diff options
-rw-r--r-- | main.tex | 2 |
1 files changed, 1 insertions, 1 deletions
@@ -723,7 +723,7 @@ The order parameter term relies on some other identities. First, \eqref{eq:eta_s \end{equation} and therefore that the functional inverse $\eta_\star^{-1}[\eta]$ is \begin{equation} - \eta_\star^{-1}[\eta](x)=\frac b{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg). + \eta_\star^{-1}[\eta](x)=\frac{b}{2g\eta(x)}\Bigg(1-\sqrt{1-\frac{4g\eta(x)}{b^2}\frac{\delta F_\op[\eta]}{\delta\eta(x)}}\Bigg). \end{equation} The inverse function theorem further implies (with substitution of \eqref{eq:dFodeta} after the derivative is evaluated) that \begin{equation} |