summaryrefslogtreecommitdiff
path: root/hidden-order.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2019-06-20 10:44:32 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2019-06-20 10:44:32 -0400
commit7550ebfb5245c71eeef8f7543c33e98d2c238c69 (patch)
tree57c0b4c973109517fd54913aa6b7ca54c77d6a7e /hidden-order.tex
parenta24618d7d487447d4df38f87bad1abc9bfdc8bcb (diff)
downloadPRB_102_075129-7550ebfb5245c71eeef8f7543c33e98d2c238c69.tar.gz
PRB_102_075129-7550ebfb5245c71eeef8f7543c33e98d2c238c69.tar.bz2
PRB_102_075129-7550ebfb5245c71eeef8f7543c33e98d2c238c69.zip
forgot to add bib file, and some spot changes
Diffstat (limited to 'hidden-order.tex')
-rw-r--r--hidden-order.tex10
1 files changed, 5 insertions, 5 deletions
diff --git a/hidden-order.tex b/hidden-order.tex
index 5031d69..4bf9bde 100644
--- a/hidden-order.tex
+++ b/hidden-order.tex
@@ -159,7 +159,7 @@ for
\end{align*}
and the susceptibility near the disordered--modulated transition is
\[
- \chi(q)=\frac12\big[c_\parallel q_\parallel^2+D(q_0^2-q_\perp^2)^2+|\Delta r|\big]^{-1}=\frac1{2D}\frac{\xi_\perp^4}{1+\xi_\parallel^2q_\parallel^2+\xi_\perp^{4}(q_0^2-q^2)^2}
+ \chi(q)=\frac12\big[c_\parallel q_\parallel^2+D(q_\parallel^4+2q_\parallel^2q_\perp^2)+D(q_*^2-q_\perp^2)^2+|\Delta r|\big]^{-1}=\frac1{2D}\frac{\xi_\perp^4}{1+\xi_\parallel^2q_\parallel^2+\xi_\perp^4(q_\parallel^4+2q_\parallel^2q_\perp^2)+\xi_\perp^{4}(q_*^2-q_\perp^2)^2}
\]
where $\xi_\perp=(|\Delta r|/D)^{-1/4}$ and $\xi_\parallel=(|\Delta r|/c_\parallel)^{-1/2}$. We're also interested in the elastic response, defined by
\[
@@ -178,7 +178,7 @@ and the effective susceptibility for $\Aog$ has a response like
\]
At the disordered--modulated transition the responses are of the form
\[
- \frac{\lambda}{\tilde\lambda(q)}=1+\frac{b^2}{4\lambda}\big[c_\parallel q_\parallel^2+D(q_0^2-q_\perp^2)^2+|\Delta r|\big]^{-1}=1+\frac{b^2}{2\lambda}\chi(q)
+ \frac{\lambda}{\tilde\lambda(q)}=1+\frac{b^2}{4\lambda}\big[c_\parallel q_\parallel^2+D(q_\parallel^4+q_\parallel^2q_\perp^2)+D(q_*^2-q_\perp^2)^2+|\Delta r|\big]^{-1}=1+\frac{b^2}{2\lambda}\chi(q)
\]
and
\[
@@ -192,11 +192,11 @@ The Ginzburg criterion gives the proximity $t_G$ of the critical point at which
Experiments give $\Delta c_V\sim1\times10^5\,\mathrm J\,\mathrm m^{-3}\,\mathrm K^{-1}$ \cite{fisher_specific_1990} and $T_c\sim17.5\,\mathrm K$. A fit of $\tilde\lambda$ to experimental data (Fig.~\ref{fig:B1g.fit}) yields
\begin{align*}
\lambda=71\,\mathrm{GPa}-(0.10\,\mathrm{GPa}\,\mathrm{K}^{-1})T &&
- \frac{b^2}{4\lambda Dq_0^4}=0.084&&\frac a{Dq_0^4}=0.0038\,\mathrm K^{-1}
+ \frac{b^2}{4\lambda Dq_*^4}=0.084&&\frac a{Dq_*^4}=0.0038\,\mathrm K^{-1}
\end{align*}
-with $|r-r_c|=a|T-T_c|$. We suspect that the modulation at the transition at very low pressure is on the order of the lattice spacing, which would give $q_0^{-1}\sim9.568\,\text{\r A}$. Combined with our fit, this gives
+with $|r-r_c|=a|T-T_c|$. We suspect that the modulation at the transition at very low pressure is on the order of the lattice spacing, which would give $q_*^{-1}\sim9.568\,\text{\r A}$. Combined with our fit, this gives
\[
- \xi_0=(aT_c/D)^{-1/4}=\big[T_c(a/Dq_0^4)q_0^4\big]^{-1/4}\sim19\,\text{\r A}
+ \xi_0=(aT_c/D)^{-1/4}=\big[T_c(a/Dq_*^4)q_*^4\big]^{-1/4}\sim19\,\text{\r A}
\]
and therefore $t_G\sim1.2\times10^{-6}$, which means one would need to get within about $\Delta T=T_ct_G\sim20\,\mu\mathrm K$ of the critical point to see mean field theory break down.