summaryrefslogtreecommitdiff
path: root/main.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2019-06-27 00:11:50 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2019-06-27 00:11:50 -0400
commit8239c93cd0888531cb0af098bde6aedabb65b0a3 (patch)
treec7d02153917a8d35d1686f8547bf4dd30bb6fbb5 /main.tex
parent2267092906b77b876a5e2273ba43b8728381e137 (diff)
downloadPRB_102_075129-8239c93cd0888531cb0af098bde6aedabb65b0a3.tar.gz
PRB_102_075129-8239c93cd0888531cb0af098bde6aedabb65b0a3.tar.bz2
PRB_102_075129-8239c93cd0888531cb0af098bde6aedabb65b0a3.zip
lots of progress on writing the theory sections
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex218
1 files changed, 208 insertions, 10 deletions
diff --git a/main.tex b/main.tex
index 3334127..794f30d 100644
--- a/main.tex
+++ b/main.tex
@@ -1,7 +1,31 @@
\documentclass[aps,prl,reprint]{revtex4-2}
\usepackage[utf8]{inputenc}
+\usepackage{amsmath,graphicx}
-\newcommand{\urusi}{URu$_2$Si$_2\ $}
+% Our mysterious boy
+\def\urusi{URu$_2$Si$_2\ $}
+
+\def\e{{\mathrm e}} % "elastic"
+\def\o{{\mathrm o}} % "order parameter"
+\def\i{{\mathrm i}} % "interaction"
+
+\def\Dfh{D$_{4\mathrm h}$}
+
+% Irreducible representations (use in math mode)
+\def\Aog{{\mathrm A_{1\mathrm g}}}
+\def\Atg{{\mathrm A_{2\mathrm g}}}
+\def\Bog{{\mathrm B_{1\mathrm g}}}
+\def\Btg{{\mathrm B_{2\mathrm g}}}
+\def\Eg {{\mathrm E_{ \mathrm g}}}
+\def\Aou{{\mathrm A_{1\mathrm u}}}
+\def\Atu{{\mathrm A_{2\mathrm u}}}
+\def\Bou{{\mathrm B_{1\mathrm u}}}
+\def\Btu{{\mathrm B_{2\mathrm u}}}
+\def\Eu {{\mathrm E_{ \mathrm u}}}
+
+% Variables to represent some representation
+\def\X{\mathrm X}
+\def\Y{\mathrm Y}
\begin{document}
@@ -20,19 +44,193 @@
\maketitle
\begin{enumerate}
- \item \urusi HO intro paragraph/discuss the phase diagram
- \item Strain/OP coupling discussion/RUS
- \item Discussion of experimental data
- \item Analogy of lack of divergence/AFM w/ FM $\chi$
- \item We look at MFT's for OP's of various symmetries
-
- \item Introduce various pieces of free energy
-
- \item MFT piece
+ \item Introduction
+ \begin{enumerate}
+ \item \urusi hidden order intro paragraph, discuss the phase diagram
+ \item Strain/OP coupling discussion/RUS
+ \item Discussion of experimental data
+ \item Analogy of lack of divergence/AFM w/ FM $\chi$
+ \item We look at MFT's for OP's of various symmetries
+ \end{enumerate}
+
+ \item Theory
+ \begin{enumerate}
+ \item Introduce various pieces of free energy
+
+ \item Summary of MFT results
+ \end{enumerate}
\item Data piece
\item Talk about more cool stuff like AFM C4 breaking etc
\end{enumerate}
+The point group of \urusi is \Dfh, and any coarse-grained theory must locally respect this symmetry. We will introduce a phenomenological free energy density in three parts: that of the strain, the order parameter, and their interaction. The most general quadratic free energy of the strain $\epsilon$ is $f_\e=\lambda_{ijkl}\epsilon_{ij}\epsilon_{kl}$, but the form of the $\lambda$ tensor is constrained by both that $\epsilon$ is a symmetric tensor and by the point group symmetry \cite{landau_theory_1995}. The latter can be seen in a systematic way. First, the six independent components of strain are written as linear combinations that behave like irreducible representations under the action of the point group, or
+\begin{equation}
+ \begin{aligned}
+ \epsilon_\Aog^{(1)}=\epsilon_{11}+\epsilon_{22} && \hspace{0.1\columnwidth}
+ \epsilon_\Aog^{(2)}=\epsilon_{33} \\
+ \epsilon_\Bog^{(1)}=\epsilon_{11}-\epsilon_{22} &&
+ \epsilon_\Btg^{(1)}=\epsilon_{12} \\
+ \epsilon_\Eg^{(1)} =\{\epsilon_{11},\epsilon_{22}\}.
+ \end{aligned}
+\end{equation}
+Next, all quadratic combinations of these irreducible strains that transform like $\Aog$ are included in the free energy as
+\begin{equation}
+ f_\e=\frac12\sum_\X\lambda_\X^{(ij)}\epsilon_\X^{(i)}\epsilon_\X^{(j)},
+\end{equation}
+where the sum is over irreducible representations of the point group and the $\lambda_\X^{(ij)}$ are
+\begin{equation}
+ \begin{aligned}
+ &\lambda_{\Aog}^{(11)}=\tfrac12(\lambda_{1111}+\lambda_{1122}) &&
+ \lambda_{\Aog}^{(22)}=\lambda_{3333} \\
+ &\lambda_{\Aog}^{(12)}=\lambda_{1133} &&
+ \lambda_{\Bog}^{(11)}=\tfrac12(\lambda_{1111}-\lambda_{1122}) \\
+ &\lambda_{\Btg}^{(11)}=4\lambda_{1212} &&
+ \lambda_{\Eg}^{(11)}=4\lambda_{1313}.
+ \end{aligned}
+\end{equation}
+The interaction between strain and the order parameter $\eta$ depends on the representation of the point group that $\eta$ transforms as. If this representation is $\X$, then the most general coupling to linear order is
+\begin{equation}
+ f_\i=b^{(i)}\epsilon_\X^{(i)}\eta
+\end{equation}
+If $\X$ is a representation not present in the strain there can be no linear coupling, and the effect of $\eta$ going through a continuous phase transition is to produce a jump in the $\Aog$ strain stiffness. We will therefore focus our attention on order parameter symmetries that produce linear couplings to strain.
+
+If the order parameter transforms like $\Aog$, odd terms are allow in its free energy and any transition will be abrupt and not continuous without tuning. For $\X$ as any of $\Bog$, $\Btg$, or $\Eg$, the most general quartic free energy density is
+\begin{equation}
+ \begin{aligned}
+ f_\o=\frac12\big[&r\eta^2+c_\parallel(\nabla_\parallel\eta)^2
+ +c_\perp(\nabla_\perp\eta)^2 \\
+ &\quad+D_\parallel(\nabla_\parallel^2\eta)^2
+ +D_\perp(\nabla_\perp^2\eta)^2\big]+u\eta^4
+ \end{aligned}
+ \label{eq:fo}
+\end{equation}
+where $\nabla_\parallel=\{\partial_1,\partial_2\}$ transforms like $\Eu$ and $\nabla_\perp=\partial_3$ transforms like $\Atu$. We'll take $D_\parallel=0$ since this does not affect the physics at hand. Neglecting interaction terms higher than quadratic order, the only strain relevant to the problem is $\epsilon_\X$, and this can be traced out of the problem exactly, since
+\begin{equation}
+ 0=\frac{\delta F}{\delta\epsilon_{\X i}(x)}=\lambda_\X\epsilon_{\X i}(x)+\frac12b\eta_i(x)
+\end{equation}
+gives $\epsilon_\X(x)=-(b/2\lambda_\X)\eta(x)$. Upon substitution into the free energy, tracing out $\epsilon_\X$ has the effect of shifting $r$ in $f_\o$, with $r\to\tilde r=r-b^2/4\lambda_\X$.
+
+With the strain traced out \eqref{eq:fo} describes the theory of a Lifshitz point at $\tilde r=c_\perp=0$ \cite{lifshitz_theory_1942, lifshitz_theory_1942-1, hornreich_lifshitz_1980}. For a scalar order parameter ($\Bog$ or $\Btg$) it is traditional to make the field ansatz $\eta(x)=\eta_*\cos(q_*x_3)$. For $\tilde r>0$ and $c_\perp>0$, or $\tilde r<c_\perp^2/4D_\perp$ and $c_\perp<0$, the only stable solution is $\eta_*=q_*=0$ and the system is unordered. For $\tilde r<0$ there are free energy minima for $q_*=0$ and $\eta_*^2=-\tilde r/4u$ and this system has uniform order. For $c_\perp<0$ and $\tilde r<c_\perp^2/4D_\perp$ there are free energy minima for $q_*^2=-c_\perp/2D_\perp$ and
+\begin{equation}
+ \eta_*^2=\frac{c_\perp^2-4D_\perp\tilde r}{12D_\perp u}=\frac{\tilde r_c-\tilde r}{3u}
+\end{equation}
+with $\tilde r_c=c_\perp^2/4D_\perp$ and the system has modulated order. The transition between the uniform and modulated orderings is abrupt for a scalar field and occurs along the line $c_\perp=-2\sqrt{-D_\perp\tilde r/5}$. For a vector order parameter ($\Eg$) we must also allow a relative phase between the two components of the field. In this case the uniform ordered phase is only stable for $c_\perp>0$, and the modulated phase is now characterized by helical order with $\eta(x)=\eta_*\{\cos(q_*x_3),\sin(q_*x_3)\}$ and
+\begin{equation}
+ \eta_*^2=\frac{c_\perp^2-4D_\perp\tilde r}{16D_\perp u}=\frac{\tilde r_c-\tilde r}{4u}
+\end{equation}
+The uniform--modulated transition is now continuous. The schematic phase diagrams for this model are shown in Figure \ref{fig:phases}.
+
+\begin{figure}
+ \includegraphics[width=0.51\columnwidth]{phases_scalar}\hspace{-1.5em}
+ \includegraphics[width=0.51\columnwidth]{phases_vector}
+ \caption{Schematic phase diagrams for this model. Solid lines denote
+ continuous transitions, while dashed lines indicated abrupt transitions. (a)
+ The phases for a scalar ($\Bog$ or $\Btg$). (b) The phases for a vector
+ ($\Eg$).}
+ \label{fig:phases}
+\end{figure}
+
+The susceptibility is given by
+\begin{equation}
+ \begin{aligned}
+ &\chi_{ij}^{-1}(x,x')
+ =\frac{\delta^2F}{\delta\eta_i(x)\delta\eta_j(x')} \\
+ &\quad=\Big[\big(\tilde r-c_\parallel\nabla_\parallel^2-c_\perp\nabla_\perp^2+D_\perp\nabla_\perp^4+4u\eta^2(x)\big)\delta_{ij} \\
+ &\qquad\qquad +8u\eta_i(x)\eta_j(x)\Big]\delta(x-x'),
+ \end{aligned}
+\end{equation}
+or in Fourier space,
+\begin{equation}
+ \begin{aligned}
+ \chi_{ij}^{-1}(q)
+ &=8u\sum_{q'}\tilde\eta_i(q')\eta_j(-q')+\bigg(\tilde r+c_\parallel q_\parallel^2-c_\perp q_\perp^2 \\
+ &\qquad+D_\perp q_\perp^4+4u\sum_{q'}\tilde\eta_k(q')\tilde\eta_k(-q')\bigg)\delta_{ij}.
+ \end{aligned}
+\end{equation}
+Near the unordered--modulated transition this yields
+\begin{equation}
+ \begin{aligned}
+ \chi(q)
+ &=\frac1{c_\parallel q_\parallel^2+D_\perp(q_*^2-q_\perp^2)^2+|\tilde r-\tilde r_c|} \\
+ &=\frac1{D_\perp}\frac{\xi_\perp^4}{1+\xi_\parallel^2q_\parallel^2+\xi_\perp^4(q_*^2-q_\perp^2)^2},
+ \end{aligned}
+\end{equation}
+with $\xi_\perp=(|\tilde r-\tilde r_c|/D_\perp)^{-1/4}$ and $\xi_\parallel=(|\tilde r-\tilde r_c|/c_\parallel)^{-1/2}$.
+
+The elastic susceptibility (inverse stiffness) is given in the same way: we must trace over $\eta$ and take the second variation of the resulting free energy. Extremizing over $\eta$ yields
+\begin{equation}
+ 0=\frac{\delta F}{\delta\eta_i(x)}=\frac{\delta F_\o}{\delta\eta_i(x)}+\frac12b\epsilon_{\X i}(x),
+ \label{eq:implicit.eta}
+\end{equation}
+which implicitly gives $\eta$ as a functional of $\epsilon_\X$. Though this cannot be solved explicitly, we can make use of the inverse function theorem to write
+\begin{equation}
+ \begin{aligned}
+ \bigg(\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}\bigg)^{-1}
+ &=\frac{\delta\eta_j^{-1}[\eta](x)}{\delta\eta_i(x')}
+ =-\frac2b\frac{\delta^2F_\o}{\delta\eta_i(x)\delta\eta_j(x')} \\
+ &=-\frac2b\chi^{-1}(x,x')-\frac{b}{2\lambda_\X}\delta(x-x')
+ \end{aligned}
+ \label{eq:inv.func}
+\end{equation}
+It follows from \eqref{eq:implicit.eta} and \eqref{eq:inv.func} that the susceptibility of the material to $\epsilon_\X$ strain is given by
+\begin{widetext}
+\begin{equation}
+ \begin{aligned}
+ \chi_{\X ij}^{-1}(x,x')
+ &=\frac{\delta^2F}{\delta\epsilon_{\X i}(x)\delta\epsilon_{\X j}(x')} \\
+ &=\lambda_\X\delta(x-x')+
+ b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}
+ +\frac12b\int dx''\,\epsilon_{\X k}(x'')\frac{\delta^2\eta_k(x)}{\delta\epsilon_{\X i}(x')\delta\epsilon_{\X j}(x'')} \\
+ &\qquad+\int dx''\,dx'''\,\frac{\delta^2F_\o}{\delta\eta_k(x'')\delta\eta_\ell(x''')}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)}\frac{\delta\eta_\ell(x''')}{\delta\epsilon_{\X j}(x')}
+ +\int dx''\,\frac{\delta F_\o}{\delta\eta_k(x'')}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)\delta\epsilon_{\X j}(x')} \\
+ &=\lambda_\X\delta(x-x')+
+ b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}
+ -\frac12b\int dx''\,dx'''\,\bigg(\frac{\partial\eta_k(x'')}{\partial\epsilon_{\X\ell}(x''')}\bigg)^{-1}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)}\frac{\delta\eta_\ell(x''')}{\delta\epsilon_{\X j}(x')} \\
+ &=\lambda_\X\delta(x-x')+
+ b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}
+ -\frac12b\int dx''\,\delta_{i\ell}\delta(x-x'')\frac{\delta\eta_\ell(x'')}{\delta\epsilon_{\X j}(x')}
+ =\lambda_\X\delta(x-x')+
+ \frac12b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')},
+ \end{aligned}
+\end{equation}
+\end{widetext}
+whose Fourier transform follows from \eqref{eq:inv.func} as
+\begin{equation}
+ \chi_{\X ij}(q)=\frac1{\lambda_\X}+\frac{b^2}{4\lambda_\X^2}\chi_{ij}(q).
+ \label{eq:elastic.susceptibility}
+\end{equation}
+At $q=0$, which is where the stiffness measurements used here were taken, this predicts a cusp in the elastic susceptibility of the form $|\tilde r-\tilde r_c|^\gamma$ for $\gamma=1$.
+
+\begin{figure}
+ \centering
+ \includegraphics[width=0.49\columnwidth]{stiff_a11.pdf}
+ \includegraphics[width=0.49\columnwidth]{stiff_a22.pdf}
+ \includegraphics[width=0.49\columnwidth]{stiff_a12.pdf}
+ \includegraphics[width=0.49\columnwidth]{stiff_b1.pdf}
+ \includegraphics[width=0.49\columnwidth]{stiff_b2.pdf}
+ \includegraphics[width=0.49\columnwidth]{stiff_e.pdf}
+ \caption{
+ Measurements of the effective strain stiffness as a function of temperature
+ for the six independent components of strain from ultrasound. The vertical
+ dashed lines show the location of the hidden order transition.
+ }
+\end{figure}
+
+\begin{figure}
+ \includegraphics[width=\columnwidth]{cusp}
+ \caption{
+ Strain stiffness data for the $\Bog$ component of strain (solid) along with
+ a fit of \eqref{eq:elastic.susceptibility} (dashed).
+ }
+ }
+\end{figure}
+
+\begin{acknowledgements}
+
+\end{acknowledgements}
+
+\bibliography{hidden_order}
+
\end{document}