1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
\documentclass[portrait]{a0poster}
\usepackage{pifont}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[]{amsmath}
\usepackage{amssymb,latexsym,mathtools,multicol,lipsum,wrapfig,floatrow,bm}
\usepackage[font=normalsize,labelfont=bf]{caption}
\usepackage{tgheros}
\usepackage[helvet]{sfmath}
\usepackage[export]{adjustbox}
\renewcommand*\familydefault{\sfdefault}
\setlength\textwidth{194pc}
\begin{document}
\setlength\columnseprule{2pt}
\setlength\columnsep{5pc}
\renewenvironment{figure}
{\par\medskip\noindent\minipage{\linewidth}}
{\endminipage\par\medskip}
\renewcommand\section[1]{
\vspace{3pc}
\noindent\huge\textbf{#1}\large
\vspace{1.5pc}
}
\newcommand\unit[1]{\hat{\vec{#1}}}
\renewcommand\vec[1]{\boldsymbol{\mathbf{#1}}}
\newcommand\norm[1]{\|#1\|}
\def\rr{\rho}
\newcommand\abs[1]{|#1|}
\def\dd{\mathrm d}
\def\rec{\mathrm{rec}}
\def\CC{{C\kern-.05em\lower-.4ex\hbox{\cpp +\kern-0.05em+}} }
\font\cpp=cmr24
\def\max{\mathrm{max}}
% Our mysterious boy
\def\urusi{URu$_{\text2}$Si$_{\text2}$}
\def\e{{\text{\textsc{elastic}}}} % "elastic"
\def\i{{\text{\textsc{int}}}} % "interaction"
\def\Dfh{D$_{\text{4h}}$}
% Irreducible representations (use in math mode)
\def\Aog{{\text A_{\text{1g}}}}
\def\Atg{{\text A_{\text{2g}}}}
\def\Bog{{\text B_{\text{1g}}}}
\def\Btg{{\text B_{\text{2g}}}}
\def\Eg {{\text E_{\text g}}}
\def\Aou{{\text A_{\text{1u}}}}
\def\Atu{{\text A_{\text{2u}}}}
\def\Bou{{\text B_{\text{1u}}}}
\def\Btu{{\text B_{\text{2u}}}}
\def\Eu {{\text E_{\text u}}}
% Variables to represent some representation
\def\X{\text X}
\def\Y{\text Y}
% Units
\def\J{\text J}
\def\m{\text m}
\def\K{\text K}
\def\GPa{\text{GPa}}
\def\A{\text{\r A}}
% Other
\def\op{\textsc{op}} % order parameter
\def\ho{\textsc{ho}} % hidden order
\def\rus{\textsc{rus}} % resonant ultrasound spectroscopy
\def\Rus{\textsc{Rus}} % Resonant ultrasound spectroscopy
\def\afm{\textsc{afm}} % antiferromagnetism
\def\recip{{\{-1\}}} % functional reciprocal
\noindent\hspace{176pc}\includegraphics[width=18pc]{CULogo-red120px.eps}
\vspace{-24.5pc}\\
\Huge \textbf{Elastic properties of hidden order in URu$_{\text2}$Si$_{\text2}$ are reproduced by\\ staggered nematic order}
\hspace{37.5pc}\textbf{\LARGE arXiv:1910.01669 [cond-mat.str-el]}
\bigskip\\
\huge \textbf{Jaron~Kent-Dobias, Michael Matty \& B J Ramshaw}
\hspace{7pc}\ding{81}\hspace{7pc}\textbf{Cornell University}
\begin{multicols}{2}
\Large
\hspace{1em}
\textbf{ \urusi\ is a heavy fermion material with a continuous
transition into a `hidden order' (\ho) phase whose broken symmetry is
unknown.
} Under sufficient pressure it instead transitions into an antiferromagnet
(\afm), with phase diagram in Fig.~\ref{phase_diagram}(a). It also has a
superconducting phase within \ho\ that is destroyed by \afm.
\hspace{1em}
The modulus tensor of \urusi\ anomalously softens over several hundred
Kelvin and is cut off by the \ho\ transition, seen in Fig.~\ref{fig:plots}(b).
\textbf{
We show that only one order parameter symmetry is consistent with this
softening and the topology of the phase diagram.
}
This choice reproduces other \urusi\ phenomena and motivates new experiments.
\section{Resonant ultrasound spectroscopy \&\\ irreducible strains}
\Large
\hspace{1em}
Resonant ultrasound spectroscopy drives a sample with sound and measures its
resonances by looking for peaks in the response. Using the sample geometry
and the location of sufficiently many resonances, the modulus tensor
$C$---which gives the energetic cost of strain---can be calculated.
\textbf{
The structure of the modulus tensor and its temperature dependence yield
a lot of information about symmetry breaking.
}
\begin{figure}
\centering
\vspace{1em}
\includegraphics[width=0.5\textwidth]{rus_resonances.jpg}
\hfill\raisebox{2em}{\includegraphics[width=0.48\textwidth]{urusi_modes.png}}
\captionof{figure}{
\textbf{Left:}
Response versus driving frequency for a sample at some
temperature. The spikes correspond to resonances, and the strains
corresponding to a few dominant modes are depicted in the cartoons.
\textbf{Right:}
The crystal structure of \urusi\ and the influence of the irreducible
strains of \Dfh.
}
\label{fig:rus}
\vspace{1em}
\end{figure}
\hspace{1em}
The strain tensor $\epsilon$ has six independent components. These components can be
divided into tuples that symmetry transformations of the crystal act on with irreducible
representations (irreps) of its point group.
\textbf{
\urusi's point group \Dfh\ yields five `irreducible' strains, shown in
Fig.~\ref{fig:rus}.
}
Four are one-tuples (single-component). These are uniform compression in and
out of the plane ($\Aog$) and in-plane shear along the faces and diagonals of
the unit cell ($\Bog$ and $\Btg$). One is a two-tuple (multi-component), and
corresponds to out of plane shears ($\Eg$).
\section{Landau theory}
\Large
\hspace{1em}
The free energy must be invariant under symmetry transformations. This
constrains the way fields can couple together. Two fields can linearly couple
only if they correspond to the same irrep. Higher order couplings lead to
thermodynamic discontinuities but not diverging responses.
\textbf{
The anomalous softening of \urusi\ in Fig.~\ref{fig:plots}(b) suggests the
hidden order parameter couples linearly to strain.
}
\hspace{1em}
An $\Aog$ order parameter results in first-order transitions and can't
describe hidden order. If the order parameter $\eta$ corresponds to any of
the remaining irreps $\X$ present in strain, the free energy is
$f=f_\e+f_\i+f_\op$, where
\begin{equation}
\begin{aligned}
& \hspace{2em}f_\e=\sum_\X C^0_\X\epsilon_\X\epsilon_\X
\hspace{4em} f_\i=-b\epsilon_\X\eta \\
& f_\op=\frac12\big[r\eta^2+c_\parallel(\nabla_\parallel\eta)^2
+c_\perp(\nabla_\perp\eta)^2
+D_\perp(\nabla_\perp^2\eta)^2\big]+u\eta^4
\end{aligned}
\label{eq:fo}
\end{equation}
The strain $\epsilon$ can be traced out exactly, which results in a free
energy density with the form of $f_\op$ but with $r\to\tilde
r=r-b^2/2C^0_\X$.
\vfill
\begin{wrapfigure}{R}{0.6\columnwidth}
\centering
\includegraphics[width=\columnwidth]{paper/phase_diagram_experiments}
\vspace{1em}
\includegraphics[width=0.51\columnwidth]{paper/phases_scalar}\hspace{-0.75em}
\includegraphics[width=0.51\columnwidth]{paper/phases_vector}
\captionof{figure}{
Phase diagrams for (a) \urusi\ from Phys Rev B \textbf{77} 115117 (2008)
(b) theory for a one-component order ($\Bog$ or $\Btg$) (c) theory for a
two-component order ($\Eg$). Solid lines denote continuous transitions,
while dashed denote first order.
}
\label{phase_diagram}
\end{wrapfigure}
\hspace{1em}
\textbf{
This theory has a \emph{Lifshitz triple point} at $\bm{\tilde r=c_\perp=0}$.
}
The three phases that meet are
\begin{itemize}
\item\hspace{0.25em}unordered ($\eta=0$)
\item\hspace{0.25em}uniform ($\eta\neq0$)
\item\hspace{0.25em}modulated ($\eta\propto\cos q_*x_3$)
\end{itemize}
Phase diagrams are in Fig.~\ref{phase_diagram}(b--c). The order of the
transition between the uniform and modulated phases depends on the number of
order parameter components: one-component theories have a first order
transition while two-component theories are continuous.
\textbf{
The only order parameter irreps consistent with the first order transition
between \ho\ and \afm\ in \urusi\ are $\Bog$ and $\Btg$.
}
\section{Anomalous modulus response}
\Large
\hspace{1em}
The modulus $C$ can be calculated like any other response function.
Approaching the modulated phase, the modulus with the symmetry irrep
$\X$ of the order parameter is
\begin{equation}
C_\X=C_\X^0\bigg[1+\frac{b^2}{C_\X^0}\big(D_\perp q_*^4+|\Delta\tilde r|\big)^{-1}\bigg]^{-1}
\label{eq:static_modulus}
\end{equation}
\hspace{1em}
\textbf{
At the critical point the modulus with the symmetry of the order parameter
has an inverted cusp.
}
Compared with experiments, this doesn't resemble the $\Btg$ modulus in
Fig.~\ref{fig:plots}(a) but fits the $\Bog$ modulus in
Fig.~\ref{fig:plots}(b). \textbf{This suggests hidden order is a $\Bog$
nematic modulated along the \textit{c}-axis.}
\hspace{1em}
This theory explains the presence of the 0.4--0.5 inverse lattice constant
scattering peak seen in some experiments and is consistent with $\Bog$
symmetry breaking observed in the \afm\ phase. \Rus\ experiments at pressure
might resolve the divergence of the modulation wavevector $q_*$ and the
vanishing of the $\Bog$ modulus at the Lifshitz point.
\begin{figure}
\vspace{1em}
\centering
\includegraphics[width=\columnwidth]{paper/fig-stiffnesses.pdf}
\captionof{figure}{
\Rus\ measurements of \urusi's moduli as a function of temperature from
\texttt{arXiv:1903.00552 [cond-mat.str-el]} (blue, solid) alongside fits
to this theory (magenta, dashed). The solid yellow region shows the \ho\
phase. (a) $\Btg$ modulus data and a fit to standard form. (b) $\Bog$
modulus data and a fit to \eqref{eq:static_modulus}. (c) $\Bog$ modulus
data and the fit of the \emph{bare} $\Bog$ modulus. (d) $\Bog$ modulus
data and fit transformed in way predicted from \eqref{eq:static_modulus}
to be an absolute value function.
}
\label{fig:plots}
\vspace{1pc}
\end{figure}
\end{multicols}
\end{document}
|