summaryrefslogtreecommitdiff
path: root/main.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2019-09-17 13:34:24 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2019-09-17 13:34:24 -0400
commit0a73432fb5e4dedb4cac14e9722fe8a26aa69e1a (patch)
treeeb9810b814d1f8b136f7da32323f11a7be08ec8e /main.tex
parentaf87e6ab65294b4a89f29fa57ed6928bba7167e6 (diff)
downloadPRB_102_075129-0a73432fb5e4dedb4cac14e9722fe8a26aa69e1a.tar.gz
PRB_102_075129-0a73432fb5e4dedb4cac14e9722fe8a26aa69e1a.tar.bz2
PRB_102_075129-0a73432fb5e4dedb4cac14e9722fe8a26aa69e1a.zip
defining some variables now that the ginzburg paragraph has been removed
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex6
1 files changed, 3 insertions, 3 deletions
diff --git a/main.tex b/main.tex
index 98266fc..af39f7f 100644
--- a/main.tex
+++ b/main.tex
@@ -302,8 +302,8 @@ Near the unordered--modulated transition this yields
\end{aligned}
\label{eq:susceptibility}
\end{equation}
-with $\xi_\perp=(|\Delta\tilde r|/D_\perp)^{-1/4}$ and
-$\xi_\parallel=(|\Delta\tilde r|/c_\parallel)^{-1/2}$. We must emphasize that
+with $\xi_\perp=(|\Delta\tilde r|/D_\perp)^{-1/4}=\xi_{\perp0}|t|^{-1/4}$ and
+$\xi_\parallel=(|\Delta\tilde r|/c_\parallel)^{-1/2}=\xi_{\parallel0}|t|^{-1/2}$, where $t=(T-T_c)/T_c$ is the reduced temperature and $\xi_{\perp0}=(D_\perp/aT_c)^{1/4}$ and $\xi_{\parallel0}=(c_\parallel/aT_c)^{1/2}$ are the bare correlation lengths. We must emphasize that
this is \emph{not} the magnetic susceptibility because a $\Bog$ or $\Btg$ \op\
cannot couple linearly to a uniform magnetic field. The object defined in
\eqref{eq:sus_def} is most readily interpreted as proportional to the two-point
@@ -442,7 +442,7 @@ $q_*$ should continuously vanish. Far from the Lifshitz point we expect the
wavevector to lock into values commensurate with the space group of the
lattice, and moreover that at zero pressure, where the \rus\ data here was
collected, the half-wavelength of the modulation should be commensurate with
-the lattice, or $q_*\simeq0.328\,\A^{-1}$ \cite{meng_imaging_2013,
+the lattice spacing $a_3\simeq9.68\,\A$, or $q_*=\pi/a_3\simeq0.328\,\A^{-1}$ \cite{meng_imaging_2013,
broholm_magnetic_1991, wiebe_gapped_2007, bourdarot_precise_2010}. In between
these two regimes, the ordering wavevector should shrink by jumping between
ever-closer commensurate values in the style of the devil's staircase