summaryrefslogtreecommitdiff
path: root/main.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-05-06 20:06:06 -0400
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-05-06 20:06:06 -0400
commit1d62111c843740b89c80fd2f1dbd0a70925cf7a3 (patch)
treefb2638860ed6efd5321e384cf54cafe7356557c2 /main.tex
parent0515954842d5d6b1a81475f8c4955a7733a0f802 (diff)
downloadPRB_102_075129-1d62111c843740b89c80fd2f1dbd0a70925cf7a3.tar.gz
PRB_102_075129-1d62111c843740b89c80fd2f1dbd0a70925cf7a3.tar.bz2
PRB_102_075129-1d62111c843740b89c80fd2f1dbd0a70925cf7a3.zip
Updated some citekeys.
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex6
1 files changed, 3 insertions, 3 deletions
diff --git a/main.tex b/main.tex
index 3da57a9..374519e 100644
--- a/main.tex
+++ b/main.tex
@@ -286,7 +286,7 @@ to $f_\op$ with the identification $r\to\tilde r=r-b^2/2C^0_\X$.
\end{figure}
With the strain traced out, \eqref{eq:fo} describes the theory of a Lifshitz
-point at $\tilde r=c_\perp=0$.\cite{Lifshitz_1942a, Lifshitz_1942b} The
+point at $\tilde r=c_\perp=0$.\cite{Lifshitz_1942_OnI, Lifshitz_1942_OnII} The
properties discussed in the remainder of this section can all be found in a
standard text, e.g., in chapter 4 \S6.5 of Chaikin \&
Lubensky.\cite{Chaikin_1995} For a one-component \op\ ($\Bog$ or $\Btg$) and
@@ -579,7 +579,7 @@ thermodynamic phase transition).
Three dimensions is below the upper critical dimension $4\frac12$ of a
one-component disordered-to-modulated transition, and so mean field theory
should break down sufficiently close to the critical point due to fluctuations,
-at the Ginzburg temperature. \cite{Hornreich_1980, Ginzburg_1961} Magnetic
+at the Ginzburg temperature. \cite{Hornreich_1980, Ginzburg_1961_Some} Magnetic
phase transitions tend to have a Ginzburg temperature of order one. Our fit
above gives $\xi_{\perp0}q_*=(D_\perp q_*^4/aT_c)^{1/4}\simeq2$, which combined
with the speculation of $q_*\simeq\pi/a_3$ puts the bare correlation length
@@ -589,7 +589,7 @@ mean field exponent suggests that this region is outside the Ginzburg region,
but an experiment may begin to see deviations from mean field behavior within
approximately several Kelvin of the critical point. An ultrasound experiment
with more precise temperature resolution near the critical point may be able to
-resolve a modified cusp exponent $\gamma\simeq1.31$,\cite{Guida_1998} since the
+resolve a modified cusp exponent $\gamma\simeq1.31$,\cite{Guida_1998_Critical} since the
universality class of a uniaxial modulated one-component \op\ is $\mathrm
O(2)$.\cite{Garel_1976} We should not expect any quantitative agreement between
mean field theory and experiment in the low temperature phase since, by the