summaryrefslogtreecommitdiff
path: root/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'main.tex')
-rw-r--r--main.tex51
1 files changed, 25 insertions, 26 deletions
diff --git a/main.tex b/main.tex
index 07b9366..314a68c 100644
--- a/main.tex
+++ b/main.tex
@@ -166,7 +166,7 @@ The interaction between strain and an \op\ $\eta$ depends on the representation
of the point group that $\eta$ transforms as. If this representation is $\X$,
the most general coupling to linear order is
\begin{equation}
- f_\i=b^{(i)}\epsilon_\X^{(i)}\eta.
+ f_\i=-b^{(i)}\epsilon_\X^{(i)}\eta.
\end{equation}
If the representation $\X$ is not present in the strain there can be no linear
coupling, and the effect of the \op\ condensing at a continuous phase
@@ -207,14 +207,14 @@ The only strain relevant to the \op\ is $\epsilon_\X$, which can be traced out
of the problem exactly in mean field theory. Extremizing with respect to
$\epsilon_\X$,
\begin{equation}
- 0=\frac{\delta F[\eta,\epsilon]}{\delta\epsilon_{\X i}(x)}\bigg|_{\epsilon=\epsilon_\star}=C_\X\epsilon^\star_{\X i}(x)
- +\frac12b\eta_i(x)
+ 0=\frac{\delta F[\eta,\epsilon]}{\delta\epsilon_\X(x)}\bigg|_{\epsilon=\epsilon_\star}=C_\X\epsilon^\star_\X(x)
+ -b\eta(x)
\end{equation}
gives the optimized strain conditional on the \op\ as
-$\epsilon_\X^\star[\eta](x)=-(b/2C_\X)\eta(x)$ and $\epsilon_\Y^\star[\eta]=0$
+$\epsilon_\X^\star[\eta](x)=(b/C_\X)\eta(x)$ and $\epsilon_\Y^\star[\eta]=0$
for all other $\Y$. Upon substitution into the free energy, the resulting
effective free energy $F[\eta,\epsilon_\star[\eta]]$ has a density identical to
-$f_\op$ with $r\to\tilde r=r-b^2/4C_\X$.
+$f_\op$ with $r\to\tilde r=r-b^2/2C_\X$.
\begin{figure}[htpb]
\includegraphics[width=\columnwidth]{phase_diagram_experiments}
@@ -317,7 +317,7 @@ must trace over $\eta$ and take the second variation of the resulting free
energy functional of $\epsilon$. Extremizing over $\eta$ yields
\begin{equation}
0=\frac{\delta F[\eta,\epsilon]}{\delta\eta(x)}\bigg|_{\eta=\eta_\star}=
- \frac12b\epsilon_\X(x)+\frac{\delta F_\op[\eta]}{\delta\eta(x)}\bigg|_{\eta=\eta_\star},
+ \frac{\delta F_\op[\eta]}{\delta\eta(x)}\bigg|_{\eta=\eta_\star}-b\epsilon_\X(x),
\label{eq:implicit.eta}
\end{equation}
which implicitly gives $\eta_\star[\epsilon]$, the optimized \op\ conditioned on the strain. Since $\eta_\star$ is a functional of $\epsilon_\X$
@@ -328,7 +328,7 @@ $\eta_\star^{-1}[\eta]$ the inverse functional of $\eta_\star$ implied by
\eqref{eq:implicit.eta}, which gives the function $\epsilon_\X$ corresponding
to each solution of \eqref{eq:implicit.eta} it receives. This we can
immediately identify from \eqref{eq:implicit.eta} as
-$\eta^{-1}_\star[\eta](x)=-2/b(\delta F_\op[\eta]/\delta\eta(x))$. Now, we use
+$\eta^{-1}_\star[\eta](x)=b^{-1}(\delta F_\op[\eta]/\delta\eta(x))$. Now, we use
the inverse function theorem to relate the functional reciprocal of the
derivative of $\eta_\star[\epsilon]$ with respect to $\epsilon_\X$ to the
derivative of $\eta^{-1}_\star[\eta]$ with respect to $\eta$, yielding
@@ -336,7 +336,7 @@ derivative of $\eta^{-1}_\star[\eta]$ with respect to $\eta$, yielding
\begin{aligned}
\bigg(\frac{\delta\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')}\bigg)^\recip
&=\frac{\delta\eta_\star^{-1}[\eta](x)}{\delta\eta(x')}\bigg|_{\eta=\eta^*[\epsilon]}
- =-\frac2b\frac{\delta^2F_\op[\eta]}{\delta\eta(x)\delta\eta(x')}\bigg|_{\eta=\eta^*[\epsilon]}.
+ =b^{-1}\frac{\delta^2F_\op[\eta]}{\delta\eta(x)\delta\eta(x')}\bigg|_{\eta=\eta^*[\epsilon]}.
\end{aligned}
\label{eq:inv.func}
\end{equation}
@@ -347,19 +347,18 @@ the second variation
\begin{equation}
\begin{aligned}
\frac{\delta^2F[\eta_\star[\epsilon],\epsilon]}{\delta\epsilon_\X(x)\delta\epsilon_\X(x')}
- &=C_\X\delta(x-x')+
- b\frac{\delta\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')}
- +\frac12b\int dx''\,\frac{\delta^2\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')\delta\epsilon_\X(x'')}\epsilon_\X(x'') \\
- &\quad+\int dx''\,dx'''\,\frac{\delta\eta_\star[\epsilon](x'')}{\delta\epsilon_\X(x)}\frac{\delta\eta_\star[\epsilon](x''')}{\delta\epsilon_\X(x')}\frac{\delta^2F_\op[\eta]}{\delta\eta(x'')\delta\eta(x''')}\bigg|_{\eta=\eta_\star[\epsilon]}
- +\int dx''\,\frac{\delta\eta_\star[\epsilon](x'')}{\delta\epsilon_\X(x)\delta\epsilon_\X(x')}\frac{\delta F_\op[\eta]}{\delta\eta(x'')}\bigg|_{\eta=\eta_\star[\epsilon]} \\
- &=C_\X\delta(x-x')+
- b\frac{\delta\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')}
- -\frac12b\int dx''\,dx'''\,\frac{\delta\eta_\star[\epsilon](x'')}{\delta\epsilon_\X(x)}\frac{\delta\eta_\star[\epsilon](x''')}{\delta\epsilon_\X(x')}\bigg(\frac{\partial\eta_\star[\epsilon](x'')}{\partial\epsilon_\X(x''')}\bigg)^\recip \\
- &=C_\X\delta(x-x')+
- b\frac{\delta\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')}
- -\frac12b\int dx''\,\delta(x-x'')\frac{\delta\eta_\star[\epsilon](x'')}{\delta\epsilon_\X(x')}
- =C_\X\delta(x-x')+
- \frac12b\frac{\delta\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')}.
+ &=C_\X\delta(x-x')-
+ 2b\frac{\delta\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')}
+ -b\int dx''\,\frac{\delta^2\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')\delta\epsilon_\X(x'')}\epsilon_\X(x'') +\int dx''\,\frac{\delta^2\eta_\star[\epsilon](x'')}{\delta\epsilon_\X(x)\delta\epsilon_\X(x')}\frac{\delta F_\op[\eta]}{\delta\eta(x'')}\bigg|_{\eta=\eta_\star[\epsilon]}\\
+ &\qquad\qquad+\int dx''\,dx'''\,\frac{\delta\eta_\star[\epsilon](x'')}{\delta\epsilon_\X(x)}\frac{\delta\eta_\star[\epsilon](x''')}{\delta\epsilon_\X(x')}\frac{\delta^2F_\op[\eta]}{\delta\eta(x'')\delta\eta(x''')}\bigg|_{\eta=\eta_\star[\epsilon]} \\
+ &=C_\X\delta(x-x')-
+ 2b\frac{\delta\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')}
+ -b\int dx''\,\frac{\delta^2\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')\delta\epsilon_\X(x'')}\epsilon_\X(x'') +\int dx''\,\frac{\delta^2\eta_\star[\epsilon](x'')}{\delta\epsilon_\X(x)\delta\epsilon_\X(x')}(b\epsilon_\X(x''))\\
+ &\qquad\qquad+b\int dx''\,dx'''\,\frac{\delta\eta_\star[\epsilon](x'')}{\delta\epsilon_\X(x)}\frac{\delta\eta_\star[\epsilon](x''')}{\delta\epsilon_\X(x')} \bigg(\frac{\partial\eta_\star[\epsilon](x'')}{\partial\epsilon_\X(x''')}\bigg)^\recip\\
+ &=C_\X\delta(x-x')-
+ 2b\frac{\delta\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')}
+ +b\int dx''\,\delta(x-x'')\frac{\delta\eta_\star[\epsilon](x'')}{\delta\epsilon_\X(x')}
+ =C_\X\delta(x-x')-b\frac{\delta\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')}.
\end{aligned}
\label{eq:big.boy}
\end{equation}
@@ -371,7 +370,7 @@ $\langle\epsilon\rangle$ (or
$\eta_\star(\langle\epsilon\rangle)=\langle\eta\rangle$) yields
\begin{equation}
\bigg(\frac{\delta\eta_\star[\epsilon](x)}{\delta\epsilon_\X(x')}\bigg)^\recip\bigg|_{\epsilon=\langle\epsilon\rangle}
- =-\frac2b\chi^\recip(x,x')-\frac{b}{2C_\X}\delta(x-x'),
+ =b^{-1}\chi^\recip(x,x')+\frac{b}{C_\X}\delta(x-x'),
\label{eq:recip.deriv.op}
\end{equation}
where $\chi^\recip$ is the \op\ susceptibilty given by \eqref{eq:sus_def}.
@@ -379,8 +378,8 @@ Upon substitution into \eqref{eq:big.boy} and taking the Fourier transform of
the result, we finally arrive at
\begin{equation}
\lambda_\X(q)
- =C_\X-\frac b2\bigg(\frac2{b\chi(q)}+\frac b{2C_\X}\bigg)^{-1}
- =C_\X\bigg(1+\frac{b^2}{4C_\X}\chi(q)\bigg)^{-1}.
+ =C_\X-b\bigg(\frac1{b\chi(q)}+\frac b{C_\X}\bigg)^{-1}
+ =C_\X\bigg(1+\frac{b^2}{C_\X}\chi(q)\bigg)^{-1}.
\label{eq:elastic.susceptibility}
\end{equation}
Though not relevant here, this result generalizes to multicomponent \op s. At
@@ -420,7 +419,7 @@ shown in Figure \ref{fig:fit}. The data and theory appear consistent.
a fit of \eqref{eq:elastic.susceptibility} to the data above $T_c$
(dashed). The fit gives
$C_\Bog^{(11)}\simeq\big[71-(0.010\,\K^{-1})T\big]\,\GPa$,
- $b^2/4D_\perp q_*^4\simeq6.2\,\GPa$, and $a/D_\perp
+ $b^2/D_\perp q_*^4\simeq6.2\,\GPa$, and $a/D_\perp
q_*^4\simeq0.0038\,\K^{-1}$. The failure of the Ginzburg--Landau prediction
below the transition is expected on the grounds that the \op\ is too large
for the free energy expansion to be valid by the time the Ginzburg
@@ -435,7 +434,7 @@ stiffness at zero pressure. There are several implications of this theory. First
the association of a modulated $\Bog$ order with the \ho\ phase implies a
\emph{uniform} $\Bog$ order associated with the \afm\ phase, and moreover a
uniform $\Bog$ strain of magnitude $\langle\epsilon_\Bog\rangle^2=b^2\tilde
-r/16uC_\Bog^2$, which corresponds to an orthorhombic phase. Orthorhombic
+r/4uC_\Bog^2$, which corresponds to an orthorhombic phase. Orthorhombic
symmetry breaking was recently detected in the \afm\ phase of \urusi\ using
x-ray diffraction, a further consistency of this theory with the phenomenology
of \urusi\ \cite{choi_pressure-induced_2018}. Second, as the Lifshitz point is