summaryrefslogtreecommitdiff
path: root/main.tex
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2019-11-05 12:01:45 -0500
committerJaron Kent-Dobias <jaron@kent-dobias.com>2019-11-05 12:01:45 -0500
commitb7871f76ec948c0931637821a8beab5c4e4394c1 (patch)
tree0bf5e387f3e19079f1100943a9d60a5a2cdf3f2a /main.tex
parentde09cbeb5d1af65b68035f7b4a78daf195a36553 (diff)
downloadPRB_102_075129-b7871f76ec948c0931637821a8beab5c4e4394c1.tar.gz
PRB_102_075129-b7871f76ec948c0931637821a8beab5c4e4394c1.tar.bz2
PRB_102_075129-b7871f76ec948c0931637821a8beab5c4e4394c1.zip
more figure tweaks
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex2
1 files changed, 1 insertions, 1 deletions
diff --git a/main.tex b/main.tex
index 53a4833..f4f2b71 100644
--- a/main.tex
+++ b/main.tex
@@ -439,7 +439,7 @@ where $\eta$ has a large nonzero value and higher powers in the free energy
become important. The data in the high-temperature phase can be fit to the
theory \eqref{eq:elastic.susceptibility}, with a linear background modulus
$C^0_\Bog$ and $\tilde r-\tilde r_c=a(T-T_c)$, and the result is shown in
-Figure \ref{fig:fit}. The data and theory appear quantitatively consistent in
+Figure \ref{fig:data}. The data and theory appear quantitatively consistent in
the high temperature phase, suggesting that \ho\ can be described as a
$\Bog$-nematic phase that is modulated at finite $q$ along the $c-$axis.