1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
\documentclass[aps,prl,reprint]{revtex4-1}
\usepackage[utf8]{inputenc}
\usepackage{amsmath,graphicx,upgreek,amssymb}
% Our mysterious boy
\def\urusi{URu$_2$Si$_2\ $}
\def\e{{\mathrm e}} % "elastic"
\def\o{{\mathrm o}} % "order parameter"
\def\i{{\mathrm i}} % "interaction"
\def\Dfh{D$_{4\mathrm h}$}
% Irreducible representations (use in math mode)
\def\Aog{{\mathrm A_{1\mathrm g}}}
\def\Atg{{\mathrm A_{2\mathrm g}}}
\def\Bog{{\mathrm B_{1\mathrm g}}}
\def\Btg{{\mathrm B_{2\mathrm g}}}
\def\Eg {{\mathrm E_{ \mathrm g}}}
\def\Aou{{\mathrm A_{1\mathrm u}}}
\def\Atu{{\mathrm A_{2\mathrm u}}}
\def\Bou{{\mathrm B_{1\mathrm u}}}
\def\Btu{{\mathrm B_{2\mathrm u}}}
\def\Eu {{\mathrm E_{ \mathrm u}}}
% Variables to represent some representation
\def\X{\mathrm X}
\def\Y{\mathrm Y}
% Units
\def\J{\mathrm J}
\def\m{\mathrm m}
\def\K{\mathrm K}
\def\GPa{\mathrm{GPa}}
\def\A{\mathrm{\c A}}
% Other
\def\G{\mathrm G} % Ginzburg
\begin{document}
\title{\urusi mft}
\author{Jaron Kent-Dobias}
\author{Mike Matty}
\author{Brad Ramshaw}
\affiliation{Laboratory of Atomic \& Solid State Physics, Cornell University, Ithaca, NY, USA}
\date\today
\begin{abstract}
blah blah blah its-a abstract
\end{abstract}
\maketitle
\begin{enumerate}
\item Introduction
\begin{enumerate}
\item \urusi hidden order intro paragraph, discuss the phase diagram
\item Strain/OP coupling discussion/RUS
\item Discussion of experimental data
\item Analogy of lack of divergence/AFM w/ FM $\chi$
\item We look at MFT's for OP's of various symmetries
\end{enumerate}
\item Theory
\begin{enumerate}
\item Introduce various pieces of free energy
\item Summary of MFT results
\end{enumerate}
\item Data piece
\item Talk about more cool stuff like AFM C4 breaking etc
\end{enumerate}
The point group of \urusi is \Dfh, and any coarse-grained theory must locally respect this symmetry. We will introduce a phenomenological free energy density in three parts: that of the strain, the order parameter, and their interaction. The most general quadratic free energy of the strain $\epsilon$ is $f_\e=\lambda_{ijkl}\epsilon_{ij}\epsilon_{kl}$, but the form of the $\lambda$ tensor is constrained by both that $\epsilon$ is a symmetric tensor and by the point group symmetry \cite{landau_theory_1995}. The latter can be seen in a systematic way. First, the six independent components of strain are written as linear combinations that behave like irreducible representations under the action of the point group, or
\begin{equation}
\begin{aligned}
\epsilon_\Aog^{(1)}=\epsilon_{11}+\epsilon_{22} && \hspace{0.1\columnwidth}
\epsilon_\Aog^{(2)}=\epsilon_{33} \\
\epsilon_\Bog^{(1)}=\epsilon_{11}-\epsilon_{22} &&
\epsilon_\Btg^{(1)}=\epsilon_{12} \\
\epsilon_\Eg^{(1)} =\{\epsilon_{11},\epsilon_{22}\}.
\end{aligned}
\end{equation}
Next, all quadratic combinations of these irreducible strains that transform like $\Aog$ are included in the free energy as
\begin{equation}
f_\e=\frac12\sum_\X\lambda_\X^{(ij)}\epsilon_\X^{(i)}\epsilon_\X^{(j)},
\end{equation}
where the sum is over irreducible representations of the point group and the $\lambda_\X^{(ij)}$ are
\begin{equation}
\begin{aligned}
&\lambda_{\Aog}^{(11)}=\tfrac12(\lambda_{1111}+\lambda_{1122}) &&
\lambda_{\Aog}^{(22)}=\lambda_{3333} \\
&\lambda_{\Aog}^{(12)}=\lambda_{1133} &&
\lambda_{\Bog}^{(11)}=\tfrac12(\lambda_{1111}-\lambda_{1122}) \\
&\lambda_{\Btg}^{(11)}=4\lambda_{1212} &&
\lambda_{\Eg}^{(11)}=4\lambda_{1313}.
\end{aligned}
\end{equation}
The interaction between strain and the order parameter $\eta$ depends on the representation of the point group that $\eta$ transforms as. If this representation is $\X$, then the most general coupling to linear order is
\begin{equation}
f_\i=b^{(i)}\epsilon_\X^{(i)}\eta
\end{equation}
If $\X$ is a representation not present in the strain there can be no linear coupling, and the effect of $\eta$ going through a continuous phase transition is to produce a jump in the $\Aog$ strain stiffness. We will therefore focus our attention on order parameter symmetries that produce linear couplings to strain.
If the order parameter transforms like $\Aog$, odd terms are allow in its free energy and any transition will be abrupt and not continuous without tuning. For $\X$ as any of $\Bog$, $\Btg$, or $\Eg$, the most general quartic free energy density is
\begin{equation}
\begin{aligned}
f_\o=\frac12\big[&r\eta^2+c_\parallel(\nabla_\parallel\eta)^2
+c_\perp(\nabla_\perp\eta)^2 \\
&\quad+D_\parallel(\nabla_\parallel^2\eta)^2
+D_\perp(\nabla_\perp^2\eta)^2\big]+u\eta^4
\end{aligned}
\label{eq:fo}
\end{equation}
where $\nabla_\parallel=\{\partial_1,\partial_2\}$ transforms like $\Eu$ and $\nabla_\perp=\partial_3$ transforms like $\Atu$. We'll take $D_\parallel=0$ since this does not affect the physics at hand. Neglecting interaction terms higher than quadratic order, the only strain relevant to the problem is $\epsilon_\X$, and this can be traced out of the problem exactly, since
\begin{equation}
0=\frac{\delta F}{\delta\epsilon_{\X i}(x)}=\lambda_\X\epsilon_{\X i}(x)+\frac12b\eta_i(x)
\end{equation}
gives $\epsilon_\X(x)=-(b/2\lambda_\X)\eta(x)$. Upon substitution into the free energy, tracing out $\epsilon_\X$ has the effect of shifting $r$ in $f_\o$, with $r\to\tilde r=r-b^2/4\lambda_\X$.
With the strain traced out \eqref{eq:fo} describes the theory of a Lifshitz point at $\tilde r=c_\perp=0$ \cite{lifshitz_theory_1942, lifshitz_theory_1942-1}. For a scalar order parameter ($\Bog$ or $\Btg$) it is traditional to make the field ansatz $\eta(x)=\eta_*\cos(q_*x_3)$. For $\tilde r>0$ and $c_\perp>0$, or $\tilde r<c_\perp^2/4D_\perp$ and $c_\perp<0$, the only stable solution is $\eta_*=q_*=0$ and the system is unordered. For $\tilde r<0$ there are free energy minima for $q_*=0$ and $\eta_*^2=-\tilde r/4u$ and this system has uniform order. For $c_\perp<0$ and $\tilde r<c_\perp^2/4D_\perp$ there are free energy minima for $q_*^2=-c_\perp/2D_\perp$ and
\begin{equation}
\eta_*^2=\frac{c_\perp^2-4D_\perp\tilde r}{12D_\perp u}=\frac{\tilde r_c-\tilde r}{3u}
\end{equation}
with $\tilde r_c=c_\perp^2/4D_\perp$ and the system has modulated order. The transition between the uniform and modulated orderings is abrupt for a scalar field and occurs along the line $c_\perp=-2\sqrt{-D_\perp\tilde r/5}$. For a vector order parameter ($\Eg$) we must also allow a relative phase between the two components of the field. In this case the uniform ordered phase is only stable for $c_\perp>0$, and the modulated phase is now characterized by helical order with $\eta(x)=\eta_*\{\cos(q_*x_3),\sin(q_*x_3)\}$ and
\begin{equation}
\eta_*^2=\frac{c_\perp^2-4D_\perp\tilde r}{16D_\perp u}=\frac{\tilde r_c-\tilde r}{4u}
\end{equation}
The uniform--modulated transition is now continuous. The schematic phase diagrams for this model are shown in Figure \ref{fig:phases}.
\begin{figure}[htpb]
\includegraphics[width=0.51\columnwidth]{phases_scalar}\hspace{-1.5em}
\includegraphics[width=0.51\columnwidth]{phases_vector}
\caption{Schematic phase diagrams for this model. Solid lines denote
continuous transitions, while dashed lines indicated abrupt transitions. (a)
The phases for a scalar ($\Bog$ or $\Btg$). (b) The phases for a vector
($\Eg$).}
\label{fig:phases}
\end{figure}
The susceptibility is given by
\begin{equation}
\begin{aligned}
&\chi_{ij}^{-1}(x,x')
=\frac{\delta^2F}{\delta\eta_i(x)\delta\eta_j(x')} \\
&\quad=\Big[\big(\tilde r-c_\parallel\nabla_\parallel^2-c_\perp\nabla_\perp^2+D_\perp\nabla_\perp^4+4u\eta^2(x)\big)\delta_{ij} \\
&\qquad\qquad +8u\eta_i(x)\eta_j(x)\Big]\delta(x-x'),
\end{aligned}
\end{equation}
or in Fourier space,
\begin{equation}
\begin{aligned}
\chi_{ij}^{-1}(q)
&=8u\sum_{q'}\tilde\eta_i(q')\eta_j(-q')+\bigg(\tilde r+c_\parallel q_\parallel^2-c_\perp q_\perp^2 \\
&\qquad+D_\perp q_\perp^4+4u\sum_{q'}\tilde\eta_k(q')\tilde\eta_k(-q')\bigg)\delta_{ij}.
\end{aligned}
\end{equation}
Near the unordered--modulated transition this yields
\begin{equation}
\begin{aligned}
\chi(q)
&=\frac1{c_\parallel q_\parallel^2+D_\perp(q_*^2-q_\perp^2)^2+|\tilde r-\tilde r_c|} \\
&=\frac1{D_\perp}\frac{\xi_\perp^4}{1+\xi_\parallel^2q_\parallel^2+\xi_\perp^4(q_*^2-q_\perp^2)^2},
\end{aligned}
\label{eq:susceptibility}
\end{equation}
with $\xi_\perp=(|\tilde r-\tilde r_c|/D_\perp)^{-1/4}$ and $\xi_\parallel=(|\tilde r-\tilde r_c|/c_\parallel)^{-1/2}$.
The elastic susceptibility (inverse stiffness) is given in the same way: we must trace over $\eta$ and take the second variation of the resulting free energy. Extremizing over $\eta$ yields
\begin{equation}
0=\frac{\delta F}{\delta\eta_i(x)}=\frac{\delta F_\o}{\delta\eta_i(x)}+\frac12b\epsilon_{\X i}(x),
\label{eq:implicit.eta}
\end{equation}
which implicitly gives $\eta$ as a functional of $\epsilon_\X$. Though this cannot be solved explicitly, we can make use of the inverse function theorem to write
\begin{equation}
\begin{aligned}
\bigg(\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}\bigg)^{-1}
&=\frac{\delta\eta_j^{-1}[\eta](x)}{\delta\eta_i(x')}
=-\frac2b\frac{\delta^2F_\o}{\delta\eta_i(x)\delta\eta_j(x')} \\
&=-\frac2b\chi^{-1}(x,x')-\frac{b}{2\lambda_\X}\delta(x-x')
\end{aligned}
\label{eq:inv.func}
\end{equation}
It follows from \eqref{eq:implicit.eta} and \eqref{eq:inv.func} that the susceptibility of the material to $\epsilon_\X$ strain is given by
\begin{widetext}
\begin{equation}
\begin{aligned}
\chi_{\X ij}^{-1}(x,x')
&=\frac{\delta^2F}{\delta\epsilon_{\X i}(x)\delta\epsilon_{\X j}(x')} \\
&=\lambda_\X\delta(x-x')+
b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}
+\frac12b\int dx''\,\epsilon_{\X k}(x'')\frac{\delta^2\eta_k(x)}{\delta\epsilon_{\X i}(x')\delta\epsilon_{\X j}(x'')} \\
&\qquad+\int dx''\,dx'''\,\frac{\delta^2F_\o}{\delta\eta_k(x'')\delta\eta_\ell(x''')}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)}\frac{\delta\eta_\ell(x''')}{\delta\epsilon_{\X j}(x')}
+\int dx''\,\frac{\delta F_\o}{\delta\eta_k(x'')}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)\delta\epsilon_{\X j}(x')} \\
&=\lambda_\X\delta(x-x')+
b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}
-\frac12b\int dx''\,dx'''\,\bigg(\frac{\partial\eta_k(x'')}{\partial\epsilon_{\X\ell}(x''')}\bigg)^{-1}\frac{\delta\eta_k(x'')}{\delta\epsilon_{\X i}(x)}\frac{\delta\eta_\ell(x''')}{\delta\epsilon_{\X j}(x')} \\
&=\lambda_\X\delta(x-x')+
b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')}
-\frac12b\int dx''\,\delta_{i\ell}\delta(x-x'')\frac{\delta\eta_\ell(x'')}{\delta\epsilon_{\X j}(x')}
=\lambda_\X\delta(x-x')+
\frac12b\frac{\delta\eta_i(x)}{\delta\epsilon_{\X j}(x')},
\end{aligned}
\end{equation}
\end{widetext}
whose Fourier transform follows from \eqref{eq:inv.func} as
\begin{equation}
\chi_{\X ij}(q)=\frac1{\lambda_\X}+\frac{b^2}{4\lambda_\X^2}\chi_{ij}(q).
\label{eq:elastic.susceptibility}
\end{equation}
At $q=0$, which is where the stiffness measurements used here were taken, this predicts a cusp in the elastic susceptibility of the form $|\tilde r-\tilde r_c|^\gamma$ for $\gamma=1$.
\begin{figure}[htpb]
\centering
\includegraphics[width=0.49\columnwidth]{stiff_a11.pdf}
\includegraphics[width=0.49\columnwidth]{stiff_a22.pdf}
\includegraphics[width=0.49\columnwidth]{stiff_a12.pdf}
\includegraphics[width=0.49\columnwidth]{stiff_b1.pdf}
\includegraphics[width=0.49\columnwidth]{stiff_b2.pdf}
\includegraphics[width=0.49\columnwidth]{stiff_e.pdf}
\caption{
Measurements of the effective strain stiffness as a function of temperature
for the six independent components of strain from ultrasound. The vertical
dashed lines show the location of the hidden order transition.
}
\label{fig:data}
\end{figure}
We have seen that mean field theory predicts that whatever component of strain transforms like the order parameter will see a $t^{-1}$ softening in the stiffness that ends in a cusp. Ultrasound experiments \textbf{[Elaborate???]} yield the strain stiffness for various components of the strain; this data is shown in Figure \ref{fig:data}. The $\Btg$ and $\Eg$ stiffnesses don't appear to have any response to the presence of the transition, exhibiting the expected linear stiffening with a low-temperature cutoff \textbf{[What's this called? Citation?]}. The $\Bog$ stiffness has a dramatic response, softening over the course of roughly $100\,\K$. There is a kink in the curve right at the transition. While the low-temperature response is not as dramatic as the theory predicts, mean field theory---which is based on a small-$\eta$ expansion---will not work quantitatively far below the transition where $\eta$ has a large nonzero value and higher powers in the free energy become important. The data in the high-temperature phase can be fit to the theory \eqref{eq:elastic.susceptibility}, with a linear background stiffness $\lambda_\Bog^{(11)}$ and $\tilde r-\tilde r_c=a(T-T_c)$, and the result is shown in Figure \ref{fig:fit}. The data and theory appear consistent.
\begin{figure}[htpb]
\includegraphics[width=\columnwidth]{cusp}
\caption{
Strain stiffness data for the $\Bog$ component of strain (solid) along with
a fit of \eqref{eq:elastic.susceptibility} to the data above $T_c$ (dashed). The fit gives $\lambda_\Bog^{(11)}\simeq\big[71-(0.010\,\K^{-1})T\big]\,\GPa$, $b^2/4D_\perp q_*^4\simeq6.2\,\GPa$, and $a/D_\perp q_*^4\simeq0.0038\,\K^{-1}$.
}
\label{fig:fit}
\end{figure}
Mean field theory neglects the effect of fluctuations on critical behavior, yet also predicts the magnitude of those fluctuations. This allows a mean field theory to undergo an internal consistency check to ensure the predicted fluctuations are indeed negligible. This is typically done by computing the Ginzburg criterion \cite{ginzburg_remarks_1961}, which gives the proximity to the critical point $t=(T-T_c)/T_c$ at which mean field theory is expected to break down by comparing the magnitude of fluctuations in a correlation-length sized box to the magnitude of the field, or since the correlation function is $k_BT\chi(x,x')$,
\begin{equation}
V_\xi^{-1}k_BT\int_{V_\xi}d^3x\,\chi(x,0)
=\langle\delta\eta^2\rangle_{V_\xi}
\lesssim\frac12\eta_*^2=\frac{|\Delta\tilde r|}{6u}
\end{equation}
with $V_\xi$ the correlation volume, which we will take to be a cylinder of radius $\xi_\parallel/2$ and height $\xi_\perp$. Upon substitution of \eqref{eq:susceptibility} and using the jump in the specific heat at the transition from
\begin{equation}
c_V=-T\frac{\partial^2f}{\partial T^2}=\begin{cases}0&T>T_c\\Ta^2/12 u&T<T_c,\end{cases}
\end{equation}
this expression can be brought to the form
\begin{equation}
\frac{2k_B}{\pi\Delta c_V\xi_{\perp0}\xi_{\parallel0}^2}\mathcal I(\xi_{\perp0} q_*|t|^{-1/4})\lesssim |t|^{13/4},
\end{equation}
where $\xi=\xi_0t^{-\nu}$ defines the bare correlation lengths and $\mathcal I$ is defined by
\begin{equation}
\mathcal I(x)=\frac1\pi\int_{-\infty}^\infty dy\,\frac{\sin\tfrac y2}y\bigg(\frac1{1+(y^2-x^2)^2}-\frac{K_1(\sqrt{1+(y^2-x^2)^2})}{\sqrt{1+(y^2-x^2)^2}}\bigg)
\end{equation}
For large argument, $\mathcal I(x)\sim x^{-4}$, yielding
\begin{equation}
t_\G^{9/4}\sim\frac{2k_B}{\pi\Delta c_V\xi_{\parallel0}^2\xi_{\perp0}^5q_*^4}
\end{equation}
Experiments give $\Delta c_V\simeq1\times10^5\,\J\,\m^{-3}\,\K^{-1}$ \cite{fisher_specific_1990}, and our fit above gives $\xi_{\perp0}q_*=(D_\perp q_*^4/aT_c)^{1/4}\sim2$. We have reason to believe that at zero pressure, very far from the Lifshitz point, $q_*$ is roughly the inverse lattice spacing \textbf{[Why???]}. Further supposing that $\xi_{\parallel0}\simeq\xi_{\perp0}$, we find $t_\G\sim0.04$, so that an experiment would need to be within $\sim1\,\K$ to detect a deviation from mean field behavior. An ultrasound experiment able to capture data over several decades within this vicinity of $T_c$ may be able to measure a cusp with $|t|^\gamma$ for $\gamma=\text{\textbf{???}}$, the empirical exponent \textbf{[Citation???]}.
\begin{acknowledgements}
\end{acknowledgements}
\bibliography{hidden_order}
\end{document}
|