summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJaron Kent-Dobias <jaron@kent-dobias.com>2020-01-31 14:34:05 -0500
committerJaron Kent-Dobias <jaron@kent-dobias.com>2020-01-31 14:34:05 -0500
commite463e897c8625e64fd6dfb48686ca96e45d67fcc (patch)
tree98c2f79588a2b45f17a9ff3d704aa0b53a73dd00
parentee932a158bafd9ea0f6c1bf1de4a3140377bbf3c (diff)
downloadaps_mm_2020-e463e897c8625e64fd6dfb48686ca96e45d67fcc.tar.gz
aps_mm_2020-e463e897c8625e64fd6dfb48686ca96e45d67fcc.tar.bz2
aps_mm_2020-e463e897c8625e64fd6dfb48686ca96e45d67fcc.zip
inserted some relavant figures
-rw-r--r--poster_aps_mm_2020.tex130
-rw-r--r--rus_resonances.jpgbin0 -> 164557 bytes
-rw-r--r--urusi_modes.pngbin0 -> 156232 bytes
3 files changed, 62 insertions, 68 deletions
diff --git a/poster_aps_mm_2020.tex b/poster_aps_mm_2020.tex
index 7451fff..3fc9316 100644
--- a/poster_aps_mm_2020.tex
+++ b/poster_aps_mm_2020.tex
@@ -45,6 +45,45 @@
\font\cpp=cmr24
\def\max{\mathrm{max}}
+% Our mysterious boy
+\def\urusi{URu$_{\text2}$Si$_{\text2}$}
+
+\def\e{{\text{\textsc{elastic}}}} % "elastic"
+\def\i{{\text{\textsc{int}}}} % "interaction"
+
+\def\Dfh{D$_{\text{4h}}$}
+
+% Irreducible representations (use in math mode)
+\def\Aog{{\text A_{\text{1g}}}}
+\def\Atg{{\text A_{\text{2g}}}}
+\def\Bog{{\text B_{\text{1g}}}}
+\def\Btg{{\text B_{\text{2g}}}}
+\def\Eg {{\text E_{\text g}}}
+\def\Aou{{\text A_{\text{1u}}}}
+\def\Atu{{\text A_{\text{2u}}}}
+\def\Bou{{\text B_{\text{1u}}}}
+\def\Btu{{\text B_{\text{2u}}}}
+\def\Eu {{\text E_{\text u}}}
+
+% Variables to represent some representation
+\def\X{\text X}
+\def\Y{\text Y}
+
+% Units
+\def\J{\text J}
+\def\m{\text m}
+\def\K{\text K}
+\def\GPa{\text{GPa}}
+\def\A{\text{\r A}}
+
+% Other
+\def\op{\textsc{op}} % order parameter
+\def\ho{\textsc{ho}} % hidden order
+\def\rus{\textsc{rus}} % resonant ultrasound spectroscopy
+\def\Rus{\textsc{Rus}} % Resonant ultrasound spectroscopy
+\def\afm{\textsc{afm}} % antiferromagnetism
+\def\recip{{\{-1\}}} % functional reciprocal
+
\noindent\hspace{177pc}\includegraphics[width=18pc]{CULogo-red120px.eps}
\vspace{-24.5pc}\\
\Huge \textbf{Elastic properties of hidden order in URu$_{\text2}$Si$_{\text2}$ are reproduced by\\ staggered nematic order}
@@ -55,38 +94,25 @@
\begin{multicols}{2}
- \section{Introduction}
+ \section{Resonant ultrasound spectroscopy}
\Large
\begin{wrapfigure}{r}{.25\textwidth}
\centering
- %\includegraphics[width=0.25\textwidth]{imgs/crack.jpg}
- \caption{Cracking in concrete.}
+ \includegraphics[width=0.25\textwidth]{rus_resonances.jpg}
+ \caption{Resonances }
\end{wrapfigure}
- Understanding material cracking and fracture is necessary for
- understanding the aging and failure of those materials in our buildings
- and infrastructure. In ordinary brittle materials like glass, stress at
- the tip of a crack causes it to quickly and cleanly propagate through the
- material. In ductile materials like metals, this stress is reduced by
- plastic deformation around the crack tip, forming the crack's
- \textbf{process zone}. In quasi- (or disordered) brittle materials like
- concrete, this stress is reduced by opening a complicated network of
- microcracks in the process zone. This makes the structure of the
- quasibrittle process zone and crack propagation
- difficult to study by ordinary means.
-
+ Strain measures the displacement of material from its equilibrium configuration.
\section{Fuse Networks}
\begin{wrapfigure}{l}{.25\textwidth}
\centering
- %\includegraphics[width=0.12\textwidth]{imgs/square_network.pdf}
- %\includegraphics[width=0.12\textwidth]{imgs/square_high_beta.pdf}\\
- %\includegraphics[width=0.12\textwidth]{imgs/voronoi_network.pdf}
- %\includegraphics[width=0.12\textwidth]{imgs/voronoi_high_beta.pdf}
- \captionof{figure}{Contrasting the square (top) and voronoi (bottom) networks. {\bf Left:} Unbroken fuse networks. {\bf Right:} A
- fracture surface in each at low disorder ($\beta=10$).}
+ \includegraphics[width=0.55\columnwidth]{urusi_modes.png}
+ \captionof{figure}{
+ The crystal structure of \urusi\ and the influence of irreducible strains on it.
+ }
\label{nets}
\end{wrapfigure}
@@ -105,12 +131,21 @@
\section{Homogeneous Scaling}
- \begin{wrapfigure}{r}{0.25\textwidth}
+ \begin{wrapfigure}{}{0.6\columnwidth}
\centering
- %\includegraphics[width=0.25\textwidth]{imgs/ashivni.png}
- \captionof{figure}{The `phase diagram' for fracture in homogeneous
- systems.}
- \label{ashivni}
+ \includegraphics[width=0.6\columnwidth]{paper/phase_diagram_experiments}
+
+ \vspace{1em}
+
+ \includegraphics[width=0.3\columnwidth]{paper/phases_scalar}\hspace{-0.75em}
+ \includegraphics[width=0.3\columnwidth]{paper/phases_vector}
+ \captionof{figure}{
+ Phase diagrams for (a) \urusi\ from Phys Rev B \textbf{77} 115117 (2008) (b) mean
+ field theory of a one-component ($\Bog$ or $\Btg$) Lifshitz point (c) mean
+ field theory of a two-component ($\Eg$) Lifshitz point. Solid lines denote
+ continuous transitions, while dashed lines denote first order transitions.
+ }
+ \label{phase_diagram}
\end{wrapfigure}
\Large
@@ -140,12 +175,7 @@
\begin{figure}
\vspace{1pc}
\centering
- %\includegraphics[width=0.325\textwidth]{imgs/voronoi_homo_big.pdf}
- %\includegraphics[width=0.325\textwidth]{imgs/voronoi_homo_med.pdf}
- %\includegraphics[width=0.325\textwidth]{imgs/voronoi_homo_lit.pdf}\\
- \begin{minipage}[c]{0.325\textwidth}\centering$\pmb{\beta=3}$\end{minipage}
- \begin{minipage}[c]{0.325\textwidth}\centering$\pmb{\beta=0.5}$\end{minipage}
- \begin{minipage}[c]{0.325\textwidth}\centering$\pmb{\beta=0.03}$\end{minipage}\\
+ \includegraphics[width=\columnwidth]{paper/fig-stiffnesses.pdf}
\captionof{figure}{Fractured fuse networks at various $\beta$. Each colored region shows a
contiguous cracked cluster. The black region shows the surface of
the spanning crack.}
@@ -156,22 +186,6 @@
\section{Scaling in the Process Zone}
- \begin{figure}
- \centering
- %\includegraphics[width=0.245\textwidth]{imgs/sample_16.pdf}
- %\includegraphics[width=0.245\textwidth]{imgs/sample_32.pdf}
- %\includegraphics[width=0.245\textwidth]{imgs/sample_64.pdf}
- %\includegraphics[width=0.245\textwidth]{imgs/sample_128.pdf}\\
- \begin{minipage}[c]{0.245\textwidth}\centering$\pmb{L=16,\;\beta=1.9}$\end{minipage}
- \begin{minipage}[c]{0.245\textwidth}\centering$\pmb{L=32,\;\beta=1.2}$\end{minipage}
- \begin{minipage}[c]{0.245\textwidth}\centering$\pmb{L=64,\;\beta=0.78}$\end{minipage}
- \begin{minipage}[c]{0.245\textwidth}\centering$\pmb{L=128,\;\beta=0.5}$\end{minipage}\\
- \captionof{figure}{Notched fuse networks at critical stress. The
- disorder for each system is tuned so that $\beta L^{1/\nu_f}$ is
- constant, and the statistics of each should scale trivially.}
- \vspace{1pc}
- \label{notches}
- \end{figure}
\Large
We have made progress for developing a scaling theory of damage and stress
@@ -184,29 +198,9 @@
\ref{collapse}, the disorder-averaged stress profiles caused by each
collapses nicely.
- \begin{figure}
- \centering
- %\includegraphics[width=0.5\textwidth]{imgs/legends.pdf}\\
- \vspace{-.5em}
- %\includegraphics[width=0.505\textwidth,valign=t]{imgs/sample_collapse_1.pdf}\hfill
- %\includegraphics[width=0.48\textwidth,valign=t]{imgs/sample_collapse_2.pdf}\\
- \vspace{-.5em}
-
- \captionof{figure}{Disorder-averaged stress $\sigma$ as a function of
- distance $x$ from the tip of a critical crack. $\beta L^{1/\nu_f}$ is
- constant for each curve. \textbf{Left:} The unmodified stress.
- \textbf{Right:} The stress collapsed.}
- \label{collapse}
- \end{figure}
\section{Next Steps}
- \begin{wrapfigure}{r}{0.25\textwidth}
- \centering
- \vspace{-2em}
- %\includegraphics[width=.25\textwidth]{imgs/voronoi_heir.pdf}
- \captionof{figure}{A hierarchical voronoi lattice.}
- \end{wrapfigure}
\Large
diff --git a/rus_resonances.jpg b/rus_resonances.jpg
new file mode 100644
index 0000000..d4f5266
--- /dev/null
+++ b/rus_resonances.jpg
Binary files differ
diff --git a/urusi_modes.png b/urusi_modes.png
new file mode 100644
index 0000000..cec7388
--- /dev/null
+++ b/urusi_modes.png
Binary files differ