \] where $\xi_\perp=(|\Delta r|/D)^{-1/4}$ and $\xi_\parallel=(|\Delta r|/c_\parallel)^{-1/2}$. We're also interested in the elastic response, defined by \[ @@ -178,7 +178,7 @@ and the effective susceptibility for $\Aog$ has a response like \] At the disordered--modulated transition the responses are of the form \[ - \frac{\lambda}{\tilde\lambda(q)}=1+\frac{b^2}{4\lambda}\big[c_\parallel q_\parallel^2+D(q_0^2-q_\perp^2)^2+|\Delta r|\big]^{-1}=1+\frac{b^2}{2\lambda}\chi(q) + \frac{\lambda}{\tilde\lambda(q)}=1+\frac{b^2}{4\lambda}\big[c_\parallel q_\parallel^2+D(q_\parallel^4+q_\parallel^2q_\perp^2)+D(q_*^2-q_\perp^2)^2+|\Delta r|\big]^{-1}=1+\frac{b^2}{2\lambda}\chi(q) \] and \[ @@ -192,11 +192,11 @@ The Ginzburg criterion gives the proximity $t_G$ of the critical point at which Experiments give $\Delta c_V\sim1\times10^5\,\mathrm J\,\mathrm m^{-3}\,\mathrm K^{-1}$ \cite{fisher_specific_1990} and $T_c\sim17.5\,\mathrm K$. A fit of $\tilde\lambda$ to experimental data (Fig.~\ref{fig:B1g.fit}) yields \begin{align*} \lambda=71\,\mathrm{GPa}-(0.10\,\mathrm{GPa}\,\mathrm{K}^{-1})T && - \frac{b^2}{4\lambda Dq_0^4}=0.084&&\frac a{Dq_0^4}=0.0038\,\mathrm K^{-1} + \frac{b^2}{4\lambda Dq_*^4}=0.084&&\frac a{Dq_*^4}=0.0038\,\mathrm K^{-1} \end{align*} -with $|r-r_c|=a|T-T_c|$. We suspect that the modulation at the transition at very low pressure is on the order of the lattice spacing, which would give $q_0^{-1}\sim9.568\,\text{\r A}$. Combined with our fit, this gives +with $|r-r_c|=a|T-T_c|$. We suspect that the modulation at the transition at very low pressure is on the order of the lattice spacing, which would give $q_*^{-1}\sim9.568\,\text{\r A}$. Combined with our fit, this gives \[ - \xi_0=(aT_c/D)^{-1/4}=\big[T_c(a/Dq_0^4)q_0^4\big]^{-1/4}\sim19\,\text{\r A} + \xi_0=(aT_c/D)^{-1/4}=\big[T_c(a/Dq_*^4)q_*^4\big]^{-1/4}\sim19\,\text{\r A} \] and therefore $t_G\sim1.2\times10^{-6}$, which means one would need to get within about $\Delta T=T_ct_G\sim20\,\mu\mathrm K$ of the critical point to see mean field theory break down. |